Blender

3D Content Creation Noob to Pro

Wikibooks.org

April 21, 2012

This PDF was generated by a program written by Dirk Hünniger, which is freely available under an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/ wb2pdF.

Contents

I. Unit 1-Knowing Before Making 3

1. Knowing Before Making 5
1.1. AdDItional Resources 7
2. What Blender Can Do 9
2.1. AdDitional Resources 10
3. 3D GEOMETRY 13
3.1. Coordinates And Coordinate Systems 13
3.2. Axes Of Rotation 15
3.3. AdDitional Resources 17
4. COORDINATE TRANSFORMATIONS 19
4.1. COORDINATE TRANSFORMATIONS 19
4.2. Linear Transformations 21
4.3. MULTIPLE Transformations 22
4.4. InVERSE TRANSFORMATIONS 24
4.5. ProJECTIONS 25
5. ORTHOGRAPHIC VIEWS 27
5.1. EXAMPLE 27
5.2. ADDITIONAL RESOURCES 29
6. Perspective Views 31
6.1. One-Point Perspective 32
6.2. Two-point Perspective 33
6.3. Three-point Perspective 34
6.4. Additional Resources 34
7. COORDINATE SPACES IN BLENDER 35
7.1. GLOBAL AND LOCAL COORDINATES 36
7.2. VIEW COORDINATES 38
7.3. NORMAL COORDINATES 39
8. USER INTERFACE OVERVIEW 41
9. Keystroke, Button, and Menu Notation 43
9.1. Hotkeys 43
9.2. Mouse Notation 45
9.3. Navigating Menus 45
9.4. Additional Resources 47
10. NON-STANDARD EQUIPMENT 49
11. Operating System specific notes 51
11.1. GNU+LINUX 51
11.2. MaC OS X 52
11.3. Microsoft Windows 52
12. BLENDER INTERFACE 55
13. Blender Windowing System 57
13.1. An Interface Divided 57
13.2. Window Headers 59
13.3. Window Types 60
13.4. The Active Window 64
13.5. RESIZING WINDOWS 64
13.6. Splitting a Window 65
13.7. Joining Windows 66
13.8. LEAVING BLENDER 67
13.9. AdDItional Resources 68
14. User Preferences Windows 69
14.1. Saving User Preferences 69
14.2. Accessing the User Preferences 69
14.3. Configuring Your Preferences 70
14.4. Additional Resources 73
15. Buttons Windows 75
16. The Contexts 77
17. Where Did The Old Stuff Go? 97
18. 3D View Windows 99
18.1. The Viewport and its Contents 99
18.2. MODES 105
18.3. Viewport Options 107
18.4. UnDO 108
18.5. Changing Your Viewpoint, Part One 108
18.6. Positioning the 3D Cursor 111
18.7. Changing Your Viewpoint, Part Two 114
18.8. Visibility Layers 115
18.9. Adding and Deleting Objects 117
18.10. Count Your Polys 117
19. BLENDER INTERFACE (VERSION 2.5) 119
20. Blender Windowing System (version 2.5) 121
20.1. The Blender Workspace 121
20.2. The Active Window 124
20.3. Resizing A Window 124
20.4. Shelves 124
20.5. Too Much To Fit 125
20.6. Panels 126
20.7. Splitting And Joining Windows 126
20.8. The Default Workspace 128
20.9. Workspace Presets 128
21. User Preferences Window (Version 2.5) 131
21.1. Saving User Preferences 131
21.2. Accessing User Preferences 131
21.3. Configuring Your Preferences 131
22. Properties Window (version 2.5) 135
23. 3D VIEW (VERSION 2.5) 137
24. Blender Memory Management 139
24.1. Datablocks And Users 139
II. Unit 2-Basic Modeling and Shading 143
25. What is a Mesh? 145
25.1. Additional Resources 152
26. Quickie Model 153
26.1. Bring up the Default Cube 154
26.2. Setting up the Viewport 155
26.3. Adjusting the Height 157
26.4. Extruding 159
26.5. Merging 160
26.6. SAVING YOUR WORK 162
26.7. Additional Resources 162
27. Quickie Render 163
27.1. Rendering the Quickie Model 163
27.2. Aiming the Camera 164
27.3. Lighting 164
27.4. Saving the Render 165
27.5. Image File Formats 165
27.6. Additional Resources 165
28. Understanding the Camera 167
29. Improving Your House 171
29.1. Adding a Ground Plane 172
29.2. Scaling with a Pivot 174
29.3. EdGE SElEction 175
29.4. EXTRUDING EDGES 176
29.5. FACE SELECTION 179
29.6. Extruding Faces 181
29.7. Deleting Edges 182
29.8. SUBDIVIDING FACES 182
29.9. FinAl Steps 185
30. Modeling a Simple Person 187
30.1. Start a New Scene 188
30.2. Selection Methods 188
30.3. EXTRUDING LIMBS 192
30.4. Adding the Head 197
30.5. Save Your Work 199
31. Detailing Your Simple Person 1 201
31.1. SUBSURFACES 202
31.2. Smooth Shading 205
32. Detailing Your Simple Person 2 207
32.1. Widening the Torso 207
32.2. BENDING THE ARMS 209
32.3. MAKING FEET 211
32.4. Reshaping the Head 211
33. Creating a Simple Hat 215
33.1. Creating a Generatrix 215
33.2. Spinning the Hat 217
33.3. Smoothing Your Hat 218
33.4. AdDitional Resources 218
34. Putting Hat on Person 219
34.1. Adjusting an Object's Median Point 220
34.2. Positioning the Hat 221
34.3. Parenting the Hat to the Person 223
34.4. Renaming Objects 224
34.5. OUTLINER Windows 225
34.6. GOOD ON YA' MATE! 226
34.7. AdDITIONAL RESOURCES 226
35. Materials and Textures 227
35.1. Material versus Texture 227
35.2. Other Material Settings 227
35.3. Types of Textures 228
35.4. AdDItional Resources 228
36. Quickie Material 229
36.1. Your First Material 230
36.2. Specifying Colors 233
36.3. Additional Resources 236
37. Multiple Materials Per Object 237
37.1. Set the scene 238
37.2. Colorize Time 238
38. Image textures 243
38.1. Easy Image Texture Creation With Gimp 243
38.2. Other Image Texture Editors 245
38.3. Mapping an Image Texture to an Object 245
39. Procedural Textures 247
39.1. A Simple Wood Texture 247
40. Quickie Texture 251
40.1. Adding a texture 251
40.2. Adding a Stucci texture 256
41. Halo Materials 257
41.1. Introduction 257
41.2. Applying a Halo Material 258
41.3. AdDING/MODIFYING EXTRA EFFECTS 260
42. Aligned to view issue 267
43. Bones 269
43.1. LAYING DOWN bONES 270
43.2. ADD A bONE 271
43.3. Extrude a second Bone 273
43.4. NAME the bones 274
43.5. Parent the bones 274
43.6. Moving the Bones 277
44. Mountains Out Of Molehills 279
44.1. Creating a simple plane 279
44.2. First mountain 280
44.3. Peaks vs. hills 283
44.4. Shaping the world 285
44.5. Smoothing things out 287
44.6. Naturalness 288
44.7. AdDING YOUR GUY with the hat 289
45. Modeling a volcano 291
45.1. Overview 291
45.2. AdD A PLANE 291
45.3. Subdivide the plane 291
45.4. MAKE THE MOUNTAIN 292
45.5. MAKE THE TOP (CRATER) 296
45.6. SUBSURF 298
45.7. ADD COLOR 301
46. Penguins from Spheres 307
46.1. SETUP 307
46.2. CREATING THE BODY 308
46.3. SHAPING THE HEAD 309
46.4. EXTRUDING THE WINGS 315
46.5. Smoothing the wings 318
46.6. CUTTING THE UNDERSIDE 321
46.7. ADDING THE FEET 323
46.8. EXTRUDING A TAIL 326
46.9. SUBSURFING 328
46.10. EXTRA 329
47. DIE EASY 2 331
47.1. Start with a beveled cube 331
47.2. DIVIDE THE FACES 332
47.3. Colouring the Cube 341
47.4. ADDING THE SPOTS 342
47.5. SUBSURFING AND SMOOTHING 348
47.6. COLOURING THE SPOTS 352
47.7. AFTERWORD 356
48. Die Another Way 357
48.1. Video Tutorial 357
48.2. INTRODUCTION 357
48.3. Subdivide First 358
48.4. MANUAL SIZING OF PiPs 358
48.5. Creating Pips 363
48.6. COLOR 375
49. Model a Goblet 387
49.1. THREE WAYS TO BUILD THE MESH 387
49.2. HOW MANY CIRCLES? 388
50. Model a Silver Goblet 391
50.1. BASIC SHAPE 391
50.2. Smoothing and Defining 395
50.3. TRANSPARENCY 398
51. Model a Silver Goblet Cylinder 401
51.1. PRELIMINARIES 401
51.2. DESCRIPTION OF THE MODELING STEPS 401
51.3. Creating the Goblet 403
51.4. SUBSURFING AND SMOOTHING THE GOBLET 404
51.5. Flattening the base of the goblet 405
52. Spin a goblet 407
52.1. Modeling 408
52.2. RENDERING 412
52.3. DETAILED KEYSTROKES 413
53. Light a Silver Goblet 415
53.1. Techniques 415
53.2. Objects in the Scene 415
53.3. Adding the Atmosphere 418
54. Simple Vehicle 425
55. Simple Vehicle: Wheel 427
55.1. TECHNIQUES 427
55.2. MODEL THE TIRE 427
55.3. MODEL THE HUBCAP 434
55.4. EXTRA 439
56. Simple Vehicle: Seat 441
56.1. TECHNIQUES 441
56.2. EXtrude the Seat 441
56.3. ADD CUSHION SEAMS 442
56.4. POSITION THE CUSHION SEAMS 443
56.5. Add DEPTH TO THE SEAMS 444
56.6. SUBSURF THE SEAT 446
56.7. RESIZE THE SEAT 447
56.8. FINAL TOUCHES 448
57. Simple Vehicle: Rocket Launcher 451
57.1. TECHNIQUES 451
57.2. OVERVIEW 451
57.3. CREATE THE LAUNCHER 451
57.4. CREATE THE ROCKET 453
57.5. CREATE THE MOUNT 455
57.6. SUBSURF 457
57.7. FINAL TOUCHES 459
58. Simple Vehicle: Body 461
58.1. TECHNIQUES 461
58.2. Planning 461
58.3. BUILDING THE JEEP 461
58.4. A Touch of Detail 481
58.5. SUBSURF 491
58.6. Optional Activities 491
59. Simple Vehicle: Some Assembly Required 493
59.1. TECHNIQUES 493
59.2. OVERVIEW 493
59.3. Appending the File 493
59.4. Rinse and Repeat 495
59.5. Parenting 496
59.6. Final things 497
59.7. EXTRA 498
59.8. AdDITIONAL TUTORIALS 499
60. Modeling a 3D Parachute in Blender 501
60.1. REMOVE THE DEFAULT CUBE 501
60.2. ADD A CYLINDER 502
60.3. REMOVE THE BOTTOM ROW OF VERTICES 503
60.4. EXTRUDE AND SCALE TO SHAPE 504
60.5. MAKE THE TOP MORE ROUNDED 505
60.6. EXTRUDE THE PARACHUTE STRAPS 506
60.7. MERGE IT TOGETHER 507
61. Model a Low Poly Head 509
61.1. OVERVIEW 509
61.2. ADD A PLANE 509
61.3. MAKE A POINTED CHIN 510
61.4. EXTRUDE THE FACE 512
61.5. MaKE THE FACIAL FEATURES 514
61.6. SMOOTH THE MOUTH REGION 521
61.7. MAKE THE HEAD 522
61.8. MAKE THE BACK OF THE HEAD 524
61.9. FINISHING IT UP 528
62. Building a House 529
62.1. Setting the Scene 529
62.2. MAKE THE HOUSE WALLS 532
62.3. MAKE THE ROOF 533
62.4. MAKE A CHIMNEY 541
62.5. Adding a Window and a Door 543
62.6. Building the Fence 550
62.7. Put the Horizontal Bars Around The House (Method 2 (above) CONT'D) 556
62.8. The Ground Plane and a Path 557
62.9. FINAL RENDER 558
63. Pipe Joints 561
63.1. T JOINT 561
63.2. 6 CYLINDER JOINT 564
63.3. 3 CYLINDER JOINT 566
63.4. T JOINT WITH SMALLER DIAMETER 568
64. Aligning Vertices with a Guide Image 573
64.1. BACKGROUND: ORTHOGRAPHIC PROJECTION 573
64.2. Making a Simple Pyramid 575
64.3. USING THE GUIDE IMAGES 576
65. Modeling a Fox from Guide Images 587
65.1. METHOD 1 587
65.2. METHOD 2 (USING MIRRORING) 601
65.3. USING MIRRORING WITH METHOD 1 603
65.4. DETAILED STEPS TO ALIGN IMAGES USING GIMP 604
66. 2D ImAge (LOGO) TO A 3D MODEL 605
66.1. OVERVIEW 605
66.2. LOAD THE BACKGROUND IMAGE INTO BLENDER 605
66.3. DELETE THE CUBE 612
66.4. Introducing the Bezier Curve 612
66.5. MODELING THE LIGHTING BOLT 618
66.6. MODELING THE RED CIRCLE 627
66.7. Extra Practice 646
67. Curve and Path Modeling 647
68. Intro to Bezier Curves 649
68.1. BEZIER CURVE BASICS 649
68.2. EXTRUDING FROM 2D TO 3D 651
68.3. CREATE A FILLED, EXTRUDED SHAPE 658
69. Curves In 3d 659
69.1. BEZIER CURVES IN 3D 659
69.2. GETTING STARTED IN 3D 660
69.3. EXTRUDING REVISITED 660
69.4. Curve Tilting and Normal-SCaling 661
69.5. Convert Curve to Mesh 661
70. Deforming Meshes using the Curve Modifier 663
70.1. Setting up your Mesh 663
70.2. Extruding the Cone 664
70.3. Making a Curve 665
70.4. Applying the Curve to the Mesh 667
71. Making Your Creation Smoother 669
71.1. Getting started 669
71.2. Sculpting With "Lumps of Clay" 669
71.3. Meta-mess! 671
71.4. Beginning to sculpt 673
72. Using Textures 675
72.1. COLORMAP 675
72.2. Diffusemap 677
72.3. LUMINOSITYMAP 679
72.4. Specularitymap 679
72.5. Reflectionmap 680
72.6. TRANSPARENCYMAP 680
72.7. Refractionmap 681
72.8. TRANSLUCENCYMAP 681
72.9. BUMPMAP/NORMALMAP 682
72.10. DISPlacement Map 684
72.11. DIRTMAP 684
72.12. UsE UV Coordinates for your Maps 687
73. USING A TEXTURE TO MAKE A MATERIAL PARTIALLY TRANSPARENT 689
73.1. USING A GREYSCALE TEXTURE - WHITE FOR OPAQUE 690
73.2. USING A PARTIALLY TRANSPARENT TEXTURE TO MAKE THE MATERIAL TRANSPARENT 692
74. Creating Basic Seawater 695
74.1. Create 3 Linked planes 696
74.2. CREATE MATERIAL 696
74.3. EXtra Practice 698
75. Mountains Out Of Molehills 2 699
76. Basic Carpet Texture 703
76.1. GOAL 703
76.2. The Basic Material and Shader Settings 704
76.3. Cloud Texture 1 705
76.4. Cloud Texture 2 706
76.5. The Final Cloud Texture 707
76.6. The Last Texture 709
77. The Rusty Ball 711
78. Procedural Eyeball 713
78.1. Creating the Mesh 714
78.2. Adding the Textures 715
78.3. Pupil Dialation 720
79. Creating Pixar-Looking eyes in Blender 723
79.1. Parts of the Eye 724
79.2. MATERIALS 725
79.3. Lighting 729
79.4. Changing the Eye Color 729
79.5. Pixar Eye Video Tutorial 731
79.6. USEFUL LINKS 731
80. UV MAP BASICS 733
80.1. THE BASICS OF UV MAPPING 733
80.2. QUESTIONS 742
80.3. AlTERNATIVE METHOD 744
80.4. SOURCE 746
80.5. TEXFACE VERSUS MAP INPUT - PASTING A PHOTO TO A SPHERE 747
80.6. Video Tutorial 749
81. Realistic Eyes In Blender 751
81.1. Overview 751
81.2. Reference Material 752
81.3. Building The Eye 753
81.4. UV MAPPING 758
81.5. Preparing A Template For Texturing 762
81.6. First Bump Map - The Sclera 764
III. Unit 3-Broadening Horizons 769
82. Beginning Lighting 771
83. Understanding Real Lights 773
83.1. The properties of real lights 773
84. Adding Lamps 775
84.1. Explaining the Different Lights: 775
84.2. Creating a basic SCENE with basic lighting 776
85. Faked Gi with Blender internal 787
85.1. Preamble 787
85.2. Blender Faked GI Tutorial 788
86. Render Settings 793
86.1. The Scene Tab 793
86.2. Output / Render Layers 794
86.3. RENDER 797
86.4. ANIM / BAKE 798
87. Output Format Options 801
87.1. Output Format Basics 801
87.2. OUTPUT FORMATS 803
87.3. Cropping 804
87.4. Palette 804
87.5. Pre-Sets Just For You 805
88. OSA 807
89. Looking All Around - Panorama Settings 809
89.1. Panoramic Renderings 809
90. Other Important Render Options 815
91. Yafray Render Options 817
91.1. Getting Started with Yafray 818
91.2. YafRay tab 819
92. Stamping 821
92.1. Tictoon Tutorial: Stamping 821
93. 2D, Toon, \& CAD Rendering 829
93.1. 2D, Toon, \& CAD Rendering 829
93.2. Freestyle \& Blender Integration 831
94. Basic Animation 833
95. ScreenLayout 835
96. Lattice 839
96.1. What is a Lattice? 839
96.2. How to add and use a Lattice 839
96.3. Getting more involved with Lattice 841
96.4. Examples 845
96.5. MAKING it Stick 846
96.6. Animating a Lattice Modifier 846
96.7. Let the fun begin! 848
97. Bounce 851
97.1. How to make a ball bounce convincingly! 851
97.2. How hard can it be to move a ball? 851
97.3. Why use a lattice? 851
97.4. Let's begin then 851
97.5. Saving The Animation 860
97.6. So what next? 860
97.7. Links 860
98. Creating Basic Water animation 861
98.1. Water and Other Fluids 861
98.2. The Domain 862
98.3. The Fluid 862
98.4. The Obstacle 862
98.5. Baking Fluids 863
98.6. Other Fluid Objects 864
98.7. Keep This In Mind 864
98.8. NOTES 864
98.9. Site Under Construction 864
99. Flying Through A Canyon 865
99.1. Creating the Canyon 865
99.2. Coloring the Canyon 870
99.3. Additional projects 871
100. USING THE SEQUENCER TO COMPILE FRAMES INTO AN ANIMATION 873
100.1. USING THE SEQUENCER TO COMPILE FRAMES INTO AN ANIMATION 873
100.2. Preamble 873
100.3. Tutorial 873
100.4. Use the Sequencer to compile the images into a movie file 875
101. Particle Systems 879
101.1. THE VERY FIRST PARTICLE SYSTEM 879
101.2. Links 883
102. Making Fire 885
102.1. THE PARTICLE SYSTEM 886
102.2. Material 889
102.3. Rendering 891
103. FURRY 893
103.1. THE EMITTER 894
103.2. Material 897
103.3. Changing Hair length with a texture 900
103.4. Сомв іт! 904
103.5. Links 905
104. Fireworks 907
104.1. The Emitter 907
104.2. Reactor 1 908
104.3. Smoke Trail 910
104.4. RENDER 911
105. Particles forming Shapes 913
105.1. Keyed Physics 913
105.2. Harmonic Force Fields 918
106. Billboard Animation 921
106.1. Splitting a texture 922
106.2. Animating Alpha in relative particle time 924
106.3. Animating billboard color 926
106.4. Changing the starting color of a billboard 927
107. Soft Body Animation 929
107.1. Explanation of Settings 933
108. Simple Cloth Animation 935
108.1. Making the Skirt Mesh 935
108.2. Creating the Vertex Group 935
108.3. Animating the Skirt 935
108.4. Keeping the Folds 936
108.5. Extra Practice 937
109. Soft Body with wind 939
109.1. Setting UP Scene 939
109.2. Designating each object's job 941
109.3. THE MOVEMENT 944
109.4. Finishing touches 947
109.5. Final result 950
110. Your First Test 953
110.1. Adding the Hill 953
110.2. Creating the Ball 953
110.3. Testing your game 954
110.4. Video capturing your game 955
110.5. Conclusion 956
110.6. Extra Tutorials 956
111. Platformer: Creation and Controls 957
111.1. Set Up 957
111.2. Controls 958
112. An AMAZEING GAME ENGINE TUTORIAL 961
112.1. Maze Surface 961
112.2. Character 964
112.3. Motion 966
112.4. Testing 967
112.5. Falling 968
112.6. CAMERA 970
112.7. Beautification 970
112.8. Levels 974
112.9. Dynamic obstacles 975
112.10. Conclusion 977
113. Platformer: Physics Fixes 979
113.1. Creating Your Hit Test Object 979
113.2. Excessive Bouncing 980
113.3. Final Notes 980
114. Making exe 981
114.1. Windows 981
114.2. GNU/LINUX OR MAC OS X 983
114.3. BlenderPlayer 983
114.4. Legal Issues 983
114.5. Proprietary Blend Files 984
115. BUILD A SKYBOX 985
115.1. GATHER YOUR GRAPHICS 985
115.2. CREATE A DOME FOR THE SKY 987
115.3. CREATE A DOME FOR THE GROUND 991
115.4. RENDER THE ENVIRONMENT MAP 993
115.5. Video Tutorial 996
116. BASIC MOUSE POINTER 997
117. TEXT IN BGE 999
118. Python Platformer: Creation 1001
118.1. Code Sections 1001
118.2. Adding the Player Object 1002
IV. Unit 4 - Taking Off With Advanced Tutorials 1005
119. PyThon SCRIPTING 1007
119.1. CHAPTER CONTENTS 1007
120. INTRODUCTION 1009
120.1. INTRODUCTION 1009
120.2. First Steps In Blender Scripting 1009
120.3. Multiple Running Scripts 1010
120.4. The Blender Versus bpy Modules 1010
120.5. SEE Also 1011
121. INTRODUCTION (VERSION 2.5) 1013
121.1. First Steps In Blender Scripting 1013
121.2. The bpy Module 1014
121.3. The mathutils Module 1014
121.4. See Also 1015
122. Addon Anatomy (VERSION 2.5) 1017
122.1. TEXT Blocks 1017
122.2. Your First Operator 1017
122.3. Invoking Your Operator 1020
122.4. If You Hit An Error 1020
123. Addon User Interface (VERSION 2.5) 1023
123.1. Your First Panel 1023
123.2. Adding Undo Support 1023
123.3. Put It All Together 1024
123.4. Space Types, Region Types, Contexts, Oh My! 1025
124. Adddon Custom Property (VERSION 2.5) 1027
124.1. Defining A Property 1027
124.2. Using The Property 1028
124.3. Put It All Together 1028
125. Separately Installable Addon (VErsion 2.5) 1031
125.1. The Addon Info Dictionary 1031
125.2. Making The Addon Installable 1032
125.3. Installing The Addon 1032
125.4. Using The Installed Addon 1032
126. Object, Action, Settings (Version 2.5) 1035
126.1. Adding To The Add Menu 1035
126.2. Fixing Up The UI 1036
126.3. INVOKE VERSUS EXECUTE 1037
126.4. Put It All Together 1037
126.5. Undocumented Blender 1038
127. PROCEDURAL OBJECT CREATION 1055
127.1. Text Blocks 1055
127.2. Your First Script 1055
127.3. Put It All Together 1056
127.4. If You Hit An Error 1057
128. EXTERNAL SCRIPTS 1059
128.1. The Script Header 1059
128.2. Put It All Together 1059
128.3. Making The Script Installable 1060
128.4. Installing The Script 1060
128.5. Using The Installed Script 1061
129. CREATING A GUI FOR YOUR SCRIPT 1063
129.1. A Modal GUI 1063
129.2. A Modeless GUI 1064
130. EXPORT SCRIPTS 1067
130.1. Finding out about things in a scene 1068
130.2. CREATING A SCRIPT 1071
130.3. EXPORTING A MESH 1074
131. IMPORT SCRIPTS 1077
131.1. IMPORTING A MESH 1077
132. SCRIPTS FOR MODIFYING MESHES 1081
133. Advanced Modeling Introduction 1083
133.1. Advanced Modeling 1083
134. Advanced Modeling 1085
134.1. MaKing Better Models 1085
135. HDRI 1087
135.1. InTRODUCTION 1087
135.2. DEFINITIONS 1087
135.3. UsAGE 1088
135.4. QUICK TUTORIAL (for experienced blendies) 1089
135.5. STEP-BY-STEP TUTORIAL 1089
136. Creating a Light Probe 1095
137. MAKING LANDSCAPES WITH HEIGHTMAPS 1099
137.1. CREATING THE HEIGHTMAP IMAGE 1099
137.2. CREATE GRID AND ADD THE IMAGE AS TEXTURE 1100
137.3. USE TEXTURE AS HEIGHTMAP 1102
138. How to Do Procedural Landscape Modeling 1107
138.1. Mountains 1107
139. Landscape Modeling I: Basic Terrain 1113
139.1. Creating the Canvas 1113
139.2. Molding the Mountains 1114
139.3. Texturing the Terrain 1117
139.4. Reader Contributions 1119
139.5. Reader Contributions 2 1120
139.6. Reader Contributions 3 1121
140. Landscape Modeling II: Texture Stenciling 1123
140.1. Creating the Stencil 1123
140.2. Applying the Stencil 1126
140.3. Adding Snow 1128
140.4. Multiple Stencils 1128
141. Landscape Modeling III: Exporting as a Heightmap 1133
141.1. A Word About Heightmaps 1133
141.2. Creating the Material 1135
141.3. Setting up the Camera 1137
141.4. Avoid Stair-Stepping 1139
142. Realistic Water using Fluid Sim and Yafray 1141
142.1. Using the Fluid Simulator and Yafray to create realistic LOOKING WATER 1141
142.2. Getting Started 1141
142.3. Extra Practice 1147
143. BUMP MAPPING 1149
143.1. Creating Bump Maps 1149
143.2. APPLYing the animated bump map 1153
144. Normal Mapping 1155
145. Texture Normal Mapping 1157
145.1. The Texture-Normal 1157
146. Color Map Normal Mapping 1161
146.1. The Color-Map-Normal 1161
146.2. Creating a Normal Map 1161
147. Nodes 1167
148. Texture Nodes 1169
148.1. A Simple "Rainbow" Texture 1169
148.2. Scalars Versus Vectors 1171
149. Material Nodes 1173
149.1. A Simple Graduated Material 1173
150. Compositing 1177
150.1. Introduction to Composite Nodes 1177
151. Introduction 1179
152. Armature Object 1181
153. Object View 1183
153.1. The Armature Object 1183
153.2. The Edit Panel When in Object Mode 1185
153.3. Extra Practice 1193
154. Edit View 1195
154.1. Now the basics about bones 1196
154.2. The edit panel 1197
154.3. NAMING CONVENTION 1203
154.4. Mirror Editing 1204
155. Pose View 1207
155.1. So What Can You Do? 1207
156. Mesh Object 1213
157. Armature and Mesh 1215
157.1. The Armature Modifier 1215
157.2. The Old Way 1216
157.3. TiP: BaKE ENVELOPE TO VERTEX GROUPS 1217
158. Envelope 1219
158.1. What is Envelope 1219
158.2. Edit Envelope 1220
158.3. Envelope Options 1221
159. Vertex Groups and Weight Paint 1225
159.1. What Are Vertex Groups? 1225
159.2. Weight Paint 1226
159.3. Vertex Groups and Armatures 1228
159.4. Using Weight Painting with Armatures 1229
160. Shape Key 1233
160.1. Shape Key? 1233
160.2. The GUI 1236
160.3. SHAPE KEYS STEP-BY-STEP 1236
161. Lip-Sync 1239
161.1. Lip-Sync with Shape Keys 1239
161.2. THE HARD WORK FIRST 1239
161.3. Getting down and dirty 1245
161.4. Putting it all together 1248
161.5. Using Blender to render Audio And Video TOGETHER. 1249
161.6. AUdIO FILES 1249
161.7. P.S. 1249
162. CONSTRAINTS 1251
162.1. THE CONSTRAInt 1251
162.2. The Constraint Panel 1251
162.3. The Constraint Index 1253
163. COPY LOCATION 1255
163.1. COPY LOCATION 1255
163.2. The Constraint Panel 1256
163.3. Where To Use It 1256
164. COPY ROTATION 1259
164.1. COPY Rotation 1259
164.2. The Constraint Panel 1260
164.3. Where To Use It 1260
165. TRACK-TO 1261
165.1. TRaCK-TO 1261
165.2. The Constraint Panel 1262
165.3. Where To Use It 1263
166. FLOOR 1265
167. STRETCH-TO 1267
167.1. Stretch-To 1267
168. IK Solver 1269
168.1. THE IK SOLVER 1269
168.2. The Constraint Panel 1270
168.3. Where To Use It 1274
168.4. Degree Of Freedom 1275
169. NLA Window 1277
170. (ABOUT THIS PLACEHOLDER) 1279
171. The NLA Window 1281
171.1. Forum Notes 1281
171.2. WALKTHROUGH 1281
172. Intro to the NLA Editor 1285
172.1. NLA (Non-Linear Animation) 1285
172.2. SETting UP the Scene 1285
172.3. Adding Action Strips 1286
172.4. Getting the Strips to Play 1289
172.5. CONCLUSION 1291
173. The Stride Feature 1293
174. Relative Vertex Keys 1295
175. Piston, Rod and Flywheel 1297
175.1. Piston, Rod and Flywheel 1297
175.2. LINKS 1304
176. Cutting Through Steel 1307
176.1. Creating the Alpha-Map 1308
176.2. Welding sparks 1311
176.3. USING THE ALPHA MAP ON AN OBJECT 1312
176.4. Material for the plane 1315
176.5. Lighting the torch 1316
176.6. More realistic sparks 1318
176.7. Sмоке 1319
176.8. AFTER Glow 1321
176.9. Links 1323
177. Advanced Game Engine 1325
178. Game Creating Techniques Part One: The GUi 1327
178.1. Making Blender Games Graphically 1327
179. Creating Pop-Up Menus 1329
179.1. Making An Easy Title Menu 1329
179.2. Author's Starting Menu Example 1331
179.3. A Main Menu 1332
180. Creating Moving Menus 1337
180.1. Making Moving Selectors 1337
180.2. Make the Menu Move 1341
181. The "5-Layer"Button 1343
181.1. Scheduled Construction 1343
182. Creating Object Outlines 1345
182.1. Scheduled Construction 1345
183. Game Creating Techniques Part Two: Python 1347
183.1. Needs Expert 1347
183.2. Additional Resources 1347
183.3. External Links 1347
184. Really Advanced: The Game Engine Source 1349
V. Appendices 1351
185. Glossary 1353
185.1. A 1353
185.2. B 1353
185.3. C 1354
185.4. D 1355
185.5. E 1355
185.6. F 1355
185.7. G 1356
185.8. H 1356
185.9. I 1356
185.10. J 1357
185.11. K 1357
185.12. L 1357
185.13. M 1358
185.14. N 1358
185.15. O 1359
185.16. P 1359
185.17. Q 1359
185.18. R 1360
185.19. S 1360
185.20. T 1361
185.21. U 1362
185.22. V 1362
185.23. W 1362
185.24. X 1362
185.25. Y 1362
185.26. Z 1362
186. FAQ 1363
187. Tutorial Links List 1365
187.1. Official Blender Documentation 1365
187.2. Interface 1365
187.3. Mesh Modeling 1366
187.4. Nurbs and Subsurface Modeling 1368
187.5. Specific Object Modeling 1368
187.6. Texture Mapping 1371
187.7. 2D Texture Painting TechniQues 1373
187.8. Lighting, Shadows and Rendering 1374
187.9. Armatures and IK 1375
187.10. Animation 1376
187.11. Particles 1377
187.12. Fluid Simulation 1378
187.13. Compositing 1378
187.14. Game Engine 1378
187.15. Python and Plugins 1379
187.16. Using other Programs with Blender 1381
187.17. Video Tutorials 1383
187.18. Blender WikiBooks 1383
187.19. FAQ 1383
187.20. Miscellaneous 1384
187.21. OTHER LISTS 1384
187.22. About 1386
188. HOTKEYS 1387
189. OUTPUT Formats 1389
190. ImAGE Portfolio 1391
190.1. SUMMARY 1391
190.2. CATEGORIES 1391
190.3. A SAMPLING OF IMAGES FROM THE ABOVE CATEGORIES 1391
191. BLENDER Glossary 1437
192. Every Material Known to Man 1441
192.1. 'Every Material Known To Man'Project 1441
193. SoURCES OF FREE 3D MODELS 1443
193.1. BLENDER-SPECIFIC 1443
193.2. NON-BLENDER-SPECIFIC 1443
193.3. Sites Using .RAR Format 1445
193.4. Sites Requiring Registration 1445
194. BLUEPRINT LINKS List 1447
194.1. Registration Required 1447
194.2. Payment Required 1447
194.3. Shouldn't Really Be Here? 1448
195. Materials, Textures, Photos 1449
196. ASKing for Help 1451
197. KNOW What You're Doing 1453
198. Modeling Realistically 1455
198.1. Assemble Things, Don't Chisel Them 1455
198.2. Separate Objects for each Material 1456
198.3. Removing the Fourth Wall 1457
198.4. Proportions and Measurements 1457
199. Modeling tips 1459
200. Cheat the 3D 1461
200.1. Ways to Improve Performance 1461
201. Performance vs. Quality 1463
202. Modeling a Gingerbread Man 1465
202.1. Modeling 1465
202.2. Camera Positioning and Rendering 1484
202.3. ApPlying Textures 1485
203. MODELING A SIMPLE SPACE-SHIP 1491
203.1. Modeling a Simple spaceship using Blender 2.49B 1491
204. Creating Weapons based on 2D Images 1493
204.1. Modeling Technique 1 1493
204.2. Modeling TechniQue 2 1494
205. Match Moving 1497
205.1. ICARUS 1497
205.2. Voodoo 1497
206. Motion Tracking with Icarus 1499
207. Create a Clayman 1503
207.1. Create a Clayman 1503
207.2. Making The Clayman 1503
207.3. Adding Materials 1513
207.4. Inserting Armatures 1514
207.5. Applying The Armature 1517
208. Organic Modeling 1531
209. Understanding the Fluid Simulator 1535
209.1. Understanding the Fluid Simulator 1535
209.2. FIRST OF ALL 1535
209.3. SETTING UP THE SCENE 1535
209.4. SETTING UP THE SIMULATION 1536
209.5. FINAL NOTES 1537
209.6. Extra Practice 1537
209.7. LINKS 1538
210. Creating a Jewel in Blender 1539
210.1. MODELING THE JEWEL 1539
210.2. SHADING 1543
210.3. ThE FINISHING TOUCH 1544
210.4. EXTERNAL LINKS 1544
211. MODELING A PICTURE 1545
211.1. Modeling a picture 1545
211.2. Printing a Rendered Image 1546
212. Modeling with The Spin Tool 1547
213. SPIN TOOL InTRODUCTION 1549
213.1. How the Spin Tool Works 1549
213.2. Typical Work Flow 1550
213.3. Post Modeling 1567
214. Illustrative Example: Model a Wine Glass 1569
214.1. Model half the outline 1569
214.2. Spinning the outline 1570
214.3. Cleaning up the Mesh 1573
215. Creating Ogg-Theora movies using Blender 1575
215.1. Converting saved frame picture files to Ogg Theora 1575
215.2. Converting AVIs to Ogg Theora 1575
216. Creating animated GIFs using Blender and Gimp 1577
217. 3D Tiling Backgrounds For The Web 1579
217.1. Overview 1579
217.2. Create The Object You Wish To Tile 1579
217.3. Specify Your Tiling Area 1580
217.4. Tile Away! 1581
217.5. Camera Settings 1586
217.6. Lighting \& Materials 1587
217.7. Rendering 1587
217.8. 'Shopping 1587
218. Cool Things 1593
218.1. Attribution 1593
218.2. File Browser Functions 1593
218.3. Object/Vertex Manipulation 1594
218.4. Working with Meshes 1600
218.5. Animation 1601
218.6. UV Mapping, Particles and Texturing 1601
218.7. Rendering 1603
218.8. Miscellaneous 1605
218.9. ??? 1607
218.10. Sculpt Mode Нotkeys 1607
219. Troubleshooting 1609
220. Creating Blender Libraries 1611
220.1. How to Make a Library 1611
220.2. Library Usefulness Checklist 1611
220.3. Publishing Your Library 1612
220.4. Beyond Libraries 1613
220.5. Thank You 1613
221. Add SOME DEPTH WITH STEREO 1615
221.1. The stereo camera 1615
221.2. Stereo viewing with the rig 1618
221.3. Stereo rendering 1618
222. Fluffy Material 1623
222.1. Spherical Blend Texture 1623
222.2. BACKLIGHTING 1624
223. HUMAN BODY 1629
224. Using Blender Libraries 1633
224.1. INDIRECT LINKING 1633
224.2. GROUPS 1633
224.3. SEE ALSO 1634
225. Beginning Modeling Final Project 1635
226. USING INKSCAPE TO MAKE ADVANCED BEZIER CURVES 1637
226.1. INTRODUCTION TO INKSCAPE 1637
226.2. Getting Started 1637
227. Platonic Solids 1645
227.1. EXTERNAL LINK 1646
228. POLYGONAL MODELING 1647
229. Box Modeling 1649
229.1. Before We Start 1649
229.2. The Work Flow 1649
230. Illustrative example: Model a Chair (Swan Chair) 1653
231. Model a Chair-Preparations 1657
231.1. KNOWING OUR MODEL 1657
231.2. LOOP STUDY 1657
232. Model a Chair-The Seat 1661
232.1. Start with a Primitive 1661
232.2. Rough it out 1661
232.3. Adding More Details 1672
233. Model a Chair-The Feet 1685
233.1. Starting Primitive 1685
233.2. The Upper Telescope 1685
233.3. The Lower Telescope 1689
233.4. The Stops 1700
233.5. The Whole Chair 1710
234. Illustrative Example: Modeling a Simple Human Character 1713
235. Modeling a Human Character - Preparations 1715
236. Modeling a Human Character - Modeling 1717
237. Blocking the Figure 1719
238. Detailing and Finishing 1727
239. Polygon by Polygon modeling 1735
239.1. BEFORE WE START 1735
239.2. The Workflow 1736
240. Animation Notes and FAQ 1743
240.1. Blender 3D: Animation Notes and FAQ 1743
240.2. IMPORTANT 1743
240.3. AUTHORS \& COntributors 1743
240.4. InTRODUCTION 1743
240.5. TODO LIST 1744
240.6. ANIMATION FAQ 1744
240.7. ARMATURES 1744
240.8. HOTKEYS 1744
240.9. Approaches, Techniques, Tips and Tricks 1745
240.10. Problems and Questions 1746
240.11. General Armature Information 1749
240.12. Building Armatures 1751
240.13. Useful Rigs 1752
241. CUSTOMIZATION 1753
241.1. Changing the Theme 1753
242. Mist - Make Objects Opaque 1755
243. CONTRIBUTORS 1763
List of Figures 1799
244. Licenses 1877
244.1. GNU GENERAL PUBLIC LICENSE 1877
244.2. GNU Free Documentation License 1878

Part I.

Unit 1 - Knowing Before Making

1. Knowing Before Making

Blender is a powerful and complex 3D modeling and rendering package. Before you can use it effectively to make things, you need to know a few things about how it works:

- the process of 3D modeling and rendering (what Blender does)
- some rudiments of 3D analytic geometry (axes and coordinates)
- orthographic and perspective views of a 3D object
- local coordinate systems and child objects
- the fundamentals of Blender's user interface (hotkeys, windows, and menus)
- how to view a 3D scene from different vantage points (in Blender)

This unit is entirely devoted to this sort of background knowledge. You won't create your first Blender model until the next unit.

Knowing this, you might be tempted to skip ahead. Depending on your background, this might or might not work. For instance, if you've used other 3D graphics packages, you might be able to skim (or skip) ahead as far as the user interface tutorial. But if there's any doubt, please proceed through the tutorials in sequence.
Blender is not the kind of software you can launch into and grope about until you find your way. It's not like exploring an unfamiliar city. It's more like flying a jet airplane. If you hop into the pilot's seat without knowing the fundamentals, you'll be lucky to ever get off the ground, and it'd take a miracle for you to reach your destination safely.

1.0.1. A Word about Jargon

Like any subject, 3D modeling has its own jargon: terminology specific to the subject and ordinary words that have special meanings in the context of computer graphics.
In this book, important new words are highlighted on first appearance and defined soon after. If you suspect you've missed (or forgotten) the meaning of a word, try looking it up in the Glossary ${ }^{1}$.

1.0.2. Things You'll Need

In order to work through the tutorials, you'll need access to a computer that has Blender installed (download the latest stable release ${ }^{2}$).

Depending on what is installed on your system you may also need the appropriate Python and QuickTime installation. Each version of Blender works only with one specific version of Python,

[^0]which is generally included in the download. For example, Blender 2.49 specifically required Python 2.6 and did not work with Python 2.7; Blender 2.5x generally uses Python 3.2.

Since Blender is open-source software, you can download the source code and build it for yourself, but it's easier to download a pre-built install package. Install packages are provided for each supported operating system:

- Microsoft Windows (32-bit and 64-bit)
- Linux (32-bit and 64-bit x86)
- Apple Mac OS X (PowerPC and Intel)
- FreeBSD (32-bit and 64 bit)
- Solaris
- Irix

Windows users get to choose between an executable installer ("setup wizard") and a ZIP archive. The installer is the easier route because it guides you through the install options. The default options are fine for beginners.

Blender uses the Python scripting language, so each install package comes bundled with a compatible version of Python. Some users can choose between different versions of Python (such as 2.5 and 2.6).

For quicker downloading, choose the download server nearest you:

- USA
- Germany
- NL (Netherlands)
- Asia

It's also a good idea to have pencil and paper handy for sketching and taking notes. There's a lot to absorb. Taking notes as you go will pay dividends later.
On a fully stable working Ubuntu ${ }^{3} 11.04$ (Oneiric) or newer, or possibly other Linux distributions based on Debian, start by making sure the repository cache is updated if you haven't updated it within a day or so. This can be done in Update Manager or by entering the following command into a terminal:

```
- sudo apt-get update
```

sudo apt-get is an administrative command, so you'll probably need to enter your password. Once the repository cache is updated, you can download the stable release of Blender by entering the following command into a terminal:

- sudo apt-get install blender

Once that finishes, Blender should appear in the Graphics section of your desktop environment's application menu.

[^1]Eventually you'll also need a 2D image editor. GIMP (DOwnload 4) or Pinta 5 (based on Paint . NET^{6}) are highly-capable open-source editors, but proprietary commercial software such as Photoshop or Corel could also serve.

1.0.3. Where to Go for Help

In case you get stuck, you can ASK FOR HELP FROM OTHER BLENDER USERS ${ }^{7}$ in the APPENDICES ${ }^{8}$.

1.1. Additional Resources

Many modules have a section like this at the bottom, listing websites with information on the topics covered in the module.

- Blender system requirements ${ }^{9}$
- the GIMP ${ }^{10}$ wikibook
- Windows installation ${ }^{11}$
- Linux installation ${ }^{12}$
- OSX installation ${ }^{13}$
- About the Python programming language ${ }^{14}$

[^2]
2. What Blender Can Do

In this module, you'll learn what Blender does, both in terms of the product (images) and the process (3D modeling).

Blender is a FREE SOFTWARE ${ }^{1}$ package for authoring "three-dimensional" (3D) graphics, including still images, games, and video.
While the end-product of most Blender projects is a two-dimensional (2D) raster image on a flat surface (be it a monitor, movie screen, or sheet of paper), the images are said to be "3D" because they exhibit the illusion of depth. In other words, someone looking at the image can easily tell which parts are meant to be closer and which are farther away.

2.0.1. An Example

Here's a realistic still image that was authored with Blender.

Figure 1: "A Lonely House", by Mayqel

Look closely at the building.

[^3]- Because it obscures the tree-lined hillside, you can tell that the hillside is behind the building instead of vice versa.
- The way the top and bottom edges of the front wall appear to converge toward the base of the tree allow you to judge the angle between the front wall and your viewpoint.
- Your brain interprets dark portions of the wall as shadows, allowing you to estimate where the light is coming from, even though the sun is outside the frame of the image.

While an illusion of depth can be authored by hand with 2D graphics software (or a paintbrush!), Blender provides a much easier way.

It's likely that the lonely house never existed outside of the artist's mind. Instead of building a big set on a rural lot in Germany, waiting for the right light, and photographing it, the author built a scene in a virtual 3D world-one contained inside a computer. He or she then used Blender to render the scene (convert it into a 2D image). You can view more of what Blender can do at the Blender gallery: http://www.blender.org/features-gallery/

2.0.2. Steps in the Modeling Process

In 3D computer graphics, a model is an abstract version of an object or scene that is suitable for rendering. Modeling is the process of making models.

Authoring the 3D scene for "A Lonely House" probably involved:

1. Object modeling - describing the shapes of objects, such as birds and trees, in three dimensions
2. Shading - applying patterns of color and texture to each object
3. Lighting - describing the intensity, color, direction and so on of the light source

If "A Lonely House" were made into a video, there would be additional steps of animating the scene (describing how it changes over time):

1. Rigging - describing how parts of a creature, such as the birds' wings, can move relative to other parts
2. Posing - choreographing the positions of the objects and their parts in the 3D scene over time

Blender is a capable tool for each and all of these steps.

2.1. Additional Resources

- W:3D RENDERING ${ }^{2}$
- w:COMPARISON OF 3D COMPUTER GRAPHICS SOFTWARE ${ }^{3}$
- W:COMPUTER-GENERATED IMAGERY ${ }^{4}$
- w:DEPTH PERCEPTION ${ }^{5}$

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/ 3D%20RENDERING
HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARISON%20OF%203D%20COMPUTER%20GRAPHICS%
20SOFTWARE
HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER-GENERATED%20IMAGERY
HTTP://EN.WIKIPEDIA.ORG/WIKI/DEPTH%20PERCEPTION
```

- Blender Art Gallery ${ }^{6}$
- Blender Homepage ${ }^{7}$

[^4]
3. 3D Geometry

If you haven't previously studied 3D graphics, technical drawing, or analytic geometry, you are about to learn a new way of visualizing the world, an ability that's fundamental to working with Blender or any 3D modeling tool.

3D modeling is based on geometry, the branch of mathematics concerned with spatial relationships, specifically analytical geometry, which expresses these relationships in terms of algebraic formulas. You may have studied geometry in school, in which case, some of the terminology will seem familiar.

3.1. Coordinates And Coordinate Systems

Look around the room you're in. The odds are it will have a cuboidal shape, with four vertical walls at right angles to each other, a flat, horizontal floor, and a flat, horizontal ceiling.

Now imagine there's a fly buzzing around the room. (If there really is a fly buzzing around your room, feel free to substitute that.) The fly is moving in three-dimensional space. In mathematical terms, what that means is, at any moment, its position within the room can be uniquely expressed in terms of three numbers.

Now, there are an infinite number of ways-coordinate systems-in which we could come up with a convention for defining and measuring these numbers-the coordinates. And each convention will give different values for the numbers, even if the fly is in the same position-coordinates only make sense with reference to a specific coordinate system! To narrow down the possibilities (in a purely arbitrary fashion, of course), let us label the walls of the room with the points of the compass: in a clockwise direction, North, East, South and West. (If you know which way is really north, feel free to use that to label the walls of your room; otherwise, choose any wall you like as north.)

Consider the south-west corner of your room, the point at floor level. We will call this (arbitrary) point the origin of our coordinate system, and the three numbers at this point will be $(0,0,0)$. The first of the three numbers will be the distance (in some suitable units, let's say meters) eastwards from the west wall, the second number will be the distance northwards from the south wall, and the third number will be the height above the floor.

Each of these directions is called an axis (plural: axes), and they are conventionally labelled X (the vertical or height), Y (the horizontal or length) and Z (the breadth), in that order. With a little bit of thought, you should be able to convince yourself that every point within the space of your room corresponds to exactly one set of (x, y, z) values. And conversely that every possible combination of (x, y, z) values, with $(0 \leq x \leq W),(0 \leq y \leq L)$ and $(0 \leq z \leq H)$ where W is the eastwest dimension of your room, L is its north-south dimension, and H is the height between ceiling and floor) corresponds to a point in the room.

The following diagram illustrates how the coordinates are built up, using the same colour codes that Blender uses to label its axes: red for X , green for Y and blue for Z . In the second picture, the value for x defines a plane parallel to the west wall of the room; in the third picture, the value for y defines a plane parallel to the south wall; and in the fourth picture, the value for z defines a plane parallel to the floor. Put the planes together in the fifth picture, and they intersect at a unique point.

Figure 2

This style of coordinate system, with the numbers corresponding to distances along perpendicular axes, is called cartesian coordinates, named after René Descartes, the 17th-century mathematician who first introduced the concept. Legend has it that he came up with the idea after watching a fly buzzing around his bedroom! Well, people of old were observant, no wonder!

There are other ways to define coordinate systems, for example by substituting direction angles in place of one or two of the distance measurements. These can be useful in certain situations, but usually all coordinate systems in Blender are cartesian. However, switching between these dimensions are simple and easy to do though in Blender.

3.1.1. Negative Coordinates

Can coordinate values be negative? Depending on the situation, yes. Here we are only considering points within our room. But supposing, instead of placing our origin in the bottom southwest corner, we put it in the middle of the room, halfway between the floor and ceiling. (After all, it is an arbitrary point, we can place it where we like, just so long as we all agreed on where it is.) Now, remember that our X-coordinate is the distance east from the origin; How do we express the fact that a point lies west of the origin? Simple: We give it a negative X-coordinate. Similarly, points north of the origin have a positive Y-coordinate, while those south of it get a negative one; and those points above the origin get a positive Z-coordinate, while those below get a negative one.

3.1.2. Handedness Of Coordinate Systems

It is conventional for most cartesian coordinate systems to be right-handed. To see what this means, hold the thumb, index finger and middle finger of your right hand perpendicular to each other:

Figure 3: The three axes form a right-handed
system

Now you can orient your hand so that the thumb points along the X -axis in the positive direction (direction of increasing coordinate numbers), the index finger along the positive Y-axis, and the middle finger along the positive Z-axis. Another way of looking at it is, if you placed your eye at the origin, and you could see the three arrows pointing in the direction of positive X, positive Y and positive Z as in Figure 1 below, the order X, Y, Z would go clockwise.

3.2. Axes Of Rotation

Consider a spinning ball. Every point on it is moving, except the ones right in the middle: these form a line of stillness around which the rest of the ball spins. This line is called the axis of rotation.

More precisely, the axis of rotation of a rotating object over a period of time is a point or a line connecting points that do not change position while that object rotates, drawn when the observer assumes he/she does not change positon relative to that object over time.

Conventionally, the direction of the axis of rotation is such that, if you place your eye looking in that direction, the rotation appears clockwise, as illustrated below, where the yellow arrow shows the rotational movement, while the purple one shows the rotation axis:

Figure 4

To remember this convention, hold your right hand in a thumbs-up gesture:

Figure 5

If the rotation follows the direction of the curled-up fingers, then the direction of the axis of rotation is considered to be the same as the thumb is pointing.

Therefore, when describing the direction of a rotating object, do not say it rotates left to right, right to left, clockwise or counterclockwise. All of the above is relative to the observer. Instead of saying this, find the direction of the axis of rotation and draw an arrow to represent it.

3.3. Additional Resources

- the GEOMETRY ${ }^{1}$ wikibook

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/GEOMETRY

- w:Analytic geometry ${ }^{2}$
- w:CARTESIAN COORDINATE SYSTEM ${ }^{3}$
- w:Right-hand RULE ${ }^{4}$
- w:Rotation ${ }^{5}$

[^5]
4. Coordinate Transformations

4.1. Coordinate Transformations

A transformation is any kind of operation that changes coordinate values in some way. For example, if you pick up an object and move it to a different place in the room without changing its orientation, then the coordinates of each point on the object relative to the room are adjusted by an amount that depends on the distance and direction between the old and new positions; this is called a translation transformation.

Figure 7: Object translated to new position

Figure 6: Object at original location

If you simply turn the object around without moving it from its original location, then that's called a rotation.

Figure 8: Object rotated 45°

If the object were to get bigger or smaller, then that would be called a scaling transformation. In the real world, only a few objects can be scaled in this way-for example, a balloon can be inflated or deflated to a larger or smaller size, but a bowling ball cannot be so resized. But in the world of computer graphics, any object can be scaled. Scaling may be uniform (applying equally in all dimensions) or non-uniform.

Figure 9: Object uniformly scaled to 50% of original size

Figure 10: Object scaled vertically to 50% of original size

4.2. Linear Transformations

The main kinds of coordinate transformations we're concerned with here are called linear transformations. Lines that were straight before the transformation remain straight after; they do not turn into curves. For example, the following diagram illustrates three linear transformations applied to the square in the centre: a scaling, a shear or skew transform, and a rotation, plus one transformation that isn't linear, because it introduces curves where there were none before.

Figure 11

4.3. Multiple Transformations

It is possible to concatenate or compose a series of transformations. The resulting transformation can do a whole bunch of things in one operation-translation, rotation, scaling etc. However, the order of composition of the component transformations becomes important-in general, transformations are not commutative. For example, compare the result of moving our model a certain distance along the Y axis followed by rotating it about the X axis:

Figure 12: Translation followed by rotation
versus the result of doing the rotation first:

Figure 13: Rotation followed by translation

In some instances, three of the forms of transformation may be applied on a single object concurrently. Such a feature exists in Blender and is normally implemented in creating animations. Therefore, you can decide to pick up the object (first transformation - location), twist it (second transformation - rotation), and, in a 3D modeling environment, increase the size of the object (third transformation - scaling).

4.4. Inverse Transformations

There is quite commonly a need to find the inverse of a transformation-that is, the opposite transformation that undoes its effect. For example, a rotation of $+45^{\circ}$ about the X axis is undone by a rotation of -45° around the same axis.

Inverses have many uses, one of which is to simplify the construction of certain kinds of transformations.

For example, it is easy to construct a rotation transformation about the X, Y or Z -axis of the coordinate system. But what about a rotation of Θ° around an arbitrary axis? This can be made out of the following parts:

- a translation that makes the rotation axis pass through the origin.
- rotations about the Y and/or Z axes, as appropriate, so the rotation axis lies along the X axis.
- a rotation of Θ° about the X axis.
- the inverse of the rotations that aligned the rotation axis with the X axis.
- the inverse of the translation that made the rotation axis pass through the origin.

Most of the transformations we deal with in 3D modelling have an inverse, but not all-see the next section for some that don't.

4.5. Projections

Most of our display and output devices are not three-dimensional. Thus, three-dimensional images need to be projected onto a two-dimensional surface (like a display screen or a printed page) before we can see them.

There are two main ways to perform such projections. One is orthographic projection, where parallel lines are drawn from all points of the three-dimensional object until they intersect a plane representing the display surface:

Figure 14

More on orthographic projections ${ }^{1}$

The other way is perspective projection, where the lines drawn are not parallel, but intersect at a point representing the location of the eye of the viewer:

[^6]

Figure 15

Projections are also linear transformations. But since they take a three-dimensional space and flatten it onto a two-dimensional surface, some information is lost. Which means these are non-invertible transformations; they cannot be undone, at least in a unique way-the depth information is gone.

More on Perspective projections ${ }^{2}$

The mathematics of perspective were first worked out in the 11th century by ALHAZEN ${ }^{3}$, and used to great effect by the Italian Renaissance painters four hundred years later.
--NKANSAHREXFORD ${ }^{4}$ (DISCUSS ${ }^{5}$ • CONTRIBS 6) 01:15, 11 February 2012 (UTC)Nkansahrexford

[^7]
5. Orthographic Views

Blender provides two different ways of viewing 3D scenes:

- orthographic view
and
- perspective view.

In order to use these views effectively, you need to understand their properties.
An orthographic view (or projection) of a 3D scene is a 2 D picture of it in which parallel lines appear parallel. An additional property of such views is that all edges perpendicular to the view direction appear in proportion, at exactly the same scale.

Usually such views are aligned with the scene's primary axes. Edges parallel to the view axis disappear; those parallel to the other primary axes appear horizontal or vertical. The commonlyused orthographic views are the front, side, and top views, though back and bottom views are possible.

Uniform scale makes orthographic views very useful when constructing 3D objects-not only in computer graphics, but also in manufacturing and architecture.

Here's one way to think about orthographic views:
Imagine photographing a small 3D object through a telescope from a very great distance. There would be no foreshortening. All features would be at essentially the same scale, regardless of whether they were on the near side of the object or its far side. Given two (or preferably three) such views, along different axes, you could get an accurate idea of the shape of the object-handy for "getting the feel" of objects in a virtual 3D world where you're unable to touch or handle anything!

5.1. Example

Here is a drawing of a staircase:

Figure 16: An isometric view of a staircase
and here are three orthographic views of the same staircase, each outlined in red:

Figure 17: Figure 1: Orthographic views of a staircase

The views are from the front, top, and left. Dashed lines represent edges that, in real life, would be hidden behind something, such as the left wall of the staircase. (Think of each view as an X-ray image.)

The leading edges of the steps are visible in both the front and top views. Note that they appear parallel and of equal length in 2D, just as they are in 3D reality.

5.2. Additional Resources

- $\mathrm{W}:$ ORTHOGRAPHIC PROJECTION ${ }^{1}$

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORTHOGRAPHIC\ PROUECTION

6. Perspective Views

As you know, the main reason for modeling 3D objects in Blender is to render images that exhibit the illusion of depth.

Orthographic views are great for building a house, but seriously flawed when it comes to creating realistic images of the house for use in a sales brochure. While a builder wants blueprints that are clear and accurate, a seller wants imagery that's aesthetically pleasing, with the illusion of depth. Blender makes it easy to use tricks like perspective, surface hiding, shading, and animation to achieve this illusion.

How does perspective work?
The essence of perspective is to represent parallel edges (in a 3D scene) by edges (in the 2D image) that are not parallel. When done correctly, this produces foreshortening (nearby objects depicted at a larger scale than faraway ones) and contributes to the illusion of depth.

Perspective is challenging to draw by hand, but Blender does it for you, provided you give it a 3D model of the scene and tell it where to view the scene from.

If you're confident that you understand perspective, you can skip the rest of this module and proceed to the "Coordinate Spaces in Blender" module .

Note:
Blender only does 3-point perspective, not 1-point or 2-point.

6.1. One-point Perspective

Figure 18: Figure 1: 1-Point Perspective.

Drawing classes teach several different kinds of perspective drawing: one-point perspective, twopoint perspective, and three-point perspective. In this context, the word "point" refers to what artists call a vanishing point.

One-point perspective works when you're looking at a 3D object head-on and it's centered in your view.

Imagine looking down a straight and level set of train tracks. The tracks will appear to converge at a point on the horizon. This is the vanishing point.

The image on the right is a 2D image of a cubic lattice or framework. Like any cube, it has six square faces and twelve straight edges. In the 3D world, four of the edges are parallel to our line-ofsight; they connect the four corners of the nearest square to the corresponding corners of the farthest one. Each of these edges is parallel to the other three.

In the 2D image, those same four edges appear to converge toward a vanishing point, contributing to the illusion of a depth. Since this is one-point perspective, there is a single point of convergence at the center of the image.

6.2. Two-point Perspective

Figure 19: Figure 2: 2-Point Perspective.

Now the cube is at eye level, and you're near one of its edges. Since you're not viewing it face-on, you can't draw it realistically using one-point perspective. The horizontal edges on your left appear to converge at a point on the horizon to the left of the cube, while those on the right converge to the right. To illustrate the cube with a good illusion of depth, you need two vanishing points.

6.3. Three-point Perspective

Figure 20: 3-Point Perspective.

Now imagine that you're above the cube near one of its corners. To draw this, you'd need three vanishing points, one for each set of parallel edges.

From this perspective, there are no longer any edges which appear parallel. The four vertical edges, the four left-right edges, and the four in-out edges each converge toward a different vanishing point.

6.4. Additional Resources

- $\mathrm{W}:$ PERSPECTIVE (GRAPHICAL) ${ }^{1}$

[^8]
7. Coordinate Spaces in Blender

Figure 21: Figure 1: Objects in a three dimensional space. In the center of the coordinate system is the origin of the global coordinate system.

We'll start looking at how 3D scenes are represented in Blender.
As was explained in the "3D Geometry" module, Blender represents locations in a scene by their coordinates. The coordinates of a location consist of three numbers that define its distance and direction from a fixed origin. More precisely:

- The first (or x -) coordinate of the location is defined as its distance from the YZ plane (the one containing both the Y and Z axes). Locations on the +X side of this plane are assigned positive x -coordinates, and those on the -X side are given negative ones.
- Its second (or $\mathrm{y}-$) coordinate is its distance from the XZ plane, with locations on the -Y side of this plane having negative y-coordinates.
- Its third (or z-) coordinate is its distance from the XY plane, with locations on the -Z side of this plane having negative z-coordinates.

Thus the origin (which lies at the juncture of all three axes and all three planes) has coordinates (0 , $0,0)$.

7.1. Global and local coordinates

Blender refers to the coordinate system described above as the global coordinate system, though it's not truly global-each scene has its own global coordinate system. Each global coordinate system has a fixed origin and a fixed orientation, but we can view it from different angles by moving a virtual camera through the scene and/or rotating the camera.

Global coordinates are adequate for scenes containing a single fixed object and scenes in which each object is merely a single point in the scene. When dealing with objects that move around (or multiple objects with sizes and shapes), it's helpful to define a local coordinate system for each object, a coordinate system that can move with the object and follow the object around. The origin of an object's local coordinate system is often called the center of the object even though it needn't coincide with the geometrical center of the object.

3D objects in Blender are largely described using vertices (points in the object, singular form: vertex). The global coordinates of a vertex depend on:

- the (x, y, z) coordinates of the vertex in the object's local coordinate system
- the location of the object's center
- any rotation (turning) of the local coordinates system relative to the global coordinate system, and
- any scaling (magnification or reduction) of the local coordinate system relative to the global coordinate system.

For example, the teacup in Figure 1 is described by a mesh model containing 171 vertices, each having a different set of local (x, y, z) coordinates relative to the cup's center. If you translate the cup (move it without rotating), the only bits of the model that have to change are the global coordinates of the center; the local coordinates of all its vertices would remain the same.

7.1.1. Coordinates of child objects

Figure 22: Figure 1b: A parent serves as the source of the global coordinates for its child object. The child is the cup; the parent's orientation is shown with the colored arrows.

Figure 22: Animation of the above

Any object can act as a parent for one or more other objects in the same scene, which are then referred to as its children. (An object cannot have more than one direct parent, but parent objects may themselves be the children of other objects.)

If an object has a parent, its position, rotation, and scaling are measured in the parent's local coordinate system, almost as if it were a vertex of the parent. That is to say, the position of the child's center is measured from the parent's center instead of the origin of the global coordinate system. So if you move a parent object, its children move too, even though the children's coordinates have not changed. The orientation and scaling of a child's local coordinate system are likewise measured relative to those of its parent. If you rotate the parent, the child will rotate (and perhaps revolve) around the same axis.

Parent-child relationships between objects make it simpler to perform (and animate) rotations, scaling and moving in arbitrary directions. In Fig. 1b the teacup is a child object of the coordinate cross on the right. That cross is itself the child of an invisible parent. (It is both a parent and child.) In the cup's local coordinate system, it is not rotating, but as the cross on the right rotates around its Z axis, it causes the cup to rotate and revolve. In real animations, it will be much easier when the character holding the cup rotates, the cup changes its position respectively.

7.2. View coordinates

Figure 23: Figure 2: View coordinates and Projection Plane

Taking the viewer of the scene in consideration, there is another coordinate space: the view coordinates. In Fig. 2 the viewer is symbolized by the camera. The Z axis of the view coordinates always points directly to the viewer in orthographic projection. The X axis points to the right, the Y axis points upwards (Fig. 3).

View Orientation

Figure 24: Figure 3: View coordinates in
viewing direction

In fact you always work in view coordinates if you don't set it any other way*. This is particularly handy if you have aligned your view prior to modeling something, e.g. if an object has a slanted roof and you want to create a window to fit in this roof, it would be very complicated to build this window aligned to the local coordinate system of the object, but if you first align your view to the slanted roof you can easily work in this view coordinate system.
(* In the Blender 2.6 series, the default has been changed to global coordinates. View coordinates remain as an option.)

If you work in one of the three standard views (Front/Top/Side) the alignment of the view coordinates fits the global coordinates; therefore it is quite natural to model in one of the standard views and many people find this the best way to model.

7.3. Normal coordinates

Figure 25: Figure 4: Normal coordinate spaces for faces. The normal is shown in blue.

Although Blender is a 3D program, only the faces are visible. The orientation of the faces is important for many reasons. For example, in our daily lives it seems quite obvious that a book lies flat on a table. This requires the surface of the table and that of the book to be parallel to each other. If we put a book on a table in a 3D program, there is no mechanism that forces these surfaces to be parallel; we have to ensure that ourselves.

The orientation of a face can be described with the help of a so-called surface normal. It is always perpendicular to the surface. If several faces are selected, the resulting normal is averaged from the normals of every single face. In Fig. 4 the normal coordinates of the visible faces are drawn.

This concept can be applied to individual points on the object, even if the points themselves have no orientation. The normal of a point is the average of normals of the adjacent faces.

The images for this tutorial were produced with Blender v2.46.

8. User Interface Overview

Blender's user interface (the means by which you control the software) is not particularly easy to learn. However, it has improved over time and is expected to continue doing so. The current version of the Blender software is 2.62. You can download one from the Blender website.
The tutorials in this section will familiarize you with the basics of the user interface. By the end of this section, you should be able to:

- resize, split and merge any Blender window
- change the type of any Blender window
- access user preferences
- access panels containing buttons and other controls
- change the viewpoint of a viewport

For those new to Blender, this is the most important section of the book.

8.0.1. Advice on Customization

Blender is a complex software package with many customizable features. You can customize the user interface to assign new functions to buttons and hotkeys. In fact, you can change almost anything to suit yourself. However, this complicates the giving and following of directions. It is recommended that you adhere to the default screen arrangements of Blender in order to be able to follow well in the remaining parts of these tutorials. Blender ships along with some 4 to 5 screencontent arrangements which are suitable for almost any kind of job you'll want to use it for - from creating motions and animations to doing games.
We recommend leaving Blender's user interface in its "factory settings" while working through the Noob to Pro tutorials. At the very least, wait until you've mastered the basics before you customize the interface - and we know you definitely will when you master it!
NKANSAHREXFORD ${ }^{1}$ (DISCUSS ${ }^{2} \cdot$ CONTRIBS 3) 01:26, 11 February 2012 (UTC)Nkansahrexford

[^9]
9. Keystroke, Button, and Menu Notation

As you read through these tutorials, you will encounter cryptic codes such as SHIFT and Timeline \rightarrow End Frame. These codes describe actions you perform using the keyboard and mouse. The notation used in this book comes from the Blender community, and it is standard there. We will try to import those standards here to facilitate our studies.

If you're reading this book online, you may wish to print this page for future reference. In addition, you can bookmark in your browser for faster reference when behind your PC.

9.1. Hotkeys

Figure 26: A typical
numpad

Most computer keyboards have number keys in two different places: in a row above the letters and in a numpad (numeric keypad) on the right side of the keyboard. While many applications use these two sets of keys interchangeably, Blender does not. It assigns different functions to each set. If you're using a laptop keyboard without a separate numeric keypad, this might cause some difficulty. You'll need to use your function key to do some things. It is possible to indicate to Blender the type of keyboard you are using, but we strongly recommend you use a standard external keyboard even if you're on a laptop for these tutorials as it will make your studies and usage of Blender much more straightforward and enjoyable.

This book often assumes that your keyboard has a numpad. If it doesn't, consult the tutorial on NON-STANDARD INPUT DEVICES ${ }^{1}$ for alternative ways to access the numpad's functions.

[^10]
9.1.1. Notation

Notation	Action or Key
(AIt	(press and hold) the Alt (Option) key
Cmd	(press and hold) the Command or Super key (On a Windows keyboard, the key bearing the Windows logo; on a Macintosh, it bears the Apple logo.)
Ctrr	(press and hold) the Ctrl (Control) key
Frn	(press and hold) the Fn (Function) key (generally found only on laptops)
Shift	(press and hold) the Shift key
Enter	(press) the Enter (Return) key (on the main keypad)
Esc	(press) the Esc (Escape) key
F1 through F12	function keys F1 through F12 (often in a row along the top of the keyboard)
Space	(press) the space bar (usually unmarked)
Tab	(press) the Tab key
$\stackrel{\text { Akey }}{ }$ through	the letters (on the main keypad)
ZKey	
Okey through	the numerals (above the letters) on the main keypad
9 Key	
Num0 through	the numerals on the numpad
Num9	
NumLock, Num/	other keys on the numpad
Num ${ }^{\text {* }}$, Num-,	
Num+ , NumEnter,	
and Num.	
Delete	(press) the Delete key (not NUM. !)
Down Arrow	(press) the down arrow key (not Num2 !)
Left Arrow	(press) the left arrow key (not NUM4 !)
Right Arrow	(press) the right arrow key (not NUM6 !)
UpArrow	(press) the up arrow key (not NUM8 !)

Combinations that involve holding down a key while performing another action are written with a plus sign (+). Thus:

- Shift means to Tab while holding down Shift
and
- Shift means to Fg while holding down both Ctrl and Shift.

9.2. Mouse Notation

Blender uses three mouse buttons and the scroll wheel as well, if you have one. If your mouse only has one or two buttons, consult the tutorial on NON-STANDARD INPUT DEVICES ${ }^{2}$ for alternative ways to access the functions assigned to these buttons.

Notation
LMB
RMB
$\overline{M M B}$

Scroll

Action or Button

click with the Left Mouse Button
click with the Right Mouse Button
press down on (don't turn) the scroll wheel or Middle Mouse Button
turn the scroll wheel in either direction

Mouse and keyboard actions are often combined. Shift means to click RMB while holding down Shitt

9.3. Navigating Menus

Blender uses both pop-up and pull-down/pull-up menus. Many menus have submenus (menus that are reached by going through another menu). If a menu item displays a black triangle, that means it leads to a submenu. For instance, the pull-down menu shown below has seven items, one of which ("Bake Render Meshes") leads to a submenu:

$$
\text { Render Help } \mid \neq \operatorname{sR}: 2 \text {-Model }|x| \mid \mathrm{SC}
$$

Render Current Frame
Render Animation
Bake Render Meshes
Show Render Buffer
Play Back Rendered Animation
Set Render Border
Render Settings

Figure 27

[^11]You can move through items in a menu by:

- moving the mouse pointer up and down
or
- pressing UpArrow and DownArrow

You can enter a submenu either by:

- moving the mouse pointer to the right
or
- pressing RightArrow

You can leave a submenu either by:

- moving the mouse pointer to the left
or
- pressing LeftArrow

To initiate a menu action, you can either:

- click LMB
or
- press Enter

You can escape from a menu either by:

- moving the mouse pointer away from the menu
or
- pressing Esc

For each menu, Blender remembers which item you chose last time and highlights it for you the next time you enter the menu.

9.3.1. Notation

Menu notation is fairly self-explanatory.

$$
\text { Shift Mesh } \rightarrow \text { UV Sphere }
$$

Means:

1. Press Shift+A
2. In the menu that pops up, move through the items until Mesh is highlighted
3. Enter the Mesh submenu
4. Move through the items until UV Sphere is highlighted
5. Press Enter or click the left mouse button to initiate the action

9.4. Additional Resources

- The Blender Manual page on keyboard and mouse at http://wiki.blender.org/ Index. Phe/Doc:MANUAL/KEYboARDANDMOUSE
--NKANSAHREXFORD ${ }^{3}$ (DISCUSS 4 • CONTRIBS ${ }^{5}$) 01:37, 11 February 2012 (UTC)Nkansahrexford

[^12]
10. Non-standard equipment

This module is applicable only to users with non-standard input devices. If you have both:

- a three-button mouse
and
- a keyboard with a numpad, then you can skip this module.

10.0.1. Keyboards lacking a numpad

Most modern laptops have a pseudo-numpad, a set of keys in the main keypad which double as a numpad. The keys typically used for this purpose are:

7key	8key	9 key	Okey
Ukey	like	Okey	Pkey
Jkey	Kkey	Lkey	SEMICOLON
Mkey	, Key	Key	SLASH

When used as a pseudo-numpad, these keys typically act as the following keys from a true numpad:

Num7	Num8	Num9	Num/
Num4	Num5	Num6	Num*
Num1	Num2	Num3	Num-
Num0	NumENTER	Num.	Num+

The numpad functions of these keys can often be toggled with F11 or NUMLOCK on PCs or with (F6 on Macs. Alternatively, you can often temporarily activate the numpad behavior by holding down Fn.

If your keyboard has the alternate labellings but you don't know how they work, consult your laptop's owner manual.

As a last resort, you can use the "Emulate Numpad" feature of Blender. This will allow you to use the normal numeric keys as if they were numpad numerics. Instructions for enabling this feature may be found in the "User Preferences Windows" module .

Blender uses the numeric keypad quite a bit. If you envision using your laptop for this kind of work, it may be worth investing in a USB Numeric Keypad. On eBay, prices for simple external numpads start around \$10 USD.

10.0.2. Non three-button mice

For single-button mouse users, make sure that View \& Controls (Input for Blender 2.54) (under "User Preferences" on the left-most drop-down menu) \rightarrow Emulate 3 Button Mouse is enabled.

On many computers with two-button mice, MMB can be emulated by simultaneously clicking LMB and RMB. On Windows machines you'll need to set this up in the mouse settings in your Control Panel. On a Mac, open the Keyboard and Mouse preference pane and enable Use two fingers to scroll. Alternatively, by selecting Emulate 3 Button Mouse under User Preferences, MMB can be emulated by simultaneously clicking . Alt and LMB.

Recent IBM Thinkpad laptops allow you to disable the 'UltraNav' features of the middle mouse button in order to use it as a 'normal' third button. Alternatively, some laptops allow areas (called gestures) on the movement pad to act as $\overline{\mathrm{MMB}}$ or $\overline{\mathrm{RMB}}$, and these can be set up in the Control Panel in the Mouse Pointer options, selecting gestures and editing features there.

Apple single-button mouse

Apple single-button mouse substitutionsNotation

LMB	
RMB	MB
Cmd	

MMB

Single-button Substitute

AIt

Description

the Mouse Button
Apple key + the Mouse
Button
Option (Alt) key + the Mouse Button

While Mac OS X natively uses both the Ctrl and Cmd to emulate RMB , recent Blender releases for Mac OS X use only Cmd for this purpose. This behavior is documented in the OSX Tips file that comes with the Mac version. You can also set in System Preferences for the mouse to sense a right-click.

Note also that in the new, "unibody" design, the mouse button is under the trackpad, and the shortcut for $\overline{\operatorname{RMB}}$ is clicking with two fingers simultaneously, which can be enabled in the System Preferences.

10.0.3. Tablet PCs

To get the effect of $\overline{\mathrm{MMB}}$ in a viewport, drag your pen around while holding down the $\overline{\mathrm{Alt}}$ key.

10.0.4. Additional Resources

- Keyboard and mouse ${ }^{1}$ - Blender Manual ${ }^{2}$

```
HTTP://wIKI.blendER.ORG/IndEX.PHP/DOC:MANUAL/INTERFACE/KEYBOARD_AND_MOUSE
HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL
```


11. Operating System specific notes

This tutorial covers user-interface issues that are specific to particular operating systems or window managers. Read the section that applies to your computer; you may skip the rest.

11.1. GNU+Linux

[| Att is used for changing the angular view on two angular axes of the 3D View window, if Alt moves the current window, then there's a conflict with your window manager. You can resolve the conflict or use $\overline{C t r r}$ or $\overline{\text { MMB }}$ instead (Also, you may have activated Compiz->Rotate Cube. Default configuration for rotating the Cube is also [Ctrl] ; you may have to change this binding to an alternative configuration.). If you are running KDE this can be resolved by: $\overline{\mathrm{RMB}}$ on the title bar of the main Blender window \rightarrow select Configure Window Behavior \rightarrow go to Actions \rightarrow Window Actions \rightarrow in the Inner Window, Titlebar and Frame section \rightarrow select the Modifier key to be |AIt and set all the select boxes beneath it to Nothing. An alternate method within KDE might be to $\overline{\text { RMB }}$ click on the title bar of the main Blender window; then select Advanced \rightarrow Special Application Settings... \rightarrow Workarounds and then click Block global shortcuts with Force selected and checked.

In Gnome, Click System \rightarrow Preferences \rightarrow Window Preferences. Look for the last three options Control, Alt and Super. Select Super. Now you can press and hold Cmd to drag windows around, and use [Ctr| and AAlt as normal.

11.1.1. KDE

Under KDE, $\mathrm{Ctrr\mid}$ through Ctrr are by default configured to switch to the corresponding one of the first four desktops. You can change this in System Settings.

11.1.2. Gnome

You'll want to disable the Find Pointer functionality in Gnome, which will impair your ability to use certain functions such as Snap to grid and the lasso tool. If your mouse pointer is being highlighted when you press and release ©ttr), go to: Mouse in Gnome's Desktop Settings and uncheck the box Find Pointer.

11.1.3. Ubuntu

As of Ubuntu versions prior to about 09.10 ("Karmic Koala"), there was a known incompatibility between Blender and the Compiz Fusion accelerated (OpenGL) window manager used in Ubuntu.

By default, Compiz Fusion is enabled in Ubuntu, causing the problems to manifest themselves in Blender as flickering windows, completely disappearing windows, inconsistent window refreshes, and/or an inability to start Blender in windowed mode.

The fix for this is simple. Install compiz-switch (might be in universe). Go to Applications \rightarrow Accessories \rightarrow Compiz-Switch. This will disable compiz temporarily. Do the same to turn compiz back on when you're done using Blender.

This is no longer needed for current releases of Ubuntu.

11.2. Mac OS X

On Macs with the new thin Apple Keyboard, you may need to press Fn in order to use the F1 through (F4 and IF7 through F12 keys. To expand a section in Blender, you should usually press Ctrr), on a Mac if "Spaces" is enabled you may have to use ©trr.

11.3. Microsoft Windows

11.3.1. Two Ways to Launch Blender

Blender requires a console for displaying error messages, so if you launch Blender by means of an icon, two windows will appear: the graphical user interface plus a console window. Closing either window will terminate Blender. These windows are indistinguishable in the Windows taskbar in versions of Windows before Windows 7^{1}, which leads to confusion. Also, launching this way does not provide any way to pass command-line arguments to Blender.

Launching Blender from a command prompt is extra work, but it overcomes these issues:

1. Start \rightarrow Run...
2. enter cmd
3. enter cd c:\Program Files \backslash Blender Foundation\Blender
4. enter blender

EDIT: Blender 2.6 doesn't have this problem, and hides the console window by default. You can show it by clicking Help > Toggle system console

11.3.2. Sticky Keys

Pressing Shift five times in a row may activate StickyKeys, an accessibility option which alters how the computer recognizes commands. If a StickyKeys dialog box appears, you should LMB the "Cancel" button.

If you don't need the accessibility features, you can disable sticky keys:

1. Start \rightarrow Control Panel

[^13]2. double-click on Accessibility Options
3. LMB the Keyboard tab
4. for each of the options StickyKeys, FilterKeys, and ToggleKeys:
a) clear the Use ... checkbox
b) LMB the Settings button
c) uncheck the Use Shortcut checkbox in the settings
d) LMB the $O K$ button for the settings
5. LMB the $O K$ button for Accessibility Options

11.3.3. Multiple Keyboard Layouts

On systems with multiple keyboard layouts, pressing Shift can alter the layout. (For instance, it might change from QWERTY to AZERTY or vice versa.) Because of this issue, Noob to Pro avoids Shift hotkeys.

If you find your keyboard layout altered, press Shift again to change it back.
You can also disable the hotkey:

1. Start \rightarrow Control Panel
2. double-click on Regional and Language Options
3. LMB the Languages tab
4. LMB the Details button
5. LMB the Key Settings button
6. LMB the Change Key Sequence button
7. uncheck the Switch Keyboard Layout checkbox
8. पMB the $O K$ button

11.3.4. Additional Resources

- InPut method editor keyboard shortcut (CTRL+SHIFT+0) SWITCHES THE INPUT Language in Vista ${ }^{2}$ — Microsoft Support Knowledge-Base
- w:STICKYKEYS ${ }^{3}$

[^14]
12. Blender Interface

i Information

Applicable Blender version: 2.57

Here's a screenshot to give you a preview of Blender's interface.

Figure 28

13. Blender Windowing System

(i) Information

Applicable Blender version: 2.59

The Blender user interface may appear daunting at first, but don't despair. This book explores the interface one step at a time.

In this module, you'll learn about Blender windows:

- recognizing windows and their headers,
- the different types of windows,
- how to activate and resize windows,
- how to split and join windows.

You'll also practice launching and leaving Blender.

13.1. An Interface Divided

Blender's user interface is divided into rectangular areas with rounded corners. These areas are called windows (or sometimes, areas or Workspaces).

If you haven't already launched Blender, go ahead and do so. You should soon see something that resembles the following.

Blender has had some major changes to its user interface (UI) since version 2.4 x . Some of these changes include moving buttons and changing the space bar hot key from the "add menu" to the "search menu" (Shift+A is now the "add menu" hot key). This is important to know when trying to follow tutorials.

Other changes include the addition of the tool bar and window splitting widget. The tool bar widget(indicated by a plus sign) opens hidden tool bars. The object tool bar can be toggled on and off by pressing the T key. The 3d window tool bar can be toggled on and off by pressing the N key. The splitting window widget allows you to split and join windows. Blender 2.59 is shown below.

Figure 29: Blender 2.5x

- You may be running a different version of Blender - maybe a higher version. The screenshot was made using the 2.59 release.

If you're running an older version, you should probably upgrade. Download instructions are in THE INTRODUCTION ${ }^{1}$.

- The user-interface settings on your computer may have been changed.

Try resetting the user interface with File \rightarrow Load Factory Settings.

- If you're running a stable (not "beta") release of Blender later than 2.57, please consider uploading a new screenshot and updating the wikibook!

[^15]To take a screenshot in Blender, press $\overline{\mathrm{Alt}}$, and click Make Screencast. This will record what's on your screen until you click the red Close button on the info header. The screencasts will be saved in the tmp folder.

13.2. Window Headers

Did you find all five headers?
Every Blender window has a header. A header can appear at the top of the window, at the bottom of the window, or it can be hidden. Let's take a closer look at the headers.

Figure 30: The header of the Info window is outlined in green.
The header of the 3D View window is outlined in red. Note that it runs along the bottom of the 3D View window, not the top.
The header of the Properties window is outlined in blue .
The header of the Outliner window is outlined in white.
The header of the Timeline window is the one on the bottom (not outlined)

13.3. Window Types

Blender has 15 types of windows. You've just encountered the Info, 3D View, Properties, and Outliner windows. The rest will be introduced as needed in later modules.

Every window header in Blender has an icon at the left end to indicate the window type. For instance:

Figure 31
$=$ Info

Figure 32
$=$ User Preferences

Figure 33

Figure 34

Figure 35

$=$ Properties

If you LMB on the icon, a menu will pop up. (If you don't know what LMB means, please review the Keystrokes, Buttons, and Menus module ${ }^{2}$.)

Figure 36: By matching the icon in the header to the icons in the menu, you can tell that the window here is a 3D View window.
The menu can be used to alter a window's type. In this screenshot, the user is about to change the window into a Properties window.

2 Chapter 9 on page 43

Note:

Any window can be changed to any type.

Note:

Blender doesn't mind if there are multiple windows of the same type.

If you've changed any window's type, please change it back (or reload the factory settings with File \rightarrow Load Factory Settings) before continuing with this tutorial.

13.4. The Active Window

The active window is the one that will respond if you press a key. Exactly one Blender window is active at any given time.

The active window is usually the one containing the mouse pointer. (Blender uses a "focus follows mouse" user interface model. When a hotkey fails to work as expected, it is often because the mouse pointer has strayed into a neighboring window.) To change the active window, simply move the mouse pointer into the window you wish to activate.

Practice changing the active window by moving your mouse between the 3D View and the Timeline windows. The Timeline window is exactly below the 3D View header. At this point, it is worth mentioning that the header for the 3D View window and Timeline window is at the BOTTOM of its own window instead at the top as the name "header" implies.

Note:

When a window becomes active, its header gets brighter.

13.5. Resizing Windows

Resizing windows is easy.

13.5.1. Dragging on a Border

Figure 37: Press and hold LMB.
Drag with the mouse to move the border up and down.
When the border is where you want it, release LMB.

Whenever you increase the size of one window, you decrease the size of another. That's because Blender has a non-overlapping window interface: unlike many other programs, it does not permit windows to overlap.

13.5.2. Maximizing a Window

Another way to resize a window is to maximize it. When Blender maximizes a window, it makes it as big as possible. The previous window configuration is saved.

- To maximize the active window, press [Ctrr , [Ctrr or Shift.
- When a window is maximized, use Ctrrn, Ctrr or Shitt to restore the previous (unmaximized) window configuration.

Practice maximizing and un-maximizing the 3D View and Timeline windows.

Note:

If you are running a version of Blender before 2.57, you cannot maximize a User Preferences window.

13.6. Splitting a Window

Update (version 2.57): Now the process of splitting/Joining does not work through a menu. Tab is also not needed. Splitting is done by pulling from the edge of the window towards the interior of the same (towards a second window of a different type, causes the first window to override the second). Joining is done by pulling towards a second window of the same type (a big arrow appears). The splitting direction is defined by the direction in which you move your mouse.

i Information

Applicable Blender version: 2.49

Splitting a window is just as easy as resizing. A split always results in two windows of the same type.

Figure 38: A menu will pop up. Select Split Area from the menu using LMB.
(If you don't know how to produce RMB on your computer, please review the "NON-STANDARD InPUT DEvices" ${ }^{3}$ module.)

Splitting on a horizontal division, as we have done, will give you two windows side-by-side horizontally. Splitting a window on a vertical division will give you two windows stacked vertically.

To switch between vertical and horizontal splitting during Step 3, press Tab.

13.7. Joining Windows

Combining adjacent windows is as easy as splitting them. We'll rejoin the window we just split.

[^16]

Figure 39: A large grey arrow will appear to indicate the merge direction. By moving the mouse pointer between the two windows, you can change the merge direction.

Joining to the left will destroy the window on the left, while joining to the right will destroy the window on the right. This becomes important when joining different window types.

Note:

If you RMB on a border and Blender doesn't offer you the Join Areas option, it's because the border touches more than two windows. You'll have to select the window you want removed using a different border.

13.8. Leaving Blender

To close down Blender:

1. If there's a tool active, press Esc to exit the tool.
2. Press Ctrr . This brings up an $O K$? menu.
3. Confirm Quit Blender by clicking LIMB or pressing Enter.

Note:

Blender will not prompt you to save your work. However, you can easily restart Blender and then pick up where you left off using File \rightarrow Recover Last Session.

13.9. Additional Resources

- YouTube video on Splitting and Joining Windows in 2.49 at www.youtube.com/watch?v= uYb1 J 8X- \{ \} ULc
- YouTube video on Splitting and Joining Windows in 2.59 at www. youtube.com/watch?v= MGK1GWFHX9M
- The Blender Manual page on window types at htip://WIKI.blender.org/Index.phe/ Doc:MAnual/windowtypes
- The Blender Manual page on changing window frames at httr://wIKI.blender.org/ INDEX.PHP/DOC:MANUAL/CHANGINGWINDOWFRAMES

14. User Preferences Windows

i Information

Applicable Blender version: 2.57

In this module, we'll take a closer look at the User Preferences window. In the process, you'll encounter three different user-interface controls: radio buttons, toggle buttons, and sliders.

14.1. Saving User Preferences

Most other applications have a place to keep user-configured settings (including document defaults), separate from any actual documents the user creates. Blender works in a slightly different fashion: all your user-configured settings are saved in every document you create. Each time you create a new Blender document, it actually just reloads your default document, which is called .B.blend. To save your current state as the default document, press CTRL + U. This will save everything you've done to the current in-memory document, including objects and materials created, to .B.blend.

14.2. Accessing the User Preferences

First we must open the User Preferences window. There are 3 ways to do this:

- Click LMB File \rightarrow User Preferences...
- Change the window type of the top header to User Preferences and drag the header down.
- Press $\overline{\text { CTRL }}+$ ALT + , which will open the User Preferences into a separate window which you can resize at will.

The User Preferences window should look something like the screenshot below.

Figure 40

14.3. Configuring Your Preferences

So as to get to modeling and rendering sooner, this tutorial will cover only a few of the many preferences which you can set.

14.3.1. Auto Save

Auto Save is a very useful feature that automatically saves the current .blend after a specified period of time. The settings are:

- Auto Save Temporary Files: This enables/disables the auto save feature.
- Timer (mins) slider: This specifies the time in minutes between each auto save.

Figure 41

14.3.2. Number of Undo Levels

Next we'll look at the undo settings. By default, Blender remembers your last 32 actions and allows you to undo them one at a time by pressing Ctri . If your computer has plenty of memory, you may wish to increase that number. If it has relatively little memory, you might consider decreasing it to 10 or 20. The Memory Limit slider specifies the amount of RAM(in megabytes) to use for storing the undo levels. Undo level " 0 " is unlimited.

Figure 42

14.3.3. Numpad Emulation

Blender uses numberpad keys (such as Num7) to control the 3D View and ordinary numeral keys (such as 7Key) to change layers. If you are working on a laptop or if you find the numberpad inconvenient, you can select Emulate Numpad to reassign the 3D View controls to the ordinary numeral keys.

Figure 43

If you ever need to restore Blender to its factory settings, you can either delete your personal ".blend" file and then restart Blender or click LMB File \rightarrow Load Factory Settings

Note:

The second method only affects the current session. To make the settings persist, you would need to save them with Ctrl or File \rightarrow Save User Settings.

14.4. Additional Resources

- The Blender Manual page on Configuration athtte://wIKI.BLENDER.ORG/INDEX.PhP/ Doc: MAnual/Configuration
- The tutorial on Non-Standard Equipment ${ }^{1}$ describes other workarounds for numpad issues.

[^17]
15. Buttons Windows

(i) Information

Applicable Blender version: 2.57

The Properties window is where you will find most of the functions that Blender can perform with objects and materials, animation, rendering and so on. Here is also the area where you will see the greatest changes from earlier versions of Blender (where it was called the Buttons window). Hopefully you'll agree that the new layout makes it much easier and quicker to find things!

In the header of the Properties window, you will see a row of buttons that looks like this:

Figure 44

The actual icons will vary depending on the type of object selected in the 3 D view; also in the default layout, the Properties window may be too narrow to show the entire row, in which case you can either widen the window, or click drag across the buttons with Each of these buttons gives you access to a different context, or subsection of the Properties settings. Unlike older Blenders, there are no more "subcontexts"-no additional buttons will appear in the header when you click any of these. At times, the row may appear not shown unless you increase the width of that panel. Well, Blender has thought about that and solved that already. You can either click on your $\overline{L M B}$ and drag the row sideways depending what you want to let appear, either to the right or left. Or, the other way out is to hover your mouse over the row, and scroll your $\triangle \widehat{M M B}$ to bring the hidden icons to view. Okay, let's move on!
16. The Contexts

Figure 45

Context

Figure 45
In here are the settings that control rendering of the final images: which layers to render, what resolution to use, output format, performance, post processing, etc.

Figure 46

Context

Figure 46

In here are some settings for use when previewing the scene on-screen, and choosing which camera to use for rendering.

Figure 47

Context

Figure 47

In here are settings that govern the surroundings in which the model is rendered: background sky color, mist and star settings, environment lighting etc.

Figure 48

Context

Figure 48

In here are settings that apply to all kinds of objects: overall transformations, layer assignments, grouping etc. The settings shown here (and any changes made) apply to the last object selected. This is also the case for the following object-specific contexts.

Figure 49

Constraints Context

Figure 49

In here are settings that limit the motion of the object for animation purposes. The limits can also be tied to the motion of other objects in various ways.

Figure 50

Modifiers Context

Figure 50

In here are settings for applying modifiers to the object geometry. Note that lamps, cameras and empty objects cannot have modifiers.

Figure 51

Data Context

Figure 51

In here you will find settings specific to the type of object: mesh vertex groupings, text font, lamp settings, camera settings, all that kind of things. This is reflected in the icon, which changes according to the type of object selected.

Figure 52

Context

Figure 52

The material settings for an object control how it looks: its colour, whether it has a shiny or dull surface, how transparent it is, and so on.

Figure 53

Context

Figure 53

The texture settings specify patterns that break up the uniform appearance of a material: these patterns can affect the colour of the material, or give it a rough surface, or modify it in other ways.

Figure 54

Context

Figure 54

An object can be set to emit particles, like smoke, flames or sparks. But the concept of "particles" (and the underlying algorithms) also includes the generation of hair or fur.

Figure 55

Context

Figure 55

In here you will find settings that control how the object reacts to forces like objects in the real world: whether it behaves like a rigid body that keeps its shape but can be knocked around, cloth, something soft e.g a pillow, or a flowing liquid.

17. Where Did The Old Stuff Go?

For those used to older versions of Blender, the old Logic Context has been moved into its own window type, the Logic Editor.

The old Script Context has gone: Python scripting is now much more closely integrated into the Blender UI, and old scripts will not work anyway.

The functions of the other contexts have been rearranged into the new contexts as listed above. Once you get used to the new arrangement, it should make much more sense than the old one.

18. 3D View Windows

i Information

Applicable Blender version: 2.57

3D View windows in Blender are used to visualize 3D scenes. You'll do a lot of work in these windows, so you'd better learn your way around.

In this module, you'll learn:

- to recognize 8 things commonly seen in viewports
- to tell which mode Blender is in
- how to change viewport options and viewpoints
- how to undo changes
- how to position the 3D cursor

You'll also learn the fundamentals of:

- visibility layers
- adding objects
- deleting objects

18.1. The Viewport and its Contents

Aside from its header, the remainder of a 3D View window is its viewport. In Blender, you use viewports any time you need an up-to-date view of the scene you're working on.

Viewports are busy places. Go on a scavenger hunt and see what you can find in a simple viewport.

1. Launch Blender.
2. Just so we're all looking at the same scene, load the factory settings using File \rightarrow Load Factory Settings.
3. Confirm Erase All with LMB (or Enter)).
4. If the NumLock indicator on your keyboard is unlit, press NumLock so that numpad hotkeys will work properly.
(If you're unsure what $\overline{\mathrm{LMB}}$ means, please review the Keystroke, Button, and Menu Notation module ${ }^{1}$.)

You should see something like this:

1 Chapter 9 on page 43

Figure 56

18.1.1. A Virtual Scavenger Hunt

Peer into the viewport at the default scene provided by the creators of Blender and find the following eight items:

In the Center

a solid gray cube with orange edges.

- This is the top face of the default cube, your first Blender object!

2.

Three big arrows, one red, one green and one blue, their tails joined to a white circle

- This is not an object. It is the manipulator for the 3D transform widget.
- The arrows represent the directions of the X, Z and Y axes of the global coordinate system.
- The circle represents the center of the selected object (namely, the cube).
- If you don't know what a "global coordinate system" is, please review THE MODULE ON Coordinate Spaces in Blender ${ }^{2}$.
- It's possible that a tool is active. Press Esc to cancel any tool action.
- Another possibility is that the manipulator has been disabled:
- Toggle it on or off with Ctrr .

3.

[^18]

Figure 59

A red-and-white striped circle with black cross-hairs

- This is not an object. It is the 3D Cursor, which indicates where newly-created objects will appear in the scene.
- The cursor is similar to the insertion point in a text editor, which indicates where newly-typed text will appear in a document.

In the Lower Left Corner

4.

Figure 60

A red-and-green "L", with its arms labeled "x" and a "y"

- This is not an object. It is the mini axis.
- The arms of the " L " indicate the +X and +Y directions in the global coordinate system.

5. The notation "(1) Cube"

This is not an object. It is object info, indicating that:

- You're viewing the first frame of an animation.
and
- The current or most recently selected object is named "Cube".

To the Right of Center
6.

Figure 61

A black round thing that resembles a sun-symbol

This represents a lamp, a light source for the scene. (It is an object.)
7.

A black triangular thing

This represents a camera, a viewpoint that can be used for rendering. (It, too, is an object.)
On a small display, the camera might initially lie outside of the viewport and thus be invisible. In that case, zoom out by scrolling with $\overline{\mathrm{MMB}}$ until it becomes visible.

Throughout

8. A dark gray background, divided into grid squares by lighter lines.

Each grid square is one blender unit (or BU) on a side. A BU can be whatever you wish: an inch, a centimeter, a mile, or a cubit. Blender lets you decide what the scale should be for your scene in the Scene tab of the Properties Panel.

18.2. Modes

Blender has lots of modes, that is, settings that affect its behavior, and this is especially true of 3D View windows.

Sometimes it's not obvious what modes are active. This leads to mode errors where Blender will do something you didn't expect because you thought it was in one mode and it was actually in another.

In Blender, the function performed by a hotkey or mouse button can depend on:

- what mode the user interface is in,
- whether the keyboard is in NumLock mode,
- which window is active,
- the mode the active window is in,
- which item or items are selected,
- whether you've initiated a hotkey sequence.

It helps to recognize the common modes and get out of them.

18.2.1. Object Mode vs. Edit Mode

The 3D View windows are normally in Object Mode. In this mode:

- - The mouse pointer is a white arrow.
- RMB is used to select objects in the scene

If there are objects in the scene, you can get into five other modes:

- Edit Mode: used to edit the shapes of objects
- The mouse pointer is a thin inverse-video cross.
- RMB is used to select vertices, faces or edges of the current object.
- Press Tab to enter/exit this mode.
- Sculpt Mode
- The mouse pointer is now a thin, orange circle.
- Vertex Paint
- The mouse pointer is the same as in sculpt mode, a thin, orange circle.
- Texture Paint
- The mouse pointer is a thin white circle.
- Weight Paint
- The mouse pointer is again, a thin orange circle

These modes are also indicated by a menu in the 3D View header. You can use this menu to change modes.

Figure 63

These modes are a setting shared by all 3D View windows. In other words, when you change the mode in one window, any other 3D View windows change mode also.

18.3. Viewport Options

Note:

The options in this section only affect 3D View viewports. They do not affect renders.

18.3.1. Solid vs. Wireframe

By default, the 3D View window draws objects using the Solid drawtype, in which surfaces are opaque. To toggle between Solid and Wireframe drawtype (edges only, no faces) for a particular viewport:

1. Activate the 3D View window.
2. Press ZKey.

Alternatively, you can choose these and other drawtypes from the "Draw type" menu in the 3D View window header.

18.3.2. Orthographic vs. Perspective

By default, viewports draw orthographic views. To toggle a viewport between orthographic and perspective views:

1. Activate the 3D View window.
2. Press Num5.
(If you're unsure what the difference is, please review the "Orthographic Views" module and the "Perspective Views" module .)
... you should activate the View Name option. This is enabled by default and causes the name of the current view ("User Persp", for instance) to appear in the upper left corner of every viewport. If there is no text, then you can enable it by:
3. Accessing the User Preferences window.
4. Click on the Interface tab.
5. Enable View Name.

18.4. Undo

Since you've begun making changes to the scene, now is a good time to learn how to undo (and redo) changes.

- To undo a change, press Ctrl.
- To redo a change you recently undid, press Ctril.

Blender puts a limit on how many steps you can undo. Instructions for changing this limit are in the "User Preferences Windows" module .

18.5. Changing Your Viewpoint, Part One

Each viewport has a viewpoint, which takes into account:

- the location of the viewer in the 3D scene (There doesn't need to be an object at that location.)
- the direction the viewer is looking
- the magnification (or zoom factor) used

Changing your viewpoint allows you to navigate your way through a 3D scene.
We'll start with three very basic techniques:

- Zooming
- Orbiting/View Rotation
- Perfect Views.

Additional techniques will be covered later in this module.

18.5.1. Zooming

Blender offers several ways to zoom in and out:

- Use Scroll
- Click and drag vertically with Ctrl.
- Use Num+ and Num- to zoom in and out in small increments.

Note the following limitations of Blender's zoom feature:

- If the viewport is in orthographic mode, Blender zooms as if looking thorough a telescope. You can increase the magnification, but the viewpoint's location doesn't change. For this reason, you cannot zoom into or through objects in orthographic mode.
- If the viewport is in perspective mode, Blender zooms to a point-namely the center of the viewport. The viewpoint can pass through objects, but it can't pass beyond this point, no matter what you do. Zooming only gets slower and slower and slower. If the center of the viewport is somewhere you don't expect, zooming may appear to be broken.

18.5.2. Orbiting and View Rotation

Let's fly around in the default cube, viewing it from different angles. In this way you'll see that it really is a cube, centered on the origin, half above the $\mathrm{X}-\mathrm{Y}$ plane and half below it.

1. Activate the 3D View window by placing the mouse pointer inside it.
2. Now you can:

- Click and drag with MMB to orbit freely around the center of the view.
- Use $\overline{\text { Shift }}$ to rotate the viewpoint vertically around the center of the view.
- Use Num2 and Num8 to rotate the viewpoint vertically around the center of the view in 15-degree increments.
- Use Ctrl to rotate the viewpoint around the Z axis.
- Use Num4 and Num6 to rotate the viewpoint around the Z axis in 15-degree increments.

If this is all very confusing for you, don't worry! You'll learn as you get more experience.
When you are finished flying around the cube, you can restore the original view by reloading the factory settings with File \rightarrow Load Factory Settings.

You may have pressed number keys above the letters instead of the ones on the numpad. If you do so, the default cube will vanish. This is because the scene consists of multiple layers, the default
cube is in layer 1, and you've told Blender to move the selected object (the cube in this case) to the layer of the number you just pressed. For instance, 2 Key tells Blender to move the selected object to layer 2. To move it to layer 1 again, press 1 Key. You can view the different layers by clicking on the little squares on the layer map:

Figure 64

Note:

Because the center of the viewport is invisible (not marked in any way), it's hard to tell where it is. This sometimes results in unexpected behavior during rotation.

18.5.3. Perfect Views

It's often useful to get a perfect view of a scene-in other words, to view it along one of the main axes, with the other two main axes oriented up-down and left-right.

Hotkey	View	Axis Pointing Right	Axis Pointing Up
Num7	"top"	+X	+Y
Ctrr	"bottom"	+X	-Y
Num1	"front"	+X	+Z
Ctrr	"rear"	-X	+Z
Num3	"right side"	+Y	+Z
Ctrr	"left side"	-Y	+Z

The following screenshot shows all three perfect views plus camera perspective for the Suzanne primitive:

Figure 65

18.6. Positioning the 3D Cursor

Positioning the 3D cursor is a very basic operation, yet one that many beginners find challenging. It touches on an issue common to all 3D graphics software: "How do you specify points in a 3D scene when we can only see two dimensions at a time?"

18.6.1. Basic Technique

1. Go into either Object Mode or Edit Mode.
2. Move the mouse pointer to the desired position (in any viewport).
3. Click LMB .

\triangle Warning

This technique will fail if the 3D manipulation widget is enabled and your desired position is too close to it. Clicking $\overline{\mathrm{LMB}}$ on or near the widget (the white circle with the colored arrows) will initiate a transform operation; the object's outline will turn white and the mouse pointer will begin dragging the object around. If this happens, press Esc to cancel the transform operation.

Warning

Clicking LMB in a viewport can only reposition the cursor in two out of three dimensions. (The cursor's projected distance along the central line-of-sight remains unchanged.) For this reason, any time you reposition the cursor this way you should immediately verify its position using a different viewpoint.

18.6.2. Two Challenges

Challenge \#1. Using only tools presented thus far, try positioning the 3D cursor on the virtual camera.

Try it!
When you're done, check your work by orbiting the camera.
Perhaps you thought you were done when you clicked on the camera. But the moment you changed your viewpoint, you probably found that the 3D cursor was actually behind (or in front of) the camera.

Hints:

- Try positioning the cursor in two different perfect views.
- Use orthographic views, not perspective ones.

Challenge \#2. Using only tools presented thus far, try repositioning the 3D cursor at the origin (that is, at the center of the cube).

As before, check your work by orbiting the cube. Don't spend too much time on this.
"I found that I would select the cube when left clicking on it in object mode, if the "Use 3d transform manipulator" button was enabled. To toggle this off, you click on the gray pointing hand in the 3 d panel header, or (Ctrl Space)."
"When you want the cursor back into the cube, just select the camera with RMB, put the cursor into the cube following the steps above, and re-select the cube with RMB."
"I've discovered it helps a lot if you are in Object Mode and not in Edit Mode. I wrote the following before discovering this: The problem with this exercise, for me, is that left clicking on the cube selects the cube instead of moving the $3 d$ cursor. If I click on the cube outside of its central white circle I can get the cursor to move there, but only to outside of this white circle, and even then this only works sometimes."
"I failed at this until I had zoomed in close enough to the cube. When I was too far zoomed out I kept selecting the cube rather than creating an edit point."
"I had the same problem and found it was because the cube was selected. I made sure I was in object mode, right clicked on the camera to select the camera instead of the cube, and I could then position the edit point in the cube. However, doing this messed up the next part of the tutorial because you cannot switch into edit mode with the camera selected! Perhaps the suggestion of trying to put the 3D cursor in the cube should be dropped as it raises too many questions at this stage."
"You can deselect all by pressing the AKEY or the select button in the 3D View."
"Use wireframe mode works better to get the cursor in."
"To get it back in the cube: 1) Make sure you're in object mode. 2) Select the cube. 3) Object > Snap > Cursor to selection (cursor refers to the 3D cursor here) so it puts it right in the middle of the cube."
"I think it's an essential point to note that in order to place the cursor inside the cube, the cube must NOT be selected. AKEY was probably the best way to deselect the object."
"If I remember correctly, undo history gets cleared when you switch between object and edit mode."
"I wasted a lot of time here. Thank you to the reader who suggested (on the 3D view header) Object $>$ Snap > Cursor to selection. It was the only thing that worked to get the cursor visible again and placed where clicked."
"I missed the point of the exercise first time around. You can't set a 3D point on a 2D screen without technique. Orthographic views are crucial. I am just learning, but take that, at least, away from it."

18.6.3. More Ways to Position the Cursor

Figure 66

Here's an easy way to position the cursor at the center of an object:

1. Make sure Blender is in Object Mode, with the object selected.
2. Move the mouse pointer to any 3D View window.
3. Snap the cursor to the selected object using either:

- Shift Cursor to Selected
or
- Object \rightarrow Snap \rightarrow Cursor to Selected

Here's 2 easy ways to relocate the cursor to the scene's origin $(0,0,0)$:

1. Move the mouse pointer to any 3D View window.
2. Press Shift to reset the cursor to the origin.

- Note that this also changes the view location, meaning that when you zoom in, you won't zoom in to the scene origin.

3. A better way is to click Object \rightarrow Snap \rightarrow Cursor to Center

- You can also do this by Shift \rightarrow Cursor to Center.

18.7. Changing Your Viewpoint, Part Two

Now you'll learn some additional techniques for obtaining the view you want:

- Dollying
- Centering
- Jumping to the camera's viewpoint
- Zooming in on a selected area

18.7.1. Dollying

When you orbited the cube, the viewpoint's position and direction both changed at the same time. You also can shift the viewpoint up-down or left-right without changing its direction. (This is similar to the side-scrolling effect in the classic Mario and Sonic video games.)
This is called "dollying", and it's an important skill to master. Try it now:

1. Activate a 3D View window by placing the mouse pointer inside it.
2. Now you can:

- Use Shift to dolly up and down.
- Use Ctr and $\overline{\mathrm{Ctrr}}$ to dolly up and down in small increments.
- Use Ctrl to dolly left and right.
- Use Ctrr and Ctrr to dolly left and right in small increments.
- Click and drag with Shift or Shift to dolly freely in the viewplane.

You will likely find this to be a distraction in some cases. To move the viewpoint position back to the center, snap the cursor to the center, then click View \rightarrow Align View \rightarrow Center View to Cursor. You could also snap the cursor to the center then press Ctrr .

18.7.2. Centering

When you zoom or rotate the view, you always zoom or rotate around the center of the view.
To center the view on an arbitrary point:

1. Move the 3D cursor to the point of interest.
2. Verify the cursor position from a second viewpoint.
3. Press Ctrrn Num. to center the view.

To center the view on an object in the scene:

1. Make sure Blender is in Object Mode.
2. Zoom out until the object is in the viewport.
3. If any objects are selected, use (or Select \rightarrow Select/Deselect All) to deselect them.
4. Select the object of interest by clicking RMB on it.
5. Press Num. to center the view.

18.7.3. Jumping to the Camera's Viewpoint

To see the scene as the virtual camera sees it, press Num0. Afterwards, you can rotate, dolly, and zoom normally, but the virtual camera will not follow. To go back to your previous view, press Num0 again. (In the latest versions of Blender, the virtual camera can be made to follow all the changes made in viewpoint while in camera view by checking the option "Lock Camera to View" on the Transform panel. Hit " N " on your keyboard to bring the transform panel. To disable this option you can uncheck that and get back to previous settings.)

18.7.4. Zooming into a Selected Area

Suppose you want to get an extreme closeup of a particular area. Because there's no center mark on the viewport, you might have to dolly and zoom several times to get the desired view.

The shortcut for zooming to an area is:

1. Activate a 3D view window that contains the area of interest.
2. Press Shitt A crosshair appears in the viewport.
3. Click and drag with $\boxed{L M B}$ to draw a rectangle around the area of interest.
4. When you release LLMB, the viewport will zoom in on the area you selected.

18.8. Visibility Layers

Every object in the scene is assigned to one of 20 visibility layers.
Visibility layers have many uses:

- You can put scenery, characters, particles, and lamps in different layers, to help organize your scene.
- By changing which layers are visible, you can simplify your view of the scene and work with only one or two layers at a time.
- When rendering, only visible layers are included. You can use this to render your scene layer by layer, checking each layer separately.
- You can configure lamps to illuminate only objects in the same layer.

Figure 67: Left: Viewing a layer 1 only.
Right: Viewing all 20 layers.

In Object Mode, you can tell which layers are visible by looking at the twenty small boxes located in the 3D View header between the Transform Orientation menu and the "Lock" button. The top row of boxes represents layers 1 through 10 , with 1 being the leftmost and 10 being the rightmost. Similarly, the bottom row of boxes represents layers 11 through 20.

18.8.1. Hotkeys

- To view layer 1 only, press

1Key.

- To view layer 2 only, press

2Key.

- To view layer 10 only, press 0 OKey.
- To view layer 11 only, press Alt.
- To view layer 19 only, press Alt.
- To view layer 20 only, press AIt.

Note:

The hotkeys in this section will not work if you've enabled numpad emulation in the User Preferences window. See the "User Preferences Windows" module for more details.

On the AZERTY keyboard layout, the standard number keys are the \&é"'(-è_çà keys. Do not use Shift unless you want to toggle visibility as explained below.

Holding down Shift while selecting a layer (by keyboard or mouse) will, instead of making only that layer visible, toggle the visibility. In this way, you can select combinations or to hide particular layers.

The key to press to select all layers at once differs by keyboard layout. It is:

- \neg^{7} (the key under Esc) on UK keyboards,
- \sim on US ones,
- $\overline{0}$ on German, Swedish and Finnish ones,
- $æ$ on Danish ones,
- ū on AZERTY ones,
- \varnothing on Norwegian ones,
- (0) on Brazilian Portuguese ones, and
- $\dot{0}$ on Italian ones.

After pressing the aforementioned key, holding down Shift while pressing it again will restore the visibility settings you had before you made all layers visible.

When only one layer is selected, new objects are automatically assigned to that layer. When two or more layers are visible, new objects are assigned to the layer that became visible most recently.

To move one or more objects to a different layer:

1. Select the object(s).
2. Press Mkey .
3. Choose the new layer from the pop-up.

18.9. Adding and Deleting Objects

To delete the default cube from the scene:

1. Choose Object Mode from Mode menu in the 3D View header.
2. If the cube does not have orange edges, then it is deselected. To reselect the cube, move the mouse pointer onto the cube and click $\overline{\mathrm{RMB}}$ (ord).
3. Press Xkey or Delete to delete the selected object.
4. Confirm Delete with LMB (or Enter).

To add a new monkey head (or any other primitive) to the scene:

1. Position the 3D cursor where you want the head to go.
2. Press Shitt.
3. Choose Mesh \rightarrow Monkey.

In the Blender world, this model is known as Suzanne.
Suzanne will be created facing in the global +Z direction. But if you select Align to View in the Operator panel (below the Tool Shelf) then Suzanne and any other object will face directly into the viewport.

18.10. Count Your Polys

If you want to count the polygons in your scene, this data is available in the Info Header.

Figure 68

As you can see in the above image, this scene has 507 vertices and 500 faces (polygons).

19. Blender Interface (version 2.5)

This is the revised interface in Blender 2.5x. If Blender 2.49 looks like something out of Star Trek, then the new Blender must be Star Trek: The Next Generation!

The major interface revision was initially resisted by many experienced blender users; but it has turned out that noobs are able to find things easier. The updates have also brought it much closer to on par with mainstream 3D content creation suites.

For the rationale behind the redesign, read THIS ${ }^{1}$.

Figure 69

[^19]
20. Blender Windowing System (version 2.5)

20.1. The Blender Workspace

Blender prefers to run full-screen, because it manages its own windowing system. This divides the screen up into rectangular, non-overlapping windows (sometimes called areas). These are marked out with coloured borders in the following screenshot of the default Blender 2.55 workspace layout:

Figure 70

Each window has a header, which always shows an icon at its leftmost end which identifies the contents of the window. This icon has a pair of upward- and downward-pointing triangles next to it. If you click with $\overline{\mathrm{LMB}}$ on this icon, a menu pops up which allows you to change what the window is showing:

Editor type：

R Python Console
㫜 File Browser
（9）Info
User Preferences
E－＂Outliner
Properties
5）Logic Editor
－Node Editor
些 Text Editor
晒 Video Sequence Editor
UV／Image Editor
그 NLA Editor
＊＊DopeSheet
$\mathcal{\sim}$ Graph Editor
Q Timeline
－3D View
Figure 71

The header can be at the top or bottom of the window．If you click with RMB on the header，a menu pops up which lets you move the header（to the top if it＇s at the bottom，or vice versa），or maximize the window to fill the entire workspace：

Header

Flip to Top

Maximize Area

Ctrl Up Arrow

Figure 72

To hide the header completely, move the mouse to the edge of the header furthest from the edge of the window (i.e. the top edge of the header if it is at the bottom of the window, or vice versa); it will change into a vertical double-headed arrow. Now click with LMB and drag towards the window edge, and the header will disappear. In its place, you will see the following symbol appear at the corner of the window:

Figure 73
. Click this with LMB to bring the header back.

Note:

Any window can be changed to any type. You can have multiple windows of the same type.

Note:

The workspace layout is saved along with the document. Anybody subsequently opening the document will see the last-saved layout.

20.2. The Active Window

The active window is the one that will respond if you press a key. Exactly one Blender window is active at any given time; this is the one containing the mouse pointer. (When a hotkey fails to work as expected, it's often because the mouse pointer has strayed into a neighboring window.) To change the active window, simply move the mouse pointer into the window you wish to activate.

Note:

When a window becomes active, its header gets brighter.

20.3. Resizing A Window

When you move the mouse to the boundary between two windows, the pointer changes to a double-headed arrow. The arrows indicate the directions in which you can drag the boundary with LMB , to resize the adjoining windows accordingly.

20.4. Shelves

You will notice that the 3D View window (the largest window in the above screenshot, outlined in yellow) has a bunch of buttons down the left. This rectangular portion is called the Tool Shelf. This is like a window within a window, and you can drag the boundary between it and the main part of the 3D View to resize.

If you drag all the way to the window boundary, the shelf will disappear. In its place, the following symbol will appear:

Figure 74
. Click that to bring the shelf back

20.5. Too Much To Fit

If a window or shelf contains too much information to fit within its display area, scrollbars will appear along the bottom or right edge. You can scroll the contents by dragging these with LMB ; alternatively you can drag with MMB directly within the contents.
A window header may also contain more than fits within its displayable area. There is no explicit visual clue for this (except maybe the tell-tale of widgets being cut off at the right edge), but if it happens, you can drag sideways within the header with MMB to scroll its contents.

Note:

Wraparound Mouse: If, while scrolling by dragging with $\overline{M M B}$, the mouse reaches the edge of the display area, it will "magically" disappear and reappear on the opposite edge. This lets you keep on scrolling without having to let go and reposition.

20.6. Panels

Within certain windows, you will see occurrences of the following symbols

Figure 75
with headings next to them: click on the rightward-pointing one to make the panel appear, whereupon the symbol is replaced with the downward-pointing one; click that to make the panel disappear, and change the symbol back to the rightward-pointing one.

20.7. Splitting And Joining Windows

At the top right and bottom left of every window, you will see something like this:

Figure 76
. If you move the mouse over this icon, you will see the pointer turn into a cross. At this point, you can do one of the following by clicking and dragging with $\boxed{\text { LMB }}$:

- Split the window into two copies horizontally by dragging horizontally away from the edge.
- Split the window into two copies vertically by dragging vertically away from the edge.
- Join the window to the adjacent one horizontally (getting rid of it and taking over its space) by dragging towards it.
- Join the window to the adjacent one vertically (getting rid of it and taking over its space) by dragging towards it.

Of course, the last two are only possible if there is in fact another window in that direction. Note also that you can only join windows horizontally that are the same height, and windows vertically that are the same width.

20.8. The Default Workspace

If you look at the above screenshot of the default workspace, you will see the following window types:

- The menu bar at the top (outlined in purple) is actually a window, called Info. In previous versions of Blender, you could resize this to reveal the User Preferences, but in $2.5 x$ they have been moved to their own window type. Instead, all you can see here if you enlarge the window are some debug messages, which will probably be removed once this version of Blender goes to final release.
- The largest window on the screen (outlined in yellow) is the 3D View. This is where you work on your model.
- The Properties window is outlined in green; this is where most of the functions are located for performing operations on models, materials etc. In previous versions of Blender this was called the Buttons window, and was degenerating into a disorganized grab bag of functionality that made it difficult to find things. This has been cleaned up in a major way in $2.5 x$. Note also that it defaults to a vertical layout, rather than the horizontal one of previous versions. The new design prefers a vertical layout, which works better on today's widescreen monitors.
- The Outliner (in blue) gives you an overview of the objects in your document. As your models get more complex, you will start to appreciate the ability to find things quickly here.
- The Timeline (in red) becomes important when you're doing animations.

Of course, this is just the default layout. For example, if you're doing a static model or scene, not an animation, you can get rid of the Timeline. If you're doing heavy script development, you'll probably want the Console available to hand to try things out. And so on.

20.9. Workspace Presets

Up in that Info window/titlebar, you will see a menu with an icon looking like four little squares. Clicking on it with will show the following menu:

Figure 77

Selecting from this menu lets you quickly switch between various predefined workspace layouts, tailored to various workflows. Try it and see-you can return to the default layout by selecting "Default" (but note that any changes you make to the layout are immediately associated with the name being displayed here). The menu even has a search box at the bottom: typing some text in here will restrict the menu to only showing items containing that text. Hard to believe it has much use here, but perhaps in complicated projects which need dozens of different layouts, a search function could become very useful indeed!

Note also the " + " and " X " icons to the right of the menu; clicking " + " creates a new entry which is a duplicate of the last-selected entry, while clicking " X " gets rid of the currently-selected entry.

You will see these conventions appear consistently in menus elsewhere in Blender's new, revamped interface.

21. User Preferences Window (version 2.5)

21.1. Saving User Preferences

Most other applications have a place to keep user-configured settings (including document defaults), separate from any actual documents the user creates. Blender works in a slightly different fashion: all your user-configured settings are saved in every document you create. Each time you create a new Blender document, it actually just reloads your default document, which is called startup.blend. To save your current state as the default document, press [CTRL + U. This will save everything you've done to the current in-memory document, including objects and materials created, to startup.blend. If for some reason you want to restore the default settings to how they were when you downloaded Blender, you can either delete that file, or click Load Factory Settings in the File menu.

21.2. Accessing User Preferences

You can open your preferences by selecting "user preferences" from the file menu. When you bring it up, you will see a row of buttons across the top:

Figure 78

These buttons select which section of your user preferences to display.
You can also choose it from the window type menu in any convenient window, since the User Peferences is a window type like any other. But if you save your prefences in this state, the next time you create a new document, it will have the preferences window open... probably not what you want.

21.3. Configuring Your Preferences

This tutorial only covers a couple of essential preferences, so you are able to get to modelling and other fun quicker. Feel free to browse through and tryout some of the preferences though, you can always restore the preferences to the factory setting if needed.

21.3.1. Auto Save

Figure 79

Here we have the Auto Save options in Blender. They are on the first screen you see in the user preferences window by default, under the File tab. Here's a brief description of each control:

- Auto Save Temporary Files - Toggle checkbox to control whether or not Blender automatically saves.
- Save Preview Images -
- Save Versions - This selection controls how many copies of one file Blender should save.
- Recent Files - This selection controls how many files total Blender is allowed to keep
- Timer - This selection controls how often files are auto-saved.

21.3.2. Number of Undo Levels

Figure 80

This is the Undo options. These options are located under the Editing tab in the user preferences window. Brief descriptions of the controls:

- Global Undo -
- Steps - This selection simply controls the number of times you can undo. How many is dependent on your system memory. For example, if you have 4 GB you might consider increasing this number.
- Memory Limit -

21.3.3. Numpad Emulation

Figure 81

The numpad emulation option located under the Input tab allows you to use the keyboard number keys (the $0-9$ keys above the qwerty keys) instead of the numpad keys. This feature is especially useful if you are using Blender from a laptop and do not have a standard numpad.

22. Properties Window (version 2.5)

1. REDIRECT Blender 3D: Noob to Pro/Buttons Windows ${ }^{1}$

23. 3D View (version 2.5)

The 3D View looks slightly different in Blender 2.5x:

Figure 82

The obvious visible difference is the addition of shelves: the Tool Shelf on the left, and the Object Properties on the right. You can toggle the visibility of these by pressing T for the Tool Shelf and (N) for the Object Properties. Alternatively you can drag the inner edge of the shelf to the window edge to make it disappear. Whichever way you do it, when a shelf is hidden, this symbol

Figure 83
will appear in the corner of the window, and can be clicked to make the shelf reappear.

Note:

The Spacebar Menu: In previous versions of Blender, pressing the spacebar would bring up a copy of the main Blender menu hierarchy. In $2.5 x$, it brings up a scrolling, searchable menu of all applicable operators. Type some text into the box at the top to restrict the items shown to those containing the specified text as a substring.

Apart from the above, operating in the 3D view is still largely the same.

Note:

The Add menu is directly accessible via the SHIFT A hotkey.

However, some keyboard shortcuts from older Blender versions may not work any more. They may yet make a reappearance as development of the $2.5 x$ version continues. But in any case, most of the operations are now also accessible from the menus in the window header, so keyboard shortcuts are no longer the only way to get to them.

24. Blender Memory Management

24.1. Datablocks And Users

It is helpful to understand how Blender manages memory. Just about everything in a Blender document-objects in scenes, scenes themselves, materials, textures, whatever-is stored in a datablock. Each datablock may be referenced from one or more places, mostly in other datablocks-in Blender parlance, it has one or more users. For example, several different objects might share the same material, so when you change the characteristics of the material, it automatically changes the appearance of all those objects.

If the number of users of a datablock drops to zero, it still stays around in memory, but it will not be saved when the document is saved. Thus, if you save and reload the document, all the datablocks with zero users will disappear.

But up until that point, the datablock will continue to appear in the relevant popup menus, so you can reassign it to more users.

You can also assign a fake user to a datablock; this is what the " F " button is for in the popup menus that list datablocks of that type. This ensures that the user count never goes to zero, so the datablock always gets saved in the document even if it has no real users. This is useful for "library" documents, which can contain collections of useful materials and textures, say, that can be linked or imported into other documents, without also having to include dummy objects in the library just to ensure those materials and textures get saved.

For example, here is the widget that lets you choose the material for an object:

Figure 84

The main part shows the name of the current material, which is editable. The \mathbf{X} button breaks the link to this material and decrements its number of users by one, while the \mathbf{F} button assigns a fake user to this material. The + button lets you create a new material.

The material symbol on the left pops up a list of existing materials to choose from, plus a search box to search all existing materials:

Figure 85

Note the entry with the \mathbf{O} symbol next to it; that currently has a user count of zero, and will disappear when the document is saved and reloaded, if it is not further used.

The widget also displays the current user count if it is greater than 1 :

Figure 86

In this case the count was incremented because the \mathbf{F} button was selected.
This is the basis of the (slightly confusing) distinction in Blender between object datablocks and object' datadatablocks. Object datablocks contain the information common to all the typesof objects in the 3D scene, regardless of whether they're mesh objects, lamp objects, camera objects or whatever; whereas the object datadatablocks contain the information specific to that instanceof the type of object, e.g. the vertex, edge and face definitions for this particular mesh you might be using, or the colour and energy of a lamp you've set up for your project, or the field of view of a camera you have.

Which leads us to the difference between the two object duplication commands, SHIFT and ALT : the former duplicates both the object datablocks and the object data datablocks (though this can be controlled in your User Preferences), while the latter only duplicates the object datablock. What that means is that in the first case the two objects are truly independent, but in the second case the new object continues to share the same object data datablock so a change in one will result in a change in both of them. So, for instance, if you use \mid ALT on a mesh object and edit the vertices, edges or faces on one copy, the other copy will also be affected.

Part II.

Unit 2 - Basic Modeling and Shading

25. What is a Mesh?

The most fundamental step in the 3D development process is modeling, which entails creating 3D models of objects.

Blender supports many modeling techniques. "Mesh modeling" is the most basic and common modeling technique.

In this module, you'll learn the parts of a mesh, and you'll construct 2D meshes on paper and using Blender. You'll also learn how to create, select, and grab vertices in Vertex select mode.

25.0.1. Definitions

A mesh is a collection of vertices, edges, and faces that describe the shape of a 3D object:

- A vertex is a single point. (The plural of vertex is "vertices")
- An edge is a straight line segment connecting two vertices.
- A face is a flat surface enclosed by edges. (Some other applications call these "polygons")

25.0.2. An Exercise

To give you a feel for how the components of a mesh fit together, you'll now draw a 2D mesh on paper.

Vertex

Figure 87: Your sketch might look like this.

1. Get a piece of paper and a pen or pencil.
2. Draw three dots that are a couple centimeters (about an inch) apart from each other.

- Each dot represents a vertex in the mesh.

3. Connect two of the dots with a line segment.

- The line segment represents an edge in the mesh.

4. Draw two more edges so that all three vertices are connected.
5. You've drawn a triangle; fill it in.

- The area you filled in is a face.

6. Now draw the fourth vertex (dot) on the paper.
7. Connect the new vertex to two of the vertices you've drawn previously.
8. You now have another triangle; fill it in to create the second face.

Could you imagine creating a mesh of faces in 3D space? That's what mesh modeling boils down to.

You can keep filling up the paper with more vertices, edges, and faces if you want. You may want to try and create something interesting (like a letter of the alphabet) with your triangles.

25.0.3. More about Meshes

Figure 88: A character from the "Yo Frankie!" 3D video game in Edit Mode, showing edges and faces.
The model is "(c) copyright Blender Foundation: apricot.blender.org".

Blender supports faces with three edges (triangles) or four edges (called quads). However, faces with five or more edges (so-called \mathbf{N}-gons) are not supported. In order to model a hexagon with a Blender mesh, you would have to break it down into triangles and/or quads. (Latest versions of Blender are expected to support N -gons with "BMesh" feature. With the help of BMesh, to create a hexagon, you'll only need six vertices.)

Examine a 3D video game or CGI character for a while. Believe it or not, it is made up of little faces joined together. With modern technology, of course, there can be a lot of faces, so they may be tiny and hard-to-see.

When you edit objects in Blender, you'll see every vertex and edge. However, vertices and edges are never rendered; only faces are rendered. The purpose of vertices is to provide 3D control points for faces.

25.0.4. Another Exercise

While it's possible to construct 3D meshes vertex-by-vertex, this is rarely done. However, doing it once the hard way will help you appreciate the powerful modeling tools built in by Blender. Along
the way, you'll learn about Edit Mode and the grab tool, both of which you'll need in the next module.

First, summon the default cube:

1. Launch Blender.
2. If the NumLock indicator on your keyboard is unlit, press NumLock so that numpad hotkeys will work properly.
3. Load the factory settings using File \rightarrow Load Factory Settings.
(If you're unsure what LMB means, please review the "Keystroke, Button, and Menu Notation" module.)

Because you loaded the factory defaults, the 3D manipulator will be enabled. For mesh editing, it helps to turn the manipulator off:

1. Make sure the 3D View window is active.
2. Press totrr to toggle the manipulator on or off. You also could turn it on/off with the manipulator button on the 3D View header.

Figure 89: In Object Mode, the cube will look like this.

Because you just loaded the factory defaults, Blender should be in Object Mode with the default cube selected.

In order to modify the cube's mesh, you must put Blender into Edit Mode. (Edit Mode is a special mode for making changes to a single object.)

1. Press Tab once to go into Edit Mode on the cube.

Figure 90: In Edit Mode, the cube will look like
this.

Figure 91: Edit Mode indicator in the 3D View header.

Note:

Tab puts Blender into Edit Mode only if it's in a different mode to start with. If it's already in Edit Mode, Tab returns it to whatever mode it was in previously. So pressing Tab a second time would put Blender back into Object Mode.

Figure 92: Select mode buttons in a 3D View header, showing Vertex select mode active.

Edit Mode has three (sub-)modes for selecting vertices, edges, and faces. Because you just loaded the factory defaults, you should be in Vertex select mode. In Vertex select mode, vertices show up as yellow, black, or white dots when they're selected and as pink dots when they're not. Because you just loaded the factory defaults, all eight vertices of the cube should be selected.
In Blender 2.59/2.60 the vertex(ices) that are either unselected/selected are the following colors: Unselected will be black; Currently selected will be white; Already selected (other than the current selection) will be orange. Also note that these colors correspond to edge selections as well.

To clear the boards for your first model, delete all of the cube's vertices:

1. Press Xkey
2. A "Delete" menu will pop up. Choose Vertices.

Now you can repeat the previous exercise using mouse and monitor instead of pen and paper.

Figure 93: After step 3

1. Create a vertex by clicking with Ctrrl.
2. Create another vertex. Blender will automatically join the two vertices with an edge.
3. Create additional vertices (and edges) by clicking [Ctrr), but don't attempt to close a loop yet.

To create a face:

1. Press $\overline{\text { Akey }}$ to deselect all vertices.
2. Move the mouse to one of the vertices you want in the face.
3. Click RMB (or Cmd) to select the vertex.
4. Move the mouse to another vertex you want in the face.
5. Click Shitt (or Shift) to add it to the selection.
6. Continue adding vertices until you have three or four selected.
7. Press Fkey to create the face.

Note:

Pressing Akey performs a "deselect all" operation only if something is selected. If nothing is selected, it performs a "select all" operation.

Note:

Pressing Shift does a "select" only if the vertex isn't already selected. If it is, it deselects the vertex.

Note:

If you make a mistake, you can undo your work step-by-step by pressing . Ctrl.

Figure 94: A completed 3D mesh

Create additional faces until all vertices belong to at least one face. Congratulations! You've just created your first 2D mesh in Blender.

You can reshape your mesh by moving vertices with the "grab tool".
To move one or more vertices:

1. Select the vertices using RMB and Shitt.
2. Drag in the viewport with RMB (or press Gkey) to activate the grab tool.

The 3D View header will be replaced by numbers: "Dx: 0.0000 Dy: $0.0000 \mathrm{Dz}: 0.0000(0.0000)$ ". You're now using the "grab tool" and can drag the vertex around using the mouse.

The grab tool disables most of the normal hotkeys, so it's important to know how to get out. You can exit the tool at any time using:

- LMB or Enter to confirm the changes
or
- RMB or Esc to cancel the changes.

If you're up for a challenge, try making your mesh 3D:

1. Change the viewpoint, perhaps to one of the perfect views.
2. Add vertices and/or move the existing ones around in the new view plane.
3. When you're done, rotate to a new viewpoint to examine your work.

Now that you know how to create and grab vertices, you're ready for a quick lesson in extrusion and merging.

25.1. Additional Resources

w:PoLYGON MESH ${ }^{1}$

[^20]
26. Quickie Model

Figure 95: Your goal.

In this module, you'll learn how to extrude and merge vertices of a mesh and how to save a model. This module also introduces the File Browser window type.

Your first model will be a house, with four walls and a pyramidal roof. Simple! And because you're going to use the default cube as a base, all you actually need to build is the roof!

Editing in Blender generally involves four steps:

1. Selecting an object to edit.
2. Activating Edit Mode on that object.
3. Selecting part(s) of the object to act upon.
4. Specifying the action(s) to be performed on those parts.

26.1. Bring up the Default Cube

Figure 96: The default cube in Object Mode.

1. Launch Blender.
2. Load the factory settings using File \rightarrow Load Factory Settings.

This should give you a perspective view of a scene containing three objects:

- a cube,
- a light source,
- a camera.

26.2. Setting up the Viewport

It will be easier to work on the roof of your house in a perspective side view:

1. Press Num3 to switch to a "perfect" right side view.

Note:

Num5 puts the viewport into perspective only if it's not already in perspective. Otherwise, Num5 switches the viewport back to orthographic view.
"Right Persp" will be shown on the top left of the 3D View. The "up" (Z) direction in the scene is now "up" on your monitor as well.

It will also help to zoom in a bit:

1. Make sure the 3D View window is active (which means your mouse cursor is in it).
2. Scroll or press Num+ a few times until the cube is about $1 / 3$ the height of the viewport.

Because you just loaded the factory defaults, the 3D transform manipulator will be enabled. For mesh editing, it will help to turn the manipulator off:

1. Make sure the 3D View window is active.
2. Press $[$ Ctrl to toggle the manipulator on or off.

Press Trab once. This puts you into Edit Mode on the selected object(s)—namely, the cube.

Note:

If the lamp and/or camera were selected instead of (or in addition to) the cube, you wouldn't be able to enter Edit Mode. (Cameras and lamps are edited in a different fashion.)

Here's how the cube should look at this point:

Figure 97

Note:

The Occlude Background Geometry button is only visible when Blender is in Edit Mode and the draw type is Solid, Shaded, or Textured.

The default cube is constructed as a mesh. Now that you're in Edit Mode, you can access the individual vertices, edges, and faces that make up the mesh. The default cube consists of eight vertices, twelve edges, and six faces.

26.3. Adjusting the Height

Right now, all eight vertices are selected, so any vertex edits you make will affect them all. For instance, if you were to move a vertex, the other seven vertices would follow. In order to build a roof peak for the house, you need to alter just the four top vertices of the cube. To do that, you must change the selection so that only those vertices are selected.

1. Turn 'Occlude Background Geometry' off, so you can see all vertices.
2. Deselect the bottom four vertices, one by one, using Shift.

Figure 98: frame

The picture on the right shows the cube (in right perspective view and occlude background geometry "off") with the correct vertices selected.

Note:

Remember, if you make a mistake, you can undo your work step-by-step by pressing

Now you'll adjust the height of your house's ceiling. Activate the grab tool:

1. Make sure Blender is in Edit Mode, with the relevant part(s) of the object selected.
2. Make sure the 3D View window is active.
3. Press Gkey .

The 3D View header will be replaced by numbers: "Dx: $0.0000 \mathrm{Dy}: 0.0000 \mathrm{Dz}: 0.0000(0.0000)$ ".
You want to lower the ceiling without making the walls crooked. This is hard to do freehand, but happily the grab tool provides an option for doing just that.

With the grab tool activated:

1. Press Z to limit movement to the global Z-axis.

Figure 99

When your ceiling is the height you want, confirm the grab with LMB (or Enter).

26.4. Extruding

Figure 100: Step 7: the extruded attic, ready to confirm

Now you're going to "add on" to your house by extruding. Extrusion begins by duplicating selected parts of an object. Then the new parts are pulled away from the old ones, with new faces and edges created as necessary.

To add an attic to your house:

1. Make sure Blender is in Edit Mode, with the top four vertices selected.
2. Make sure the 3D View window is active.
3. Press E to activate the extrude tool.
4. Restrict movement to the Z axis and move the mouse pointer upward.
5. When the attic is the height you want, confirm the extrude with LMB or Enter .

Note:

At the end of this process only the four new vertices (the upper corners of the attic) will be selected. The others (including the four that were originally selected) will not be selected.

Note:

If you cancel an extrude operation without confirming it, duplicate vertices and edges have already been created. If this isn't what you wanted, use Ctrl to undo the duplication.

26.5. Merging

Figure 101: The Specials menu

You can change the roof from a flat one to a pyramidal one by merging the vertices of the roof:

1. Make sure Blender is in Edit Mode, with the four top-most vertices selected.
2. Make sure the 3D View window is active.
3. Press \mathbb{W} to bring up the Specials menu.
4. Select Merge. (you can also access this by pressing Alta $+\bar{M}$
5. The Merge menu should pop up, select At center.

A message should appear on the Info header saying that 3 vertices have been deleted, this is because in order to merge four vertices into one, three vertices must be deleted.

Figure 102: Your house now has a pyramidal roof!

26.6. Saving your Work

Figure 103: Saving the .blend

To save the current scene in a .blend file:

1. Press F2 (or select File \rightarrow Save As). This temporarily changes the active window into a File Browser window.
2. Navigate to the directory (folder) where you want to write the file by clicking LMB on directory names in the File Browser window. (Clicking on ".." will take you up one level.)
3. If you wish to name the file something other than "untitled.blend", type a filename in the text box to the left of the "Cancel" button. (The .blend suffix will be added automatically.)
4. Click LMB on the "Save File" button. As soon as the save operation is complete, the window will automatically revert back to its former type.

26.7. Additional Resources

- A Video Tutorial on Edit Mode ${ }^{1}$

1 HTTP://WWW.YOUTUBE.COM/WATCH?V=LL-CYoTQI4Q

27. Quickie Render

Figure 104

If you haven't completed the "Quickie Model" module, do so now. You will need the resulting model for this module.

Now that you've created your first model, you'll probably want to try rendering it. Your first render, with a single light source and only nine faces, should finish quickly. However, as your 3D scenes become more complex, you'll find that rendering can take a long time.

In this module, you'll render your quickie model and save the result in various file formats. You'll also learn how to aim cameras and create lamps.

27.1. Rendering the Quickie Model

1. Launch Blender and load factory settings.
2. To load the house model from the previous module:
a) Press F1 or select File \rightarrow Open. This temporarily changes the active window into a File Browser window.
b) Navigate to the directory (folder) where you wrote the file, by clicking LMB on directory names in the File window. (Clicking on ".." will take you up one level.)
c) Click $\overline{L M B}$ on the name of the file you wrote.
d) Click LMB on the "Open File" button. As soon as the operation is complete, the window will revert back to its former type.
3. Press F12 or select Render \rightarrow Render Image. This opens the Image Editor so you can watch the render progress.

- With the new Apple keyboard, use F Fn to avoid the Mac Dashboard.
- With Macintosh OS X 10.5, use Alt .
- With Gnome, use $\overline{\text { Alt }}$ to avoid the Gnome Search Dialog.

Note:

You can stop a render in progress by pressing Esc any time when the render window has the focus. Bear in mind that this will stop the render completely; you can't "resume" it by pressing F12 again.

27.2. Aiming the Camera

If you don't get a picture of the house, or if the picture is not framed well, try moving or re-aiming the camera:

1. Press Esc to get back to Edit Mode, if needed.
2. Press Num0 to take the camera's viewpoint.
3. Press Shift to put the 3D View window into camera fly mode.

In camera fly mode, you can:

- Pan and tilt by moving the mouse pointer up, down, left, or right.
- Accelerate by Scroll forwards.
- Decelerate by Scroll backwards.
- Press any key or button to exit fly mode.

When you're done positioning the camera, try rendering again.

27.3. Lighting

If your cube is completely black, you may not have a lamp in the scene. Either the default lamp got deleted, or you're using a version of Blender that doesn't provide a default lamp.

To add a lamp:

1. Make sure Blender is in Object Mode.
2. Place the 3D cursor where you want the lamp to go; or add the lamp then immediately grab it, and move it somewhere else.
3. Press Shift .
4. In the popup menu, select Lamp \rightarrow Point.

27.4. Saving the Render

Saving the scene (with F2 , for instance) does not save any renders. Saving renders is a separate step.

To save your current render:

1. Make sure you are in the Image Editor
2. Press F3 . This temporarily changes the active window into a File Browser window.
3. Navigate to the directory (folder) where you want to write the file.
4. Type a filename in the text box (to the left of the "Cancel" button).
5. To the left of the window, choose your preferred file type.
6. Click LMB on the "Save as Image" button. As soon as the save operation is complete, the window will revert back to its former type.

27.5. Image File Formats

JPEG 1 is a LOSSY ${ }^{2}$ image format. For best image quality, you'll want to use a LOSSLESS ${ }^{3}$ format such as PNG^{4}.

To change the render file format:

1. Click the camera icon on the top of the Properties panel to display the render options.
2. Find the Output dropdown menu.
3. Click $\overline{\mathrm{LMB}}$ on the popout menu with the current file format (probably JPEG).
4. Select your preferred format. If you're doing an animation, then select one of the Movie codecs (such as AVI or MPEG).

27.6. Additional Resources

- the "Output Formats" module
- Tutorial on Using Multiple Cameras ${ }^{5} \leftarrow$ Pictures are missing from this tutorial
- Ira Krakow's Basic Blender Camera Positioning (Rigging) ${ }^{6}$

[^21]
28. Understanding the Camera

Blender's camera controls the view of your model that appears in the render. If you have experience with photography, most of the quirks of real-world cameras do not apply in Blender (which is fortunate in some ways, unfortunate in others). But one important characteristic does still apply, and that is field of view.

There are two ways to control how much of the scene or model appears in the picture: either move the camera closer to it or further way; or change the angle of the lens. You do the latter in the Camera panel, which appears under the Editing buttons when a camera is selected.

One fact worth noticing is that, good camera handling and positioning is vital to the overall render of your work. Excellent camera skills can result in outstanding images and animations. Knowing where to put your camera at what time and at what interval will greatly make you a good artist and an animation expert.

You can learn this art from our natural environment. 3D animations are a good start to help you understand some of the basic camera positioning. Its a pretty nice art, and you've got to develop it, whether you're talented or not in that!

Remember, too, that too much of everything can be bad. The fact that you can move your camera to and fro without paying a penny does not grant you the permission to place your camera at wrong distances from your object of focus. Moving too far away from your object under consideration may also make them appear far way smaller. Position your camera well. To some extent, in Blender, WYSIWYG - What You See Is What You Get! I can bet on that. Trust me!

Here are two renders of the same scene with two different cameras, to illustrate the difference.
This one moves the camera closer but gives it a wider field of view:

Figure 105

This one moves the camera back, while narrowing its field of view.

Figure 106

The latter is like using a "telephoto" lens with a real camera. Notice how moving the camera closer gives you a greater perspective effect.

ES:ENTENDIENDO LA CÁMARA ${ }^{1}$

1 HTTP://ES.WIKIBOOKS.ORG/WIKI/ENTENDIENDO\ LA\% 20 C\%E1MARA

29. Improving Your House

Figure 107: Your goal.

In this module, you'll refine the house model you created two modules ago. In the process, you'll learn how to access Blender's predefined meshes and how to set a pivot point. You'll also learn how to select, extrude, delete, and subdivide the edges and faces of a mesh model.

To begin, set up Blender as follows:

1. Launch Blender and load factory settings.
2. If you have a numpad, make sure NumLock is on.
3. Load the house model you created in the "Quickie Model" module .
4. If the 3D manipulator is active, disable it.
5. Adjust the viewpoint until you can clearly see two walls of the house and two sides of the roof.

29.1. Adding a Ground Plane

Your house needs some ground to rest on. You can model the ground as an object in your scene. Blender has many predefined mesh objects built in. Happily, one of these is a flat, square surface.

Recall that new objects are added at the 3D cursor. Before creating the ground, you should position the cursor at ground level:

1. Select the house by clicking RMB on it.
2. Enter Edit Mode by pressing Tab.
3. Select one of the bottom vertices by clicking RMB on it.
4. Bring up the Snap menu by pressing Shift.
5. Choose Cursor to Selected.
6. Leave Edit Mode by pressing Tab so that your ground is created as a separate object.

Note:

There's an "Aligned To View" setting in the "Editing" tab of User Preferences which is off by default in $2.5 x$. When this setting is on, the orientation of new objects depends on the current viewpoint. Pre-2.48a releases of Blender had "Aligned To View" on by default. If you've turned this setting on (or are using an old release) go to "top view" (by pressing Num7) before creating the ground object.

Figure 108: The ground added.

Now create the ground object:

1. Activate a 3D View window.
2. Press Shift.
3. Choose Mesh \rightarrow Plane.

Figure 109: The scaled ground.

To enlarge (or scale) the ground object, use the scale tool:

1. Make sure Blender is in Object Mode.
2. Select the ground by clicking $\overline{\mathrm{RMB}}$ on it.
3. Activate the scale tool by pressing Skey.
4. Type 7key to enlarge the ground 7x.
5. Press Enter or $\overline{\mathrm{LMB}}$ to confirm and exit the scale tool.

29.2. Scaling with a Pivot

Suppose you want to shrink the house by 50%. As you can probably guess, this would be done with the scaling tool. However, if you did so right now without the right pivot point, the reduced house would no longer rest on the ground. Blender scales (and rotates) objects around a pivot point, which by default is located at the median point (geometric center) of the selected object(s).

In order to scale the house while keeping its base on the ground, you need the pivot point to be at ground level. Since the 3D cursor is at ground level, you can do this as follows:

Figure 110: Origin to 3D Cursor Menu Item.

1. Make sure Blender is in Object Mode.
2. Select the house by clicking RMB on it.
3. In a 3D View header, click LMB on menu item "Object" and put the mouse cursor over Transform and select Origin to 3D Cursor from the pop-up menu. This can also be done with Ctrl+Shift+Alt+C, select Origin to 3D Cursor from the pop-up menu.

The origin of the house is now at the center of the 3D cursor. If you scale the house, the place where the 3D cursor is located will remain fixed, and everything else will expand or contract from that point.

29.3. Edge Selection

It is often useful to select edges instead of vertices.

Figure 111: The select mode buttons.

1. Make sure Blender is in Object Mode.
2. Select the house by clicking $\overline{\mathrm{RMB}}$ on it.
3. Press Tab to enter edit mode.
4. Click LMB on the Edge select mode button in the 3D View header.

In Edge select mode, edges appear as orange or white line segments when they're selected and as black line segments when they're not.

Just as you selected vertices in Vertex select mode, you can now select (and deselect) edges in the same way as vertices. This is also the same for Face select mode.

It may be because those edges are doubled. This can happen if you cancel an extrude operation and forget to undo the duplication. Here's a solution:

1. Switch to Vertex select mode.
2. Activate a 3D View window.
3. Select all vertices by pressing Akey once or twice.
4. Press Wkey to bring up the "Specials" menu.
5. Choose Remove Doubles.

29.4. Extruding Edges

You can extrude edges in much the same way as you extrude vertices.

Figure 112: Step 5

To add an overhang to the roof of your house, first move the pivot point to the peak of the roof:

1. Switch to Vertex select mode.
2. Select just the vertex at the peak of the roof.
3. Press Shift to bring up the Snap menu.
4. In the Snap menu, choose Cursor to Selected to move the 3D cursor to the peak.
5. Use the "Pivot" menu in the 3D View header to change the pivot to "3D Cursor".

Figure 113: After step 2

Now extrude by scaling from that point:

1. Switch to Edge select mode.
2. Select just the four edges at the base of the roof.
3. Press Ekey to activate the extrude tool.
4. Press Skey to extrude by scaling uniformly from the pivot point.
5. As you move the mouse pointer away from the pivot point, the roof of your house will expand.
6. When the roof is the size you want, confirm by LMB (or pressing Enter).
7. Make the overhangs slanted by holding LMB on the blue arrow that appears in the center of the house, and dragging down.

Figure 114: After step 7

29.5. Face Selection

It is often useful to select faces.
\square

Figure 115: The select mode buttons after step 2

1. Make sure you're in Edit Mode on the house.
2. Click LMB on the Face select mode button in the 3D View header.

In Face select mode, the center of each face is marked with a small square. Faces appear as orange or stippled grey areas with orange edges when they're selected (depending on which face is active), and as grey areas when they're not.

Just as you selected edges in Edge select mode, you can now select (and deselect) faces:

- If any faces are selected, press Akey to deselect all faces.
- If no faces are selected, press Akey to select all faces.
- To select a single face (and deselect the rest), click RMB (or Cmd) on the center of the face.
- To toggle the selection status of a face (without affecting the rest), click Shift on the center of the face.

Figure 116: The three faces on the $+X$ side, selected

Use these techniques to select all three faces (two roof and one wall) on the +X side of your house, as shown.

29.6. Extruding Faces

Just as you extruded edges to grow the roof, you can extrude faces to grow the entire house.

Figure 117: After step 6

To double the size of your house without changing the pitch of the roof:

1. With the three faces on the $+X$ side selected, activate a 3D View window.
2. Press Ekey to activate the extrude tool.
3. Press Xkey to extrude along the X axis
4. As you move the mouse pointer in the +X direction, the +X half of your house will expand.
5. Press 2 to expand by exactly 2 Blender units.
6. Confirm and exit the extrude tool by clicking LMB (or pressing Enter).

29.7. Deleting Edges

Figure 118: After step 2

If you look closely at the model, you'll notice an extra edge connecting the seams between the two halves of the roof. To delete this edge:

1. Edit the house object in Edge select mode.
2. Select just the edge you want to delete.
3. Press Xkey or Delete.
4. When the "Delete" menu comes up, choose Edges.

Note:

Deleting an edge automatically deletes any face(s) that include that edge.

29.8. Subdividing Faces

In order to add openings such as doors or windows to the walls of your house, you'll need to subdivide the wall (vertical) faces into smaller faces.

Figure 119: After step 2

To subdivide each wall face into a 10x20 grid:

1. Make sure you are not in wire-frame mode (otherwise the occlude hidden geometry button will not appear)
2. Edit the house object in Face select mode.
3. Select all six wall faces of your house.
4. Press Wkey to bring up the Specials menu.
5. Choose Subdivide.
6. Set the number of cuts to 9 in the Operator panel (also accessible through F6).

You might be wondering why make 9 cuts instead of 10 , the reason is that there is already (in a sense) one cut made with the face, so you only have to make 9 cuts. If you count the number of faces on the subdivided walls, you will find a 10×20 grid. The reason why there are 20 faces lengthwise is because you doubled the size of the house along the X axis (lengthwise).

Figure 120: After step 6

Figure 121: Step 2

Figure 122: After step 3.2

Now you can extrude windows and doors:

1. Edit the house object in Face select mode.
2. Turn on the "Limit selection to visible (clipped with depth buffer)"(for old Blender versions "Occlude background geometry") option by clicking LMB on the toggle button in the 3D View header.
3. For each wall of the house:
a) Go to the perfect view for that wall:

- Num1 for "front"
- Ctrr for "back"
- Num3 for "right"
- Ctri for "left"
b) Select faces where you want to create a window or door. An easy way to do this is by:
i. Deselecting all faces by pressing Akey once or twice.
ii. Pressing Bkey to activate the Border Select tool.
iii. Clicking and dragging LMB to delimit a rectangular area.
iv. After you release LMB , all faces in the rectangular area will be selected.
c) Press Ekey to activate the extrude tool.
d) Extrude inward 1/10th of a BU by typing and confirming it with Enter or LMB.

29.9. Final Steps

1. Adjust the position of the lamp and aim the camera until you obtain a good render.
2. Save your work!

30. Modeling a Simple Person

Figure 123: Your simple person will look like this.

In this module, you will model a simple human figure. Along the way, you will practice using extrusion and learn additional ways to select vertices, edges, and faces.

30.1. Start a New Scene

1. Start with the default cube (File \rightarrow Load Factory Settings) and NumLock "on".
2. Press Tab to edit the cube.
3. Scale the cube down by pressing 5 . 5 .

30.2. Selection Methods

Just as you did for the house model, you will begin by selecting the top four vertices of the cube. This section presents six methods for doing so.

Ease of selection depends partly on the viewport settings and viewpoint. For greatest ease, you want a view in which the parts you are trying to select are both visible and close together.
For clarity, use a view of the cube in which all vertices are visible:

- Go to right side view with Num3.
- Go to perspective view with Num5.
- Disable the manipulator widget with (Ctr).
- Make sure the Occlude background geometry option is "off".

Figure 124

The picture on the right shows the cube with the correct vertices selected.
To begin, make sure you start in Vertex select mode.

30.2.1. Border Select Tool

The border select tool selects things that lie in a rectangular region of the viewport.

1. Activate (place the mouse pointer in) a 3D View window.
2. Deselect all vertices by pressing Akey .
3. Press Bkey to activate the border select tool. Two dashed gray lines should appear, one vertical and one horizontal, forming a crosshair in the viewpoint.
4. Click and drag LMB diagonally across the area you want to select. The area will be outlined in dashed gray lines.
5. When you release the mouse button, the vertices inside the rectangle will be added to the selection.

Practice selecting the top four vertices this way. If you make a mistake, press Akey and try again.

30.2.2. Circle Select Tool

The circle select tool selects or deselects things that lie in a circular region of the viewport.

1. Activate a 3D View window.
2. Deselect all vertices by pressing Akey.
3. Press Ckey to activate the circle select tool. A dashed gray circle should appear.

When this tool is active, you can do various things:

- To move the select area, simply move the mouse pointer.
- To resize the select area, use Scroll or Num+ / Num- ..
- To select all vertices within the circle, click LMB.
- To deselect all vertices within the circle, click $\overline{\mathrm{MMB}}$ or Alt or .
- To deactivate the tool, press Esc or RMB.

Practice selecting the top four vertices this way. If you make a mistake, press Akey and try again.

30.2.3. Lasso Select Tool

Like many graphics programs, Blender 3D has a lasso select tool.

1. Activate a 3D View window.
2. Deselect all vertices by pressing Akey.
3. Click and hold Ctrl.
4. Drag the mouse pointer in a loop around the vertices you want to select. As you drag, a dashed gray line will appear.
5. You can deselect with lasso by pressing Ctr) + Shift + LMB .
6. Release the LMB when you're done.

30.2.4. Vertex by Vertex Selection

You can select (or deselect) vertices one by one, as you did in the "Quickie Model" module .

1. Click RMB on a vertex to make it the only selected vertex.
2. Toggle the select state of additional vertices by clicking Shift.

30.2.5. Edge Select Mode

You can select (or deselect) edges one by one, as you did in the "Improving Your House" module .

1. Click LMB on the Edge select mode button in the 3D View header.
2. Select the top left edge of the cube by clicking on it with RMB.
3. Toggle the select state of top right edge of the cube by clicking on it with Shitt.
4. Switch back to Vertex select mode by clicking LMB on the Vertex select mode button in the 3D View header.

After you switch back to Vertex select mode, all four vertices in the two selected edges are selected.

30.2.6. Face Select Mode

You can select (or deselect) faces one by one, as you did in the "Improving Your House" module .

1. Click
2. Select the top face of the cube by clicking on its center dot with RMB .
3. Switch back to Vertex select mode by clicking $\boxed{L M B}$ on the Vertex select mode button in the 3D View header.

After you switch back to Vertex select mode, all four vertices in selected face are selected.

30.3. Extruding Limbs

Figure 125: The view menu.

The illustrations in this section are in front orthographic view, so:

- Use Num5 (or View \rightarrow Orthographic) to switch to orthographic view.
- Use Num1 (or View \rightarrow Front) to switch to front view.

30.3.1. Region Extrusion

1. Make sure you're still in Edit Mode, with the top four vertices selected. (Only two will be visible in front ortho view.)
2. Activate the extrude tool by using Ekey (or Mesh \rightarrow Extrude Region).
3. Move the mouse pointer upwards. As you do, four new vertices will appear, each connected to one of the four that were previously selected.

The new vertices and their associated edges will move with the mouse pointer. You can lock them into place with LMB or Enter).

30.3.2. Extruding a Leg

Figure 126: frame

Suppose you want to extrude a region the same size as the default cube -- in other words, one Blender units on a side.

1. Undo your previous extrude by pressing (Ctrl.
2. Activate the extrude tool again by using Ekey (or Mesh \rightarrow Extrude Region).
3. This time, as you're moving the extruded vertices around, hold down the Ctrl key. You'll see that the new vertices will only move in multiples of a Blender unit. This is called snapping, and it makes it easy to extrude by exactly one blender unit.
Continue extruding until you have five cubes of equal size stacked atop one another. This will be one leg of your figure.

Note:

Another way to extrude by exactly one Blender unit is to press whey while the tool is active. If you press 2key when no tool is active, Blender will switch to the second layer, and your (firstlayer) object will disappear. To make it visible again, press 1 key .

Note:

If you are not using Front Ortho view, the blender unit will be much larger than the cube. Switching to that view will allow for the proper size, although you can manually enter the extrusion as 0.4 units.

Note:

Don't extrude any cube more than a unit at a time. You'll want those extra verts, edges and faces later in this tutorial.

Note:

If the mesh gets too big for your view, you can zoom out using Scroll or Shift

30.3.3. Extruding the Pelvis

Figure 127: frame

1. Press Akey until all vertices are deselected.
2. Rotate the view (by dragging MMB) so you can see all four vertices on the right face of the top cube.
3. Select those four vertices.
4. Extrude twice to the right.

30.3.4. Extruding the Rest of the Body

The same trick is repeated over and over to build the rest of our simple body.

Note:

To speed things up, you may want to switch to Face select mode. In Face select mode, you can select a face with a single click.

1. Create a second leg by extruding down four times from the last cube of the pelvis.
2. Create the torso by extruding up five times from the middle cube of the pelvis.
3. Extrude to each side from the next-to-top cube of the torso to create arms.

Figure 128: Legs and Pelvis

Figure 130: Arms

Figure 129: Torso

To be safe, remove any double vertices you may have inadvertently created:

1. In Vertex select mode, press Akey until all vertices are selected.
2. With a 3D View window active, press Wkey to bring up the Specials menu.
3. Choose Remove Doubles.

Now check your work:

1. Return to Object Mode by pressing Tab.
2. Make sure the viewport draw type is Solid. (Press Zkey if it isn't.)
3. Rotate the viewpoint and examine the body from every side (it might be useful to return to perspective view for this).

This is easily fixed. To create a face:

1. Press Tab to go back into Edit Mode.
2. Select four vertices.
3. Press Fkey (or choose Mesh \rightarrow Faces \rightarrow Make Edge/Face from the 3D View header).

- Note that you can also make edges with this tool if you select two vertices.

30.4. Adding the Head

Figure 128: frame

1. Move the 3D cursor to a point above the neck by clicking with LMB .
2. Adjust the cursor position in orthographic top, front and side views (Num7, Num1 , and Num3 respectively) until the 3D cursor is about where the center of the head should be.
3. Make sure you're in Edit Mode with a 3D View window active. (If you create the head in Object Mode, it will be a separate object from the body, and changes to the body later in this tutorial won't affect the head.)
4. Create a sphere using Shift + A \rightarrow Mesh \rightarrow Icosphere.
5. Leave the default settings for subdivisions and size in the bottom left of the screen.

You should now have a small sphere at the top of the body. To make it more proportional to the body, resize it using the scale tool:

1. Make sure you're still in Edit Mode, with a 3D View window active and the head selected.
2. If necessary change the pivot point to Median Point.
3. Activate the scale tool by pressing Skey (or Mesh \rightarrow Transform \rightarrow Scale).
4. Move the mouse pointer until the head is the size you want.

You may also adjust its position using the grab tool:

1. Make sure you're still in Edit Mode, with a 3D View window active and the head selected.
2. Activate the grab tool by pressing Gkey (or Mesh \rightarrow Transform \rightarrow Grab/Move).
3. Move the mouse pointer until the center of the head is where you want it.

Note:

If you deselect the head and then decide that you want to select it again:

1. Hover the mouse pointer over any vertex/edge/face.
2. Press Lkey . In Edit Mode this will select all vertices that are linked to the vertex nearest the mouse pointer.

Now check your work:

Figure 129: frame

1. Return to Object Mode by pressing Tab.
2. Make sure the viewport draw type is Solid. (Press Z if it isn't.)
3. Rotate the viewpoint and examine the body from every side. Make sure that the head connects properly to the neck.

30.5. Save Your Work

You will continue working on your simple person model in the next module.

To save the scene in a .blend file:

1. Press Ctrl + SKEY (or select File \rightarrow Save).
2. Navigate to the directory (folder) where you want to write the file.
3. Type a filename in the text box to the left of the "Cancel" button.
4. Click LMB on the "Save Blender File" button.

31. Detailing Your Simple Person 1

Figure 130: Your goal.

Few real-life objects have perfectly sharp edges. People, in particular, consist of mainly smooth surfaces. How does one model a smooth object using flat faces and sharp edges?

In this module, you'll learn how to smooth a mesh by using subsurfaces and smooth shading.
You'll need the simple person model from the previous module. If you haven't done it, either go back and do it now or download the pre-made model from Yosun Chang's website at .
If the model doesn't look solid, your Viewport Shading setting may be set to Wireframe. To switch to Solid shading:

1. Activate the 3D View window.
2. Press Zkey.

31.1. Subsurfaces

Figure 131: The sub surface modifier.

So far, all the meshes you've created have had sharp edges, giving them a faceted appearance like that of a cut diamond. To model a smooth object (like a human body) you might think you'd need a huge number of vertices and faces. Subsurfaces partly solve this problem by automatically subdividing a mesh into a finer mesh suitable for smooth rendering.

You subsurface in Blender by adding a subsurf modifier to a pre-existing mesh object. A modifier is simply an algorithm (automatic process) which can be added to an object.

To get started, make sure Blender is in Object Mode, with only the simple person object selected:

1. If Blender is in Edit Mode, press Tab
2. To select the simple person, RMB on it.

To add a subsurf modifier to the selected object:

1. Click on the modifiers tab (wrench icon) in a Properties window.
2. Add Modifier \rightarrow Subdivision Surface .

The object's appearance should immediately become more faceted and more rounded. In addition, several subsurface controls will appear in the Modifiers tab.

Note:

The modifier has been added, but it hasn't actually been "applied" yet.

The model may include some double vertices. To get rid of these:

1. Edit the model in Vertex select mode.
2. Select all vertices.
3. Mesh \rightarrow Vertices \rightarrow Remove Double
4. Try again.

You need to look in to upgrading (or possibly even downgrading) your graphics drivers. Having the right graphics driver can avert a lot of problems.

What just happened? The default subsurf modifier (one level of Catmull-Clark) subdivided each face of the object into four smaller faces that are progressively angled. This softened the sharp edges of the original model where faces met at 90-degree angles.

31.1.1. Controls

For this model, one level of subsurf isn't quite enough. To increase the number of levels to two, just increase the number in the text box directly underneath Subdivisions. The View setting controls the number of subdivision levels visible in the viewport. This can be very useful when you have a high-poly scene, just decrease the number of visible subdivisions to speed up viewport action.

You can specify additional levels of subsurfing to be used during renders. For extra smooth renders, you might want three levels of subsurfing. Set this with the Render control immediately below the View control.

The Apply button applies the modifier to the mesh. Do not click it yet; we'll be playing with the model a bit longer before we want to apply the changes. While useful with some modifiers, applying a subsurf modifier produces a very complex mesh, and there's no need to do so here.

Remember that you can undo any accidental modifications with Ctr).
Blender can combine a series of modifiers by stacking them. For this reason, the Modifier tab includes buttons for arranging and removing modifiers.

You can hide edges created by the modifier by activating the Optimal Display toggle button. The effect of Optimal Draw is especially clear with the Wireframe draw type.

You can edit the mesh in modified form (without actually applying the modifier) by activating the Apply modifier to editing cage during Editmode toggle button, a small button to the left of the Up/Down arrows (the arrows are for changing the position of the modifier in the stack) in the Modifier panel.

Figure 132

Try this out:

1. Press Tab to enter Edit mode.
2. Make sure Blender is in Vertex select mode.

Note that the vertices no longer lie on the surface of the object.
3. Activate the Apply modifier to editing cage during Editmode button.

Now all vertices lie on the surface of the object, and you can adjust the (modified) vertices directly. However, any additional vertices created by the modifier cannot be directly edited without applying the modifier.

You will be editing the boxy version of the simple person awhile longer, so before continuing, deactivate the Apply modifier to editing cage during Editmode button.

31.2. Smooth Shading

Figure 133: Your simple person after setting smooth.

Subsurfaces do a good job of smoothing out corners in meshes. Even with two levels of subsurfaces, however, the simple person does not look completely smooth; when viewed close up, it has a scaly appearance. This is because each face is flat shaded-shaded to resemble a flat surface-resulting in sudden changes in brightness at most edges. For a smooth object, you want smooth shading, which smooths out the changes in brightness.

1. Go to Object Mode.
2. Set the draw type of a 3D View window to "Solid".
3. Select your subsurfed object.
4. In the Toolshelf on the left, look for a caption called Shading. Under it should be a button called Smooth.

All the mesh edges will be smoothed out, leaving no sudden changes in brightness. The faces blend smoothly into one another, making the edges nearly invisible. If the icosphere has not smoothed properly and is dimpled, enter Edit Mode by pressing Tab , select all vertices (A) and recalculate the normal direction (CTRL+N). This is also available in the Toolshelf under Normals.
5. Click the other button under Shading in the Toolshelf, named 'Flat'.

The edges will reappear. Now you know the difference between Flat and Smooth.
6. Since the model looks better with smooth shading, click LMB on the "Smooth" button again.

Note that if you didn't have subsurf enabled, then the mesh wouldn't look much different. This is because smooth shading doesn't affect the mesh shape, it just changes how the computer draws the triangles.

Smooth shading also removes a lot of definition, a good way to get rid of this is simply to add a subsurf modifier like you just did. The modifier will not only require less vertices, but add definition.

Figure 135: Smooth
Shading

Figure 134: Flat Shading

Save your work. You will continue refining this model in the next module.

31.2.1. Additional Resources

$\mathrm{w}:$ FLAT SHADING $^{1} \mathrm{w}$:GOURAUD SHADING ${ }^{2} \mathrm{w}$: Phong SHADING ${ }^{3} \mathrm{w}$: SUBDIVISION SURFACE ${ }^{4}$

- For more about modifiers, see The Blender Manual page on The Stack at htip://wIKI.BLENDER.ORG/INDEX.PhP/DOC:MANUAL/THESTACK
- For more about Blender subsurfaces, see The Blender Manual page on Subdivision Surfaces at http://wIKI.blender.org/Index.php/Doc:MAnUAL/SubdivisionSurfaces.

[^22]
32. Detailing Your Simple Person 2

In this module, you'll edit a subsurfed mesh using the scale and grab tools, all the while improving your character.

You'll need the simple person model from the previous module. If you haven't done it, either go back and do it now or else download the pre-made model from Yosun Chang's website at .

32.1. Widening the Torso

To be realistic, the simple person's torso needs to be three times wider. In order to keep the torso symmetrical, you'll expand it by scaling both sides from a central point.

Figure 134

Select the sides of the torso:

1. Enter edit mode on the simple person.
2. In the 3D View header, set Face select mode.
3. From the 3D View header, choose Pivot \rightarrow Median Point.
4. In the 3D View header, make sure Proportional Edit button is off.
5. Select the three faces on both the left and right sides of the torso, between the armpits and the waist.

Note:

Figure 135: The cube icon toggles the visibility of certain components.

When editing in solid mode, the vertices, edges and faces on the back side of the model are, by default, invisible. This feature can be toggled by clicking $\boxed{\mathrm{LMB}}$ on the Occlude Background Geometry button in the 3D View header. Toggle it on and off a few times and observe how the back faces appear and disappear.

We will now scale the torso with the scaling tool:

1. Activate the 3D View window and press (S, X.
2. Adjust the amount of scaling. Either:

- Move the mouse pointer until the torso is the width you want.

or

- Press 3

3. Confirm and exit by pressing Enter or clicking LIMB.

Note:

Scaling faces causes adjacent edges and faces to move, due to their shared vertices. You cannot separate a face or edge from its vertices.

Continue selecting different parts of the torso and scaling them to get more practice using the above scaling methods.

32.2. Bending the Arms

Figure 136: Removing the forearm

When you've got the basic shape of the torso, make the person hold up his hands. You'll do this by deleting the forearms and then extruding upward from the elbows.

Select both forearms:

1. Enter edit mode on the simple person.
2. In the 3D View header, set Face select mode.
3. With the 3D View window active, press unky until all vertices are deselected.
4. Select the five faces at the end of the forearm.

Now erase them:

1. Press Xkey to open the Delete menu.
2. Choose Faces.

The forearm will disappear, leaving a hole. Don't panic; we'll fix it later. Now to make the arm point upwards:

1. Select the top face of the last remaining "arm cube".
2. Extrude the region upward by two Blender units Ekey, 2 , 2 and confirm with LMB or Enter.
The hole in the elbow is caused by a missing face. To fill in the missing face:
3. Deselect all vertices.
4. Select the four vertices surrounding the missing face.
5. With the 3D View window active, create the face using either

- Mesh \rightarrow Faces \rightarrow Make Edge/Face
or
- Fkey

Note:

If a Make Faces menu appears when you try to fill the hole, it may be that you have some doubled vertices. Do "Remove Doubles" on the entire model and try again.

The new face should be smooth. If it isn't, make it so, using Mesh \rightarrow Faces \rightarrow Shade Smooth.

Figure 137: Repeat on the other side

Go through the same steps (erase, extrude, and fill) on the other arm. Be sure to deselect all vertices in the first arm before selecting any in the other arm. If you have difficulty making the arms symmetrical, undo your work and go through the steps simultaneously on both arms.

32.3. Making Feet

To make feet for your simple person, you subdivide the ends of the legs and pull the front edges forward.

1. Edit the simple person in Face select mode.
2. Select two bottom faces of the legs (front of the feet) by clicking RMB on the first and then Shift on the other.
3. Subdivide both faces, either with:

- Wkey Subdivide
or
- Mesh \rightarrow Edges \rightarrow Subdivide

Each face gets subdivided into four smaller faces.
Now select the front edges and pull them forward:

1. Switch to Edge select mode.
2. Press Akey until no edges are selected.
3. Select the four bottom front edges of the soles (two for each feet) (where the toes should be).
4. Press G and limit movement to the Y axis.
5. Move the mouse pointer until the feet are the length you want.
6. Confirm and exit by pressing Enter or Space or clicking LMB.

Figure 138: Congratulations! You now have feet.

32.4. Reshaping the Head

When you're satisfied with the torso and limbs, you should do something about that head. A bit too spherical, isn't it? You can elongate it by scaling along the Z axis.

When scaling the head, you want to make sure that it stays connected to the neck.
First, place the 3D Cursor at the base of the head, where it meets the neck. An easy way to do this is as follows:

1. Go into Vertex select mode.
2. Make sure the Occlude background geometry option is "off".
3. Select the vertex at the base of the head using $\overline{\mathrm{RMB}}$.
4. Snap the cursor to this vertex using Shift Cursor to Selected

Now select the entire head:

1. Hover the mouse over a vertex/edge/face of the head
2. Press Lkey to select all parts linked to that part.

Note:
This works even when the head and body meshes overlap, so long as they aren't linked together anywhere.

Tell Blender that you want to pivot around the 3D Cursor by changing the pivot point to 3D Cursor on the Pivot menu.

Now scale the head along the Z-axis, using either the scale tool (Skey , scaling by 1.5 should be about right.

Figure 139

You'll need this simple person later, so remember to save your work!

33. Creating a Simple Hat

In this module, you'll create a hat for your simple person. Along the way, you'll learn how to use the Spin tool and use layers.

33.1. Creating a Generatrix

For future convenience, you'll create the hat as a new object in the scene containing the simple person. If you haven't created the simple person, either go back and do it now or else download the pre-made model from Yosun Chang's website at .
Start by changing layers to layer two, then add the basis for your hat:

Figure 140

1. Make sure you're in Object Mode (so that a new object will be created).
2. Click LMB on the second little square, this will make the viewport display layer two.
3. Go to orthographic front view by pressing Num1.
4. Create a mesh circle at the cursor, by activating the 3D View window, pressing shift + Akey and choosing Mesh \rightarrow Circle.

Note:

The new circle will probably look more like a line segment than a circle. If so, it's because you're viewing the circle edge-on.

The new mesh object doesn't actually have to be a circle. You could use any sort of mesh object here because you're about to reshape it into a custom 2D mesh (called a generatrix) that describes the profile of your hat. More precisely, the generatrix describes one side of a vertical cross-section through the hat. You'll want your generatrix to have a slope; it should be higher on one side (which will become the top of the crown) than on the other (which will become the brim).

1. The newly-created mesh should be selected. If it isn't, select it by clicking RMB on it.
2. Press Tab to edit the mesh.
3. Activate Vertex select mode.
4. Press Akey until all vertices are selected.
5. Press Xkey to erase all vertices.

Figure 141

Now draw your generatrix, starting with the brim and sloping upwards toward the top of the crown:

1. Make sure you're still in orthographic front view.
2. Press (Ctrl to create the first vertex.
3. Press Ctrl to one side of that vertex to extrude another vertex, connected to the first by an edge.

Keep adding vertices until you're satisfied with the shape of your generatrix. You can always undo using Ctrl or go back and adjust the positions of particular vertices using the grab tool.

The Spin control only spins vertices that are selected, so press Akey until all vertices in the generatrix are selected. The Spin control spins the mesh around an axis perpendicular to the viewplane. You want to spin around a vertical axis, so press Num7 to switch to top view.

33.2. Spinning the Hat

Figure 142: The spun hat, drawn as wireframe in orthographic front view.

Now lets actually spin the hat:

1. Move the cursor to the vertice you want to spin around by pressing LMB on it.
2. Press A to select all the vertices.
3. Press Alt+R to activate the Spin tool.

- The Spin tool is also available in the Tool Shelf under Add

You should now see 90° of a generatrix! To spin your hat all the way round, press F6 or look in the Operator Panel just below the Tool Shelf. There should be an input slider named Degrees, change this value from 90 to 360 . There should also be a slider called Steps, increase the value from 9 to 15.

Noob note: If your hat has a large hole in the center, check underneath the "degrees" slider. There will be a header that reads "center". Underneath the header there will be three sliders, the first labeled " X ", the second " Y " and the third " Z ". set these all to zero, by either adjusting them by clicking the arrows on the left and right, or by clicking the middle of the slider itself, and entering "0".

Remember that if you spin an object 360° there will be a double row of vertices at the row of vertices you spun. To fix this, press \bar{A} to select all vertices, press \bar{W} and select Remove Doubles. Note that this will only work in vertex select mode.

You may also want to merge the vertices at the top of the hat. Do this by selecting all the vertices at the top with C and pressing $\overline{\mathrm{Alt}} \rightarrow \rightarrow$ At Center. You may have to do this twice as some vertices might be beneath each other.

You have more than one 3D View window, so Blender is asking which window to perform the spin in. Click LMB on the window that is showing top view.

33.3. Smoothing Your Hat

Figure 143: The finished product!

You'll probably have noticed that normal hats aren't usually as faceted as yours! To change this, first change the shading to Smooth (available on the Tool Shelf).

Next, add a Subsurf modifier to the hat and set the subdivisions to two, as you did in the
"Detailing Your Simple Person 1" module .

1. Click on the modifiers tab (wrench icon) in a Properties window.
2. Add Modifier \rightarrow Subdivision Surface .

Save your work. You'll need this scene for the next module.

33.4. Additional Resources

W:SURFACE OF REVOLUTION ${ }^{1}$

- HTTP://WWW.YOUTUBE.COM/WATCH?V=-MPTXA_MEPA ${ }^{2}$ Ira Krakow's Hat Creation Video Tutorial, based on this page.

[^23]
34. Putting Hat on Person

Once you're satisfied with the shapes of individual objects, you'll want to combine them into a coherent scene. You do this in Object Mode.

In this module, you'll learn how to use move objects to and from layers. You'll also learn how to rename and parent objects, and you'll get an introduction to Outliner Windows.

You'll need the person-and-hat scene from the previous module. If you haven't done it, either go back and do it now or else download the pre-made model from Yosun Chang's website at .

34.1. Adjusting an Object's Median Point

Figure 144: The person that you (yeah you!) made with the origin in his geometric center.

1. Load the person-and-hat scene.
2. Make sure Blender is in Object Mode.
3. Switch to Layer 2, select the hat and press $\overline{\underline{M}}$. A dialog box will pop up for you to choose which layer to move it to. Either press l (the number on top of the keyboard, not the numberpad) or select the first box in the popup.
4. Select the person you made earlier.

Just as you did in Edit Mode, you can specify the pivot for rotating and scaling objects in Object Mode. If you just finished the previous module, the pivot is probably set to "3D Cursor". If so, change it back to "Median Point".

In Edit Mode, the "Median Point" for pivoting is the geometric center of all selected vertices, edges, or faces. In Object Mode, however, it's the origin of the selected object's local coordinates,
indicated by an orange dot. In other words, the origin might lie far from the object's geometric center.

You can use buttons in the Tools Shelf to reunify an object's origin with its geometric center:

1. With Blender in Object Mode, click LMB on the "Origin" in the Tool Shelf and select Origin To Geometry to move the selected object's origin to its geometric center (without changing the object's appearance).

Note:

When more than one object is selected, Blender uses the average of their median points as the median point for pivoting.

This can be useful when you want a better picture of your object. With the origin set to the persons geometric center, you can now snap the object with Shift+S to the 3D cursor. This will let you view more of the model at one time and make for a faster editing workflow.

34.2. Positioning the Hat

Figure 145: Positioning the hat

Once you have the hat properly oriented, move it into position on the person's head. The grab tool enables you to position objects in Object Mode in the same way you positioned vertices, edges, and faces in Edit Mode.

1. Make sure Blender is in Object Mode.
2. Click $\overline{\text { RMB }}$ on the hat object to select it.
3. Activate the grab tool by pressing Gkey.

As you move the mouse pointer, the hat will move around in the viewport. By default, the movement plane is perpendicular to the view axis, so the hat will move differently depending on which viewpoint you're working in.

Just as in the Edit Mode grab tool, you can:

- Restrict the direction of motion by pressing Xkey, Ykey, or Zkey . Press once to move parallel to a global axis, twice to use a local axis. (Press the same key a third time to return to view-plane motion.)
- To restrict motion to the global X-Y plane, lock the global Z by pressing Shift .
- Hold down Ctrr to restrict motion to discrete steps (typically one Blender unit).
- Hold down Shift to get finer control over the motion.
- Click LIMB or press Enter to finalize the position and exit the tool.
- Click RMB or press Esc to return the object to its previous position and exit.

Use two different orthographic views to position the hat on the person's head. You will probably want to scale the hat to make it fit the persons head better. When you are doing this along the X or Y axis, make the changes symmetrical by specifying the axes you want scaling to be constrained to. This option is available in the Operator panel (just below the Tool Shelf) and also by pressing F6.

34.3. Parenting the Hat to the Person

Figure 146: The parenting menu.

Once you have the hat properly sized and positioned on the person's head, you'll want it to stay there. In order to maintain such a cozy relationship between two objects, however, you'd have to remember to select them both before rotating, moving, or scaling. A drastic solution might be to join them into a single object using Ctrl .

A better compromise is to Parent the hat to the person. Parenting creates a relationship between two objects, such that certain changes to one object (called the Parent object) automatically affect the other (called the Child object). Changes to the child, however, do not affect the parent.

Note that an object can have many children, but only one parent.
Since the person is bigger than the hat, it's logical to parent the hat to the person (meaning: parent $=$ person, child $=$ hat) instead of vice versa.

1. Make sure Blender is in Object Mode.
2. Click \triangle RMB on the hat object to select it.
3. Click Shift on the person object.

Both the person and the hat should now be selected. The order of selection is important here.
4. Press Ctrr) to parent the hat to the person.
5. Select Object. The most recently selected object becomes the parent of all other selected objects.

Note:

Pressing Pkey in the object mode instead of Ctrl will start the Blender game engine. To stop the game engine, press Esc.

Now when you move the hat you will see a line from the hat to the person, indicating that the person is the hat's parent. And if you move the person, the hat will move with it.

You may get an error saying something like Loop to Parents, fix this by clearing all previous parents with Alt P.

34.4. Renaming Objects

Figure 147: The renaming dialog

When you have multiple objects in a scene, it helps to give each one a name.
Click on the Objects tab in the Properties panel (the one with a box icon).

1. Now select the hat by clicking RMB on it.
2. At the very top of the tab you should see a dialog box with the name of your object

- The hat's name might be something like "Circle" depending on which mesh primitive you first built the hat from.

3. Click LMB on the dialog box and type in a more descriptive name like "Hat".

You have now changed the name of the hat's object datablock. This name change will be reflected in the Outliner, which we will look at shortly.

Now select your person by clicking $\overline{\mathrm{RMB}}$ on it and repeat the process, changing the name to something like "Person".

34.5. Outliner Windows

Figure 148: The Outliner window.

Once you give objects names, it helps to have a way to find objects by their name and parent. This is exactly what the Outliner is for and it comes in very handy when you are working with a large scene. The Outliner is usually just above the Properties panel, you may want to pull it down a bit to see it more clearly.

You'll notice that all the objects in your scene (Person, camera etc) are listed and that you can select these objects by clicking LMB on them. And if you click RMB on an object, a menu will pop up with options like Select, Deselect, Delete etc. If you select the Person and then click the " + " sign to it's left, you will see that the Hat is listed below the person. This is because Blender lists all children objects beneath their parents.

On the right of each object there are a series of icons which represent the state of the object. For example, The eye icon means that your object is visible in the 3D viewport. You can turn off its visibility by clicking LMB on the eye, which will turn grey; click again on the eye to make it visible. If you hover the mouse over the icons a text box will pop up with a description of what that particular icon does.

34.6. Good on ya' mate!

Congratulations!! You have now finished your simple character. Pat yourself on the back, and have a celebratory coffee! (Or pop!)

34.7. Additional Resources

- Outliner at
- The Blender Manual page on Gestures at httr://wIKI.blender.org/index.php/Doc:MAnual/Gestures
- The Blender Manual page on Groups and Parenting at HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/GROUPSANDPARENTING

35. Materials and Textures

In 3D graphics, materials and textures are nearly as important as shapes. Scenes would be boring if all the objects were gray.

The material system in Blender allows you to model a wide variety of materials and how they interact with light. The next few modules will introduce the available options.

35.1. Material versus Texture

A material defines the optical properties of an object: its colour and whether it is dull or shiny. A texture is a pattern that breaks up the uniform appearance of the material. Very few objects in the real world have completely uniform surfaces. Instead most of them have patterning or variation in colour: consider the grain in a piece of wood or the pile in a carpet or the mortar in a brick wall.

Blender allows textures to influence materials in various ways, such as altering their colours. Multiple textures can interact with each other to produce interesting effects.

It is important though, to set your material first in Blender before the texture can be applied. This is compulsory in Blender. You must set your material property first before you can add a texture. But you can't do it the other way round. Just simple as that!

35.2. Other Material Settings

Additional settings you can specify for a material include shaders, ray-tracing and halo.
Shaders determine how the appearance of a material varies with the angle of the light: diffuse shaders give a non-shiny look, while specular shaders give a mirror-like finish. Blender's material settings always involve both kinds of shaders, but you can adjust a material's diffuse and specular colours separately to control their respective effects; if you set the specular colour to black, the surface will no longer produce reflections.

Ray-tracing is a technique for modeling the physical path of light through the scene. It is capable of producing exquisite reflection and refraction effects, including different degrees of reflectivity, translucency and transparency, and representing materials with different indexes of refraction. Blender provides two separate groups of ray-tracing settings, one for reflection of light and the other for its transmission through the material. You can control these settings on a per-material basis.

Halo rendering means an object no longer looks like solid matter, instead it appears to be made of bits of light. This can be used for real-world effects like fire, smoke and plasma, or to create fantasy effects with no connection to reality.

Note that reflections produced by ray-tracing are separate from that produced by the specular shader: the former are controlled by the material's mirror colour, while the latter is controlled by its specular colour.

Reflection is done two different ways because, while ray-tracing produces the most realistic renders, it is also very CPU-intensive. It is therefore best to apply the ray-tracing effects when you're completely done with your modelling to help reduce high CPU usage. Enough practice with the ray-tracing can also help you get stunning effects with just few clicks without you having to do much try and error. Do well to dedicate at least some hours of your time in experimenting with it, so that in a future real production time, you spare yourself of all that hassle.

35.3. Types of Textures

When you create a texture in Blender, you will see a popup menu listing a whole lot of different types for the texture. The image texture type lets you use a scanned image to texture your object: for example, you can scan an actual piece of metal and use that to give your object a realistic metallic appearance, or use a photograph of an actual brick wall to texture the wall of a building model, and so on.

The other texture types are called procedural, which means the textures are generated according to algorithms built into Blender itself. These can be useful for simulating various effects when you don't have an image of the real material handy; they can also be applied to augment the appearance in various ways. For example:

- using a "cloud" texture to "dirty-up" a material
or
- using one texture as a stencil to create an amalgam of two other textures.

35.4. Additional Resources

w :Diffuse reflection ${ }^{1} \mathrm{w}$:RAY Tracing (GRAPhics) ${ }^{2} \mathrm{w}$: Specular REFLECTION ${ }^{3}$ w :TEXTURE MAPPING ${ }^{4}$

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/DIFFUSE%20REFLECTION
HTTP://EN.WIKIPEDIA.ORG/WIKI/RAY%20TRACING%20%28GRAPHICS%29
HTTP://EN.WIKIPEDIA.ORG/WIKI/SPECULAR%20REFLECTION
HTTP://EN.WIKIPEDIA.ORG/WIKI/TEXTURE%20MAPPING
```


36. Quickie Material

In this module, you will create a new material called "green ooze". Along the way, you will learn how to alter the diffuse, specular, and mirror colors of a material.

36.1. Your First Material

Figure 149: Figure 1: The Materials tab in the Properties panel.

The cube in the default scene (which you get from File \rightarrow Load Factory Settings) has a simple grey color. Now click on the Materials tab

Figure 150
in the Properties panel.
The materials tab contains various menus, but for now you only need diffuse, specular and mirror. The material is named and linked in the panel above the preview window. (Linking is a feature that allows materials to be shared between multiple objects (or datablocks). Changing a material affects the appearance of everything it is linked to.)

The first row of the window above the preview window indicates that:

- there is one material assigned to this object and its name is "Material".

The second row of controls indicates that:

- The current selected material's name is "Material".
- This material will only be saved if it's in use.
- It is not a "Nodes" material.
- Instead of being linked directly to an object, the current material is linked to a datablock.

To rename the material, click LMB on the name and enter the name you want.

To unlink the material, click LMB on the \mathbf{X} button to the right of the material name ("Material"). This deletes the link to the datablock, removing the material from the mesh. As a side-effect, most of the panels in the Material tab disappear. You will see in a moment, however, that the material still exists. It hasn't been deleted; it is simply no longer in use.

At this point, you could click LMB the "New" button to create a new material, but instead we are going to reapply the old material:

1. Click LMB on the

Figure 151
button to the left of the "New" button.
2. You'll see a nifty drop-down list containing all materials you've created so far. Choose 0 Material.

Materials whose names are preceded by " 0 " in this list are not in use. By default, Blender doesn't save such materials when it saves the scene. Thus, you can delete a material from the list by saving the scene and then reopening it. You can override this behavior by toggling the "F" button "on" for unused materials you want saved.

Your materials will be much easier to find and manage if you give them brief, descriptive names you can recognize at a glance. Change this one's name to "Green Ooze". In addition, naming of your materials and other objects in your scene is useful when such components of your scene will be appended in another scene of a different Blender file. Naming your materials and other stuffs on
scene will enable you choose the right objects and materials you need whenever you wish to append just a portion of a whole bunch of work you did. For instance, you're working on a new blender project, but felt the material you used in this Blender file is worth it. Going through the pain of creating a new material (of course you guessed in the initial one in getting the right material appearance), you just append the material to your new work. Pretty simple! Make naming a habit, as its much used in a production environment.

36.2. Specifying Colors

Since changing the name of the material doesn't change its properties, you still have some work to do.

Simple materials are specified by three colors: diffuse, specular and mirror. White rectangulars in their own panel in the Material tab allow you to access these three colors one at a time. Diffuse color is the basic underlying color of the material, rendered by the diffuse shader. Specular color is for highlights (small bright spots on a shiny surface) as rendered by the specular shader. Mirror color is for true reflections rendered using ray-tracing.

- You can specify a color by its red, green, and blue components. By mixing different amounts of red ("R"), green ("G"), and blue ("B"), you can get any color that a computer monitor can display. 0.000 means none of the component, and 1.000 means the maximum amount of the component. For instance, $\mathrm{R}=1.000, \mathrm{G}=1.000, \mathrm{~B}=1.000$ produces white.
If you click on the white rectangular under the diffuse panel you can use the RGB color wheel or the color sliders to change the values. This is the most intuitive way. The window that pops out will look like this and will include the following (Figure 4):

Figure 152: Figure 2: colorwheel

1. A color wheel to change the color as you want.
2. Three color sliders that will change if you change the color in the colorwheel. You can also change the values with the sliders.
3. A slider that controlls the intensity of the color.
4. A pipette capable of sampling colors from any Blender window or render window.
5. Buttons that can change it to "HSV" or "HEX" mode.

- Alternatively you can specify hue, saturation and value components by clicking LMB on the "HSV" button and pushing the sliders around accordingly.
- You can also press the last button and enter the hexadecimal (or HEX) code.

If you want to get rid of the window just click $\overline{\text { LMB }}$ anywhere else.
The most used method of creating a color of your own is using the color wheel, but because we want to be sure you will get the exact same color as us we will use the sliders. Use the above methods to set the diffuse color to $\mathrm{R}=0.149, \mathrm{G}=1.000, \mathrm{~B}=0.446$ (or use the HEX code: 6 CFFB 2). If you look in the "Preview" panel, you will see that the material is now bright green.

Most real-life materials (other than metals) don't alter the color of specular light. For this reason, Specular and Mirror are usually left at their default values (white). For green ooze, however, you'll disregard this rule-of-thumb:

1. Click LMB the sample rectangle below the Specular window.
2. Use the color selection dialog to adjust the specular color and watch the Preview panel to see how this color affects the sample sphere's highlight.
3. Set the specular color to $\mathrm{R}=0.640, \mathrm{G}=0.990, \mathrm{~B}=0.566$ (or use the HEX code: D1FEC6).

With these values for Color and Specular, you should be able to get a good ooze later on. The Preview, Diffuse and Specular panel should now look like this:

Figure 153

Figure 154

As you can see, there are many other material buttons. Many of these will be explained in later modules. Suggestions for creating specific materials may be found in the "Every Material Known to Man" module .

Save this scene before proceeding. You will need it for the "Quickie Texture" module, in which you will perfect your ooze.

36.3. Additional Resources

- w:HSL AND HSV ${ }^{1}$
- w: RGB COLOR MODEL ${ }^{2}$
- How to Assign a Different Material to Each Face of a Cube at www. Youtube.com/wAtch?v=hCYVIRJFF5w

This tutorial was created using Blender v2.59

[^24]
37. Multiple Materials Per Object

Figure 155

In this module, you'll create a beach ball with two alternating colours. Along the way, you'll learn how to apply multiple materials to a single object.

Many real-life objects have parts which are different colours, or are even made of different materials. One way to model such objects is to make each part a separate Blender object. However, Blender also allows you to assign different materials to parts of a single object.

37.1. Set the scene

Begin by opening blender and removing the default cube. Then select the lamp and change its type from 'Spot' to 'Hemi' in the Light settings in the the properties window, this has the advantage of it giving more light.

Figure 156: The options for changing lamp type in the properties window

Now create a mesh for the beach ball:

1. With the 3D View window active, press Shift + A) and choose $A d d \rightarrow$ Mesh $\rightarrow U V$ Sphere.
2. Set the controls under "Add UV Sphere" at the bottom of the left pannel to 8 segments and 4 rings.

The initial result will be crude, but meshes with fewer vertices are easier to edit.
To make the mesh more round, go to the modifiers context in the properties window (wrench icon) and add a subsurf modifier. Set the values in the 'View' and 'Render' settings to 2. And to get rid of that blocky look, go to the Tool shelf and set the shading to Smooth.

The ball is now round, but a bit prolate. To make it more spherical, scale it by about 1.1 along the X and Y axes by pressing (S) then select Y in the tool options (bottom of the tool shelf).

Alternatively, the same result may be achieved by recognising that to select the X-Y plane, you may select 'not \mathbf{Z}^{\prime}. In other words, S will scale the object by 1.1 in the X-Y plane.

37.2. Colorize Time

Now you're ready to begin adding colors to the object:

1. Press Tab to put Blender into Edit mode.
2. Select the "Materials" button

Figure 157
and press New
Several additional panels should appear in the Properties window.
3. In the "Material" panel, set the Diffuse colour to one of your two chosen stripe colours, say, yellow.

At this point, the entire ball is yellow.

Figure 158

In "Materials" panel click the " + " button (red) near the top to the right of existing material list-probably only "Material. 001 ", your first chosen color will be listed. This will create a new blank slot in the materials list. A " +New " button will appear (blue).

Figure 159

Click it, a new material will appear in the materials list. Highlight it and change the color to your second choice of color. (Nothing will happen to the beach ball yet.)

All the vertices should still be selected from before; hit A to deselect them. Switch to front view with NUM1, and to Face Select mode with Ctrl then Fo To avoid accidents, make sure you Limit selection to visible is enabled. Now select a column of four faces that will make up one stripe of the beachball (using SHIFT):

Figure 160

In the "Material" property window, highlight the second chosen material ("Material.002") in the materials list and click the "Assign" button.

Now rotate the view (e.g. NUM6) so you can skip past a yellow stripe adjacent to the blue stripe, and select the second column that will become a blue stripe. Work your way around the ball to do this two more times. (Remember we made the sphere with 8 segments; four of these are the yellow stripes, and four are the blue). Now you see why I chose to make the sphere with only 4 rings: more rings would have meant more faces in each stripe, and more clicking to select them.

38. Image Textures

Procedural texturing is very powerful; however, sometimes it is difficult or impossible to generate the desired realism with them. Image texturing is there for you when you need it. To review, the basic idea is to take an outside image and wrap it around your model. You can use any texture, or a seamless one if you want it to repeat to get a tiled effect. The following shows how you create a seamless texture, and then how to apply any texture (seamless or otherwise) to an object.

38.1. Easy Image Texture Creation With Gimp

It is easy to create a seamlessly-tiling texture image with The GIMP ${ }^{1}$. Start with the photo you want to use. Crop out any part you don't want. Here's an example random photo of some plants in my garden:

Figure 161

[^25]Go to Gimp's "Filters" menu, and find the "Map" submenu. In here you will find the entry "Make Seamless". Select it. That's it:

Figure 162

Just to prove it works, here's a (scaled-down) use of the result as a tiled fill pattern:

Figure 163

38.2. Other Image Texture Editors

- Wood Workshop ${ }^{2}$ A free utility (Requires Operating System: Windows 2000/XP) that generates surprisingly high quality tiling wood texture images. These textures can be exported as standard image files for use within Blender.
- MAPZonE ${ }^{3}$ A free utility for Windows (works perfectly in WinE ${ }^{4}$) that generates node based procedural texture maps. Mapzone can export diffuse, normal and alpha texture maps as standard image files. It can also import SVG regions created with Blender's UV mapping tools.

38.3. Mapping an Image Texture to an Object

Now that you have an image, either a seamless one as above, or any image at all, you can apply it as a texture on an object. To do this:

[^26]- add a material to your object
- click on Shading (F5) and Texture buttons (F6)
- click Add New
- change the Texture Type to Image
- on the Image miniwindow, click Load
- select the image you want as a texture

See Using Textures ${ }^{5}$ for more details on applying images as textures, and using them to affect many other surface attributes such as luminosity, reflectivity, translucency, displacement etc.

[^27]
39. Procedural Textures

Procedural Textures

Texturing objects can be broken down into two categories: procedural and image texturing. Procedural texturing makes use of mathematical formulas to generate textures. This is nice because it can be used to make relatively nice looking textures without external images which are very temperamental where you put them. Procedural Textures are all stored in the .blend file. These textures are obviously generated within Blender itself. Image texturing uses images created or captured outside of Blender, either from an image manipulation program such as the Paint.NET, GIMP or Photoshop, or captured on a camera. We have already learned about image texturing, so let's move on to procedural texturing.

Current Procedural Textures

Blender currently supports many procedural textures, including: Clouds, Marble, Stucci, Wood, Magic, Blend, Noise, Musgrave, Voronoi and DistortedNoise.

39.1. A Simple Wood Texture

Normally you have to assign a material for a new object. The default cube already has a material assigned to it. So we can directly proceed and give it a texture. In the Properties window, click on the "Texture" button

Figure 164
. On a new object you have to create a texture first as well. The default cube already has a texture assigned. Under "Type", click on the button "None". In the "Texture Type" popup menu that appears, select "Wood". The texture sample will show parallel alternating black and white bars that don't look very woody at all. But never fear.
In the "Wood" properties panel that appears, change the waveform from "Sine" to "Saw". In the next row of buttons down, change the type from the default "Bands" to "RingNoise". Increase the NoiseSize to 1.0. Now the texture sample should show something resembling wavy tree-rings. If you hit F12 to render now, you will see these rings covering your cube, except a) the colour is wrong, and b) normal wood patterns aren't so nearly circular.

To make the pattern more elongated, go to the "Mapping" properties panel, change the Size X value to 2.0 and Y to 0.4 . Hit F12 to render again, and the shape of the texture should be looking a lot more woody now.

To fix the colour, go to the "Influence" properties panel further down, click on the colour swatch, and choose a nice brown colour. For a nicer effect, I chose a very light brown. Switch to
"Material", go to the "Diffuse" properties panel and choose a darker brown color. The result looked very woody indeed:

Figure 165

40. Quickie Texture

(i) Information

Applicable Blender version: 2.49

Textures are laid on top of materials to give them complicated colors and other effects. An object is covered with a material, which might contain several textures: An image texture of stone, a texture to make the stone look bumpy, and a texture to make the stone deform in different ways. A texture may be an IMAGE 1 or a COMPUTED FUNCTION ${ }^{2}$. What the texture does and how it is mapped onto your object is set in the material buttons. Some commonly used texture types are shown on the page Using Textures ${ }^{3}$.

This tutorial uses the file from the QUickie Material ${ }^{4}$ tutorial. If you didn't do it before, go back and do it now.

40.1. Adding a texture

The file we're working with has a texture already. However, if you add a new material to an object, it has no texture by default.

To add a texture:

- In the Texture panel of the Material buttons click on Add New to add a new texture, or select an existing one with the Drop-Down button.
- Select the Texture Buttons with the spotty square icon

[^28]

Figure 166
(or by pressing [F6]).

- Select the texture type Clouds from the drop-down list. You can also change the texture's name, as we have done for the material.

Blender 2.58

- Click on Texture in the buttons panel.
- Click on the + New-button under the list of textures.
- Select the texture type Clouds from the drop-down list. You can also change the texture's name, as we have done for the material.

A preview appears, as well as some parameters to experiment with. A Clouds texture provides some irregularities.

Figure 167: Image 1a: A simple Clouds texture
--- Note: In blender 2.58 all of the following settings are found under "Texture->Influence"---

Using Blender 2.61 will have difficulties in completing this task due to major UI differences

- Head back to the Material Buttons (Click the red sphere or press (F5) and a colored preview of the texture appears. It is purple! All new textures default to this colour.

On the right hand side of the material buttons window there are three tabs: Texture, Map Input, and Map To. Since we want to change a material property that is affected by the texture we have to look at the Map To tab. This means: map the value that a texture provides to a material property. A texture may provide different values:

1. RGB color (all images, Magic, every texture with a colorband)
2. Intensity, either as grey scale or/and an alpha value (most of the procedural textures, image textures with alpha, textures with a colorband)
3. Normal values (Stucci, normal maps)

If you want to use textures you always have to be aware of the value a texture provides and the Map To settings for the material.

- Select the Map To panel.

Col	Nor	Esp	Cmir	Ref	Spec	Amb
Hard	Riay Mir	Apha	Emit	TransLu	Disp	

Stencil Neg No RiGB

DVar 1.0

Figure 168: Image 1b: Default settings in the Map To panel

The activated Col button in the top row shows that the texture affects the color of the material. A Clouds texture provides an intensity value, ranging from 0 (where the texture is black) to 1 (where the texture is white).

The RGB (Red, Green, Blue) sliders here adjust the target color of the texture. This is mixed (Mix) with the material color, where the intensity of the Clouds texture is 1 only the target color is used, where the intensity of the Clouds texture is 0 , only the material color is used.

- Set the target color to black.

Procedural textures are not shown in the 3D window (only if you would use excessive amounts of vertices), even if you use GLSL materials. This means that we have to render the image to see the texture properly.

- Render the image ($\mathbf{F 1 2}$), or use the preview to judge the result of the texture.

Figure 169

Next we will add a Stucci texture to make our clouds look bumpy.

40.2. Adding a Stucci texture

Figure 170

- Go back to the Texture Buttons and select the next texture channel (one of the blank buttons under "NewCloudTexture").
- Add a new texture here and set the type to Stucci.
- Back to the Material Buttons, and click the "Map To" tab.
- Turn Col off and Nor on.

Col means the texture affects the colour. Nor means it affects the rendered normal, i.e. the angle the renderer treats the surface as - creating fake shadows on the surface.

- Play with the Nor slider, but leave it on about 4.

In blender 2.58

- Go to the Texture button and select the empty texture beneath the one you just added.
- Add a new texture and set its type to Stucci.
- Go to Influence and turn off Color and turn on Normal.

In blender 2.6x

- Go to Influence and deselect Diffuse. Select all Geometry.

Render to see the effect. A texture changing the surface normal is called a "Bump" map or "Normal" map. Since that is fake 3D, you don't see it under every circumstance, you will get a greater effect on smoothly curved surfaces with high specularity, only a little or no effect on flat surfaces with low specularity.

41. Halo Materials

(i) Information

Applicable Blender version: 2.48

41.1. Introduction

Halos are a neat effect that you can use in Blender. Instead of affecting the color/texture of a face, like normal materials do, when you use a halo material, it affects the Vertices. The particles with Point Visualization are rendered as Halos also.

Here is an example.
This is the standard Blender start file rendered as per normal, with a regular material:

Figure 171

This is the same scene, rendered with a basic Halo Material:

Figure 172

As you can see, it gives the vertices a 'star'-like appearance, and can be used to make some neat effects.

41.2. Applying a Halo Material

By now you should know how to basically use the materials panel. If not, please complete the QUickie Material ${ }^{1}$ tutorial.

To apply a halo effect, simply click the Halo button in the Links and Pipeline panel. (in 2.58 this is found under the Material button.) The buttons highlighted below are what you need to click to get to this panel (plus the Halo button)

Figure 173

1 Chapter 36 on page 229

The Preview panel will now show the halo effect on the sphere:

Figure 174

It's as simple as that!
Blender 2.61

- To apply a halo effect, simply click on the Halo button in the Properties panel (see below):

Figure 175: Halo properties (Blender 2.61)
(Halo properties - Blender 2.61 screen)

41.3. Adding/Modifying extra effects

Now you know how to apply halos, let's look at some of the settings for them.
Note that when you clicked the Halo button, the color panel to the right changed slightly.

Figure 176

These settings will now allow you to change the colors of various aspects of the halos. Have a mess around with the Halo color and you'll see that it affects what you currently see in the preview panel. The other 2 buttons, Line and Ring, will affect other elements of the Halo we'll look at now.

Blender 2.58 / 2.61

You got a new panel called Halo when you've clicked the Halo button. All settings mentioned above can be found there.

Figure 177: Blender261-Halo-Properties-Screen-2
(Halo properties - Blender 2.61 screen)
Look over to the right of the bottom panels, and locate the 'Shaders' tab. By default, it should be next to the 'Mirror Transp' tab.

Shaders
Rigy Mirror

Figy Mir: 0.01
Freshel: 0.01
Fas: $1.25 \quad 1$

Gioss: 1.00
Aniso: 1.00
4 Somples: 18
Thresh: 0.005

Mirror Tronsp 585
\square
Fiay Transp

IDR: 1.00
Fresne: 0.01
Fas: $1.25 \quad 1$

Ciloss: 1.00
4 Samples: 18
Thresh: 0.005

Depth: 2
Filter: 0.000
Figure 178

You can now see all the various options for the halos:

Ghaders Mirrof Trans ses

HaloSize: 0.500
Hard 50
Add 0.000

Fare
Fings
Lines
Star
HaloTex Halo Funo X Apha
Shaded Soft

Figure 179

You can easily modify the size of the halos with the HaloSize box and the 'Hard' slider modifies the 'fuzziness' of the halos. The 'Add' slider controls how much the halo is 'added' to whatever is behind it - this is more used for textures to control how much of the texture you want to appear on the objects. An easy way to think of the 'Add' slider is as a transparency for all of the halos.

Here is a run-down on the buttons to the right:

Flare (2.58 - Panel called Flare beneath the Halo-panel)

Adds lens flare - a technique which can add a sense of realism to an animation. By default it seems to just make the halos seem brighter, but if you modify some of the settings that appear down the bottom you can get some pretty wacky effects, especially if you have the vertices moving around in an animation.

Rings

Adds rings around the halos. Number of rings can be modified in the 'Rings' number panel.

Lines

Adds lines coming off the center. Number of lines can be modified in the 'Lines' number panel.
Star (2.58 - Star tips)

Gives the halos a star shape. The amount of points on the star can be changed to the right in the 'Star' number panel.

HaloTex (2.58 - Texture)

Allows the Halos to be rendered with a texture. This can create some very cool effects.

HaloPuno (2.58 - Vertex Normal)

Lets the vertices' normals specify the size of the halos. Only becomes really obvious on complicated meshes. For a good example, have a look at what it does to Suzanne the monkey.

X Alpha

intensifies the transparency effect of the halos.

Shaded

Allows the Halos to be shaded and their color affected by light sources.

Soft

Softens the Halos

You can now see where the other color selectors from before work. They let you modify the color of the lines and circles as well.

Figure 180

Blender 2.58 / 2.61

Figure 181: Blender 2.61 Halo Properties Screen 3
(Halo properties - Blender 2.61 screen)

42. Aligned to view issue

After much struggling to follow many tutorials based on older versions of Blender, I have downloaded multiple versions to discover why the tutorials based on versions such as 2.43 don't work when attempted on updated versions such as Blender 2.48a and above. Newer versions such as 2.48 have added a new option to /not/ have added objects rotated to the current viewpoint. With older versions, being in top, front or side view would cause any newly added objects to face different directions on creation.

Figure 182: The location of the button to make the circle show up in the correct orientation

Newer versions of Blender introduced the ability to force all objects into the same global orientation; even worse, they set it up that way BY DEFAULT! This means that unless the user deliberately changes the settings in the new versions, many older tutorials will act as if they are broken.

Newer versions of Blender (such as version 2.48, or 2.49 b) can be set to act in the same way as the older versions, by setting the Align to view on the (i): USER PREFERENCES menu in the right way.

Making this simple changes will "unbreak" tutorials written under Blender version 2.43, by allowing new objects to be automatically oriented to whatever viewscreen orientation is selected in the active viewscreen.

Any time object rotations, lattices or whatever else end up completely out of alignment with what older tutorials say should happen, these steps are your first best fix for almost every such situation.

In 2.58 and 2.61

The settings mentioned above are found in "File->User Preferences" (shortcut: Ctrl+Alt+U) under the "Editing" tab. There's a drop-down called "Align To" where you can set "View" or "World".

Noob Note: What actually happens by default on newer versions of Blender is that the axis of rotation is perpendicular to the screen. It means that, instead of revolving around the vertical axis, the object will revolve in the plane of the screen. Another way to deal with this is to change the view just before performing the rotation (I used NUM1 view) and come back to NUM7 once done.

43. Bones

Bones are used for shifting models and making them posable. If you are not ready for this yet and wish to continue simply modeling, please skip this tutorial to the next section.

Bones are a modeling tool that are especially important for animating characters. Bones allow you to move characters' limbs in a way that is much simpler than trying to re-arrange the vertices every time.

It works by associating a bone with particular vertices, causing them to move along with the bone when the position is changed in pose mode. Using bones is fairly simple once you get the hang of it, but, like many things in Blender, can be a little daunting at first sight.

Bones don't do much on their own; in fact, they turn invisible at render time. For this following module we'll use the previously made character from module Modeling a Simple Person ${ }^{1}$. Note that while we will be using bones on a simple person, the process can be used with any creature or body type you imagine!

[^29]
43.1. Laying down bones

Figure 183

Note: This just shows the basics of adding bones to an object. Go to the ADVANCED ANIMATION ${ }^{2}$ page for a more comprehensive guide on this.

First of all, we'll need a model to put some bones on! For this tutorial, we're going to use a humanoid model. I'm using a quick model that I made based on the BLENDER 3D: Noob To Pro/Modeling a Simple Person ${ }^{3}$ first tutorial. It's rather blocky, but this isn't a detailed tutorial. However, you can find a model pre-made just for you HERE ${ }^{4}$.

Okay, first of all, here's our setup, with Block Dude standing on the plane.
Noob note: You will be placing armatures ("bones") inside your humanoid, so you must work in "wireframe mode," not "solid mode." Otherwise, you will not be able to see the armatures when you place them. To toggle between "solid" and "wireframe," use the ZKEY.

Note: An alternative to working in "wireframe mode" is to turn "X-Ray" on for the armature. To do this, select the armature and go to the editing menu (F9). Under the armature tab, click "X-Ray" in the top row of buttons. This will allow the armature to show through other objects.

[^30]
43.2. Add a bone

Figure 184

Now, let's put some bones on Block Dude! In Object Mode go to Space Bar $->$ Add $->$ Armature. (Blender 2.5x note: Shift+A -> Armature -> Single Bone)

What we are looking at is an armature. This is a single bone. Now, we need to put the bone in Block Dude! Move and rotate the bone so that it's in the middle of Block Dude's chest.

Figure 185

If your bone does not have the correct length, then change the size of the bone by moving one of the ends of the bone : switch to Edit Mode, select one of the ends of the bone, then move it using GKEY.

43.3. Extrude a second Bone

Figure 186

To create a second bone starting from one of the ends of the first bone, make sure you are in Edit Mode, select the end of the first bone, then press EKEY. The second bone appears, with its start point on the selected end of the first bone. Move the mouse to position the end point, then press LMB, ENTER, or SPACE. Now, extrude (EKEY) and scale the bone as needed to put the bones in his body! Make sure that you are in Edit mode, and click the pink dots at the end of the bone to do things like extrusion. These operate much the same way as vertices, you can extrude, rotate, move, and even subdivide. Your finished result should look something like this:

43.4. Name the bones

Figure 187

Now, just to make things easier, we're going to name the bones. For example, my bones are named RT_Forearm, Left_Forearm, RT_Upper_Arm, etc. Select the bone and press $\mathbf{F 9}$ to display the Editing panel. In the "Armature Bones" sub-panel click the top left box to edit the name, indicated with a red arrow in the screenshot below. (Noob note: when you are naming the bones remember that if you are looking at the person from the front, your left is the person's right. To make the naming easier switch to viewing the person from behind using CTRL+NUM1.)

Blender 2.58
This is most easily done in the "outliner" (top right by default) by selecting each bone and renaming it under the "Bone" button in the Buttons-Panel (the button looks like a dog bone). You can select the bone and see it highlighted in the 3D bone, then $\mathrm{Ctrl}+\mathrm{LMB}$ to rename.

43.5. Parent the bones

Now, we need to parent the bones to the mesh. Go back into Object Mode and select Block Dude. Now, select the Armature as well, and press CTRL+PKEY, a menu will pop up, select Armature
(Armature Deform in 2.6x), then Create From Bone Heat (2.46+) (Create From Closest Bones before blender 2.46)(With Automatic Weights 2.5 x and 2.6x).

Noob Note: the selection order is important in defining which object is the parent, so you cannot select both objects at the same time. You must select the armature last to make it the parent.

43.5.1. In depth info on selected bone topics

Add/remove mesh from bone control

Figure 188

Create From Bone Heat creates mesh areas within the parented object that are associated with armature bones. This is done automatically, according to the bones' position and size.
Alternatively, choose Name Groups instead of Create From Bone Heat if you don't want Blender to assign groups automatically, and do it manually.

To manually change the mesh areas that the bones control, go to object mode, RMB on the MESH you want to add/remove (if it's inside the same object, then select the areas of the mesh you want to work with), go to Edit Mode, and make sure you're looking at the edit mode buttons in the bottom button window.

You should now see on the left a link and materials panel with a pair of Assign and Remove buttons(you may need to scroll with the middle wheel while hovering over the bottom button windows to make it appear, if it's off to the left of what you can see). In Blender 2.59 activate in the properties window the 'Object Data' and you will find the relevant data in the subwindow 'Vertex Groups'.

Now pick the bone group from the dropdown above the assign/remove buttons, and then hit assign, or remove. Usually vertices will be in one group, but can be assigned to multiple groups.

Mesh deforms like it's far away from the bones

if the mesh is properly assigned to the bones they will move regardless of whether the bones are inside the cylinder or not (HOW they deform WILL be affected however). The most common mistake in this step is creating and (more importantly) parenting the cylinder to the armature while it is outside the cylinder, which causes Blender not to assign vertices to any bones at all. You can check this by editing the cylinder, selecting a vertex group in the Links and Materials tab, and pressing select. This will highlight the vertices associated with the bone. If none are selected, it means none were assigned in the first place - in which case you need to assign them manually as explained above.

If there is no effect, in Edit or Pose mode select that bone (or bones) and choose Envelope display mode (F9 -> Armature -> Envelope), then press Alt+S and increase its area of influence to cover all faces that should be influenced by the bone.

43.6. Moving the Bones

Figure 189

Go into object mode, RMB on the armature to select it, then enter Pose Mode (CTRL+TAB) (you need to select the armature for this option to appear!). Try moving a bone around by RMB to select it, and then hitting GKEY, or RKEY to move it.

If you've done everything correctly, your mesh should move when you move the bones! If this doesn't happen, scale the bones up so that they fit better in the mesh, and scale up the bones until they do what you want (read comment in the parenting section above on adjusting the bones envelopes if you do not get an effect while moving/rotating the bones). With the bones now, you can put Block Dude into a lot of different positions without moving individual vertices.

To the right is an example of how you can move Block Dude with the bones.
To move individual bones, you have to go into pose mode. You will only see pose mode listed on the object/edit mode drop down when you have RMB on the bones from object mode. Also while in pose mode if after a RMB click you can't move bones with a GKEY, or RKEY, check the "Move Object Centers Only" button (just to the right of the Rotation/Scaling Pivot button).
Noob Note: If you've been adding bones to your simple person from the previous lessons, and have noticed the hat seems to stretch when you move the arms in pose mode, you will need to remove the hat from the arm mesh groups created in the prior bone heat step. To fix it, you need to
go to object mode, RMB on the hat, go to edit mode, locate the vertex group assign/remove buttons as described in the bones in depth step, Now pick the left arm, and right arm groups in the dropdown above the buttons, and then hit remove.

44. Mountains Out Of Molehills

Now that we've created our simple person, it's time to give him somewhere to go. In this tutorial we'll create a mountain range using a few simple, and handy tools.

44.1. Creating a simple plane

Figure 190

First we need a clean area to work with.

- Start off with a new project, using File \rightarrow New, or hit CTRL+NKEY. If you have a default cube or plane just delete them now (select them with RMB and press XKEY).

Our first step is to create a large plane that we'll use for the ground and grow our mountains out of.

- Press on NUM7 to enter top view. This way our plane will be lying flat when we create it.
- Press SHIFT+C. This sets the 3D cursor to $(0,0,0)$ which will be the center of the plane we will add.(or use - SHIFT+S -> cursor to center)
- (Note: If you are zoomed in or out, pressing SHIFT+C will also reset the zoom view to its default setting)
- Now add the plane with SPACE \rightarrow Add \rightarrow Mesh \rightarrow Plane. This will be our canvas. (2.58SHIFT+A -> Mesh -> Plane)
- Change to Edit mode (TAB changes between edit and object mode)
- Scale the plane up by about 15 . First put the mouse close to the center of the plane and press SKEY and drag the cursor away and watch the numbers in the bottom left of the 3D Window. Hold CTRL to increment by 0.1 for a more precise measurement. Alternatively, to enter the exact amount yourself press SKEY, then simply type 15 and hit ENTER.
- Now we need to add some vertices to work with. In the buttons window, make sure we have the Editing buttons open (or hit $\mathbf{F 9}$ in the buttons windows to switch there).
- Under Mesh Tools hit the Subdivide button 4 times. Alternatively, in the 3D View window you can press WKEY and select Subdivide. (2.58 - By default the Mesh Tools are on the left hand side.) You can also just hit ENTER, because Subdivide is the first option under WKEY.

Note: As in many of the next tutorials, you may choose to add a grid instead of adding a plane and then subdividing it to have vertices throughout the plane. Adding a grid has the added advantage of allowing you to select the number of vertices along the x and y axes (the two edges) of the grid at the instant of creating the grid, so there is no need to make further subdivisions.

44.2. First mountain

Now that we have the ground, it's time to start growing our mountains.

- Make sure you have nothing selected (AKEY).
- Select a random vertex with RMB. I usually start at the one that is 4 down from the top and 4 in from the left (the 4th vertex if you count the edges).
- Change to the side view with NUM3.

Figure 191

- Press OKEY to change to proportional edit mode or use the button which shows a grey ring on the header of the 3D View. The button will change its color to orange (blue in 2.61). You can also use SPACE \rightarrow Transform \rightarrow Proportional Edit ($\mathbf{2 . 5 8}$ and $\mathbf{2 . 6 1}$ - By default this button is located just below the 3D view.)
- Once you've turned proportional edit mode on, another button appears to its right, the falloff button. Select Smooth Falloff here. Alternatively you can use the menu on the header of the 3D View (Mesh \rightarrow Proportional Falloff \rightarrow Smooth) or, using SHIFT + OKEY will switch between Sharp and Smooth Falloff (in versions prior to 2.37) or cycle through all 6 falloff types (in versions 2.37 and up) while using the Proportional editing tool.
- Press GKEY to grab the vertex. We should now have a circle surrounding the vertex, this is our radius of influence. Basically any vertices inside this circle will be affected by any changes to the vertex itself.

Noob Note: If you're having trouble seeing or changing the radius of influence, try saving your scene and restarting Blender.

- Use the Mouse Wheel or PAGE_UPKEY and PAGE_DOWNKEY to adjust the radius of influence to include just over 2 vertices on each side of our selected vertex. (Depending on your version of Blender, you may need to use ALT + NUM+/ PAGE_UPKEY and ALT + NUM-/ PAGE_DOWNKEY and may need to hold down the LMB while using the Mouse Wheel to adjust the radius of the influence.On Mac, hold the "fnKey" down and hit "page-up" or "page-down"). In 2.41 you must 'grab' the vertex first - only then can you alter the sphere of influence (in my version, 2.42a, the 3D cursor had to be snapped to the selection before the wheel appeared).

Noob Note: To change the radius on a Macbook press "fn"+ up/down. OSX uses function + arrow keys as replacements for "home", "end", "page up" and "page down" keys.

Figure 192

- Move the vertex up about 8 units on the Z-Axis. Do this by dragging the cursor up a little, and press the MMB; this should restrain the movements along the Z-axis. Now use CTRL to move it precisely. Alternatively you can use ZKEY to restrain movements to the Z-Axis and type $\mathbf{8}$ and hit ENTER. In older versions of Blender you may need to hit the NKEY before typing the number 8 .

Congratulations, we just created our first mountain. Now it's time to see what other things we can accomplish with the proportional editing tool.

44.3. Peaks vs. hills

Figure 193

The 2.37 and onward releases offer at least 6 types and 2 modes of proportional editing. The previous release only has 2 of these types: Smooth and Sharp Falloff. We'll take a look at the difference between these two now.

- Change to top view again with NUM7. You'll notice that now your "mountain" looks like a few differently shaded squares in the grid; you're looking down on shaded tiles, but in the Z axis, they're all still perfectly aligned with the original grid.
- Select another vertex away from the first. Let's say 4 from the bottom 4 from the right (counting the vertices on the edges).
- Change back to the side view with NUM3
- Select Sharp Falloff from the menu on the bar of the 3D View. Alternatively, using

SHIFT+OKEY will switch from one to the next of the 6 proportional editing modes while using the Proportional editing tool.

- As before, move the vertex up 8 units on the Z-Axis (Note: The radius of influence will still be the same size as when we last used it).
- GKEY
- ZKEY
- Type 8 and hit ENTER

Figure 194

Now we can see the differences between the sharp and smooth falloff. The same number of vertices are affected in both cases; only the degree to which they are affected is different.

The different proportional editing modes can be selected from the box immediately to the left of the proportional editing type box. The mode box contains three options: Off, On, and Connected. "Off" means that proportional editing will not be used. "Connected" means that only vertices linked to the selected vertices will be affected by the radius of influence. "On" means that all vertices will be affected.

44.4. Shaping the world

Figure 195

Now that we've created a couple of Mountains, it's time to see how we can use proportional editing to shape them.

- First make sure we're in side view (NUM3).
- Then on the smooth falloff mountain, the first one we created, select the vertex that is immediately down and left from the topmost point.
- Press RKEY to rotate, scroll the MMB to change effective radius so it includes other points. Your screen should look like the photo to the right.

You can see the size of the proportional editing circle, and that there is only one vertex on the mountainside selected.

- Next hold CTRL and rotate everything by -90. Alternatively, use RKEY, NKEY, and type -90 and press ENTER. Your mountain should now look like this:

Noob note: be careful about the range of affected vertices. If the range is too small, then rotating will affect just the selected vertex. If the range is too large, it will rotate everything together. You can adjust the range by using the scroll wheel on the mouse.

Figure 196

Notice that the vertex itself did not move; since it is at the center of the circle it had no effect. The adjoining vertexes within the edit circle were rotated around it in decreasing amounts the further from the center they are. Try doing it again with a larger proportional editing circle. Feel free to play around with scaling or rotating from different view points (don't forget that you can also use GKEY to move vertecies vertically or horizontally).

Try viewing your world from top view while rotating with a large effective radius. You will see the nearby vertexes move close to the full amount while vertexes further away move less.

44.5. Smoothing things out

Figure 197

Now that we have a couple of budding mountains, you probably think they look kind of choppy. Sure they would be good if we were making an 8-bit console game, but we're working with 3D here, we want things to look sharper (or maybe smoother) than that. There are a couple of approaches to this. The first is to use more vertices when we create our plane. And I won't lie, it works. But it's also a HUGE resource hog. It would take your home computer hours of work just to keep things updated, let alone run it. So instead, we fake it. The easiest way to do this is to turn on SubSurfaces (we saw this in Detailing Your Simple Person 1^{1}.) For our purposes, let's set the subdivision (Levels) to 2. Also, ensure our SubSurf algorithm is set to Catmull-Clark (this is the default setting).

Now, you'll notice that with SubSurf on, we lose a lot of hard edges that we had, essentially we have no sharp corners any more. I don't know about you, but to me that doesn't make for a very interesting mountain range. So to restore our corners, we are going to use Weighted Creases for Subsurfs.

- First turn off proportional editing with the OKEY, and ensure we're in side view with NUM3
- Noob note: That means, the letter O key, not the zero key. Also, NUM3 means " 3 on the numeric keypad,"not on the top row of the keyboard.
- Next, while still in edit mode, change to Edge Select mode with CTRL+TAB and select Edges. Alternatively press Edge Select Mode button at the bottom of the object window.
- Under the Edit buttons under Mesh Tools 1 (Mesh Tools More in versions 2.46 and later) ensure that Draw Creases is selected ($\mathbf{2 . 5 8}$ - By default on the left hand side you'll find the tab "Mesh Options" and a dropdown called Edge Select Mode. Here you'll find Tag Crease). (Mesh Tools 1 may be off the screen, if so, use the scroll wheel when over the Edit Panel to reveal it.
Alternatively, you can pan the buttons window by dragging with the MMB; or you can collapse some of the panels by clicking the arrow next to their names.)
- Noob note: "Mesh Tools 1" (also known as "Mesh Tools More" in 249.2) is a separate panel from "Mesh Tools" and from "Mesh". By moving the mouse cursor over the buttons window (remember this 'activates' windows) and using the mouse wheel, you will cause the tabs to

[^31]scroll from side to side, revealing some you couldn't see before. If the one you need still isn't there you should check to make sure you're still in edit mode, or make sure it isn't 'minimized' which is done by clicking the little white arrow at the top left of the tab.

- On our Sharp Falloff mountain, the second one we did, select the two edges on the right. (see image below)

Figure 198

- Press SHIFT+EKEY or SPACE \rightarrow Edit \rightarrow Edges \rightarrow Crease SubSurf, then move the mouse away from the edge until the edge Crease reads 1.000 in the 3 D viewport header. If moving the cursor there seems to be impossible, just hit 1 and enter.

As you move the cursor away from the edge you will notice two things. The first is that the edge becomes thicker as we move from it; this is showing how much of a crease we have (with Draw Creases turned on). The second is that you will notice the subsurfed mesh moving closer to the edge as the sharpness increases.

44.6. Naturalness

Press CTRL+TAB and select vertices. Then go into front view NUM1. Select the second vertex from the top in the centre of our Sharp Falloff mountain, then go into side view NUM3. Push GKEY and drag the vertex inwards, not too far or your mountain will come out of itself on the other side. Just bring it in enough to make a small indent.

Then grab the top vertex and pull it down a small amount. You will notice that there is a small "crunch" in your mountain.

Don't forget to select all, press WKey and hit the set smooth button to smooth everything out.
OK, so your mountains are starting to shape up. But they still look a bit too neat. You could spend time moving each individual vertex but the chances are your model will still lack the natural feel. What we need is some chaos. Thankfully this is quite easy to accomplish. Firstly select the vertices that make up your mountains, all of them and a few around the base (box and circle select will make this easier). Select a few vertices between the mountains too. Next we use something called fractals. Fractals are chaotically (i.e. randomly) generated variables. In short you can use these variables to give your mountains a "wobbly" look.

Figure 199: Fractal option in 2.6.x

Fractals are located in the Mesh Tools section of your edit buttons (next to Noise, Hash and Xsort) or in the options for subdividing labeled Fractal under smoothness (Access it through the specials menu (WKEY) and selecting subdivide 2.61) Click it and you'll be asked for a value. This value is the strength of the fractal. 1 is very low and will barely change your model. 100 is very high and will twist your models into very odd shapes indeed. Have a play with different values until you find one that you like. Around about $15-30$ should do it. Hit OK and presto, your mountains have been transformed from clinical neatness, to lumpy chaos.

- If you make too many fractals, your computer will slow down. However, the more fractal you add, the more bumpy and realistic it looks!

Noob Note: Repeatedly using the fractal tool seems to rapidly multiply the amount of vertices on your canvas. I suggest using the tool once, and if the result isn't satisfying, undo the result ('CTRL $+Z$) and try it again with a different fractal strength. Even after undo, your selected vertices remain selected.

Noob Note \#2: If you have a new enough version of Blender (2.49 and up definitely has it, not sure about lower versions), there is a setting called Random in the Proportional Editing settings. Using this with a high radius may give a desired result for you without adding more mesh.

44.7. Adding your guy with the hat

If you changed to a new layer-- press (SHIFT) select the layer with your guy on it or (SHIFT +1). This will display both layers. If you would like to move the landscape from the second layer to the first then with the landscape selected, press (\mathbf{M}), and select the layer(s) you would like it on. notemake sure you're in object mode. If you started a new project-- To insert your guy with a hat, you can simply go to file $>$ append or link(shift +F 1).

- Then select the file from the previous tutorial.
- You will then see a list of objects you can insert or 'append'.
- First go into the 'Object' folder. Unless you renamed him/her, your person will probably be named "cube." Select it.
- Make sure that 'Append' button is pressed; otherwise you will not be able to scale or translate, or edit your model at all. (The 'Link' button will link a copy of your object into the current
scene, and will update any changes when you reload the file. Unfortunately, this includes location and size, so we will not use it right now.)
- Press 'Load Library' to place your guy into the mountain scene. Please note, the Load Library button is top right. Confusingly, there is some text bottom left that says Load Library as well, but isn't clickable.
- Repeat the process to get the hat (probably named "circle"). To reset the parental relationship, see the instructions at the end of the ../Putting Hat on Person/ ${ }^{2}$ tutorial. To scale them to the appropriate size, go to object mode by pressing TAB (unless of course you are already there). Select the object you want to resize, then press the SKEY and use the cursor to scale as you see fit. To undo any mistakes, use CTRL+Z.

Noob Note: To import the file once you have the list select the item, i.e. cube, and in the bottom right select "Active Layer" that will append it to your current proj when you click "Load Library" your work should be visible now.

Noob Note: Multiple items may be appended simultaneously. For instance: both 'cube' and 'circle' objects can be appended at the same time by highlighting both object names within the file browser by means of a RMB Click. RMB on object again to deselect.

[^32]
45. Modeling a volcano

45.1. Overview

We are going to model a volcano using the proportional edit falloff tool.
You should already know how to delete and add meshes.

45.2. Add a plane

Delete the basic cube
Add a plane(Space Bar \rightarrow Add \rightarrow Mesh \rightarrow Plane). In 2.58, hit SHIFT + A then Mesh $->$ Plane Scale it up by 10 .

Rotate it so you see it in top-view (make sure its in Orthographic view too).

45.3. Subdivide the plane

Enter Edit-mode and subdivide (WKEY, then select subdivide multi) the plane about 50 to 80 cuts.

Figure 200

More subdividing will give you a "smoother" volcano, but it also needs more CPU power. Note: If you want to you can press WKEY and then subdivide (not subdivide multi) five or six times. This will get you around the same number of vertices.
Sidenote: Since there were a lot of edits about this subdividing I'll try to explain the difference between "Subdivide" and "Subdivide Multi": "Subdivide" just divides every square in the plane into four new squares. So with every time you press "Subdivide" you will have four times as many squares as before. "Subidivide Multi" will make x horizontal and x vertical lines through your existing squares, so the new number of squares is: (squares_old)* $(x+1)^{2}$, whereas x is the number you enter. Hope it's clear now.

45.4. Make the mountain

In top view, select one of the points in the middle of the plane. With this point selected change to side view. Press the OKEY, which enables the "Proportional Edit Falloff" tool in the Menu-Panel beneath the 3-D-Window. As seen in the previous tutorial Blender 3D: Nоob то
Pro/Mountains Out Of Molehills ${ }^{1}$ when you move a vertex while edit falloff is enabled, all vertices in a defined radius of the selected vertex will align with the selected vertex when its position is altered. How they are adjusted can be chosen in the tab on the right of the yellow dot. I propose using "smooth falloff".

[^33]

Figure 201

Now grab the vertex GKEY. You will now see a gray circle. You can change it's size with the mouse wheel. Every vertex inside this radius will be affected by the falloff. Change the size of the circle so almost the whole plane is in it.

Figure 202

Now move the vertex a bit upwards, as seen in the picture. Optionally you can lock the z-axis to make the volcano go straight up by pressing ZKEY.

Figure 203

As you can see all the other vertices will shift upward. We could keep moving this vertex at the same rate, but that would cause the plane itself to rise and bend, and that's not very good. So press LMB to apply the changes, grab the same vertex a second time and repeat the previous exercise as before, except now choose a smaller radius for the circle, about half the diameter of the plane (GKEY \rightarrow ZKEY \rightarrow scroll MMB).

Figure 204

Repeat this two or three more times and you will get something like this:

Figure 205

45.5. Make the top (crater)

Now we're going to create the "hole" on the volcano. First change the falloff to "root falloff". Grab the vertex one more time, change the size of the circle so it's more or less as seen in the picture.

Figure 206

Grab this vertex down a bit, apply, grab it one more time with a smaller circle. You now should have something like this:

Figure 207

If yours has such a jagged border like mine, you should follow the following steps: First disable the fallout tool with OKEY. Then select a vertex and grab it, then pull it up so it's on the same height as the other. Do this for every vertex till they're more or less the same height.

You can also select the jagged vertices and the vertices around them then press Space \rightarrow edit \rightarrow vertices \rightarrow smooth and this will get rid of some of the jagged edges. (I suggest using this method, since A) this is only a basic volcano, and B) using Subsurf after this will make the jagged edges all but invisible.)

Figure 208

45.6. Subsurf

Now TAB to get into Object mode. Add a Sub-Surf Modifier to the Mesh, set at level two ('Modifiers' tab \rightarrow Add Modifier \rightarrow Subsurf \rightarrow Catmull-Clark \rightarrow Levels: 2; Render Levels: 2).

Figure 209

Do not apply these settings yet, first we'll do a test-render. Press F12 to enter Render, after adjusting the camera. If you like your volcano you may apply the modifier, but if you have some rather nasty edges like I do, don't apply the modifier yet. We'll correct this now.

First click on the marked button to disable the subsurf-modifier in Edit-mode.

Figure 210

Then enter Edit-mode. Then select the vertices on the top and pull one after another a little bit outwards, so they form a nice circle.

Figure 211

Once you have done this exit Edit-mode and press the "Set Smooth" Button in the Link and Materials Button. If you Render now again, it should look a lot better. (Don't worry about the color, I know it's not the same, but I think this isn't important for this part.)

Figure 212

45.7. Add color

First lets add some "magma". To make it look as if there is magma in our volcano add a lamp (spot). Place it in the crater and adjust the angle and the width so the crater hole is lighted. Choose a red color and adjust the energy so it's bright enough. In the top header: Add \rightarrow Lamp \rightarrow Spot. A new lamp will be added with a cone stretching down, if the light cone is not pointing down adjust the angle: $\mathbf{C t r l + A l t + R K E Y} \rightarrow$ adjust the light cone to point downwards. Grab the Spot GKEY and place it immediately above the volcano crater. To edit the light settings press $\mathbf{F 5}$ to enter the shading menu. Depending on the distance to the volcano you can adjust the distance of the light-cone in the Lamp-tab under Dist. Suggested energy: 7, Red: 1, Green: 0-0.2, Blue: 0. This will give the crater a red or orange glow.

Noob Note: Personally, I feel it looks much better if you use a Area light with an energy of about 10 and a gamma of two. An orange or red works quite well. Place it above the volcano, looking down on it. You should get an effect the looks something like a reddy-orange in the middle and yellowish towards the outside, if not, go to the lamp's Shader properties and adjust Dist until it seems suitable.

A Different Noob Note: I couldn't get the above method to work, and i found a workaround that seems to be a bit simpler for a noob like me. Do the Lamp method like the original writer said,
except use a normal Lamp (aka Point Light) instead of a Spot Light. Now, your red color is probably going through the outside of the volcano - that's no good. To fix this, right-click the Lamp and go to the Shading menu (hit F5 or find the button). Underneath Lamp properties, click the Falloff menu. It should say something like "inverse line". Select "Custom Curve" and click on the Custom Curve menu that pops up. Now, without going into a lot of detail, Falloff controls how your light will dim out. Click on the dot in the Custom Curve graph and move to far to the upper right. This gives us a rather sharp (but not perfect) falloff, which is just what we want. Also, set the Light distance to something small, like 3. If you did it right, you should get a similar effect to the picture below. Now, all these methods sound fine, but personally I like this one the most. The Spot Light method was coming up really sharp and jagged, and the Area Light was a complete mess for me. Experiment with different kinds of lighting.

Another N00b Note: Since everyone seems to be adding their suggestions I thought I would add mine: first perfect your view by pressing NUM1 center your cursor into your plain by selecting the volcano and then pressing SHIFT + S select Cursor to Selection, after that press
Space->Add->Lamp->Spot, your need to change the total direction of it so press \mathbf{R} to rotate, \mathbf{Y} to lock onto the Y axis, and finally type 180 to turn it 180 degrees. then you need to move it up to that little hole in the crater. now we need to edit the color a energy, press F5 to go to Shading and click on the little light bulb, click on the color swatch and change it to a orange-reddish color. then tilt your head slightly upward until you find the energy slider instead of sliding, click on the word energy the slider will become a text box; type something in the means of 7 or more... finally to give it the effect look under: shadow and spot; adjust SpotSi to about 120 to 130 ; switch to wire frame mode with \mathbf{Z}, grab the lamp with \mathbf{G} limit it to the \mathbf{Z} axis with \mathbf{Z} and finally move it till the lamp is right in that little bowl that is the crater... try a test render... if it doesn't work then experiment with the position and SpotSi of the lamp...

Tip: The more SpotSi you use, the more deeper the magma will look.
Another Tip: I have actually had best results with the SpotSi at 180 and the position in line with the z axis as well as being right under that hole :)

Good Luck :D

Figure 213

It should now look like this:

Figure 214

Now select the volcano and press F5. Keep Pressing F5 until the Materials Buttons (symbolized by a red ball) is highlighted. Then add a new material. You do this by clicking the Add New button in the Links and Pipeline Panel. Once you've done that, set the settings similar to this:

Figure 215

Now press F6, then add a new texture to the material. Choose a stucci texture, set the noise size to 0.15. Now switch back to the materials-window (F5) and click on the "map to" tab. Deselect the "col" button and select the "nor" button. This will render the texture as a bump-map on the volcano. Set the "nor slider" to 0.5 , which should be the default. Switch to the "map input" tab and choose "tube". If you now render you should get something like this:

Figure 216
[Note]: This looks really smooth, like clay pottery. To get a more rough-looking volcano, go into Edit mode, select all Vertices, and use the fractal (set from 15 to 30) to really get things looking rocky and mountainous. TAB (Edit mode) $\rightarrow \mathbf{F 9} \rightarrow$ AKEY to select all \rightarrow Mesh Tools \rightarrow Fractal \rightarrow 15-30 (15-low, 30-high) \rightarrow OK $\rightarrow \mathbf{T A B}$ (Object mode) In Blender 2.5 you can use the random proportional edit tool: use NUM7 to switch into top view, grab the central vertice of your volcano using a large-radius random proportional edit, and pul it slightly into Z-direction.
(A note: Seems there is no need in subsurf at all since fractal tool will dramaticly increase vertices quantity.)

46. Penguins from spheres

46.1. Setup

Start with the default SCENE ${ }^{1}$: it should contain a selected cube. Delete this cube by pressing the XKEY and clicking on Erase selected Object(s).

Figure 217

Put the 3D cursor at the scene center by pressing $\mathbf{S h i f t}+\mathbf{C}$.

Note:' after deleting the cube you must be in Object Mode. If not, switch with TAB.

46.2. Creating the body

Figure 218: Z-scaled sphere

Noob note: to ensure that you don't become confused, make sure that your viewport is set up in the same direction you see in these pictures. The colored arrows are red, green, and blue and they control the x, y, and z axes, respectively.)

- We start by creating our main body from a sphere. Press NUM7 to switch to top view, and then SPACE \rightarrow Add \rightarrow Mesh \rightarrow UVSphere, then choose 16 segments and 16 rings from the pop-ups.
- Note:' You have to manually switch to the Edit Mode after creating the sphere; do this by pressing $T A B$ (In older versions of Blender before 2.45 , Blender automatically switches to the Edit Mode. This is OK, since we will start editing the mesh now.)
There was a report that in 2.61 it didn't have a pop up unless the $f 5$ was hit immediately after placing the sphere

We're going to make it look like a penguin body:

- press NUM1 to switch to the front view,
- with all the vertices selected (if not, AKEY), choose the scale tool (SKEY),
- restrict scaling to the Z-axis (ZKEY),
- and move the mouse away from the 3D cursor while holding down the CTRL key (this snaps the scale values to whole numbers),
- Note:' Make sure the mouse cursor is not too far away from the sphere when hitting the SKEYor else you may not be able to reach a 2.000 scale value. The scaling steps are proportional to the distance from the 3D cursor when calling the scale tool.
- the current scale shows in the lower left corner of the viewport, click when you've reached 2.000 (LMB).
- Note:' You can also do this by typing in 2 after starting the scale and restricting movement to the \mathbf{Z}-axis

This is our main body!

46.3. Shaping the head

We're going to shape the penguin head from the top of the sphere.

Figure 219

Start by selecting the top-most single vertex as well as the top two smallest circle segments.

Note:' selection has been explained in a PREVIOUS TUTORIAL ${ }^{2}$. Here, the easiest methods are either box selection (BKEY) in the front view (NUM1) and Limit selection to visible off, or lasso selection (CTRL+LMB) in the top view (NUM7) and Limit selection to visible (May also be labeled Occlude background geometry) on. Don't forget to deselect all first (AKEY).

[^34]
UNKNOWN TEMPLATE CIr

Noob note: make sure the Limit selection to visible/Occlude background geometry button is in the right state each time you select vertices, edges or faces. When it's off, selection affects any item, visible or not.

46.3.1. Building the neck with the 3D transform manipulators

To turn on the 3D transform manipulator, either push down its button

Figure 220
or use CTRL+SPACE and choose Enable/Disable.

Moving the two selected circles up

Figure 221

Choose the Translate manipulator (red triangle). Go to the front view (NUM1). Drag the blue arrow while holding the CTRL key down to move the selected vertices 0.3 units up.

Noob note: you may not be able to snap the extrusion lengths to tenths of units. CTRL snaps to the grid size by default: if you can only translate by one unit (1.0), zoom in until the grid divides itself into tenths (SCROLL). Some Blender versions allow to snap to one tenth of the current step by holding both the SHIFT and CTRL keys while moving the mouse.

Noob note: instead of the Translate manipulator, you can use the GKEY and constraint the movement to the Z axis (ZKEY).

Rotating the neck

Figure 222

Now switch to the side view (NUM3) and make sure that the rotation/pivot point is set to "median point" either by selecting it from the third drop down menu right of the "Mesh" menu, or by pressing ";". Choose the Rotate tool (RKEY). Move the mouse with the CTRL key down to rotate the selection 30 degrees counter-clockwise. Use LMB to validate the rotation.

Figure 223

Select an additional ring of vertices by expanding the selection (CTRL + NUM+ (Note: NUM + Refers to the addition symbol on the NUM Pad, KEY+will not do.). You can contract the selection by pressing CTRL + NUM-. Move these vertices an additional 0.3 units up, then rotate them as previously 30 degrees counter-clockwise in the side view.

Figure 224

Repeat those steps (selection expansion, translation and rotation) two more times and you'll end up with the body seen in the below.
That doesn't really look like a penguin, yet!

Figure 225

Now move all of the selected vertices to the left 0.4 units by pulling the manipulator's green arrow (and of course holding the CTRL key down). This straightens out the neck as seen in the next picture.

Noob note: you can also use the GKEY and translate the selection by -0.4 as displayed in the bottom left corner of the viewport. Still do this in the side view (NUM3).

Noob note if you had to pull the red arrow, not the green one, then you probably didn't switch to side view, and modeled the neck in front view. If you realize here that you have this done from another view then press AKEY twice, then NUM7, then Space $->$ Transform $->$ Rotate and type 90 or 270

Creating the beak

Figure 226

Switch to the front view (NUM1), and select the frontmost vertex (the one that originally was the top vertex of the sphere) with the RMB. Then switch to the side view (NUM3) and translate this vertex to the left by 1.2 units using the manipulator's green arrow or the translate tool.

Note:' some Blender versions allow moving the vertices from the keyboard with the following sequence: GKEY, YKEY, -1.2, ENTER.

The main body of the penguin is now finished. The next step is to create some flappers for our poor little guy.

46.4. Extruding the wings

We are going to create the wings by extruding faces on each side of the penguin.

Noob Note: You can rotate the whole object by pressing A to select all of its vertex and then rotate it pressing R or using the Rotate Manipulator until the axis on your screen matches the axis on the example image. That way, also, you can practice a little more

Figure 227

Choose the side view (NUM3) and switch to the Face select mode (CTRL+TAB \rightarrow Faces, or click on the triangle in the toolbar).

Figure 228

Now, select two faces that will make up the penguin's shoulder as shown on the right (either select the first one with RMB and the second one holding SHIFT, or use box selection (BKEY) to select them both in a single operation).

Figure 229: Wing extrusion

Then switch to front view (NUM1) and extrude the selection:

- choose EKEY \rightarrow Region,
- constrain to the X axis (XKEY),
- hold CTRL to snap,
- and move the mouse to extrude the shoulder by 0.2 to 0.3 units.

Figure 230: Bottom face selection

We'll now extrude the bottom face of this new extrusion. Rotate the view to show it with:

- a MMB drag,
- or several presses on NUM2,
- or CTRL+NUM7 (bottom view).

Press the AKEY to deselect all, and select the bottom face (RMB), switch to front view (NUM1), extrude by 1.4 units down (EKEY and CTRL).

Now do the same on the penguin's other side: use CTRL+NUM3 to view the left side (you can also rotate with MMB, or press NUM4 several times).

46.5. Smoothing the wings

We're going to smooth out the shoulders and improve the wings. Though this can be done in many ways, we'll only use the merge tool.

Figure 231

Rotate your penguin so that you can see one shoulder from above. Then switch to Vertex select mode (CTRL+TAB \rightarrow Vertices). Press AKEY to deselect all, then select the two shoulder vertices with RMB and SHIFT.

Press ALT + MKEY, choose At Center from the popup in order to merge the two vertices at their center. Finally dismiss the message saying Removed 1 Vertices.

Figure 232: Edges to smooth

Repeat the steps with the two other vertex pairs shown on the right picture, and smooth the other wing. I'm leaving the middle segments for now, else the wing tips will be too pointy.

Note:' if you have troubles merging vertices, it comes from vertex duplicates in your mesh. You probably chose Individual Faces instead of Region when extruding the wings, which creates duplicate vertices and neighbouring faces. To clean up your model: select all vertices (A) and choose WKEY \rightarrow Remove Doubles.

You must do them one by one!

Figure 233

Finish off the wings by selecting the two backmost vertices of the wings, and moving them up using the blue arrow by 0.1 unit.

Figure 234: Wings complete

You should now have something like this:

46.6. Cutting the underside

Figure 235

Figure 236

We're going to cut the penguin's lower end, for it to stand up! Select the bottom vertices (bottom vertex and the first ring above it) as shown in the picture. There are many ways, this is left as an exercise.

Once they're selected, delete them (XKEY \rightarrow Vertices). Now our penguin is hollow: select all the vertices around the hole, and fill it using SHIFT+FKEY.

Noob note: For Blender 2.56 SHIFT+FKEY goes into Camera Fly mode, ALT+FKEY however did the filling.

Noob note: To quickly select all the vertices around the hole, you can enter edge mode CTRL+TAB-> "Edges", and then select one edge that goes around the hole. Now press CTRL+E -> "Edge Loop Select", which should select all edges around the hole. Now go back to Vertex select mode and continue with SHIFT+FKEY.

Noob note: For Blender 2.56 In vertex select mode and occlude on hold down ALT and select one of the vertices all the vertices in the ring will be selected.

46.7. Adding the feet

Figure 237

The next step is to provide the little guy with feet. To do this, we're going to extrude two of the front faces:

- choose the front view (NUM1),
- switch to Face select mode,
- turn on Limit selection to visible (labeled Occlude background geometry in later versions of Blender)
- and select the face to the left and right of the middle two faces of the penguin.

Figure 238

Then switch to the side view (NUM3) and extrude the selection by -0.6 units (EKEY \rightarrow Region, restrict to the Y axis: YKEY).

Figure 239

Keep the selection and look for the Mesh Tools in the Buttons panel. If you can't see it, press $\mathbf{F 9}$ to switch to this panel. Then click on the Subdivide button (at the top, between Short and Innervert). Or press WKEY and choose Subdivide

Figure 240

Switch to "Vertex Select Mode", Now select the three middle vertices (or two edges) vertically at the tip of each foot, and drag them along the Y axis by 0.3 units towards the penguin

Note: if something goes wrong here, you may need to remove double first. As always, to move the vertices, either use the manipulator or GKEY and YKEY sequence.

Figure 241

You should end up with what's shown in the right picture (minus the selection).

Figure 242

The feet look too thick, let's flatten them a bit. Switch to the front view (NUM1) and select the two bottom vertex rows (Limit selection to visible off, use either the lasso or box selection).

Figure 243

Then choose the scale tool (SKEY), limit its action to the Z axis (ZKEY) and scale down by a factor of 0.4.

The feet still look rather peculiar, so please go ahead and move the vertices around on your own as you like.

Reminder:' you can use the GKEYand restrict movements to the X or Y axis using the XKEYor YKEY. Try not to move vertices along the Z axis to keep the penguin's bottom flat.

46.8. Extruding a tail

Figure 244

Figure 245

Figure 246

To complete the penguin, we have to add a tail (the end of the tuxedo):

- go to the back view (CTRL+NUM1),
- make sure you're still in Vertex select mode,
- and that Limit selection to visible/Occlude background geometry is on.

Select the three middle vertices in the second row up from the bottom. Then, switch to the side view (NUM3) and extrude the edges 0.3 units away from the penguin and 0.08 units down (EKEY \rightarrow Edges), so that the end of the tail is at the same level as the bottom of the penguin.

Noob Note: Or you can extrude the edges 0.3 units away from the penguin, then GKEY ZKEY -0.08, LMB or ENTER.

Press CTRL+WKEY to save your work!

46.9. Subsurfing

Figure 247: Now that's what I call a penguin. But then again, there are no penguins where I live, so I might be wrong.

Go to Object Mode (TAB), and make sure the penguin is selected. Then check for the Modifiers toolkit in the Buttons panel. Press Add Modifier \rightarrow Subsurf (or Press SHIFT+OKEY).

Look at the penguin now, he's much smoother. You can alter the levels of the subsurfing if you like, but I'll settle for level one. Under the Links and Materials toolkit, you can press the Set Smooth button as well, which makes the penguin really slick.

Note:' you may see some weird effects at the bottom and the tail after subsurfing the penguin. If so, there is an issue with normals: they have to be all pointing outwards. This can be achieved by selecting all vertices in Edit Mode and recalculating the normals outside (CTRL+NKEY). Click on the message to confirm. Note that CTRL+SHIFT+NKEYwill turn the normals inwards and that WKEY \rightarrow Flip Normals flips them.

Question:' The finished penguin looks fine in Object Mode, but when I render it, it looks odd. Quite patchy.

Answer:' Make sure you adjust the "Render Levels" parameter (directly under 'Levels") to be greater-or-equal than 'Levels'.

46.10. Extra

The penguin can be colored or textured, but that will be part of later tutorials!

Figure 248: This is what the penguin (sans tail) looks like, textured and ready. ORBISONITRUM ${ }^{a}$

```
a HTTP://EN.
    WIKIBOOKS.ORG/WIKI/
    USER%3AORBISONITRUM
```


Figure 249: The eyes are there, just not easily visible in the thumb. At the top of the white part, two faces on the chest were subdivided to give the white more of a curve at the top. The faces were selected that were going to be white, and the I used separate (\mathbf{P}) to make them a different mesh. I used a white material for the chest, black for the body, and grey uvspheres for the eyes. Apparently, an easier way to colour the chest can be found at Multiple MATERIALS ${ }^{a}$ please feel free to replace this with your own image of the penguin you made, with comments on how you put your own style into it --Most recent is BNTY^{b} 11:35 PST, 19 May, 2006

[^35]

Figure 250: A pretty basic picture of a penguin. I subdivided the stomach and eyes, but then I also added some eyeballs by making a UVSphere, cutting the top of it off, and then placing it inside of my penguin's head. All the colors have specular colors, giving the penguin a slight blue glow under the black.

47. Die Easy 2

The previous Die Easy tutorial needed so many changes to adapt to Blender 2.44 that it was easier to start from scratch. This Die Easy 2 tutorial is heavily based on Die Easy and Die Another Way, and adds improvements.

In the following tutorial, you will use:

- polygon mesh
- face loop cutting
- subdivision surfaces
- subdivision creases
- bevel
- set smooth
- multiple materials
- extrusion
- merge vertices

47.1. Start with a beveled cube

Start with the Default SCENE ${ }^{1}$: Blender should be in Object Mode and in Top view, with the default cube selected.

- Go to Edit Mode (TAB). All the vertices should still be selected. (If not, press AKEY to select all).
- Let's bevel the cube. The bevel option is in the modifiers context. Click on the modifiers icon (the little blue wrench on the side panel) and from the add modifiers choose Bevel.
- Noob note :- for anyone using v2.56 and below, Press WKEY, select Bevel from the menu and click $O K$
- Set the bevel to 0.1 by typing . 1 and pressing ENTER.
- Finally, APPLY the modifier to your cube before proceeding.
- For Blender versions earlier than 2.48 : in the Recursion: 1 OK dialog, Press ENTER (it will revert to the black on grey) and click on the $O K$ button. (For Blender version 2.48 and above, skip this step)

Note: The recursion levels go from 1 to 4. At 1 it seems to be crude but the cube will be subdivided later, so a higher recursion level is not required.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D\%3A_NOOB_TO_PRO\%2FBEGINNING\ TIPS

Figure 248

47.2. Divide the faces

A typical die face is made of a grid with 9 possible spot positions. The gaps between the spots usually measure half a spot (a spot radius). Using the spot radius as a unit, a die face will be conveniently divided into 10 equal parts through the length (that is, four gaps and three spots each two units long).

Figure 249

Figure 250

47.2.1. First division

- Make sure you're still in Edit Mode (else hit TAB), that you're in Front view (NUM1), and that the whole cube is still selected.
- To divide the faces of the cube into 10 vertical strips :

For v2.57 and above :

- Just use the loop cut and slide option by hitting Ctrl+R in the tool shelf to the left and scroll the mouse wheel to scale up the number of cuts to 9 .

For other versions of Blender :

- Press the KKEY and choose Knife (Multicut) from the popup menu.
- A new popup asks: Number of Cuts: 2. Change the value to 9 :
- click on the of word and type 9,
- or drag from the input field (LMB) until you reach 9,
- or use the right arrow.
- Then click on $O K$.

Figure 251

- To actually use the Multicut tool, draw one vertical cut through the cube: the knife icon traces a pink line. It doesn't have to be exactly vertical nor does it have to go through the cube center.

Figure 252

- Finally press ENTER and all the faces of the cube crossing the knife will be divided into 10 vertical strips.

Note: You can have a look at all the other faces by dragging with the MMB.
Noob Note: When you are cutting through the cube, make sure to cut the entire cube, including the beveled part of the cube. Otherwise your cube won't divide properly.

47.2.2. Remove extra cuts

To get each spot position to be a single face rather than four contiguous faces, the second, fifth and eighth cuts must be removed.

- Press the AKEY to deselect all the vertices, switch to Edge select mode and make sure Limit selection to visible is off (in Blender 2.46 and above this button is called Occlude background geometry).

Figure 253

Figure 254: The button is disabled (off)

Figure 255

- Select an edge from the second cut, and choose Select \rightarrow Edge Loop from the viewport menu. This automatically selects all the edges around the cube (in a loop).

Note: You can alternatively press the ALT key while selecting an edge from the second cut to select all the eges belonging to this cut around the cube.

For Linux users: If pressing the ALT key while selecting an edge from the chosen cut brings up a Linux menu, try hitting Shift+ALT instead.

Figure 256

- Press the XKEY and select Edge Loop from the popup menu. The cube will look like this:
- Deselect all (AKEY) and repeat the same actions to remove the fifth and eighth cuts:

Figure 257

Figure 258

Figure 259

Figure 260

47.2.3. Other divisions

For the horizontal cuts use the same steps as above, but horizontally!
Noob Note: Make sure the whole cube is selected when cutting.

Figure 261

Figure 262

- Now, if you rotate the cube around, you will see that the front and back faces (CTRL+NUM1 to see the back face) are divided vertically and horizontally. But the four other ones were only divided once.
- To complete the divisions, go to the Side view (NUM3), select the whole cube (AKEY). Make the vertical cuts and remove the second, fifth and eighth cuts again:

Figure 263

47.3. Colouring the Cube

Figure 264

You need to be in object mode for this step. Select the Shading group from the header in the Button Window (F5).

Change the name of the material (which for example defines colours) currently linked to the cube: in the Links and Pipeline panel, under the title "Link to Object", click on "Material" in the "MA:Material" box. "Material" will now be highlighted: delete it and type "DieWhite" instead, then press ENTER.

Figure 265

Now choose a color: go to the next panel (the one with two tabs, Material and Ramps), and make sure the Material tab is selected.

Figure 266

In the second group of buttons, click on the colour bar which is on the left of the Col button: it opens the colour selector.

Select the colour you want in the rainbow bar (bottom left of the popup), move the tiny circle in the colour window above it to adjust the shade. When done, press ENTER.

Note:' you can choose any colour. In this tutorial we selected the white colour by clicking on the corresponding box available from the sixteen predefined ones (the two vertical rows in the middle).

47.4. Adding the spots

Figure 267

Go to the Front view (NUM1) and set Face select mode. Also make sure that Limit selection to visible is enabled (in Blender 2.46 and above this button is called Occlude background geometry).

We will create two different kinds of spots.

47.4.1. First method

Figure 268

This one's from the Die Another Way tutorial.
We'll make the number five on the current face. Deselect all (AKEY) and select a first spot (the one in the top left corner).

Extrude the face by hitting EKEY and then ESC (do not click after hitting EKEY).
Collapse this face by using $\mathbf{A L T}+\mathbf{M}$ and choosing At Center from the popup menu. This merges the four corners of the extruded face into its centre. Click on the message saying Removed 3
Vertices.

Figure 269

Repeat the same keystroke sequence on the four other spots: EKEY, ESC, ALT+M, ENTER, ENTER.

Now choose the Vertex select mode and select five vertices, one at each spot center (RMB for the first one, SHIFT+RMB for the subsequent ones). Then push the selection inwards using the GKEY and constraining the move to the Y axis (YKEY). Move by 0.17 units to get the same die as shown in the picture below.

Figure 270

47.4.2. Second method

This method was suggested by Natume in the Die Easy tutorial and modified by another user.
Deselect all (AKEY) and select the faces you want to create spots on (RMB for the first one, SHIFT+RMB for subsequent ones).

Press the EKEY to extrude them, if you selected more than one face a popup menu will give you two options: press ENTER to select Region (the choice doesn't matter), and then press ESC. Do not click after hitting EKEY.

Divide the selected faces into triangles with CTRL+TKEY (or SPACE \rightarrow Edit \rightarrow Faces \rightarrow Convert to Triangles).

Figure 271

Deselect all (AKEY) and change to Edge select mode. Select all the diagonal edges resulting from the above divisions, and subdivide them: WKEY+1KEY (or SPACE \rightarrow Edit \rightarrow Edges \rightarrow Subdivide).

Figure 272

Now deselect all (AKEY), go into Vertex select mode and select all five vertices of each spot face (for example, use circle select with BKEY, BKEY, and adjust the size of the circle with SCROLL, then click LMB to select; click RMB when the selection is complete).

Push the faces inward by 0.17 units (GKEY, YKEY).

Figure 273

47.4.3. Third method

In the prior two methods you create indentations in the faces that are triangle (mountain peak) shaped, if you would prefer them to be square shaped (or flat) then simply select the faces (using face select mode) that will be used as spots and extrude them inward by the prescribed number of units (either .17 or -.17 depending on the side).

Figure 274

47.4.4. The other die faces

Now repeat the method to the other faces. Remember that adding two opposite face values (of the die) yields 7 .

If you started with the Front view (NUM1) and set 5 spots, the Back view (CTRL+NUM1) will have 2 spots (the extrusion length will be -0.17 instead of 0.17).

If you then go to Side view (NUM3) - the righthand side - and put 6 spots there (extrusion - 0.17 along the X axis, XKEY), the lefthand side (CTRL-NUM3) will have 1 (extrusion 0.17).

If you put 4 on the top (Top view NUM7, extrusion -0.17 along the Z axis, ZKEY) then the bottom (CTRL-NUM7) will have 3 (extrusion 0.17).

When all the spots have been created, the cube should look like this - the top lefthand corner is nearest, using the first method (named Alt-M)

Figure 275
using the third method (named Ctrl-T)

Figure 276

47.5. Subsurfing and smoothing

Figure 277: The Editing panel icon, Modifiers panel and Set Smooth button

Leave the Edit Mode for the Object Mode (TAB) and select the Editing panel in the Buttons window (or press F9).

To turn on subsurfing, click on Add Modifier in the Modifiers panel (if you can't see the button, make sure the tab is selected) and select Subsurf from the popup menu.

The default value for Levels is 1 and for Render Levels is 2. For a nicer preview, change Levels from 1 to 2 by clicking once on the right arrow, and click on Set Smooth in the Links and Materials panel.

The cube will now look like this (Front view):

Figure 278: method 1 \& method 2

Figure 279: method 3

47.5.1. Subsurface creasing

On a die, the edges around the spots are usually sharp so we'll use subsurface creasing to do that.
Go back to Edit Mode (TAB once or twice), and Edge select mode (Ctrl-Tab 2) either select every spot perimeter as shown below (RMB for the first one, SHIFT-RMB for the others), or use circle select as described next

Figure 280

Using circle select

You should be in Edit Mode, be in "Edge select mode" (Ctrl-Tab 2), and have occlude background geometry turned on.

AKEY once or twice to be sure everything is deselected.
BKEY,BKEY to TURN ON circle select mode.
Noob note:' In Blender 2.5x circle select mode can be used by pressing CKEYonce.
MMW roll (don't press) middle mouse wheel to size the circle small enough to select single edges.
LMB about twenty times, as there are 4 edges around each of 5 "dots", so you will have to click 20 times with the left mouse button (once on each edge) to select them all. If you select an extra unwanted edge anywhere Then you can just click the MMB (My wheel rolls or presses in).
RMB to TURN OFF circle select mode.

Creasing the edges

Now move mouse pointer crosshairs (don't press any button here) near center of drawing.
Shift+EKEY to turn on Edge Crease mode. The bottom bar changes to a "Crease" number.
Now move mouse pointer crosshairs (don't press any button here) away from center of drawing. Watch the Crease number change as you pull out. It maxes out at 1.000.

LMB When you get the crease you want the left mouse button locks it in place.
AKEY once, or twice, to deselect every thing.

Finished on this side. View a different side and do it all again.

Figure 281

Note:' the NKEYshows an information box (with the perimeter edges still selected). The last line says: Median Crease W: 1.000 , if the value is less than $\mathbf{1 . 0 0 0}$ it means that an edge has been missed. You can update the crease values by clicking on the arrows. Click on the X in the top right corner to dismiss the dialog.

Noob Note': setting the value of the subsurf creasing affects the subsurf modifier. You will not actually see the creasing effect unless the object has the subsurf modifier active. Try adding the subsurf modifier to the object then set the creasing to one so that you can see the effect it actually has on the object.

Now crease the spots on the five other sides of the die. You should end up with:

Figure 282: method 1 \& method 2

Figure 283: method 3

47.6. Colouring the spots

47.6.1. Creating a new material

Go to the Editing panel (F9) in the Buttons Window.
The Links and Materials panel should be showing (in the right column) DieWhite and, under it, 1 Mat 1:

Figure 284

To add another material, click on the New button (right under 1 Mat 1). This label changes to 2 Mat 2, and DieWhite changes to DieWhite.001.

Note:' if your Blender version is older than 2.44, there's an additional step. Go to the Links and Pipeline panel (Shading or F5), click on the 2 button right after the MA:DieWhite input and choose Single user in the popup menu.
user request: please provide instructions for 2.45, 'Links and materials' panel has been replaced with 'Links and Pipeline' panel. 'ADD NEW' from dropdown initially containing 'MA: Material' does not increment the '1 Mat 1' fields leaving no clear way to add more than one material to an object. -- 'Answer from another user:You're looking at the Shading panel (F5), you need to switch to the Editing panel (F9), there you'll find the buttons just as described here.

Set the colour for this new material: click on the white square on the left of 2 Mat 2 (in the Editing panels) or on the left of Col (in the Shading panel). To get the same colours as in this tutorial, choose black. Press ENTER to confirm your choice.

In the Links and Pipeline panel (Shading or F5), change the material name from DieWhite. 001 to SpotBlack.

47.6.2. Selecting the spot faces

Now go into Edit Mode, choose Face select mode and make sure Limit selection to visible is on.
Version 2.46 The "Limit Selection To Visible", is now "Occlude Background Geometry". It remains the button to the right of "Face Select"

Starting again with Front view (NUM1) use circle select (BKEY, BKEY - use SCROLL to reduce the size of the circle to less than the spot size so you don't select the outside faces) to select all the inside faces of each spot.

Press RMB to finish, select the Back view (CTRL+NUM1), use circle select again and select the spot faces there, do the same with the other four die faces.

Note:' you can't change to a different face without stopping the circle select tool (RMB). You will have to click RMB, change to another face, and start circle select again (BKEY,BKEY).

This is what you should see when you have selected all the spots:

Figure 285: Alt-M

Figure 286: Ctrl-T

The selected faces internal to the spots are more visible in the Alt- M version as the spots created in Ctrl-T are more cylindrical; the Alt-M spots look more like hemispheres.

47.6.3. Assigning the new material to the spots

Now that all the spot faces are selected, you can assign the SpotBlack material to them.
Go back to the Editing panels (F9) and, in the Links and Materials panel make sure the material SpotBlack is selected. If it isn't, you can select it by clicking on the right arrow or the 1 on the right of 2 Mat 1 , which should update to 2 Mat 2 . Now click on the wide Assign button below and the spots will change to black (or the other colour you chose).

Here are the finished results:

Figure 287: Alt-M

Figure 288: $\mathrm{Ctrl}-\mathrm{T}$

47.7. Afterword

Here's an external link to a tutorial showing a completely different way to create a die:

- http://www.blendernation.com/tutorials/blender-3d-beginner-tutorial-a-die/

The most efficient and easy tutorial can be viewed at:

- http://www.youtube.com/watch?v=ZTwPvQbhHdY

48. Die Another Way

48.1. Video Tutorial

A video tutorial has been created for this chapter in Blender 2.48a.
It is compressed and packaged in the Theora (.ogg) video format and requires a player that is able to decode this codec in order to play it, such as the VLC ${ }^{1}$ player which is available as a free download for Windows, Mac, and most Linux distributions. Firefox 3.5 is also able to stream Theora video.

For best results, it is recommended that you save this file to your computer for viewing, rather than streaming it inside a web browser, since it is 1020×746 pixels.

Figure 289

48.2. Introduction

In the following tutorial you will be creating a die. You will use:

- polygon mesh
- face loop cutting
- subdivision surfaces
- subdivision creases
- bevel
- set smooth
- multiple materials
- extrusion
- merge vertices
- remove doubles
- constraints

There are two methods to create the circles for the die: subdivide first, or manual sizing. In either case, start with the default Cube.

[^36]
48.3. Subdivide First

The die needs to have a 3×3 matrix for the coloured dots (pips). A quick way to do this is to simply Subdivide the cube twice before doing anything else. The disadvantage may be that the spaces for the pips may not be exactly the size that you want. If not, see the next section: Manual Sizing of Pips.

48.4. Manual Sizing of Pips

48.4.1. Step 1

Hit tab to go into edit-mode and select all faces to prevent bevel messing up normals. Hit WKEY \rightarrow Bevel, Recursion $\rightarrow 1$ (you'll see why later) then choose bevel size (hit spacebar for manual input). Bevel of 0.150 is ok.

Note: If you have chosen to subdivide the die twice, jump to Section "Creating Pips" and put bevel of 0.17 in order to have pip's edges length 0.34

Figure 290

48.4.2. Step 2

In editmode, go to the Editing tab (F9) and look at the Mesh Tools 1 panel (Mesh Tools More in some versions). Turn on Edge Length and note the length of one of the sides of the square faces. This should be 1.7 if the above settings were used.

Button "Edge Length" may be outside the screen so you may need to close another set of buttons before you can get to it.
Or, you can use MMB to scroll over to see the Mesh Tools 1 panel (in later versions: Mesh Tools More) with "Edge Length" button on it.
Or, you can zoom in and out in the menu window with CTRL and NUM+ or NUM-

Or, you can press HOME when button window is focused to see all buttons.

Figure 291

48.4.3. Step 3

A typical die has a grid of 9 possible positions for the pips and the gap between the pips is the pip radius (or half the diameter). So, there are conveniently 10 units on each edge of the square faces, where the gaps use 4 of the units and the 3 pips use two each. This means the gaps are of size $1.7 / 10=0.17$ and the pips $(1.7 \times 2) / 10=0.34$.

Figure 292

Figure 293

48.4.4. Step 4

Figure 294

Now it's time to subdivide the surfaces of the die according to the mathematics above. We'll do that using "edge loops" - additional edges you can add to existing objects.

- Select axis aligned view: NUM1
- Enter loop cut mode: CTRL+RKEY (OR KKEY \rightarrow 1KEY OR KKEY \rightarrow Loop Cut OR CTRL+EKEY \rightarrow Loopcut OR CTRL+EKEY \rightarrow NUM5)
- Select loops' placement: move the mouse around until you see a purple line going the right direction.
- Enter the number of loops: 9KEY (OR NUM9 OR SCROLL up 9 times OR NUM+ 8 times)
- Add the loop: LMB (OR ENTER etc.) on one of the big faces

Noob: What's "the right direction?" What should this thing look like after applying the loop/cut? HELP!
Another Noob: It sounds like you have version 2.44 or later. You should do the tuturial "Die Easy"(seriously, it is).

Now we just have to get rid of the 2nd, 5th and 8th loops to make the undivided spaces for the marks.

- Select edge select or vertex select: $\mathbf{C T R L}+\mathbf{T A B} \rightarrow$ NUM2 (OR CTRL+TAB \rightarrow Edges OR $\mathbf{C T R L}+\mathbf{T A B} \rightarrow$ NUM1 etc.)
- Deselect all edges with AKEY
- Choose a loop to remove (using the BKEY to enter box selection mode and drawing a box around the one you want; this will get the whole loop, all the way around the cube).Spoiler: you can also use Alt-RMB on an edge to select a loop (or select the edge and click Select $-->$ Edge loop).

Noob: It seems that I could not remove multi loops at the same time, since the error message kept bumping out. Another Noob: That happened to me when I tried to remove them all at once, but it worked fine when I removed one at a time.

- Remove loop: XKEY $\rightarrow \mathbf{7}$ (OR XKEY \rightarrow Edge Loop)

Change views with NUM3 and NUM7 and repeat steps as necessary. When you're done, your die should look like the one pictured to the right.

48.5. Creating Pips

The die needs the pips added. Everyone knows how the pips on a die look, right?

48.5.1. Extrude and Merge

(Note: This is Step 10) Select one of the faces where a pip would go and extrude the face by hitting EKEY and then ESC. Do not click after hitting EKEY. This actually replaces the first face with another one even though it looks like nothing has happened. Merge the second face by using ALT + MKEY to merge the 4 corners into the centre. It will tell you Removed 3 vertices. [User Note: To clarify, pressing ESC when extruding does in fact extrude the face as per usual, but by a distance of zero. This creates four new, infinitely narrow faces around the original square face. These four faces then get 'dragged' into the middle when the four vertices of the original square are merged into one. Test this by extruding by say, 0.01 (instead of pressing ESC), and you'll see the result is almost the same.][User Note: on my computer hitting ESC after the EKEY seemed to cancel the extrude and to get the correct result I had to hit the "ENTER" key after the EKEY] You should get the following:

Figure 295

Do this for the configuration of the dots on that side. So for example, 5 would look like this:

Figure 296

Notes :

You could create this pip spot on all 9 spots and copy this side of the die to the other six. The amount of time spent doing all of that may be just as long as doing each side individually. You would need to delete the other 5 faces, copy the dented face 5 times, place each face precisely by rotating and moving, and remove doubles. (User comment) I accidentally selected some pip faces from the opposite side of the die (the side behind the side I was looking at). To prevent this, I selected Limit selection to visible (Occlude background

Figure 297
: which should be the second button from the right in the header of the $3 D$ View.

- Noob, 19th Oct 2008: You can save time by selecting all the 'pip faces' and extruding them simultaneously, ESC-ing immediately after you do so, like above. You'll still need to merge the four corners of each extrusion one-by-one, though, or you'll get some odd results.
- Noob, 28th Dec 2008: You can save more time be extruding all faces simultaneously, as above, and then selecting "Collapse" rather than "At Center" while merging.
- Noob, 02/02/09: I tried with the "Collapse" trick as well but all I got were just black squares.
- Noob, 19/02/09: I got the black squares as well, but it is just a display problem. Press Tab twice (going to Object mode and back to Edit mode) and they are gone.

48.5.2. Create Pips

(Note: This is Step 11) Select one of the edges of the pips to check the size is 0.34 .

Remember the pip radius was 0.17 . We need to use this value to lower the centre point of the pips. Select all the 5 centre points at once to save time and move them inwards by 0.17 . The side I put the 5 pips on here was the top so I move the vertices inwards by pressing GKEY, ZKEY, -0.17 and hitting ENTER. I then get this:

Figure 298
(user comment) According to step 4 we are still in front-view (NUM1), but then the ZKEY modification gives undesirable result, changing view to top (NUM7) does the trick! This applies to blender version 2.44.

- (response) Actually, at the end of step 4 it states to change to side and top view (NUM3 and NUM7) as necessary, so really there is no official view the tutorial left the user in. Also, in this step, the writer mentions they put 5 pips on the top.
- (user comment) using YKEY instead of ZKEY is also fine.
- (user comment) Depending on which axis it's supposed to be moved, use the ZKEY,XKEY and YKEY after the GKEY accordingly.
- (user comment) Pressing ZKEY twice should move them along the normal, which should work no matter which faces are selected.
- (user comment) I noticed a shortcut: When you extrude, extrude by -0.17 and then do the Merge -> Collapse. Then the point is already inside.
- (user comment) I just noticed something different. If you extrude and collapse, after applying the subsurf, you got sharp edges of the pips than the pips I got in this tutorial way.
- (user comment) In blender 2.49a there is an issue where when "Occlude background geometry" is on, sometimes you'll click a vertex and have a far away vertex clicked instead. Rotating the camera usually helps, and if you find your vertex isn't selected, but you know you clicked, clicking again will deselect whatever vertex you selected. Also a big issue with the extrusion - as with escape, right clicking to exit extrusion also creates an "unseen extrusion" . The "unseen extrusion" can be noticed - there's black dots in the middle of your square edges. This is caused by the 0 -width faces being selectable (and therefore having a dot in the middle). I had to completely do-over my model because Remove Doubles _did not_remove the extra vertices. This became noticeable when I would extrude and it would only extrude vertices.
- (user comment): Don't collapse the vertices! In that case, the pits will be rendered badly. Collapsing removes four vertices, merging at the center removes three vertices --> so there is a difference!
- (user comment): You can just have the pivot be Individual Centers and scale to zero, then you can remove doubles and it works out fine. That's the fastest way I can think of doing this.

48.5.3. Smooth Out

TAB out of Edit Mode. If you haven't done this already, hit Set Smooth in the Editing panel and turn on subdivision surfaces

It should look something like this:

Figure 299

Figure 300

In present versions, you just need to use "Add Modifier" on the Modifiers tab (in Edit-mode), to add a SubSurf modifier. (Or press SHIFT+OKEY)

In the image below Levels is set to 3 .

Figure 301

48.5.4. Make Sharp Edges

On a die, the edges of the pips are usually sharp so we'll use subsurface creasing to do that.

Go back into editmode and with the edge select mode on, select all the perimeters of the pips like so (it may help to turn off subsurf for the moment):

Figure 302

Press SHIFT+EKEY to enable creasing and move the mouse until the display says crease is at 1. (to see the effect, you must have the subsurf modifier turned ON). After pressing SHIFT+EKEY, you can then set crease values in the information box that you get by pressing NKEY when objects are selected. This can be useful to check if all the edges have the right crease because it gives you the average crease value and if it is less than 1 , there is an edge wrong.

Newbie Note: Trying to crease all 6 sides of the die at once using SHIFT+EKEY and moving the mouse doesn't crease all sides of the die. Better to use NKEY, or do one side at a time.

48.5.5. Repeat

Repeat steps 10, 11 and 13 (that is Extrude and Merge ${ }^{2}$, Create Pips ${ }^{3}$ and Make Sharp EDGES 4) for all the sides of the die. REMEMBER, a die is numbered so that opposite sides add up to 7. In my example, that means I put 2 on the bottom etc. Once you finish, if you turn on subdiv level 2, you will get something like this:
[User Note: Do you mean subsurf instead of subdiv?]

- Noob note: On the side with 6 pips, I had a hard time getting the creases to work. It turned out to be because I selected in vertex mode when I selected the edges for creasing, and I tried to crease all 6 pips at once. This put crease values on the short vertical edges between the pips, which messed things up.

[^37]

Figure 303

- User Shortcut: To do them all at once with no repeating. However, order of operation has to change to make it work:
- In Face Select mode, select all pip faces on all sides.
- SHIFT+EKEY to crease the edges. (needs to be done before extruding, since extruding changed the selection)
- EKEY -> Individual Faces then type -0.17 to extrude all faces inward.
- ALT+MKEY -> Collapse will merge all the extrusions to their respective centers.
(noobie) Some of my pips are square and I tried everything. What should I do? (noob reply) Maybe you had the vertex at the center of pips selected while creasing.

48.5.6. Camera Setup

You can make a test render now to see that the pips are the right size and that the bevel is right. So, turn the subsurf level for the rendering up to 3 . To help position the camera so that you centre the die, you can make the camera look at the die by adding a track-to constraint to it. I prefer to track an empty though, because it is more flexible.

Make an empty by going into top down view (NUM7) and hitting SPACE \rightarrow Add \rightarrow Empty. (Noob note: If you can't find "empty" in the list, make sure you are in Object mode.) It's always best to go into one of the set orthographic views so as to align new objects to the axes. If you add something misaligned, just go to the object menu then clear/apply > clear rotation (or ALT+RKEY). Because the empty was created at the origin, you might not be able to see it as it is inside the die. Hit ZKEY to enable wireframe mode and select the empty. Just move it outside the cube until we get the constraint set up.

To add a track-to constraint, select the camera first then SHIFT+RMB the empty and press CTRL+TKEY and choose "TrackTo Constraint" from the list. Move the empty back inside the die. You can edit constraints in the object tab (F7). Add a couple of lamps (both intensity 1) to get the scene like this or feel free to experiment with a more advanced lighting setup:

Another way to position the camera is by selecting it and then looking through it as you move it. Look through the camera by pressing NUM0. Use the GKEY to pan across and rotate around the local axes of the camera by pressing say RKEY,XKEY,XKEY to rotate in X-axis. To zoom in and out press GKEY, ZKEY, ZKEY and then move your mouse forwards or backwards. Another useful keystroke (for pre-2.43 especially) to know is that when you are in camera view, pressing Gkey and then MMB, movement will be constrained to the way you are facing. The mouse wheel zoom moves your view towards and away from the camera, without actually moving the position of the camera.

You can also move the Camera in free "Fly" mode by going into the Camera view (press NUM0) and then Shift+F. Now you can "Fly" through the scene and use this setup the camera angle. Make sure that you keey the flying velocity very low by using the scroll wheels or $-/+$ buttons or the camera will be simply out of control.

48.5.7. Render

To render, set the size of the image you want. 800×600 is a decent size so put these settings in the format panel in the Scene tab ($\mathbf{F 1 0}$). In the render panel, make sure 100% is selected. If it's 50%, the render will come out as 400×300. For preview renders, don't turn on OSA, which is anti-aliasing because it slows your renders down significantly. Try to only use it for a final render.

Another important point is to set the image format. This is done in the format panel. The listbox has a number of image types. I find that png is generally the best because it is lossless and offers the highest compression among the lossless formats. It also supports an alpha channel for transparency. When rendering an animation, it is better to render as an image sequence than as a movie because it is easier to edit these and repair broken frames. Quicktime supports loading of image sequences and you can save as a movie using a wide range of compression formats.

To save the render, go to the file menu \rightarrow save image (Or press F3) and type in the full name of the image including the extension e.g. die.png.

The output should now be looking something like this:
\square
Figure 304

Figure 305
[user note] To get such a nice render I had to bump the render level of subsurf up to 5, otherwise I get artifacts around the pips
[user reply] If OSA is on for the final render, you'll get a nice render result as shown by the above figure with subsurf level 3.
[user note] If you set smooth on the whole shape, you'll get artifacts around the circles.
[user reply] To avoid artifacts around the circles, you'll have to turn on Auto Smooth

48.6. Color

48.6.1. Multiple Materials

Link end tixaterive

\section*{| \# mE:Die. 002 | F | Die25ubsurficrease |
| :--- | :--- | :--- |}

Werten Groups

Figure 306

To give it some colour, we will need to use multiple materials because a typical die has pips that are a different colour from the die itself.

In the Buttons Window

Figure 307
go to the Editing panel

Figure 308
(F9) again and make sure the die is selected. In the Links and Materials subpanel there is a section for materials (the right; the left one is for vertex groups) and the box left of the question mark should read " 0 Mat 0 " (the first number is the number of material links for this object; the second number is the number of the currently selected material link).

Figure 309

The die may have more than zero materials if you had assigned materials to the object already. By pressing the New button add enough materials to make 2 in total.

\Rightarrow MA:Material

2

Figure 310

Go back to the Shading panel

Figure 311
(F5) and there is a box at the very top of the Links and Pipelines subpanel with the number 2 beside it. If there is no such subpanel select Material buttons

Figure 312
(cycle shading buttons using F5 too). Click this number and select Single user in the dialog to make the two materials you've just created independent. Use the arrows on the left side of the box to switch materials.

REMTE

Weol Light	WCol Fint	Terfare	Shadeless
Ho Mist	Enu		1.000

PGE HSU

Figure 313

Note: If you do not see a 2 to the right of the material name, that means the material is already a single user material. To change it back you can click the button labelled F, but for this example, you do not want to do that.

Note: There should be at least two materials now. One has the materials initial name the other has a number appended to its name (e.g. Material and Material.001).

Use the Material subpanel to make material 1 bright red by just picking red in the colour picker (the rectangle to the left of the Col button) or by setting the RGB sliders (right of the Col button). Make material 2 white by doing the same. Or pick whatever colour you prefer and material settings.

Figure 314
--MSK61 ${ }^{5}$ (TALK $^{\mathbf{6}}$) 11:27, 17 March 2008 (UTC): The colour picker is to the left(not right) of the Col button, while the the RGB sliders are to the right(not left) of the Col button. Note: It is possible that the two materials were not automatically linked to the material links of your die. If so use the Links and Pipeline subpanel to link the materials to the respective material links. First select the link then the material.

Note from noob: Using white as a colour will not let you spot a change in colour, since the default colour is white. For test purposes I recommend you choose another colour (e.g. blue), so you can avoid getting confused. Note from another noob: Actually (at least in blender 2.49), the default color is grey. To choose a white color, set all colors (R, G, B) up to 1.000 .

48.6.2. Assign Materials

These colours need to be assigned to the right parts of the die.

Figure 315

[^38]

Figure 316

Go into Edit Mode and turn off subsurf to make selecting easier. Do this in the Editing panels (F9) Modifiers subpanel. Right after the subsurf modifiers name there are three buttons (darkgrey).
Press the rightmost to deactivate the modifier in the edit mode.

To make the die red

- Select the entire die (AKEY).
- Click the Editing button (F9).
- In the Link and Materials panel, on the right-hand side you will see " 2 Mat X " where X is either 1 or 2 . Click the left/right arrows until you see the adjoining square to the left turn red. As you click on the arrows, notice that the label above " 2 Mat X" changes from "Material" to "Material.001". These are the names of the materials that you created in the Shading (F5)->Links and Pipeline panel.
- Click the Assign button (in the Material column, not the Vertex Groups column). The Assign button associates the selected faces with the selected material.

The entire die should now be red.

To make the pips white

Use the same method as above, but with only the inner faces of the pips selected and with the colour white.

There are a variety of ways to select the inner faces of the pips:

Pip Selection Method 1
Note: Here you may find Lasso Select useful. Make sure you are in Edit Mode

Edit Mode

Figure 317
(TAB)

- Select Face select

Figure 318
: CTRL+TAB \rightarrow 3KEY

- Select Limit selection to visible

Figure 319
: should be the second button from the right in the header of the $3 D$ View

- Go through the axis align views and select the faces:
- Align view: NUM1 (CTRL+NUM1, NUM3, CTRL+NUM3, NUM7, CTRL+NUM7)
- For each view, lasso select the pips' faces: hold CTRL and drag LMB around the pips' middle vertex (no need to press SHIFT, Lasso Select automatically adds the new faces to the previous selection).
- If all went well you should be able to read Fa:84-449 in the User Preferences right after the Blender version number. $\left(84=4^{*}(1+2+3+4+5+6)\right)$

Pip Selection Method 2

Press CTRL+ALT+SHIFT+3KEY and every triangular face will be selected.(Every pip + The 8 corners of the dice. Just deselect the 8 corners and you're good to go!) ;-) Similarly, you can select quad faces using the $\mathbf{4 K E Y}$.

Pip Selection Method 3

You can also use circle select to easily select the desired faces. Enter circle select mode by hitting BKEY twice. The circle can be made bigger or smaller by using the scroll wheel. Drop out of the mode ($\mathbf{R M B}$) to rotate the cube and drop back in as above. Selected vertices are added to those already selected like with lasso mode but without the need to keep holding the control key or draw an accurate lasso)

Figure 320

Turn subsurf back on (Modifiers panel \rightarrow subsurf modifier \rightarrow enable in edit mode) and render F12 with OSA (only put it up as high as you need for the resolution of the image you are rendering).
(Note: in Blender 2.44 you should use the Assign buttonin the editing panel (Link and Materials)) (another noob says: don't be fooled (as I was!) by the fact that there are TWO Assign buttons in this tab, you want the big one on the right under materials, not the small one on the left under Vertex groups!!)

Pip Selection Method 4

That's the easiest way: 1- select one of the triangles (the face) 2-Shift+Gkey, then choose perimeter or press 4NUM.

48.6.3. Extra

The reason I modelled the die this way is because it is also very easy to change the sizes of the components e.g. the bevel and the pip size. You do this by selecting the vertical or horizontal segments and just scaling them in one axis. Here we will reduce the pip size and the bevel by half.

Go into front view (NUM1), turn off clipping (i.e., allow selection of invisible vertices) and select a line containing pips (i.e., Select vertices mode (CTRL+TAB+NUM1), and box select a thin vertical line of vertices to the left of a row of pips, then box select another thin vertical line of vertices to the right of that row of pips, making a total of 64 vertices). Then just scale in one axis e.g. SKEY, XKEY, 0.5. Remember to have your pivot point set to median:

Do this horizontally and vertically around the die. You should need to scale 9 times for the pips and 6 times for the bevel:
(Noob note: I find this confusing. what is a line containing pips? does this mean a loop line? Using alt-RMB no longer works to select a loop, but selects a single edge.)
(Noob response: he meant a pair of loops of vertices adjacent to a row containing pips. alt-RMB no longer seems to select complete loops - it works until it hits a pip and then it stops - but the box selection can be used.)
(Another Response: Any time you change the geometry of a shape you effect how the automated tools will work. Many dont work at all once you get to complex organic shapes, so its best to not rely on them too heavily.)

You may need to add extra geometry once you are satisfied with the sizes of the dots and the bevel so that the edges of the die don't look warped due to the subdivision. You can use face loop cut again for that and add extra lines in the middle of the gap segments.

49. Model a Goblet

Why a goblet? After all, goblets (fancy containers for consumable liquids) are not really all that important in the real world. However, they represent a very large class of interesting objects: those that are radially symmetric. Also, they are fun to play with.

To model a goblet and actually see the result, we do the following steps:

- create the actual mesh of the object.
- apply a material to the object.
- create and light a scene to display the goblet
- render the scene.

The following tutorials demonstrate three different approaches to creating the mesh model, and then show two different materials (glass and silver) that may be applied to the goblet. Finally, we add the minimal elements to the scene to permit an "interesting" rendering.

49.1. Three ways to build the mesh

As a Noob, you may wonder why we describe three different ways to build the mesh. After all, surely the Pros know of a "best" method?! The answer is that there is not really a best method. Blender provides a sophisticated toolkit, and different blender artists will become familiar with different tools. If, after you gain experience, you become comfortable with cube extrusion, then this may become your preferred tool. If you need more than four vertices per "circle" you may find that cylinder extrusion is better for some particular object. If you are comfortable with "spinning" an object, then spinning may be right for you. All three techniques generate an object that is defined by a set of vertices on a set of circles that are "stacked" on a common axis.
After we build the mesh using one of the three methods, we can apply any number of fancy techniques for texture and rendering. We provide two simple "cookbook" approaches in this section so you can see the result, but materials are treated much more extensively in other sections of the book.

In the next three sections of the book we describe the "cube extrusion" approach, the "cylinder" approach, and the "spin" approach. Following sections describe three textures that can be applied to objects that are created with any of the approaches, and the final tutorial provides a simple way to render the result.

The "cube extrusion" approach is a basic technique that all blender artists will become familiar with, to model most types of objects. Since it is such a basic technique, it may become the most efficient way for you to create objects, and you may choose to use it wherever possible rather than switching to a less familiar technique. You can see from the tutorial that this technique is perfectly acceptable for goblets, and by extension it will work for similar objects.

You may prefer the "cylinder extension" technique when you need more than four vertices per circle, because cylinder extrusion is very similar to cube extrusion. Thus your proficiency with cube extrusion will directly carry over to cylinder extrusion.
"Spinning" is conceptually different, even though it creates the same mesh as cylinder extrusion. Spinning is the easiest way to create a radially symmetric model from a two-dimensional description of the cross-section of an object.

49.2. How many circles?

Figure 321

Figure 322

Each of the three methods defines a set of stacked circles, with vertices equidistant around each circle. The "cube extrusion" technique has four vertices on each circle, while the cylinder and spin techniques have a user-specified number of vertices per circle. But how did we pick the number of circles and the spacing between them? The answer is that we know in advance that we intend to use a technique called "subsurf". Subsurv interpolates additional vertices between those we explicitly specify, and this "smooths out" the profile of our goblet. This will cause problems where we need a fairly sharp "bend" in the profile, as between the base and the stem and between the stem and the "bulb" of the goblet. At each point in the profile that has a (fairly) sharp bend, we need for the vertical circles to be close to each other. The two images illustrate this effect. Each image shows an outline of the object, the spun object, and the result after subsurf (level 2) has been applied. The outlines and the spun images are nearly identical, but the subsurfed result is very different, because there are three extra vertices in the second outline: one just above the edge of the base, one at the top of the base, and one below the bulb: these are the three locations where we need relatively sharp changes in contour. When we spin the outline, the first outline generates seven circles and two degenerate circles, while the second outline generates ten circles and two degenerate circles. Those extra three circles make all the difference. The same phenomenon occurs with the other two modelling techniques.

50. Model a Silver Goblet

50.1. Basic Shape

Figure 323

At first glance, the goblet looks like it is composed of cylinders. However, while it is possible to model the goblet with a cylinder mesh, it is easier to make a goblet by using cubes. Cubes make the goblet faster to make and it makes fewer vertices to track. Now, lets start making the basic shape of the goblet.

Start with the default cube and go to Edit Mode (TAB). Move to the side view (NUM3KEY). Box select (BKEY) the top edges of the cube. Extrude (EKEY \rightarrow Regions) upward about one grid square. Hold down CTRL while extruding, for incremental movement, and press the ZKEY to restrict movement to the Z-axis. This extrusion is called E1. Repeat 2 more times for extrusion 2 and 3 (E2 and E3).

Now Extrude a longer piece upwards, for the Goblet's stem, of 10 grid squares (E4). Next we will define the area for the 2 top knobs and the bottom of the glass by Extruding upwards 5 more times at 1 grid square each (E5-E9). Next do another upward Extrusion of about 10 grid squares (E10). This is the actual glass itself.

50.1.1. Inflate the Glass

Figure 324: Sizing the first knob

Now, lets begin to inflate the glass. First, clear all selections by hitting the AKEY. Make sure you are still in the side view (NUM3KEY). Box select (BKEY) the bottom most cube (all 8 vertices, not just the bottom 4). Then expand it outward by scaling (SKEY), then pressing 'SHIFT+Z to lock/prevent any scaling in height along the Z-axis and finally pressing 4KEY to quadruple its size. Next, deselect all vertices (AKEY), select (BKEY) the 4th pair of vertices (E2), scale them (SKEY), lock scaling (SHIFT+Z) and triple the vertices in size (SKEY and 3KEY).

Do the same for E5 and E7 (the 7th and 9th pairs of vertices, respectively). Then expand (SKEY and SHIFT+Z) the top, Goblet rectangle (E9 and E10) to 6 times its current size (6KEY).
50.1.2. Make the cup's interior

Figure 325

Figure 326

Last is the cup's interior. Once again, you should still be in the side view (NUM3KEY). Box select (BKEY) the very top most vertices of the Goblet (E10). Once selected, get a better view by changing to 'Orbit Up' (NUM8KEY). With the top surface selected, initiate an Extrusion (EKEY \rightarrow Regions), followed by a termination with the ESCAPEKEY. It will appear as if nothing has happened, but new, overlapping edges have been created and are now selected (this also creates E11). Next Scale (SKEY) the selected vertices to $4 / 5$ ths of the original size (.8). This creates the inside lip of the cup. Now, Extrude (EKEY) the interior lip, along the Z-axis (ZKEY) downward (-10) to create the bottom interior of the Goblet (E12). Finish off with a 'Remove Doubles' (WKEY \rightarrow Remove Doubles), for good measure. It should look something like this.
[Noob note: For some reason, when I extruded the interior of the cup to -10, I would have a lip sticking out of the bottom of the cup when I applied the subsurf. To resolve this, I extruded to -9. I was also left with a space at the bottom of the cup (i.e. you could see all the way to the base of the goblet) so I selected the bottom most vertices, pressed FKEY, extruded and hit ESCKEY, merged, selected the center vertice and translated that down -1. This gave me a nice looking bottom for the cup.]
[Another Noob Note: When you create the interior of the cup with .8, be sure to hit Shift+Z to restrict it to just the X and Y axis, or when you extrude your glass downwards by 10 , it will go through the bottom of the glass]
[Noob Question: Does he really mean extrude the interior lip down along the Z-axis? It would seem to me that you should grab it and drag it down (or (GKEY then -10 Enter)] [Answer: Yes. Extrude creates another set of vertices. Dragging down the existing vertices won't give the lip and the interior the right shape. Try it both ways and see.]
[Pro Note: If you wish for a more detailed cup, extrude the bottom of the cup, then scale it by .2097. Then translate (in layman's terms, that's "grab") it .7181 along the negative Z axis (or -.7181 along the Z axis). Through the use of creasing and control loop-cuts, you can get a very nice goblet.]
Note: If the thickness of the vessel sides or bottom is too thin, the Goblets interior faces may 'bleed through', affecting the exterior of the Goblet when you apply a subsurf.

You many want to try modeling the inside/bottom of the Goblet (sim. to "Die Another Way" tutorial). Turning on "Occlude Background Geometry" (ZKEY) will be helpful, as it turns off the ability to see \& select through the model. The button icon is that of a "ISO Cube" located with the 3 select mode buttons (4 dots, 2 lines, \& a triangle) of the 3D Toolbar, in Edit Mode.

50.2. Smoothing and Defining

Time to take the mesh and turn it into a proper goblet. Add a subsurf level 2 (Ctrl+2)to the mesh. Change to Object Mode (TAB) and select the Set Smooth button under Links and Materials. The cube-looking mesh will now look like an object that was created from a cylinder. This has removed all our crisp edges, and our globlet is looking very unstable! Let's rectify things by flattening the bottom.

Noob Note: If your goblet has a bulge in it after applying the subsurf, go to 'Edit mode(Tab), select all (AKEY), press WKEY, and select "Remove doubles". (If a menu for boolean operations appears when you hit the WKEY, then you're not in Edit mode; change immediately to Edit mode and try the WKEYagain.)

Select the four edges that surround the small circle at the very bottom (the very lowest set of edges) and press SHIFT + EKEY to enable creasing. Now drag the mouse up and down to select the level of the crease. When you're satisfied, hit LMB. Repeat the process for other edges you want to be sharp. I've turned on Draw Creases under Mesh Tools 1 to illustrate which edges have been creased (highlighted yellow) in this example.

Note: Due to the vagueness of this tutorial I had problems trying to follow what was wanted. I got around it by beveling the goblet (for the cup-edge/thickness), and then merging necessary vertex. Here is how it turned-out:

Goblet ${ }^{1}$ RENDER ${ }^{2}$

Figure 327: Applied subsurf modifier

[^39]

Figure 328: Crease edges
[Noob Note: I found that if you select the bottom 4 vertices and translate down by 2.5 increments (ZKEY -. 5 twice) and then you select the bottom 8 vertices (the bottom .5 section) and scale by 1.5 (SKEY 1.5) it makes for a more realistic looking goblet base.]

That concludes the creation of the goblet. Save the scene for use in the lighting tutorial. To jump to the relevant lighting section, go to Blender 3D: Noob to Pro/Light a Silver Goblet ${ }^{3}$

50.3. Transparency

Okay, this is pretty much just because I wanted to show off my work, but also because transparency was really hard to find and really easy to actually do. I don't know if there's a lesson on transparency in this, but I really wanted glass, and I'm impatient. This little bit is for anyone else who's interested in modeling the goblet as glass and is impatient like me. If you try this, first keep the non-transparent goblet saved somewhere, it is used in the "silver goblet and lighting" follow-up tutorial linked above.

Hit F5 to go to the shading context and then click the red ball icon to open the material buttons.
The following images show the settings needed, and the final render of my green glass goblet.

Figure 329

In Materials is an Alpha slider- goes from 0.00 (invisible) to 1.00 (opaque). It needs to be pretty low, less than .25 , I'd say. Also in the Edit buttons (F5) is a section called "Mirror Transp", for me it's a tab between "Shaders" and "SSS". In here the "Ray Transp" button must be on. The IOR value is refraction rate- the value of glass is 1.51714 . Next to that is Depth, determines how deep to apply transparency. I recommend maxing it to 10 , to play it safe.

- Tilescreen's addition

Ray transp stands for Ray Tracing Transparency, this basically involves shooting light out from the camera and bouncing it about your 3d scene. The depth value of the ray tracing settings determines how many times a ray of light can 'mirror' (reflect off a surface) or 'transp' (refract through a surface, just like at school with prisms and the light bends). It is possible to work out how much depth you need as each time it enters or exits a surface you will need +1 level of depth. So for this you should need about 4 or 5 depending on how complex you have made this goblet. If you don't have a sufficient depth it will just come out a solid colour with no transparency.

More on Ray tracing. Samples refers to how many beams of light will be fired out of the camera to calculate the refraction and reflection. higher numbers $=$ better quality but also increase render time, but the real killer is the depth. Increasing it by one means it has to work out an (in my case) an additional 18 bounces. Also try adding a filter to slightly blur your reflections and refractions but only a tiny one.

To get a softer shadow then click on the lamp, press F5 and increase the samples (found in Shadow and Spot) this will shoot out more shadow rays and give you softer shadows.

- End of my addition
- Yoshi's addition:

Try experimenting with the colours. The easiest way I know to do this is:
Select the goblet in object mode. Go to the textures tab (next to the red ball), and under 'texture type' pick 'blend'. Then click 'colours' next to the textures subwindow, and hit 'colorband'. You can change the colours by click on the left of the bar, then double clicking the coloured bar under it. Once you pick the darkest colour (left), click the far right of the checkered bar and do the same as before.

- End of Yoshi's addition

Figure 330

If you want a shadow, you'll need to create a plane and go into the "Shader" settings for it. Turn on "TraShado", otherwise the shadow will be a flat black one and look all wrong.

Noob says: Even when I turn on TraShado, the shadow is flat black... I can't get those lighter edge shadows. Solution: Make sure that TraShado is applied to the plane rather than the cube and that Shadow is also selected.

Noob Note: Do not try and use this goblet for a fluid simulation it will not work.
Reader note: If the ray tracing transparency does not work for you, make sure that the ray tracing is enabled in the Scene (F10) menu. It's the Ray button in the Render panel.

Noob says: No matter what I do, my goblet stays opaque and my goblet has no shadow when on a plane. Do I have to somehow link my goblet to my plane?

Noob answer: Adjust the alpha (F5) and look in the material section. Adjust the (A) slider under RGB sliders (bottom right) to something like 0.25 .

Noob Answer 2: Try changing the "Filter" value under the Ray Transp button from its default value of zero to something like 0.1 or 0.2 . This will cause the light to take on more of the colour of the object each time it passes through. It should give you a nice, deep colour for the glass, and its shadow, to the point where the alpha value makes no further difference, and can be set to 0 .

Here's the final result:

Figure 331

Noob Note: If you have problems with a sandy texture showing up (like in the picture above) your cup is clipping through the plane (bottom face is trying to occupy exactly the same space as the plane), just move it up a little bit on the Z axis, and it should go away.

51. Model a Silver Goblet cylinder

51.1. Preliminaries

This is a version of "Model a Silver Goblet" but starting from a cylinder rather than a cube.
Start Blender or start a new scene (CTRL-XKEY) and delete the default cube (in object mode, press XKey).

Change to Top view (NUM7), make sure you're in Object mode and add a cylinder (SPACE Add > Mesh > Cylinder): in the popup menu, change the number of vertices from 32 to 16, the Radius from 1.000 to 1.800 , the Depth from 2.000 to 100 and leave "Cap Ends" as it is.

Change to Front view (NUM1).

51.2. Description of the modeling steps

The steps in this tutorial are almost all made up of "extrude" and "scale": so, to avoid repeating key sequences every time,

extrude

means

1. make sure "Limit selection to visible" is off

Figure 332: Shows "Limit selection to visible" icon
2. box select the top vertices of the cylinder: press BKEY, click and drag LMB to make a rectangle around the top vertices
3. press EKEY, select "Region" from the popup menu, press ZKEY and type in the amount of the extrusion and press ENTER; you can move the mouse instead but it is quicker and easier to type it in.

Newbie question: Why select "Region" and not "Individual faces"? If you use "Region", the common edge between two neighboring faces will remain a single edge after extrusion. If you use "Individual faces", the edge will become two edges sitting at the same location. This may create problems (black lines when rendering).

For example, the following keystroke sequence extrudes by 1.5:

BKEY, click and drag LMB to make a rectangle around the top vertices; EKEY, select "Region", ZKEY, 1KEY, .KEY, 5KEY, ENTER.

scale

scaling is by default restricted to the X-Y plane; although the numbers in the bottom left corner of the 3Dview show Z changing, in fact only X and Y change, and by equal amounts.

1. press SKEY, type in the value and press ENTER - you can use the mouse instead but it is quicker and easier to type in the number.

51.3. Creating the Goblet

Figure 333: E-numbers and construction steps

This diagram shows the connection between the E-numbers and the goblet construction.

- E1: Deselect all vertices (AKEY) and extrude by 0.2: you may need to zoom in (SCROLL-MMB) to do this as it's quite thin. Scale to 0.1 .
- E2: Extrude by 0.2, scale by 2 .
- E3: Extrude by 0.2, scale by 0.5 to make the lower knob.
- E4: Extrude by 4 to make the stem.
- E5: Extrude by 0.2, scale by 2.
- E6: Extrude by 0.2, scale by 0.5 to make the upper knob.
- E7: Extrude by 0.2, scale by 8 to make the base of the cup.
- E8: Extrude by 4, if you wish to make a flared cup, you can scale by 1.5.
- E9: Extrude by 0.0 , scale by 0.9 to make the rim of the cup. (This will create a new ring of vertices and then move them in towards the centre.)

Now go into Wireframe mode (ZKEY) so you can see inside to guide the next few steps.

- E10: Extrude by -3.9 , that is, downwards. and scale by 0.69 : you can do this last scaling with the mouse, if you like, to get the edges of the inside of the cup and the outside parallel.
- E11: Extrude by 0.0, scale by 0.0 to make the inside of the cup.

You now have a goblet, the base of the inside of the cup is the face of the last extrusion, is circular and flat as it derives from a cylinder.

If you haven't already saved your work-in-progress, now would be a good time.

51.4. Subsurfing and smoothing the goblet

The last step is to subsurf and smooth: go into Object mode (TAB) and enable Solid mode again (ZKEY).

Select the Editing panel from the Buttons window (F9) and, in the "Modifiers" panel, click on "Add Modifier", select "Subsurf" from the popup menu and, in the Subsurf display, increase "Levels" from 1 to 2.

Figure 334: Shows the Editing panel icon and the Modifier panel

At the bottom right of the "Links and Materials" panel, click on the "Set Smooth" button. At the bottom of the cup you will see fluting - this is an artifact caused by smoothing and subsurfing triangles on a curved surface. Here it adds to the appearance, don't you think?

Noob Note: If your cup does not look smooth after using Subsurf and Set smooth like mine, you may have to delete all but two of center vertices (bottom vertex at base of cup and vertex at the bottom inside the cup - AKEY to select all vertices, WKEY and Remove Doubles).

51.5. Flattening the base of the goblet

The base of the goblet is curved due to the subsurfing, so needs to be flattened.
Go into Edit mode, deselect all (AKEY), box-select the lowest set of vertices (BKEY), then crease (remove the subsurfing) by pressing SHIFT-EKEY and typing "1" followed by ENTER.

The final result should look something like this:

Figure 335

Figure 336

Save the scene for use in the lighting tutorial. To jump to the relevant lighting section, go to Blender 3D: Noob to Pro/Light a Silver Goblet ${ }^{1}$

1 Chapter 53 on page 415

52. Spin a goblet

The spin technique is a good choice when you want to model an object that is radially symmetric and you know what the cross section of the object looks like. This the virtual equivalent of using a LATHE ${ }^{1}$ to create an object in the real world. With the spin technique, we draw an outline of one half of the outline of the object, and then spin the outline about an axis to create the object's mesh.

52.1. Modeling

Figure 337: Photo of a real-world goblet

Here is a real-world goblet. The picture is not an orthographic image, so we cannot directly copy the outline, but it is close.

52.1.1. Setup

We now model the outline. Let's start with the default model. ${ }^{2}$ We want to create an initial object consisting of a two-dimensional outline, so select the cube, go to edit mode, and delete all the vertices. This leaves us with an object that has no vertices as a nice place to start. We want the resulting goblet to sit at the origin with the Z axis as its axis of symmetry so we get a front view. ${ }^{3}$ Since we will be working directly with mesh vertices, the manipulator is a hindrance, so turn it off. ${ }^{4}$. (With the manipulator on, it is easy to accidentally move a vertex out of the editing plane, but we want a 2D cross-section.) We are now ready to create the two-dimensional outline as a chain of vertices with the first and last vertices on the axis.

52.1.2. First Vertex

Now, place the first vertex: this will be the center of the bottom of the goblet, so place it slightly above the origin on the Z axis. ${ }^{5}$ Why? Well, for two reasons: in the real world, the bottom of a goblet is not actually flat. Instead, the rim is lower than the center of the bottom, so the bottom is concave and the goblet sits on a flat surface without wobbling. The second reason is that we intend to use the "subsurf" technique, and this technique will make a flat surface slightly convex in our virtual world, so we will preemptively start the bottom of the base with a slightly concave surface.

52.1.3. Finish the outline

Add the second vertex, which will be on the rim of the goblet's base: move the cursor to the X axis at about -3 , and add a vertex. ${ }^{6}$ Add additional vertices to your outline by moving the cursor to the desired location and adding, ${ }^{7}$ for as many vertices as you need to accurately model the outline. Since you will be using subsurf later, make sure that you place two vertices near each other when you need a sharp curve in your outline. Otherwise, subsurf will convert your sharp curve into a wide smooth curve.

Noob Note: This is wonderful advice, but it won't work, because Blender interprets the Ctrr differently when you attempt to place an extruded vertex too near the vertex from which you are extruding. One quick way around this is to create your vertices sufficiently far from each other to avoid the problem, and then come back and move them ${ }^{8}$ to the correct spots later.

Eventually, you will place the last vertex, which will become the point at the bottom of the inside of the goblet. This point should be on the Z axis. Your outline is done!

[^40]
52.1.4. Spin

Now, to spin it. first, make sure that you are still in edit mode, and that the last vertex is selected. Set the cursor to the selection. ${ }^{9}$ Now, get a top view: ${ }^{10}$ you are now looking at your outline from the top, and it should look like a straight line along the X axis with one end at the cursor on the Z axis. (If this is not the case, select and move points to the X axis and check your work by switching back to the front view, then come back to the top view.) Now select the whole outline ${ }^{11}$ and then move to the button menu to perform the spin. Set the rotation to 360 and the count to 12 (or another number of your choice) and click on "spin." An elaborate circle will appear. Go to the front view ${ }^{12}$ to see your un-smooth goblet.

52.1.5. Finish up

Since you are in edit mode and you have the whole mesh selected, this is a good time to remove duplicate vertices. The two vertices on the Z axis (base bottom center and bulb bottom center) were duplicated 12 times, and the entire outline was duplicated once when the circle closed at the end of the spin. Remove the duplicates. ${ }^{13}$ If you fail to do this, the subsurf operation will create a cusp at the two centers, and a crease at the duplicated outline.

If you placed the two Z-axis vertices by hand, they may not be exactly on the axis, and therefore may still be duplicated, leaving a tiny "hole" at the axis. Fix this by merging each of the two sets separately:

1. select the vertices to merge.
2. merge at center. ${ }^{14}$

Now start to smooth by using the subsurf in the button window. First add a modifier and select subsurf. Set levels to 2 Then, use smooth in the texture window. You now have a goblet model.

[^41]

Figure 338

The image shows four objects: the two-dimensional outline, a smoothed version of the two-dimensional outline, the result of spinning the outline, and the result of subsurfing and smoothing. As you follow the procedure above, you will not actually have more than one object at a time as shown here.

52.2. Rendering

Blender:Render

Fra:1 Ve:3316 Fa:3384 La:1 Mem:3.89M (11.64M) Time:00:02.26

Figure 339

As with the other two goblets, It is difficult to fully evaluate the model unless you render it. However, a "pretty" rendering requires at least minimal materials, lighting, and scenery. This section is a cookbook approach to providing these minimal elements and is not really a useful tutorial, so we won't explain the concepts. These topics are treated at length in later tutorials. If you wish to explore these subjects in more depth, go to the appropriate tutorials.

- The Goblet material: plain glass.
- The tablecloth: A (non-existent) table with a white tablecloth, in a featureless room painted yellow.
- The lighting: one bright lamp.

52.2.1. Material

- Go to object mode and select the goblet.
- In the Materials button window, ADD A MATERIAL ${ }^{15}$ to the goblet, and name it "glass."
- In the Material tab, set the color to black (set R, G, and B all to 0.000) Here, "Black" merely means "do not add any color." It does not mean that the goblet looks black.
- Set the Alpha to 0.1 (i.e., quite transparent.)
- In the "Mirror Transp" tab, click the Ray Tracebutton, set the IOR to 1.5, and set Depthto 6 (or higher on a very fast computer.)

52.2.2. Tablecloth

- In the main window, put the cursor at the origin and switch to top view. In object mode, add a plane and then scale it to quite large. This is your tablecloth
- Go to object mode and select the tablecloth.
- In the Material tab, set the color to white and set the Alpha to 1.000 (i.e., opaque.)
- In the Shaders tab, click on Trashado. (2.61: Shadows tab, Receive Transparent.) This allows the tablecloth to show the ray traced shadow of your goblet instead of a fake shadow.

52.2.3. Camera and lighting

Render the scene. If you started with the default camera and light the scene will be too dark and the shadow effect from the lamp will not be too pretty. To fix this:

- move the lamp higher and farther away.
- turn up the intensity.

Now adjust the camera:

- shift to camera view
- dolly and aim the camera
- move the camera back some
- render

52.3. Detailed keystrokes

[^42]
53. Light a Silver Goblet

53.1. Techniques

You should know how to:

- Perform actions discussed previously in the tutorial.

This section will recap or introduce:

- Reflective material
- Positioning camera and light
- Editing the World colors

53.2. Objects in the Scene

Create the goblet discussed in Model a Silver Goblet ${ }^{1}$ or load it if previously made. If you haven't already made the goblet, feel free to try the tutorial using a sphere or something else instead and you will still get a good outcome. In Object Mode with NUM 7 view, add a plane mesh. Scale the plane to a very large size and make sure the goblet is sitting comfortably on top of it.

Select the camera and move it so that the goblet, its shadow, and its reflection in the plane will be seen. You can see the numerical location of the camera by bringing up the Transform Properties window by pressing NKEY in the viewport. In my example where $0,0,0$ is the bottom center of the goblet, the camera is located at $27,-21,19 \mathrm{XYZ}$ with a rotation of $63.5,0.62,46.7$.

Create a Spot with SPACE \rightarrow Add \rightarrow Lamp \rightarrow Spot (must be a Spot, as this is the only type of lamp that casts shadows). Move it so that it will create a shadow on the plane. Again, the location of this example is $9,-15.2,25.8$ for XYZ (rotation does not matter for this type of light source).

[^43]

Figure 340: Overhead view of the objects

Figure 341: Front view of the objects

The rendering of this scene yields:

Figure 342: Current render

Note: You must turn on the Ray button in the Render (F10) buttons. Otherwise no shadows will appear!

53.3. Adding the Atmosphere

Noob Note: Many of the options here will be different if you have Yafray selected. In order to change to Blender's internal renderer, go to the Render tab (F10). Under the Render panel, click the drop down menu underneath the Render button. Select Blender Internal from the list.

Noob Note: On my version of Blender (2.49), the yafray button has been removed, so if you don't find it, don't worry.

In Object Mode, select the goblet and go to the Shading panel (F5). If no material is linked to the goblet, add new material. Rename the material 'cup' or something similar. The area of interest is the Mirror Transp window. Highlighted below are the mirror options we'll be playing with. Press the Ray Mirror button to make the material act like a mirror and reflect light.

Move the RayMir slide to 0.85 or type it in after $\mathbf{L M B}$ on the number. This is how reflective the surface will be. A low number of 0.00 means that it reflects little while a high number of 1.00 reflects everything.

Also change the Fresnel slide from 0.0 to 1.4. This will increase the power of the Fresnel function. What this means is the color of the material will be strong because the light source is taken into consideration. If the Fresnel wasn't used, the object would appear dark because the light source isn't directly calculated in the mirror. Also, change the color of the goblet to white. Using a light color will give your goblet an interesting patina if you so choose.

Figure 343: No material linked

Figure 344: Make the goblet reflective

Next, select the plane and modify the material. We want the plane to be dark and shiny. Set Col and Spe to near black for the color. For reflectivity, turn on Ray Mirror to about 0.15 RayMir and ignore Fresnel this time.

Figure 345: Edit the materials of the plane

The scene will still be quite dark, so let's turn up the light. Sometimes you want to add additional light sources and other times you just want what you have to be brighter. Here we'll stick to the one lamp.

Select the lamp object and increase the Energy to 3.000 making it 3 times brighter than before. As always, try changing it to several levels to see how bright or dark you can make the rendering.

Figure 346: Let it shine

There is only one more thing to do before rendering the scene: change the world. Under the Shading panel there is a globe icon that will get you to the world buttons. Here you have Real, Blend, and Paper buttons under the Preview window. And under the World window are options for changing the color of the horizon (Ho RGB), zenith (Ze RGB), and ambient (Am RGB). We're interested in these two windows at the moment.

Using Real and Blend will affect the way the horizon and zenith interact. Experiment with them to see what they do in the preview. In this example, Real and Blend are turned on.

The Paper button works a little differently in that what you see in the preview will essentially be the background of your render. This effect is most noticeable when your camera is rotated. Despite the camera rotation, the preview would still be 'wallpapered' on the render.

For our world, set the RBG close to 0.00 for the horizon, zenith, and ambient.

Figure 347: World shading

That was the last step! Make sure the camera is in the right spot and render the scene. Here is the output of this example

Figure 348: Final rendering

Figure 349

Problem: When I render I see brown where I have used "Shift-E" and "G" and I followed everything.

Answer: Please remember, the author did say play with the settings a bit, this tutorial should be used as a guide. We are learning how to use all the tools that Blender has to offer, that is the important thing. It is up to us to experiment more with the settings set forth in these tutorials. If the settings in these tutorials do not give us the same results, that is OK, we should be changing them anyway to express ourselves! Also remember, NEVER strive for PERFECTION, but ALWAYS strive for EXCELLENCE. Perfection only leads to frustration, and it is frustrating enough, at times, to learn something new. Have fun learning, I know I am.

Noob Note: That was touching and true.
Noob Note 2: You just changed my life :D
Noob Note 3: We don't want a touching life skill, we want an answer. Give us an answer, please!
Noob Question: I managed to get it looking like the first picture above. How do I get it to look like the second?

Pro Answer: Change the reflection settings. a higher depth and a larger raymir value will make the goblet more "mirror" like as in the 2nd picture. the other settings should be left alone, or you can experiment with them to achieve the effect that you want. lighting is also important. the object
that is to be reflected has to be illuminated as well as the object that is doing the illuminating. different lights (don't use a hemi if you want it to be realistic) at different angles will give you a more realistic effect. -TMOG

Noob Note 3: On the answer above, I didn't manage to do it with any of the things the pro said in the answer here, I found out that the key is to change the color of the material which is white (or close to white) in the upper picture. In the lower picture the color is set to black (or close to black). This eliminates the "un-metallic" whitish sheen that the goblet in the upper picture has.
note from hash i don't know about those using lower versions but those using v2.5x have a choice of different shaders both for diffuse and specular colours. I strongly suggest that for the same object one should try playing around with the shaders. They can create different effects. for eg. here if you change the diffuse shader type to oren-nayar and the specular shader type to wardiso, the goblet will have a glossy, finished look.

54. Simple Vehicle

Figure 350: Let's make this jeep.

The idea of this tutorial is to learn to face a complex project. A vehicle is a nice object to use to test yourself and find new problems.
First, we must understand that a project does not reproduce the real world; a project shows an idea or thought and will result in a final image or video. Whatever does not appear in the final result is unnecessary to include in the model.

What vehicle should we make? Let's go with the classic jeep. This will allow for a lot of doodads.
Let's decide what objects of the jeep model will need to be made - body, wheels, seats, and a rocket launcher for good measure. Objects we can ignore include the engine, which remains hidden under the hood. There are many additional objects you can make such as a steering wheel
to customize your jeep.

55. Simple Vehicle: Wheel

Blender3d Aligned to view issue

This tutorial relies on objects being created so that they are aligned to the view that you're looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D: _NOOB_TO_PRO/ALIGNED_TO_VIEW_ISSUE) to view issue to understand the settings that need to be changed.

55.1. Techniques

You should already know how to:

- Make a mesh
- Navigate the viewport
- Extrusion
- Create, edit materials

This section will recap and introduce:

- Forming faces
- Subsurfing
- Merging vertices
- Object naming

For our premise, envision jeep tires. They're not too sleek but rather rugged for all kinds of terrain. We need a tire that can handle any obstacle in its way.

55.2. Model the tire

Hit NUM1 to set front view (XZ coordinates), then delete the cube.

55.2.1. Create the outside of the tire

Add a cylinder $(\mathbf{S P A C E}>$ Add $>$ Mesh $>$ Cylinder $)$
use 32 vertices, set the radius to 4, depth to 3, and un-click the "Cap Ends" button.

55.2.2. Create the inside of the tire

Change to NUM1 view and make sure you are in Edit Mode.
With all the vertices selected, hit EKEY (for blender 2.5X and on-wards, hit "Alt+EKEY" and chose INDIVIDUAL FACES) and on the menu that appears select "INDIVIDUAL FACES" to extrude the individual faces into the circle.
[Pro Note: It would be less messy if you extrude the region, then abort the operation with ESC, then scale the new faces inward while locking the Global Y with SHIFT-Y.] [Noob Question: Does doing it the Pro Note's way not create a slightly different shape which stops the ruggedness from working later?]
[Another method by a noob: i think a better way is to select all the vertices and in in edit mode, hit "Alt+E" and select "Edges Only" and then hit "Esc". immediately after that, hit "S" to scale and lock the y axis by hitting "Shift+Y", and then scale inward. after that, the inner vertices should be selected, hit "F" to create faces.] [Another method by a noob: As I was unable to reach the result in this step (I only managed to obtain the tyre INWARDS), I did this way with a nice and similar result: Select the cylinder with A in NUM1 view, then Extrude Individual (press button in Mesh tool) by 0.1 or 0.2 outwards. Go in face-select mode and select all the faces in the inner part of the wire (or select one then CTRL-G and select "Area") and press EKEY to extrude inwards and to create the tyre shoulder, then, after subsurf, SHIFT-E to crease the edge.]
(Another question. If im locking the global Y, the tire won't be rounded. And shouldn't i have to view the tire on top?)
$-* *$ comment ${ }^{* *}$ In response to the noob questions above, after playing around with my Blender v2.6 I discovered the easiest way to ensure the tire results in the picture below is this: Select all faces in face select mode, then ensure all the face normals are recalculated so that they are all pointing in the same direction (can be inwards or outwards, as long as they're all the same direction. Some faces might be pointing inwards while others are pointing outwards, this means they need to be recalculated. To check the face normals, check the "Face" box underneath "Normals:" in the "Mesh Display" drop down menu in the Window Tool Bar Widget which you press Nkey to show/hide (see image if needed). Once the face normals are corrected, and you have selected all faces, you can then proceed to press the SPACEBAR, bringing up the search menu (for Blender 2.59+), and type in "Extrude individual faces and move" then follow the directions as given below. You can do the search menu, or you can just click on "Extrude Individual" under "Add:" in the Mesh Tools bar (press TKey to show/hide). \ll After working awhile on this Blender 2.61 you want this method. $* * * * * * *$

Figure 351: Face Normals in Blender
-**comment** If you do an extrusion/scale without locking global Y, then the walls of the tire will either lean inwards from the outside radius towards the inside radius -OR- lean outwards from the original radius to the now outside radius. In real life, tire walls can either be expanded outwards (as do most 4×4, snow, or street tires), or lean towards the inside of the tire (as do most low-profile tires). If you want this effect, then do not lock global Y; however, if you wanted a perfectly flat wall faces connecting each radii (the outside and inside radius) then you need to lock global Y.

You may either type in -1.2 and hit enter, or Hold SHIFT CTRL while extruding the faces until the sides come in -1.200 units (in older versions of blender hit NKEY first)

Figure 352: Extruded inwards

55.2.3. Create the outside faces

Rotate around the model and you'll notice the outside of the tire doesn't yet exist. Let's remedy this.

Go back to NUM1 view.
Invert selection (SPACE $>$ Select $>$ Inverse)
Newer versions: CTRL-I for inverse selection
Press FKEY to create the missing faces, in the menu that pops up select auto
Newer versions: no auto necessary.

Figure 353: Checking the outer mesh

Figure 354: Reduce the width

55.2.4. Subsurf the tire

Now it's time to make the tire look like a rugged tire.
Apply a subsurf modifier of level 1 or 2 to the mesh. The tire will now look like a bead necklace. (If not, remove doubles.)

55.2.5. Crease the edges

A little creative use of creases will restore our tire.
Check that Limit Selection to Visible is off (now called occlude background geometry on 2.49b).

Enter Edge Select mode

Bring up the circle selection tool (AKEY to unselect all, then BKEY twice).
Use the scroll wheel to change the circle selection size to be in the center of the tire, between the inside and outside edges. This will select all of the inside edges, as well as the triangles on the side of the tire, as in the picture below.

Now press SHIFT+EKEY to Crease these edges, you can type 1.000, and press ENTER, or hold CTRL to pull in steps till you see 1.000 in the status bar at the bottom of the view window.

Noob note: DO NOT turn the 'limit-selection' tool on for the above selection, also you MUST be in Edge Select Mode or the triangles will not get selected.

Figure 355: Applied subsurf

Figure 356: Crease the edges

55.3. Model the hubcap

The tire is almost done. Let's add a simple hubcap to it.

55.3.1. Create a cylinder

Be sure you're in Edit Mode
Hit AKEY, once or twice till the wheel is selected
Hit NUM1 for front view
Press SHIFT+SKEY, from the popup menu, cursor->selection, to put the cursor at the center point of the existing tire

Hit space-> add-> cylinder with 32 vertices, radius of 1.9 , depth of .5 , and make sure the "Cap Ends" button is turned off,

Hit NUM7 for top view
Hit GKEY, then YKEY, then type 2.2, and hit ENTER

Figure 357: Add another tube mesh

55.3.2. Create the outside of the cap

Hit AKEY once, so that nothing is selected
Hit NUM7 for top view
Zoom in with the MMB till the hub cap fills the view
be sure you're in Vertex select mode
Noob Tip: Make sure Occlude Background Geometry Mode is off
hit BKEY for box select, then holding the LMB drag the box along the top edge of the hubcap.
Hit EKEY on the popup select Only Edges, then hit ESC, to create the edges we will need
Hit SKEY, then SHIFT+YKEY to only move in the XZ axis, then type in .35 , and hit ENTER Hit GKEY, then YKEY to only move the Y axiz, then type in .35 , and hit ENTER

Figure 358: Shorten the hubcap width

55.3.3. Create the Axle Cover

We'll merge these vertices together to create a flat surface.
Hit EKEY, on the popup select only edges, then hit ESC, to create the edges we will need Hit ALT+MKEY on the popup pick at center. Blender will reduce the 32 vertices to 1 . Hit NUM3 for side view
hit GKEY, then YKEY, to only move the Y axis, then type in -0.4 , and hit ENTER

Figure 359: Scale in the front vertices

Figure 360: Pull the center vertex in

55.3.4. Final sizing of hub cap to tire

The final mesh editing is to scale the hub cap to a size that is slightly larger than the hole of the tire. hit NUM7 for top view
position the mouse over the hubcap, and press the LKEY to select the entire hubcap Hit SKEY, then SHIFT+YKEY to only move the XZ axis, then type 1.48, and hit ENTER Hit NUM3 for side view

Hit GKEY, then YKEY, to only move the Y axis, then type -1.11 (use - 0.77 if you want your hubs sticking out), and hit ENTER

55.3.5. Renaming the Wheel

The last thing to do is to rename the wheel so we can find it easier later.
Enter Object mode and select the wheel only.

In the Link and Materials subwindow in Editing (F9) you'll see the Active Object name box. It should read OB:Tube in the grey box. This name was created because we started with a tube mesh. In newer versions, it will be cylinder instead of tube.

Click on the button and rename the object to something like 'wheel'. Save your file where you'll find it later and continue to the next step.

Noob note: although not something you should normally do, if you wish to create separately named objects for the hubcap and the wheel you could initially create them both separately in object mode, or split objects in edit mode with \mathbf{P} (seParate) or in object mode, join objects with CTRL+JKEY (can cause side effects).

55.4. Extra

Figure 361: Rendered tire

Change the materials to make it look like a tire. One object can have multiple colors/textures, as you will learn in future tutorials.

If you'd like to race ahead, then refer to the MATERIALS ${ }^{1}$ section for an explanation on how to do that, or to the Blender manual: Multiple Materials ${ }^{2}$

[^44]
56. Simple Vehicle: Seat

56.1. Techniques

You should already know how to:

- Make a mesh
- Navigate the viewport
- Extrusion
- Subsurf
- Crease edges

This section will recap and introduce:

- Loop subdivide
- Small, consistent vertex movement

The design will be an all-terrain bucket-type seat.

56.2. Extrude the Seat

Figure 362: Basic setup of shapes.

Start in NUM 1 view of the default cube and rename it.

Extrude the cube multiple times to make your basic shape. In this example a $3 \times 3 \times 1$ block composes the body with one cube coming out the top for the headrest, and the bottom cube's front faces extruded out to create the seat.

Noob Note: best practice is use "Face" selection mode, select the face, or faces you want to extrude with the RMB, then hit EKEY, select an axis to move on by pressing the XKEY, YKEY, or ZKEY, and pull with CTRL held down.
(If you insist on using 'Edgeselect mode, or Vertexmode, you want to only pick 'Faces', from the popup menu that appears, after you hit the EKEY; as this will stop the doubles, and inside faces, from appearing. If you don't see Faceson the popup menu then you are really extruding from doubles with reversed normals, so go and remove them (WKEY-> remove doubles), and possibly recalculate the inner and outer normals, before continuing)

56.3. Add cushion seams

Figure 363: Multiple loop subdivide.

Noob Note: Before starting on this, you'll need to make sure you don't have any unnecessary faces inside the seat, or else you'll get strange cushion seams.

To add a little texture to the mesh, we'll add some cushion seams. Use Loop Subdivide (CTRL R or $\mathbf{K}>$ Loop Cut) and you'll see the pink selection loop. You can use the NUM+ key to increase the number of loops made at the same time. Use mouse wheel or press NUM+ 3 times to form 4 loops and LMB the center column of blocks. You may also find it easier to add them one at a time in the correct place, than inserting them and then moving them.
(To get multiple Loops instead of pressing + just press the number of loops you want in this case " 4 ", this is a fast easy way to achieve this.) You can use a mouse-wheel as well.

Noob note: If the loop comes up with green lines rather than purple you have gone one step too far, just press esc (escape) and try again. When you see the purple lines use your Mouse Wheel or the NUM+ button.

Version 2.60 user comment: I tried several different edge loop, loop cut, loop subdivide, etc. to no avail, so I selected all the edges of the middle portion of the object (seat) using box select, then I Knife Cut (hold down Kkey and LMB through the front view of the edges from top to bottom. Select multi-cut and number of cuts to 4 .

56.4. Position the cushion seams

Figure 364: Where the 3D cursor should be placed and what to select

Go into ZX view (Num 1) and make sure the view is orthographic (Num 5 to activate/deactivate orthographic view). Place the 3D cursor on one of the sides of the head rest (LMB, or SHIFT+S to move cursor).

Figure 365: Positioning the seams.

Set the pivot to 3D cursor and select the two closest loop cuts. Scale (SKEY) it down on the X axis (XKEY) to 0.3. The goal will be to have the loop closer to the cursor to go into the cushion to become a seam. Now, do the same thing for the other side of the head rest.

Noob note: The easiest way to select the two closest loop cuts is to first select (RMB, SHIFT+RMB) one edge of each loop, and then go to Select Edge Loop (SPACE -> Select -> Edge Loop). Or hold down ALT when selecting one of the loop's edges. This should select the entire loop. In order to select more than one loop, hold down SHIFT as well.

56.5. Add Depth to the seams

Figure 366: Vertical seam creation.

In overhead view (NUM 7), select the vertices in vertical parts of the two front facing seams of the seat back, grab them (GKEY), move only along the Y axis (YKEY), and type in . $\mathbf{0 5}$ ENTER.

Figure 367: Horizontal seam creation.

Switch to NUM 3 view and move the vertices in the horizontal parts of the same two seams, grab them and move them down by moving them -0.05 along the Z -axis.

Noob Note: I've found that an easier way to do this is selecting each loop of the seam one by one and scaling to .95 (make sure the pivot is set to "Bounding Box Center)

56.6. Subsurf the seat

Figure 368: Subsurfed seat

Add a subsurf modifier to the object. Select the edges between the back and seat and crease (SHIFT+EKEY) them. Crease any edges you feel like to create your perfect jeep seat.

Noob note: it's best to be in Edge select mode when creasing
A subsurf level of 2 or 3 looks best, and don't forget to change the render level to 3 or 4 .
Select all(AKEY) then either hit the "Set Smooth" button at the bottom of links and materials, or hit WKEY and select "Set Smooth" for a much smother subsurf.

Noob note: If your seat is noticeably misshapen after adding the subsurf modifier, you may just have to delete internal faces in your model. TAB into edit mode, and hit ZKEY to get into wireframe mode. Click the face select button and look for faces that are totally inside the model. There will probably be a couple vertical faces (in YZ-plane) under the seams in the seat. I found a few elsewhere, also. Deleting all these cleared everything up.

Noob note 2: An other way to remove the extra faces (which can cause the "seams" to be very deep) is to go into edit mode, select your whole seat (AKEY), then hit (Wkey) and select "Remove doubles" from the menu. This is much quicker than finding them individually, and should solve the problem.
Noob note 3: The problem may also be solved by going into edit mode, using AKEY to select all, and using SPACE $>$ Edit $>$ Normals $>$ Recalculate Outside (CTRL + NKEY).

56.7. Resize the seat

Figure 369: Change the widths.

Next, resize the seat's height and width.
Note: Be sure to change the rotation/scaling pivot back to center point!
To make the whole seat narrower in width, select all AKEY twice, then hit SKEY, followed by XKEY then type 0.8 and press ENTER.

Figure 370

To make the seat back a bit narrower in thickness, select around the seat back (in vertex mode) with the circle select BKEY, BKEY. Once you have it completely selected on all of the sides, hit SKEY, lock axis with YKEY, and type 0.75, and hit ENTER

56.8. Final touches

This final seat renders to:

Figure 371: Rendered seat.

56.8.1. Leathery look

To give the seams a leathery cord look, Hit AKEY twice to select all, then WKEY and choose Subdivide Fractal on the popup menu; just keep the defaults and the seams will look like a bunch of vines until you render it and they look like leather seams .

56.8.2. More concave

Figure 372: Making it concave.

Also the seat can also be made slightly more concave to look like it would hold a person better.

57. Simple Vehicle: Rocket Launcher

Blender3d Aligned to view issue

This tutorial relies on objects being created so that they are aligned to the view that you're looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (http://EN.WIKIbooks.org/wIKI/BLENDER_3D: _NOOB_TO_PRO/ALIGNED_TO_VIEW_ISSUE) to view issue to understand the settings that need to be changed.

57.1. Techniques

You should already know how to do:

- Previous Simple Vehicle techniques

This section will recap and introduce:

- UVspheres
- Changing object's center

57.2. Overview

Two assumptions are going to be made here. One is that the rocket will not be launched in the future (use separate objects if you want to do that). The other is this is going to be a simple, simple design.

If you want to add options to your gun (think sight, trigger), go for it!

57.3. Create the Launcher

Start a new file and delete the default cube.

57.3.1. Add a cylinder

In NUM 1 view, add a cylinder mesh with 24 vertices with End Cap button pushed in (or $O N$). We'll use 24 because the default 36 is overkill and will only increase rendering time. Rename and elongate the cylinder along the Y axis. This will be the length of the launcher (minus the rocket).

Noob note: if your cylinder shows up facing the wrong direction, then see the BLENDER_3D:_NOOB_TO_PRO/ALIGNED_TO_VIEW_ISSUE ${ }^{1}$ page, that describes how to fix this problem with 2.48 and up.

Figure 373: Elongated cylinder

57.3.2. Extrude a tube from the right end

Figure 374

Circle Select (BKEY, BKEY) the vertices at the right end, then extrude (EKEY) them as region, and press ESC to create a copy of the vertices.

Scale (SKEY) them by 0.7.

Figure 375: Invert the cylinder end to make a tube

1 Chapter 42 on page 267

Extrude (EKEY) them as region toward the left, along the Y axis (YKEY); This will make the rocket launcher look like it's a tube.

Note: For older versions, which do not create end caps keep the previously extruded edges still highlighted. Then extrude (EKEY) them again, and then hit ESC, now merge the vertices at the center (ALT + MKEY). If you did this correctly, 23 vertices should be removed, and all come together to form a group of triangles inside of the tube.

57.3.3. Extrude a tube from the left end

Figure 376: left end

Now work on the left end, by following the same steps used for the right end.
Noob Note: before starting on the left end, be sure to hit AKEY twice to deselect the internal face you just created on the right side, which you can't see, unless you hit ZKEY to show wireframe mode.

57.4. Create the rocket

For the purposes of this tutorial we will add the rocket on the left end of the launcher.

Figure 377: Finishing the rocket head

57.4.1. For a one piece rocket + launcher

Figure 378

Select the inner ring of vertices using circle select (BKEY twice)
Extrude (EKEY) the "edge" along the Y axis (YKEY) twice, then scale the new edge by 0.8 .
Extrude the "edge" along the Y axis, and scale the new edge by 1.5 .
Extrude the "edge" along the Y axis, and scale the new edge by 0.2 .
extrude the "edge", hit $\mathbf{E S C}$, and merge ($\mathbf{A L T}+\mathbf{M}$) at the center to form the face for the nose

57.4.2. For a two piece rocket and launcher

- Method 1: create a cone, rotate it, then extrude and scale to get the rocket shape.
- Method 2: create a cylinder, scale it along the Y-axis, then extrude one side, scale to about 1.3, then extrude two more faces, scaling the first about 0.3 and merging the vertices of the second at center.
- Method 3: Create a UV sphere with 4 rings, and model it - much in the same way as the penguin - into a rocket.

57.5. Create the mount

Having a launcher is nice, but we'll need to affix it to the jeep somehow. Let's add a mount to the tube.

Make sure you're in edit mode, not object mode!

57.5.1. Add a cylinder

Figure 379: Mount arm

Add a cylinder with 24 vertices with End Cap button pulled up (or OFF), since we won't be seeing the ends.

Scale with the Z axis locked, to about 0.55 , then move it to the bottom of the tube.

57.5.2. Add a UVsphere

Figure 380: Place the sphere

The easiest way to have a wide range of motion for the launcher is to use a ball joint. We can simulate one by just adding a UVsphere. The default 32 segments and 12 rings will be fine. This creates a smooth sphere.

You can think of the number of segments as being the wedges visible when the sphere is viewed as you added it. The number of rings then could be described as the depth of the sphere from that same view.

Resize and place the sphere at the new cylinder arm.

57.5.3. Reposition the center point

This next step will be important for continuing the tutorial. Get the 3D cursor to as close to the center of the sphere as possible. While the sphere is still selected after creation, you can press SHIFT + SKEY and snap cursor to selection, putting it in the exact center of the UV Sphere.
Switch to Object Mode. Under either the Object menu or SPACE go to Transform $>$ Center Cursor. This should move the large pink dot where the cursor is located. This will give it a new center of gravity around the ball joint, making it easy to manipulate later.
Noob Note: If you have already deselected the sphere, press LKEY while hovering your cursor over the sphere. Make sure not to include any vertices from the attached cylinder).

Figure 381: Change the center of the object

57.6. Subsurf

Be in edit mode!
Apply subsurf, level 2
Select everything (AKEY twice), and hit the set smooth button (at the bottom of the links and materials panel).

This makes the ends of the rocket launcher tube too rounded, as real ones are squared up.

57.6.1. Square up the tube edges on the right side

On the right side (without the rocket sticking out) be in Face select mode

Figure 382

RMB on one of the faces in the outer ring, then circle select (BKEY twice), and select all the faces at the end of the launcher tube. You can also do a face loop selection by selecting a perpendicular edge to the loop with ALT+RMB in face selection mode.

Hit the set solid button (at the bottom of the links and materials panel).
Crease the edges of the faces by hitting SHIFT+E and set it to 1.0.

57.6.2. Squaring up the tube edges on the left side

Figure 383

Now do the left side exactly like the right side.
Noob Note Be sure to deselect everything on the other side first (AKEY twice)!!

57.6.3. Squaring up the rocket

Figure 384

RMB on one of the faces in the middle surface, then circle select (BKEY twice), and select the faces all the way around
Crease the edges of the faces by hitting SHIFT+E and set it to 1.0.

57.7. Final touches

Apply materials or additional items to the object and save for later use.
Do not forget to name the rocket for later use.

58. Simple Vehicle: Body

58.1. Techniques

You should already know how to:

- Make a mesh
- Navigate the viewport
- Extrusion
- Form faces
- Name objects

This section will recap and introduce:

- Deleting and creating edges
- Subdividing
- Merging vertices
- Loop subdivide
- Adding unconnected vertices in one object

58.2. Planning

The jeep is being designed to include the back, flatbed, door holes, dashboard, window, and hood. The window is extruded straight up (older jeeps' windshields aren't slanted), and I decided to add a lower back to later hold the bumper/lights if you wanted to add them.

58.3. Building the Jeep

58.3.1. Extrude the Chasis

Start a new file.
Change to front view (NUM1), switch to EDIT mode, and deselect all (AKEY).

Figure 385: Main sections are made.

Be in Face select mode

Starting from the default cube (\#1), box select (BKEY) on the right edge to select the right face, and extrude (EKEY) 2 units (\#2) to the right along the X axis (should default, otherwise XKEY). Continue with three more extrusions to the right along the X axis of 1 unit (\#3), 1 unit (\#4), and 2 units (\#5).
deselect all (AKEY).
Now starting again from the default cube (\#1), box select (BKEY) on the left edge to select the left side face, and extrude 1 unit (\#6) to the left in the X axis
deselect all (AKEY).
box select (BKEY) on the bottom edge of block \#6 to select the bottom face, and extrude 1 unit (\#7) down in the Z axis.
deselect all (AKEY).
Finally box select (BKEY) on the top edge of \#4 the second block from the right to select the top face, and extrude up 2 units (\#8) in the Z direction.

58.3.2. Widen the chasis

Figure 386

Now to widen the jeep body.
Switch to top view (NUM7).
deselect all (AKEY).
Reduce the width of the existing boxes (\#1) to one square (\#2) by box selecting (BKEY) the top edge (since you're in face select mode it will actually select all the faces on that side), now move (GKEY) 1 unit down in the Y axis (YKEY)

Hit WKEY, and select "remove doubles" from the popup (2 will likely be removed)
Extrude (EKEY) by "Region", the top side, up along the Y axis (YKEY); once for 4 units (\#3), and then extrude again by "Region" for 1 unit (\#4).

This should give you the figure that is shown to the right.
Noob note: holding CTRL as you do the above moves and extrusions will lock it to grid steps

Figure 387: Widening along the Y axis

58.3.3. Flatbed and Doors

Our jeep design will have somewhat of a cheat - no actual door.
There are now a few different ways of doing this (thanks to reader submissions)! Try each one and study the results, as they will teach you about the issues you will encounter when you start making models of your own design;

Method 1 is the simplest of them, but teaches you the least in dealing with mesh trouble.

Method 1

Make the jeep bed

Figure 388

In NUM7 view

Be in Face select mode
Turn occlude background geometry on (the box to the right of vertex, edge, and face select mode).

Select (RMB, then SHIFT+RMB) the top faces where the flatbed and then doors should go. You should now have four faces selected, two large ones for the bed, and two small ones for the doors.

Figure 389

Extrude (EKEY) the "region" -2, on the Z axis (ZKEY).

Make the door holes

Figure 390

Figure 391

Now in front view (NUM1)
Be in Edge select mode
Select (RMB) the top edge of the door face, and delete (XKEY) the "edge". Next, do the same to the corresponding door edge on the other side.

Figure 392

Be in Face select mode

Select the faces in the bottom of the door wells, and extrude them up 0.5 along the Z axis.

Figure 393

Select the bed panels, and extrude them up .1 along the Z axis (leaving them on top of each other will cause problems with rendering engines down the road)

Figure 394

Noob Note: Be very careful as you extrude the parts up, since they are on top of each other, it's easy to select the face on the outside, rather than the one on the inside. Once you've done the extrusion, check the normal lines by hitting the draw normals button in the mesh tools more panel (if you can't see it, hover and scroll with the MMB). If you don't get good normals, then hit undo, then reselect the faces, and try again until you get the correct face being extruded (50% chance of getting the wrong face pulled up). Or select the faces with a wrong normal and hit the Flip Normals button in the Mesh Tools tab.

Finally, select the whole body and remove doubles, (AKEY) to select all then (WKEY) to bring up the specials menu. On the special's menu, hit "remove doubles".

Note: removing doubles every couple of steps is a good habit to get into, and will save you time down the road.

Method 2

Make the jeep bed

Figure 395: Deleting faces
be in Top view (NUM 7), and Face select Mode.
Select the two faces in between the bumpers and windshield (RMB, then SHIFT+RMB).
Now delete both faces (XKEY->"faces").
Note: you could also be in edge select mode, and delete (xkey) the edge between the two faces, for the same end result.

Figure 396: Selecting vertices

You will now add outer faces around the hole we just opened in the model, by selecting two vertices at the top of the model, and two from the bottom of the model.

Be in vertex mode
Deselect all (AKEY twice)
Starting at vertex A, circle select (BKEY twice) vertex B, C, and D,

Figure 397: Creating faces

Next create a face (FKEY); do this same procedure 5 more times at the vertx groups show in the pictures.

Figure 398

Figure 399

Issues with exposed inside faces (Normals)

Figure 400

Now that we have gotten the new outer faces in place we can't see into the model any more but we still have a big problem, the floor is actually the outside face of the bottom of the model, this is not good because you should never leave exposed inside faces (the other side of outer faces) on a model.

Exposed inside faces are invisible when looking through them when you apply textures and render it, since nearly all rendering engines completely ignore inside faces (A common problem with many sketchup models, ah the irony!).

You can tell a face is an inside face, by the fact that if you turn on show normals, and show vnormals, on the mesh tools more panel, the outside faces and vertices will have blue lines shooting out of them, while inside faces will not.

Understanding this now will save you lots of wasted hours in the future trying to fix your normals.

Figure 401

So turn on the show vnormals and show normals, and look closely at the exposed interior faces in the floor of the truck bed, they don't have blue lines poping out in the inside, only on the outsides.

Now select textured from the box where you pick wireframe, or shaded, and the exposed inside faces will become invisible when viewed from the inside, but look great when looked at from the outside.

Add the floor of the bed

Lets make a floor for the bed now.

Figure 402

Be in Face select mode

Select ($\mathbf{R M B}$) both faces of the truck bed,
Extrude (EKEY) pick "region" from the popup, and move up along the Z axis (ZKEY), by about 0.2.

With the two faces selected, hit mesh $->$ normals $->$ flip to make their normals correct for their new position

Now rotate the model till you're looking at it from the bottom, as you can see there is now a hole that needs some extra inside faces removed, and new faces added to compete the bottom.

Figure 403

Select each extra face on the sides, and delete (XKEY) the "faces" as shown in the photos.

Figure 404

Change to Vertex select mode

Select (RMB) corners a, b, c, d, and create a face FKEY, then do the same for c, d, e, and f.

Figure 405

Recheck the normals, and make sure you only have outer faces on the outside of your model.

Make the door holes

Method 2.2 is easier!

Method 2.1 Subdivision

Figure 406

To cut out one door, select the four vertical edges where the door will go.

Figure 407: Split the area where the door will go.

Use the subdivide command (WKEY) to cut the edges in half. You'll notice that the subdividing will also affect the adjoining faces.

Figure 408: Delete edges for door opening.

Select the two edges at the top of the door panel and delete them, removing the top half of it.

Figure 409

Change to Vertex select mode

Now build up faces by selecting the groups of vertex's as shown in the photo, and creating a face (FKEY). Do the same thing for the other side, removing/adding edges and creating new faces.

Figure 410: Merging faces.

If you want to clean up the look of the sub divided faces in the model
Change to Face select mode, and select the faces that are going to be combined.
Press FKEY and a little window will appear titled 'Make Faces'. Click on 'Make FGon' to merge the faces. (As you may have guessed, if an FGon face is created and you want to later undo it, select the 'clear FGon' option in the Make Faces window.)

Note: to merge an Fgon to a flat face, select it and hit CTRL+JKEY
Pro Note: You don't even have to make an FGon. Just select the door-to-be, Tris and Quads both, and hit CTRL+J-KEY.

Noob Note: Q. What is an FGon??
A. It is a fake polygon, a way to hide triangles and quads on flat faces.

Method 2.2 Multicut

Figure 411

Be in frontview (NUM1).
Select the top edges where you want the doors
Multicut (KKEY), enter two in the popup, draw a line along the axis of the cut, as shown in the photo, and hit ENTER.

Figure 412

Then move the newly created edges down and towards the sides.

method 2.3 (Noobie)

Select top face of where door is going to be

```
FKEY to extrude, pick "Region" from the popup menu
ZKEY to lock in Z direction
hold CTRL to snap to whole BUs and move down one BU
```

Select 2 top edges that look like they have no widths
XKEY to erase, pick "Edges" from the popup menu

Two faces will be missing. For each individual missing face, Select top and bottom edges
FKEY to fill in the missing face.

58.3.4. Resizing the bed and windshield

Go ahead and resize the widths of the bed and windshield.
As a precaution, Remove doubles before starting!

Figure 413

To narrow the width of the window, change to Edge mode and select the edges shown in the picture, then move (GKEY) along the X axis.

Figure 414

To narrow the width of the side, change to Edge mode and select the edges shown in the picture, then move (GKEY) along the Y axis.

Figure 415: Adjusting the widths.

Always move as many vertices or edges at the same time to not only work faster but to make sure they are moved equally. The use of circle select, loop select, and SHIFT while moving vertices is very helpful in fine movements.

Figure 416: Bringing the back to a point.

If you want an object to come to a point such as a wedge from a cube, merge vertices.
In this example, the lower back area will be modified. Select two vertices to join together and press ALT MKEY. Select the option for your merging. 'At First' or 'At Last' will probably be the option that will work here.

Play around to see what each merge option does. After the merging, Blender will tell you how many vertices were removed.

Be certain to "remove doubles" (WKEY), as merging creates lots of em. (you can also find it on the тепи Mesh $==>$ Vertices $==>$ Remove doubles)

Figure 417: Raise the flatbed.

Extrude the bed surface upward. This is only useful in hiding the tires that we'll add later in the tutorial. Alternatively, you could make two boxes to hide them.

58.4. A Touch of Detail

58.4.1. Adding an Engine Hood

Method 1

Figure 418: Loop Subdivide select.

Let's add some detail to the model - how about the hood? First thing to do is add some edges to the front of the jeep. Press CTRL RKEY to enter Loop Subdivide. A pink loop will appear around the mesh. Put the cursor over the area to get the example picture to appear.

Figure 419: Aligning the hood.

When the loop is in the right place, LMB click. The place to put the actual cut can now be selected. Do this twice - once for each side. Move and align the resulting edges to form an angle to the front and bring the window vertices in.

Extrude the hood surface up a small amount. We don't want it too high, just high enough to catch the light.

Zoom in and select the top-front hood edge created from the extrusion. Drag it out along the X axis. Select the now diagonal face of the hood extrusion. Extrude from it. The result will come out of the surface at a diagonal angle. Take the resulting vertices and move them close to the front of the jeep.

Figure 420: Formatting the window.

Using the additional lines from the loop subdivide you can improve the shape of the window

Method 2

Another way to raise the Jeep hood. It doesn't require loop cuts, so is a bit simpler.

Figure 421: Hood extrusion.

Step 1. Make Inner Square.
Switch to Top-view NUM 7, or slightly rotated off for easier viewing. Face-select the top square of the hood.

Do E-xtrude, then hit <esc>. NOTE: this WILL make a new surface, hitting <esc> doesn't cancel the extrude, just makes its location to be exactly on the old surface.

Do S-cale and type 0.9 and hit <return>. Now you will see the new surface as a smaller square (or really rectangle) on top of the jeep hood square.

Noob Note: What I had to do is \mathbf{S}-cale on \mathbf{Z} and type 0.9, otherwise the New Surface For the hood would end up shooting through the Windshield.

Figure 422: Bring out the top front edge.

Step 2. Shape Hood.
Still in Top-view NUM 7, deselect all.

Box-select the right two vertices of the new square, towards the front of the jeep.

Do S-cale on Y, and type 0.8 and hit <return>. Leave the two vertices still selected.

Do G-rab on X, and type 0.2 and hit <return>.

Face-select the resulting quadrilateral.

Switch to Side-view NUM 3.

Do \mathbf{E}-xtrude on Z and type 0.2 and hit <return>. I used 0.2 to exaggerate the screenshot a bit, you probably want 0.1 instead.

Now you should have a raised hood on the front of the jeep.

method 3

Another way to extruding the Hood of the jeep including a lip that comes over the front.

Figure 423

Step 1: In face select mode (CTRL+TAB-faces), select the top of the hood and press EKEY to extrude it. Only extrude it a small amount.

Figure 424

Step 2: Staying in Face select mode, here is the tricky part. Select the small face on the front of the hood you just extruded. Then, hit EKEY then ESC. This creates a duplicated face on top of the one you selected. Do not click or move the mouse between these two keystrokes.

Figure 425

Step 3: Now deselect the selected face by hitting AKEY. Then enter Edge select mode (CTRL+TAB-edges) and select the top edge of the face you just deselected.

Figure 426

Step 4: Hit NUM 1 to go to the side view. Now using the red X arrow pull the edge out a little further than you pulled up the hood itself then hit $\mathbf{L M B}$.

Figure 427

Step 5: Now rotate just enough so you can see under the wedge you just made. Go back into Face select mode (CTRL+TAB-faces) and select the face on the underside of it.

Figure 428

Step 6: Go back into side view with NUM 1. Now hit EKEY to extrude the face a little with the mouse. When it's a good size hit LMB.

Figure 429

Step 7: Now make sure the "Select only visible" button is turned off ("Occlude background geometry" in later versions) and go into Vertex select mode (CTRL+TAB-vertices). Play around with the vertices pulling them a little closer to the front of the jeep. It's best to selct using the box select (BKEY) or the Lasso (CTRL+LMB).

Figure 430

The end result should be an extruded hood with a lip.

58.4.2. Add a Fender

Figure 431: Starting the fender.

In the topdown view (NUM 7), add a plane. Extrude an edge twice to result in three connected planes.

Figure 432: Bend the fender.

Pull the sides down to form a trapezoid shape and reduce the width.

Figure 433: Model with fenders.

Once it is in the desired shape, select the three faces and duplicate it. Press SHIFT DKEY and all selected vertices, edges, and/or faces will be duplicated. The copy will automatically be grabbed for moving.

Move the duplicate to the jeep body and repeat the duplication two more times for a total of four fenders.

Noob note: A good idea is to first position one fender, then copy it and restrict movement to x or y-axis. Then copy both fenders and move the two new copies along x or y-axis. Much simpler than trying to position four fenders individually.

58.4.3. Add a rocket launcher mount

Figure 434: Setting up the tripod in NUM 1 view.

We'll move on to making a tripod support for the rocket launcher.
Add a cylinder mesh with 12 vertices then scale and size it so that it looks like a tube. Once you have it to a size you like,

Duplicate it twice for a total of 3 cylinders.
Rotate two of the cylinders in the NUM 1 view by LMB clicking on the white circle that appears when the cylinder is selected in rotate mode.

The picture on the left is an example of the end result.

Figure 435: Setting up the tripod in NUM 7 view.

Change to overhead view (NUM 7) and put together the three cylinders so the tops come close together. Now all three can be selected and moved or rotated accordingly.

Figure 436: Putting in the tripod.

Move the tripod onto the jeep flat bed. The final steps are to select your materials and rename the object (described in the wheel section). This will complete our simple jeep model.

58.5. Subsurf

Since we expect a jeep body have squared up edges, we won't subsurf this part of the model.

58.6. Optional Activities

Feel free to add anything you see fit such as bumpers, guard rails, doors, steering wheel, lights, etc. You can either have them on the same object or separate objects (useful if you want to move them around).

59. Simple Vehicle: Some Assembly Required

59.1. Techniques

You should know how to:

- Do everything discussed in previous tutorials

This section will recap and introduce:

- Append a file
- Duplicate an object

59.2. Overview

The objects for the simple vehicle have been made if you have followed all the previous Simple Vehicle tutorials. Putting it all together will come very easy now.

59.3. Appending the File

Figure 437

If you have the jeep body file open, keep it open. Otherwise, open the file for the jeep body.
In Object Mode, go up to File > Append (Append or Link in later versions), about 3/4 of the way down the menu. The Find file window will appear. Go to the location where the jeep seat was saved. When the .blend file is clicked, you'll go into it as if it is a directory.

Here we have the categories of Camera, Lamp, Material, Mesh, Object, Scene, Text, and World. We are interested in the seat object, so click on Object. Now there are three items: Camera, Lamp, and Seat. That is, it will say Seat if you named your object Seat. This is why it is useful to rename
your objects, materials, etc. If you forgot to rename the object, it will be called Cube (default for our starting mesh).

Noob note: You must be sure you're appending, and not linking! If you try to duplicate it, and you get an error, then it's probably linked, there will also be "li" to the right of the ME: object name button. Ways to be certain you're appending are: when selecting the file, look at the bottom for the append/link options and make sure "Append" is selected; In the file menu, don't choose "Append or Link (Image Browser)", you need to use the option above it.

Figure 438

What should happen after selecting Seat and the button 'Load Library' is the seat will pop into our file where the 3D cursor was.

Figure 439

It will definitely need to be scaled, rotated, and/or moved to the right position. One way to do this is to rotate the seat about the Z axis - 90 degrees by pressing RKEY ZKEY NUM9 NUM0 NUM-.

Figure 440

After placing the seat in the jeep body, let's make another so we have a seat for the driver and passenger. Still in Object Mode with the seat selected, duplicate it (SHIFT DKEY) and slide it over. After duplicating it, it will automatically go into grab mode. If you RMB or ESC, it will still be duplicated - just sitting on top of the original.

Noob note: Duplicate appended objects in object mode, not edit mode, as they are separate objects and do not share the same edit mode space (each appended object has its own edit world, unless you join them together)

59.4. Rinse and Repeat

Append the file again to place the wheel object and rocket launcher in the file. Scale, rotate, move, and duplicate each object accordingly. Depending on the position of your camera, you may or may not have to make all four tires. Remember that the only important parts to draw are those that will be seen!

Set the ball over the tripod. The fun part is rotating the rocket launcher since the center of it has been moved to the ball joint.

Figure 441: All objects

59.5. Parenting

Be sure to parent each item to the jeep chassis, by selecting the item, lets say the tire, then also selecting the chasis (RMB then SHIFT+RMB) and then CTRL+PKEY, and select "make parent" from the popup menu.

59.6. Final things

Figure 442: Rendered jeep

The last thing is to apply materials to your objects!
You can apply material in either object, or edit mode. As you might have noticed when you select something in object mode the entire object is selected, in edit mode on the other hand individul faces can be selected, and painted.

59.6.1. Make the windshield look like glass

You have to create a new material and assign it to the appropriate faces.
In edit mode, select the faces you want (make sure you select both sides of the windshield including: front face, back face, and top face).

On the Editing section F9, under Links and Materials, click the 'New' button under Materials then click the 'Assign' button. This assigns the new material to the selected faces.

You can then go into the Shading section F5 and adjust the material to be glass, by setting the alpha to .20 , and hitting the ray transparency button. Three more ways of making a material that looks more like glass are shown in Material Glass ${ }^{1}$.

Make sure you are editing the correct material (if you have just the one texture on the jeep, the default name for the new material should be something like " 2 Mat 2").

[^45]Noob note: Glass is only transparent when you render it. in order to render it you will need to position a few lamps around the jeep, and move the camera around so that it can see the jeep (view->camera).

59.7. Extra

Figure 443

Other possible ideas

Figure 444

59.8. Additional Tutorials

Append and Link Video Tutorial: http://www.youtube.com/watch?v=69ZBIDrOlIY

60. Modeling a 3D Parachute in Blender

© Blender3d Aligned to view issue
This tutorial relies on objects being created so that they are aligned to the view that you're looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D: _NOOB_TO_PRO/ALIGNED_TO_VIEW_ISSUE) to view issue to understand the settings that need to be changed.

60.1. Remove the default cube

Figure 445

When you first open blender you will see the default Blender user interface (UI) layout and the default cube.

Delete the cube by selecting it with the Right-Mouse button and then clicking the X key.

60.2. Add a cylinder

Figure 446

Be in Side view.
Add a Cylinder by clicking Space-bar> Add $>$ Mesh $>$ Cylinder. This will bring up a small window in which you can set several parameters including vertices, radius, Depth, and cap ends. We will leave the settings in their default state. Press OK to add the cylinder to the scene.

In earlier versions, Blender would automatically take you to edit mode, otherwise you should switch to edit mode by pressing the TAB key.

60.3. Remove the bottom row of vertices

Figure 447

Next you will want to delete the bottom row of vertices. To accomplish this go into side view by pressing " 3 " on the num-pad.
Ensure that you are in Vertex select mode by pressing Ctrl-Tab and selecting "vertices".
Press AKEY twice to deselect everything
Press the B key, and box select the bottom row of vertices, and press the X key to delete and then confirm.

60.4. Extrude and scale to shape

Figure 448

Be in Vertex mode

Select all the vertices around the outside of the circle (you can do this with circle select BKEY twice). The center vertex must not be selected.

Switch to Edge select mode by pressing CTRL+TAB and then Edges.

Figure 449

Press the EKEY key to extrude ("region") the selection and the ZKEY key to constrain to the \mathbf{Z} axis.

Drag the edges a small ways down then click the left mouse button to release.
As this makes a right-angle at the sides and parachutes to don't have straight edges, we need to scale the selection outward.

Press the SKEY key and move the mouse away from the model, you will see that the edges get smaller and bigger.

Scale them out a small ways then left click to release. You will want to practice a little with the scale amounts till you can make a realistic parachute shape.

Noob note: if you're seeing the popup with regions, edges, etc., when you extrude, then you're not in Edge select mode

Figure 450

Continue extruding and scaling till you have a shape like the one shown on the right.
When you're done making a nice shape, be sure to select all (AKEY twice), then hit WKEY and pick "remove doubles"

60.5. Make the top more rounded

Figure 451

Be in Vertex mode

Select the center vertex in the middle of the original top half of the cylinder, use circle select to get it, otherise you will be RMB a number of times to find it, and move (GKEY) it up long the Z axis (ZKEY).

Select all LKEY, and then hit WKEY and remove duplicates, in case any were created.
60.6. Extrude the parachute straps

Figure 452

Now go into top-view by pressing the 7 key on the num-pad. Here you will select ~ 4 edges at opposite sides of each other.

Figure 453

Go back into side-view (num3) and extrude downward by pressing the E key and then the Z key.

60.7. Merge it together

Figure 454

All that remains to finish your parachute is to press Alt-M then "At Center" which will merge all selected vertices.

A alternate way to make the parachute top is to create a UV sphere, and cut it in half.

61. Model a Low Poly Head

UNKNOWN TEMPLATE blender3d_Aligned_to_view_issue

© Warning

Using triangles on a subsurfed model may result in "peaks" appearing in some areas. To reduce this problem, merge as many triangles into quads as possible.

61.1. Overview

This tutorial is designed to teach users to make a low-poly animesque head in Blender.
What you need to know:

- Basic Blender controls

61.2. Add a plane

Figure 455: Add a plane

Start with a new file, and delete (XKey) the default cube.
Be in Front view (NUM1)
Add a plane (spacebar-> add-> mesh-> plane)

61.3. Make a pointed chin

Figure 456: Merge the verticies

Switch to Edit mode

Be in Vertex select mode
Select the bottom two vertices (SHIFT+RMB) and press W to bring up the vertex menu. "Select Merge", then "At Center", or just hit ALT+MKEY and choose "At Center".

Figure 457: A pointed chin!

Now you have a pointed chin.

Figure 458: A pointed chin!

Select the top two vertices (use the BKEY)

Figure 459: Select the top 2 verticies

Re-arrange them so they make more of a chin shape by pressing the GKEY to move and ZKEY to constrain the movement to the Z-Axis.

Noob Note: Move it down; don't scale it out.

61.4. Extrude the face

Figure 460: Extrude along the Z-Axis

Now extrude (EKEY) "edges only", along the Z-Axis (ZKEY) so that you have another area.

Figure 461: Scale it

As a precaution, remove doubles. (WKEY)
Scale it (SKEY) so that it's not so cubic.

Figure 462: Extrude along the Z-Axis again

Now extrude along the Z-Axis again (EKEY then ZKEY) and scale (SKEY) it down a bit.

Figure 463: Extrude along the Z-Axis again

One last time... (E) (Z) (S)

61.5. Make the facial features

Figure 464: Select the middle verticies

Select the middle vertices (BKEY) or (RMB) and press (WKEY) to bring up the specials menu. Subdivide it once.

Figure 465: Select the verticies

Now select at first the pair of verticies above and subdivide once.

Figure 466: Subdivide!

Now subdivide 3 times with the pair of vertices below the center line.

Figure 467: There!

Yours should now look like this one on the right.

61.5.1. Eyes

Figure 468: Subdivide some more

Select and subdivide here, so you can make the eyes.

Figure 469: Make some eyes

And rearrange the vertices so they make eye shapes.

61.5.2. Nose

Figure 470: Select these

Now select the middle vertex here (right mouse button).
Extrude it along the Y-Axis (EKEY) (YKEY) and move your mouse around to change how far it moves.

Figure 471: Let's make a nose!

Select these three vertices (SHIFT+RMB) and press (F) to make a face.

Figure 472: Do the same to the other side

Now do the same to the other side, and you will have the nose's base.

Figure 473: Make a face

Select these vertices (SHIFT+RMB) and make a face (F).
Do this to the other side.

Figure 474: You have a nose!

Now you have a nose.
61.5.3. Remove interior nose faces

Figure 475: Rotate the camera

Rotate the camera (CTRL+NUM1) so you are seeing the back.
Be in Face select mode.

Figure 476: Get rid of these

Select (SHIFT+RMB) the faces behind the nose.
Delete (XKEY) them (on the popup pick "Faces").

61.6. Smooth the mouth region

Figure 477: Select these

Be in Vertice select mode

Select the vertex at the bottom of the chin, and the one at the bottom of the nose.
Subdivide them.

61.7. Make the head

Figure 478: Select edges on the outside

Be in Edge select mode
Select all the edges on the outside (shown with blue lines in the photo).
UNKNOWN TEMPLATE Clr

Figure 479: Give the face more smoothness

Move (GKEY) the vertices back, along the Y axis (YKEY), a bit to give the face more smoothness UNKNOWN TEMPLATE Clr

Figure 480: Select the verticies at the back of the head

Be in Vertex select mode

Rearrange the chin, by moving (GKEY) the bottom vertice along the Y axis (YKEY) till it looks right.

61.8. Make the back of the head

Figure 481: Extrude along Y-Aixis

Be in Edge select mode
Now select the edges all around the back of the head, using (BKEY).
Extrude these along the y axis (EKEY) (YKEY)

Figure 482: Ta da!

Ta da!

Figure 483: Make a face

Now select a set of 4 back vertices that form sort of a rectangle and press (FKEY) to make a face.

Figure 484: and so on...
and so on....

Figure 485: and so on...
and so on....

Figure 486: Subdivide these
now select and subdivide these once (W)

Figure 487: Subdivide these as well
and these points too.

Figure 488: Move the middle back

Now select the middle and move it back (G) (Y).

61.9. Finishing it up

Figure 489: With subsurfing

And here it is with sub-surfacing. You have finished. Hit (F12) to see the final render.

62. Building a House

This tutorial is based on Bart Veldhuizen's "Building a House" from Tutorial \#01 published by NaN in 1999 which is also available in a PDF at HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/BLENDERTUTORIALGUIDE1.TAR.GZ ${ }^{1}$ (a tar.gz containing BlenderTutorialGuide1.pdf) or HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/BLENDERTUTORIALGUIDE1.ZIP² (a ZIP file containing the same PDF).

Permission was asked to use it and Ton Roosendaal said "Be assured that everything that was produced by NaN now is open and free content for everyone to reuse, including the tutorial "Building a House"."

i Information

Applicable Blender version: 2.49b

62.1. Setting the Scene

Figure 490

[^46]Start a new document (CTRL X)
Split the window into two side-by-side windows: move the mouse to the line between the 3D window header and the Button window where it becomes an up-down arrow.

Press RMB and select "Split Areas" from the menu. Move the line which appears to the middle and click LMB.

UNKNOWN TEMPLATE Clr

Figure 491

Now move the mouse to the line separating these two windows, click RMB again and split the left-hand window into top and bottom windows.

Do the same to the righthand window to get four windows.
Make the upper left hand window into Top view (NUM7) ;
Make the lower left hand window into Front view (NUM1)
Make the upper right hand window into Side view (NUM3);
Make the bottom right hand window into camera view (NUMO);
UNKNOWN TEMPLATE Clr

Figure 492

Now before you forget which direction each window is looking at, put the cursor over the lower edge of the top menu bar, and hold $\overline{\mathrm{LMB}}$ as you pull it down, to expose the setting panel.

Find the View name option, turn it on, and now each of the four views will have the direction it's looking at, listed in the top left, of each window.

While you're here you should take care of the align to view setting as shown in the warning box at the top of this page.

62.2. Make the house walls

Figure 493

Leave the default cube, it will be the walls of the house.

62.3. Make the roof

Figure 494

Ensure you are in object mode (TAB switches between object and edit mode)
Now, in the Front view window (lower left)
Press $\overline{\mathrm{SHIFT}}+\overline{\mathrm{DKEY}}$ to duplicate the cube, grab mode is automatically selected, press $\overline{\mathrm{ZKEY}}$ to restrict the move to the up-down axis and move the cube to rest on top of the original (pressing CTRL while moving will snap it to the grid and make it easier to position accurately.) Press ENTER when it is in place.

You can see how useful this four-paned window is; it shows you exactly what's going on.
Noob note-- Make sure that you are in object mode when you duplicate the cube to create your roof. It needs to be its own object so that you can edit it separately from the house object, since you will put one through the other later on (to get the eaves to extend past the walls of the house, without doing extra extrusions)

Figure 495

The top cube is going to become the roof and needs to be made into a triangle
Select the top cube (if it is not already selected) by clicking RMB on it
Press TAB to go into Edit Mode (check the box in the middle of the 3D window header)
Press AKEY to deselect all the vertices
In the front view, or side view, box select ($\overline{B K E Y}$) the top four, you will be able to see that they have been selected in the camera view (lower righthand) window.

UNKNOWN TEMPLATE Clr

62.3.1. Make the apex of roof

Figure 496

Now press SKEY for scaling and XKEY to limit the scaling to the X-axis (left to right). You could try to move the mouse back and forth to bring the top vertices together, but you will have a hard time lining them up exactly, so it's best to just type in 0 followed by ENTER to set scaling to zero.

Note: Another way, although more steps, to choose 2 vertices on one side, and merge them at Center (ALT MKEY , choose "Center" and click the Window). Repeat this with the other 2 vertices and you'll have the same result.

62.3.2. Scale the roof

The roof also needs to project over the walls of the house, this can be done in two ways: either scale the whole roof making it taller as well as wider and longer front-to-back or it can be left the same height but just scaled along the X and Y axis.

Noob note: the second method is better

Scaling method 1

Figure 497

This way is simpler, but changes the proportions of the roof, which you may not want to do in a project

Zoom in ($\overline{M M B}$) if you need to.
Press AKEY to deselect everything
Then place the mouse over the roof and hit LKEY to select the whole roof.
Scale SKEY the whole roof to about 1.1.

Scaling method 2

Figure 498

To change the roof leaving the height the same:
In the Front view (lower left) window press $\overline{\mathrm{AKEY}}$ to deselect everything.
Then place the mouse over the roof and hit LKEY to select the whole roof.
Press SKEY and $\mathrm{SHIFT}+$ ZKEY and scale to 1.1

62.3.3. Naming the roof and house objects

Figure 499

It is helpful to change the names from the default names to ones which describe the objects: for instance, you could change the name "Cube" to "House" instead and "Cube.001" to "Roof".

However, there is an object called "Cube" and a mesh called Cube which is linked to it so there are two names to change. There is also a material linked as well.

To change the name of the house object, go into object mode (TAB if not already there), select the original cube, select the Editing panel from the Button window header ($\mathbb{F g}$ or click on the icon) and, in the panel "Link and Materials", you will see
"ME:Cube" and "OB:Cube". Click on "Cube" and it will change to a red background, type in your new name, for instance "House" and press ENTER . Do this for both.

Now select the roof cube in the 3D window and go through the same procedure renaming it from "Cube.001" to "Roof".

62.3.4. Coloring the house

Figure 500

The roof now needs to be given a different colour to the default grey. Select the Shading panel from the buttons window (

Figure 501

In the "Links and Pipeline" panel, click on "MA:Material" in the box under the "Link to Object" title. "Material" will appear on a red background, rename it by typing "RoofRed" and pressing ENTER . You can now go to the second panel with two tabs "Material" and "Ramps" ("Material" should be showing, otherwise click on the Material tab to get it to show).

Note: In v2.45 you will not see any MA:Material box because the program does not assign any material to a new object. You will first have to click the Add New button to display the material info.

Now go to the second group of buttons and the line with " Col " in the second column and click on the grey bar to its left. This will bring up a colour selector, select a suitable red and press [ENTER : lo and behold, the whole house turns red. If nothing happens you are probably in wireframe mode: press $\overline{Z K E Y}$ in all four windows to change to solid mode.

Figure 502

To change the house colour to something more appropriate, go back to the lower left window and select the house cube, in the "Links and Pipeline" panel the object will change to "House".

At present, both cubes share the same material, so, to colour the house cube differently, a new one has to be created.

Click on the up-down arrow to the left of "MA:RoofRed" in the "Links and Pipeline" and select "ADD NEW", the text to the right of this arrow now changes to "MA:RoofRed.001".
Click on "RoofRed.001" as before and change it to "HouseSandy". Now click on the bar coloured red next to the word "Col" in the "Materials" panel and you will get a colour selector, choose a suitable colour for the house, press ENTER and the house cube will now take the colour chosen.

Figure 503
your house should look like this now

62.4. Make a chimney

Figure 504

Go into Object mode, if you're not already in it. (TAB flips between object and edit mode.)
Be in Front view (lower left window).
Click $\overline{L M B}$ on the righthand side of the roof, this will select the spot where the chimney will be created.

Press SPACE and select Add $->$ mesh $->$ Cube from the popup menu - a bit large, isn't it?
Scale it along the X and $\mathrm{Y}(\mathrm{SKEY}, \mathrm{SHIFT}+\mathrm{ZKEY})$ to about 0.2.
Now grab it (GKEY, XKEY) and move it into position looking at the front view (lower left window).

When this is correct, move it into position along the Y axis (GKEY, YKEY) looking at the top view (upper left window).

You can check the side view (upper right window) and the camera view (lower right window) to see that it looks OK.

UNKNOWN TEMPLATE Clr

62.4.1. Name and color the chimney

Figure 505

In the link and materials panel in the Edit button panel, change the name of the chimney object and the mesh linked to it to "Chimney".

Next in the "Links and Pipeline" panel in the shading button panel, you will notice there are no buttons, and there is a drop down box with the words "Add New" in it. You can now choose to have the chimney a different colour to the roof or the house or reuse one of these colours.

If you want a new colour, click LMB on the "Add New" button and select it as you did for the house and the roof. Rename the material.

If you want to reuse the same colour, you can click $\overline{L M B}$ on the up-down arrow to the left of MA:Material and select from the choices "RoofRed" and "HouseSandy".

62.5. Adding a Window and a Door

62.5.1. Make a window frame

Make the frame

Be in Object mode.

Figure 506

Using the front and top views, click LMB to place the 3D cursor where you want the window to go.

In the front view (lower left) add a plane (SPACE Add $>$ Plane).
Noob note: if the plane shows up laying flat, then rotate it into the right orientation: X, enter 90 for the angle, then ENTER .

Scale SKEY it down to 0.4, and press ENTER
To give it a rectangular shape, scale the plane by about 0.8 along the X -axis XKEY .
Move it into position ($\overline{\text { GKEY }}$), using the top and front view, on the left hand side of the house a little higher than midway.

Figure 507

Be in the Side View window (upper right).
Move the plane along the Y-axis ((GKEY, YKEY) until it is just in front of the house. You may want to zoom in ($\overline{\mathrm{MW}}$) to see better.
Now, still in Side View,
Switch to Edit mode ($\overline{\mathrm{TAB}}$)
Extrude the plane towards the house (EKEY, "Region", -0.07) until it is embedded in the wall.

Make the sill

Figure 508

To make this box into a window frame will require a larger view: move the mouse into the Side View window and zoom in by rotating the MW. Optionally, you can press NUM to see just the window object, and then CTRL +UPARROW , to make the view your mouse is over become full screen.

Deselect all (AKEY) and select the outer (leftmost in the right view) vertices using box select (BKEY), press EKEY, select "Region" and immediately (without moving the mouse) press ESC.

Scale the newly created vertices by 0.9 (SKEY, 0.9 , ENTER $)$.

Figure 509

Extrude again inwards to most of the depth of the box about -.03 to -.05 along the Y axis, depending on how you have your window into the wall (EKEY, "Region", YKEY, -.03, ENTER).
Noob note: the outer panel of the window that you just made cannot be inside the wall, you will see this best on the side view. (if the outer face of the window pane is inside the wall you either won't see any paint/texture you apply, or it will half show up.)

If you used the object view, or single window views, then press CTRL + UPARROW and $\overline{\text { NUM }}$ to get back to your original four views.

Naming and coloring the window frame object

To change the name of the object and the mesh to "WindowFrame": go into Object mode, select the Editing panel ($\overline{\mathrm{Fg}}$) and, in "Links and Materials" change "ME:Plane" and "OB:Plane" to "ME:WindowFrame" and "OB:WindowFrame". Under "0 Mat 0 " click on the "New" button to assign a material to the window frame: when this changes to "1 Mat 1 ", click on the grey bar to the left of it and select white from the Colour Selector which appears.
Select the shading panel ((F5) and change the name of the material ("MA:Material") to "WindowFrame".

Make window glass

Method 2 is an easier way to make the window glass

Method 1 (Create a Separate Window Pane Object)

Figure 510

Deselect all (AKEY),
Create a plane. Ensure it is vertical ($X 90$ ENTER).
Scale it to the dimensions of the window frame.
Move it in front of the frame.
Be in Side view.
Move it to the front of the window frame.
Be in front view.
Be in full screen (CTRL + UPARROW $)$
Adjust the position and size so it fits within the frame.

Naming and coloring the window glass object

Go back into Object mode (on older versions creating a new object automatically puts you into Edit mode)

Change the mesh and object names to WindowGlass.
Add a new material for the glass and colour it light blue (I chose "87ceeb" SkyBlue).

Method 2 (Assign a Glass Material to the Pane Part of the Window Object)

Figure 511

Deselect all ($\overline{\text { AKEY }}$)
Be in Edit mode
Switch into Face (CTRL $+\overline{T A B}->$ faces) select mode (you've been in Vertex select mode up to now)

RMB on the face in the center of the window frame, to select it.
Hit the "New" button, under the 1 mat 1 material box in the Link and Materials panel, you should now have 2 mat 2 displayed in there.

Now to connect the new material to just that one face, press the assign button under the new button.

Naming and coloring the window glass face

You can now change the color by clicking in the square to the left of the " 2 mat 2".
Now go to the links and pipline panel on the shading panel (F5) and rename the new material to windowPaneGreen.

Now switch back to vertex select mode (CTRL + TAB $->$ "vertex").

62.5.2. Make the door

Figure 512

Add the door using the same method:
Be in Object mode
Deselect all,
Create a plane, rotating it as necessary (\bar{R} EXTER $)$ to align it with the front wall of the house.

Scale the plane down by .7 and then again by .5 along the X axis.
Move it into position using Front view and then move it against the wall of the house in Side view.

Naming and coloring the door object

Figure 513

Change the Object name and the mesh name to "Door"
Create a new material for it
Change the material's name to "Door" and chose an appropriate colour for it.
UNKNOWN TEMPLATE Clr

62.6. Building the Fence

The way to build the fence is to create a paling and duplicate this as often as necessary.

62.6.1. Make a paling

Figure 514

Be in object mode, with nothing else selected.

Add a plane, orient it vertically ($\mathbb{R} 90$ ENTER $)$, scaled to 0.4 and then 0.1 along the X axis in Front view.

Figure 515

Switch to edit mode.
To give it some thickness, go into Side view and extrude it to 0.05 .

Figure 516

The pointed top is made by going back into Front view,
Selecting the top vertices and extruding them by -0.07 (along the Z axis is selected automatically),

Figure 517

Scaling them to 0 along the X axis and then removing the doubled vertices (WKEY , "Remove Doubles": it should say "Removed 2 vertices").

Noob note: If the pointed end extrusion is done before the paling is given thickness, the top doesn't move with the duplicated paling.

In Top view move the paling to the intersection of two grid lines at a suitable distance from the house.

In Front view again, check that the bottom of the paling is level with the bottom of the house.

Name and color the paling

Change the name of the object and the mesh to "Paling", create a new material for it called "Paling" and make the colour white.

62.6.2. Duplicate the Paling (Method 1)

Figure 518

Be in Front view, as the flat face of the paling is along the X axis and it is easier to create the front fence first.

Change to Object mode.
Select the paling and press ALT + DKEY and "0.2", ENTER to move the duplicate into position along the X axis 0.2 units away from the first one.

Noob note: we are using ALT $+\overline{\text { DKEY }}$ instead of SHIFT $+\overline{D K E Y}$ as it creates a new instance of the paling. If you wish to make a change to the paling in edit mode, you just need to change one and all the other instances will change too.

Continue until you have the left hand half of the front fence complete, there should be a gap between the left-hand and right-hand halves for a path up to the front door. You can make this by increasing the gap at this point to 1.4 - this number will vary according to where the palings either side of the front door are placed.

62.6.3. Duplicate the Paling (Method 2)

This method uses array modifiers to save work.
Be in Front view, as the flat face of the paling is along the X axis and it is easier to create the front fence first.

Change to Object mode. Select the paling. Switch to the Editing context in the buttons window. Find the Modifiers panel. Click the "Add Modifier" button, and in the menu that pops up, select "Array". You should see a second copy of the paling appear next to the first.

Look down under the heading "Relative Offset", there are values for X, Y and Z . Change the X value to something like -2 (the negative value causes the duplicated paling to appear on the other side, away from the gap we want to leave in front of the door). Now increase the number under the popup that says "Fixed Count", and watch the line of duplicates lengthen until it reaches the point that you want to be the corner of the fence line-a count of about 10 did it for me.

Now type ALT + DKEY to make a duplicate of the row of palings, followed by XKEY to constrain its movement to the X -axis (parallel to the row of palings). Move the duplicate row to the end of the existing row so it looks like a continuation of it. Now type RKEY ZKEY -90 ENTER to rotate it so it lies parallel to the side of the house. Increase the array count for this row to something like 24 so it extends all the way past the side of the house to a suitable corner point.
Again, type ALT $+\overline{\text { DKEY }}$ to duplicate this second row, this time followed by YKEY to constrain its movement parallel to the side of the house. Move the duplicate so its looks like a continuation of the same row. Rotate it parallel to the back of the house by typing RKEY ZZKEY -90 ENTER. Adjust its array count as necessary to get the right length.

Once more, type $\overline{\mid A L T}+\overline{D K E Y}$ to duplicate this third row, followed by $\overline{\text { XKEY }}$ to constrain its movement parallel to the back of the house. Move the duplicate to the end of the row, and rotate it to be parallel to the side of the house with RKEY ZZEY -90 ENTER. Give it the same count you did to the array on the other side, so its length will be the same.

One last time: $\overline{\text { ALT }}+\overline{\text { DKEY }}$ to duplicate, YKEY to ensure it only moves parallel to the side of the house, move to the end of the row, rotate into position with RKEY ZKEY -90 EENTER. You'll probably find it's so long it runs into the original row of palings you started with on the other side of the front of the house; reduce its array count to something like 9 and you should end up with a nice gap in front of the door.

62.6.4. Make the horizontal bars (left side)

Figure 519

The fence needs horizontal bars to hold the palings in place: be in Front view
LIMB below the middle of the left-hand fence.

Create a plane, rotating it to the vertical as necessary ((X 90 ENTER) and scale it to the length of the fence.

Scale it again to 0.05 along the Z axis and move it into position. (if you keep CTRL pressed while you move it, it will snap to the grid.)
Go into Edit mode ($\overline{\mathrm{TAB}}$)
In Side view move it so it is against the back of the fence and extrude it by -0.04 along the Y axis.
Go into Object mode ($\widetilde{T A B}$). Give the horizontal bar the same material you previously created for the palings.
Duplicate it ($\overline{\text { ALT }}+\square$) and move it (keeping (CTRL pressed) along the Z axis ($\overline{\mathrm{ZKEY}}$) to make the bottom bar.

62.6.5. Make the horizontal bars (right side)

To make the bars on the right-hand part of the fence: In Front view duplicate the left hand top bar and move it along the X axis ($\widehat{\mathrm{XKEY}}$) to the top of the right-hand fence.
Scale it to the width of the right-hand fence.
Duplicate this top bar and move it down ($\overline{\mathrm{ZKEY}}$) to become the bottom bar of the right-hand fence.

62.6.6. Put the fence around the house (Method 1 (above) cont'd)

You only need to do this if you used Method 1 (above) to duplicate the paling.
It is a bit tedious creating each paling individually so, now that you have a few ready made, you can just copy them to make the fence at the back of the house.
In Top view.
Deselect all (AKEY),
Box select (\triangle BKE $)$) the whole front fence, including the gap, Duplicate it ($\overline{\text { ALT }}+$ DKEY again) and move it to the back.

Go into Back view ($\overline{\text { CTRL }}+\overline{\text { NUM1 }}$)
Select the shorter of the two fences and box select it in the camera view; then, in the back view, move it over, next to the longer fence, till they look continuous; then duplicate the shorter fence, and move it to the left to fill in the space. (This will take a little thought, as you need to use the front/back view and the top view to line the two fences up properly.)
Delete any unneeded palings that are hanging off the edge of the back, and scale the horizontal bars in the X axis (and then move back to where it needs to go) to fit what's left.

The back fence has the horizontal bars on the outside so it must be rotated:
In Top view, select the whole of the back fence,
press RKEY and type in 180 followed by ENTER.
Move the fence back into position with CTRL pressed to snap it to the grid.
The back fence is already selected from the rotation:
Duplicate it (ALT $+\overline{\text { DKEY }}$), press ENTER as it is not going to be moved and in top view, Press RKEY to rotate it and type in 90 followed by ENTER Press GKEY to move it into position as the right hand fence and ENTER when it is there.

Duplicate it, rotate it and move the copy to the other side of the house.

62.7. Put the Horizontal Bars Around The House (Method 2 (above) cont'd)

You only need to do this if you used Method 2 (above) to create all the palings.
Select the two horizontal bars you created above for the front fence (make sure you don't select anything else, like the palings). Press $\overline{\mathrm{ALT}}+\overline{\mathrm{DKEY}}$ to make a duplicate, then $\overline{\mathrm{R}}$ to rotate the duplicate about the Z-axis, type 90 for the angle and press ENTER to confirm the rotation. In the top view, move the duplicate (\bar{G}) you just made so it's against the side fence. Keep scaling it along the Y-axis (\bar{S}) and/or moving it along the Y-axis (\mathcal{G}) until it's the right length and position.

Having done the side of the house, press ALT DKEY to make another duplicate of the horizontal bars, and $\mathbb{R} 90$ ENTER to rotate it into the right alignment for the back fence. In the top view, move (\mathcal{G}) it against the palings. Now keep scaling and moving it along the X -axis until it has the right length and position.

Having done the back of the house, do the other side: another duplicate of the bars, rotate 90° around the Z-axis, move against the palings, move and scale until they're the proper length in the right position.

Again, another duplicate, rotate and move/scale into position against the palings on the other side of the front of the house.

UNKNOWN TEMPLATE Clr

Figure 520

Your house should now look like this.

62.8. The Ground plane and a Path

Figure 521

62.8.1. Make the ground

In Top view put the 3D cursor somewhere near the middle of the plot, (click LMB)
Create a plane
Be in camera view (bottom right-hand window)
Scale it to extend just past the boundaries of what the camera sees (10.0 seems a good number).
Go back into Object mode and change its (object, mesh) name to "Ground",
create a new material for it, rename it "Grass" and select a suitable green from the colour selector ("00cd00" green3).

Check in Front view that it is level with the bottom of the house and fence and move it (along the Z axis) if necessary.

62.8.2. Make the path

For the path.
Go into Top view,
Create a plane,
Scale it to fit the gap in the front fence with some space on either side and position it just outside the fence.

Check, in Front view, that it lines up with the door and is level with the bottom of the house.
Extrude it along the Z axis by 0.01 to give it a little bit of thickness.
Scale it along the X axis to the same width as the door.
Be in Top view,
Extrude the top edge of the plane to the door
Then extrude the left and right edges to a suitable distance to the left and right to make the path passing the house.

62.9. Final render

Noob note: If you followed the above instructions exactly, your final render will not look as well-lit as this. Once you have done some tutorials on lighting, feel free to come back to your saved copy of this house model to improve its lighting to look more like this picture.

Figure 522

UNKNOWN TEMPLATE Clr

63. Pipe joints

i Information

Applicable Blender version: 2.46

How to model pipe joints.

63.1. T joint

Start in top view, and delete the cube.

Figure 523: Figure 1: Modeling a simple T joint.

- Add a cylinder object (Add->Mesh->Cylinder)
- 16 Vertices, No Caps, Depth 4 (For recent versions of Blender create the cylinder then press F6 to get these options)
- Switch to front view (View->Front or NUM1).

The X axis now points to the right. We will work along the X axis from now on.

- Change to Edit mode (TAB).
- Create a Loop Cut in the middle of the cylinder ($\mathbf{C t r l} \mathbf{- R}$).

Make sure that the 3D cursor is placed in the middle of the cylinder.

- Switch to right view (NUM3)
- Box select (BKEY) the 7 vertices at the front (Tip: tick the Occlude background geometry button)
- Switch back to front view (NUM1)
- Pivot -> 3D Cursor (.KEY)
- Scale with the X axis (S-X), about 1.4142 (square root of 2).
- Rip the mesh with \mathbf{V}.
- Depending on which half the vertexs are now selected you will need to rotate by -45 or +45 .
- Deselect all (AKEY), then box select the lower half of the opening
- Rotate the selected vertices by 45 degrees. Now the pipe should be straight again thanks to the rotations.
- Box select the vertices of the gap and extrude "edges" along the X axis.
- Pivot -> Median Point (CTRL+,KEY)
- To flatten the front: scale at the X axis by factor 0 . (S-X, 0).
- Use the Subsurf modifier in combination with Set Smooth, LoopCuts, and Crease to get a nice transition.

63.2. 6 cylinder joint

Figure 524: Figure 2: 6 cylinder joint

Be in Object mode (have nothing else selected)
Add a cube.
Switch to Edit mode
Select all, then Subdivide the cube once (W, 1) (1).
Select the 12 vertices in the middle of the cube's edges.

Scale by factor 1.4142 (press \mathbf{S} key and type in the factor with the keypad) (2).
Select all vertices, and Extrude "Individual Faces" (This can be done either on the Tool Shelf under "Add" or you can type Space and search for Extrude Individual Faces and Move.) (3).

Select all vertices, and Remove Doubles.
Select the center vertex of each tube, and delete them to open the ends
Select the original vertices in the middle of the object and delete them (5).
Clean your mesh as described above.

63.3. $\mathbf{3}$ cylinder joint

Figure 525: Figure 3: 3 cylinder joint

This is very similar to above, only the selection for scaling is different.

- Select the middle vertices at the edges where the cylinders shall come from. Additionally select the middle vertices at the faces that shall be kept free. You have to select $12+3=15$ vertices.
- Scale your selection by 1.4142.
- Select the faces that shall be extruded.
- Extrude->Individual Faces (5)
- Select all, then Remove Doubles.
- Delete the inner vertices $(6,7)$.
- Select 3 vertices (which were middle of faces that were kept free) and 1 corner vertex in middle of the free faces (8).
- Make sure your 3D cursor is at the origin (and that you added the cube at the origin)
and switch to 3D Cursor Pivot (.KEY in v2.49b), then scale (SKEY), and type in 0.7071 (inverse of square root of 2, or $\operatorname{Sin}(45$ degrees) or $\operatorname{Cos}(45$ degrees)) and ENTER (9).
- Make sure you switch back to Median Point Pivot (SHIFT+,KEY) to straighten out pipe ends (10).

Clean your mesh as described above.
If your joint looks odd, it might be because of some edges in the mesh. Delete those by selecting it and delete (XKEY) edges (not vertices).

63.4. T joint with smaller diameter

Figure 526: Figure 4a: Basic structure for a T joint with a smaller diameter

Figure 527: Figure 4b: The result

We're going to create a structure like in Fig. 4a and extrude the inner circle. To do that we place a circle with Retopo (MANUAL ${ }^{1}$) on the cylinder and join both objects afterwards.

- Add->Mesh->Cylinder
- 8 vertices (of course you can use more vertices if you like)
- No Caps
- Depth 4

[^47]- Noob note: More vertices in your cylinder will mean more intuitive work and figuring [more loop cuts, face making, etc.] later on when retopo-ing. I suggest following the tutorial first, then try to do a more advanced model with more faces / vertices when you understand the tool. If you have trouble [as I did] getting really nice geometry, do A SEARCH FOR SOME TUTORIAL VIDEOS ${ }^{2}$. There are many really helpful ones.
- Add->Mesh->Circle (Noob note: To make sure you create these as separate objects, be in Object Mode (not Edit Mode).)
- 8 vertices
- No fill
- Rotate the circle by 90° at the Y axis ($\mathbf{R}->\mathbf{Y}->\mathbf{9 0}$).
- Move the circle in front of the cylinder($\mathbf{G}->\mathbf{X}-\mathbf{>}$).
- Switch to side view (Num-3).
- Scale the circle to the diameter of the smaller cylinder.
(Noob note: I felt this was a little unclear. What the author means is, scale the circle down until it is the size of the diameter of the smaller cylinder you are going to create from it later by extrusion. You would be wise to scale it so it fits (straight backwards from view) inside the two closest faces of the cylinder as per 'Fig. 4aif you wish to follow the tutorial.)
- Switch to edit mode, select all vertices of the circle.
(Noob note: To recap: you should be in edit mode for the circle, with the all of it selected, with the cylinder object directly behind it in from your viewpoint in orthographic mode.) Make sure that you don't work in Wireframe view.
- Click on Retopo->Retopo All in the Mesh panel of the Editing buttons.
(Noob note: What Retopo does [in this case]; is project the selected topography of an object in edit mode directly backwards from your selected view point onto the topography of another [seperate] object. So you must be lined up view-wise for this to work. I've also found sometimes I must press the 'Enter keyfor the'Retopo All to take effect even if I've selected it with the 'LMB.)

If the vertices of the circle are not adjacent to the cylinder but have jumped to wrong places undo the last step ($\mathbf{C t r l} \mathbf{- Z}$), deselect and reselect all vertices and try again. This does help (strangely). Retopo works with limited accuracy, if the vertices don't fit perfectly you have to move them by hand.

- Change to object mode, select additionally the cylinder and join both objects (Ctrl-J).

Now you work best in Wireframe view.

- Add three loop cuts (Ctrl-R->3)
- Delete the middle vertex.
- Connect the free vertices (F).
- Select the circle.
- Extrude and clean up.

Noob Note -: I couldn't follow this last pipe tutorial with blender 2.6, so I made a video on how to do it once i worked it out. Thought i would put link to it in case anyone else needed help. (hope that's OK)

[^48]http://www.youtube.com/watch?v=uGm696IyLEU\&feature=plcp\&context=C4a1ad76VAvjVQa1PpcFOwQ4POxHxg. sc9jJcxe85fo\%3D

64. Aligning Vertices with a Guide Image

This tutorial is about using guide images to place vertices in their proper places in 3D space. The second tutorial is on how to take good reference pictures. This tutorial assumes that you have completed all previous tutorials.

This tutorial describes the use of the background image feature of Blender to assist in creating models of 3D objects. The background image provides a reference for the dimensions of the object, similar to the way the floor plan and elevation views of a house provide dimension information for the actual house. Guide images are not rendered, and may be removed after the model is completed, or they may be retained as part of the internal documentation of the model. Background images are not generally useful for other "image" purposes such as materials, textures, and actual background images in a scene, just as a floor plan is not actually visible after a house is constructed.

64.1. Background: orthographic projection

Figure 528: orthographic projections in six directions

ORTHOGRAPHIC PROJECTION ${ }^{1}$ is a technique used by architects and engineers to describe a three-dimensional object by the use of several two-dimensional images, or "projections." In architecture, the projection as seen from above is called the "plan view" or "floor plan," the projection as seen from the front is called the "front elevation," and the projection as seen from the right side is called the "right elevation." Orthographic projections are intended to assist builders in creating an actual 3D object.

A Blender user also wants to create a 3D object, in this case a model. Blender provides a way to use a set of one or more orthographic projections as a guide for object creation. Because the images are conceptually "behind" the object from the appropriate point of view, Blender calls these 2D images background images.

Each background image is located "at infinity" in an orthographic view, and there may be one image in each direction: back, front, top, bottom, left, and right. we can use one or more background images to assist our modeling effort.

For example, to model a house, we can put the "floor plan" on the bottom, and build the house above it. We put the front elevation image on the back background, and build the house in front of it. We put the right elevation image on the left background, and build the house to the right of it. The background images can be diagrams such as floor plans, or they can be photographs of an object taken from sufficiently far away to provide undistorted dimensional information.

Reasonably enough, an orthographic projection is only useful in Blender when in orthographic mode. Blender enforces this to prevent you from making mistakes: the orthographic image is only displayed in the background when you are in the orthographic view mode.

[^49]
64.2. Making a Simple Pyramid

Add	Mesh	-	Plane
Edit *	Curve	-	Cube
Select *	Surface	-	Circle
Transform	Meta	-	UVsphere
Object *	Text		Icosphere
View	Empty		Cylinder
Render *	Group	-	Cone
	Camera		Grid
	Lamp	-	Monkey
	Armature		Empty mesh
	Lattice		Torus

| Add Cone |
| :---: | :---: |
| $4 \quad$ Vertices: 4 |
| Radius: 1.00 |
| Depth: 2.00 |
| Cap End |

Figure 529

First we are going to create a pyramid the easy way. Then we are going to show how to use different viewpoints and images as a guide to place vertices correctly in 3D space.

Get rid of the default cube. Press SPACE and select Add \rightarrow Mesh \rightarrow Cone. Set the number of vertices to 4, and unselect Cap End. Click OK. There's your pyramid.

Note: Do not render this looking up from the bottom, as it will appear invisible, as the interior faces of models are ignored by most rendering engines

64.2.1. Save the top vertex for later steps

Enter Edit mode ($\overline{\mathrm{TAB}}$). First, unselect all the vertices by pressing $\overline{\mathrm{AKEY}}$. Next, select the bottom four vertices of the pyramid and delete them with DEL or XKEY. The only vertex left will be the vertex which makes the tip of the pyramid. This will be used later.

64.3. Using the guide images

Now that we have the pyramid the easy way, let's learn how to use guide images as references to build models.

64.3.1. Window Layout

Figure 530

To make things easier, open A USER PREFERENCES WINDOW ${ }^{2}$ and in the "View \& Controls" sub-menu, turn on the "View Name" option. The window names will be used for reference inside the rest of this tutorial.

Split the Main 3D view window in to 4 windows.

Reminder: to split windows, move the mouse to the border of the view, when the cursor transforms into arrow, right-click and choose "Split Area". (Explained in the guide: NOOB TO Pro/Blender Windowing System ${ }^{3}$.)

Change the point of view in each window so that they end up like this:

```
NUM1
    NUM7
NUM3
NUM0
```

And if you click on View, you can see that these windows are respectively:

[^50]Front
Side (Right)
Top
Camera

By knowing which view you are looking at you may find that you quickly get the idea of what you are doing and can proceed somewhat intuitively in this section on your own without following all of the step by step instructions.

64.3.2. Guide images

Now, we need some images. These come from a source outside of blender. For this tutorial, we need a floor plan of our pyramid, a front elevation view, and a side elevation view. The floor plan of our pyramid is a square, and the front elevation view is a triangle, as is the side elevation. We will cheat and use the same source image for both the front and side elevation. We can make a picture of a white square and of a white triangle in the GIMP, Paint :), or some other image editor. or we can find appropriate images somewhere.

Method 1 download and use

Figure 531: Save the triangle with a black background

Download the black and white triangle image on the right of the screen and use that. This image is, minus the checker pattern at the border, is 198×198. (click it once to get the larger version, right click on the larger one, and save)

Method 2 roll your own

Figure 532: The square and triangle relationship

Noob note Make sure that the drawing of the square is square and not just rectangular. Make the triangle the same width and height as the square. Make sure the apex of the triangle is directly above the midpoint of its baseline.

Specific instructions for Photoshop

Make a square selection of " n by n " size, remember the value of " n ". Fill it with white color and save. To create a triangle of needed properties make a rectangular selection of same (n by n) size, on a new layer, click RMB on your document, choose "Transform selection" option in the pop-up menu. Once you are in "Transform selection" mode, right-click the blank image again. This time the pop-up menu would be different. Choose "Perspective" from it, and with LMB drag one of the two top vertices toward the other. Once the vertices meet (in the top-center of the image), exit the transformation mode, and fill the resulting triangular selection with white.
Save the files to a place that is easy to access. Blender only supports the TGA, PNG, and JPG image formats.

Specific instructions for Gimp

Turn on the grid (View->Show Grid, View->Snap to Grid), use the rectangle select with a fixed aspect ratio of 1:1 (in the tool options panel) to select a square that you can flood fill. For the triangle, use the node tool to draw a triangular path, convert to selection (Select->From Path) and fill it. Or you could just use Inkscape...

Save the files to a place that is easy to access. Blender only supports the TGA, PNG, and JPG image formats.

64.3.3. Background Images

Figure 533

Load the white square (the floor plan) into the top (NUM7) window by going to the 3D view window and pressing View \rightarrow Background image \rightarrow (click on the icon of a file). Find your file and click "select image". Since you are placing the background while looking at the view from the top, the background is placed infinitely far away at the bottom of the model, which is where we want it.

I have a more recent version of blender, and this method does not work. when I hit "view", background image is not an option. I looked for a solution, and found this video:
"http://www.youtube.com/watch?v=j14Irv_5UgI\&feature=related"
Load the white triangle (the front elevation view) into the front (NUM1) view window: this places it infinitely far "behind" the model. Similarly, load the right elevation (coincidentally, the same triangle image in this special case) from the right side view side (right or NUM3) window, to place it infinitely far to the left.

If necessary, zoom out so that you can see the whole background image in each view.
Now you have now placed your guide images for making your pyramid.
Note: for each view, if you can not see the picture, switch to Ortho view by hitting NUM5 You won't see it in top view till you do this. Furthermore, the entire idea of using guide images is based on using the orthographic projection, because in the orthographic projection, points on the same line normal to the viewing plane appear at the same point on the view.

64.3.4. Side One

Figure 534

The vertex that is left will be the topmost point of the pyramid. Use the GKEY to move the vertex around. To get it in the right spot, line it up at the top most point in the front (NUM1) and side (right or NUM3) windows. If you look in the top (NUM7) window the vertex should appear to be in the center. Make sure to keep the vertex highlighted for the next step.

Note: If you deleted all of your mesh objects in Object Mode (and remaining vertice), then you'll be stuck in Object Mode. You can however, add a new mesh object as a base, or an empty mesh via a python script (Add \rightarrow Mesh \rightarrow Empty Mesh) [Blender 2.49]. Once an empty mesh object has been created, select it (right click on it or AKEY), and then change to the Edit Mode. Now you can begin to create individual vertices with CTRL $+\mathbf{L M B}$.

Note: it might be helpful at some point to zoom in and use the X, Y and Z movement restriction)

Figure 535

Now, we are going to place more vertices in the scene. Since we want to have the new vertices connected to the first one, we will make sure the first vertex is selected and hold down CTRL and click LMB to create a new one.

In the side (right or NUM3) window, place a vertex on the lower left edge of the triangle by holding CTRL and clicking there. This should create a line between your 2 points. If needed, use GKEY to line it up in that window and also at the lower right point in the top (NUM7) window.

Noob Note: if you wind up in the middle of square (top view) then move your new vertex around with GKEY till it's in the right place in the front, side, and top views

Figure 536

Next, with only one of the vertices selected, in the front (NUM1) window place a vertex on the lower left edge of the triangle using the same method. Line it up in that window and at the lower left point in the top (NUM7) window.

Now, select your 3 vertices (use AKEY) in the front (NUM1) window and press the FKEY. You should see a triangle appear.

64.3.5. Side Two

Press AKEY to deselect all vertices and select the vertex at the top of the pyramid again. Repeat the process from Side One to make the next side. Place a vertex in each of the other corners of the square using CTRL and LMB. Line them up in two different views with the corners of the triangle and square. Make sure only the top vertex and the two new vertices are selected and press FKEY. This will fill in a face opposite of the first face in the pyramid.

Figure 537

64.3.6. Sides Three and Four

To fill in the other two sides, select the top vertex and the two corner vertices on a side where there is no face yet. Again, use FKEY to fill in a face. Repeat this for the last side to have all four sides created.

64.3.7. Bottom

Figure 538: selecting all 4 corners

In the top (NUM7) window, select all four corners and make a face. You should have a solid pyramid! Now, select all 4 faces, hit XKEY, and choose "faces".

UNKNOWN TEMPLATE Clr

65. Modeling a Fox from Guide Images

This tutorial assumes that you have completed all previous tutorials.

65.1. Method 1

65.1.1. Get the pictures of the model

Tip

The images here do not line up. Some need to be rotated and others do not match in size. They will be kept so that you can get the "real feel" for this project.

If you have a puppy and a digital camera, take three pictures of the cute little rascal and upload them. If you don't have a puppy, any object or small animal will do. Ideally, the photos will be looking straight down at the top of the puppy, a side view, and a front view. It's important that the puppy be in the same pose in all three photos! Or at least close to the same pose...we all know puppies don't stand still very long.

You could use two mirrors. One is placed next to the puppy at 45 degrees to the camera and 45 degrees to the puppy. Another is placed above the puppy, also at 45 degrees to the camera and 45 degrees to the puppy. This produces three images, one of the puppy (front \backslash NUM1), one of its reflection seen 90 degrees to the right (side \backslash right \backslash NUM3)), and one of its reflection seen from overhead (top \NUM7). Take the photo from a long distance away with a zoom lens to get close to an ORTHOGRAPHIC PROJECTION ${ }^{1}$.

Or how about pictures of a toy wolf taken from 6 views points?:

- Left View ${ }^{2}$
- Right View ${ }^{3}$
- Front view ${ }^{4}$
- Back View ${ }^{5}$
- Bottom View ${ }^{6}$
- TOP VIEW ${ }^{7}$

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/ORTHOGRAPHIC
HTTP://IMG51.IMAGESHACK.US/MY.PHP?IMAGE=10011325WU.JPG
HTTP://IMG162.IMAGESHACK.US/MY.PHP?IMAGE=10011337AJ.JPG
HTTP://IMG107.IMAGESHACK.US/MY.PHP?IMAGE=10011347FW.JPG
HTTP://IMG107.IMAGESHACK.US/MY.PHP?IMAGE=10011350GU.JPG
HTTP://IMG162.IMAGESHACK.US/MY.PHP?IMAGE=10011363QL.JPG
HTTP://IMG119.IMAGESHACK.US/MY.PHP?IMAGE=10011375BC.JPG
```

Using your favorite image editor, such as PhotoShop or the GIMP ${ }^{8}$ (see detailed GIMP instructions below: DETAILED steps To ALIGn IMAGES USING GIMP ${ }^{9}$), down-scale the images need to a reasonable size (I made mine 512×384), and then match them to each other. To match them, draw construction lines (pulled from the rulers above and to the left) on the left view for example to pick out key features. I picked the tail, the front of the back foot, eye level, tip of the ear, and the front of the nose:

Figure 539

I found when I picked out these features that this first image needed to be rotated slightly. That completed, I proceeded to scale, rotate and shift the other two views (top and front) until they matched fairly well as layers on top:

[^51]

File Edit Select Yiew Image Laver Iools Dialogs Filters

Figure 540

Figure 541

Once I had the proper results I saved the resulting images, and these are the ones we will use in Blender.

The results are the files you'll need for Step Two:

Figure 542

Figure 543

Figure 544

Just right-click and save them some place where you can find them to load them into Blender for Step Two. You may notice the photos aren't perfect, but we'll use them just to show how you should deal with your real photos. When you are creating your own pictures to import, note PARALLAX ${ }^{10}$. In this example, parallax is present, and we'll attempt to compensate.

65.1.2. Get the Picture into Blender

Getting the image into blender is the easy part. The more difficult part will be creating the mesh, but first things first. Create a new file (File \rightarrow New) to see the familiar default objects. Don't bother deleting the cube, we'll end up using it in the tutorial. Just as was done in the "MAKING A PYRAMID" ${ }^{11}$ section, split the 3D Viewer into four views and assign them the following view ports. Note that the arrangement is different than that used in the previous tutorial.

NUM7
NUM1

NUM3
NUM0

[^52]Each window will show you different XYZ coordinates with the NUM0 view being what your object will look like to the camera object.

Now that the screen is set up, let's load the images. In the top left viewport (XY), click View on the viewport's header (the menu at the bottom). From the menu provided, select Background Image A small window will appear.

Tip

If you have a later version of Blender and the Background Image option is missing from the View menu, try going to View > Properties. A new toolbar will open to the right of the viewport and by scrolling through you should see Background Images. (Blender 2.58 user)

Click the Use Background Image button and several more buttons will appear. Now click on the folder icon located to the right of Image:. A new full-viewport window will appear. Explore this window a bit and end up selecting the image file of the wolf from the top view. What you should get is the picture of the toy wolf from above with the default cube on top of it. Rotate your view of the cube. The picture disappeared! But don't worry - the picture is still there. Press NUM7 to realign the viewport and see the picture again.

Tip

Be sure to be in orthographic view Num 5 or else you won't see the picture.

Now load the front view of the wolf into the NUM3 (right side) viewport (YZ) as you did the top view. Repeat the procedure and load the side view of the wolf into the NUM1 viewport (XZ). As a note, each picture is specific to the viewport it was loaded into. When you switch between axes views, the picture will not change. Try this out by changing the top left viewport to NUM3 (right side) and NUM1. Return the viewport to NUM7 (top) before continuing.

Noob note: the photo from the top goes into top view, the photo from the front goes into the right view, and the photo from the right goes into front view, if you have front in front, change it now!

The pictures are now loaded into the Blender viewports. If you look at the pictures on the grid, you may notice that the front view of the wolf isn't quite center. That is okay, Blender has a way to fix it.

Move your cursor over the NUM1 (front) viewport and press Shift + SpaceBar, this expands the current viewport (NUM3/front view) to a fullscreen view, then open the Background Image window for the front view again. Notice that there are picture manipulation options available. One of these includes picture offsets. Click on right side of the 'X Offset: 0.00 ' to increase the offset to 0.20 . The picture will be shifted over slightly so now the wolf is more centered. Press Shift + SpaceBar again to return to the four viewport view you created earlier.

Noob Note: If you made, and aligned your own photos, you will need to use a different value than ' 0.20 ' to center the head in the cube in front view.

The setup work is now done! Let's start on actually making the wolf model.

Figure 545

65.1.3. Create a Rough Model

This is a brute force model creation using techniques discussed previously in this book. This section is meant to help you explore and become more comfortable with them. Do not try to follow the example to the tee. Your wolf and my wolf will probably not look the same since you may want to add more or have less detail.

Noob Note: If you are just getting started with blender, this step may likely take several hours to complete, since you must use your own creativity to position things in 3D space, using 2D views. Just like sculpting, drawing, or oil painting, it will be extreamly fustrating at first, but once you get used to the way it works, "modeling" will be much easier.
The rough fit stage requires either some planning or on-the-spot decisions. Think about where the wolf will have parts of its body flex or require parts jutting out.

The first step is to create a blocky wolf. Start out with a column of blocks using the extrude face command (select face, EKEY). Don't worry about snapping the vertices to the grid since we are working with an organic figure.
user note:' I used ZKEY(wireframe view), to see better how the rough model fits out
Figure 2.3.1 Body column formation

Figure 546

The next step is to split the ears and legs off of the body. Do this by subdividing the appropriate faces. Save often, and if you make a mistake, go ahead and use the undo option (CTRL ZKEY). Also, if you find yourself looking at redundant faces, combine them (FKEY).

Figure 2.3.2 Appendage formation

Figure 547

]

If you are having trouble with this, try mousing over the perspective window (the one you designated with NUM0) and using the MMB to rotate the view so that you are looking at the underside of the wolf. Click on the face underneath the wolf that is alongside his front legs (use the side view to check this). We are going to subdivide this face in order to grow legs off the new faces. To subdivide, press the WKEY and choose subdivide. You will see that the face has been divided into four. Take one of these faces and extrude it as many times as is necessary to make the right leg. Then do the same again for his left leg.

Noob Note: To avoid making the extruded faces share common vertices (and be connected to each other), either extrude the legs separately (as stated above) or select Individual faces in the Extrude pop-up menu. The same works for the ears.

Doing the ears is similar, except instead of working underneath you will start with the face on top of the wolf which is directly over the ears. Select this face and subdivide it once. Deselect everything using AKEY, then select one of these four faces and extrude it upwards once to make an ear. Do the same for the face alongside it to make the other ear.

Finally, extrude the tail end of the wolf one more time, so that your wolf has as many divisions as the picture above.

65.1.4. Refine the rough model

Let's start refining the model starting with the tail. Try putting your viewports in wireframe mode by pushing Z, it may make things much easier. Line up the vertices over the wolf in each viewport by lasso selecting multiple vertices (CTRL LMB, Drag). then move to the right location with grab (GKEY).

Figure 2.3.3 Working on the tail

Figure 548

Continue onto the hind legs of the wolf. It is trickier to manipulate the legs so keep rotating a viewport to look at the model from multiple perspectives. Remember that we are working in three dimensions.

Figure 2.3.4 Working on the hind legs

Figure 549

Continue working up along the wolf fitting the blocks to the pictures. If you have problems seeing the picture because the model is in the way, let's hide the model. In Edit Mode, select the entire model by AKEY or by pressing LKEY when you have the cursor over the model. Simply pressing HKEY will hide the selected items. To unhide the view, use ALT+HKEY. By hiding and unhiding the model, or parts of the model, you should be able to keep using the picture as a guide. Note: It is much easier to just switch layers by, let's say, pressing ' 2 KEY (not the Num-Block one) to hide the entire model (thus getting a look at the picture) and 1 KEY to reveal the mesh again.

Once you have the first pass done, you'll notice that the model just won't fit all three pictures correctly. This is due to parallax. The most obvious example is the side view. The four feet should be level, as they are all standing on a flat surface. Since they are not, we'll just ignore some of the aspects of each picture and continue with the model. (This is a helpful example to show what you need to consider when taking your own pictures.)

Figure 2.3.5 Completed rough fit

Figure 550

65.1.5. Subsurf the model

Now that the rough fit is done, let's smooth out the wolf. Add a Subsurf modifier and set the Levels to 2 . The wolf will now be smoothed, but we want to add some of the hard lines back into the model. This may be accomplished with creased edges.

First, turn on the view creased edges by toggling the Draw Creases button in the Mesh Tools 1 window. Enter Select Edges or Select Faces mode (CTRL TAB). Highlight the edge or face you want to crease and press SHIFT + EKEY. Use the mouse and pull away from the center until the Crease value is close to what you want. A value of +1.000 will give you the sharpest look and is
useful for places such as the bottoms of the paws. When an edge has been creased, the edge will be highlighted in yellow (positive crease) or black (negative crease). These highlights are shown due to the 'Draw Creases' button being turned on.

In this example, I creased edges along the paws, tail, ears, and nose to give them some sharpness.
Figure 2.4.1 Creased edges

Figure 551

The last step is to refit the model to the pictures. You may have noticed that when the model was smoothed, the result didn't quite fit to the pictures. Now is a great time to tweak the vertices to fit to the pictures or add to/modify the model.

NOOb note: if you see a weird edge on the body after smoothing, check the face normals (F9 > Mesh Tools More > Draw Normals; and then $W>$ Flip Normals on the culprit faces).

And here is my basic wolf based on three pictures!
Figure 2.4.2 Final toy wolf model

Figure 552

65.2. Method 2 (using mirroring)

In this alternative method we will do half a wolf and then mirror it to create a complete wolf. You should start out by creating a silhouette of the wolf body in the side view, and then in front view start to shape the wolf head, tail and legs...

Noob Note: If you are attempting this method, it is best to avoid using triangles in rounded areas of a Mesh, because they tend to cause artifacts in your model (artifacts are protruding edges or other things that don't look realistic). Using quads is a much better alternative. Triangles should only be used on flat areas of your mesh if they cannot be avoided.

Figure 553

Figure 554

Here is what you should end up with

Figure 555

65.3. Using mirroring with method 1

You can also use mirroring with the first method (the one with cube extrusions).
This can speed up your work as you don't have to do the same changes on each side of the fox just once.

To start the mirroring:

- Go to Editing (F9)
- In the Modifiers panel, add a Mirror
- Check only the Y button

When modeling:

- You may want to adjust the Merge Limit value (e.g. 0.14): this means vertices too close to each others (after the mirroring) will be merged, thus avoiding artifacts along the mirror's axis.
- Remove the faces along the mirror's axis, otherwise Subsurf will be confused by the faces inside the body of the mirrored fox. Keep all the faces for the legs though.
- To move the legs differently on each side: when you're done modeling the rest of the fox, apply the Mirror modifier, and then work on each leg independently.

65.4. Detailed steps to align images using GIMP

From this point forward there are multiple ways to do exactly the same thing, however for simplicity's sake and so that I can be more detailed I will be using one method (the one which I use) and be using GIMP.

I found it best to size all the photos to a known width, with an easy to find center. (Mine happened to be 850×638 pixels, I don't recommend that but you can choose any size you want really, as long as all of them are the same size). Then drag the construction lines to form a crosshair in the middle of the photo. To do this, click on the top ruler, and drag down to the middle (Exact middle) of the photo, then click on the side ruler and drag across to the middle (Again exact middle) of the photo.

If you are having trouble finding the exact middle of the photo, move the cursor to the very bottom left of your photo and the height of your photo will be listed at the bottom left of the GIMP interface. The numbers are listed in an (x,y) format so you want the first number to say 0 and the second to be the largest you can make it by dragging your cursor. The second number is the height, and half of that is the middle of your photo. You can do the same with the top ruler to find the vertical middle of your photo. Only this time the co-ordinates at the bottom left of the GIMP interface should list the second number (y) as 0 , and the first number should be as large as you can make it by moving your cursor (to the upper right of the photo). Once you have your width again half of that will be the middle of your photo.

Then using construction lines put one at the top of your object, and the bottom of your object. Find the "height" of your object by the distance between them. Remove the construction lines from the top and the bottom, and place a new construction line above the horizontal center line by the half of the "height"(of your object). Now place a construction line on both sides of your object and find the "width" (distance between the new vertical lines), then remove those construction lines and place a new construction line vertically half of the "width"(of your object) to the right of the vertical center line. Now cut the object out, and drag it so that the point you used as the "top" is on the horizontal construction line that is above the middle. Then Drag the photo left or right until the right edge of the object is on the vertical construction line you put in right of the middle construction line.

Now the center of your object is at the center of your photo. This is a very important thing because when blender loads in the picture you will need this so that all of your pictures match up with each other 3d. You should repeat these steps with all 3 photos. I also don't recommend doing it in GIMP's "layered mode" as that caused more pandemonium for me. I recommend opening each photo in a new window .

Taking your pictures is the most important part, because if the pictures are not all in the same scale (object size to photo size) then your photos will not line up and you won't be able to place a dot on the same location from front view, side view, and top view.

As a recommendation I would recommend making your first model from a Lego man. That is what I did and it is very simplistic easy practice. To take my photos I took about 10 minutes to construct a photo platform for my object. It consisted of a cardboard box with two sides cut out. I covered the inside area with computer paper. I then used a 2 " $x 4$ " and a ruler to make sure that the box stayed the same distance from the camera for all shots, as well as marking where the Lego man's feet were positioned inside the box with a pencil. This will provide good pictures, providing you keep the camera at the same distance and zoom for all three photos.

66. 2D Image (logo) to a 3D Model

66.1. Overview

Figure 556

We will be using this graphic as a template for a 3d logo, tracing it, then discarding the 2 d image. (Click thru to get the larger sized version, for you to follow along with)

66.2. Load the background image into blender

66.2.1. Basics of the background image panel

If you haven't already done so, open blender and select one of the orthogonal view angles by pressing NUM7 (top), NUM3 (side), or NUM1. (front). At the bottom of the 3D viewport on the left, there are some menus, click View $->$ Background Image

Figure 557

A small window will appear containing just one button marked use background image; click this button. A few more buttons will appear. One of them says image: and has a small button with a picture of a folder on it; click this button. You are now presented with a file selection screen. Using the navigation techniques from the previous tutorials, find your 2D jpeg image on your computer, click the file in the list once then click the Select Image button at the top right of the screen.

Noob note: The image is only displayed in orthogonal view. If perspective view is enabled, toggle to orthogonal view by pressing NUM5. (The image will not be rendered as it is not part of your scene.)

Figure 558

Once a background is selected you'll have a dialog like this one. (Note: This tutorial was originally generated from Blender v2.37. v2.43 has been added - older versions may differ.) The background dialog buttons are described below:

66.2.2. Details of the background image panel

The

Figure 559: Use Background Image Button v2.37
is a toggle button that turns display of the image on or off. Turning the button off will not clear the settings; it just hides the image. When you turn the button on again, your previous settings are back. Try it - click the button a few times. In v2.43 the equivalent button is the

Figure 560: Use Background Image Button v2.43
button.
Image selection is controlled on the row labeled

Figure 561: Blender_Image Select v2.37
. There are 2 buttons, a text box, and a final button. The first button

Figure 562: Browsing Image Select v2.37
is used for browsing for an image. The 2nd button

Figure 563: Image Select History v2.27
is for selecting an image from a history list. (This will be empty for the first time. Selecting it now will display the image you currently have selected.) The text box
agestrand_logo.ipg

Figure 564: Image Select Textbox v2.37
allows typing in the file directly. The

Figure 565: Image Remove
button removes the current background image. Version 2.43 is the same with the addition of the

Figure 566: Image Refresh
button that refreshes the image or movie, and the

Figure 567: Image Users Count
button which shows the number of users of the image block.

The third row is called Texture and will not be used for this tutorial.
The fourth line, labeled blend controls the transparency of the background image with a slider. A setting of 0 is completely solid and 1 is completely transparent. You can adjust it by clicking left or right of the knob for gradual changes, clicking and dragging on the slider for rough settings or clicking directly on the blend text for numeric entry.

The use of the blend function will become obvious once we start tracing our logo. For now, play around with it, see how it changes the image, and put it back to the 0.500 default.

The fifth line, size, controls the size of the image. This size setting is independent of the zoom for the 3D view window. To see how the size works move the default cube off to the side so that you can see both the cube, the background dialog and the background image. Now watch both the cube and image as you change the size. Notice how the image changes size but the cube doesn't? Now press NUM+ and NUM- to change the view's zoom. Now both the cube and image change size.

The final row controls the X and Y offset for the image. These controls move the image up and down (Y) or left and right (X). These settings can be useful if you need to reposition the image from the default position. Like the size, these offset values are independent of the view. As you change the offset values the cube you added earlier won't move. Now scroll the view using by clicking and dragging the SHIFT MMB and notice how the cube and image move together?

Once you start tracing the image you won't be using the size or offset setting.

66.3. Delete the cube

Delete the cube (select it, press XKEY and select All from the Erase menu), and set the size so that the entire image is viewable. Then set both the X and Y offsets to 0 .

Set the view to top view (NUM7) for the rest of the tutorial!
Finally minimize the Background Image dialog. You'll only need it to adjust the blend setting until you finish tracing.

66.4. Introducing the Bezier Curve

The BÉZIER CURVE ${ }^{1}$ allows drawing graceful, complex curves and only requires a few points. Specifically, it only requires 4 points for a curve: two end points and two control points.

For the moment set the blend to 1 on the Background Image dialog. With the center of the 3D view still selected, press SPACE -> Add -> Curve -> Bézier Curve. Alternatively you can use the Add menu at the top of the screen or press SHIFT \rightarrow AKEY to jump directly to the add menu. Be sure to be in EDIT MODE not OBJECT MODE.

[^53]

Figure 568: The Curve you added.

Unlike the traditional Bézier Curve each Bézier vertex has 3 points. I've labeled the 3 points for the left vector: A, B and C.

Just like any other vertex you select the control points and the end points with RMB and move them with standard commands like GKEY, SKEY, EKEY or RKEY. if you wish to rotate, scale, or move the whole curve, then select all the vertices on the curve using one one of the various selection methods, and then use the GKEY, SKEY, or RKEY

Point \mathbf{A} is an end point. The curve will always go through this point. Points \mathbf{B} and \mathbf{C} are control points. These points influence the path of the curve as it leaves Point A. Because the path stops at \mathbf{A}, Point \mathbf{B} has no real effect on the path. Instead \mathbf{B} is currently locked with \mathbf{C}. (If you move either \mathbf{B} or \mathbf{C}, the other will move.) We will fix Point \mathbf{B} to move independently a little later.

The control points have 2 effects on the path exiting the end point: direction and distance (these are termed slope and magnitude in math circles) from Point \mathbf{A}. The direction will provide the direction that the path will follow when it leaves \mathbf{A} and the distance will determine how long the path follows that direction before it starts making its way to the curve's next point.

[^54]

Figure 569: N.B. To easily make sharp turns; take B point and move it really close to A.
\square
Figure 570: Take C point and move it in the exact direction you want to turn

Figure 572

The example to the right shows how the control points influence the path of the curve. In the top picture, we see three curves. The top curve is the default curve. In the next curve down, \mathbf{C} has been moved to give a drastically different direction. Notice how the path leaving A moves away from the other end point. The third curve, the distance was changed dramatically. Watch the path move much higher than the other two curves.

In the bottom example, I've built a heart shape using just the points shown. Dragging the bottom end point down will make the shape closer to a leaf. You'll be able to do the same at the end of this tutorial. Go ahead move around the points for the curve and see how they all interact. Get a good feel working with the curve and when you're ready we'll move on to tracing.

Now that you know how to work with a bezier curve set blend back to 0.5 on the Background Image dialog so we can start tracing.

66.5. Modeling the lighting bolt

66.5.1. Rough Tracing

If you don't already have a curve add one now. It will help to move the curve to the center of the yellow lightning bolt.

Figure 573: Curve Tools for Blender 3D version 2.37

The first step in tracing is to click the Polygon convert button on the curve tools panel. You'll find this in button on the Buttons Window. You may need to select the Edit Panel. Press F9 if this panel isn't visible. In Blender 2.59, the 3D View panel's Tool Shelf (T) houses the Curve Tools, including Set Spline Type, from which you should select Poly. You must be in Edit Mode to reach the Curve Tools.

Noob Note: The 'Curve Tool' panel will not appear if you don't have a bezier curve already placed. I learned this the hard way.

Figure 574

Next, move the vertices of the curve to the points shown in the image to the left. This is called Rough Tracing because you don't need to exactly trace the image.

You only need to approximate the image. Moving the vertices should be done using the instructions from the Creating a Simple Hat ${ }^{2}$ tutorial.

Note: Selecting the best place to put a vertex is a bit of an art that you'll acquire as you work with curves. For now follow the arrows along the cutouts and place each of the vertices as shown.

This tracing uses all the vertices of the polygon. Other cases, you'll need add or remove extra vertices by selecting the end point of your curve press CTRL and click LMB. At the place you clicked a new vertex will appear connected to your curve.

[^55]

Figure 575

After moving the last vertex, we finish the rough tracing by pressing the CKEY to close the polygon. You should see an image similar to the one on the right. (If you only have an outline switch your view port shading to solid by pressing the ZKEY for now.)
Question: how do you close the polygon in blender 2.61?
Notice how the polygon doesn't cover all of the yellow of the bolt and how in some places the polygon fails to conform to the shape of the bolt. This is expected and should not be a cause for concern. We correct this in the next section.

Once you've finished several logos you should begin to get a feel for the required placement of vertices. Until then, here are some general guidelines to keep in mind:

- A gradual curve may only require a single vertex.
- Tight curves will likely require two closely placed vertices.
- Curves may not require a vertex at all - you can define some curves using the control points of the adjacent vertices. We did this for both of the inside curves of the bolt above.
- Corners require a single vertex placed where the curve bends. A square, for instance, requires four vertices - one at each corner - to be modeled properly.
- The end point of a curve will always be on the curve. So should all of the vertices you place.

We are now ready to move onto the next step modeling the logo.

66.5.2. Polishing the Tracing

Press ZKEY to return to wire frame mode, then Press the Bézier convert button to convert the polygon back to a curve.

This will convert your polygon back into a curve. Nothing obvious will happen. If you look close, you should notice the number of points on the curve tripled. When you converted the curve back to a Bézier curve, Blender changed all of the polygon vertices to Bézier vertices. While the polygon vertex is a single point the Bézier vertex is made of an end point and 2 control points. So the extra points are the control points of the Bézier vertices. These control points are placed along the curve to produce the same shape as the converted polygon.

Figure 576

Our job is to move the control and end points so that the curve follows the edge of the bolt. The trick is to move the 2 control points between adjacent end points to bend the curve to the edge of bolt. First, move the right control point of the top-left vertex. This should pull the curve from its end point to more closely match the line of our bolt. After placing this point, we move to the next control point following a clockwise direction around the bolt. Use the RMB to select the point you want to change and move it with GKEY to place it.

Noob Note: if you wind up with pink lines when you select the contral handels, that means you hit HKEY by accident, and have put the control point in manual. to correct this hit HKEY again to put it back into "easy" or auto mode.

As you move the second point notice how the curve exiting the first end point is drawn away from the edge of the bolt being traced. We now have to adjust the first control point again to get that line back on track. This quickly turns into a balancing act adjusting each set of control points. The trick is to make smaller movements for each iteration of adjustments. Make a game of it and move the control points all along the bolt. Always move along the clockwise direction. This practice is not just for consistency, it keeps your place and ensures that moving a control point doesn't change a portion of the curve that you've already completed. In time you learn to move the first point only part of the way. Then moving the second brings the curve for the first into correct alignment.

If you have some trouble aligning the curve to the edge of the bolt, consider adding a new point. There are two (at least) ways to accomplish this:

- Select 2 points that surround the problem spot where you want a new vertex and click the Subdivide button on the Curve Tools 1 tool panel.
- If near an end point, Select it, press the CKEY to open the curve, then Control+LMB click to add a new point beyond the end of the selected final vertex. Press the CKEY to reclose the curve.

Figure 577: Adding a new end point

The new end point should be positioned and then you have to adjust the curve on both sides of the end point you move. Any time you move an end point be sure that the curve going into both adjacent (clockwise and counter-clockwise) end points still aligns with the edge of the bolt.

Figure 578: Finding trace defects

Once you've made the complete circuit around the bolt, you're ready for the final polishing of the edge of the curve. Press the TAB to switch to the object mode. This makes the polishing easier as Blender hides the points and lines for editing the curve. Now zoom in on the bolt's edge using the NUM+ or Control+LMB drag. Use Shift+MMB drag the screen so that you closely observe the entire edge of the bolt while zoomed in closely. Look for places where the curve pulls away from the edge.

Also look for sharp bends at each of the end points that should be smooth. You can see several defects that I found in my project after tracing the bolt. Switch back into edit mode to fix the curve and then go back into object mode to look for more defects.

Figure 579: Correcting poorly shaped curve

Sharp end points are adjusted by decreasing the angle between end point and the control points. Many times that is impossible to do, without messing up what you're trying to draw, so the other way is to add more curves by subdividing (WKEY \rightarrow subdivide) the existing curve between two end points, and playing with the control points to get a nice smooth curve,

Places where the curve pulls away from the edge can be resolved by moving the control point closer to the edge. In the above image the curve was found to have been pulled away from the edge. This was fixed by moving the control point a little to the left.

Figure 580: Final Polished Curve

Here's the final polished curve for my project. It is shown in both edit mode and object mode so you can clearly see both the control and end points on the left and the curve to the right.

Noob note: In blender 2.37 and later (not sure of earlier versions) pressing the HKEY toggles the control points between free and aligned (Edit Mode). Free Control Points are good for sharp angles, and aligned are good for smooth curves. This shortcut is in the Space -> Edit -> Control Points menu.

This concludes the tracing of the bolt. All that remains is making the curve 3 dimensional, applying a material and positioning the final object. Before doing that, we will trace the circle in the next part of the tutorial. Save this project if you want to take a break before continuing. You'll need it on the next turorial.

66.5.3. Adding a Third Dimension

Figure 581

First, give the object some depth. if you are in wirefame, hit ZKEY to go in to solid mode, then down on the editbuttons screen, locate the "Curve and Surface" panel, and set the following values:

- Back and front buttons are selected (depressed), otherwise it will be see through.
- Extrude: 0.2 (the height of the extrusion on either side)
- Bevel Depth: 0.02 (the radius of the round bevel applied to the exruded edge)
- BevResol: 4 (the number of subdivisions on the bevel curve)

Noob note: In previous versions, Extrude and Bevel Depth were Ext1 and Ext2.)
Now you can use your knowledge from earlier in this book to change the material and/or add texture to your logo. Feel free to rotate, add lighting, or whatever floats your boat. Don't forget to press ZKEY to toggle wireframe mode.

Figure 582

You should now have something that looks like the photo on the left.

66.6. Modeling the red circle

It will be helpful to make the lightning bolt distinct from the circle part of the logo, by applying a yellow material to it before continuing.

Method one is the easiest, so try it that way first.

66.6.1. Method 1 - using bezier circle

Outer circle

Figure 583: Bézier Circle

Switch to object mode by hitting TAB if you aren't already there. LMB somewhere near the center of the background photo. Press space -> Add -> Curve -> Bézier Circle to add a closed bezier curve with four points forming a circle. If you are in solid draw type, switch to wireframe with ZKEY so you can see the underlying image better. Hit SKEY to scale the bezier circle to fit over the circle in the image.

Noob note: You should stay in object mode for now, as it's easier to scale and move the bezier circle without having to keep track of which end points are selected.

Figure 584: Match up left and right sides

You will probably find that the bezier circle is not dead center on the sample logo so you will need to move it with GKEY to center it. You may need to scale it and move it several times to get it right. You will also find that the circle in the sample image is actually a slight oval, so scale and position the bezier circle, along the X axis, and Y axis, so that it touches the circle in the image on the left and right sides.

Figure 585: Move top and bottom points

Normally, you could then scale the circle and constrain it on the X and Y axis by using SKEY, but it turns out that the oval isn't regular anyway, so just select the point on the top and hit GKEY and
then XKEY, or YKEY to move it around until it touches the top of the oval in the image. Then do the same for the bottom point and you should have a pretty good fit.

Inner half circle 1

Figure 586: Circle in circle

Just to understand what's happening in the next steps, switch to solid view with ZKEY. As you can see, you now have a circle, but it's filled in the middle where you want to be able to see through it. To cut a hole out of the circle, be sure that the circle is selected, then hit Shift+S -> "cursor to selection, to put the cursor in the middle, switch into edit mode, if you're not already in it, and then Space -> Add -> Bézier Circle. A new circle will appear inside the larger circle. As you can see in solid mode, the new circle actually cuts its shape out of the larger circle surrounding it.

Noob note: make sure you are in Edit Mode or it will add the new Bézier circle without cutting it out of the existing one.

Figure 587: Place two points at either end of the bar

Switch to wireframe mode with ZKEY so that you can see the underlying image again. Scale up the smaller circle so that it approximately fits the inner part of the circle in the image. Don't worry about getting it exact since you'll be manually moving all four points anyway. Move the bottom point of the bezier circle to the top left corner of the bar that crosses the circle.

Figure 588: Place two points at either end of the bar

Move the right point of the circle to the other corner. When you create a Bézier Circle, Blender by default sets the alignment of all the control points to aligned. To make the diagonal bottom edge you need to break the alignment on the two lower sets of control points. Hitting the HKEY will toggle between free control points and aligned. Once you've selected the two lower bezier points and hit the HKEY to make them free you can move each of the inner control points to create a nice straight edge. Then move the other two points and adjust their control points until you have a pretty good approximation of the rest of the inside curve.

Inner half circle 2

Figure 589: Wider bevel has a nice look

Next step is to press space -> Add -> Bézier Circle again and repeat the same steps, but for the lower opening in the logo. Once you've completed both openings, switch back to solid view with ZKEY and examine your work. Make any adjustments you need to swithing the draw type back and forth as needed.

Make it 3d

Figure 590

The next step is to make this part three dimensional like you did with the lightning bolt. Go to object mode with TAB, then select the editing buttons.

Under curve and surface, set:
Extrude/Ext1 to 0.05,
Bevel Depth/Ext2 to 0.02
BevResol to 4.

Now that we have beveled it there will be a problem. Switch back to wireframe mode with ZKEY and you'll see that the bevel has widened everything so that the circle no longer matches the original image. This can be fixed fairly easily by reducing the width parameter under curve and surface to about 0.98 .

Figure 593

For final steps, select the lightning bolt again and switch into sideview with NUM3 and hit GKEY and then ZKEY to move both elements up or down until the bolt is inside the circle.

Apply a red material to the circle and bar portion. Finally, you can go to view, then to background image and hit the background image button to hide the image now that it is no longer needed. At this point, you can add any finishing touches for lighting and camera angles and render the logo.

After rendering you be have something like this:

Figure 594: Final render

66.6.2. Method 2 - using mesh circle and edges

Instead of using the Bézier Curve, you can use Circles.
There are two ways of doing this:

Easy way

Place two vertices (CTRL+LMB), one on the inner circle and one on the outer circle so that they form a line. This line has to be perpendicular to the circle you are tracing. Then place the cursor on the middle of the circle. Then just use the spin tool under the Mesh tools tab (360 degrees and 32 steps). This creates a circle made of 32 adjacent squares. Give it more steps to increase the quality of the circle.

Detailed way

Go to the top view (NUM7), and press SPACE -> Mesh -> Circle. Accept the 32 vertices, you can make it less but it won't look as good.

Move it into the center of the circle, if you don't then I advise you have wireframe on for the moment (press Z). Then press S, for scale, and make it the correct size for the inside of the circle. Once you have that in the correct place, like so:

Figure 595: Adding the first circle

You may need to stretch it sideways a little, then press ' E ' to extrude (choose Only Edges), press 'S' to scale and another sized circle will appear, size this appropriately then click LMB.
Deselect the second circle, then select four vertices that are near each other and that form a square.

Figure 596: Selecting the four vertices

Now press F and a face will appear, i.e. the box will be filled (turn off Wireframe, press z). Now do this right around the circle. To do this, hold down Shift and Ctrl, then draw a circle around the two vertices you wish to deselect with the Left Mouse Button. Then draw a circle around the next two vertices while holding down Ctrl and LMB, NOT SHIFT. Shift changes the control from selecting, to deselecting.

Once you have gone all around the circle it's time to make the line through the middle. To make the crossing line you need to move 4 of the vertices slightly; example below:

Figure 597: Moving the four vertices

Once you do this, highlight the 4 you moved, then press F .

Making the circle 3D

Highlight the full circle by pressing A either once or twice. Go to Side View, and press E for extrude and drag it down so that it is the same thickness as the lightning bolt (you'll see why).

Now look at what you have made... it looks nice enough but where the lightening bolt goes through the circle it looks a bit odd so we will make it look like the circle is laying on top of the bolt. Where the bolt goes through the circle, note the edges and the vertices. Move them so that the lines are just either side of where the bolt goes through. Then make new edges using CTRL+R on the outsides of these edges. Like so:

Figure 598: Creating the overlap

Now you have squares where the lightning bolt hits the circle. Change to Wireframe (z) if you are not already in it then highlight the 16 vertices of these boxes and raise them. Now do the same for where the center line crosses the bolt but create 4 lines instead of two. To explain why, I've created a diagram.

With two points the line bends from the end, to the dot.

Now the line bends from the other two points, this
is the effect we want.

Figure 599: Why we use 4 points instead of 2

Now we can make the finishing touches, add subsurf and set it to 2 or 3 and add color! Then you are done :-) I won't go over subsurf and adding color because people have covered that better than I could in previous 'Noob to Pro' pages. I think that's everything.

You should now be looking at something similar to:

Figure 600: The finished article

66.6.3. Method 3 - using mesh circle and a cube

Tracing the No symbol is somewhat more complex than the lightning bolt. The reason is this symbol is hollow and requires additional planning to trace than just following an outline of an object.

I'll be back to explain the difficulties in the near future, so stay tuned.
One way to do this is outlined below:

- The first thing to do is add a mesh circle. Hit SPACE and select 'Add -> Mesh -> Circle'. (This circle is mostly for measuring purposes, and will ultimately be removed.)
- Scale (SKEY) and move (GKEY) the circle so that it's sides are even with the sides of the logo circle, and the top and bottom are an even distance from the top and bottom of the logo circle. (The logo circle is not perfectly round.)

Figure 601

- Make sure you're in object mode (TAB), add a cube (SPACE, 'Add -> Mesh -> Cube') and place it (GKEY) on the right edge of the circle so that it is centered on the right edge.
- Scale (SKEY) the cube so that it is the same width as the wall of the circle and touching each side of the wall.
- Now, we want the 3Dcursor at the center of the logo circle. To do this, go back to object mode (TAB), and select the circle that we added earlier (RMB), then press SHIFT+SKEY and choose 'Cursor -> Selection'. (This is the main reason why we have this circle here.)
- Reselect the cube ($\mathbf{R M B}$) and TAB to edit mode.
- Choose NUM7 for the top view, and use RMB to select only the front face of the cube. (Before this you have to make sure that you are in 'Face select mode'.) In the image below, I've used MMB to rotate the scene slightly so that you can see that only one face is selected (Note: In this
picture there are two faces selected. The one you should select is front one in front view NUM1 or the bottom one in top view NUM7 - it's the same face).

Figure 602

- Press XKEY and choose Erase Vertices. This will reduce the cube to a square
(User note: Erase Vertices will erase all the vertices connected to the two faces selected. In this case this is all the vertices in the cube and will completely remove the cube. I think "Erase Faces" would be correct.) (Another User note: Only one face shall be selected, not two as shown in the picture.)
- Press NUM7 to go to the top view then select the Editing panel (F9).
- Press AKEY to select all, and then make sure that the rotate settings are set to degr:360, Steps:50, Turns: 1. (Actually, Steps can be whatever number suits your fancy. You may want to play with various values.) This is just like we did for creating the man's hat.
- Click on 'Spin' to extrude the square into a ring.

Next we will create the bar.

- Staying in Edit mode, hit SPACE and select 'Add -> Cube'. If you haven't moved the cursor since the ring extrusion, it should appear in the middle of the ring.
- Expand (SKEY) the cube so that it just encompasses the inside circle of the ring

Figure 603

- Scale (SKEY) the square in the Y axis (YKEY) so that it is approximately the thickness of the logo bar.
- Return to object mode (TAB), and rotate (RKEY) the ring together with the just designed bar so that it is parallel to the logo bar.
- In Edit Mode (TAB), squash the ring in the Y direction (SKEY, YKEY) so that it fits the logo ring.

Figure 604

- In edit mode, reselect just the bar. To do this, choose 'Face select mode', and do an area select of the face selectors near the center of the bar (use the BKEY, or SHIFT+RMB methods).
- Re-rotate (RKEY) the bar (in Edit Mode) so that it is parallel to, and in the middle of, the logo bar.

Figure 605

- The next thing we need to do is scale the bar so that it is precisely the same width as the logo bar.
- To do this, choose scale (SKEY), and press YKEY twice. This will go to local scale mode (local to the object). This is why we were rotating the entire ring, since the ring and bar are part of the same object.

Figure 606

- We no longer need the original circle now, (it should be sticking out from the top and bottom of the ring), so select it (RMB), and delete it (XKEY).
- If you hit NUM3 You'll see that the bar and the ring are at completely different heights than the lightning bolt. Select and scale them so that they are all roughly the same height (the bar should be slightly higher than the bolt, and the bolt slightly higher than the ring so that all the proper parts are covered.).
- You can use the trick above to select (RMB) only the bar, scale it in the Z axis (SKEY, ZKEY) and then hit SPACE and choose 'Select -> Inverse' to select the ring (all but the bar).
- When done rescaling, press NUM7 to look at your handiwork.

Figure 607

- There is one last bit, which is to slightly rotate the whole ring around the X axis so that it is below the top of the bolt and above the bottom.
- Once that's done, all that's left to do, is color in the ring.

66.7. Extra Practice

An Alternate More Difficult Tutorial ${ }^{3}$

3 HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=34\&T=3025

67. Curve and Path Modeling

Frighteningly enough, we know what you're thinking. You're thinking that mesh modeling is cool and all, but what about if you want to make an object that has smooth curves in it? Ok, so maybe you weren't thinking that, but in case you're curious move on to the next page to learn more.

68. Intro to Bezier Curves

68.1. Bezier curve basics

You wanted curved lines? Well here is how to get them, using Bezier curves ${ }^{1}$.

- First start a new Blender project, and delete the default cube.

Figure 608: It should look like this.

- Press: 'SPACE -> Add -> Curve -> Bezier Curve' to create a new curve.

As you can see, there is a black, curvy curve on your screen, inside what looks like a normal mesh (purple).

There are 2 parts you can move on a bezier curve.

- Control Point - Define where each section of the curve starts and finishes.
- Handle Point - Tells the curve how to bend and turn before getting to the destination.

By now you should have discovered you can drag the points around using the GKEY, and that the handles are fixed in position relative to their control point. This is not the only thing you can do.

Here is a list of things you can do to the curve to modify it:

1. Grabbing: You can drag the points around separately or in groups.
2. Rotating: Using the RKEY, you can rotate a control point around with your mouse. This is different from a mesh, as rotating the control point will move its handles too.
3. Scaling: Using the SKEY, you can scale either an individual handle, or a whole control point at once. This changes how strongly a handle influences the curve's shape, not its direction.
[^56]Whatever you do to the defining points, Blender calculates the curve so it flows smoothly from one end to the other. When you leave Edit mode, only the black curve will remain visible, so don't worry about your control points getting cluttered!

Noob note: At any time you can convert a Bezier curve into a mesh by entering object mode (tab if in edit mode), hitting ALT-CKEY and selecting 'mesh' from the menu. You may then operate on the mesh like you would any other. This is great for creating a smooth Bezeir curve, converting it to a mesh, and spinning it around an axis.

68.1.1. Extending your curve

So far your curve has only two control points, but in order to build up more complex shapes you will need to add many more! There are quite a few ways to do this, but lets start with the basics:

Extruding

Much like a mesh, you could use EKEY to extrude one end of your curve with a new control point. Select an end control point (not a handle, this will cause you a few problems) and press EKEY, then LMB when it is in the correct location. The new point will have an exact copy of the handles of your old point, so you will have to rotate and adjust it accordingly.

Noob note: you can use CTRL+LMB to achieve the same effect.

Subdividing

Instead of adding onto the end of you curve, you can also split up sections of it into more control points, and here's how:

1. Select two adjacent control points using RMB.
2. Press the WKEY, and select Subdivide from the popup menu.

- The segment should now have a new control point mid-way between the first two, that sits exactly on the curve that already exists. Now you can add more shape to this section using the new point.

68.1.2. Filling your curve

So far we have been working with a continuous curve, with a definite beginning and end. But what you can do is turn this wiggly line into a wiggly shape.

- Select any part of the curve in Edit mode, and press the ALT + CKEY. This will connect your last control point back to the first, and fill in the shape.
- If you cannot see any fill, you are probably in wire-frame mode. Press the ZKEY to recover.
- If you have weird results, say fill leaking out from the curve or empty sections, you have probably got a couple of parts of the curve crossing themselves. Curve sections should never cross if you are making them into a filled shape!

68.1.3. Handle types

Thus far with curves, whenever you move a handle around, its partner will move too to make the curve flow smoothly through the control point. This is not the only way to do things however, so here is a list of the different things you can set them to do:

1. Linked rotation (Pink handles): Both handles always point in opposite directions. This leads to a smooth curve.
2. Free rotation (Black handles): The handles can be moved independently of each other, you can form corners and sharp bends in the curve.
3. Automatic (Yellow handles): The handles are linked in rotation, and automatically rotate and scale to form the nicest (mathematically speaking) smooth curve through your points. If you try to move a handle, both will default back to Linked rotation.
4. Vector (Green handles): The handles act as vectors, with each pointing directly towards the next control point. This leads to completely straight edges (assuming the next control point is also a vector), so you can construct polygons. If you move a vector handle, it will default to Free rotation, but the other will stay as a vector.

- Note, that the hotkey for handle type is VKEY, the specific window should occur, then chose from the list.
- Note, each handle from a control point can be assigned a separate type independently (excluding Auto). Just select only the handle vertex instead of the control vertex.

68.1.4. Combining curves

As well as having one single filling curve in your object, you can combine several unconnected curves to create more complex shapes.

1. Firstly create a filled shape, as described earlier.
2. Now, stay in Edit mode and 'SPACE - Add - Curve - Bezier Curve' to create a new curve on top of your existing one.
3. Manipulate the new curve so it fits inside the larger shape somehow, this will not work if the lines intersect.
4. Making sure only the new curve is selected, fill it with ALT+CKEY.

You should see that the space enclosed by the inner curve is no longer filled. You can continue by adding more curves inside a larger one, or even a larger one around them all.

68.2. Extruding from 2d to 3d

You may have noticed you can only modify the curve in two dimensions, and now it's time to explore the third dimension! Extruding is where you define a two dimensional 'profile' shape, and it is 'swept' through space to create a volume.

Noob note Bezier circles are not true circles, they are approximations. For artistic purposes, this may not really matter, but for precision modelling only NURBS circles should be used. This is due to the math used to describe the Bezier and NURBS curves.

68.2.1. Make a simple face of bezier curves

- Make a curve and fill it: Use the steps above to create something simple, and fill it in using ALT+CKEY.

Figure 609

Noob note: you may find it easier to use Bezier circles, instead of filling discrete curves.

68.2.2. Extrude the simple face

Curwe and Surface

PrintLen 0.0000

Center	Center New
Center Cursor	

PathLen: 100	
CurvePath	CurveFollo
CurveStretch	
PathDist Offs	

| DefResolld: 12 |
| :---: | :---: |
| - RenResolld 0 |

Back	Front	3D

Width: 1.000
Extrude: 0.200
Bevel Depth: 0.000
BevResol: 0
BevOb:
TaperOb:

Figure 610

Set the extrude depth: Find the 'Curve and Surface' box in the Editing tab of the Buttons window. There is a slider on the right hand side called Extrude. Set the Extrude depth to something other than 0 , and probably less than 1 .

Figure 611

Behold, your 2d curve has transformed into a neat 3d structure. The great thing is, you can still edit the curve as if it were just 2 d , and the changes will update in real time.

68.2.3. Bevel the simple face

Now you have an extruded shape, you should start playing around with some of the other curve settings on offer, so here is a description of how the Bevel depth and Bevel resolution sliders work.

Try setting the Bevel depth to a small value, say 0.02 . This will cut off all of the sharp edges, and give a bevelled effect all around the shape.

Figure 612

As you may guess, Bevel resolution decides how many times the algorithm divides up an edge.
Higher values than 0 result in smooth curves rather than sharp edges, but dramatically increase the number of vertices in the shape.

Try setting the resolution to 3 or 4 , you should see an effect like this:

Figure 613

68.2.4. Using a bevel object

Noob note: After you finish making the filled shape exit to object mode. Then add a curve and rename it to bevel or anything under the Link and Materials tap or just use the given name of the new curve. Then deselect the new curve and select your filled shape. With the filled shape selected type in the name of the new curve that you have just created in the BevOb: box. It is under the Curve and Surface tap at the lower right corner.

This technique allows for much more sophisticated extending of our curves into 3d. Basically, we can create a new curve which will be extruded all the way around our main shape.

1. Create a curve: Once again, make a filled shape like our friend the smiley. Noob

Translation: In Object Mode, Add a bezier curve, go to edit mode and make a smiley.
2. Create a bevel object: Add a new curve and return to Edit mode, leaving it as the default shape. Noob Translation: Go back to object mode and add a new bezier curve (preferably a closed curve using CKEY), then go to edit mode.
3. Assign the bevel to the curve: Type the name of the second curve (Default is Curve.001, or just Curve if you used a circle before) into the relevant box in the 'Curve and Surface' menu. Noob Translation: In edit mode (editing the second bezier curve) under the links and materials tab, on the OB: text field, change the name of the curve to bevel (the name doesn't matter though, it just makes it easy to remember. Go back to object mode and select the smiley and go to edit mode. Under the Curve and surface tab on the BevOb: text field write bevel (or the name you chose for the bevel line).

Noob note: DON'T PANICif you end up with a useless mess! This is expected, as we have yet to understand how the bevel object works.

Basically, the curve we created as a Bevel object is used to define the shape of the edge around our filled shape.

- The height of each part of the Bevel object above or below the local X axis is how far in front or behind the filled shape to extrude from the flat curve.
- The distance to the left or right on the local Y axis is how far towards or away from the center of the shape to pull each bit of the curve.

For our purposes, we want very little variation in the width of the bevel. This will hopefully solve the problem of all sorts of bits of the shape overlapping each other.

The default curve also starts and stops on the x -axis, we want to move the start and end points so one is higher than the other. (Preferably either side of the x -axis too, we don't want the extruded shape too far away from its curve).

Assuming you have kept the default new curve for your bevel object:

1. Move the left-most point down a whole large grid-square, and right until it is two or three small squares from the main axes.
2. Move the other point up a whole grid square, and left until it is roughly on the blue center-line.
3. Modify the control handles if you feel it's necessary.

This should leave your shape looking nice and neat, extruded quite a long way with a smooth curving edge. Experiment with the shape, see what works and what doesn't!

Noob note: if you have trouble cleaning up the 'useless mess' after assigning the bevel object to the extruded object, then keep the bevel object close to its central point (not sure what this is actually called, but it is the pink dot that you see when you select the curve). The following steps helped me resolve the 'useless mess'.

1. If you are in object mode, change to edit mode, then type A to select the entire curve (you may need to type A twice to first deselect, and then select the curve).
2. Now type G to grab and move the curve, move the selected curve over the pink dot that you see, and you should start seeing your extruded object look more like it was before it became the 'useless mess'.
3. It may still need some work, so rotate (R) and scale (S) the bevel curve until the edges of your extruded curve match the shape of the bevel curve.

Noob note: When rotating the bevel curve, you might notice that you can easily invert the bevel by rotating it by 180 degrees.

Noob note: The sliders for Extrude, Bevel depth and Bevel resolution are not used once a bevel object is in place.
(To come: Closed shape Bevel Objects)

68.2.5. Front and Back

I would use wood working analogies to communicate what I expected to see and what I saw instead. Using a bevel object I assumed would be very much like using a Router with an Edge molding bit attached. When you run your wood piece thru your router its edge gets shaped/hollowed out. All those nice decorative edge effects, we see on furniture, and joinery aids, we may not even know exist, are generated by routers.

With that hope in mind I created a bevel curve object making sure it was smaller than the Extrusion depth (about $1 / 5$ th of it), it was an L looking curve, hoping it will hollow out my Smiley's edges. What I am seeing instead is quite surprising: The buttom $4 / 5$ th of my first filled extruded curve (my Smiley equivalent) is removed, top $1 / 5$ th remains. As if only the top surface has remained after all that work.

68.3. Create a filled, extruded shape

Follow the process above, for speed just use an extrude depth.
Disable Front and Back: Click both 'Front' and 'Back' in the 'Curve and Surface' menu to disable them.

Now you should be able to see right through the curve! Cool isn't it.
Noob note: You can disable just one of the faces and leave the other intact if you like.

69. Curves In 3d

69.1. Bezier Curves in 3d

In the previous page, we learned how to create and basically manipulate Bézier curves in two dimensions, as well as extruding them into the third. Here we will be exploring the '3D' button you may have been wondering about in the 'Curve and Surface' menu and some of its implications.

Curve and Surface

4 PathLen: 100
CurvePath
CurveFollo
CurveStretch
PathDist Offs

Figure 614

1. Create a basic curve: Press 'SPACE - Add - Curve - Bézier Curve' in case you have forgotten.

If you have been playing around with the control points on any curves so far, you will have noticed that they cannot be moved outside the flat plane made up by the X and Y axes. This is because it hasn't been enabled yet, so go ahead and enable it...

1. Enabling 3D editing: Locate and press the button labelled '3D' in the 'Curve and Surface' menu.

Your curve should now look like this in Edit Mode:

Figure 615

Our previously simple curve has now been covered with arrows! These indicate the direction of the curve, and also the normal size and tilt. But more of that later...

69.2. Getting started in 3D

Editing the curve should now be child's play, assuming you have already completed the tutorials on 3d meshes.

1. Rotate the camera view: Use the MMB or some Numpad keys to rotate the view so you can see the 3d axes.
2. Move a point: Select one of the control points (NB: A point, not a handle) and move it with GKEY. You may want to constrain its motion to the new Z axis using ZKEY twice.

If you rotate around the curve, you can see how the interpolation works in three dimensions, and that the arrows still follow its direction correctly. It is worth noting that they are all mostly vertically (for the moment at least), this will be discussed in the next section.

69.3. Extruding revisited

I'm sure you will be delighted to learn that we can still use the Extrude option on 3d curves! Try cranking up the value, and you will see a surface created through your curve, at right angles to the 'normal' arrows.

The Bevel settings will also work as before, but you probably don't need to use them unless you are editing a 'filled' curve (CKEY).

Also, The Subdivided option(W, 1) still applies while working with curves. Just select two(or more) handles of the curve that are right next to each other, and subdivide. You should have a newly created handle(s) in between the handles you selected to subdivide.

69.3.1. Bevel Objects

(Information on bevel objects to come...)

69.4. Curve Tilting and Normal-scaling

Use TKEY to tilt the curve, clockwise or counterclockwise (looking along the line of the curve). Use Alt-SKEY to scale the curve, making it wider or narrower.

69.5. Convert Curve to Mesh

Use Alt+C [ObjectMode $>$ Menu $>$ Object $>$ Convert to $>$ Mesh from...].

Shape typ 2D = mesh with auto add faces and edges Shape typ 3D = mesh only edges and vertex
(To be expanded...)

70. Deforming Meshes using the Curve Modifier

70.1. Setting up your Mesh

While this example will be done with a cone primitive, you can use the default cube or another shape of your choosing so long as it can be loop subdivided along the axis you wish to curve. Delete the default cube if you're not going to use it as your base mesh, and add your chosen primitive. In this example, we'll be using a Cone.

Figure 616: A basic cone in Edit Mode

- Set your view to the X-Y Axis (Top View) by pressing NUM7, the 7 on the keypad.
- Press SPACE $>$ Add $>$ Mesh $>$ Cone
- A smaller number of vertices are needed, since this cone will become just the tip of the finished shape.
- Left Click and drag to reduce the number of vertices to 12 , then click the Ok button. (Note: On newer versions of Blender you will have to hit $\mathbf{F 6}$ to get to this option.)
- Press TAB to enter Edit Mode, or choose Edit Mode from the bottom of the 3D viewport.
- Switch views to the Z-X Axis by pressing NUM1 (1 on the keypad). Your screen should now look something like the picture at left.
- If your cone is selected (one or more faces are pink, one or more vertices are yellow) press AKEY (Select/Deselect All) until they are deselected.
- Select the point of your Cone with the RMB and drag it upwards with the blue arrow. You can hold down the CONTROL key if you want to contstrain the scaling to set units. For this example, 5 squares of height were added to the cone.

70.2. Extruding the Cone

Figure 617: Extruded
cone

- Still in Edit Mode, press the NUM8 repeatedly to rotate your view to the underside of your cone. Select the center vertex of the circle, and hold down CONTROL, then press the +KEY on the keypad. This will select all of the adjacent vertices of the base. (You could also select the whole cone AKEY and deselect the top point by holding down SHIFT and selecting it with the RMB to achieve the same effect.)
- Go to front view by pressing NUM1
- Extrude the base of the cone by pressing the EKEY and choosing Region.
- Pull the new vertices away from the cone a distance and click the $\mathbf{L M B}$ to set them in place.
- Press the SKEY and widen the new base of the cone a bit.
- Continue extruding the cone, widening the base after each extrusion until you have at least 5 segments. The more segments you have, the smoother your curved cone will be.
- Another way of adding segments is with the Loop Subdivide tool. CONTROL + RKEY to bring up the purple placement ring, then LMB twice to add a subdivision.
- On Blender 2.6, the best way to do it is by selecting the side edges and subdivide them by pressing WKEY then clicking on Subdivide, after that you can select the number of cuts you want.
- You may find that your cone is quite large indeed now, so switch back to Object Mode (TAB) and resize it with the scale tool. While you're in Object Mode, try stretching the cone out a bit to make a nice long needle.

70.3. Making a Curve

Figure 618

- In Object Mode, Z-X orientation (NUM1), make sure you have nothing selected and press SPACE $>$ Add $>$ Curve $>$ Bezier Curve
- Rotate your curve 90° (holding down the CONTROL key to make it rotate in 5° intervals) Noteor just R-KEY and then type 90, so that it lines up with your cone. Move it off to one side so that its not hidden by your cone.
- Grab the center vertex of each end and adjust its rotation (RKEY) until you have a nice shallow dome shape.
- Scale the curve in size (SKEY) until it is larger than your cone.
- Look at the panel below the 3D space, you should see the Editing panel is selected

Figure 619
(F9KEY) Just below the panel buttons will be a window called Link and Materials. If your curve is selected, you will see a box with OB:Curve in it. This means the name of the curve is "Curve". This is important because that exact name is needed to deform the cone.

70.4. Applying the Curve to the Mesh

Figure 620: Modified cone

- Select the cone in Object Mode. In the Editing panel window (F9KEY), the rightmost panel has two tabs, Modifiers and Shapes. Choose the Modifiers tab if it is not already selected.
- Click the Add Modifier button and choose Curve from the popup list.
- In the OB: box, type the exact name of your Bézier Curve (it will be "Curve" without the quotations if you left it as the default.)
- Notice the six buttons underneath the OB: and VGroup: boxes (in the Modifier Panel). They are $\mathbf{X}, \mathbf{Y}, \mathbf{Z},-\mathbf{X},-\mathbf{Y},-\mathbf{Z}$. They affect which plane the curve deforms. For this example, you'll need to select the \mathbf{Y} button.
- Move your Cone so that it overlays the curve in the 3D space screen, and notice how it follows the Bézier Curve.
- You can modify the Bézier Curve as well as the cone repeatedly until you are happy with the design.
- If you switch to Edit Mode, notice that the cone returns to its straight orientation.
- To apply the deformation to the mesh permanently, in the Modifiers panel, click the Apply button next to your Curve modifier.

71. Making Your Creation Smoother

71.1. Getting started

To begin, open a new scene in Blender. Let's clean up the scene a little by selecting the lamp and camera in the scene, press M to move them to a different layer and click on the fifth layer from the left to place the objects. Go back to layer 1 and delete anything else. You may also want to get rid of the grid by opening the View Properties and turning off the Grid Floor and $\mathrm{X} \& \mathrm{Y}$ axes.

To block out our character, we're going to use an object type that is probably the least used and useful of any known to mankind. Let's hear it for... Metaballs!

71.2. Sculpting With "Lumps of Clay"

Figure 621

Go into the top view (important), press Space and add a metaball. Metaballs are a nifty, ancient piece of 3D technology that is useful for creating blobs. (Similar to lumps of clay, eh?) You create
simple primitive shapes and scale and rotate them to block out your character's shape. When the primitives come close to one another, they "bleed into one another" in much the same way that water droplets merge when they touch. Cool.

If you're using an earlier version of Blender that jumps out of Object mode into Edit mode when you create an object, then press Tab to switch back to Object mode, as you won't be able to scale your Meta primitive non-proportionally in Edit mode.

In Object mode, you can change these options for the entire Meta object, while tabbing into Edit mode gives you more options for the selected meta primitive, such as changing the type from Ball to Tube, Plane, Cube, ;;etc.; (You can also make "Negative metaballs.")

Figure 622

Press Shift+D to duplicate the Metaball, and place it where you like. Continue blocking out your character, building enough blobs to represent the limbs or forms you will need to sculpt your masterpiece.

The balls at the end of the limbs, were scaled SKEY larger, and then moved GKEY out a bit more.
Don't get carried away and put in too much detail at this stage: use as few shapes as you need. (This is supposed to be quick and fun, after all...)

71.3. Meta-mess!

You should still be in object mode.
Now that you've got something that resembles what you're after, select all the Metaballs and (be in object mode) type ALT+C -> "delete original", to convert it to polygons so you can actually do something with your blob.

Noob note: if you pick "keep original" you will still have the meta balls present, plus have a mesh version of the metaballs sharing exactly the same space. When you select "delete original", the meta balls are turned into the mesh, and the circles that the metaballs were originally in hang around, but are empty.

Figure 623

Still in object mode!
Delete any of those black rings left over from the metas and select your new polygon mesh.
If you Tab into Edit mode you will see terrifying ugliness instead of nicely gridded mesh. "Surely we can't be expected to create anything useful out of this!" you shriek. Take it easy, my friend. It's time to add a Decimate modifier (make sure you're in object mode when doing this to see changes).

Switch back to object mode!
The Decimate modifier (you will only see things change if you're in object mode) will do two things for us. Its primary job is to reduce the poly count of a mesh. A pleasant side-effect for our
purposes is that it will begin to rearrange the topology into a more manageable heap of triangles and quads. Keep reducing the Ratio slider below 0.5 until it becomes as coarse as you can stand. You want the lowest polygon base you can have that still maintains enough detail in the limbs and shapes you made with the Metaball phase.

One thing to watch for is that this process sometimes creates holes as it does its best to simplify the mesh. I find that usually you can slightly change the Ratio to fix the problem, but if you're still finding holes, check out the "Tips \& Tricks" section at the end.

As you can see, this step greatly reduces the Face Count, which will be good later. Next we need to get rid of as many of those triangles as possible. Click Apply (in the modifier panel)

Switch to Edit mode!

Press A until all of the vertices are selected (turn yellow) and hit Alt-J to convert the faces from triangles to quads, which will subdivide better. Now you should have something you can work with.

71.4. Beginning to sculpt

Right next to the Modifiers panel is the Multires panel. (Note: In recent versions of Blender this is not its own panel---it is a Modifier.) A multires object has the options to add numerous levels of smooth subdivision to a mesh. While you can use the sculpt tools on any polygon or nurbs mesh, the great strength of sculpting with Multires is the ability to jump back and forth to different levels, quickly sketching out the gross form at lower levels, and adding finer detail at the higher levels. Add the Multires and Add a level; we're ready to sculpt!

Noob note: If nothing seems to be happening while you're trying to sculpt your mesh, it's because you haven't applied your Decimate. it must be locked down and applied before you're actually allowed to do anything to your mesh.

Noob note: Only apply multires once, doing it a few times will quickly increase the polygon count to amounts that will really slow blender down

In case you haven't noticed, Blender's different modes offer different tool sets and options. To make the sculpting tools available you need to be in Sculpt mode, accessible through the Mode drop-down in any 3D window header. You'll see two new tabs next to the multires panel, Sculpt and Brush. Sculpt has most of the options you'll need to begin shaping your mesh. Note that most of the different brushes in this panel have hot-keys which will save a lot of time ($\mathbf{G}=\mathrm{Grab}, \mathbf{D}=\mathrm{Draw}$, $\mathbf{S}=$ Smooth, etc.). Most important here is changing the brush size and intensity. Pressing F and dragging the mouse will resize the brush, while Shift-F will allow you to adjust the Brush Intensity. You can also turn on Symmetry to paint, for instance, both sides of a face at one time. This can speed up tasks tremendously, as long as your mesh is aligned to the axis properly.

72. Using Textures

This tutorial was created using Blender v2.49

Having said everything about Textures in Blender in the manual HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/TEXTURES ${ }^{1}$, many people find it still hard to grasp the concepts behind the texturing system and applying Textures.

There are some brilliant tutorials about texturing on the net, I personally like TEXTURING FOR Dummies ${ }^{2}$ by Leigh Van Der Byl. It is free (as in free beer, not as in free speech like this book), so you should download and read it now, to take the most advantage out of this tutorial. We're going to see how to apply the texturing concepts within the Blender texturing system. I will explain it using an image texture and procedural textures, but be aware of the fact that the texturing system is quite complex, and more advanced maps are created with the use of a few combined textures.

If you're really into texturing you need to learn how to UV-MAP ${ }^{3}$, there's no way around it.

72.1. Colormap

Figure 624: Image 1a: An image applied as a texture to a plane. DOWNLOAD TEXTURE ${ }^{a}$

[^57][^58]This is the most basic mapping type. You can use an image or a procedural texture to change the color of a material.

Texture Map lrput Map To

Col	Nor	Csp	Cmir	Fief	Spec	Amb
Hard	Ray Mir	Apha	Emit	TransLu	Disp	

Stencil Neg No RGB

DVar 1.00

Disp 0.200
Warp fac 0.001

Figure 625: Image 1b: The Map To Panel for a colormap.

Using an image texture:

- Add an Image texture in the Texture Buttons and load the image (this is necessary also for UV mapped textures).
- The button Col in the Map To Panel uses the RGB information of the image to change the color of the material.
- The slide number button Col governs the blending amount of the texture, Neg inverts the colourvalues.
- If you use No $R G B$ only the intensity information from the picture is used. The target color is then taken from the RGB sliders in the Map To Panel.

Using a procedural texture: The result depends on the type of value the texture provides.

- If the value is of type intensity (e.g. Clouds), the color is taken from the RGB sliders in the Map To Panel.
- If the value type is color (e.g. Magic), everything is handled as with image textures.

Note:

Color and intensity? What the heck?
An image texture (and other textures as well) may provide two different types of values:

1. RGB-Color information
2. Alpha information. Now we have to take a look at a few different scenarios.

- If an image has no alpha channel and you
- don't activate Use Alpha or Calc Alpha everything is easy - the texture provides only RGBColor information. An intensity value is then calculated automatically if necessary.
- activate Use Alpha the texture provides no intensity value and it is not calculated. If you now activate $N o R G B$ the intensity value is again calculated from the color information. So either you use Use Alpha and No RGB or none of the both.
- activate Calc Alpha the texture provides automatically calculated intensity values. Now No $R G B$ has no effect.

72.2. Diffusemap

Figure 626: Image 2a: Diffusemap settings with a small range (0.2).

A Diffusemap changes the amount of diffuse light the material reflects/absorbs. This is controlled by changing the reflectivity (Ref). A material with a rough surface may have the color white, but absorbs light to a greater amount than light with a smooth surface. For more on diffuse reflection physics, see DIffuse reflection ${ }^{4}$.

Noob note: Most of the settings described below will be found in the "Influence" section under the texture/material panel in blender 2.61

Let's test:

- In the Texture buttons (F6), in the Map Image panel, make sure UseAlpha is unchecked.
- In the Material buttons (F5), in the Map To panel, uncheck Col and check Ref.

[^59]To understand the effect of this and all other mappings, we have to discuss the meaning of the NumButton DVar (Destination Value).

- White in a texture (or an intensity value of 1) will be mapped to the value of the $D \operatorname{Var}$ Button. So if you set $D v a r$ to 1 , white will be mapped to 1 , if you set $D \operatorname{Var}$ to 0 , white will be mapped to 0 . The result is multiplied with the value of the Var number button.
- Black on the other hand (or an intensity value of 0) does not change anything, so the settings from the material will stay unchanged. The difference between the material settings and the DVar button is the range for the texture.

Let's take a look at an example.

Figure 627: Image 2b: The image used for the Colormap applied as a Diffusemap with a small range (0.2).

If we use the default settings for the Diffusemap the range of the values is small.

- Ref is 0.8
- Dvar is 1.0
- White pixels in the texture change the Ref value to 1.0 , black pixels in the texture don't change the Ref value at all.

So the resulting range for Ref is $1.0-0.8=0.2$.

Figure 628: Image 2c: Diffusemap with full range (1.0).

When we change the Ref parameter in the Shaders panel to 0 , we'll get a much larger range of Ref values from 0.0 (black pixels in the texture) to 1.0 (white pixels in the texture).

There are other ways to achieve a larger range, you could also set Ref to "Inverted" (click it twice, it will be painted in yellow), DVar to 0 and Ref in the Shaders panel to 1.

Note:

Why is this so complex?
Well, with complexity comes flexibility. You can use an image (or procedural texture) for a few mappings at once, e.g. Color, Diffuse, Alpha, Spec and the like.

72.3. Luminositymap

Luminosity is the property of self-illumination, i.e. of objects emitting light. So we change the Emit value with this texture.

This light does not illuminate other objects - you would have to use Global Illumination (e.g. Yafaray) to use an emitting object as a true light source. Radiosity rendering does not work with Luminositymaps.

Everything that was said about the DVar value applies here exactly as for Diffusemaps.

72.4. Specularitymap

Specularity is the second most important material attribute. Specularity fakes the reflections of light sources. Of course you can modify the general specularity with a texture. In Blender you can change three different attributes related to specularity:

1. Spec: The degree of specularity. You can't set values above 1.0 with Specularitymaps, but you could invert the texture and set Spec on the Shaders panel to a higher value and Dvar to
the lowest value of your range. So the texture actually lowers the specularity in all areas, that shall have a low specularity.
2. Hard: The hardness of the specular reflections. Sometimes called "Glossiness". A DVar of 1 is equivalent to a hardness of 130 . Use the same method as described above to achieve a greater range for the hardness.
3. Csp: The specularity color.

You will probably use some kind of "Dirtmapping" (stenciling) to change the specularity in certain regions of an object, like an often touched object, that is shinier on the used or touched parts.
For more on specular reflection physics see SpecUlar REFLECTION ${ }^{5}$.

72.5. Reflectionmap

A Reflectionmap would be used to fake real raytracing reflections, either because you don't want to use raytracing, or you don't want to create a scene, or you need a special effect you don't get with raytraced reflections. A Reflectionmap would be a Colormap, typically an Environment Map ${ }^{6}$. Since you can use prerendered Environment Maps, you can fake a surrounding for your object. Sometimes it is sufficient to use a simple Colormap that just bears the right colours, e.g. if you want to create a stormy sea it is not necessary that the clouds above are truly reflected in the water.

Environment Maps are a bit more complicated to create, see the respective section in the manual.
A very different kind of texture would be used to change the amount of raytracing reflections, the RayMir value. This is useful for something like a stained or dirty mirror. Simply click the RayMir button in the Map To panel and lower the DVar.

72.6. Transparencymap

Transparency- or Alphamaps change the (partial) visibility of an object. They don't have to be transparent themselves (though it doesn't hurt, see MAKE A material partially TRANSPARENT ${ }^{7}$). You will often use an image as Colormap and Transparencymap together. A nice example for a Transparencymap is in the paragraph Translucencymap.

There's one catch though, you can't change Fresnel transparency with a Transparencymap. So you have to use plain transparency, or fake the Fresnel effect with the method described in the section MAP INPUT ${ }^{8}$.

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/SpECULAR_REFLECTION
HTtP://wIKI.blender.org/index.phb/Doc:MANUAL/TEXtures/TyPES/Environment_MAPS
Chapter }73\mathrm{ on page 689
HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:TUTORIALS/TEXTURES/MAP_INPUT_
TEChnIQUES
```


72.7. Refractionmap

Well, there's no such thing as a Refractionmap. You can't change the IOR with a texture. You may try and use Environment Maps to fake refraction, but the result is often not worth the effort (for stills, in an animation it might not be that noticeable).

72.8. Translucencymap

Translucency is a material property of all semitransparent materials, like frosted glass, paper, plastic, cloth, skin, stained glass and the like. It allows objects to be lit from behind.

Totally clear glass does not show where the lightrays travel through it. But if the glass is dirty or uneven you will see the path of the light. In the first example (Translucency 1) the glass material has a transparency of about 0.5 and a translucency of 0.78 . So the glass is brighter where the lightrays hit the surface from behind. Additionally a Transparencymap - which sets Alpha to 1 lets the surface appear to be stained. If we use the same map also as a Translucencymap (Translucency 2), the stain appears to be lit - which it would be of course also in reality.

Figure 629: Translucency 1: Material with Translucency and a Transparencymap, but without a Translucencymap. This is an example from the releasenotes of Blender v2.32.

Figure 630: Translucency 2: Material with Translucency and a Transparencymap and a Translucencymap.

Figure 631: Material settings for example Translucency 2 (blue glas).

The settings for the material (Z-Transp, but raytracing shadows):

Figure 632: Adjusted Clouds texture.

The texture itself is a Hard Noise Clouds texture, with modified Brightness and Contrast.

Note:

To get the shadow and those colors as in the example images set the light to use Ray Shadow and the plane to recieve transparent shadows by enabling TraShadow in the shaders tab in the Material buttons.

72.9. Bumpmap/Normalmap

Texture

Map ingut Map To

Figure 633: Settings for a Bumpmap in the Map To panel.

BUMPMAPS ${ }^{9}$ are a technique to create the illusion of geometry. They could be used for something like a canvas or any small structures that are either difficult to model, or are too computationally expensive. As long as you don't get too close with the camera you won't notice the difference.

They come in several different flavors:

- A Bumpmap texture in the nearer sense is a greyscale image or procedural texture mapped to Nor. Don't activate the button Normal Map in the Texture Buttons for a Bumpmap.
- A Normalmap is an RGB image whose color information bears the information about the direction of the surface normal, also mapped to Nor. For this you need to activate the button Normal Map in the Texture Buttons.

See also the manual about the differences between Bump and Normal Maps ${ }^{10}$.

Figure 634: The bumped image.

Figure 635: The Bumpmap, a simple greyscale image.

In the example the bump map was used additionally to the colormap. The Nor slider in the Map To panel sets the depth of the bumping.

[^60]
72.10. Displacement Map

Figure 636: A displacement map deformes the mesh

A Displacement Map creates real geometry, i.e. it moves the vertices of a mesh. Therefore you need a lot of vertices. You can use it as a texture mapped to Disp, or even more flexible using the Displacement Modifier ${ }^{11}$.

72.11. Dirtmap

Figure 637: Our picture has seen some bad times.

[^61]I will try to explain what a Dirtmap is and how you apply one. There are different things that people mean when they talk about dirtmapping.

- Sometimes a Diffusemap is meant.
- Dirtshading is often used as a term for Ambient Occlusion.

With a Dirtmap I simply mean any texture that breaks the clean, uniform, untouched look of image or procedural textures. You may do this by simply combining some partially transparent textures resp. textures that affect only parts of the picture in a semirandom way. You can also select parts of the object with a STENCIL ${ }^{12}$ texture. And of course you can (and will) combine both of these methods.

As long as two textures don't affect the same property you can simply apply one after the other. To select only parts of your texture to apply another texture with the same properties use stenciling. Or use stenciling as a convenient method to separate two different sections on your texture.

You need at least three textures for this.

1. The basic texture (e.g. color).
2. The selecting (stenciling) texture.
3. The Dirtmap affecting the same or other properties then the first texture.

The stenciling texture has to provide an intensity value, so if you want to use an image (or other RGB) texture you must activate No $R G B$.

Figure 638: The stenciling texture.

The image texture used as a dirtmap for our example contains some semirandom noise.

[^62]

Figure 639: Settings for the stenciling texure.

Nor for the stenciling texture was not really necessary, but it adds a nice 3D effect. Since the stenciling texture is mostly white, I had to use Neg to use the black pixels as mask.
The third texture ("Dirt") affects Col, Nor and Spec.

72.12. Use UV Coordinates for your Maps

It is often necessary to create UV coordinates for more complicated textures/objects. UV coordinates only describe the geometry of the mapping, i.e. which pixels to map on what face. You can use the UV coordinates to create any mapping you want.

1. Create an UV map for your object. This is beyond the scope of this tutorial, see UV MAP BASICS ${ }^{13}$ and the section about UV Mapping in the manual.
2. Don't turn TexFace in the Material Panel in the Material buttons on. Though TexFace is a very simple way to use UV textures, the normal texture mapping methods are much more flexible.
3. Load the image you used for UV-mapping (or any image with the same size) as an image texture. Change Map Input to $U V$.
4. Now you can use this image - or multiple different images - for your maps, including color-mapping.

The advantage of this technique is that you have much better control over your texture. Even if you just want to texture something like a cube shaped object, you're often better of with UV mapped textures.

[^63]
73. Using a texture to make a material partially transparent

This tutorial was created using Blender v2.49

To understand the collaboration of textures and material we will use the opacity of a material - the alpha value - as an example. We will show how to set the opacity/transparency of a material with different types of textures.

The Alpha value of the material is set with the A (lpha) slider in the Material panel. This is the basic Alpha value. If Alpha is 1 , the material is fully opaque, if Alpha is 0 , the material is fully transparent.

Now you change that basic Alpha value with a texture.

1. If the basic Alpha value is 1 you can only lower it with a texture, because 1 is the maximum value anyway.
2. If the basic Alpha value is 0 you can only increase it with a texture.

The target value of Alpha that can be achieved with the texture is set with the DVar button in the Map To panel. If Alpha is 0 and DVar is 0 than nothing will happen. You can set either:

1. Alpha to 1 and $D \operatorname{Var}$ to 0 , then the texture will lower the Alpha value, or you can set
2. Alpha to 0 and $D \operatorname{Var}$ to 1 , then the texture will increase the Alpha value.

Both methods are possible and equal in the result, but for clarity we will always use method number 1. There are more combinations possible, so it may be that you find tutorials with different settings.

73.1. Using a greyscale texture - white for opaque

Figure 640: Image 1a: Greyscale Image of leaf

In Img. 1a the black areas shall become transparent, the white areas shall become opaque.

- Load the image as Image texture, turn off Use Alpha.
- Set the Alpha value in the material buttons to 1 . This is the default value anyway.
- Activate ZTransp (or RayTransp if you need refraction)
- The Map To panel:
- Turn off Col (or else the texture would also affect the color of the material)
- Turn on Alpha inverse, you have to click it twice. We need inverse here, because the texture shall affect the material from its black parts.
- Turn on Spec inverse (you don't want your transparent sections to show specular highlights)
- Set the DVar value to 0 . The default value is 1 .

Figure 641: Image 1b: Material settings for the texture

Now let's take a look at the texture.

- Where the texture has a value of 0 (e.g. black) it will affect the Map To values fully (because we have used inverse).
- Where the texture has a value of 1 (e.g. white) it will do nothing.
- Where the texture has a value in between 0 and 1 it will affect the Map To values partially.

Figure 642: Image 1c: Result of applying the Greyscale Image to a plane

The result is shown in $\mathbf{I m g} .1 \mathbf{1 c}$, the texture applied to a plane rendered against a white world background.

If your texture is inverted, i.e. black shall become opaque and white transparent, simply use the normal Alpha and Spec setting in the Map To panel.

That's it. It's basically the same for all settings, the only problem that remains is sometimes to know which value a texture will give if you use transparent textures or colored textures.

73.2. Using a partially transparent texture to make the material transparent

Figure 643: Image 2a: Using a partially transparent texture

Often we have a partially transparent texture, and want to directly use that transparency of the texture to make the material transparent too. We have now to think a bit about the values that are generated by the texture itself: If we load the image texture with Use Alpha, the Alpha value of the image is used as input value for Alpha and Spec in the Map To panel. So a fully transparent pixel in the image has an Alpha value of 0 , a fully opaque pixel has an Alpha value of 1 . This is exactly the same situation as above, simply turning on Use Alpha and Premul(tiply Alpha in Advance) will give use the same result as with the greyscale image.

Figure 644: Image 2b: Texture settings for a RGB/Alpha texture

So:

- Turn on Use Alpha in the Map Image panel of the texture buttons.
- Turn on Premul in the Image panel. This is necessary to get real partial transparent borders.
- Turn on Col in the Map To panel additionally.

Figure 645: Image 2c: The result

The rendering result is pretty similar to Img. 2a, only that it is affected by lighting (and casts shadows).
Don't forget to turn on TraShadow in the Shaders panel for the object that is receivingthe shadow.
(Noob Note: In this case add a plane colored white just below the "leaf." This is the object the you should turn on TraShadow with as this is the object that will receive the shadow. This is also providing that you have a light source properly positioned.)

74. Creating Basic Seawater

[ed. note: Need a much more basic introduction to what materials, textures, maps, and all the accompanying terms are with illustrative examples before diving into a specific sea-water example. Much more effective learning when you know what you're changing.]

Figure 646: Settings for the seawater material
75% of the Earth's surface is covered with water. In homage to this great fact, we will develop your materials skills first by creating basic seawater.

74.1. Create 3 linked planes

First we create a new file in Blender and delete the default cube by pressing XKEY and confirming the popup dialog. Now switch to top view with NUM7 and enter SPACE > Add > Mesh > Plane to create a plane. Then scale it up to 20 its original size with the SKEY the way you've already learned in one of the earlier tutorials. Go to the side view with NUM3 and duplicate this plane two more times using Alt-D (not Shift-D), moving the plane down on the Z axis by two grid spaces each duplicate. This will make the transparency of the water more realistic once we set it. Using Alt-D rather than Shift-D makes a linked duplicate, so that the changes we make to one plane effect the other two.

74.2. Create material

Now off to the actual texturing work. Select any one of the planes and press $\mathbf{F 5}$ to bring up the Material Buttons in the Buttons Window. You will probably find two new small windows appearing here: one called Links and Pipelines and the other one Preview.

Click the 'Add New' button in the 'Links and Pipelines' tab to create a new material named 'Material.001' or so. To make life easier we'll rename it to something meaningful like 'Seawater' by simply clicking it and typing in the letters, as shown here (SHIFT+DELETE in field to clear):

Now, on the same tab, give the seawater material a color of RGB ($0.100,0.310,0.435$). Find the tab that reads 'Mirror Transp' and click it. Click on 'Ray Mirror' and 'Ray Transp'. For the "Ray Mirror" box, move the 'RayMir' slider to 0.3 , the 'Fresnel' slider to 2.5 and the Depth to 5 . For the 'Ray Transp' box, move the 'IOR' slider to 1.33 , the 'Fresnel' slider to 2.0 and the Depth to 5. This will give the water realistic transparency and reflection. Also click the 'Shaders' tab, change 'CookTorr' to 'Blinn', move 'Spec' to 2.000 , 'Hard' to 180 and 'Refr' to 10.000 . This will make the water look more glossy.

Now we'll add a procedural texture to our seawater, which will give it a "wavy" look. Click the Texture button (looks like bricks) or press F6 to view the texture buttons subcontext. Click on the knob to the left of the texture name and select the "Add New" button. This creates a new texture named "Tex.001" or so. Click on the name and change it to "Waves".

Go to the Texture Type pull-down (F6) and select 'Clouds'. On the Clouds tab change 'NoiseSize' to 0.050 . Our Waves texture is ready; next, we will refine how it is applied to our Seawater material.

Noise Size increases the size of the noise, in this case, the clouds. Soft Noise blends the intensities and reduces the contrast. Makes a mellow effect, like soft waves. Hard noise creates a high contrast, and brings out individual 'shapes'.

If you want to add more detail to your water, add another texture and rename it to "LargeWaves". Make it a cloud texture like the previous one, but make it's 'NoiseSize' 0.300 and use 'Hard noise'.

Figure 647: The final rendered image

Left click on the Materials button (looks like a red sphere) to return to the material buttons subcontext. Look at the Texture panel, and you'll see that the "Waves" texture has been automatically associated with the Seawater material.

Select the 'Map To' tab. Click the 'Nor' and 'Spec' buttons so they're selected and have white text (the white text indicates a positive mapping). Click the 'Hard' button twice so it's selected and has yellow text (the yellow text indicates a negative mapping). Click the 'Col' button so it is not selected, this button will show any color in the texture which we do not want. Find the 'Nor' Slider and move its value to about 5.00.

If you created the "LargeWaves" texture, select the "LargeWaves" texture under 'Texture and Input', go to the 'MapTo' tab, deselect 'Col', select 'Nor' and move the 'Nor' slider to 7.00. Do not select 'Hard' or 'Spec' this time.

For lighting press Space $>$ Add $>$ Lamp $>$ Sun. You shouldn't need to move the sun or change any of its settings. Finally move the camera to the edge of the plain and move it up towards the sky a bit.

Go to the Scene tab (F10), and look for the six buttons next to the big render button. Deselect all these, leaving only the 'Ray' button selected. This will tell Blender not to render some features in our scene that we really don't need. Go and press F12 to render the water, it may take a while depending on your system.

Admire your water, and maybe drink a tall glass of something refreshing!

74.3. Extra Practice

This tutorial might also help you make even more realistic water: LINK ${ }^{1}$

[^64]
75. Mountains Out Of Molehills 2

This tutorial shows you how to use displacement mapping to make a simple environment.

1. Make a grid. (Add/Mesh/Grid) 32×32 will do just fine. Be sure to create a Grid instead of a Plane, or you'll end up with just a flat plane! This is because a Plane only has four vertices to manipulate - one for each corner - while a Grid has many, many more. A 32x32 Grid, for example, would have over 1000 vertices. The more vertices there are to manipulate, the more effect displacement mapping will have on the finished product.
2. Set it smooth. (Editing/Link and Materials/Set Smooth)
3. Make a new material for it. (Shading/Material/Add New)
4. Make a new texture for the material. (Shading/Texture/Add New)
5. Go to Shading/Texture Buttons. You can see your newly created texture there now.
6. Change Texture Type to Clouds.
7. Change the name of the texture to be more descriptive. For example GroundDisp or something similar.
8. Go back to Shading/Material buttons. You can see our cloud texture applied now, but it's not applied correctly yet. Let's fix this next.
9. Go to Shading/Map To. This defines how the selected texture is mapped on our material. Uncheck Col, check Disp on, and set the Disp slider to a value like 0.200
10. Set camera and a few lights to the scene. (This is already done as part of the default scene in recent versions of Blender, such as 2.49)
11. Render.

Several individuals, when working through this tutorial, had trouble getting anything more than a flat plane. A few solutions were proposed (most are still visible on the Talk page), and while each worked in its own way, the vast majority of the time the problem stemmed from creating a Plane instead of a Grid. Be sure to follow each step very carefully to ensure you don't miss anything or do a step incorrectly.

Figure 648

You can tweak the environment easily by changing Nor value in the Shading/Map To. This defines how strongly the displacement texture affects the material.

You could also add subsurfing to the ground area to get smoother results. Also feel free to tweak the texture and try out different alternatives.

Once your mountain looks good, try adding some Mist.

1. Select the "Mist" button on the "Mist/Stars/Physics" Tab among the World buttons
2. Add a Cloud Texture to the World and make it blend from white to gray

The end result is something like this:

Figure 649

76. Basic Carpet Texture

76.1. Goal

I am using a basic scene that I quickly set up before I started to create the carpet material. It shows a monkey (suzanne), a plane, camera, 3 area lamps and 1 spot lamp.

Figure 650: The basic scene setup

The purpose of this tutorial, is to highlight the power of blenders built in shaders and procedural textures to create a carpet material to use in your scenes.

```
NOTE:For those of you needing help getting a similar scene to the one above, here are some axis positions, etc. to help out:
(Spot-Lamp)-X=1.62, \(\mathbf{Y}=0.86, \mathbf{Z}=6.74\); rotation- \(\mathbf{X}=37.26, \mathbf{Y}=3.16, \mathbf{Z}=181.34\);
(Area-Lamp-1) \(\mathbf{X}=4, \mathbf{Y}=3.27, \mathbf{Z}=4.12\); rotation \(-\mathbf{X}=54.67, \mathbf{Y}=-18.59, \mathbf{Z}=-109.47\);
(Area-Lamp-2) \(\mathbf{X}=-2.07, \mathbf{Y}=-2.08, \mathbf{Z}=4.85\); rotation- \(\mathbf{X}=29.37, \mathbf{Y}=-28.98, \mathbf{Z}=355\);
(Area-Lamp-3) \(\mathbf{X}=0.315, \mathbf{Y}=-2.89, \mathbf{Z}=4.29\); rotation \(-\mathbf{X}=49.23, \mathbf{Y}=-10.63, \mathbf{Z}=6.68\);
(Monkey) \(\mathbf{X}=0.05, \mathbf{Y}=0, \mathbf{Z}=0.42\); rotation \(-\mathbf{X}=58.61, \mathbf{Y}=-16.07, \mathrm{Z}=23.245\); DIM (dimensions) \(\mathbf{X}=2.734, \mathbf{Y}=1.969, \mathbf{Z}=1.703\);
(Plane) \(\mathbf{x}=0, \mathbf{y}=0, \mathbf{z}=0\); (no rotation); \(\mathbf{D i m e n s i o n s : ~} \mathbf{X \&} \mathbf{Y}=14.30, \mathbf{z}=0\).
```

Alternatively, you could also download A PRE-MADE FILE ${ }^{1}$ in case that you're in a hurry.
NewbyNote: With these settings, I get a big white-out.
NoobNote: Try adjusting each of the area lamps Dist(ance) value. This helped me.

[^65]NoobQuestion: How does the above coordinates help me at all? I haven't found anything that tells me were in 3D space object actually is or the objects dimensions little alone control them. Nothing in the Tutorial up to now even gives a clue to this.

NoobAnswer: Hit ' N ' to bring up the Transform Properties window and enter the values there.

76.2. The Basic Material and Shader Settings

For the basic material for the carpet set the color settings of your material as follows -

Col (R 0.714) (G 0.134) (B .134) Dark Red

Spe (R 0.590) (G 0.210) (B 0.084) Reddish Brown

Mir (R 1.000) (G 1.000) (B 1.000) White

Change the specular shader to ('phong') and leave the default lambert diffuse shader as it is. Change the ('spec') to [0.13] and the ('hard') to [12]. Lastly click the ('Full Osa') button to enable it. If you render now you will notice that the plane looks like an ugly pastel color (if not, you have a different lighting setup to mine and the shader will not look the same as the images in this tutorial.) Don't worry about this ugly looking plane it will soon be a beautiful carpet.

Figure 651: Shader Screen-shot

Figure 652: Base Shader

76.3. Cloud Texture 1

Press 'F6' on the keyboard to bring up the texture panel. Click the bottommost of the long boxes to create a texture in the bottom channel. Create a new texture and rename it something like 'Red Clouds 1'. From the ('Texture Type') pull down select clouds. In the 'Clouds' settings panel change ('NoiseSize') to [0.210] and ('NoiseDepth') to [4].

Now select the Colors tab which will bring up the ColorBand for the texture. Press the orange ('Add') button to add a cursor on the colourband. Next make sure the 'Cur : 0 ' is showing next to the add button and change the colours as follows - (R 0.770, G $0.168,0.168$). Now click on right side of the 'Cur : 0 ' so it shows 'Cur : 1'. Change 'Pos' to 0.6 . Set Alpha to 1 and change the colour to (R 0.732 G 0.243 B 0.243).

Figure 653: Texture 1 texture panel Screenshot

Now go back into the material settings and change the settings in the Map To tab as follows. Click ('Spec') twice so the text becomes yellow do the same for ('Hard'). Now select 'Subtract' for the
texture blending mode. Change ('Col') to [0.188].

Figure 654: Texture 1 materials panel Screenshot

At this stage if you render you might find it hard to notice the difference, it is apparent only where there is low light levels on the plane, don't worry about this at the moment. It means if you render with Ambiant Occlusion you get a nice carpet effect of slightly varying colour.

76.4. Cloud Texture 2

Go back to the texture panel and create another texture, call it 'Clouds' and put it in the channel above 'Red Clouds'. Change ('NoiseSize') to [0.054] and ('NoiseDepth') to 4. Select 'Improved Perlin' from the Noise Basis pull down. Finally change ('Nabla') to [0.031]. Do not change any more settings here.

Figure 655: Texture 2 texture panel Screenshot

Now in the material panel, under the Map To tab change the following - Click ('Nor'). Click ('Spec') and ('Hard') twice so as they are yellow.

Figure 656: Texture 2 material panel Screenshot

Figure 657: Render with the 2 textures so far

As you can see the material is starting to look a bit better, only 2 more textures to go.

76.5. The Final Cloud Texture

Switch to the texture panel once again and create a new Clouds texture in the next channel up. Change ('NoiseSize') to [0.010] and ('NoiseDepth') to [6]. Now click on the 'Colors' tab and change the colour of the left cursor ('Cur : 0 ') to (R 0.713 G 0.262 B 0.223) and Alpha to 0. Switch to Cursor 1 ('Cur : 1') and its colour settings (R 1.000 G 0.363 B 0.000) and Alpha to 1.

Figure 658: Texture 3 texture panel Screenshot

Now in the materials panel under the 'Map To' tab Click ('Nor'). Click ('Spec') and ('Hard') twice so as they are yellow. Leave the blending mode as 'Mix'. Change ('Col') to [0.464] and ('Nor') to [1.00].

Figure 659: Texture 3 materials panel Screenshot

Figure 660: Render of the 3 textures so far

76.6. The Last Texture

Finally, go to the textures panel one last time. Create a new Stucci texture in the next channel up. Change ('NoiseSize') to [0.006] and ('Turbulence') to [10.94]. Click on the 'Colors' tab. The first cursor 'Cur : 0 ' should be black with alpha 0 . 'Cur : 1 ' should be red (R 1.000 G 0.000 B 0.000) with alpha 1.

Figure 661: Texture 4 textures panel

Now go to the materials panel. Under the 'Map To' tab Click ('Nor'). Click ('Spec') and ('Hard') twice. Change the Blending type to 'Subtract'. Change ('Col') to [0.056] and ('Nor') to [0.50]. And that's it. When you render now, you should have a nice-looking carpet material. By tweaking with the colours you can create any colour of carpet.

Figure 662: Texture 4 material panel

Figure 663: Final Render of Carpet Material

77. The Rusty Ball

Making objects with image textures is not really hard for simple objects like balls, cubes, and tubes. I'll show you how to do this:

Figure 664

- Make a new Scene in Blender and delete the default cube (XKEY).
- Make an object you want to have the image on (I recommend a Mesh plane, sphere or tube).
(If you are making a Mesh Plane, change your view to above, by pressing NUM7)

To make a rusty ball I suggest an icosphere with a size of 2 which will fit nicely in the camera view.

- Sequence is: spacebar, add, mesh, icosphere.
- Go to the materials ($\mathbf{F 5}$) and select "O Material" from the popupmenu by the "Add new" button. (the little arrows)
- Now go to the textures (F6) and choose "Texture Type" A drop down (or up) menu appears and you will get many options, the one we need is "Load image". Click it, then select "Load" and navigate to an image you want to use. (Note: JPGs, PNGs or TGAs are recommended for Blender. Bitmaps tend to get all screwy.)
(Noob Note: Do HTTP 1,2 a search for Rust Textures if you do not have one handy.)
- After this, you'll have to specify how your image should be applied to your object. To do this, go to the materials again, where you'll have to find the "Map input" tab (near the textures tab). If you have selected it, you'll see four buttons: Flat, Cube, Tube and Sphere. Select the option which meets your object best. You can see a simple preview of the different options in the "Preview" window and try the different modes.
- Render your object. If you can't see your picture well, you can try to rotate your object or select another option in the "Map input" tab.

You can also render videos onto objects using this method. Just select a movie in the "Load image" dialog and enable the option "Movie" at the textures buttons. NOTE: Blender ONLY works with Full Resolution video, not video which has been compressed using a codec. Most video software will allow you to export video as "full frames" or "no compression". Experiment a bit!

```
HTTP
HTTP://IMAGES.GOOGLE.COM/IMAGES?SOURCEID=NAVCLIENT&RLZ=1T4GGLR_
ENUS262US264&Q=RUST%20TEXTURE&UM=1&IE=UTF-8&SA=N&HL=EN&TAB=WI
```


78. Procedural Eyeball

Level: intermediate

Version: 2.43

Building a better (procedural) eyeball!

Originally created by Jon McKay (Ammusionist) and posted on blenderartists.org/forum HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=85722\&HIGHLIGHT=EYEBALL ${ }^{1}$ The end result of this tutorial is an eyeball that fulfills the following requirements:

1. Single mesh

- I wanted to be able to append a single object into any project.

2. Procedural Textures

- I didn't want to have to rely on image maps that could get lost.

3. Versatile

- One single model to be used for any type of character, be it human, alien or whatever.

4. Easy

- Any effects needed to be quickly accessible. I don't want to be wasting time faffing around with colour-band settings at the texture level

5. Impressive

- This sucker needs to look good any way it goes.

6. One other thing I really wanted was the iris musculature to follow the pupil dilation!
[Total Noob] I found this tutorial both informative and useful. It's best to download the PDF version with the screen shots if you want to get as much info out of it as I did, and in fact, understand all that's going on in the Tute

New Link (08th Nov '11): HERE ${ }^{2}$ is the full tutorial as a pdf file. 9 pages of screenshots and extremely detailed instructions. (1.2 mb)
(Noob note: In my blender 2.49, I had to unclick the 'Traceable' setting on the cornea of my eye when following the PDF tutorial, else I ended up with a giant black 'olive', this does not appear to affect ray mirroring, and corrects my problem.)

[^66]
78.1. Creating the Mesh

[noob note1] Maybe worth to look at this link instead... HTTP://WEB.PDX.EDU/~WLF/TUT.HTML ${ }^{3}$ [noob note2] Broken link.

Note: You might want to check out this video first:
нTTP://www.YOUTUBE.COM/WATCH?V=KKMHUZROABA ${ }^{4}$

The objective here is to make a great looking eyeball. That means it may not be anatomically perfect, but there are some things we need to take into account: The eye should consist of a white (white bit with veins); an iris (coloured bit); a pupil (black but in the centre of the iris) and a cornea (clear bit surrounding the whole eye). These may not be absolutely correct, but these are how I'm referring to the pieces of the eye.

- Start with a ball: Go to a front view (Keypad-1) and create a UV sphere. 24 Rings and segments should be sufficient. It'll give us plenty of smoothness and enough verts to work with when we create shapes.

```
NOOB NOTE: If you want the eye to point toward you, you may have to rotate it
90 degrees. Go to side view [num3], click Rkey and rotate while pressing the
control key. Return to front view.
(Noob Note #2: If you, like most people, want the eyeball's iris and pupil to
point towards the front, but don't want to change views, press the RKEY, then
XKEY to restrict rotation to the X-AXIS, then, while holding CTRLKEY, rotate
the sphere by }9\mp@subsup{0}{}{\circ}.
```

- This sphere will become the coloured parts of the eye, but we also need a second sphere for the cornea. Use the Z key to switch to a wireframe view (if you're not already there). Hit the A key a couple of times to ensure all points are selected then Shift-D to duplicate the sphere.

```
(Mast3rlinkx's addition: I started the other tutorial, Realistic Eyes in
Blender, but it's incomplete. I thought I could use the base mesh of that
tutorial here for a more realistic look, and a less confusing mesh. I used this
shape for the cornea.)
```

- Press S-Key to scale and scale the second sphere to slightly larger than the first. (Hint: Hold shift while scaling for fine adjustment) or you could also enter a value, 1.01.
- Now that we have a nice confusing mesh, we're going to make our life easier. We're going to hide the outer bit for the moment. Hit the "H" key.
- Don't panic like I did the first time I accidentally hit H, you can bring it all back with Alt-H. (Note: In blender Alt + some key often reverses the effect of pressing the key in the first place!)
- OK Now to create the basic mesh for the inner part. Basically, we need to make a concave iris/pupil section.
- Switch to a side view and use the Border Select (B-Key) to select the first four rings and the tip. Now we're going to flatten these. Press "S" for scale "Y" for Y axis only and "number 0" for scale-to zero. (Mast3rlinkx says: If you do this, your poor eyeball will have a pinched appearance where the pupil and iris should be. What you should do is hit S , then Z , then 0 . Then drag along the Z-Axis so the flattened area is flush with the curve of the sphere.) (Noob Note:

```
HTTP://WEB.PDX.EDU/~{}WLF/TUT. HTML
HTTP://WWW.YOUTUBE.COM/WATCH?V=KKMHUZROABA
```

The axis you need to use will change depending on the way you aligned your eye. If you want the front to point along the Y -axis, scale Y to 0 ; otherwise, scale Z to 0 .)

- Now grab the flattened verts with the "G" key and press Y so that it goes the right way, and drag it a little into the eyeball. [noob note: you can also select two opposite vertices in the fourth ring before scaling along the Z axis, and press CTRL +S to snap the 3D cursor to the center of the fourth ring. Then set the pivot point to 3D cursor.]
- Now for the cornea. It's not perfectly spherical; it bulges slightly at the front. We're going to use the Proportional Editing tool.
- First, we need to un-hide the cornea. Hit Alt-H
- Usually you would use the O-Key, but this little menu item allows you to activate proportional editing for Connected vertices.
- Once activated, you can select the type of falloff from the 3D header bar. Select "Root Falloff" (Mast3rlinkx's Second Addition: Instead of root falloff, which looked less realistic than it could have, I used Sphere Falloff and got a more realistic look. That's just my opinion, being someone who points out the anatomically incorrect portions of a cartoon character's appearance.)
- Press A-Key a couple of times again to make sure no points are selected, switch to a side view (Keypad-3) and right click just to the left of the front-most point. We just want to select that one vertex.
- Now comes some fun. We want to drag that point away from the eye in the y axis, so press " G " for grab and " Y " for Y axis. As you move the vertex, you'll see a circle that defines the influence of the proportional editing. Adjust it so it is about $\frac{1}{4}$ the height of the whole eye and drag it out until it looks right.
- To clean the model up, we're going to apply a subsurface and apply some smoothing. Go to the editing buttons and find the modifier panel.
- Add a subsurface modifier and set both level and render level to 2.
- Now hit Tab to switch to Object mode and hit the "Set Smooth" button in the Link and Materials panel.
- Now would be a good time to save your work before we go on to textures.

78.2. Adding the Textures

You're going to need multiple materials on this mesh. It's possible to apply materials to selected faces.

- First, switch to editing mode and change the select mode to Face select. (Oh, and switch off proportional editing if it's still on from the last section)
- Press A a couple of times to ensure nothing is selected.
- Press Z to switch off wireframe; this will be easier without it.
- Place the mouse pointer in the centre of one of the faces on the outside layer of the eye and press "L" to select linked faces. If you get a message saying "Nothing Indicated" try positioning the pointer on a different face and try again.
- Once the cornea section is selected, in the "Links and Materials" panel of the editing buttons, click "New". The counter above it will change to " 1 Mat 1 " best read as material 1 of 1 . Click "Assign" to assign the cornea faces to material 1.
- Hide the cornea faces (H-Key). We'll assign the rest from the outside in. If a face is already assigned to a material and it is assigned to another, it just switches place. Therefore, it's easiest next to assign all the visible faces.
- Press A to select all and, as above, click "New" then click "Assign".
- Now for the iris and pupil. Hit A to deselect all.
- Switch to a front view and zoom in. Hit "B" twice to enable paint select and select the central faces plus one ring out. You can control the size of the selector by rotating your mouse wheel.
- Again, create a "New" material index and "Assign" the pupil faces to it.
- Finally, click A to deselect all and use paint select again to select the remaining faces on the iris. Assign them to a new material.
- Now we're ready to make the materials. Switch to object mode (Tab). Change to the object editing buttons and in the Draw panel, locate the "Transp" control. Set this on. This means as we go we'll be able to see through the cornea.

78.2.1. Cornea Material

We'll start with the simplest texture first. The cornea is basically just colourless and transparent. Note that we're using Z-Transparency instead of Ray Trans. This is because some lighting conditions make the eye under the cornea difficult to see. (NOTE: Until I get the images uploaded, you should refer to the pdf version for the settings. Meanwhile, here is how I see them:

Go to the shading buttons (F5)
Under the Links and Pipeline tab, ZTransp is clicked along with Radio and Tracable.
Under the Material tab, col is white and alpha is 0.1 .
Under the Shaders tab, CookTor Spec is 1.674 and Hardness is 333 .
Under the Mirror Transp tab, Ray Mirror is clicked, RayMir is 0.4 , Depth is 3 --Bonapon ${ }^{5}$ (TALK ${ }^{6}$) 14:31, 6 October 2009 (UTC))
(Noob note: In my blender 2.49, I had to unclick the 'Traceable' setting on the cornea of my eye when following the PDF tutorial, else I ended up with a giant black 'olive', this does not appear to affect ray mirroring, and corrects my problem.)

78.2.2. White Material

The white of the eye's a little trickier. The material here includes some red veins that can be seen at the side of the eye, but not from the front. This can be done with two textures, but there's a cheat we can use.

First, the veins:

```
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABONAPON
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%20TALK%3ABONAPON
```

Switch to Material Index 2 (In the Links and Materials panel, click the right arrow so it reads " 4 Mat 2" or Material 2 of 4).

Click the cross or X next to the material name and add a new material.
Go to the texture buttons:
Using a marble texture, copy these settings.
(Here are the settings that I see
Under the Colors tab:
Cur: 0 : $\mathrm{Pos}=0 ; \mathrm{R}=1, \mathrm{G}=0.617, \mathrm{~B}=0.629$; $\mathrm{A}=1$;
Cur: 1: $\mathrm{Pos}=0.340 ; \mathrm{R}=1, \mathrm{G}=1, \mathrm{~B}=1 ; \mathrm{A}=0$;
Under the Marble tab:
Sharper, Soft noise and Sin are clicked;
NoiseSize=0.634; NoiseDepth=5; Turbulence=26.04;
-- Bonapon 7 (TALK 8) 15:25, 6 October 2009 (UTC))
The two colour band items are shown here separately. This makes a nice marble texture that will evenly cover the eyeball. So how to hide it from the front of the ball? Another colour band trick, but this time in the material itself.

Here they are in all their glory.
(As I see them:
Under the material tab, Col is white and alpha is 1 ;
Under the Ramps tab:
Cur: 0: $\operatorname{Pos}=0.690 ; \mathrm{R}=1, \mathrm{G}=1, \mathrm{~B}=1 ; \mathrm{A}=0$; Input is Shader; (These settings are not shown in the pdf so I have extrapolated. Please correct if wrong.)

Cur: 1: Pos=0..690; $\mathrm{R}=1, \mathrm{G}=1, \mathrm{~B}=1 ; \mathrm{A}=1$; Input is Normal;
--Bonapon ${ }^{9}\left(\right.$ TALK $\left.^{10}\right)$ 15:43, 6 October 2009 (UTC))
The colour band items are both white with one alpha 0.0 and one alpha 1.0. As you can see they are very close together to give a fairly clear line that the veins will stop at. The input setting for the band is set to "Normal" this means the left hand side of the band refers to faces that are parallel to the camera view and the right is faces that are facing directly towards the camera.

I've also added a bit of mirroring so that we get a little scenery reflected!
There's also some colour band fun to be had with the pupil material.

[^67]
78.2.3. Pupil Material

I wanted a nice black texture, but I also wanted to get a red-eye effect if a light is shone directly at it from behind the camera. Why? I guess just because I can, and now so can you!

As before move to the next material index and create a new material.
There's no textures in this one. It's basically black and a little reflective with a nice hard specular.
(In the materials button (F5):
Under the Links and Pipeline tab, Ztransp, Radio, Tracable and Shadbuff are clicked;
Under the Material tab, Col is Black, presumably with an alpha of 1, while Spe is white with an alpha of 0.6 ;

Under the Shaders tab, CookTor spec is 0.594, Hard is 294;
Under the Mirror Transp tab, Ray Mirror is clicked, RayMir is 0.3;
--Bonapon ${ }^{11}$ (TALK ${ }^{12}$) 18:14, 6 October 2009 (UTC))
Have a good look at the colour band settings though!
Position 1 is black with an alpha of 0 and positioned at 0.97 . Trust me on this setting, it took a while to get it right!
(Under the Ramps tab:
Cur $=0 ;$ Pos $=0.970 ; \mathrm{R}=0, \mathrm{G}=0, \mathrm{~B}=0, \mathrm{~A}=0 ;--\mathrm{BoNAPON}^{13}$ (TALK ${ }^{14}$) 18:22, 6 October 2009 (UTC))
The second is all the way across at position 1 and is fully red (with no blue or green) and alpha 1. We want the red-eye to respond to light not angle like the white of the eye, so set the colour band input to "Shader".
(Cur=1; $\operatorname{Pos}=1 ; \mathrm{R}=1, \mathrm{G}=0, \mathrm{~B}=0, \mathrm{~A}=1$ (The alpha of the second position is not shown in the pdf) ; --BONAPON ${ }^{15}$ (TALK ${ }^{16}$) 18:22, 6 October 2009 (UTC))

Now the bit you've all been waiting for - the iris!

78.2.4. Iris UV Map

Save your work and grab a cup of coffee for this part. It's a little involved.
We need the texture to stay glued to the mesh irrespective of the shape of the mesh. This gives the effect of the muscles in the iris expanding and contracting. In a nutshell, we're going to UV map a procedural texture to a single part of the mesh.

```
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABONAPON
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%20TALK%3ABONAPON
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABONAPON
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%20TALK%3ABONAPON
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABONAPON
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%20TALK%3ABONAPON
```

OK, here we go. Switch to a material editing window. You'll need to be able to see both a 3D window and an image window. It wouldn't hurt to see a buttons panel as well. My material screen kind of looks like this.
(Noob Note: To clarify: an "Image Editor" window option is in the Select Window Typedrop down button situated at the very left of the header next to the Viewdrop down. Select UV/Image Editor. To achieve the screen the author describes, first split your view. Then select a front ortho view with NUM1in the right window. In the left select UV/Image Editorfrom the Select Window Typebutton as described.)--WITHALLIGATORS ${ }^{17}$ (TALK ${ }^{18}$) 05:59, 24 February 2010 (UTC) (Blender 2.49b)

Make sure the window is displaying a front view (Keypad-1) this will be important when we unwrap the bit we're going to use.

Change the 3D window to mesh editing / face select and use the brush select (B-Key twice) to select the iris faces.

Now change to UV Face Select mode. The faces should remain selected. (As of Blender 2.46 the UV Face Select mode no longer exists. It's been merged with Edit mode. All you have to do is select all the vertices/faces/edges in Edit mode and press the U-key.)

With the cursor in the 3D window, press "U-Key" for unwrap and select "Project from View". The image window should now contain a nice even circle of dots. Put the cursor in the image window and press "A" to select all the points. Scale and move them until they fit nicely in the outer square of the image grid. Now select each ring in turn using brush select, starting from the innermost, and scale them until they cover from the centre to the outside of the image grid as shown.

Now we've got a map, lets get a texture. Switch back to a modelling screen and change to object mode for the next part.

78.2.5. Iris Material

Firstly, a texture to control the colour blend across the iris. Generally it starts on the outer edge dark and gets lighter as it moves to the centre. Sounds like a job for the blend texture.

The texture itself is fairly straight forward, but again, the colour band is where the magic happens.
I've pictured all three stops in the colour band. Note the alpha values. This blend texture is meant to tint the iris texture so it's lighter in the centre and darker in the outside. (Note: I will have to create my own screen prints as I don't know if the original author has uploaded images or if they are copyrighted. For this to happen, I will first have to complete the tutorial myself.--BONAPON ${ }^{19}$ $\left(\right.$ TALK $\left.^{20}\right)$ 20:34, 8 October 2009 (UTC))

Now for that iris texture:
I stumbled over this texture almost by accident when I was working on a different project. Copy the settings as they appear here.

[^68]Note: the colour band points are black with alpha 0 and white with alpha 1 . This allows the material colour to come through the texture, so we can set the main eye colour in the material buttons.

The main colour is blue which sets the colour of the iris. The centre colour comes from the texture settings:

The blend texture is applied to the UV map input. The green colour is used as a lighten mix to tint the iris near the centre. Using the Stencil option allows the other texture to show through.

The iris texture is applied to UV again and some normal as well as colour is applied. This makes some small shadows in the iris when the light is from the side. Add some lights and have a look at your eyeball so far.

78.3. Pupil Dialation

We're going to use shape keys to create the pupil effects.
We're going to create a normal eye and a cat's eye. Fortunately, the fully dilated eye is the same in both cases so that's going to be our shape key basis.

Go to the edit buttons and select the Shape Key panel.
Make sure "Relative" is selected and click "Add Shape Key" to create the base shape.
Switch to edit mode, point selection. Select just the first loop in of the iris. To select an edge loop in point mode, place the cursor on a line between two points that's on the loop and Alt-Right Click. Shift + Alt-RClick will add the selected loop to what's already selected.

Now scale this to just inside the width of the loop that the iris shares with the white..
Now do the same with each of the other two loops. This should produce a nice dilated pupil.
Hint: If you scale the inner loop out, but the edge of the colour doesn't follow it exactly, drop it and hit Shift-E, then move the pointer to the right. This causes the subsurfaced mesh to closer follow the selected edge.

Now to create the normal (human) pupil shape. Switch to object mode (Tab) and add a new shape key. Name it "Normal Pupil Contract"

Now grab the edge loop between the pupil and the iris. Scale is down so it's just a little bigger than the loop in the pupil. Select all the points in the pupil as well now and scale them all very small.

Now select the next loop out and scale it down, followed by the final edge loop. It should look like this.

Now switch back to object mode and try the shape key slider out. Pretty neat huh?
Let's make a cat's eye now. Switch shape keys back to "Basis" and add a new shape key called "Cat Pupil".

Use the same method as before to scale the edge loops. As you scale, restrict your scaling to the X axis (That is " S " then " X "). You should end up with a shape key like this:

That's pretty much it. Try some other things like rotating iris edge loops in the shape keys for spiral eyes, or weird shapes for the contracted pupil.

Don't forget to save - and enjoy!
(noob note: when switching between sliders, the previous one must be reset, or their effects will combine in weird and unfathomable ways)

79. Creating Pixar-looking eyes in Blender

Figure 665: The final result, with a blue iris.

Note: This tutorial uses the same modelling and texturing technique described in the well-known MAX tutorial by Adam Baroody
(HTTP://WWW.3DLUVR.COM/ROGUELDR/TUTORIALS/EYE/EYES.HTML). ${ }^{1}$ The sole purpose of

1 HTTP://WWW.3DLUVR.COM/ROGUELDR/TUTORIALS/EYE/EYES.HTML).
my tutorial is to make this technique more popular among the Blender users by explaining how to achieve the same result with Blender.

The goal of this tutorial is to make a Pixar-looking eye. One of the main reasons that Pixar's characters really convey life is in their eyes. They have depth, you can see how the eye not only shines but it "collects" light. You may think that you can't achieve this effect without raytracing but you're wrong. The secret of this depth is in the modelling of the eye. Let's see how it works!

79.1. Parts of the Eye

In this picture you can see the "ingredients" of the eye model. The blue mesh at the left is the cornea. Its shape allows for a small spot of specular light to appear on it even if the light is in a far side position. The mesh next to it is the iris. Now notice how it's a bit concave. That's the tricky part - the shape of the iris allows for a wide soft specular light to appear at the opposite side of the lamp direction. This fakes refracted light from the cornea and makes the illusion of "collecting" light and creates depth. The next mesh is the eye pupil - a simple circle.The pupil size is the same size as the iris hole. You can position it close to the inner side of the iris. And finally - the eyeball. It's a simple sphere with a hole in it.

I won't go deep into modelling of each element - it uses Blender's subdivision surfaces and it's quite simple as you can see.

Figure 666

79.2. Materials

Now let's look at the materials.

79.2.1. Sclera

To make the eye white, press NUM3 to go into side view and add a UVsphere with 8 segments and 8 rings. To create the hole at the front of the eyeball, delete the 8 triangular faces that make up one end of the eyeball. $\mathrm{Ctrl}+\mathrm{Tab}+3$ to go into face select mode, B for border mode and select the middle 8 triangles as shown below, press Delete or the X button and LMB on Faces.

Figure 667

The resulting hole will be ringed by 8 vertices (which you could subsequently extrude and use to help you model the sections below - just a suggestion for those who feel capable)

The EYE WHITE ${ }^{2}$ has white color and high values for Spec and Hard (depends on the lighting), as well as a moderately high Ref value ($0.700-0.800$). Optionally you can use a reflection map to make it look more wet but I usually don't do this.
(Noob note: Using a Phong specular shader turned to work quite well.)
(User: Make sure shadow buttons are off or it will black out the iris. Spec and Hard are located in the Shaders tab.)

79.2.2. Iris

- Loop select the opening of the eye (ALT+RMB click edge of opening).
- Duplicate the loop (SHIFT+DKEY). Move the new loop away from the eye a bit perpendicular to the opening.
- With the loop still selected, extrude (EKEY). Without moving the extrusion, press ENTER.
- Resize by half (SKEY then .KEY then NUM5 then ENTER).
- Move the inner loop back toward the eye a bit to form the concave shape.
- Create a NEW material ${ }^{3}$ and create a new texture ${ }^{4}$ called iris. Then hit F6 or click the spotty square icon

[^69]

Figure 668
to open the texture panel, choose Image as the texture type and then press Load Image button and use the image below.

[^70]\square
Here is the eye texture taken from the picture above

Figure 670: The iris

All that is required now is a bit of tweeking of the texture size using the Xsize and Ysize values in the Map Input tab, and scaling the pupil hole size in Edit mode. Also please note to change in the map input settings from 'flat' to 'cube'. You can tweak the RGB values and brightness/contrast of the image to achieve the appearance you want. Use a smaller value for Hard (about 50) otherwise you'll have a too shiny look instead of soft specular that fakes refracted light. The Spec value depends on the energy and distance of the light that illuminates it. Generally you'll need to take care that the refracted ligth on the iris should be no more than half as bright as the small specular spot on the cornea - otherwise you'll achieve the bad effect of two specular spots. Oh, another important thing - join the four meshes before tweaking the texture coordinates. Otherwise you'll
have to do the job twice after you join them, because the texture space is changed. And activate shadeless button.

79.2.3. Pupil

The material for the pupil is a simple black color with the "shadeless" button on.

79.2.4. Cornea

The cornea uses a transparent material $(\mathbf{a l p h a}=\mathbf{0 . 1})$ with $\mathbf{S p e c}=\mathbf{6}, \mathrm{Hard}=\mathbf{2 5 5}$ and $\mathbf{S p e c T r a}=\mathbf{1}$. "Ztransp" should also be turned on (found under Links and Pipelines tab). The cornea is simply a piece that fits exactly in the middle of the hole in the eye white. Make sure that the 'Traceable' button, under Render Pipeline, in the Links and Pipelines tab, is switched off. Noob note: I found it helps to turn off Shadebuff since, as far as I know, you don't generally want the cornea to cast a shadow.

Noob question: I don't know where is the "SpecTra" Value. I'm working on 2.46. Thanks a lot. You can find "SpecTra" under "Mirror Transp"

79.3. Lighting

The lighting is simple - move the eye to a new layer, create a new lamp and make the lamp affect only this layer. Position the lamp at a good angle so you have a small shiny spot of specular light on one side of the iris and a soft spot of "refracted" light on the other side. You can use a backlight to prevent the eyeball from being too dark at the non-illuminated part.

To move the newly created lamp to a new layer, press SHIFT+M and select the second blue button and press OK. P

Noob Question: Why do you need to create a new layer?
That's it! Now you're (almost) ready to start with character animation. You have a nice eye, now you only need a character for it!

79.4. Changing the Eye Color

You can change the color of the eye by either changing the cornea color, or by changing the iris color itself. Changing the cornea color might be like putting on colored contacts.

79.4.1. Changing the Cornea Color

To change the cornea color, do the following:

1. In the mesh which is used to create Cornea set the value of the alpha slider to 0.2 (or more if you desire)
2. Change the color of the mesh to whatever color you like
3. Turn off traceble

Figure 671
4. Render!
(and remember to smooth out everything by selecting the particular mesh going to edit buttons and clicking on set smooth)

Figure 672

Figure 673

Figure 674

79.4.2. Changing the Iris Color

To change the iris color you can either edit the iris image external from blender or you can modify the RGB values of the image when imported into Blender.

Figure 672: Setting the iris color.

Figure 673

Figure 675
(\#) ∇ View Select Mesh Δ Edit Mode os.
Figure 674

79.5. Pixar Eye Video Tutorial

- Ira Krakow's Blender 2.49 Pixar Eye Tutorial ${ }^{5}$

79.6. Useful Links

For rigging an eyeball, (making it stay in one place while turning to look at something) and other eyeball stuff, you can visit this site. This tutorial assumes you already have the eyeball made above or one of your own. CLICK. ${ }^{6}$ 5jun2009, the PDF shows no rigging, only creating an eyeball. (May 10th 2011, the site no longer exists.)

[^71]
80. UV Map Basics

In case you're wondering, UV mapping stands for the technique used to "wrap" a 2D image texture onto a 3D mesh. "U" and "V" are the name of the axes of a plane, since "X", "Y" and "Z" are used for the coordinates in the 3D space. For example: increasing your "V" on a sphere might move you along a longitude line (north or south), while increasing your "U" might move you along a line of latitude (east or west).

Another explanation can be gleaned from the Blender manual. Imagine a paper 3D model of an object, e.g. a sphere, that is to be laid flat on a table. Each of the 3D coordinate of the sphere can be mapped to the 2D coordinate on the flat piece of paper. Blender provides another view of the vertexes(coordinates) in the UV/Image Editor. You can select and edit these 2D vertexes just like in the 3D Editor window. The purpose of this unwrapping of the coordinates is just to map these coordinates to images/pictures so that the 3D image can have a realistic looking surface with textures derived from these images.

You can watch a good video tutorial from the main BLENDER ${ }^{1}$ site. It is called LSCM UV Mapping or (Least Squares Conformal Map UV Mapping) and it is located on this page: http://www.blender.org/education-help/video-tutorials/modelmateriallight/

80.1. The Basics of UV Mapping

Add an icosphere

We'll use a sphere for this demonstration. Make sure you are in top view so the equator of the icosphere we are creating will be parallel to the x / y-plane and unwrapping will give good results (NumPad7 or View \rightarrow Top). Delete the initial cube (x). Then, create a new model, an icosphere (SPACE \rightarrow Add \rightarrow Mesh \rightarrow Icosphere). Leave the settings at default: subdivisions 2, radius 1.0

Noob note:

1. This tutorial is actually an advanced method of unwrapping and is almost complete. It is also straight forward in that, you use actual pictures of 3D objects without any distortions. Unfortunately, NASA and panoramic pictures tend to come in the form of the 360x180 degree format. Blender provides automatic transformation of the 3D coordinates of a sphere into its $2 D$ versions, i.e. these 360×180 degree formats. At the end of this tutorial, there are steps for an alternative method of mapping earth pictures to a $3 D$ sphere.

[^72]

Figure 673

Mark a seam

In side view, select a ring of vertices on the icosphere. (Like an equator). This can be done easily by going to a side on view (NUM1 or NUM3) and drawing a selection box around the middle row of vertices (BKEY + click\&drag). Make sure Limit Selection to Visible is NOT enabled first.
(Limit Selection to Visible appears to be labelled "Occlude Background Geometry" in 2.48. It is the cube button that appears toward the right of the 3D View header [note on edit: this is also not available in the depicted 'Draw Type $->$ wireframe' mode for later versions])
Press CTRL+EKEY and select Mark Seam, or select Mesh menu \rightarrow Edges \rightarrow Mark Seam. This tells the UV unwrapper to cut the mesh along these edges.

Figure 674

Unwrap the mesh

Blender 2.49 is a complete revision, this method wont work but contains useful information and notes by users. For a finishing method that is current see 2.49 B BELOW ${ }^{2}$.

Next, create a window for the UV mapping: click the MMB (RMB works as well) near the top border of the 3D View window and select "Split Area". Set its window type to "UV/Image Editor" with the drop down box at the bottom left corner of the new window or with SHIFT + F10.

[^73]

Figure 675

In the 3D View window, select all your vertices, and hit UKEY and then $L S C M$. For Blender 2.42 or later select all the faces, and use UKEY \rightarrow unwrap or Face menu \rightarrow Unwrap UVs \rightarrow Unwrap to use LSCM.

Noob Note: I use Blender 2.45 and UKEY doesn't work for this. It seems to be an undo key. Is there another way to bring up the Unwrap menu? Same Noob: The tutorial doesn't say, but you have to be in UV Face Select mode for UKEY to work for this. Yoshi: For Blender 2.48a there is no LSCM but you can use Unwrap. Thespeedylife: for v2.48 and v2.49 the UKEY works in Edit Mode, and there is no UV Face Select Mode in these 2 versions.

Figure 676

NOTE: Make sure you switch to the UV Face Select Mode in 3D window. Then "UKEY" does not work as a shortcut for Undo, rather it serves the purpose.

LSCM is one of the algorithms for unwrapping a mesh onto the 2-dimensional UV space, acronym for Least Squares Conforming Map. It is a very useful unwrapping method because it attempts to preserve the shape of each face, much like unwrapping the cloth of a garment.

Make a template image

When you have tweaked a nice layout and intend to make the texture image yourself, you may ease the texture drawing by saving an image of the UV layout. This image can then be opened in your image editing program of choice to make a basis for the UV texture by showing where each surface goes. In the UV/Image Editor window, select UVs menu \rightarrow Scripts \rightarrow Save UV Face Layout... (User note: for pre 2.43 versions, use UVs menu \rightarrow Save UV Face Layout). <<Noob note: I use Blender 2.48. UVs menu \rightarrow Scripts is empty. There's no Save UV Face Layout... option... What to do?>> Yoshi: I also use 2.48, make sure all the vertices are selected then hit UVs -> Scripts -> Save UV Face Layout. New Blender User: This is because you don't have the proper Python software installed. It is this software that provides all the scripts for Blender, so it is important to have the proper software. Note: Blender 2.48 requires Python 2.5.2, which is NOT the newest version. Python 2.6, the newest version, doesn't work with Blender, so make sure to get Python 2.5.2 (2.5.4 that is available at the Python Site 3 works too). There is another way to export the images, however, that does not require scripts. Go to Image $->$ New, and this will create an image of the net. Then go to Image $->$ Save As, and save the image to where you want it.

With Wrap selected, the layout will maintain its proportions, which is best for general purposes. Not selecting it will scale your layout into square proportions which is mostly useful for Blender's game engine ${ }^{4}$ where textures should preferably be square. Choose the location of the image file as desired (the default name is the name of the object to be textured) and press Export. Tip: if your image painting program supports layers, try putting the UV layout in a locked, transparent layer above the actual painting. If you do not alter the dimensions of the exported UV image in any way it will fit perfectly with your UV layout when the image is loaded back into Blender.

Apply an image

Save the following image(Click to view in full high resolution ($4,096 \times 2,048$ pixels)):

[^74]

Figure 677

Load it in the UV/Image Editor window by clicking Image menu \rightarrow Open... (or Image menu \rightarrow Load image in older Blender versions). Then with the very basic operations, grab, rotate and scale, adjust the unwrapped mesh so that it fits nicely on top of the image.
[noob note: when i downloaded this image it did not load correctly, try copying it into paint if you have this problem $->$ or better click in the link and it's send you to the correct link] [another noob note: when I used the image (in $2.49 \mathrm{a} / \mathrm{OSX}$), it deformed the mesh, I found using a resized image (405 px. square - the same image as above placed on a square black background) sorted this out]

2.49b

Blender 2.49 changed the way UV mapping works. Skip this section for versions of Blender prior to 2.49 .

After 3D View:

1. (CTRL+E) Mark Seam.
2. (AKEY) Select All, then change the window type from 3D View to UV/Image Editor [2.49 Noob Note: I found it useful to split the window leaving one half as a 3D Window and converting the other half to UV/Image Editor.]
3. Open: BlueMarble-2001-2002.jpg.
4. Click the 'belly button' (image selector) to select the picture. (You should see the picture. If it's black, try the mouse wheel to resize.)
5. Now unwrap. This will load the mesh horizontally on unwrap. [2.49 Noob Note: If you have split the window, as suggested above, the "U" key in the 3D Window in Edit Mode will give a UV Calculation drop-down menu. It is also possible to click on "Mesh" in the headers of the 3D Window in Edit Mode to get to the UV Calculation options.]
6. Then use the regular manipulation keys (RKEY, SKEY, GKEY) and buttons in UV/Image Editor to fit the uv meshes.

Observed: The uv mesh loaded alone is one vertical island while the uv mesh loaded on an image was two. Weird. In your Edit Panel buttons around now you can see the sub-context master panel called UV Calculation. This is like an important thing so don't worry if it is brain overload. Experimentation with that pack margin will separate the mesh islands in either case.

Figure 678

Admire your new creation

Back in the 3D View window, select Object mode. The next drop-down menu to the right is the Draw Type menu; use it to set the Draw Type to Textured. (Greybeard calls it "potato mode" because of the icon that the menu shows.) Hit TAB a couple of times to refresh your object, and admire your new picture mapped onto your object!

To make the texture visible in renderings, you also need to add the texture to the icosphere as a new material. In the Buttons window, switch to the Shading buttons by clicking the small shaded-sphere button or by pressing F5. Create a new material by pressing Add New in the Links and Pipelines mini-window, then turn on TexFace in the Material mini-window:

Figure 679

To finish your work, switch to Edit Mode and select all vertices. In the Buttons window, switch to the Editing buttons by clicking the small four-vertices-in-a-square button or by pressing $\mathbf{F 9}$, and then click Set Smooth in the Links and Materials mini-window. In the Modifiers mini-window, click Add Modifier \rightarrow Subsurf and set Render Levels to 3. Switch back to the Shading buttons (F5) and activate the World buttons by clicking the small "Earth" button in the second button group. Enable Stars in the Mist/Stars/Physics mini-window. The scene is ready! Render it by selecting Render menu \rightarrow Render Current Frame .

Figure 680

Some notes

All this relates to the UV/Image window.

If you are going to edit the layout of your unwrapping (so you can make a better picture), make sure Select->Stick Local UVs to Mesh Vertex is on. You can "pin" vertices when they have been unwrapped with PKEY. If you do, make sure you put at least one pin on every island. You can remove all pins with alt-p. LSCM works by trying to maintain the angles between each vertex. If an unwrapping should be symmetrical and it's not, try putting one pin in the middle of the outside edge of the big side and one on the small side, and unwrapping again with EKEY.

IMPORTANT:

- Remember to set your map input with the UV and Flat buttons enabled.
- As said before, to make the texture visible in renderings, too, you also need to toggle on TexFace from the Material buttons.

T반하룰
 Hidep Input

U11	Object				
Gob	Droo	Stick	بin	+ ${ }_{\text {dor }}$	Fiefl

Flat	Cubu
Tubue	Sphé

4 oth 0.000
4 otr 0.000
4 ot 2000

$4 \operatorname{sizh} 1.00$
$4 \operatorname{sizer} 1.00$
$4 \operatorname{size} 21.00$

Figure 681

80.2. Questions

1. Question: I can't get the image to load in blender v.2.44, thought I did everything you said. What to do?

- Answer: In v.2.44: click 'Image' button on the bottom of the UV/Image Editor view port. There is the 'Open' option for loading an image file.
- Answer 2: There appears to be a bug in Blender. If you still don't see an image, try cropping your image to dimension that are power-of-2, like 256×256, or 512×512, or 1024x 1024.
- Answer 3:Make sure to select the image in the file browser with both the right AND the left mouse button
- Answer 4:Undo (Ctrl + Z) one step also helps to refresh the window and makes the image visible again.

2. Question: Whenever I press U in the step above everything is deselected and nothing appears in the UV window. What to do?

- Answer: First you select the circle on the icosphere (the 'equator'), ctrl-E, mark seam. Then where it usually says Edit Mode or Object Mode, click that and select UV Face Select, THEN Press U.
- Elaboration: I'm experiencing the same thing even if I hit ctrl+E and mark seam. And AFAIK on 2.48a there's no UV Face Select mode. Well after hitting UKEY->Unwrap there's no projection of the sphere on the UV window. Update: I found the problem. In the 3d window you have to select all vertices in edit mode. Then the projection will show up.

3. Question: My image won't load and is there a way to load images other than typing in its entire address? (I.E. is there a 'browse' button?)

- Answer: While there is no visual list of common shortcuts, if you type in the crude location of your file and double click on directories to get to the fine one containing your file.

4. Comment: I selected "Save target as.." instead of "Save picture as.." in my browser, so tried loading a saved HTML file instead of the jpeg. Also it seems you need to reload the directory listing in the "Open" dialog box in Blender else it won't find the newly saved file. You can do this by going to the parent directory and back into the child directory.

- Response: Normally the image file used by the html file will be downloaded along with the html file. Loading an html file as your texture is not recommended.

5. Comment There does not seem to be a "UV Face Select" mode in blender 2.46 - There is a face select mode in $2.46+$, but, first go to edit mode, than find the small triangle icon in your window's toolbar, hovering over it will give you the tooltip: "Face Select Mode". you can also use the shortcut CTRL+TAB +3 KEY in edit mode. (The default mode is vertex mode, the four dots icon)
6. Question: Because 2.46 has no UV face select mode, how do I apply something like "two-sided" to a whole group of faces instead of just one at a time? - See the tip above on how to get in face-select mode

- Response: Changing a material property for any user (even a single selected vertex) will change that for all the users of the material. You can assign faces their own material (those 3 vertex if the face is a polygon) even though they are normally selected with a mesh. With using Similar to Selection -> Material you can then perform other actions on those faces. Beyond that you can create groups that do not use materials as their commonality. I am a Noob, so I have never seen UV Select as a mode, but you can work out details before mapping, and there are some buttons like Sync which seems relevant.

7. Question: when i press u it does not show the menu you have on your screen shot it has unwrap and some other things but does not say LCSM

- Response: "LSCM" has been renamed to just "Unwrap"

8. Question: When I finished the mapping, I had the normal earth sphere, but with this black ring where the seam was made. It's not a flat line.

- Response: Make sure that all the verticies are inside the circumference of the Earth image. Also notice that each half of the Earth image is shadowed on the right side. Try rotating one half of the verticies 180 degress around so that the shadows on the Earth match up on both halves.

9. Question: My earth won't show up in renders. I've mapped it, I've tried all sorts of lighting, but it won't show up. What should I do?

- Response: You have to make sure (texface-in earlier versions) or (face textures- under materials tab (blender 2.58)) is selected. Then when you render, the uv map will show on your object.

10. Question:In the UV Image Editor panel, I can click on Image > Open and select the edited TGA file, but when I click Open Image, nothing happens. Is there a problem between Blender 2.49 and Python 2.6?

- Response:Nothing actually changes in the UV Image Editor window. You might need to change your Draw Type in a 3D window to Textured.

11. Question:UV export is not working: I have python 2.5 .4 with blender 2.49 b . I can generate the UV in Blender but I cannot see any of the script options (menu empty) even when all the meshes are selected. Furthermore when I try to export an image with save or save as, it just creates an empty tga with only the background color and no edges whatsoever.

- Response:Make sure blender is properly installed, in my case the installer forgot the .blender and plugin directory. Try the .zip file from the blender website instead of the installer. uv_export.py should be in the .blender/scripts folder. In the uv image editor use UVs -> scripts -> save UV face layout to export to tga.

80.3. Alternative method

Add a UVSphere: Object mode, add, mesh, UVSphere, OKbutton,
Add image in UV Edit mode: image, open, ... (select the 360x180 degree format picture)
Unwrap using sphere from view: Edit mode(make sure all vertexes are selected), mesh, $U V$
Unwrap, sphere from view,

Figure 682

Adjust in UV Edit window the UV projection: SKEY, XKEY, GKEY, XKEY
Enable texture from UV Image: Shading(F5KEY), Links and pipeline, Add new, Material,Texface (Use UV image as texture)

Figure 683

80.4. Source

Greybeard's LSCM Mapping video tutorial: http://www.ibiblio.org/bvidtute/mytut/uvtut.avi Reference:

1. http://wiki.blender.org/index.php/Doc:Manual/Textures/UV/Unwrapping_a_Mesh

This is a good reference page for the functions that blender provides. You can read additional pages of the manual if you need extra clarifications.

1. http://earthobservatory.nasa.gov/Features/BlueMarble/BlueMarble_monthlies.php

Sources of detailed world maps including surface heights(topography) and ocean depths(bathymetry) in the 360x180 degree format.

80.5. Texface versus Map input - pasting a photo to a sphere

Add a UVSphere:
object mode, add, mesh, UVsphere, shading, material buttons, Add new

1. Using UV Map editor, i.e. enable texface in shading, material buttons:

Select 3KEY(side view), RMB(select object), edit mode, mesh, UV Unwrap, Project from view, SKEY(scale), GKEY(move),... shading, material buttons, texface

Figure 684

1. Using normal adding of image texture but with adjustments done at the shading, material buttons, map into:
shading, material buttons, texture, Add new, Texture button(F6KEY), Texture type, Image, (select your image), material button, map input, orco(original coordinate), sphere(3D object used), ofs X (X position), size X (X size)

In the map input button, adjust the ofs X , ofs Y and sizeX, size Y parameters until your image matches with the sphere.

Figure 685

Notice the differences in the reviews that are available. The result may be the same, but the review options available are not the same.

Change the lamp into a hemisphere for a good lighting.
Reference: http://wiki.blender.org/index.php/Doc:Manual/Textures/Options/Map_Input

80.6. Video Tutorial

Ira Krakow's Blender 2.49 UV Map Basics Video tutorial: http://www.youtube.com/watch?v=I_8OV92HLPY

81. Realistic Eyes In Blender

81.1. Overview

This tutorial will teach you how to effectively utilize textures and materials in Blender to create realistic eyes for characters. This tutorial was inspired by a great Maya tutorial in the Gnomon Workshop series by Alex Alvarez. My goal with this tutorial is to teach you how to get those same stunning results using Blender. Please check out Alex's tutorial as well, as it is very informative and covers more detail than I will be covering here. This tutorial assumes you know your way around the Blender interface and so I will not explain each key command as I go, but will instruct you in what steps to take and point out details such as key commands only when it seems relevant to do so. In addition, you will need some sort of image manipulation software, as this tutorial relies heavily on image-based textures, which we will be preparing outside of Blender. I will be using Photoshop, but feel free to use GIMP or whatever you're comfortable with.

Figure 686
(Note: image was removed by moderators because there is no WikiBooks license that allows me to post an original piece of artwork without giving up the rights to it. Images hosted on external sites cannot be embedded either.)

Above is an example of what can be achieved using the techniques described in this tutorial. OK, let's dig in...

81.2. Reference Material

Let's Take a moment to familiarize ourselves with the anatomy of the human eye. Do a Google image search and examine whichever diagram is to your liking. Now, you don't have to pay
attention to every single feature, but do take note of the cornea, the iris, the pupil, and the sclera. These are the only parts that are visible to us when we look at a person's eyes, and therefore the only parts we will actually need to create. Many of the diagrams you find out there will be disproportionate, and so in order to know how large to make our features in relation to one another, it is best to view a large number of diagrams, a large number of eye photos, and also photos of plastic models of the eye, as plastic models tend to be truer to scale than 2D drawings. I also found a photo of a guy popping his eyes half-way out of his head. All of these together gave me a good feel for what the appropriate proportions are for a human eyeball. To some extent though, cornea size and sclera shape will vary on a person-to-person basis, so there is no precisely correct size, per se.

81.3. Building The Eye

Create a UV sphere. 24 segments, 24 rings, and a radius of 1 is recommended. The top of the UV sphere will become the cornea of the eye. So now let's go into side view, in the orthographic view, and with the topmost vertex selected and proportional falloff enabled, grab and raise this vertex along the \mathbf{Z} axis. Don't click to finalize the edit just yet - first we will use the mouse wheel to control how much falloff is going to be applied. This process can require some finess and multiple adjustments until the bump of the cornea is anatomically correct. You will want to set the falloff shape to "sphere".

Figure 687

Below is a render of the curve I ended up going with. You can use it as a guide when modeling if it helps you. This is with a SubSurf of 3 applied, so keep that in mind.

Figure 688

Now, some people may prefer to use a NURBS sphere for the geometry of their eyeball. If you are comfortable with NURBS modeling, and texturing NURBS models, go right ahead. It will give you a smoother and more rounded eyeball. I prefer not to complicate things with NURBS when polys will do just fine, and am guessing most of you feel the same, so I'm sticking with polys. This does however bring us to the topic of the SubSurface modifier and how it will affect your eyeball. When SubSurf is applied to a UV sphere such as our own, it causes the previously spherical shape to become slightly oblong. In other words, the eye will become nearsighted. This is barely noticeable, but it does happen, as a result of the way SubSurfing affects a UV sphere. You could create a UV sphere with more rings to ease this if it bothers you. It looks fine for our purposes though, to be honest. See the comparison in the animated GIF below.

Figure 689

There is one last issue to address with regard to using a polygon-based eyeball. That is the small triangles that persist on the poles of the eyeball. These stubborn tris will remain and you will find that they result in an ugly and unnatural pinched effect when a specular highlight appears over the center of the cornea. Adding a SubSurface modifier will not make them go away. This didn't become apparent until after I did some texturing work and test renders, but I want to point it out to you now, before we get into all that. (See examples below)

Figure 690

This can be remedied by adding more rings where those edges come together. Select only the edges in the very center of the cornea and Subdivide Smooth. Now deselect and again select the new innermost edges. Subdivide Smooth again. You can even do this a third time if you find it necessary. Rotate the model around in the viewport and do a couple of test renders to make sure the specular highlight doesn't reveal any artifacts.

Figure 691

Now repeat this process at the opposite pole of the eye (the optic nerve area).
We are now ready to begin texturing the eyeball.

81.4. UV Mapping

In Edit Mode, we will define the seams for our eye. Select the edges you want to mark as seams and type Ctrl E, then choose Mark Seam from the menu.

Figure 692

With all of your mesh selected, type \mathbf{U} to unwrap. We can now see our unwrapped UV layout in the UV/Image Editor window. (For older versions of Blender, you might need to select UV Face Select mode to unwrap, but it's better if you download the latest.)

Figure 693

Those two islands we see are the cornea and optic nerve area. We can move them out of our way by selecting any vertex on them and typing \mathbf{L} to select all linked vertices. Then \mathbf{G} to grab as usual.

Figure 694

Select a column of verts on the sclera region of our UV layout. Type \mathbf{W} to bring up the Weld/Align menu. Choose Align X. This is how we will go about straightening this contorted shape into a usable guide to map our textures.

Figure 695

Grab and move your straightened column of verts over to the left.
Constraining to the X axis, by typing the " \mathbf{X} " key after you grab, is a good habit to get into while straightening these out.

Figure 696

Straightening out all of these vertices into a usable grid shape will take you some time. It's one of the more tedious steps of this tutorial, but it's worth it in the end because having a rectangular grid will prove very helpful when we are texturing our eyeball. You'll want to use Blender's grid as a reference and just align the rows and columns to it exactly. Well, you can't get it exactly aligned, since there is no snap-to-grid feature, but you can eyeball it and everything will work out fine. The grid lines must be perfectly straight though, so always constrain to either the X or Y axis when moving anything. You can scale the whole thing up later, once each row and column is evenly spaced. Be sure to leave some space between your UV layout and the border of the layout area don't "bleed" it to the edge or you will have texturing problems later.
[EDIT by nick_chang207]: You can align them perfectly; all you have to do is select all the rows and coloumns one by one, (you can use Alt +R) and then select the axis along which you want them to be aligned. For example, select the top column and then press 'S' to scale, then ' Y ' to align it to the Y axis, and then ' 0 ' to align them. For the rows, do the same thing, only select the ' X ' axis instead of the ' Y ' axis this time. Its pretty easy this way.
[Edit by redset] If it's not clear, you can actually untangle this way too - simply Alt+RMB to select a row of edges, S Y 0 and Return (or left-click) to align them all, then G Y to move them up to a grid line. Repeat this for each row of edges, then work across the columns using the X key to align your scaling and movement to the X axis instead. You'll end up with a nice neat grid, and if you aligned them to gridlines you can just scale the entire island up to fill as much space as you need.

Figure 697

It's important to pay attention to is which way the UV layout is facing. Chances are the top of the sclera region is actually what you will want to be the bottom. It doesn't technically matter which way it's facing, but you will probably want it to look intuitive when you are painting the textures. I had to rotate that piece 180 degrees to get the cornea pole on top and the optic nerve pole on the bottom.
[Edit by redset] Mine actually seemed to be the right way up - I found you could check by going to the 3D view (or having split windows so you can see the 3D and UV views at the same time) and making sure every vertex is selected, then holding shift and clicking to deselect a vertex on the model, close to the optic nerve or the cornea. Back in the UV view the vertex will disappear from your UV map, so you can work out how the map corresponds to the actual mesh surface. There might be an easier way to check but I'm new to this myself! (Just select all again to get the whole map back)

Once you're done, save your .blend file and then save your UV Face Layout. This is done in the Scripts Window: Scripts $>$ UV $>$ Save UV Face Layout. The "UV Image Export" dialog box will appear. I recommend choosing a size of $\mathbf{2 0 4 8}$ pixels.

Figure 698

81.5. Preparing A Template For Texturing

Now launch your image editor and open the UV face layout you just saved. (You probably saved it as a .tga file, since that is Blender's default format for UV layouts) So we are now looking at a black and white UV grid. We want to get rid of the white regions so we can see through them to the layers below. The quickest way to do this is to set the blending mode to "multiply". If that works for you, go for it. Personally, I like my transparency to be represented by the checkered pattern, and for that we will need true alpha transparency. In Photoshop this can be done by going
to the menu and choosing Select > Color Range. Using the eyedropper, click any white part of the image, set Fuzziness to zero, and click 'OK".
\square
Figure 699

Now delete the selected white regions by choosing Edit > Clear from the menu.
nooby note: The same actions can be done in the GIMP editor by going to menu, choose 'Select > By Colorand click any white part to select the white area. Then go to menu again and choose Colors > Color to Alphaand click "OK".
another nooby note: In PhotoShop you can also modify the layer's blending options so that areas of white or black will become transparent: When you first open the image in photoshop it will be a singe layer image, and the layer name will be 'background' - 'Double clickit and give it a name like "UV-Grid". THEN select the "UV-Grid" layer, Right-Click-> "Blending Options", in the bottom area of the dialog set the top value for the slider on "Blend If $->$ This Layer" setting on
grey to be a little lower (most likely 254). This means any values on "this layer" that are greater than 254 will be blended with the underlying layers. - Make sure you create your other layers BELOW this layer so the grid will always be on top.

One other element that will be useful to have in our template is a layer of markers that denote where the equator of the eye is, because what looks like the middle on the UV layout is not actually the middle. To find the middle, go back into Blender and count the rings of your eye mesh, starting at the seam of the cornea. Once you get to the equator, take note of how many rings it took to get there. Go back to your image editor and mark that area. You can mark it with a guide, or mark it with a coloring of some sort - as long as it's clear to you that it indicates the equator of the eye mesh. It may also be useful to mark the point where the transparency of the cornea should begin.

Figure 700

81.6. First Bump Map - The Sclera

Create a material for your eyeball. Then within that material create a texture. Name this texture something like "BumpMap(Procedural)". Set the texture type to clouds. A noise size of $\mathbf{0 . 2 5}$ with a noise depth of $\mathbf{2}$ or $\mathbf{3}$ is fine, and you can experiment with other values if you like. The other texture settings can be left at their defaults.

Now we are going to bake this procedural texture to get an image-based UV texture that we can edit in our paint program. Why? Because there is not an even level of bumpiness around the eyeball. The sclera has bumps, while the cornea doesn't. If your cornea was bumpy, your vision would be distorted. We want our 3D eyeball to accurately convey this subtle difference when light is reflected from the surface.

Before baking the texture, there are some parameters we must specify. In the materials panel click the Map To tab. The Color button is depressed by default, so you can leave it as is. Make sure this is the only depressed button. Then change the color to black.

Texture Map Input Map To

Col	Nor	Csp	Cmir	Ref	Spec	Amb
Hard	RayMir	Alpha	Emit	TransLu	Disp	

Stencil	Neg
	No RGB

Mix $\quad \div$

DVar 1.000

Col 1.000
Nor 0.36
Var 1.000
Disp 0.200

Warp	fac 0.00 C

Figure 701

Now go to the Material tab. Change the diffuse color to white and click the Shadeless button.
Note: In this particular case it doesn't actually matter which of these colors is set to white and which is set to black. The end result is basically the same, and you can always invert the image later.

Figure 702

Check the Material Preview window to make sure it looks right.

Figure 703

Time to bake your eye. Make sure your eyeball object is selected and go into UV Face Select Mode. Then split your screen and set one viewport to the UV/Image Editor. From the menu at the bottom of the UV/Image Editor, choose Image > New. Enter a name like "ScleraBumpBake" and set both the Width and Height to 2048 (to match your UV guide). Click "OK" and a new all-black image will appear behind the UV grid.

Figure 704

Go to Scene panel > Render > Bake tab and click the Textures button. Then set the margin to $\mathbf{1 0}$ and click the BAKE button. You will see the black image in the UV/Image Editor fill in with your bump texture. From the menu choose Image > Save As.

Figure 705

Now would also be a good time to save your .blend file.
(Where's the rest of this tutorial?)

Part III.

Unit 3 - Broadening Horizons

82. Beginning Lighting

Lighting, you say? Psshh. Just throw up one light source and let her run, right?
Wrong. Lighting is probably the most underestimated part of a scene by new 3D artists. By the following tutorials, you will gain knowledge of the technical use of lights in your scenes.

83. Understanding Real Lights

In order to learn how to light a scene properly it is helpful to first learn a few things about real lights. When you add a light to your scene you need to understand how to go about emulating the properties of the real light source that you want your Blender light to replicate.

83.1. The properties of real lights

83.1.1. Color

Every light source always has a distinctive color of its own. A photograph taken at sunrise or sunset is very easy to distinguish from one that is taken at noon just by looking at the color of the light. Incandescent light bulbs emit a light of a color that is different to that of fluorescent light bulb. So a scene lit with one of the two will have a different color cast when compared to the other.

83.1.2. Angle

Light always streams in from a particular direction. The angle or direction of light has a particular influence on which planes of an object receive light and the shape and direction of the shadows that are cast by objects receiving light from that particular source.

83.1.3. Brightness and decay

As light travels through space it decays or grows dimmer with distance. Think of a firework bursting in the night sky. When the firework first bursts the sparks are bunched close to each other. Over a short period of time they quickly spread out from each other. If you replace sparks with photons of light and the firework with your light source than you have a very rough analogy to how and why light decays. All real lights decay with distance according to the inverse-square law. At times when lighting a Blender scene it becomes necessary to cheat this law.

83.1.4. Shadows

Real lights will always cast a shadow of some sort. Shadows cast by all real lights are usually divided into two distinctive parts: a dark umbra, the inner core of a cast shadow and a softer less distinct penumbra. The ratio of penumbra to umbra determines how hard or soft a shadow looks. Hard shadows are usually cast by bright lights while on the other hand soft shadows are cast more by diffuse sources of light. All real light sources are soft to some degree. The hard clean and unrealistic shadows one gets from unadjusted ray traced shadows are the mark of poorly lit scene.

These are not all the properties of real lights, but as far as CGI lighting is concerned they are the most important. As we will see later on, Blender offers enough controls for you to tweak and adjust each of these key properties of light.

84. Adding Lamps

You can quickly add several different types of lights to your blender scene

SPACE $>$ Add $>$ Lamp $>$ Spot

Noob Note In Blender versions 2.5+ you have to press Shift + A to get to the add menu.
A light will appear in the location of the 3D cursor. You can move a light just like any other object.
If you want to quickly light a scene just for illumination, not for a specific look, add four lamps around your subject. If you are interested in experimenting with a lighting arrangement, a nice quick way to experiment is to create a Monkey in the scene to test with.

SPACE $>$ Add $>$ Mesh $>$ Monkey
The monkey is just as good of a test subject as a human face, so give it a try. You can throw various materials on the monkey and try different textures too. Don't bad mouth the monkey, she is really useful.

84.1. Explaining the Different Lights:

- Lamp: Single point light source. This simple light source can cast sharp shadows, but is best for filling in dark areas without shadows turned on.
- Sun: A light with parallel rays that will illuminate the scene with a bright even light. Often a good starting point for outdoor scenes.
- Spot: Spot lights produce light in a cone shape, and have some special features. They are the only light source that can be made visible with the 'halo' option, to simulate light in a fog. They are also the only light source that cast fake shadows, called buffer shadows. Unlike raytraced shadows, these buffer shadows are smooth, but not as accurate. They are FAST though, the only real choice for animation.
- Hemi: 180° constant light source. Great for use as a fill light, or as a back light.
- Area: These are similar to lamps, except that they are rectangular instead of an infinitesimal point. As a result they can cast accurate raytraced soft shadows. These are my lamp of choice for still shots, but they take a lot of time to render.

Figure 706: Light from
Lamp

Figure 709: Light from Sun

Figure 707: Light from Area

Figure 710: Light from
Hemi

Figure 708: Light from Spot

You might want to see the ADJUSTED SCENE ${ }^{1}$ and play around with it for awhile.

84.2. Creating a basic scene with basic lighting

- This addition is simply a way to apply what you know about lights and to discover a few settings like colors or creating simple shadows. The purpose here is to create a basic scene with a sphere over a plane, nicely lighted. You should already know the basics of Blender (creating a mesh, moving and rotating it, rendering).

84.2.1. Creating the scene

- Okay, let's start! Open a new file. Add a UVsphere of 32 rings and 32 segments. Exit EditMode. Leave it in the center of the scene.

Figure 711: Smooth button

Tip: Go in the Editing buttons

[^75]

Figure 712: Edit button is pressed
, and push Set Smooth so the sphere will render as a nicely smoothed sphere.

- You should already have a plane in the basic scene, otherwise add a Plane. Have it in ObjectMode and move it just under the sphere. Scale it so it is very big. The ideal would that we can't see borders with the camera.

Figure 713: Top view of our REALLY BIG plane

- Then we will move the Camera. Grab it and rotate it so it looks at the sphere from top and a bit from the right. You can have an idea of what it sees pressing Num0 to have a CameraView.

Figure 714: What the camera should be looking at

Trick : First click on the Camera, then on the Sphere holding Shift(the order is very important). Do a Ctrl+T and select TrackTo Constraint.

Make Track

TrackTo Constraint

LockTrack Constraint

 Old TrackFigure 715: Select TrackTo Constraint

The camera will be looking at the center of the sphere... You can then move either the camera or the sphere and the camera will still point at the sphere.

Figure 716: The Camera is looking at the Sphere

84.2.2. Adding the lights

- Okay, what we have is a pretty beautiful scene, isn't it?... Well, it isn't! But it is enough to add some lights... Here I will describe a basic lighting scene I use as a default for fast renderings. I picked it out from another tutorial, you can find the link at the end of this page.
- Now we will add our so-awaited lights. Add $>$ Lamp>Spot. Yes, we will first use the Spot light. We can see it as a projector. This is the only light casting shadows. Place it so it is upper and on the left of the sphere. Rotate it so it looks at the Sphere (you can use a Trick I gave you before to have the light looking at the sphere).
- Okay, let's see what we can tune with the spot light. Having the lamp selected, go in the Lamp settings:

Figure 717: Click on Shading then on Lamp

You will see these buttons:

Figure 718: Lots of buttons, but don't worry!

- Yeah, really lots of options. Don't worry, I'll explain the basic ones.
- Dist : Sets the maximum distance the light can reach. Increase it so the lighting cone really goes behind the sphere. I set it to Dist:40.
- Energy : This is the force of the light. You can leave it at Energy:1.
- RGB : You can change the colour of the light. Click on the colour and a little window will appear to select the colour you want. Leave it white.

Figure 719: Let's colour our lives

- - Buf.Shadow : Enables the light to cast shadows, leave it pushed.

Figure 720: Here you will create the dark side

- OnlyShadows : This light only creates shadows, without casting light (yeah quite unrealistic, but it can be useful). Leave it unpushed.

Figure 721: Adding a shadow without changing current lighting

- SpotSi : This is the angle of your cone, in degrees. Leave to SpotSi:45.
- SpotBI : This smoothes the circle cast by the light. We will smooth it so that it looks better. Set it to SpotBl:0.4.
- ClipSta and ClipEnd : This is the distance from the light between which shadows will be cast. You can see the "line of effects" in the 3D windows when you change these. Set them so the line starts before the sphere and ends far (well, a bit!) behind the plane. You should obtain something like this. (this is very important... If you do this badly, it can result in completely dark scene!)
- Now, we have set our Spot light. This light will be our side light and shadowing light. You can make a fast preview pressing F12. You can see your so nice shadow. But there isn't enough light... Let's add some more!

Figure 722: So dark! Let this tutorial bring light to your scene

- Time to add a second light! Add>Lamp>Lamp. This time, we will create a basic lamp. This is like a point which emits light in every direction from that point. You should place it at the opposite of the camera, quite at the same height. This light will be used to better see the form of the sphere and to add a sort of general lighting of the scene.
- Go in the Lamp buttons, and set it to a higher energy like Energy:1.25. You can make a quick render to see how much this light is important to a scene.

Figure 723: Yo, much better !

- Now, we will add a second basic lamp. Add>Lamp>Lamp and we will place it just behind the camera point of view, a bit moved at the opposite of the Spot light. This third light will slightly light the dark parts of the sphere.
- Decrease the energy of this light, as it is only supposed to fake the reflections of the environment. I set it to Energy:0.8. Another little trick, as this is not supposed to be a direct light, there shouldn't be a little white glow called Specular on the sphere coming from this light. Push the No Specular button.

Figure 724: This light won't cast speculars

- Okay, it's time for the final rendering. Of course, this is a really basic lighting set you can use for rendering a simple mesh; but for more complicated scenes, lights can come from other places, with other colors, etc... Thus we didn't use the Sun, Hemi and Area lights, which are a bit more complicated.

Figure 725: All this, only to light a sphere ...

Note that the following site contains nude figures: For a more in-depth tutorial, here is A TUTORIAL FROM THE BLENDER DOCUMENTATION², which has been a great source of help for me.

User note: you might want to check this tutorial on lighting:
http://www.youtube.com/watch?gl=US\&v=YJiR2Q7uvbQ

84.2.3. Outdoor lighting

- Here you will use a Sun in conjunction with a Spot light and some little Lamps.

2 HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/HTML/X4029.HTML

84.2.4. Lighting Without Lamps

- It is possible to light a scene without lamps.
- Ambient Occlusion Video Tutorial: http://www.youtube.com/watch?v=rKUAemD7oo4
- Radiosity Lighting Video Tutorial: http://www.youtube.com/watch?v=_M4ffj2w_WY

85. Faked Gi with Blender internal

Getting uniform studio lighting with the blender internal renderer

85.1. Preamble

This tutorial will teach you how to use blender to create faked Global Illumination (here forth called "GI"). The reason it is faked is that blender currently doesn't support true Global Illumination but it's not a difficult task to fake. The results of this tutorial should look like this:

Figure 726

This tutorial assumes you know the basics of the blender interface and how to add objects, toggle editmode, and scale objects.

Now lets start blendering!

85.2. Blender Faked GI Tutorial

Add an ICO-sphere. Fire up blender and add an icosphere(SPACE \rightarrow add \rightarrow mesh \rightarrow icosphere). Set the subdivisions to 3 and accept.

Scale the ICO-sphere by 15 times
Flip the normals of the icosphere so that they point inwards. Go into edit-mode and press the A key till all faces/verts/edges are selected and press WKEY and Flip Normals.

Figure 727

Add a sun light source (SPACE \rightarrow Lights \rightarrow Sun)
Set the energy value of the light. This requires some special attention. If you keep the value at the default 1 , you get a pure white, washed out scene because we will duplicate the light 162 times. A good way to calculate the light intensity required is to mess with the one sunlight and do test renders while tweaking the energy value of the sun as required till you get the brightness you want. THEN you divide the energy value of your sun by the amount of vertices in your icosphere and then finally set the sun energy to the number you got.

Noob Note: I found I had to set the energy of the sun lamp extremely low, at .044. Otherwise, you end up with a completely washed-out image.

Parent the sun to the sphere. Select the Sun THEN shift select the sphere and hit CTRL+PKEY
Enable dupliverts for the sphere. depress the DupliVerts and the ROT button.

Figure 728

Enable AAO (Approximate Ambient Occlusion) Set the AAO settings in the world buttons as in the following image:

Figure 729

Set up the scene to render This can be anything you want but I used a simple curved plane with Suzanne on top of it.

Figure 730

One more note: Often it is hard to see your scene what you have this huge sphere encompassing your scene so what you can do is to set the draw of the sphere to wireframe.

Figure 731
just one last note: if you want more directional lighting, select the sphere and go into editmode and press CTRL+TAB+3KEY for face select and select one face on a spot of the sphere and press WKEY and subdivided a few times to get more lights in one spot making that side a bit brighter and a stronger shadow on the far side of that cluster.

I hope you found this tutorial useful. If there are any errors in the tutorial, Please let me know, and I will fix them as soon as possible.

Blend happy and save often, --RadialronniE ${ }^{1}\left(\right.$ TALK $\left.^{2}\right)$ 22:47, 3 November 2008 (UTC)
-Discussions moved to the discussion page. Radialronnie ${ }^{3}$ (TALK ${ }^{4}$) 15:15, 18 August 2010 (UTC)

[^76]
86. Render Settings

The render settings control various options related to the output of rendered, or full quality images. Rendering an image will calculate effects not displayed in the editing environment (due to their complexity), and therefore takes a larger amount of time to produce an image. If you notice an error partway through a render, then you can press escape to abort.

86.1. The Scene Tab

Let's take a look at all of the rendering options that Blender has. Open up a new scene (CTRL + \mathbf{X}) and press F10. You should see something that looks like this:

Figure 732

These are the default settings for Blender. Let's take a look at all of these tabs and see what they do.

86.2. Output / Render Layers

Figure 733: Output tab

This is the first tab on the left. First of all, we see a file locator icon (

Figure 734
) to the left of /tmp/. This is Blender's temporary directory. (Normally C:/tmp on Windows) Below that, we see another file locator icon, labeled //backbuf. This is the Back Buffered image, one way to make an image the background on your render. Simply use that file locator to find a file, and Blender will use it as the background image (the backbuf button must be clicked to activate it). Finally, the last one is //ftype. The Blender description reads "image to use with FTYPE image type."
(Noob Note: There were some changes in v2.49: The Backbuff button has been moved to the very locator bar, to the right, as a blank button. Dither was moved to its place. And //ftype has been removed)

Figure 735: Render Layers tab

The next row down, we see this:

Biackbuf Edge Edge Settings

Threads: 1

Disable Tex \quad Free Tex Images

Figure 736
"What do these do?!" you ask. Well, it's actually quite simple. First of all, the first button is the backbuf button that I just talked about. If you have selected a background image to render using the "backbuf" option, clicking this button will make it show up. Next, on the right, are the 'Edge' and 'Edge Settings' buttons. Clicking the 'Edge' button will render your image with edges. Edges are rendered where the camera sees an edge. For an experiment, turn it on and render to see what happens. Notice how the default cube now has a black edge around it. If you want it bigger, click the 'Edge Settings' button. Here, you can change the size of the edge that is rendered, as well as the color. The next button we are going to talk about is the 'Threads' button. Clicking this enables threads, which allows the renderer to do threaded processes. Basically, if you have a dual-core processor (Athlon X2, Intel Core2Duo, etc.) it will have one processor render part of the image at the same time that the other processor is rendering another part. This (generally) helps reduce rendering time. Finally, the last button on this row is the 'Free Tex Images' button, which "Frees all images used by textures after each render".

There is one last row of buttons below.

Figure 737

The bunch of little squares enable you to tell Blender where to put the render window on your screen. Try pushing one and then rendering to see for yourself. The "Save Buffers" button saves all the tiles from every render layer and SceneNodes to files, saving memory. Experiment to try it out. The dither button will put dither noise in your image. The render window button allows you to render your image in a new window, render it full screen in the UV Image Editor, or render the result in the UV Image Editor (but not in full screen), a good idea when working with nodes. The extensions button adds extensions to your animations.

86.3. Render

Figure 738: Render tab

Now, let's move on to the render tab! The first thing you should notice is the VERY BIG button that says 'Render' on it. This button performs the same action as the $\mathbf{F 1 2}$ button. Below this is a drop-down box, allowing you to change between the Blender Internal Render engine and YAFRAY. (For more on YAFRAY, see YAFRAY RENDER Options' ${ }^{1}$). Next to the 'Render' button are 5 buttons: Shadow, Env Map, Pano, Ray, Radio. These are explained in detail below:

[^77]- Shadow: Lights will cast shadows. If this is turned off, nothing will cast a shadow. To see this, add a plane below your default cube and render. Now turn this button off and see how there are no shadows.
- EnvMap: Use the environment map.
- Pano: This enables panoramic rendering. For more on panoramic rendering, see PanOrama SEtTings ${ }^{2}$
- Ray: This enables Ray Tracing. Turn it off, and render the same images as I talked about in the description of the Shadow button. "What!?" you say. "That did the same thing as turning off the shadows! What's the deal?" Well, ray tracing is used to calculate how light goes through objects like glass and stuff. It also has something to do with shadows.
- Radio: This stands for Radiosity.

Moving on, the next button we come to is the 'OSA' button. For the use of this button, see OSA ${ }^{3}$
To the right of the OSA button, are some percentages. These will set the renderer to render at the specified percent of the resolution that you have set. (We'll come to resolution later) For an experiment, press the ' 50% ' button. As you can see, Blender renders the image at 50% of the set resolution. This is an easy way to make a quick render.

Next on our tour, we come to two boxes labeled 'Xparts' and 'Yparts'. These buttons change the number of boxes that Blender will render in total. Play around with these to see how they change the number of small boxes in the render window when you render.

86.4. Anim / Bake

Figure 739: Anim tab

[^78]

Figure 740: Bake tab

The final tab we'll (briefly) cover is the Anim(Animation) tab. If you have made an animation, pressing the 'ANIM' button will render your animation. Right below it are two buttons, Do Sequence and Do Composite. The Do Sequence button will render your animation with any effects you have done in the Sequence Editor and the Do Composite button will render an animation with your composite node work included. The Sta: and End: are the start and end frame numbers. The default setting is that your animation will start at frame 1, and will end at frame 250.

87. Output Format Options

87.1. Output Format Basics

Format

Giane framing settings

4 SizeX: 800	SizeY: 600
$4 \operatorname{ApK}: 100$	$A s p Y: 100$

Duality: 90
B'W FIE B RiGBA

FAL
NTSL
Defoult
Preview
FC
FAL 16.9
FAND
FULL
HD

Figure 741

When you render a scene in Blender, by default a small window will open showing your image. If you want to publish your picture, you may want to render it a bit bigger. To do this, you have to open the Scene context ($\mathbf{F 1 0}$) and locate the Format tab (usually on the right).
You will see some settings there. Let's go through their meanings:

Figure 742

SizeX: This parameter sets the width of the image in pixels.

Figure 743

SizeY: This parameter sets the height of the image in pixels.

Figure 744

AspX, AspY: These parameters specify the aspect ratio of the pixels. By default, this is 100:100, because a pixel on a computer screen has equal width and height. These settings can be used for screens whose pixels don't have equal width and height. For example, on a PAL system one pixel's width/height ratio is $54: 51$, which you can select there easily. Notice that these parameters don't change the size of the image.

Don't forget, setting the number of pixels changes the resolution. Resolutions for your computer desktop are normally 1024×768, but can be larger. This means that it is 1,024 pixels wide and 768 pixels tall. To make an image this size in Blender, change the SizeX to 1024 and the SizeY to 768.

If this does not come out correctly, then you should right-click your desktop and click Properties, then go to Appearance. The highlighted numbers are X by Y .

87.2. Output formats

Blender has the ability to save in a wide variety of formats. To change the format, click the drop-down box (

FNG

Figure 745
) halfway down the format tab. Currently, Blender can save files in the following formats:

- TIFF
- OpenEXR
- DPX
- Cineon
- Radiance HDR
- Iris:
- Iris + Zbuffer:
- HamX: extremely compact but only for the "Play" option
- Jpeg: default format. Lossy compression.
- BMP: uncompressed.
- PNG: open, lossless compression, alpha channel.
- Targa Raw: uncompressed Targa.
- Targa: Compressed Targa.

Single rendered images are not automatically saved to disk. Once Blender finishes rendering a scene (this can take some time), press F3 and the save dialogue will be opened where you can specify a filename and location for the output. You can retrieve the last picture rendered by pressing F11.

When working with moving images, you need to remember that you are often looking at file size (such as on the net) and compatibility with media players. Videos consists out of 2 elements: the file format and the codec. An example of this would be that you have a MOV file (the file format) with a H. 264 codec. In other words, the codec is the way that the files are interpreted (compressed-decompressed $=\operatorname{codec}$) by the media player. Youtube currently uses the FLV format with an H. 264 codec. The VLC player should play almost any format available.

Video:

- AVI Codec: saves an AVI with a compression codec. Once selected a pop-up menu will appear giving options as to what codec you want.
- AVI Jpeg: saves an AVI as Jpeg images. Compressed but lossy.
- AVI Raw: saves an AVI with uncompressed frames.
- QuickTime: saves a QuickTime MOV file. Once selected, a pop-up menu will appear giving various video codecs to choose from. Can also remain uncompressed.
- FFMpeg: Implemented in a Google Summer of Code event, this codec is composed of multiple software libraries, so you can choose which codec to use under the video tab. The audio tab lets you choose from several different audio codecs to use and also has a bitrate setting. The Multiplex Audio button will render your animation with sound (if you have any), a nice feature.

For more information, see

- Blender 3D: Noob to Pro/Creating animated GiFs using Blender and Gimp ${ }^{1}$
- Blender 3D: Noob to Pro/Creating Ogg-Theora movies using Blender ${ }^{2}$

87.3. Cropping

You can see

Figure 746
button next to drop-down box. If you activate it, image automatically gets cropped after rendering.

87.4. Palette

BW
 FiGB
 RGBA

Figure 747

[^79]You can select three different palettes in Blender:

- BW - images are saved with BW (greyscale) data
- RGB - images are saved with RGB (color) data
- RGBA - images are saved with RGB and Alpha data (if supported)

87.5. Pre-sets Just For You

FAL	NTSE:	Defoult	Freview	FC:
FAL 16.9	FANO	FULL	HD	

Figure 748

The render settings in blender are customizable for unique results, but blender includes 9 pre-sets for common render outputs. One can use the pre-set as is or can use it as a starting point at which the settings are then modified.
$\mathbf{P A L}^{\mathbf{3}}$ and $\mathbf{N T S C}^{\mathbf{4}}$ are systems used in analogue Television. If someone were making an animation for TV or DVD, that individual may use one of these depending on which is used in their country. Both the PAL and NTSC pre-sets in Blender only affect the dimensions and pixel aspect ratio of the render and doesn't turn on anti-aliasing (OSA) ${ }^{5}$ or affect any other variable in the render. Pal 16:9 is a newer an improved version of PAL which is also known as PALPLUS ${ }^{6}$.

The Default pre-set uses the dimensions and an pixel aspect ratio as PAL but also includes OSA ${ }^{7}$ and shadows.

The Preview pre-set generates a low quality setting for a fast render that usually is not used as a final output.

- PANO is short for Panorama. This setting allows for a full 360 degree panoramic render.
- FULL produces a render that fits your monitors full screen.
- HD is for High Definition.

[^80]
88. OSA

OSA stands for oversampling, also known as anti-aliasing. If you look the rendering below, you'll find that the one has a rugged edge. It looks like small steps! To stop this, Blender uses OSA to prevent "jagged edges" or "aliasing" as it's called.

Figure 749: Oversampling settings in render tab.

This occurs when you have a diagonal change of colour, which results in rough edges. Remember drawing a diagonal line in Paint? To overcome this hindrance of square pixels, a technique called anti-aliasing or "oversampling" is used. It blends the colours around the rough edge to create a smooth, but defined edge. One way of doing this is to by creating the image twice as large, then scaling it down - oversampling. Blender can do this for you if you select an OSA rate. Remember this will take much longer, but results in better renders, so use this for the final product, not while testing. In some cases the scene can seem blurred due to oversampled textures; try changing the OSA setting, or oversampling yourself.

Here's a quick illustration of how OSA changes a render (look at the edges):

Figure 750: The image on the left has no OSA. The one on the right has 16x (the maximum amount allowed by Blender).

OSA settings can be manipulated in from the Render Settings panel.

89. Looking All Around - Panorama Settings

i Information

Applicable Blender version: 2.37a

89.1. Panoramic Renderings

89.1.1. This Article is Out Of Date

Panoramic features were changed somewhere between 2.37a and 2.42. More information, including how to actually use panorama, can be found in this thread in the forums:
http://blenderartists.org/forum/showthread.php?p=797886

89.1.2. Building the Example Scene

Figure 751: The example scene, see from above

Ever wondered how that cool looking 360 degree panoramas that you see on some websites are made? Well, I don't know either, so someone else will have to tell about that. What I found out though is how to make Blender output a 360 degree panoramic image - quite probably this at least is the first step when making something like on those websites.

Now, let's try to progress like in a tutorial, as in the other pages of this Wikibook. So, fire up Blender, and look at the well known initial box scene. Or rather, change it somehow. Assuming you have read the book in order, it shouldn't be hard to get something like in the picture.

Figure 752: The example camera, seen from the side

I placed the camera and the light both above the origin, deleted the cube, and added 8 cylinders, all around the origin. One way to do this is to place one cylinder, then duplicate and rotate it around the origin. For this to work, set the rotation center to the 3D-cursor (with the Pivot button), and position the 3D cursor at the origin (use SHIFT+S to make the 3D cursor snap to the grid).Place the first cylinder using GKEY and then holding CTRL while moving the mouse. Change to object mode, then use SHIFT+D to duplicate it. Next, press RKEY to rotate it, then hold CTRL while rotating it by 45 degrees. Repeat the same for the remaining cylinders. Use \mathbf{G} to move the light. Use NKEY to enter the camera values like shown, so it looks parallel to the ground.

Figure 753: The complete scene with a ground cylinder

Speaking of ground, lets also add a ground. I added another cylinder, below the other ones, as shown. It's easy to add by switching to front view (NUM1), duplicating a cylinder
(SHIFT+DKEY), and then moving it holding CTRL pressed again, so it snaps to the grid. To scale it, use the SKEY, but hit SHIFT+ZKEY to lock the z scaling, and hold CTRL pressed while scaling in x and y direction so you can snap to the exact size you want.

Now, to have a complete scene, we need some colors. I made the ground cylinder green, the 8 example cylinders gray, and also added a noise normal to the ground. This doesn't really matter here though, just needed some example scene for the 360° camera.

Something more interesting is the sky texture, because Blender's sky can be made to seamlessly wrap around with 360 degree. Belows is a screenshot of the sky settings I used. To get there, click on the Shading button, then select World.

Figure 754: The Shading->World Button

To change the texture, click the textures button or press F6, then add a new texture with the small button with two arrows, and select the type (e.g. "Marble" or "Clouds") instead of "None" for the texture. Go back to the World pane, and enable the Real and Blend buttons. And don't forget to use nice colors, I used blue and white. Now it looks a bit like white clouds in a blue sky.

Figure 755: The example sky
[Maybe should add here more details? What is important so you don't get a seam at the 0-360 degree point? How do you map pre-made sky textures?]

And we are already done, this is the example scene. All that is left to do is to render it as a panorama.

89.1.3. Panoramic Rendering

Go to the render settings (F10), and click the Pano button. Change the Xparts value to 4 . The value in Xparts will tell how many times the camera will 'turn' horizontally when rendering. The Yparts value would do the same vertically. Each part (Xparts or Yparts) will render the size of the whole image you set. To make things easier, make the output image size quadratic and set both X and Y Aspect to 100 . E.g. make your image size 600×600, but not 800×600, otherwise the following will not work.

\checkmark Camera

Figure 756: The camera settings

If you want a seemless 360 degree view, it is important to know how many degrees one single image spans. For example, if you know one image is 90 degree, then you can set Xparts to 4, and the result will be a single panoramic picture, and with the right panorama viewer, you can spin around in it endlessly.

But, how do you make a single picture 90 degree? The angle a picture spans is called field of view (FOV). And it is a property of the camera. To change it, select your camera, then click the edit button (or hit F9). Make sure you haven't set your camera to orthographic (the "Ortho" button), since FOV only exists with a normal camera.

You can directly enter the FOV in Blender's camera settings (as of version 2.42) - Toggle the 'D' button on, next to the parameter called Lens. Type in 90 to get a 90 degree FOV. Now hit F12 to render our test image.

If you want, you can also try it out with any other scene. Place the camera somewhere in the middle with a good view all around, set the camera's Lens to 90, and go into the render settings (F10). Set Xparts to 4, enable Pano, and render. You should get an image 4 times as wide as a normal image, and the left and right edges should fit together seemlessly. Also note that Blender doesn't know if it should apply the FOV as horizontal or vertical viewing angle, but we always want it to be the horizontal angle. Therefore just make the single images of the panorama quadratic, as mentioned above - then horizontal and vertical FOV is the same and Blender gets it right.
This is the resulting panoramic image:

Figure 757: Panorama with 4 parts.

Warning: Didn't convert following lens settings to the new possibility with the ' D '-button for passing the FOV value directly. One problem remains, the image will be quite distorted. This is because a FOV of 90 degree is too high. Let's try with 45 degree and 8 XParts instead. As you will have noticed when playing around with the Lens parameter before, setting Lens to 8 instead of 16 will not achieve this, it will make the FOV even bigger. Setting it to 32 looks better, but definitely is not 45 degree. The picture to the right explains how FOV and Lens relate to each other:

The camera is at the bottom, the red angle is our desired FOV, and the length of the green line is what the Lens parameter represents in Blender. Therefore, the formula to calulcate Lens when we know FOV:

Lens $=16 / \tan (\mathbf{F O V} / 2)$

For a FOV of 45 degree, we therefore get a Lens of 38.627 . Now, write that into the Lens field in the camera settings, and render with 8 XParts. This time it will render an output image which is 8 times as wide as a normal output image, and again it will be a seamless 360 degree all around panorama of your scene. And this time with less distortion. With the above formula, you can now use any number of XParts you want - just divide 360 by the number of parts, and calculate the Lens parameter for the resulting FOV. Note that you also need to take the Aspect settings into account, unless you set it to 100 and create a quadratic output, as we did.

Some Lens settings:

- 4 parts: 16
- 8 parts: 38.627
- 16 parts: 80.437

The output with 8 parts can be seen below.

Figure 758: Panorama with 8 parts.

As always, feel free to modify this page in any way you want or add feedback to the Talk page.

90. Other Important Render Options

Rendering by Parts (Bucket Rendering)

Images can be rendered in pieces or layers rather than all at one time. Your computer will only need to compute smaller bits of information thus using less memory. By changing the Xpart and Ypart values (up to 8 each since Blender can't support more than 64 [8x8] parts) in the Render panel of the Scene context(F10,) you can divide your image into an invisible grid. The pieces will layer one at a time until they are whole.

Edge Renderings - Tutorial Here ${ }^{1}$

Blender has an option of adding a border - a defined edge to objects (like in cartoons). To do that you need to go to the render buttons (F10) and then, under "output" change the edge setting: set the "Eint" to a value of about 100 and check the "edge" icon to enable edge rendering. This would give you edge line at the edge of each polygon. To prevent it from applying on all polygons the same way change to "unified render" under the format tab. Then, in the edge settings change the "antishift" value, it will decrease itself from the fint value when the line is between identical materials. By also checking the "all" icon you tell the render to apply the edge rendering on transparent materials as well. In Blender 2.59 this seems to be integrated into the Render-properties in the subwindow 'Post Processing' as options 'Edge' and 'Threshold'.

Note: User Terrywallwork - The edge bordering feature in Blender 2.43 only seems to work when Blender Internal renderer is used, when Yafray is used, no edge is show even if the options is clicked. I'm not sure if there is a way round this or not.
HDRI Rendering - Tutorial Here ${ }^{2}$

Multi Thread Rendering

Blender has the option to render with 'Multiple threads' meaning it can render more than 1 part at once. This is done by sending more than 1 Render parts to the CPU to process at the same time, if your CPU can handle it. The Option is found in render buttons (F10). Change the number of threads used by changing its number.

Note in Blender 2.46+: Blender 2.46 automatically selects the number of threads.

[^81]
91. Yafray Render Options

YafRay (Yet Another Free Raytracer) is an open-source alternative rendering engine supported by Blender.

Reader note: in the new version of Blender (2.46) internal renderer of Blender got a lot of upgrades and is now about two times faster than YafRay, so this article may be considered obsolete.

Yafaray 0.1.1 provides 5 different material types independent of Blender. It is also able to show objects behind transparent materials unlike Blender 2.49b.

Figure 759

Further note: the Yafray project has been superseded by YaFARAY ${ }^{\mathbf{1}}$. Yafray support was removed from Blender apparently around version 2.44. Use Yafaray instead. As of May, 2011, in MS Windows, it only works with 32-bit Blender 2.49 b compiled with Python, with Python 2.6.6 32-bit version installed.

The YafRay render settings are normally hidden. To show them, switch from the Blender Internal rendering engine to the Yafray rendering engine.

- Go to the Scene Panel (Press F10)
- Click the Render Buttons button
- In the render tab, under the big Render button, click the Blender Internal button and select YafRay.

Now the YafRay and YafRay GI tabs appear.

91.1. Getting Started with Yafray

First, I would like to state that Yafray renders 2-3 times faster and nicer (includes Global Illumination, Caustics and...) than the normal internal built-in renderer in Blender. So it would just be worth it to download and install it.

On Windows, just download the .zip file and unzip it. You get the .exe file. Run it and follow default instructions. Latest version is 0.1 .0 as of October 2008. Now change the Environment variable by adding C:\Program Files \YafRay to your PATH or whichever folder you installed yafray.exe, users Windows 95/98/ME will need to restart where as WinXP users won't. Remember Yafray doesnt have a GUI and is a commmand line tool. Anyway you never need a GUI to run yafray as it runs nicely inside Blender as it is integrated into it. Go to the Command line and type yafray and press return. Now you have two paths

Reader': Can someone make this a little bit clearer? What is the Command line?

Answer': The command line interface (CLI) is an interpreter for the operating system that provides a way of getting around by accepting commands from the keyboard instead of using the mouse to click on icons. It was the primary method of using the computer in MS-DOS, the predecessor to Windows. There are no buttons like in programs such as Blender. HTTP://EN. WIKIPEDIA.ORG/WIKI/COMMAND_LINE ${ }^{2}$

You can access the command line in Windows by pressing Win-R then typing CMD and pressing the enter button. The command line can also be accessed by clicking on the Start menu, going down to "All Programs", over to the "Accessories" tab, and then clicking on the Command Prompt option. To change the environment variable, enter "path C:\Program Files\YafRay;\%PATH\%", without the quotes.

1) If there was an error regarding MSVCR71.dll, then download this file from the Web and place it in the c:Iwindows Isystem 32 directory.

Reader': I have been using Blender for a while now, but due to my school's administrative limitations I am only able to use it on certain computers in school. For example, the

```
HTTP://YAFARAY.ORG
HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMAND_LINE
```

computers that have already had 3d programs installed on them (like the ones in the Drafting and Design room) allow me to use Blender. Other computers give me an error message concerning MSVCR71.dIl when I try to use it (specifically the ones in my Study Hall). Could you give me an alternate method of installing the .dll (maybe I can put it on a flash drive or in the My Documents folder)? Answer': Unfortunately, without administrative rights you will not be able to install a DLL. Answer 2': My school has the same type of administrative blocks, however I placed everything from my blender folder at home onto a flash drive, and now it works perfectly on all computers. Maybe try that?
2) Switch from the Blender Internal rendering engine to the Yafray rendering engine as explained and press F12 to Render. Wow, You should have noticed the lightning speed of Yafray.

91.2. YafRay tab

- XML button: If pressed blender will export an xml file that describes the scene and will pass it to YafRay. If not pressed blender will render with the YafRay plugin. When using the plugin interface, the render in progress will update continuously in Blender's render window. This gives much faster feedback. It even shows the distribution of the samples taken by the path light when rendering with cached pathlight. YafRay divides the image into blocks and renders them in a random sequence.

92. Stamping

92.1. Tictoon Tutorial: Stamping

Stamping in blender is a rendering option. A stamp on a render can prevent that render from being lost, keeping your project organized, and keeping your files organized.

An example of a stamped Image:

Figure 760: A stamped render

Now my render is associated with a file, I know the date it was rendered at, and I've stated that the image is property of the OWF project.

Let's start off by opening up Blender. We are presented with the default scene.

Figure 761: The default Blender Scene

Go to "Scene". Hit F10 or click the Scene button.
\square
Figure 762: Scene Button

On the far right side you can spot a panel for the format of your renders.
\square

Figure 763: Format Panel

Pick the "Stamp" tab.
You should be presented with a button:
\square
Figure 764: Enable Stamp button

Click on the button and you should see a variety of options.

Figure 765: Stamping panel

Enable Draw Stamp to see your stamp in your render, more on Draw Stamp later on.
Each setting does something different. Here's a breakdown:
Filename: If enabled, this displays the path to your file. If you haven't saved your file yet, it will display "File <untitled>" Filename is displayed in the top left hand corner. When more than one stamps are in the top left corner of your render.

Scene: If enabled, this will display the name of the Scene your render is on.[img]нTTP://I245.РНотовUCKET.COM/ALBUMS/GG79/TICTOON/SCREENSHOT8.PNG[/IMG] ${ }^{1}$ It will be displayed in the bottom right hand corner of your render.

[^82]Camera: If enabled, it displays the name of the camera from which the scene is rendered. It is displayed on the bottom of your render in the middle.

Time: If enabled, this displays the time stamp of your animation. It is displayed in the bottom left hand corner of your render.

Date: If enabled, the date of the render is displayed. It appears in the top left corner of your render.
Frame: If enabled, the frame of your animation will be displayed in the bottom left hand corner.
Marker: If enabled, the marker will be stamped onto the render. It is in the bottom left hand corner.
Sequence Strip: If enabled, it will display the sequence strip. Displayed in the top right corner.
Note: This is a custom stamp. you can type anything you want in here and it will be stamped in the top left hand corner of your render.

Draw Stamp: This needs to be enabled for the stamps to be seen in your render. [img]http://i245.photobucket.com/albums/gg79/tictoon/screenshot10.png[/img] The drop down menu has various sizes for the text of your stamp. The Text Color is for the colour your text appears to be. The default is grey. "Background" is the background for the text. Default is black. " A " stands for Alpha. It indicates the alpha values for the background.

Now enable some buttons and hit F12 and you should see stamps on your render!
Efficiency tip: using this with Evernote can be very useful because Evernote can find text within images so you can quickly find a render if it has a stamp. I use the filename and date taken to find my images in Evernote. Keep blending :D
[img]http://i245.photobucket.com/albums/gg79/tictoon/stampedcube.jpg[/img]

93. 2D, Toon, \& CAD Rendering

93.1. 2D, Toon, \& CAD Rendering

Rendering a 2D Black \& White Line Drawing. (ver.2.49, defaults)

1) Background. Under the menu selections, "Shading" (F5) \rightarrow "World buttons" \rightarrow "World" tab. Turn the background (default is blue) color to white. The color selection box above the "HoR" slider.
2) Edges. Under the menu selections, "Scene" (F10) \rightarrow "Render buttons" \rightarrow "Output" tab. Click the "Edge" button to turn on the edge lines. Adjust the "Edge Settings" if wish to change the edge intensity (sensitivity) \& edge color. Under the "Format" tab of the same menu you can also choose to change the file format (default is Jpeg) \& render size.
3) Object Color. Under the menu selections, "Shading" (F5) \rightarrow "Material buttons" \rightarrow "Links and Pipeline" tab. Select the materials to be rendered. Once a material is selected, move to the "Material" tab and change the color (default is gray) to white as well. It is the top box of 3, next to the 'Col' button. Each material instance will need to be changed.
4) Shading. Eh, who needs it? Menu selections, "Shading" (F5) \rightarrow "Material buttons" \rightarrow "Material" tab. Click on the "Shadeles" [sic] button to remove shading. Each material instance will need to be changed here as well.
5) Camera. Select the Camera in "Object Mode". Under the menu selection, "Editing" (F9) \rightarrow "Camera" tab. Click on the "Orthographic" button, to flatten the image.
6) That's it folks. Hit F12 to render, and F3 to save your render.
*Note: Camera in Orthographic Mode:: Leaving the camera in Perspective mode will result in mesh lines being barely visible, almost white washed. Where as Orthographic mode will allow the mesh lines to become much more visible. And combining Orthographic mode with SubSurf, can help to create well defined curved surfaces. Just remember to change the camera lens scale, and Crease edges (Shift+E) where needed.

Edge Line Thickness

Overall edge line thickness can be changed by adjusting the render resolution. As such, the greater the render resolution, the thinner the edge lines will appear. Under the menu selections, "Scene" (F10) \rightarrow "Render buttons" \rightarrow "Format" tab. Change the "SizeX" \& "SizeY" entries (Max = $10,000 \times 10,000$). For complicated images at high resolution, you may wish to change the number of tiles rendered. Found under the "Render" tab, "Xparts:" \& "Yparts" (Default = 8x8).

Edge Line Feathering

Edge line weight can be adjusted by changing the planar distance, in the 3rd dimension, of objects relative to each other. Or in other words, how close an edge is to a common plane or an angle to 180 degrees. Resulting in edge lines appearing lighter (gray) or even totally disappearing.

Some gradient can also be created in lines by sloping an edge towards a common plane. Causing lines to fade from black to white depending upon the relative angle.

What's Needed: A way of defining edges with line type, line weight, \& color using blender. Any suggestions?

Putting CAD in the Blender

Python Scripts Catalog: CAD Tools ${ }^{1}$

(Article) ${ }^{2}$
How to add 3d dimension lines to Blender? (Article) ${ }^{3}$
2D External Tutorials
Rendering architectural line drawings with Blender (GREAT SITE FOR ARCHITECTURAL REF.) ${ }^{4}$

Toon Shading - A Blender Tutorial (VIDEO) ${ }^{5}$
Blender Line Drawings ${ }^{6}$
Blender Compositing Tutorial for 2D Animation (VIDEO) ${ }^{7}$
Tutorial 1 :Sort of sketch style rendering with nodes ${ }^{8}$
Tutorial 2: Pencil sketch rendering with nodes ${ }^{9}$

2D Scripts \& 3rd Party Programs

VRM: Vector Rendering Method ${ }^{10}$
PantoGraph ${ }^{11}$
Freestyle ${ }^{12}$

```
HTTP://WIKI.BLENDER.ORG/INDEX.PHP/EXTENSIONS:PY/SCRIPTS/CATALOG#CAD_TOOLS
HTTP://WWW.BLENDER3DARCHITECT.COM/2009/07/BLENDER-3D-AS-A-CAD-TOOL-USING-THE-PROCAD-SCRIPT
HTTP://WWW.BLENDER3DARCHITECT.COM/2008/11/HOW-TO-ADD-3D-DIMENSION-LINES-TO-BLENDER/
HTTP://WWW.OPENDIMENSION.ORG/BLENDER_EN/LINE_DRAWINGS.PHP
HTTP://WWW.YOUTUBE.COM/WATCH?V=NHAVSNQBS8M
HTTP:// WWW.ROYALHIGH.EDIN.SCH.UK/DEPARTMENTS/DEPARTMENTS/CDT/AHGC_0607_
BLENDER_LINE_DRAWINGS.HTML
HTTP://WWW.YOUTUBE.COM/WATCH?V=83NNEFMWR2Y
HTTP://MATTHIEU3D.FREE.FR/TUTOVIRA1/TUTEN.HTML
HTTP://MATTHIEU3D.FREE.FR/TUTOVIRA2/tut2EN.HTML
HTTP://VRM.AO2.IT/
HTTP://SEVERNCLAYSTUDIO.WORDPRESS.COM/BLUEBEARD/
HTTP://FREESTYLE.SOURCEFORGE.NET/INDEX.PHP
```


93.2. Freestyle \& Blender Integration

Getting Started

1) Download \& run a Freestyle build from GraphicAll.org
2) Under the 'Render' menu, open the 'Post Processing' sub-menu. Select the 'Freestyle' box.
3) Under the 'Render' menu, open the 'Freestyle' sub-menu. Find the empty 'Freestyle Control Mode' box (label may appear as 'Control Mo'), and select 'Python Scripting Mode'. Then click on 'Add Freestyle Module', a default will appear.
4) Hit F12 to render.
```
[Noob Question: How to install Freestyle in Blender 2.61?]
```

Freestyle is being integrated into Google Summer of Code (GSoC). You can find experimental test builds... i.e. Not Finished Yet... at GraphicAll.Org ${ }^{13}$, search for "GSoC Freestyle" .

Freestyle integration into Blender: BLOG^{14}
Freestyle integration into Blender: FAQ ${ }^{15}$

[^83]
94. Basic Animation

94.0.1. Note About Blender 3D: Noob to Pro/Basic Animation

I created this little note section to both warn learning users, and to give information to those who would make this wikibook better. The animation section in this book leaves a lot to be desired. It needs to go slower, and be more thorough. It is not finished (hence the accurately drawn "status images"). Here are a few things that need to be mentioned:

- What a key is
- How to manipulate keys after they are drawn
- How to delete keys (both IPO and Lattice)

I recommend that new users read the animation section in the blender documentation first. It is written for an older blender version, but it is more informative than this tutorial, and most of the information in there is still accurate. Here is a link:
http://www.blender.org/documentation/htmlI/p6390.html

94.0.2. Frames and Keys

Animations are composed of multiple frames. If you pause an animation at any point, you'll be looking at a single frame in the whole of the animation. The most classic example of this is flipping pages quickly to produce an animation, as it has a different frame drawn on each page, and each page is displayed at a specific point of time.

A key is like a marker at a specific frame, which marks a particular thing (e.g. position, rotation, scale). If for instance, you have a character, then think of your key as telling Blender, "I want this character at this pose in this frame." To make your character stay in a certain position, you add a key or MARK it. By doing this, you're letting Blender know that this is an important pose. Now, if you move to a later frame and then adjust the character's position to another pose, then you can add another marker. What blender does, is it automatically makes your character move from the first position that you marked, to the second position that you marked again, in a very smooth manner. This, of course, depends on how far apart the keys are and if each key's content is positioned correctly.

94.0.3. Basic Animation Introduction

Animating, in principle, isn't that hard. Good animation is a very different story. These steps show you how to make a simple keyframe animation:

1. It is a good idea to switch into the animation screen using the screen selection drop-down on the main menu or by pressing CTRL + Left Arrow.
2. Go to the starting frame, using the arrow keys on your keyboard (Shift+Left Arrow goes to Start Frame, Shift+Right Arrow goes to End Frame, the Up and Down arrows Skip 10 Frames, the Right and Left arrows skip 1 Frame)
3. Go into the correct mode. To animate solid objects, go into Object Mode. To animate bones, go into Pose Mode (in this case, you don't have any right now).
4. Place the object or bone at the desired starting location and/or rotation.
5. Press the i-key on your keyboard while the mouse is in the 3D view and you will see a menu of the different properties which you may animate. Choose the most appropriate one, based on the properties you wish to change in the next keyframe. For example, if you wish to change the location, rotation and size of the object, select LocRotSize (now called LocRotScale). You have now made the first keyframe, which is a frame of animation which you have personally set up.
6. Now go to the frame of the next keyframe you wish to define, and put everything in the place you want for that frame. Remember, if you have a frame rate setting of 25 frames per second (fps) then if you want to make the next keyframe one second later in the animation, you need to go to frame 25 to make the keyframe. Then press the i-key again, and select the correct option again, depending on the changes you've made. (All in-between frames are automatically made to INTERPOLATE ${ }^{l}$ between the two neighboring keyframes).
7. Repeat the previous step for each keyframe of the animation.
8. If you want more control over the transition between the keyframes, use the IPO-window (if you followed step 1, it should already be open on the right of the screen). Select the object you have keyframed and the IPO-window will display its animation curves (one curve for each of the properties you selected). You can select and edit the curves using the normal Blender controls. Use the curve menu for more options, such as making the curves actually curve instead of being straight lines.
For more information, see this YouTube Tutorial ${ }^{2}$ or The Blender Userguide ${ }^{3}$
```
HTTP://En.WIKIPEDIA.ORG/WIKI/INTERPOLATION
HTTP://WWW.YOUTUBE.COM/WATCH?V=FAZFFLMBD2K
HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/HTMLI/
```


95. ScreenLayout

95.0.4. Intro

If you haven't done anything to the default blender startup, starting blender will produce the basic 3D window with a light, a camera, and cube, the buttons window, and the ever-present basic drop down tabs at the top of the screen known as the user preferences window. This is the default setup for modeling, but now that we are starting animation, we are soon going to be looking at a new(ish) set up. You'll see what I mean.

95.0.5. Setup

Figure 766: Changing to animation mode

Now the first thing we need to do is enter 'animation mode.' To do so, look at the top of the window, the 'user preferences window.' You should see file, add, timeline, game, render and help. What we want is the little drop down menu next to 'help' that you've probably never touched much less noticed. It should read something like: 'SR:2-model' with little buttons on both sides of the text. Click the button on the left side that looks like two little arrows to open a drop down menu. Click on 1-Animation.

95.0.6. About this setup

Figure 767: The Animation Mode

No, Blender didn't just go crazy, but as you can see, there are some changes that need to be explained. Blender has just opened a set of new windows, each with its own functions and commands. You can probably recognize three of them. The 3D view is still there, but it's been resized smaller to fit the new stuff. Our old friend the buttons window is still there at the bottom, and of course the user preferences window is still at the top. But enough of what's the same you're wondering what the heck all the new stuff is for.

There are now three new windows in all. From top left going clockwise, the first is the Scene window. This window is used for finding objects and such located throughout your 3D environment. By clicking on any one of the objects listed here, its counterpart in the 3D
viewscreen will be selected. You can also select and tinker with your world settings and render layers from this window. The next window is the IPO (InterPOlation) curve window; it is the window that displays data concerning how your objects will actually move, and can begin to look very technical as we progress. Don't worry, it's normal. The final window is easier to miss. It is essentially a timeline, and is rather thin located between the 3 D view/IPO windows and the buttons window. This is the Timeline window. For what we'll be doing for now, it will basically function as a kind of VCR. It is essentially the time codex associated with your animation. Clicking anywhere on the timeline will show you the animation as it is at that point, like fast-forwarding/rewinding then pausing. Like any good VCR the timeline window is equipped with the Play, Stop, Fast-Forward, and Rewind button set.

96. Lattice

96.1. What is a Lattice?

A Lattice is essentially a simple container that can be used to deform and manipulate a more complex mesh in a non-destructive manner (i.e. A lattice can be used to seriously deform a mesh then, if the lattice is later removed, the mesh can automatically return to its original shape).

96.2. How to add and use a Lattice

A Lattice is added to the scene in the same way other objects are added. Either:

1. Shift-A over the 3D window and chooseLattice from the pop-up menu, or
2. Press Spacebar over the 3D window and choose Lattice from the pop-up menu, or
3. LMB ADD from the 3D window menu and choose Lattice from the drop-down menu

The default Lattice looks just like a cube when first added except that it is just one Blender Unit (BU) wide whereas a mesh cube is 2 BU wide. When the Lattice is added, the window remains in Object Mode and the Lattice can be moved, resized and rotated like any other Blender Object.

On its own, a Lattice serves no purpose whatsoever since it can't be seen in a rendered image. Its only use is to manipulate another object and so, to be useful, we need to associate another object with it. The current method for doing this is by applying a "Lattice Modifier" to a Blender object.

The basic workflow is:

- Add a mesh (cube, cylinder, cone, sphere, etc.)
- Add a Lattice
- Select the mesh
- Press F9 and go to Modifiers Panel(buttons window). In the modifiers tab Press Add Modifier > Lattice
- In the Ob: Panel, enter the name of the Lattice (The default name is Lattice, Lattice.001, Lattice.002, etc. - or you can give it a useful name that you'll remember later)

NOTE:In older versions of Blender, a lattice was applied using a parent method - select the mesh, then select the Lattice, then press 'Ctrl-P and choose "Lattice Deform". While this method is still available, it does not offer the full functionality of the newer Lattice Modifier. If you use the parent method, you will need to press the "Make Real" button in the modifiers palette to enable the modifier functionalities. Using the method, the Lattice becomes a parent and a modifier. As a parent, it will act on the mesh in Object Mode whereas a true modifier lattice only influences the mesh when altered in Edit Mode.

Figure 768

Adding a Lattice Modifier to an object

Now, we can change the Lattice in Edit Mode and any changes we make to it will affect the mesh.

Note: Applying the Modifier Correctly

When adding the modifier to your object, you must enter exactly the same name as your lattice. The default is Lattice with a capital "L" but if you've changed it or have more than one Lattice, then you will need to enter the new name. When you enter a valid Lattice name, the name stays visible in the Ob: box. If your entry disappears then you've entered the name incorrectly.

One simple way to get the right name is to select the Lattice, go to F9, Link and Materials panel and where it says Ob :Lattice or Ob :Lattice. 001 etc., move the mouse over this field and press Ctrl-C (don't click on it, just hover over it). This copies the Lattice name. Then select your object, go to the Lattice Modifier panel, hover the mouse over the Ob: field and press Ctrl-V to paste the name in. Now it should stay there and your Lattice should work in Edit Mode.
Noob note: I recommend the method with Ctrl-P for animation.

96.2.1. Basic Exercise:

1. Start with a new Blender scene, delete the default cube and add a UV sphere (Spacebar>Add>Mesh>UVsphere). Accept the default 32 Segments and Rings. You could
use any of the mesh shapes but because the sphere is heavily subdivided (made up of lots of edges and faces); you will get a better idea of what the Lattice is doing.
2. Tab back into Object Mode then add a Lattice. It is generally wise to resize the Lattice so that it surrounds the mesh it will be deforming. So, press SKEY and enlarge the lattice to 2 BU wide.
3. Select (RMB) the Sphere and add a Lattice Modifier to it. Make sure that you type the exact Lattice name correctly into the box. Nothing appears to happen but that's fine.
4. Now select your Lattice, TAB into Edit Mode, select just one control point (a control point looks like a vertex) on the Lattice and move it around. You will see the sphere mesh stretching and squashing relative to that control point. Move each Lattice control point one at a time and see just how far you can deform the mesh. Zoom in your 3D window if you need a closer look.
5. The control points of the Lattice can be moved, scaled and rotated in the usual ways. Try selecting a few of all the control points and scaling them (SKEY) or Rotating them (RKEY) and watch the mesh follow along.
6. Now, exit Edit Mode (TAB) and select the sphere in Object Mode. Go to the modifiers panel and press the big " X " button to remove the modifier. Despite all that deforming, the sphere immediately returns to its original size and shape. Nothing was really changed in the sphere's mesh data. Immediately re-apply the modifier as before and see the Lattice immediately apply its own deformation to the sphere again.

96.3. Getting more involved with Lattice

The default Lattice is two control points high, two wide and two deep, i.e., it is two control points wide in each direction (these are referred to as the U, V and W directions). However, we can change the number of control points in one, two or all directions. This is done by selecting the Lattice, going to the Lattice Panel (F9) and changing the values in the U, V \& W buttons. If you decrease one figure to a value of 1, the Lattice will become two-dimensional (planar). Decreasing two values to 1 will change the Lattice to a line (one dimension). This can be useful, especially if the remaining value is increased, but is not the most common usage of Lattice.

Figure 769

UVW settings for Lattice

NOTE: The 'Make Regular" button will set the UVW control points of an unscaled Lattice to be exactly one Blender Unit apart in each direction. The "Outside" button effectively removes all the internal control points which are added when the UVW settings are higher than 2.

In most situations you will want to increase some or all the values as this gives you more control over complex deformations, much like a subdivided mesh. How much you increase the UVW directions depends entirely on how much detailed control you need over deformations. As you've already seen basic squash, stretch, shear and simple deforms can easily be achieved with the default 2,2,2 Lattice but by increasing the UVW values a little, a whole new range of deform possibilities becomes available.

Figure 770

Three Lattices with different UVW settings

One thing to understand, however, is that a Lattice cannot bend the individual edges of a mesh (the lines connecting any two vertices) so the mesh must contain enough edges in order to apply complex lattice deformations to it. These edges must be genuine edges and not the virtual edges created by a subsurf modifier (Correction: Yes, they can be edges generated by a subsurf modifier, provided the subsurf comes above the lattice in the modifier stack for the object being deformed; use the up/down-arrow buttons next to each modifier to rearrange them as necessary). Edges can also be added to a mesh using a variety of tools including subdivide, knife and loop cuts (some info on these HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D:_NOOB_TO_PRO/DIE_EASY_2 ${ }^{1}$).

New Note: Use the K key to open a menu for the knife, loop cuts, etc. Knives are used to add a vertex to each line you left click and drag the cursor over, and loop cuts allow you to make multiple cuts into your active object.

About loop cuts: $\mathrm{Ctrl}+\mathrm{R}$ also is a direct shortcut to a loop cut. Furthermore, loop cuts' main uses are for subsurf modeling. In order to accomplish a hard edge in a subsurfed object (for example the edges and corners of a wooden table or the bumpers of a car) you must apply loop cuts to the faces surrounding the edge and place them very close to them (and parallel). Experiment with a simple subsurfed cube and you'll see. Keep in mind this is why when modeling it is highly recommended to use quads. A loop cut will only cut a quad face, or every face connected with it in one direction, but only quads. Another main reason why it is recommended to model with quad faces is regarding animation but I suppose other tutorials will deal with that later. More information: HTTP://WIKI.BLENDER.ORG/INDEX.PHP/MANUAL/EDGE_AND_FACE_TOOLS ${ }^{2}$

[^84]

Figure 771

A simple subdivided cube after a complex lattice deformation

96.3.1. Intermediate Exercise

For this exercise, start over with a new scene and repeat Steps 1-3 in the Basic Exercise above. Don't go into Edit Mode yet.

Basic Exercise:

1. Start with a new Blender scene, delete the default cube and add a UVsphere (Spacebar $>$ Add $>$ Mesh $>$ UVsphere). Accept the default 32 Segments and Rings. You could use any of the mesh shapes but because the sphere is heavily subdivided (made up of lots of edges and faces); you will get a better idea of what the Lattice is doing.
2. Tab back into Object Mode then add a Lattice. It is generally wise to resize the Lattice so that it surrounds the mesh it will be deforming. So, press SKEY and enlarge the lattice to 2 BU wide.
3. Select (RMB) the Sphere and add a Lattice Modifier to it. Make sure that you type the exact Lattice name correctly into the box. Nothing appears to happen but that's fine.

- In Object Mode, select the Lattice then press F9 and go to the Lattice Panel. Increase all the UVW values to 4 . You will immediately see the change displayed in the 3D window.
- Tab into Edit Mode and play with the control points again. The first thing you might notice is that the corner control points have less influence now than before. This is because the effect is
proportional to the distance of each point from the mesh. Move some points in the middle of a side face and you'll see the effect is significantly greater.
- Try selecting groups of control points and pulling them away from the Lattice to stretch lumps and bumps out from the mesh. If you are familiar with the proportional edit tool, try that too - it works on Lattices just like it does on meshes.

Try doing the same exercise but increasing values in only the W direction. (Udivides in the X direction, V divides the Y direction and W divides the Z direction). So, set the UVW to 2,2,4 and play with the control points again in Edit Mode. Select the two rows of control points around the centre of the Lattice and scale them up (SKEY) then Scale them down along Z-axis only (Skey>ZKey). Try other transforms constrained on different axes for interesting, controlled results.

There are three different options for how the Lattice Modifier affects each UVW direction. These are Linear, Cardinal and B-Spline. All I can say is that B-Spline is the default and to find out what the difference is, press the buttons and see.

96.4. Examples

Figure 772

Some examples of a Lattice deforming a standard UV Sphere mesh (not smoothed)

96.5. Making it stick

To keep the mesh deformed permanently, you can select it and press the "APPLY" button in the Lattice Modifier panel. This "bakes" the mesh in the deformed position and disconnects it from the Lattice. The Lattice can then be deleted without the mesh returning to its original shape. This is useful if you are using the Lattice as a modelling tool rather than an animating tool.

Also, instead of deleting the Lattice, you can use it to immediately modify another mesh. Simply move the Lattice over the new mesh in Object Mode then apply the Lattice Modifier to the new mesh. If the Lattice is already in a deformed state, the mesh will immediately be deformed too. Press Apply again to "bake" that mesh and keep re-using the already deformed Lattice on as many other meshes as you wish for matching results.
[Noob Note: I found it interesting that you can even apply the lattice deformation to the original object again once baked, and it will deform even further.]

96.6. Animating a Lattice Modifier

Lattice animation uses a workflow almost identical to the RVK (Relative Vertex Key) workflow from Blender 2.37 and earlier. You don't need to know this but some people might find the information useful.

With your Lattice Modifer already added to your object, select the Lattice and press I-Key to tell Blender you wish to animate the Lattice. Choose "Lattice" from the pop-up list. This sets the basis key (undeformed state) for the Lattice.

Adding the basis key
In the Editing panel (F9), press the "Relative" button.

Figure 773

Set the keys to "Relative"

NOTE: The Slurph setting determines the delay, in frames, for how long it will take to morph from their former state to the one applied by the new lattice.

To set your first deform key, press I-Key and then "Lattice" again then enter Edit Mode. Deform the Lattice by scaling or moving control points then Tab back into Object Mode. If you open an Action Window now, you will see your first key, "Key 1", added to the list. If you press the small arrow at the top of the list, it will display the slider for that key.

Figure 774

Lattice key sliders in the Action Window [Noob note for blender 2.48a] In the action window, select "ShapeKey editor" in the dropdown "editing modes for this editor" (in the panel header)

To add more Lattice keys, for a variety of deform shapes, repeat the process: I-Key, Tab to Edit Mode, move control points, Tab back to Object Mode. Each time you exit edit mode, a new key will be added to the list in the Action Window.

Animating the Lattice uses the same process as animating Shape Keys for meshes.
If you want the object to begin undeformed, then set each key slider to zero on the first frame of the animation. Move through the frames, setting the sliders as you go to deform the Lattice as desired. You will often find you'll need to set a key before and after each deform key in order to control the rate at which deformations take place in the animation.

Figure 775

Setting keys in an animation

Noob note: I'm doing everything as described and get no keys in action window when exiting Edit mode... Any suggestions?

Noob note; Is it possible to create a keyframe using the object's mesh rather than applying a lattice?
Noobie note: What to press after I-Key? I'm not getting any keys in the action window, help please.

Another Noob: No keys here. I got something changing to IPO Curve Editor and choosing Shape in IPO Type

Noob note; Select Action Editor header->Shape Key Editor. Make sure you also selected Buttons Window->Editing (F9)->Relative Keys

Noob Tip: I am seeing a possible bug in 2.49 in which the key sliders will not appear on the Action Editor unless there is at least one window set to Action Editor when the keys are created. To reveal key sliders for keys that have already been created, save the file, re-open it, set one window to "Action Editor" set the window sub-type to "Shape Key Editor" then switch the Lattice "Relative" setting on and off (putting the cursor over the Action Editor window and hitting HOMEKEY will help locate the sliders). Or, by preference, make sure at least one window is set to "Action Editor" before creating the keys.

Noob note: I couldn't see the sliders either; then I scrolled up and there they were, off the visible portion of the window. However, I had by then change the window type a few times, so I can't rule out that that did something first.

96.7. Let the fun begin!

Now you have your object safely locked away inside your Lattice, you can still animate the object itself, inside the Lattice!

96.7.1. Why would I animate the object too?

Take the case of the classic cartoon eyeball which is taller than it is wide. If you just stretched the sphere object itself, instead of using a Lattice to deform it, then you couldn't properly rotate the eyeballs to look up and down because the whole "egg-shaped" eyeball would rotate and end up lying on its front or back. The eyes would literally pop-out of the head.

Figure 776

Cartoon eyes: The stretched spheres don't rotate properly.
If, however, you use a Lattice to deform the basic sphere to make it into a tall "egg" shape, you can still select the eyeball itself and animate it within the Lattice. Now when you rotate the eyeball, it will look up and down but still maintain its deformed shape within the head.

Figure 777

Cartoon eyes: Spheres deformed with Lattice can still be rotated with good results.

97. Bounce

97.1. How to make a ball bounce convincingly!

Abstract

This tutorial assumes basic Blender awareness and some knowledge of using Blender Lattices as well as keyframes basics regarding the Blender Panels. Knowledge of IPO curves will prove useful later as we progress to more advanced techniques.

97.2. How hard can it be to move a ball?

It would be easy to just put a sphere on the screen and animate it to move up and down but in all honesty, it would not look like a bouncing ball. It would not be convincing in any way.

To be believable, the ball must use some of the most fundamental principles of good animation. In particular, the ball must squash and stretch and change speed as it falls, hits the floor, bounces and rises ready to fall again. With a little effort we can make that boring sphere look alive!

97.3. Why use a lattice?

It is possible to make a simple bouncing ball animation without using a Lattice object but with the Lattice we can do more than just bounce the ball. For example, once we have a ball that bounces how we'd like it, we can later add rotation to the ball so it spins through the air and bounces then, as the bounces decrease, the ball can roll to a halt. Doing this without lattice would be a far more complex exercise as a rotating squashed and stretched sphere would look like it was wobbling in space (like having the flat part of a flat tire spin around the tire instead of staying on the bottom, even while the wheel is turning).

97.4. Let's begin then

To begin, add a UVSphere (SPACE $a d d>$ mesh $>$ UVShere) in Top View (NUM7). It is important to add the objects in top view to keep their Z-Axis aligned upwards. Set Smooth and Sub-surf on the sphere if desired. Tab back into Object Mode then immediately add a Lattice(SPACE $a d d>$ Lattice). Resize (SKEY) it so it closely surrounds the sphere. Make the edges of the lattice align with the circumference of the sphere as this will make animation easier.
(By default the Lattice Object Name is "Lattice". It is good to give all your objects unique and sensible names, especially if you are planning a complex scene. So you might call the Sphere
"Red_Ball" and the Lattice "Red_Ball_Latt" or something similar for easy reference and recognition later.)

Figure 778

Top view of UV-Sphere inside selected Lattice

97.4.1. Make the lattice deform the sphere

Prior to Blender 2.4, objects were parented to Lattices with a Lattice Deform option. In version $2.4+$ you can select the object (the sphere) and apply a Lattice Modifier to it (Ob : Lattice). However, if you use this new method then the ball will not move where the Lattice moves and will not squash when the Lattice squashes and we want it to do both of these things.

Luckily you can still use the good old Parent option then use the Modifier palette to make the Lattice Deform "Real". So select the sphere and THEN SHIFT SELECT the Lattice then CTRL-P to make parent and choose the "Lattice Deform" option. If you now select just the sphere, press F9 and look in the Modifiers palette, you'll see a listing for "Lattice parent deform"
with a button for "Make Real". You can either ignore this button or press it. It really won't matter for now. If we wanted to do some weird things to our ball, like kicking it or deforming it in other complicated ways, then we would have to use the "real" Lattice modifer option.

So, this may not be the purist approach to using a Lattice but it is a convenient way to achieve the results we're after. Basically, it works and is reasonably intuitive.

Modifiers

Shapes

To: Sphere

Figure 779

Lattice Modifier screen using parenting option.

Figure 780

If you press "Make Real" you enable the full Lattice Modifier
You can easily check if the Lattice is working the way we want it to by selecting the Lattice and resizing, moving or rotating it. The ball should do everything the Lattice does. I don't wish this to be a full lesson in Lattices so if you don't understand any of the above, or you're certain your Lattice is not working as it should, then please learn a bit about LATTICES ${ }^{1}$ before proceeding.

97.4.2. Time to animate!

For our basic animation, we'll use just 23 frames starting with the ball high then falling, squashing, bouncing and ending up back where it started. When this is played back in the 3D window, it will loop and we'll see the ball bounce forever in one place.

This part is easier done in "SCR:1 - Animation" Viewport configuration. It is also useful to have multiple orthographic views open in the viewport by right clicking on the resize viewport arrow and choosing "split area" then making a top view, side, etc...

Go to Front View (Num1) Press F10 and set your start (Sta) frame to Frame 1 and your end frame to Frame 23. Then make sure you're on Frame 1 (Shift+Left Arrow) to start animating. Note that we are animating the Lattice, not the ball. Everything we do to the lattice will directly affect the ball too.

Note: all the modifications to the lattice must be done in 'Object' mode. If not, they will affect all the frames.

Select the Lattice (NOT the ball) then do the following on the corresponding frames:

[^85]- FRAME 1: Press IKEY and set a key for LocRotScale - the ball's start position (high).
- FRAME 11: Move the Lattice to ground level and key LocRotScale again (keep the fall distance small for now).
- FRAME 13: Leave Lattice in same position as frame 11 and key LocRotScale again.
- FRAME 23: Move Lattice back to start position (use Num (N) Panel if you need to)and key LocRotScale again.
(Noob note- This may seem obvious, but move the lattice BEFORE you insert the keyframe.)
These four frames give a basic up and down animation with a pause at the bottom. We can add squash on Frame 12 to finish off.
- FRAME 12: Place the cursor at the base of the Lattice then set the Rotation/Scaling Pivot to "3D Cursor"

Figure 781

Scale the Lattice down along the Z-Axis SKEY-ZKEY and see the ball squash. IKey LocRotScale again.

When you have set all five keys, you can cycle through the frames and you should see the following result on the Key frames we just set.

Figure 782

Screenshots of the 3D window, front view, on each of our five key frames.
If you press Alt-A now in the 3D window, you should see the ball bounce. Even though the squash happens on just one frame, it still reads properly in our minds and is a vast improvement over an animation with no squash at all. (Press 'RMBor ESCto stop the animation playback).

If you have a camera and lighting suitably set up you could render the animation out and use Blender's "PLAY" button to loop the rendered animation. See the bottom of the page for an OpenGL render made from the steps above. Add material to the ball and a ground plane for a more interesting result.

97.4.3. Looking at the IPO Curves

If you want the ball to bounce three times then you could repeat the above instructions three times over - if you have the patience - but Blender has a better, easier way.

Select the Lattice then open up an IPO (InterPOlation) window and zoom into the group of keys. If you select LocZ and SizeZ from the channel list on the right, you should see something like this (I've added labels to the screenshot):

Note the the IPO Type here is "Object". Purists may be disturbed or perplexed by this but if you remember, we're not really using our Lattice in the purist, Lattice Modifier form. Don't worry about it though. It works.

Figure 783

IPO curve for Lattice, showing LocZ and SizeZ channels.
This shows the relative position on the Z-Axis and size in the Z-Axis of the Lattice. You can see that the Size remains constant until frame 11, then reduces, then goes back and remains constant until frame 23. Similarly, the LocZ curve shows how the ball starts high, falls then stops before rising again. The rounded bottom of the LocZ curve occurs because the IPO curve maps the centre point of the Lattice and when we squash it, the centre point lowers slightly.

Of special interest is that by default, Blender uses Bézier curves for IPOs and this gives us rounded tops on the curve. This means the ball starts moving slowly downward then moves faster until the reaches the bottom. Also, as it nears the top, it slows down again. This is good because this is exactly what happens in reality when a ball rises and falls (It could be better - but it's a good start).

While in the IPO window, select both curves then press KKEY and you'll see each key frame indicated by a vertical line. (Note: You can also press View->Show Keys if you can't remember this shortcut - this has helped me in the past.)

Figure 784

IPO window set to show key frames

Figure 785: Bouncing ball animated GIF

Press AKEY to select all key frames then duplicate (Shift-D) them. The curves will seem to deform but when you drag the frames to the right, they will sort themselves out. Position them so the "first" frame is at Frame 24 and the new end frame is now Frame 46. Reset the End Frame in the Scene (F10) window then watch the animation again. It's not bad. You can repeat this process for more bounces. (To have it bounce forever throughout a long animation, ignore the above procedure and just set the "Extend Mode" to "Cyclic" in the Curve menu. You'll have to adjust the curve a little on the first and last frame but you only do it once and Blender repeats the change for all other cycles.)

It's not bad for a start but there's a lot more to do to this ball before applying for that animation job.

97.5. Saving The Animation

How do you tell Blender where to save the animated frames? The answer is in the "Output" mini-window that you see in the Render settings (F10). Near the top of this are two editable text fields, the first of which is initially set on my Linux system to "/tmp/" and the second to "//backbuf". The first one is the output pathname or directory prefix used to save the generated frames as JPEG files when you press the "ANIM" button. If it has no "\#" characters in it, then it is used as a directory prefix; thus, the default will be to save the animation frames as $/ \mathrm{tmp} / 0001$.jpg, $/ t \mathrm{mp} / 0002$.jpg etc. Alternative, if you put in a filename spec with "\#" characters in it, the hashes will be replaced with the frame number. Thus, if I set the field to "/home/ldo/Documents/BlenderTuts/ball\#\#\#\#.jpeg", then the frames will be saved to that /home/ldo/Documents/BlenderTuts directory and be named ball0001.jpeg, ball0002.jpeg etc.

97.6. So what next?

In real life and in a typical cartoon, balls don't just bounce forever in one spot. They move along and slowly lose their bounce before rolling to a halt. And they have more character than our bouncing ball.

Things to consider next:

- Perfecting the squash - maintaining volume
- Adding stretch
- Look at acceleration and deceleration
- Rotate the ball as it bounces
- Reduce the bounce height over time
- Move the ball around as it bounces

See this ANIMATION LINK ${ }^{2}$ (580kb, AVI-DivX) for an idea of how you can achieve interesting results with just a little more effort. but its k ? k

97.7. Links

Principles of bouncing ball animation: http://www.idleworm.com/how/anm/01b/bball.shtml
Blender 2.49B bouncing ball animation: http://www.youtube.com/watch?v=BEY_6dFdUJY
Blender 2.49B vector blur animation, to add realism to your animations:
http://www.youtube.com/watch?v=qY4WcNgEXv8

[^86]
98. Creating Basic Water animation

Figure 786: A low resolution, high viscosity fluid test

Important: Always make the domain after you have already made the fluid and everything else. Subsurf the object that you are currently working on before you create any other object except the domain.

98.1. Water and Other Fluids

Water is without a doubt one of the most important compounds in our lives; it covers about 70% of the earth and is therefore incredibly important in quite a few blender animations. Wouldn't it be great if we could get an accurate physical representation of this liquid in blender? We can, using a tool called Fluid Simulation. This tool looks unnervingly complex at first glance, but this tutorial
should clear it up for you. At least to a basic level. (Sorry, but I'm not the best with this feature. If anybody sees any missing information that you can help with, please don't be shy to contribute!)

98.2. The Domain

One can imagine how much time it would take Blender3D to think about everything in the infinite space of a 3d world in terms of fluid objects and deflection, so we obviously need to cut down on that size. Create a fairly large cube. This will eventually be set as the volume in which all of the fluid simulation occurs. Don't make it too large, but not too small either. With this cube selected, press "F7" to get to the physics screen. Find the tab that says "Fluid", and click the "Fluid" button to enable the function. Of the six new buttons that appear, click "Domain". All the fluid physics will be calculated inside this cube. Also in that tab, you'll see three buttons, "Std" (which will be pressed by default), "Ad", and "Bn". Each one opens a different set of values. These will be explained as they become important.

Noob note:

1. The example animated GIF below uses a domain which consists of the standard cube scaled 10 times. RMB, SKEY, 10, ENTERKEY.
2. The fluid can be set to be smaller than this. OBJECTMODE, add, mesh, cube, SKEY, 10, ENTERKEY. Reduce this second cube by half. EDITMODE, deselect all(AKEY), border select(BKEY) top vertices, pull down the vertices to half way.

98.3. The Fluid

As a basic start up for your experiments with fluid simulation, I am going to take you through a small demo in which we drop an object into a pool of water, creating a splash. To do this, we need a fluid object and an obstacle object. For the fluid, create another cube, scaled down to cover the bottom of your domain. Enable this object in fluid simulation also and select "fluid". When we start to bake the fluids, this will be set up as your liquid. Make sure you bake this animation COMPLETELY before you add the obstacle. (Don't bake it yet, this will be better explained in the Baking Fluids section)

Let us go over what you have now. You have your starting cube, with the "Fluid Simulation" and "Domain" buttons depressed, and will be referred to as "Domain". Inside this is the cube that covers the bottom of your Domain, which is the liquid. The liquid will be a different object with the "Fluid Simulation" and the "Fluid" button depressed. Create a third object which we will call "Obstacle". This will be the object dropped into the water, and will be described further in the explanation.

98.4. The Obstacle

http://img153.imageshack.us/img153/240/blenderfluidtut1.jpg

Now, create the object you want to drop into the water. Give it an IPO/Animation to drop into the water, and enable it as--you guessed it--an obstacle (click the "fluid" button, click "obstacle").
(User Note: We were just told to bake the animation "COMPLETELY" "before" adding the obstacle, but the baking instructions come in the next section. Are we supposed to bake the animation and then add the obstacle, as it says, or add the obstacle and THEN bake the animation as the sequence of instructions indicates?? *Could anyone out there clean this up a bit?*)
(User Note: He said when you bake it its important to bake the fluid before the obstacle, you are not supposed to bake it until Baking Fluids Step.)

Set up the animation in the front/side views, not the top view. The z-axis is where gravity works. No baking required at this stage. othman

98.5. Baking Fluids

Now we get to see what it all looks like. Before we do anything too fancy, however, go to the render buttons (F10) and specify the total number of frames to simulate the fluid in. Most projects don't need the whole 250 frames. Select the domain object, and find the big button that says "BAKE" under its fluid simulation panel. Press it, click the "continue" part of what comes up, and watch your masterpiece evolve. Be patient, blender has to render this simulation just like it would render the final product. The frame count of this rendering replaces the bar at the top of the screen where it says, "www.blender.org" with the blender logo. If at any time you feel that you want to abort this process, press "Esc". Once the bake is finished, open a timeline window and press play. There, you should be able to view the full simulation.
(note: Make sure the bake data is being sent somewhere or the time you spent waiting will have been for nothing!!)
(User edit: Specify a folder in the space at the bottom for blender to keep the temporal data. Else it will not work) (Note on user edit: When I specify a name and folder, the water animation disappears. ???)
(Yet another User: I tried to Bake my animation, but all it says is something about no images to bake to. I know I need to set a folder or something, but have no idea how!) (You'll get that is you're still in the "Render Options", make sure to go back to the Domain object's "Physics" buttons.)

Noob note:

1. As mentioned above, the baking does not work in the render options panel.
object mode, select domain, physics, fluid, bake
2. Water splash can be observed with 12 frames only.
3. Convert the output of the animation using gimp. Open all files as layers then save as gif.
4. Convert into video using Blender's video sequencer. Refer to Blender 3D: Noob to Pro/Using the sequencer to compile frames into an animation

98.6. Other Fluid Objects

There are two other incredibly useful types of fluid objects--"inflow" and "outflow". The both of these do exactly what they sound like. Inflow objects pour more fluid into the scene, and outflow objects drain it away.

98.7. Keep This In Mind

Blender will make your water its default opaque grey unless you set its color. A good way to make realistic, clear water (as well as glass for that matter) is to edit the color, then apply a simple mirror effect plus transparency effect. After your water has rendered, select the domain in object mode. This selects the liquid in the frame you have just added. From shading [F5] then the 'Materials buttons' (the button that resembles a ball, if when you click on this the colors settings are not up, just press add new under the only panel there), then the panel called "shaders/Mirror transplants/SSS". Go to the Mirror transplants panel, play around with the settings until you get what you fancy. Suitable settings include [the 'Mirror trans' panel of Material:] click 'ray mirror', set rayMir to 0.1 for water, 0.15 for glass, set depth to 7 ; click 'ray Transp', set IOR to 1.3 for water, 1.5 for glass; then set the Alpha value to 0 while adding an appropriate color from the "Material" panel.

98.8. Notes

This tutorial was just a simple example that leaves much to be desired. Below are some helpful links that will further your understanding of the fluid simulator.

A bunch of Youtube videos demonstrating parameters in the fluid panel (if USing Adblock Plus, disable it for this page to work) ${ }^{1}$

Some very snazzy fluid examples made by Mpan3 (lots of videos) ${ }^{2}$

98.9. Site Under Construction

More to come, so check back in a few days!

[^87]
99. Flying Through A Canyon

99.1. Creating the Canyon

99.1.1. Forming from Textures

- Open up a new Blender file and erase the default cube with X
- Create a plane (Shift A A Mesh -> Plane)
- Press WKEY and then specify 100 cuts in the Tool Properties panel (immediately below the Tool Shelf on the left).
- You could also do this by subdividing the plane twice with the number of cuts both set to 10 .
- Scale the canyon up to 5 times its current size
- Do this by either hitting SKEY and typing in 5, or hitting SKEY while holding CTRL to snap and scale your mesh 5 times.

At this point your mesh should look like something like the picture below.

Figure 787

99.1.2. Texturing, Shading, and Deforming Your Mesh

- Go to the Materials tab on the Properties Panel, and click New.
- Go to the Texture tab next to the Materials, and click New.
- This texture will be used to create our canyon, so give it an appropriate name. In this tutorial, "Canyon" was used.
- Select the Texture Type to be Wood

User Note: I found that the 'cloud' texture works nicely for creating a canyon, with size 0.45 and depth 2.

- Go back into the Texture tab and uncheck Canyon.

We will now displace the vertices based on the texture.

- Click on the Modifiers tab on the Properties panel (spanner icon).
- Click the Add Modifier pop-up menu and select "Displace".
- Select your "Canyon" texture for the displacement.
- Go into Object Mode. Notice that the vertices have been displaced! (To see the results better, make sure you're in Solid Mode) However, the material is very jagged. This is because Blender is preserving the original faces on the underlying material, and the original faces don't run in the same direction as the grooves the wood material has created.

User Note: Also works with image textures, i.e. using an image as a texture. Tested using NASA's Blue marble topographic pictures. Go to the end of this tutorial for additional projects.

Your Mesh should now look something like the picture below.

Figure 788

99.1.3. Improving the Look

Now to make the canyon more interesting:

- Go back to the textures tab, under the Wood tab deselect Bands and select RingNoise. Keep the default options for the moment.
- You will now see a "rippling" texture. But it isn't a canyon yet. For this we need to pack the ripples closer together to get more detail per ripple.
- Go into Edit mode (Tab), and make sure all vertices are selected (select one and press L or press A until all are highlighted). Now scale them to 0.2 of the original size. Do this pressing SKEY and the minus sign (-) and . 2 .
- Leave Edit Mode into Object Mode, and scale the Object (as a whole) up to 10.0 of the size; this time by pressing SKEY and then 10 .
- What just occurred is that you packed the vertices closer to each other, but not the texture. Then, you took the object as a whole (including the Texture) and up-scaled it. This is the difference between Scale in Edit Mode and Scale in Object Mode
- You should now have a semi-boring canyon, but it does have circuits which the camera can float around in.
- To make the Canyon more interesting, play around with the Texture values for Wood. I chose the values Noise Size: 1.0 and Turbulence: 15.00 as they produced a somewhat interesting outer ring.
- You may also want to play around the Deform modifier settings, especially Strength which changes the strength of the deformations.
- When you are happy with your mesh, press the Apply button under the Deform modifier.
- The displacements are now permanently baked into the Mesh, and the result should be something like the picture below.

Figure 789

99.1.4. Eliminating the Unneeded

- We will now reduce the number of vertices. Go into Modifiers, and add Decimate. The mesh will appear to change slightly, but it hasn't, except that 4 -vertices faces have been triangulated
- Add another Modifer, Sub Surf, and make sure that the Levels is just 1
- Under the Decimate, slowly reduce the ratio and watch the Mesh. Very tiny mesh details will be changed but the Decimate modifier will keep the shape while reducing vertices.
- I got to 0.07 on my mesh before I decided the detail was getting too low. Remember you will be flying through the canyon, not over it, so the detail on the walls of the canyon is more important.
- Hit apply to bake the reduced vertice count into the Mesh. Smaller vertice counts will make rendering faster.
- Increase the number of levels on your Sub Surf modifer and take a good look, you have just created a canyon! You may reduce the levels or remove the Sub Surf entirely afterwards.

Figure 790

99.2. Coloring the Canyon

99.2.1. A Rocky Material

This is one method to create a rocky wall. The result isn't particularly realistic but it works for our purposes. Creating materials is a difficult practice, and the first step is to know what you're trying to recreate, perhaps by using actual photographs.

- Create a new material for the cliff
- In the Specular panel under the Materials tab, set the Intensity value to 0.132 (our cliff isn't particularly shiny) and Hardness to 20.
- Under the Textures tab, add a new texture in the first slot.
- Give this texture the Marble texture type. Under the Marble options, select Hard and set the Noise Depth to 1 and Turbulence to 1.7.
- Under the Colors tab, activate Ramp. The first colorstop should be white with a full alpha of 0 .
- This is meant to give our primitive rock a textured appearance
- In the second texture slot, add another texture.
- Set this type to Clouds, under the Mapping options set the X, Y, and Z sizes to .025 , under the cloud options select a noise depth of 2 and activate Hard Noise.
- This one will recreate some bumpiness and small inconsistencies in the rock
- In the third slot, add another texture
- Set the type to Clouds
- In the Colors tab, modify the colors to go from Black, 0 Alpha, to a Brown of your choosing, 0.750 Alpha. Reposition the second color to Pos 0.820
- This Texture will simulate dirt on the Canyon
- You will definitely want to do a render now. Reposition the camera and lights, and adjust render options to make for a fast render
- Go into Materials, then the textures tab and select the first Clouds texture you entered (should be 3rd on the list if you did not delete the Wood texture used earlier).
- With that selected, under the Map To tab, uncheck the Col, and check the Nor buttons. Set the Nor value to 2.0
- What we have just done is set the second texture not to affect color, but to affect the angle of the normal in a render. This can be used to reproduce jagged edges on flat surfaces, or waves in water
- Now, select the Marble texture again. Under the Map Input, adjust the sizeX, sizeY, and sizeZ values to 5.0. Do the same for the second texture.
- You will want to render here, adjust the values as desired. For more layers vertically, increase the sizeZ value
- You should now have an unrealistic, but sort of rocky Canyon wall.

99.2.2. Lighting the cliff

- Remove all existing lights
- Creating a new light with the type of "Hemi". Center it over our cliffs, and use Scale (s) to scale it down.
- Create another light, with the type of "Sun". Position it where you want (position doesn't matter with Sun), and use Rotate (r) to position its Ray at the Angle you desire.
- In this example, the Sun was more of an evening Sun. Its light is at a 45 degree angle on one side. This creates some Canyon walls light, some dark.
- Position your camera and adjust the Energy values of your Hemi and your Sun. The Hemi will light up everything, its an easy way to give light to canyon walls that would otherwise be completely black. As a starting point, set your Hemi value at 0.4 and your Sun value at 1.5 and observe how that looks from a few angles. Make adjustments if you desire.

Figure 791

99.3. Additional projects

1. Using NASA's topographic image map at http://earthobservatory.nasa.gov/Features/BlueMarble/BlueMarble_monthlies.php

You have the option of selecting a small portion of your selected topographic map or you can map the entire 360×180 degree panoramic map onto a sphere. Refer to UV Mapping tutorial.

If you just select a small portion of the map of the world(cropping), note the resolution of your cropped image. Create a basic plane and do not scale it yet. Sub divide as many as required to match the resolution of your image. This is in order to get the most out of the topographic image. If you don't bother, this is not essential. The largest subdivision in Blender 2.49b is 120 . If you
want more than 120 splits, you need to redo the sub divide but the calculation is not straight forward. If you split 2 , you get 4 pixels. If you split 3 , you get 5 pixels.

Then apply the texture. Choose texture of type "image" and do not disable this texture. NASA's topographic pictures also come in a colourful form but shaded to indicate heights. The reason why you leave the scaling to the last is that the texture is set to map onto the basic plane size of 2×2 units. If you increase this, the textures will be repeated. Adjust the strength level to a suitable level. The default 1 is too large.

100. Using the sequencer to compile frames into an animation

100.1. Using the sequencer to compile frames into an animation

100.2. Preamble

When you render an animation, often it's a good idea to render the individual frames and then compile them into the animation. This has several benefits over rendering directly to a movie file. Some of them are these:

- - If you discover a mistake in the render, you can modify sections of the animation and rerender those frames without having to rerender the whole animation.
- If the render crashes because the power went out or, (psst), blender crashed, you can pick up the render at the last rendered frame without having to rerender the whole animation

100.3. Tutorial

- Open your animation in blender

Begin by opening blender to an animation that is ready to be rendered.

- Set the render output to targa format.
press F10 to go the scene buttons and set the output format to Targa. Though you can use any image format you want, I use Targa because it has no compression and is at 100% quality.

Figure 792

- Set the file output location.

Set the location on your file system where you want all the frames to be saved to.
IMPORTANT: Make sure that there is a slash at the end or else you are setting a filename not a filepath

Figure 793

- Set Endframe to match the animation

If you animated 500 frames, set the end frame to that same number. the default is 250 .

Figure 794

- Render the animation!

Simply press the "Anim" button.

Figure 795

100.4. Use the Sequencer to compile the images into a movie file

- Open a new blender and delete everything except the camera.
- Change the 3d window into the sequencer window.
(See image for explanation)

Figure 796

- Add the images to the sequencer.

On the bottom of the sequencer window click Add \gg Images then browse to the location where you saved the images, Press Cntrl-A (on linux enter "*.tga" or "*.jpg" in the field for filename) to select all the images and finally press "Select Image" on the top-right. Attached to your mouse curser will be a long horizontal bar which represents all the images. Move it all the way to the left till the little number underneath it shows " 1 " and then Left-mouseclick to place it.

Figure 797

Figure 798

- Set final movie format.

Note that you can also set the location that the movie is saved to by changing the path we set earlier.

Figure 799

- Enable Sequence render and animate!

Depress the Do Sequence button and press the Animate button and wait a few seconds till it's done. Browse to the location you saved your movie and enjoy the animation.

Figure 800

I hope you found this tutorial useful. If there are any errors in the tutorial, Please let me know, and I will fix them as soon as possible.

Blend happy and save often, --RADIALRONNIE ${ }^{1}$ (TALK 2) 22:47, 3 November 2008 (UTC)

[^88]
101. Particle Systems

This tutorial was written for Blender v2.49

Particle systems are used to simulate large amounts of small moving objects, creating phenomena of higher order like fire, dust, clouds, smoke, or fur, grass and other strand based objects. You may also use other objects as a visualization of particles.

Before you start with the tutorials, you should at least take a brief overview about the very extensive MANUAL PAGES ${ }^{1}$ of the particle system. You will find every single parameter explained in the manual if you have the desire to delve deeper ...

Don't forget: particles alone don't do any magic. They are only a placeholder for something nice to view. You have to take care of the visualization also, and that is usually the harder part than to create the particle system.

101.1. The very first particle system

101.1.1. Creating a particle system

- Farticle Systemin

0 Fart 1 .

Figure 801: Image 1a: Create a new particle system

[^89]To create a particle system:

- insert a plane
- select the object (only mesh objects can emit particles)
- change to the object buttons and to the particle subcontext
- click on Add new (Img. 1a)

Voila, your first particle system! It doesn't do anything useful now, but we're going to change that on the following pages.

- To see any particles press Alt-A. The frames change and you see particles appear. Press Esc to stop the animation.

You return to frame 1. The particle movement is cached (stored), so if you play your animation again it will go faster (well, you won't notice any difference in this simple case).

- If you want to stop in a certain frame, press Space.
- The shortcut for returning to the first frame is (Shift + Left Arrow)
- To see the particles even better change to wireframe mode (Z),

If you change anything in your particle system you always have to return to frame 1 , to recalculate the system from start.

Use a timeline window to change easily between frames (Img. 1b).

Figure 802: Image 1b: The very first particle system

Note:

Ultra Physics Coolness:

- Activate Continue Physics in the Timeline window. Menu: Playback->Continue Physics
- Hit the Play Timeline button in the Timeline window.

Now you can move the objects in the 3D window and the particle system is updated in realtime.
The system is not cached then.

101.1.2. Changing properties of the system

Figure 803: Image 2a: Particles emitted in the direction of the face normal of the plane

The most important properties are probably:

- Amount: the total number of particles
- Sta/End: the start and end frame of the emission
- Life: the lifetime of the particles
- The initial velocity. This is often set with Normal causing the particles to get a speed in the direction of the face normal (if emitted from faces).
- A constant global force. $A c c X / Y / Z$ set's a force in the respective direction.

For now change:

- the Amount to 5000
- the Lifetime to 100 frames
- the Normal value to 1.0 .

The Particles are emitted directly upwards (if your plane is orientated that way) and life for 100 frames.

If you render now, you will see a white "Blob". This is the default Halo rendering of the particles.

101.1.3. Changing the material of the particles

Figure 804: Image 3a: The first simple Halo material.

- Change to the Shading buttons and assign a material to the plane.
- Activate Halo in the Links and Pipeline panel.

The Halo settings are in the Shaders panel. The color of the Halo is set in the Material panel (see also the Manual on $H_{A l o s}{ }^{2}$). Halos are a post rendering effect, that is applied after the scene is finished. So halos can't shed any lights on other objects, they are not rendered behind RayTransp materials (like glass).

[^90]Figure 805: Image 3b: Our first particle system rendered in frame 68

- Set the Halo color to deep blue (RGB: 0/0/1)
next go to the "shaders" tab to the right of the "links and pipelines" tab.
- Halo Size: 0.05 so each halo is quite small.
- Hard: 127 so that each halo has the maximum sharp edge
- Add: 0.5 so that the brightness increases where several halos overlap

Set the world color to black and render (Img. 3b). Nothing special till now, but that will change soon. So proceed to the next page, where we're going to make some fire.

101.2. Links

- Blender 2.49b Basic Particles Video Tutorial: http://www.youtube.com/watch?v=dwsR8v5VE4M

102. Making Fire

This tutorial was made with Blender v2.48a
Figure 806: Figure 1: My idea of particle fire.

We're going to create a camp fire with a simple particle system. This tutorial is based on the method described in the BLEnder Manual ${ }^{1}$. The result of this tutorial is shown in Fig. 1, the Blend-File is included at the bottom of this page.

If you need more realistic looking fire, you should use the method described in BLENDERART Magazine No. 16^{2}, though that method is more advanced and uses Compositing Nodes heavily.

The starting point of the tutorial is how fire behaves physically. The flames are made of hot gases. These accelerate upwards due to their lower density in contrast to the cooler air in the environment. Flames are in the middle hot and bright, to the outside they are darker.

[^91]
102.1. The particle system

Figure 807: Figure 2a: A simple scene

I've created the usual scene with some stones and a few pieces of wood (the wood is by courtesy of Teeth). (Fig. 2a).

Noob note: I made the stones by adding an Icosphere of 3 sundivisions, and then used the proportional edit falloff (OKey) with the random falloff mode. And then subdivide and smooth.
Noob note 2: For the wood I used a modified Plane with an Image texture created with GIMP

- Add a Plane in the middle of the stones.

This will become the particle emitter.

- Rename the Plane object to "Emitter".

If you use good names you will find it much easier to orientate yourself in your scene later. Having 100 objects named "Cube.something" will make it very difficult to quickly select a desired object.

- Subdivide the plane once in Edit mode.
- Change the shape of the plane, so that it's shape equals the base of the fire.
- Change to object mode.

Figure 808: Figure 2b: The particle system

- Change to the Particle buttons of the Object buttons.
- Create a particle systems (Add New in the Particle System panel - and make sure the plane is selected!).
- Type: Emitter The plane emits the particles.
- Amount: 9000 The total amount of particles.
- Sta: -45 The simulation shall start before the rendering, to have a fully developed flame in the first frame.
- End: 200 The simulation shall last 200 frames - here: the particles are emitted till frame 200.
- Life: 16.6 I've adjusted the lifetime of the particles to their speed. Both parameters together regulate the hight of the flame.
- Rand: 0.5 The lifetime is changed randomly.
- Emit from:
- Random
- Faces
- Even
- Random

This creates particles with a random distribution on the faces of the emitter object.

Note:

Please note, that the particle simulation is only fully calculated if the bake parameters in the Bake panel match the positive lifetime of the particles. If you want to run the simulation longer than 250 frames, you have to increase the End frame in the Bake panel as well. This is independent whether you want to bake or not.

The movement of the particles is controlled with particle physics. You set the Initial Velocity and let the physics do the rest.

- Normal: -0.099 The particles are emitted slightly against the direction of the face normal. This leads to a bit wider fire at the base.
- Random: 0.014 This creates a random start velocity as well in speed as in direction (you could use a texture to randomize only the speed, see the discussion page for that).

After you have given the particles an initial velocity they are moved by forces.

- AccZ: 2.57 A force in positive Z direction (upwards).
- Drag: 0.1 Air drag decelerates the particles.
- Brown: 1.99 Random movement simulates agitated air movement.

Figure 809: Figure 2c: Particles without material

The particle system is finished. Until now is doesn't look like much (see the white Blob in Fig. 2c). Therefore the emitter will get a material, this material will be animated.

102.2. Material

Figure 810: Figure 3a: Material for the emitter object.

- Create a new material for the emitter, call the material Flames.
- Activate the Halo button in the Links and Pipeline panel. Else we couldn't set the particle parameters. The particles would be rendered with the default Halo values.
- Halo color: 1/0/0 (red)
- Alpha: 0.8 The particles shall always be a bit transparent.
- HaloSize: 0.132 I wanted many, but fairly small particles.
- Hard: 45 The transition from fully transparent to fully opaque.
- Add: 0.875 Several Halos over each other combine their power. This makes the fire in the center really bright.
- HaloTex: A Halo can bear an individual texture, but only the texture in the first texture slot is evaluated.

To give the Halo a bit more structure, give it a texture:

- Add a new texture in the first texture slot.
- Map To:
- Col
- Color: Bright yellow (1/1/0.664)

Figure 811: Figure 3b: Adjusted texture

- Use an adjusted Clouds texture with a NoiseSize of 0.6.

102.2.1. Animation of the particle material

Figure 812: Figure 3c: Animation of the Alpha value

The particles "pop" into life and vanish suddenly. We should change that. Therefore we're going to animate the Alpha value of the particles.

- Make sure the material buttons are visible in the buttons window.
- Change to frame 21, move the mouse cursor over the button window and press I->Alpha. This is going to be the maximum visibility of the particles.
- Change to frame 1. Change the Alpha value to 0 and insert the next key.
- Change to frame 100. Change the Alpha value to 0 again and insert the third key.

If you want to see the IPO curve in the IPO Editor window you must change the IPO Type selector in the window header from Object to Material.

Note:

Note: An animation of particle material is mapped from the first 100 frames to the lifetime of the particles. I.e. if the material is faded out during the first 100 frames (the ipo curve is 100 frames long) the particle will be faded out during it's own lifetime, no matter how long that is. This holds true however only for Point visualization of particles, not for object visualization.

The Alpha value therefore changes during the individual lifetime of each particle from 0 to 0.8 and back to 0 (Fig. 3c).

102.3. Rendering

Our particle animation is finished.

- Change the end frame in the Anim panel of the rendering Buttons to 200 and click on Anim.

Note: If after rendering your particles are too small, such that the fire doesn't look realistic, try increasing the Halo size slightly. I used $\mathbf{0 . 3 0 0}$ instead of $\mathbf{0 . 1 3 2}$

To actually let the fire glow you have to use one or more lamps and animate them as well. But that would be part of another tutorial ...

103. Furry

This tutorial was created using Blender $v 2.48$. There is an older version of this page created with BLENDER V2.40 ${ }^{l}$.

Figure 813: Figure 1: The result of this tutorial: some furry thing

This tutorial deals with fur, i.e. lots of relatively short hairs covering a body. We will use particles to create the fur, and discuss a few aspects here:

- How to determine the length and the thickness of the hair.
- How to determine the place to grow the hair.
- How to color hair.
- How to render efficiently.

The particle system is far too complex to show more than one method in this tutorial. You can achieve many of the same effects shown here in different ways.

[^92]
103.1. The emitter

∇ Farticle System

0 Part 1

Figure 814: Figure 2a: Adding a particle system.

- Remove the cube.
- Add an UVSphere. This will become our emitter.
- Change to the Particle buttons in the Object buttons (Fig. 2a).
- Click on Add New.
- Rename the particle system to "Fur".
- Change the particle system type to Hair.

A Hair particle system has a lot of specialties, the most important thing is that we can edit the particle "motion" by hand if we want to. Apart from that normal particle physics apply, so everything a particle does hair can do also and vice versa. A particle hair shows the way of the particle during it's lifetime at once. To do that efficiently not every single frame is rendered as a point, but a certain number of control points are calculated. Between these control points there will be drawn an interpolated path. The number of control points is the number of segments +1 .

Figure 815: Figure 2b: Particle system settings

For fur you need lot's of particles, like 1.000.000 upwards. This will hurt us badly if we have to deal with so many particles in the 3D window and want to render it. Therefore we will create the great amount of particles with so called "children", that mimic the behavior of their parents. The amount of particle parents should be as low as possible, but you need a certain amount to control the distribution of the hair. We will also use as little control points as possible, three segments should be enough for short fur.

- Set the Amount to 1000 .
- Set the number of Segments to three.
- Emit from:
- Random:Faces
- Even :Random

This will create a nice, uniform distribution.
Let the hair grow - the hair shows the path of the particle:

- Set Normal to 0.05 .
- Random 0.005

Nothing special here: the hair grows in the direction of the face normals. Length and direction are a bit randomized.

The Visualization type changes automatically to type Path if you select a hair particle system. If you would render now, you couldn't see the emitter object any more.

- Activate Emitter in the Visualization panel.
- Activate Strand Render.

The Strand Render (which I have baptized keypoint strands to differentiate from the "normal" polygon strands) renders the hair strands extremely efficiently and magnitudes faster than the normal strand. It is the only way to handle many hairs in terms of memory consumption. But it has a few disadvantages:

- They are not seen by raytracing, so you don't get raytracing reflections and no raytracing shadows. You can use environment mapping to compute the reflections and Spot Lamps with buffer shadows for the shadow.
- If the hair is very thick (like 1 BU) sometimes the shape is not correct.
- Activate Children from Faces.
- Amount: 5 This is the amount of children particles for each parent.
- Render Amount: 50 This is the amount of particles during the render.
- Rough 2: 0.1 Random variation of the shape of the particles. So the hairs will not stand plain upright and appear a bit curly.

The parent particles are not rendered by default, so now we have 5.000 Particles that render on my old machine in 6 seconds. If we use 1.000 children we have 1.000 .000 particles, that need approx. 1 GB of RAM and render in 1:42 minutes. If you render keypoint strands with Children from Faces you can also use Child simplification, which will reduce the amount of particles on objects far away from the camera automatically.

Figure 816: Figure 2c: The first render without material.

Now we should change the lighting to get a preview.

- Select the lamp.
- Change to the Lamp buttons.
- Change the lamp type to Spot.
- Change the shadow type to Buf. Shadow
- Change the buffered shadow type to Classic-Halfway.

This is a great shadow type that renders keypoint strands very well and creates fewer artifacts than Classical (In my opinion). I have inserted two other lamps and used a classical three point lighting for the first rendering (Fig. 2c).

103.2. Material

In the material buttons you can set different aspects for the strands:

- their width and form
- the used shader
- the base color
- a texture along the strand
- different particle attributes like length, density or roughness
- Add a material to the emitter.
- Name the material "Fur".

103.2.1. Strands Shader

Links and Pipeline

Link to Object

Render Pipeline

Halo	
Full Osa	Wire
Radio	OnlyCast

Use Tangent Shading
Surface Diffuse 4 Dist 0.000

Use Blender Units
Start 1.00
End 1.000
Shape 0.000
Width Fade 0.000
UV:

UV:

Figure 817: Figure 3a: Strands settings in the material buttons.

The default strands settings for Keypoint strands are shown in Fig. 3a. Take a look in the MANUAL ABOUT STRANDS ${ }^{2}$ for an explanation of all settings.

- Change the End value to 0.25 , this will make the hair more spiky (not shown in Fig. 3a).

Note:

Surface Diffuse: It might be easier to achieve a good lighting environment if you check Surface Diffuse. With Surface Diffuse turned on, hair does not show as many highlights, which may be too bright without it. I've seen many great examples of fur that use this parameter. However, you have to decide right at the beginning whether you want to use it because it affects all the other material settings. This is something you have to decide for yourself.
103.2.2. Giving the hair its base color

Figure 818: Figure 3b: Fur color texture

[^93]Strands are rendered with the material of the underlying face/vertex, including shading with an UV-Texture. Since you can assign more than one material to each face, each particle system may have its own material and the material of the underlying face can be different from the material of the strands. We will use an UV texture and use it for the surface of the emitter as well as for the color of the hair.

- Change to Front view in the 3D window (View->Front).
- Make sure you are in Orthographic view mode (also in the View menu).
- Change to Edit mode of the sphere.
- Press U to unwrap, select Sphere from View. This is a quick and well working method to correctly unwrap a sphere the easy way.

You don't need to assign a texture in the UV/Image Editor, we only need the coordinates now.

Figure 819: Figure 3c: Emitter with color texture.

- Add a texture to the material, name it "FurColor".
- Set Map Input to UV.
- Go to the Texture Buttons and set Texture-Type: Image.
- Load an image texture. I have used the image in Fig. 3b.

Normally I would just stop here, I think the material is good enough. But if you want to make the fur more fluffy and soft, you should a second texture along the strand, which changes the alpha value.

Texture				Map Input		
Glob	Object O			Ob :		
UV	Orco		Strand	Win	Nor	Refl
Stress	Tangent					
Flat	Cube				ofs $\times 0.000$	0
Tube	Sphe				ofs Y 0.000	-
					ofs $Z 0.000$	-
X	Y	Z			sizeX 1.00	0
X	Y	Z		4.	sizeY 1.00	0 -
X	Y	Z		4.	sizeZ 1.00	0 -

Figure 820: Figure 3d: Settings for a texture along the strand.

If you want to do that:

- Activate ZTransp.
- Add a second texture.
- Map Input: Strand
- Map To: Alpha and Spec, DVar=0
- Use a blend texture (Linear or Quad)

You can change all other properties this way, for example the color along the strand (bleached tips).

103.3. Changing Hair length with a texture

At first I will show you how to render the emitter mesh with a different material than the strands. Then I will show how to change the length of the hair with a texture semi-interactively.

- Change to the Editing Buttons.
- Change to Edit mode.
- In the Links and Materials panel click on New in the material section (see Figure 4a).

7 Lirlis and Materisls

\% ME:Sphere		F OB:Sphere		
Vertex Groups		\because Fur 001		
		12	2	?
New	Delete	New	Delete	
Assigh	Riemove	Select	Deselect	
Select	Desel.	Assign		
AutoTex Epace		Set Smooth	Set Solid	

Figure 821: Figure 4a: Button to click

- Make sure all vertices are selected.
- Click on Assign.
- Change back to Object mode.

Now the emitter bears a second material.

- Return to the material buttons.
- In the Links and Pipeline panel click on the \mathbf{X} next to the material name (Deletes link to this Datablock).
- Add a new material.
- Name it Emitter.

Now you have a new material on your emitter object. Since the particle system uses material no. 1 you can use different settings for the emitter.

Figure 822: Figure 4b: Texture painting

We have already unwrapped the emitter, this is something that will probably be the case also for any real models. Now we will use an UV-Image and texture painting to determine the hair length.

- Split the 3D window.
- Change the right hand side to an UV/Image-Editor window.
- Change to edit mode of the emitter object.
- In the UV/Image-Editor use Image->New... and confirm the default settings. This will create a new image, that we will paint on.
- Click on the package icon in the windows header of the UV/Image-Editor window. Confirm.
- Change the object to Texture Paint mode. Noob Note: In the 3D Window, click on the drop down menu. Change it to Texture Paint.

Now you see the texture on the object.

- Paint a structure on the object.
- Change back to object mode.
- Go to the Material buttons.
- Change the active material to Fur (click on the arrows in the Links and Pipeline buttons where it reads 2 Mat 2).

Figure 823: Figure 4c: Material settings for setting the particle length with a texture.

- Create another texture. Name it FurLength.
- Set Map Input to $U V$.
- Set Map To
- Turn Col off.
- PAttr
- Length
- $D \operatorname{Var}=0$ All the white areas on the texture will produce a particle length of 0 .
- Load the image texture that we have painted.

Figure 824: Figure 4d: Controlling particles with a texture: result

The result is shown in Fig. 4d, you can also see the particles change in the 3D window.
There would have been other ways to achieve this result, e.g. with vertex groups or with particle editing. But I like to work with textures, because you have very fine control and may change the strength of the effect at any time. Vertex groups don't allow for such fine control or you need very many vertices in the emitter. Particle editing (what we will do in the next step) is lost if you change the base particle settings late on, and you can't change it's effect so easily.

103.4. Comb it!

Figure 825: Figure 5a: Combing in Particle Mode

An effect that is often underestimated is the importance to comb fur in the natural directions. Fur doesn't simply stand upright, and it also doesn't follow gravity (or only to a small amount). So back to the particle system!

- Change back to the Particle buttons.
- Click on Set Editable in the Particle System panel.
- Change to Particle Mode.

Particle Mode only appears if you have made the particle system editable, and only hair systems can be made editable. There are a few lifesavers to know when working in Particle Mode.

- you can edit only the control points (remember the setting Segments from the beginning of this tutorial)
- you can only edit parent particles, so you need enough parents for good control
- Activate Limit selection to visible
- Activate Point select mode for even finer control.

Both settings are in the window header of the 3D window.

- Open the Particle Edit Properties panel with \mathbf{N} key in the 3D window.
- Select Comb.

You have quite a few different tools at hand in Particle Mode, see the manual on Particle Mode ${ }^{3}$.

- Comb the hair following the natural flow.

On the example sphere I have used here it is a bit difficult to tell what the natural flow should be ;-). So I have just very carefully combed and changed the length at a few places a bit. You find the rendered result in Fig. 1, the Blend file is linked below.

103.5. Links

- MISSING: The result of this tutorial: hTTP://www.SNAPDRIVE.NET/FILES/180816/BLENDER3D_FURTUTORIAL.ZIP ${ }^{4}$
- A tutorial in German that shows how to create Grass ${ }^{5}$ with a very similar method.
- Awesome fur shown here: Tiger ${ }^{6}$

[^94]
104. Fireworks

This tutorial was made with Blender $v 2.48 a$

Figure 826: Figure 1: Some particle fireworks

How to create a firework from particles? We will use cascaded particle systems especially of the type Reactor.

Abstract:

- We create a emitter object in the appropriate size.
- Than we use three successive particle systems:
- the first of the type Emitter
- the second of the type Reactor. This system reacts to the death of the emitter particles.
- the third again of the type Reactor. This systems reacts to the proximity of the second systems and thus creates a "drag".
- We create three different materials (one of them animated) and assign them to the three particle systems.

104.1. The Emitter

We use a Plane as emitter object. Scale it to your liking. I have used a relatively large particle system, so my plane has a length of 15 BU (Blender units).

Figure 827: Figure 2a: Adding particle systems. First particle system on the left hand side, a second particle system on the right hand side

- Add a particle system (Fig 2a, left hand side).
- Amount: 25
- Sta: 1
- End: 250
- Emit from:
- Random
- Faces
- Even
- Random
- Initial Velocity
- Normal: 22
- Random: 7
- AccZ: -9.8
- Visualisation: Line
- Back: 1.1

A few particles (25) are created in the first 250 frames of the animation and emitted upwards. Gravitation, velocity and lifetime are adjusted so, that the particles reach the end of their lifetime at the topmost point of their trajectory.

The Line visualization lets the particles appear as long drawn-out line.

- Bake the particle system. Use 500 as the End frame for bake. 300 would be sufficient here, but 500 do no harm.

Noob Note: Bake is in the Bake tab next to particle system tab in particle buttons window.
The plane will get a Halo material.

- Activate Halo in the Links and Pipeline panel.
- Halo: color red
- Halo Size: 0.421
- Hard: 35

I've adjusted the size and hardness of the halo so long until I liked it, so there is no specific reason to use these values.

104.2. Reactor 1

- Click on the arrow next to 1 Part 1 in the Particle System panel.
- The settings for the first particle system are no longer shown, now it reads 1 Part 2 (Fig. 2a, right hand side).
- Click on Add New, now it reads 2 Part 2.

You just have created a second particle system. Rename this system, a good naming convention will help you a lot to keep the overview.

Figure 828: Figure 3a: The first reactor system

- Activate React on: Death.
- Life: 104
- Emit from: Particles

You don't have to set anything for the Target. It is not necessary to set the target object if it is the same object as the reactor. You just have to set the number of the target particle system eventually.

The Reactor particles react on the Death of the particles of the target system. They will be emitted from the point that the particles occupy at their death.

To control the movement of the system, I have made following setting in the Physics panel:

- Particle: 0.345
- Reactor: 10
- AccZ: -0.09
- Brown: 3.86

Because of the Reactor setting the star is moving away from the emitting particles. The Brown movement lets the trajectory appear trembling like affected by wind.

- Set the material number to "2" in the Visualization panel.
- Bake the system, again use 500 as end frame.

104.2.1. Material 2

Figure 829: Figure 3b: Material settings for the 1. Reactor system

- At first you have to assign a new material in the Link and Materials panel of the Editing Buttons.
- Use the material settings from Fig. 3b,
- The material also gets a Clouds texture with Noise depth "3", simply leave all other settings unchanged.

The texture is actually superfluous here, but the next particle system is given the same texture, and colors should be adjusted a bit.

- Animate the Alpha value of the material.
- Set the first Ipo key in frame $1($ Alpha=1). To do that move your mouse cursor over the Buttons window. Press I->Alpha (and change ipo type to material in the ipo curve editor if you are using that).
- Set the second Ipo key in frame 86 (Alpha=0.75).
- Set the third key in Frame frame 101 (Alpha=0.0).

The second particle system is faded off relatively quickly, but the particles don't disappear suddenly.

104.3. Smoke Trail

Figure 830: Figure 4a: Particle system for the trail

The third (and last) particle system is again a Reactor system and is reacting to the second system. It's going to react to the Nearness of the particles. Without moving the variation of the particles is created with a texture and a random variation of their lifespan. What Blender considers as close can be changed with the particle Size.

- Create a third particle system (like you created the second).
- Use the settings from Fig. 4a. Important are the settings:
- Amount: 100000
- React on: Near
- Emit from: Particles
- Life: 75
- Rand: 0.4
- Target Sys: 2
- Material: 3
- Bake the system, again use 500 as end frame.

104.3.1. Material 3

Figure 4b: MATERIAL FOR THE Trail PARTICLE SYSTEM ${ }^{1}$

- At first you have to assign a new material (the third) to the object in the Link and Materials panel of the object buttons.
- Assign the existing Clouds texture from material 2 also to material 3, but select a dark blue as target color (in the Map To panel).

104.4. Render

- Render your animation, use end frame 500.

That's all. I hope you were able to follow the tutorial. Criticism and suggestions, write best on the talk page or improve the article directly.

[^95]
105. Particles forming Shapes

This tutorial was created with Blender $v 2.48 a$

Figure 831: Image 1a: Particles can move to the position of other particles with Keyed physics.

Figure 832: Image 1b: Particles can react to force fields of other particles.

I will show on this page two ways to let particles take the shape of other objects.

1. keyed particle physics (Img. 1a)
2. a harmonic force field with a damping of 1 . The force field is emitted by another particle system, so that each particle is attracted by another particle (Img. 1b).

v2.48

The second method is easier to control, but I've found that it may not work exact enough. Even if you use RK4 as calculation method, there are some glitches in the precision of the calculation, so that your particles may not come to a standstill (depending on the size of the particles and their number this may be visible or not).

v2.49

That the particles didn't come to a standstill has been a bug that Jahka has fixed in 2.49. So if you use Version 2.49 and upwards you will find it easier to work with the harmonic force field.

Note:

Plan Ahead!
Make it easy for yourself. If you know beforehand what will happen at each important frame, you will save a lot of time fiddling with the parameters.

105.1. Keyed Physics

So here we're going to use keyed particle physics and quite a few different particle systems.
Basically this is the way to go:

- Use mesh objects and let them emit particles.
- Each system moves to another system because of the keyed physics.
- Choose a good visualization of the particles and animate that also.
- At last the hard part: sync the different animations.

The animation shall last 300 frames, this will be 12 seconds.

- In the first 2 seconds the word "Blender" shall appear (frame 1 to 50).
- Than Suzanne shall build up in 3 seconds (frame 51 to 150).
- Suzanne shall be clearly visible for a few frames (frame 151 to 200).
- After that the form shall dissolve and the particles move a bit until they vanish (frame 200 to 300)

105.1.1. Preparing the scene

- Remove the cube.
- Add a text object Blender. Name it Blender-first.
- Add a Suzanne (Add->Mesh->Monkey). Name it Suzanne-first.
- Convert the text object to a meshobject, because only mesh objects can emit particles (menu: Object->Convert Object Type->Mesh).
- Move the objects to their final positions, also the camera.
- Clarification required - what are the final positions? (Noob note: the author probably means to move the camera and objects to a right position for viewing the animation correctly.)

We need every visible object twice.

- Duplicate Blender-first and call the duplicate Blender-last.
- Duplicate Suzanne-first and call the duplicate Suzanne-last.

One problem is that the objects have different sizes. So how many particles shall be used to create a clearly visible form? Since the most difficult object is Suzanne, I have first chosen an acceptable representation and set everything else accordingly. But I will discuss the settings of the objects in order, and not in the way I did it in reality.

105.1.2. Set up the particle systems

Blender-first:

- Add a particle system to Blender-first.
- Amount 20.000
- Sta: 1, End: 50, Life: 50
- Emit from:
- Random/Faces/Even/Random

Leave all other settings at default. This object will appear in the first 50 frames. After that the object has to vanish in the 51th frame.

- Insert a layer key for Blender-first in frame 50 (mouse over the 3D window, I->Layer).
- Change to frame 51.
- Move the object to layer 20 (M->select layer, bottom right box). Make that layer visible.
- Insert the next layer key for the object.
- Make layer 20 invisible again (select layer 1).
- Change back to frame 1.

Suzanne-first

- Add a particle system.
- Amount 20.000
- Sta: 50, End: 100, Life: 200 (we don't need this long life but the lifetime doesn't matter as long as it's long enough)
- Emit from:
- Random/Faces/Even/Random
- Visualization: None

Leave all other settings as default. These particles shall not move and they shall not be visible. They are simply a target to the next system.

- Animate the layer of this object also. Move it out of sight in frame 151.

Blender-last

These particles shall move from the shape "Blender" to the "Suzanne" shape.

- Add a particle system to Blender-last.
- Amount 20.000
- Sta: 51, End: 51, Life: 100
- Emit from:
- Random/Faces/Even/Random
- Physics:
- First/Keyed It is the first system of a chain (a very short chain in this example) of systems.
- Keyed Target: Suzanne-first, Psys: 1. Target is the first particle system of "Suzanne-first".
- Set time to Absolute in the Extras panel. We're going to animate the material of the particles, I want all particles to change at once in a certain frame.

Figure 833: Image 2a: Particle system of the first keyed system.

Suzanne-last

These particles shall dissolve the form, so at first they take the shape and move around randomly afterwards.

- Add a particle system to Suzanne-last.
- Amount 20.000
- Sta: 151, End: 151, Life: 150, Rand: 0.5. The lifetime is randomized from $151 / 2$ to 151 frames. [Noob Note: In 2.49a, you can't set the start later than the end, so you must first change the end to 151 , then change the start.]
- Emit from:
- Random/Faces/Even/Random
- Bake: End frame 300. Though we don't use baking here, you have to set the End frame in the Bake panel. Else the last 50 frames wouldn't be calculated.
- Time: Absolute

Figure 834: Image 2b: Animation of Brownian Motion

Animate the Brownian motion of the particles.

- Open an Ipo window.
- Select Ipo Type particles.
- Select the Brown channel (LMB).
- Ctrl-Click with the left mouse button in the Ipo window to create an Ipo-key for the selected channel.
- Create a curve similar to Img. 2b. Brown $=0$ to frame 200, than increase to Brown $=4$ in frame 217.

105.1.3. Material

Blender-first and Blender-last will get the same material, Suzanne-first is invisible anyway, but Suzanne-last will get a material. The material of the three objects is very similar, but I have animated the visibility of the particles to match the brightness of the objects.

Figure 835: Image 2c: Material settings for the particles

Suzanne-last

- Create a simple Halo material like that in Img. 2c.

This is nothing special, relatively small particles with a relatively "sharp" edge. The Add parameter gives more brightness if particles overlap, I think this is a nice effect here.

Blender-first

- Assign the material also to "Blender-first".
- Make the material a Single User Copy by clicking on the small number next to the material name.
- Set Alpha to 0.438 .

Blender-last

- Assign the "Blender-first" also to Blender-last".
- Make the material a Single User Copy by clicking on the small number next to the material name.
- Animate the alpha value of the material.
- Insert an Ipo key for Alpha in frame 50.
- Change to frame 150.
- Set Alpha to 1.
- Insert an Ipo key for Alpha.

Now the brightness of all systems are matched.

105.1.4. Links

- Download the blend file ${ }^{1}$

1 HTTP://WWW.SNAPDRIVE.NET/FILES/180816/BLENDER3D_PARTIKELSHAPINGOBJECTS-2. 48A. ZIP

- Manual about Particle physics ${ }^{2}$

105.2. Harmonic Force Fields

So here we will use Harmonic force fields. The Text "Blender" shall be transformed to the text " 2.5 " and than to the text "The big leap forward" (Img. 1b).

- Use mesh objects and let them emit particles. Only the particles from the first object are visible and move.
- The other particle systems use an animated Harmonic force field to attract the particles from the first system.
- The particles from the first system take the place of the other particles.
- Choose a good visualization of the particles and animate that also. This is difficult and maybe you should animate the visualization at last.
- At last the hard part: sync the different animations and force fields.

105.2.1. Preparing the scene

- Remove the cube.
- Add three text objects:
- "Blender"
- "2.5"
- "The big leap forward"
- Convert the text objects to mesh objects (menu: Object->Convert Object Type->Mesh).

105.2.2. Set up the particle systems

- Give each of the three objects its own particle system.
- The first object "Blender" gets following system:
- Type Emitter
- Amount=4000. We need a lot of particles, to fill the last text evenly. If you want to make the animation even better, you could animate the Halo size of the particles to match the density of the different objects.
- $\operatorname{Sta}(r t)=1, E n d=10$, Life $=250$. The particles are created from the first to the 10th frame and live for 250 frames.

Only the particles of this system will be visible later.

- Change the calculation method from Midpoint to $R K 4$. We need the extra precision here.

The objects " 2.5 " and "The big leap forward" will get particle systems with very similar settings:

- "2.5":
- Type Emitter

2 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/PARTICLES/PARTICLE_ PHYSICS

- Amount $=4000$
- Sta $(r t)=30, E n d=30$, Life $=70$. So all the particles are emitted in frame 30 and live 70 frames. So their force field (which we give them soon) will start in frame 30 also. If you want a smoother transition you should give the particles a bit more time to be emitted (like from frame 30 to frame 40).
- Emit from Random/Faces/Even/Random.
- Phyics None. The target particles shall not move.
- Visualisation None. The target particles are not rendered.
- "The big leap forward": All settings as for "2.5", except Sta, End and Life.
- Sta=101, End=101, Life=90.

105.2.3. The force fields

Figure 836: Image 3a: The object does not get a force field.

The particle systems of the objects " 2.5 " and "The big leap forward" will get a force field now. The objects don't get a force field.

- Select the object " 2.5 ".
- Select the particle system in the Field panel of the Physics buttons (Img. 3a).

Figure 837: Image 3b: The particle system gets the force field.

- Use field type Harmonic. Now the particles from the object " 2.5 " do attract the particles from the object "Blender".
- The Strength of the force field determines the time the particles need to reach the target. Set it accordingly.
- The Damp (ing) makes sure, that the particles move to their target but not beyond.

Do the same for the object "The big leap ...", i.e. select the particle system and give it a Harmonic force field.

I have used a Wind field in the last frames to blow the particles away.
(Noobie Warning: When i followed the tutorials up to this point, i didn't know how to use wind. I thought selecting Wind instead of Harmonic would create the effect but then blender froze on me (I am guessing it went away and calculated wind for every single particle). so don't try wind yet. Wind is instructed in later tutorials.)

105.2.4. Links

- The Blend file to download ${ }^{3}$
- The manual about force fields ${ }^{4}$

[^96]
106. Billboard Animation

This tutorial was created with Blender v2.49

BILLBOARD ${ }^{1}$ visualization of particles - and especially their animation - is one of the more arcane concepts in Blender. We're going to shed some light on this. Billboard visualization is extremely powerful, everything that can be done with a halo can also be done with a billboard. But billboards are real objects, they are seen by raytracing, they appear behind transparent objects, they may have an arbitrary form and receive light and shadows. They are a bit more difficult to set up and take more render time and resources.

Billboards are aligned square planes. If you move an aligned billboard in a circle around an object, the billboards always faces the center of the object. The size of the billboard is set with the Size of the particle.

Texturing billboards is done by using uv coordinates that are generated automatically for them.

- The main thing to understand is that if the object doesn't have any UV Layers, you need to create at least one in the objects Editing buttons for any of these to work (Img. 1a).
- Moreover, material should be set to UV coordinates in the Map Input panel (Img. 1b).

Figure 838: Image 1a: UV coordinates for Billboard textures

∇	Texture			Map Input		Map To	
	Glob	Object		UV:UVTex			
	UV	Orco		Strand	Win	Nor	Refl
	Stress	S ${ }^{\text {T }}$ Tangent			From Dupli		
	Flat	Cube			4 ofs X 0.000		
	Tube	Sphe			4 ofsY 0.000		
					4 ofs 20.000		
	X	Y	Z		4 S	size $\times 1.0$	0
	X	Y	Z		4 siz	sizeY 1.00	0
	X	Y	Z		4 Si	sizeZ 1.0	0

Figure 839: Image 1b: UV coordinates as Map Input

[^97]
106.1. Splitting a texture

Figure 840: Image 2a: Billboard settings and texture for UV split

The simplest thing we can do is to give every billboard its own fraction of an image texture. We're going to use a simple image (Img. 2a, right hand side) and split this in four parts ($U V$ Split $=2$, horizontally and vertically).

- Create the UV coordinates (simply click on New next to UV Texture in the Mesh panel).
- Create a particle system.
- Activate Billboard visualization.
- Set UV Split to 2.
- Offset: Random to randomly choose one of the images sections. None would give only the first of the four fields, so all billboards would be red, linear would first use red, then blue, then white and then yellow repeatedly.
- Set UV Channel to Split. This creates the necessary UV coordinates, that are stored in the UV layer. If you use another UV channel, you need a second (or third) UV layer to store the coordinates (see below for an example).
- Fill in the field $U V$ with the name of the coordinate set (here "UVTex").

Figure 841: Image 2b: UV Split for Billboards Animation ${ }^{a}$ Blend file b
$\begin{array}{ll}a & \text { http://WWW.VIMEO.Com/4116347 } \\ b & \text { HTtP://WWW.SNAPDRIVE.NET/FILES/180816/BILLBOARDSPLItUVS.BLEND.ZIP }\end{array}$

- Now create a material for the particle emitter.
- Add a texture if not there already.
- Set Map Input to $U V$. If you only have one active $U V$ layer this is used by default, but if you want to continue this tutorial you have to fill in the name of the UV set also (i.e. "UVTex").
- Load the texture as Image texture.

Now every billboard gets a random section of the texture (see Img. 2b).

106.2. Animating Alpha in relative particle time

\checkmark Wisualization

Billbourd
Draw:

Vel	Size	Num
Draw Size: 0		
Disp: 100		

Fiender:

Material: 1		
Emitter	Parents	
Unborn	Died	

Lock	View
Tilt: 0.000	and: 0.000
UV Split: 2	
None $=$	Random $=$
4 OffsetX: 0.000	
4 OffsetY: 0.000	
OB:	
Time-Index $(\mathrm{X}-\mathrm{Y})$	
LV:UVTex.Elend	

Figure 842: Image 3a: Using an UV layer for time animation

Now we're going to combine the texture split effect with an animation of the billboard alpha. This is done in Relative particle time ${ }^{2}$, i.e. in the lifetime of each particle.

Billboard time is setup completely different than particle time.

- Create a new UV layer (the second one). Name it "UVTex.Blend". Naming is not important here as long as it is unique.
- Select the UV channel Time-Index (X - Y) in the Visualization panel of the particle system. Fill in the name of the newly created UV layer "UVTex.Blend". This creates an additional set of UV coordinates in this UV layer.

Now both UV layers with different UV coordinates will be used. The material settings:

- Activate RayTransp and TraShadow.
- Add a second texture to your material.
- Map Input also $U V$, but now use the UV layer "UVTex.Blend".
- Map To:
- Invert Alpha and Invert Spec
- No $R G B$ (since we're going to use a colorband texture)

[^98]- $D \operatorname{Var}=0$ to set Alpha to zero where the colorband is black.

This is one of the possible combinations for using a texture to make a material transparent (Img. 3b), there are several other methods that work as well.

Figure 843: Image 3b: Material for the Alpha animation. This is already the finished preview with the texture.

The texture is really the most important thing here.

- Use a linear Blend texture.
- Activate Colorband for full control.

Note:

The left hand side of the colorband if the first frame of the particle life time. The right hand side is the last frame of the particle life time.

- Adjust the colorband to your liking.

I've mapped the texture so, that "white" means full opacity, black full transparency.

Figure 844: Image 3c: Texture to control the animation time.

See this AnImation ${ }^{3}$ for the result of the combined textures. And also the BLEND FILE ${ }^{4}$ if you like to take a look at it.

[^99]
106.3. Animating billboard color

Frame 50

Frame I

Figure 845: Image 4a: Animating Billboard color. Animation ${ }^{a}$

```
a HTTP://WWW.vIMEO.com/
    4132553
```

I will show here a second example for animating with a billboard texture, because this is so important. We're going to change the color during the lifetime of the billboard, but you can animate every property that way that can be influenced by a texture. Additionally you can animate the material itself, this is done in absolute time for billboards. So you can mix relative and absolute time animations.

- Open a new file.
- Remove the cube and add a plane.
- Add an UV layer to the plane
- Add a particle system with Billboard visualization and UV Channel Time-Index. Fill in the name of the UV layer.

The particle life time is 50 frames.

- Add a material to your plane.
- Basis color Yellow.
- Use a linear blend texture. If you would use a color band here, you could create an even more colorful animation.
- Map Input UV
- Fill in the name of the UV layer.
- Map To Col. I've used a dark blue color here.

Now the linear blend texture sets the amount of blue color that is mixed to the basis color of the material.

- At the left hand side the blend texture has a value of 0 , so zero blue is mixed to the base color in the first frame of the particle lifetime.
- At the right hand side the blend texture has a value of 1 , so 100% blue is mixed to the base color in the last frame of the particle lifetime.

106.4. Changing the starting color of a billboard

First Particle

Last Particle

Figure 846: Image 4b: Flipped XY for the blend texture

If you flip the Blend texture, you get a different effect. Now every Billboard gets another starting color, but keeps that color during it's lifetime.

Have I mentioned that you may use multiple textures on a billboard, combining all effects?

107. Soft Body Animation

Due to rapid updates in Blender, some menu items may be different from those mentioned here. If the menus don't agree then just do what seems logical.

Softbody makes each individual vertex its own object that falls according to gravity and reacts to outside forces like fields. By adjusting the settings, you change the behaviour of the edges that connect the vertices. For example, you can make it so edges can stretch really far (aka elasticity), allowing the vertices to become distant, or you can make the edge stiff, so the vertices will always stay the same distance apart.

To put this in perspective, picture two cloths, one elastic and one cotton. The elastic one has edges that can extend, so if you view them in wire-frame (with vertices and edges visible) you would see the edges are more extended than an equal distance. The cotton one would only stretch a little bit, so the vertices would stay essentially the same distance apart.

We are going to make a big rubber ball, but not a big bouncy one, a flat (and somewhat lifeless) one. Start with a sphere. I would use a cube sphere or an icosphere, UV spheres don't deform well as they have too few vertices. A cube sphere is made by subdividing a cube and doing a "To Sphere" in the Edit window, under Mesh Tools.

Move the sphere up and place a plane below it. Make sure to do this in the right views so that it is aligned properly. Gravity acts on the z -axis (sphere should be above the plane relative to the z axis).

Figure 847

Now for the soft body select the ball and go to the object tab then the physics subtab or whatever your version has. Click "enable softbody" and then turn up 'Grav' to 9.8. Click off use goal. Press the $>$ arrow key (a few times) and you should see the ball fall. The center will remain in place but this is not a problem. If you are on a slow machine you will notice lag. This is because blender moves it vert by vert, not efficient.

Note: in Blender 2.49, you must deselect the "Use Goal" button to release the center of the ball. Otherwise, it will just hang there.

Note: In Blender 2.44, click F7 on keyboard, select the "Physics Buttons" button, select "Soft Body".

Figure 848

When it reaches the plane it will pass through. To fix this we must make the plane affect the softbody. To do this make the plane deflect in its physics buttons.
(Noob Note: To do this in version 2.49 select the plane, go to object buttons -> physics context -> collision subcontextand select Collision. The variables you can play with here are under the Soft Body and Cloth Interaction.)--WithAlLIGators ${ }^{1}$ (TALK ${ }^{2}$) 10:00, 9 March 2010 (UTC)

[^100]

Figure 849

Now the ball collapses into a strange quivering wreck after impact. To fix this, you need to turn on the stiff quad button, but set the edge stiffness down a bit, so its more bouncy. You can use the bake function to solidify the settings see below

Note from Noob: You might have to turn up the Rigidity Level to 0.100 (in the Soft Body Tab) as well in order to prevent the object from collapsing. (I used a subdivided cube as Object)

What I recommend to do before rendering as animation: In the Bake Settings (Soft Body Tab) Set Interval to 2 or 1, so the object will not start deforming too early before impact. This will slow down the bake process - just slightly - but make the object bounce more dynamically. Then bake again.

Noob note: In blender 2.46 you have to adjust the value of Be in the soft body tab, I changed it to 0.4

Figure 850
another thing you could do is animate the scene. Just put up animation video and set frames at about 50. Go to object mode, select sphere and press i key, and select LocRocScale. =)

107.1. Explanation of Settings

I invite you to correct and expand these definitions:

107.1.1. Softbody

- Friction: creates a resistance to movement of the whole object, like being submerged in a viscous fluid
- Grav: the rate of velocity change due to gravity. Results in a constant -z force.
- Mass: (Force $=$ mass \times acceleration) affects everything by making the object heavier.
- Speed: tweaks the simulation to run faster or slower.
- ErrorLimit: raise it and the simulation will solve faster but strange things might happen. Save frequently, as blender might go nuts with this or any physic simulation (but less so after 2.4)
- Goal: makes the object try to return to its original position, useful at times, in the tutorial you could turn gravity off and key the ball falling and use this to keep it a ball.
- use Edges: uses the edges a means of resistance to movement for the object. Helps to keep it looking possible

107.1.2. Deflection

108. Simple Cloth Animation

In this tutorial, we will be making a simple skirt.

108.1. Making the Skirt Mesh

1. Open Blender and delete the default cube, if you aren't looking down on the scene, press NUM7.
2. SPACE \rightarrow Add \rightarrow Mesh \rightarrow Circle (Blender 2.5 users press "Shift-A" to open the "Add" menu)
3. You should get a prompt for the number of vertices. Use about 12 and hit OK.
4. Once the circle is added, switch to Edit Mode with TAB. All the circle's vertices should be initially selected; if not, use AKEY to select them all.
5. Press EKEY and select "Only Edges" to extrude a second copy of the vertices; press SKEY SHIFT+ZKEY to scale the extruded vertices in the X and Y directions. These will make up the hem of the skirt; scale it out to as large as you like. Note that this is positioning the skirt out flat horizontally, instead of hanging down as you would expect; Blender's cloth animation system will take care of that, and this positioning gives maximum opportunity for the skirt fall in dramatic folds.
6. Now we will need to subdivide the mesh. The physics can only act on actual vertices, so the more of these we have, the more realistic the cloth effect will be. Select all vertices in the skirt, press WKEY and select the "Subdivide Multi" option; choose, say, 4 for the number of cuts, and hit OK.
7. While you're at it, go to the "Link and Materials" buttons, and click "Set Smooth".

108.2. Creating the Vertex Group

1. Now we have to specify that the waist of the skirt will stay fixed in place as it falls: deselect all vertices, and select the innermost ring of vertices. The easiest way to do this is select two consecutive vertices in that ring, then press CTRL+EKEY and use the "Edge Loop Select" option.(ShortCut: Alt + Click edge to select closet loop) With those vertices selected, go to the Editing buttons, in the "Link and Materials" miniwindow, under "Vertex Groups", click "New", perhaps give it a more meaningful name (like "Waist"), and click "Assign" to put the selected vertices into the new group.

108.3. Animating the Skirt

1. Tab out of Edit Mode into Object Mode. The skirt should still be selected.
2. Switch the Buttons Window to Object Context (F7), and select the Physics Buttons (second in the row of three icons that appears to the right of the context buttons).
3. Among the miniwindows should be one titled "Cloth". Click the "Cloth" button in it; a whole lot of other settings should appear, most of which can be left at their default values. However, click the button titled "Pinning of cloth"; this will make a popup menu of the available vertex groups in the object. Since you only created one vertex group (the "Waist" one), this should already be selected by default.
4. Now the magic happens ... rotate the view to an oblique one to give yourself a good view of the process, and hit ALT+AKEY. You should now see the skirt fall from its horizontal position to a more natural vertical one, developing some folds in the process.
5. After the animation has run through at least one complete cycle, hit ESC to stop it.

108.4. Keeping the Folds

1. Now use the left- and right- arrow keys to step through the animation one frame at a time, until you find a position for the skirt that you like.
2. When the 3D view is showing a nice shape for the skirt, go to the "Object" menu, and look for the "Scripts" submenu. In here there should be a script called "Apply Deformation". Select it.
3. It looks like nothing has happened, but in fact you now have a second copy of the skirt mesh, "baked" into the position corresponding to the current frame of the animation. Try using the arrow keys to move through the animation, and you will see the baked copy remain in the chosen position.
4. At this point, you can delete the original animated skirt mesh (or move it to another layer for future reuse), leaving the nicely-folded copy.

Figure 851

108.5. Extra Practice

1. You will notice at some points during the animation, the folds of cloth pass right through each other, which is of course impossible with real cloth. To prevent this, you could go to the "Collision" tab in the "Cloth" miniwindow, and click the "Enable selfcollisions" button. Rerun the animation (ALT+AKEY) to see the difference; what other effects does it have?
2. Maybe the folds don't look realistic enough. Go back to the original mesh, bring up "Subdivide Multi" again and subdivide it by a couple more levels. Rerun the animation (ALT+AKEY). It should take a bit longer for the first cycle, but do the results look better?
3. This YouTube tutorial might also help: HTTP://AU.YOUTUBE.COM/WATCH?V=MGYHZ3HWWTQ ${ }^{1}$ happy animating!
[^101]
109. Soft Body with wind

This is the Blender wind and soft body tutorial. This tutorial will try and help your knowledge of using Soft Body and the Fields and Deflection panels in Blender 3D. (For best results, I recommend you use Blender version 2.43 or higher). Don't forget to save your work at various points throughout the tutorial.

109.1. Setting up scene

109.1.1. The plane

Delete the default cube [X key, or yes, even the Delete key] and enter Front view mode [Num. Pad 1]. Add a plane, scale 3 times [S key, 3, Enter] and sub-divide 4 times until you get something like the shape below. If your computer can handle more, and you want more, sub-divide as many times as you like, but if your PC is struggling with this, undo once or twice.

Figure 852

109.1.2. The wind items

TAB out of edit mode (if you haven't done so already), enter side view [Num Pad 3] and add an empty. Clear the rotation $[A L T+R]$ and rotate it $90^{\circ}[R, 90]$. Place it about -5 from the centre [G, $y,-5]$ and make sure its still in the middle of the X axis. Your scene should look like the picture below:

Figure 853

For the second wind item, add an empty like before and clear its rotation, but DON'T rotate it any more. Move it along the Y axis by 4 places $[G, Y, 4]$ and -10 by the $Z[G, Z,-10]$. And now your scene should look something like this (with all items selected).

Figure 854

And that's all your items you'll need for this. Onto the harder part.

109.2. Designating each object's job

109.2.1. The plane

Now, the plane will become a soft body, so enter the Object Panel [F7], click on the Physics Button (beside the three arrows, see second picture below) and click on the soft body button. You will get a load of boxes, but we only need to look at the Grav, Goal, and the bottom parts:

soft Eody

 Soft Eody| Friction: 0.50 |
| :---: |
| Grau: 0.000 |

Figure 855

Change the values of these as shown above. Change the Aero part to 732 (if you go up to 1000, it changes the final output by a bit).

Now, click on the Soft Body Collision tab and click on the Self Collision and Deflection buttons. You don't need to change any of the numbers here. The buttons window should look something like this:

Figure 856

Now we will move on to the Empty items which will be the wind.

109.2.2. Creating the wind

The two empty's we created earlier will be the items that will act like wind, and when you render at the end, they will be invisible, just like the wind. Anyway, select one of the empty's and enter the Physics panel. Click on the box under the Fields and select "Wind". (Blender 2.5+ note: First you will have to choose "Force Field", then change the Type to "Wind".) Change the Strength to 20, click on Use MaxDist and change MaxDist to 2.5.

Filds end ceriection

Fields

mind

Deflection

Strengtt: 20.00

Fall-oft:0.000

Figure 857

Do the same for the other empty. Your scene should look something like this:

Figure 858

109.3. The movement

This is probably the most complicated part, but shouldn't take long.

109.3.1. The Empty on the left

In side view [Num pad 3], select the empty on the left and do the following: 1. Press [I key] and then select LocRotScale from the list it gives you. This inserts a key frame, saying that on this frame, keep the Location, Rotation and scale the same throughout the rest of the movie, unless it comes across another key frame, which might tell it to move or stay the same. Now, press the Up Arrow Key until you get to frame 31 (about 3 times). If you don't know where the box is that tells you what frame your on, check the following picture:

Figure 859

Number 1 shows the current frame number and the name of the selected object while number 2 shows the current frame and allows you to change the frame with the arrows on either side.

109.3.2. Back to the movement

On frame 31, select the empty on the left (the one selected in the picture above) and press [G key]. Now press [Y key] and press " 4 ", then [Enter key]. Now press [I key] and select LocRotScale again. Now, if you press and hold the Left Arrow Key, you should see the Empty move back to its starting place. Now, to check the curve guide (called the "IPO Curve Editor"); right-click on the top panel (number 1 in picture below), then select "Split Area" and click when the line is a bit out from the side (number 2 in picture below).

Figure 860

Now, click on the box (shown below) and select "IPO Curve Editor" from the menu.

Figure 861

This window just shows where the key frames you entered are, and how much the shape changes, moves or rotates. Now, go back to frame 1 and press [ALT]+[A], which plays the animation. You should see the "wind" hit the sheet and the sheet will blow away. Pretty nice, huh? Now, it would be fine like that (I'll show you how to get rid of the blockyness in the last part), but say you want to hit the sheet again and send it upwards? We will use the second empty for this.

Select the second empty (the one on the bottom). Insert a key frame ([I key], LocRotScale) on frame 1 and frame 50. Go to frame 60, grab the empty and move it up 8 places ([G key], [Z key], 8). Insert a key frame ([I key], LocRotScale) and then go back to frame 1. You have completed the basics, and the most of this tutorial. Now, press [ALT]+[A key] and watch your animation.

109.4. Finishing touches

109.4.1. Blockiness

Now, to sort out the blockiness, go to the Editing buttons panel [F9] and select the "Set Smooth" button.

Figure 862

Now if you preview again ([ALT]+[A]) you should see the plane is smoother, but might be a bit unrealistic (i.e. not acting like real cloth). Now, that can't be helped, the only way to get rid of it is to subdivide the plane several more times, but that will put a LOT of strain on your computer, so I wouldn't recommend doing it unless your computer can handle it.

109.4.2. Background

First of all, got to the Scene panel [F10] and over at the Format panel, change SizeX to 400 and SizeY to 300 . Now, to change the background colour when you render, go to the shading panel
[F5] and select the World buttons. Now, in the World panel change HoR to $0, \mathrm{HoG}$ to 0.80 and HoB to 1.0.

Figure 863

All that does is just changes the background colour to a brighter, nicer shade of blue. Now, I'm just getting a bit lazy, so I'll just explain this part with a picture: (don't forget to select the plane).

Figure 864

Change the values and press the buttons shown in the picture. This will change the colour of the plane to white.

The only problem now is the light. Press [F12] and you should see what I mean. There's no light shining on the plane where the camera is, so its just shaded dark. To fix that, select the light and go to the shading panel [F5]. You now have options for the light. Click on the "Sun" button and press $[\mathrm{ALT}]+[\mathrm{R}]$ to clear rotation. Now, in side view [Num pad 3] press [R] and then type -45 . Enter top view [Num pad 7] and press [R] and then -45 . This now shines the light in the direction of the plane, but, if like mine, the light is above the plane in top-view, press [G], [Y] and then -5 . The line
coming out of the light source should be roughly pointing at the centre of the plane. Here's what your window should look like:

Figure 865

The pink line is the light. This was taken in camera view [Num pad 0]. Render the frame and you should see what the final product looks like. Move to any frame you want and press [F12] and it will show the rendered image for that frame. Now, rendering the entire animation might, in fact, will take a long time unless you have a completely new PC, are using a big server like DreamWorks (one of the big PC's, used for rendering images faster) or have a quicker renderer, I don't use any external renderers, and am stuck using a PC that is about 2 years old (in other words, full of junk). It took my PC less than 5 minutes to render 100 frames, and the last 25 were just blank (as the plane just flew above the camera). To change the amount of frames to render, and to render the full animation, here's what you press:

Figure 866

The box that says End:100 lets you select what frame you finish rendering the animation on (NOTE: the Sta: 1 button lets you select what frame to start rendering the animation). When you
press the ANIM button, it starts rendering the animation. The Box covered in blue, that says Jpeg, lets you change the format of the image in the end.

To export the animation as an AVI format, select the AVI button shown below, then press OK. Now, you need to Animate the sequence again, so press the ANIM button again.

Figure 867

The finished .AVI will be saved in a folder with the rest of your rendered images. It should be saved in a folder called tmp, which (on a Microsoft computer) is in My Computer/tmp. The name of the file will be whatever your start and end frames are, so in this movie, mine is called 0001_0100.avi. You can now do whatever you want with your movie now, and hopefully you have learned a trick or two that will be helpful later on in your Blender career.

109.5. Final result

Here is an animated .gif of my final result: (imported into Macromedia Flash and exported as an animated .gif) You are required to be an auto confirmed user or uploader.

Figure 868
--USER:10RCR ${ }^{1} /$

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3A10RCR

110. Your First Test

The Blender Game Engine is an interesting feature of Blender. It is basically a 3D environment in which 3D objects move around and react to each other upon contact. One common application is to recreate 3 D architectural tours.

In this tutorial, you will learn the basics of object collision within the Blender Game Engine (BGE). From Blender games to use in animations, the bullet physics engine offers a massive number of possibilities. The tutorials found within this wikibook on the subject of the BGE are generally focused on game creation, but the concepts taught within can be applied to a multitude of situations.

As a start, we will teach you to make a ball roll realistically down the hill using Blender's game engine.

110.1. Adding the Hill

First, make a plane, then switch to Edit mode (TAB), and multi-subdivide it with 2 cuts (WKEY \rightarrow Subdivide Multi $\rightarrow 2$). Next, enter face select mode (CTRL+TAB \rightarrow Faces) to drag the center face up, in order to form a rough outline of a hill. Add a subsurf modifier (in the edit buttons) to about 3, then apply. You should now have a serviceable, but small, hill. Scale the hill up (SKEY) by about 10 times, and we're ready to add the ball.

Noob note:

1. You can also use a $3 * 3$ grid.
2. Delete the original cube first.
3. The subsurf modifier is not essential.

110.2. Creating the Ball

Now, add an icosphere (SPACE $\rightarrow A d d \rightarrow$ Icosphere) and relocate it to be just above the hilltop (GKEY or use the translate widget by pressing CTR+ALT+G). Let's change the color of the sphere so we can differentiate it from the plane. Go to the material buttons (with the sphere selected) and click on the white panel beside the COL value. In the color selection wiget that appears, change its color to a bright red.

Next we need to make the Physics engine iterate over it. With the sphere selected, go to the logic buttons (the little purple Pacman-icon). NOTE: In Blender 2.5 and above the Logic Buttons are gone. In order to have the 'Actor' button, click on the button showing 'Blender Render', and select 'Blender Game' Engine. Then go to the physics tab in the buttons menu. There you
will see the 'Actor' Button. You will see a button in the top left that says Actor. Press it. Now select from the selection box beside of the "Actor" button Rigid Body. This makes the ball roll, instead of staying completely upright the entire time. You will see a bunch of settings available now. Change Radius to 2 . This changes size the physics engine thinks the ball is. You notice a dotted circle around the object; this is the boundary. Now change the Radius back to 1. You now have your first Blender game ready to go.

Noob Note:

1. Make sure you are in object mode first before you add any object.
2. F4KEY is the shortcut to the logic panel.

110.3. Testing your game

Now the time has come for the first test of our game.

1. Add a light source well above the hill (SHIFT+AKEY \rightarrow Lamp \rightarrow Lamp). Align in front view (NUM1)
2. Press NUM5 to switch to Perspective mode, which gives a realistic view, rather than a view in which objects stay the same size with distance (be sure to switch back to Orthographic view when you are editing again using NUM5)
3. Enter textured mode (ALT+ZKEY -- press ZKEY to switch back to solid view mode)
4. Switch into side view (NUM3) and press NUM8 several times to get a good perspective on the ball.
5. Press PKEY to play the game (Make sure you are in Object mode (TAB)
6. Press \mathbf{P} to start testing the game. You should see the red ball drop onto the hill.
7. Press ESC to quit testing the game

Figure 869: Rolling ball tutorial screen capture

110.4. Video capturing your game

When you press the PKEY or click game, start play, Blender will play it using the 3D view. Many rendering features are not shown in this 3D Window and it does not render the view in order to get good pictures with textures and lighting. You must capture your object that keep on changing(the actor) so that it can be animated.

View $->$ click View button , -> next step / -> alternative step RMB -> right mouse button IKEY -> press the I key on keyboard

Split window, IPO Curve Editor View, Game, Record Game Physics to IPO, object mode, RMB(select actor), IKEY/select key frame, Loc(location of actor object only), PKEY(play game), ESCKEY(stop game)
scene(F10), output, f:\animation\ball (your file name), stamp, time, date, draw stamp, format, (choose your output format)
anim, end(ending frame), 270, step, 10(for testing), ANIM/Render, Render Animation/CTRL F12

110.5. Conclusion

With the knowledge acquired in this tutorial, there are many things you could accomplish within the Blender Game Engine, although the majority of them would require more knowledge. So read on, and work your way through the multitudinous seas of tutorials (That is, two).

110.6. Extra Tutorials

Making a Basic Game: Link ${ }^{1}$, The State Actuator: Link ${ }^{2}$, Blender Game Engine Mouse Follow: Link ${ }^{3}$, Blender Bullet Physics: Link ${ }^{4}$, Domino Game: Link ${ }^{5}$, Rag Doll: Link ${ }^{6}$

```
HTTP://WWW.YOUTUBE.COM/WATCH?V=WGYCLDS_DLG
HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=9&T=4633
HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=9&T=4743
HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=9&T=4752
HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=9&T=4820
HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=9&T=4987
```


111. Platformer: Creation and Controls

This tutorial will teach you the basics of the Blender Game Engine, and how to create a platform game, which is a game where you overcome in-game obstacles by controlling the character's motions. (e.g. Super Mario)

111.1. Set Up

Figure 870: How it should look so far.

To start, switch to the frontal view NUM1 and move the starting cube to -3.0 along the Z azis, or three spaces down. If your default settings do not have you starting with a cube, create one now. Next, hit SPACE \rightarrow Add \rightarrow Mesh \rightarrow Monkey to create Suzanne the Monkey. Any mesh will do, but it's the easiest of the basic meshes to intuitively determine local direction from. Next, go to the logic window (with Suzanne still selected) and toggle on "Actor" and then "Dynamic". Hit PKEY to test. Suzanne should fall, then stop upon hitting the cube. Press ESC to exit.

Figure 871

111.2. Controls

Now we will add the controls. First, forward:
In Blender 2.59 these controls are available in the 'Logic Editor' window.

1. Create a Keyboard Sensor, AND Controller, and Motion Actuator. Connect them by dragging lines between the dots next to their names. (In 2.59 the controller is created automatically, if the other two are connected)
2. Select the empty box next to the word "Key" on the Keyboard Sensor and hit the up arrow key on your keyboard.
3. Set the dLoc on the Motion Actuator to 0.10 Z and toggle Local Transformation (may appear as simply an L next to the dLoc row).

Next, backward. Repeat the process used for forward, but set the dLoc to -0.10 Z and the key to the down arrow. You can repeat this for left and right if you so choose to have a linear control scheme. We will not be using such a scheme for this tutorial, but you should still be able to follow along just fine. Instead, the character will rotate left and right and move in the new forward and backward.

To rotate right:

1. As before, create a Keyboard Sensor, AND Controller, and Motion Actuator, then connect them.
2. Set the key to the right arrow and set the dRot to -0.10 Y .

Repeat for left, with the left arrow and 0.10 Y .

Figure 872

Finally, the ubiquitous, and some say defining, Platformer move: the jump. Repeat the previous processes, with the space key as the trigger and the linV of the motion effect as 7.50 Z (not local). This doesn't actually move the character in a certain direction, but sets its velocity. If you've done programming for games before, this will probably be familiar to you. Each frame, the engine adds the velocity of the object to its current position. The gravity portion of the engine subtracts from the upward velocity each time. When it reaches a negative, it's adding a negative number to its altitude, ergo subtracting from it, ergo causing it to fall. This is why using linV to move the character does not cause it to immediately relocate to the target position.

112. An aMAZEing game engine tutorial

This tutorial is intended as an intermediate introduction to the Blender game engine, in the form of a game, and is the sequel to Platformer: Creation and Controls ${ }^{1}$. It will require a familiarity with the Blender UI, simple commands (such as AKEY to select) and basic modeling skills. The game we will create within Blender will have the following features:

1. a protagonist controlled by means of the WASD keys
2. a maze surface without walls
3. death on falling off the maze
4. multiple levels
5. dynamic obstacles
6. a goal within the maze that will transfer you to the next level

This tutorial was written for version 2.44 and has been tested for all later versions (as of April, 2008)

112.1. Maze Surface

Now we'll make the maze. When you are creating the path of the maze surface keep in mind that you need a start and a goal.

[^102]

Figure 873: Selecting the faces

1. Clear the scene; Select all (AKEY), delete selected items (XKEY \rightarrow ENTER)
2. Go into top view (NUM7)
3. Add a grid (SPACE \rightarrow Add \rightarrow Mesh \rightarrow Grid) with X and Y resolution of 16
4. Scale grid by 24 times (SKEY, type 24, ENTER)
5. Enter edit mode with the grid selected (TAB)
6. Go into face select mode (CTRL+TAB \rightarrow Faces)
7. Start selecting faces so as to make a two dimensional maze (use BKEY to draw selection boxes)
8. With the faces selected, duplicate those faces (SHIFT+D, RMB)
9. Move those faces away from the original grid (GKEY or the movement wiget CTR+ALT+GKEY)
10. Delete original grid
11. Center your maze using GKEY or by pressing the Center button in the Mesh panel of the Editing buttons (F9)

You should now have a two dimensional maze. In the game engine, we only see one side of every face, so this maze will not appear to be there when seen from below, and will be obviously two dimensional when seen from the surface of the maze itself. This is undesirable so we will make our maze 3 dimensional by extruding the maze surface down.

Figure 874: The extruded maze

1. Go into side view (NUM3)
2. Select all the faces (AKEY)
3. Extrude down, -1 unit (EKEY \rightarrow Region), hold CTR to constrain to 1 unit increments, or manually type in the value -1 , like you scaled the grid in the beginning.
4. LMB to accept the operation, or RMB to cancel the move of the faces. If you cancel it, the faces will have extruded, but will simply not have moved. You can undo the operation (CTRL+Z), or delete the vertices/faces you have extruded (WKEY \rightarrow Remove Doubles).

Your maze is now complete, only lacking someone trapped in it...

112.2. Character

Figure 875: Extruding a nose

We will create a very basic character sufficient to illustrate the concepts meant to be conveyed in this tutorial. You can make a character as complex or basic as you desire, but it is important to always have an indicator of direction on your protagonist, otherwise the player may become confused. So, we will use a primitive with a 'nose' (i.e. a face or vertex extruded away from the object center in order to provide a point of rotational reference). I'll use a cone for this tutorial, simply because they don't roll very easily.

Figure 876: Rotate to the direction character will move

1. Enter top view (NUM7)
2. Add the cone (SPACE \rightarrow Mesh \rightarrow Cone, use default values)
3. Select cone and enter Edit mode (TAB)
4. Enter face select mode (CTRL+TAB \rightarrow Faces)
5. Select a face on the side of the cone
6. Extrude it about $1 / 4$ of a unit or less (EKEY)
7. Merge the extruded face to make the nose pointy (WKEY \rightarrow Merge \rightarrow At Center)
8. Enter object mode (TAB)
9. Rotate the cone so the nose is aligned with the positive Y axis (RKEY, align with the green arrow)

You've got your character now (Not exactly Pixar-like, but it will do for now). Now we just need to give it motivation.

Note: From points 8 to 9 it would seem that the cone should rotated so that the "nose" is aligned with thee Y-axis in object mode, but after doing this I encountered the cone still moved in the original Y-axis direction (before rotation). To remedy this I did the alignment of the "nose" to the Y-axis in edit mode instead, this seems to have solved the problem.

112.3. Motion

We'll now make the character move, via the use of the WASD keys. In order to do this, game logic needs to be associated with the WASD keys. Copy the configuration seen in the screenshot, taking care to include the convex hull polytope collision in the top left as well as depressing the 'L' buttons, which make the force and torque local to that object rather than global. If the force was global, the protagonist would continue moving in a straight line, even when turning.

1. Go to the Logic buttons (The purple pac-man icon or $\mathbf{F 4}$)
2. Add four Sensors, Controllers and Actuators.
3. Maximize the logic window (CTRL+UPKEY)
4. Copy the configuration seen in the screenshot below.

Figure 877
(Note: I made the simulation using Actor->Dynamic since there was no way to use both dynamic and rigid body in 2.49 b . After some testing it appears to work

dLoc/dRot vs Force/Torque

The character logic in this tutorial is very similar to that of the previous platformer logic, but it differs in that it uses force and torque rather than dLoc and dRot, respectively. The difference between these two is that force and torque move and rotate the object within the bullet physics engine, applying friction and collision to the process, whereas dLoc and dRot move and rotate the object without regard for any other 'actors' (objects factored in to the physics engine's calculations). Although dLoc and dRot would serve in most maze games, many other instances
demand force and torque. However, most of these instances occur in more complicated games with a multitude of interactions with dynamic objects. Later in this tutorial we will add dynamic objects to our maze, and the reasons for using force will become clear.

112.4. Testing

Now the time has come for the first test of our game.

1. Add a light source well above the maze (SPACE \rightarrow Lamp \rightarrow Lamp), align in front view (NUM1)
2. Press NUM5 to enter perspective viewmode, which gives a realistic view, rather than a view in which objects stay the same size with distance. Be sure to switch back to orthographic view when you are editing (NUM5)
3. Enter textured mode (ALT+ZKEY) -- press ZKEY to switch back to solid view mode
4. Switch into top view (NUM7) or camera view once we install the camera (NUM0)
5. PKEY to play the game
6. ESC to escape testing the game

If you receive a "No camera" error, disregard it. We'll be adding a camera later.
If your character doesn't move at all make sure you drew the connecting 'wires' between the actuators in the logic panel, as well as setting the "Actor" "Dynamic" and "Rigid Body" buttons to True.

You should now have a nosy cone that speeds around the maze.

Figure 878
(Answer: If I understand your question right. If i used torque to turn and force to move forward and pressed forward then turned it started spinning out of control. My solution was to use rotation instead of torque.)

112.5. Falling

We will now implement the "death on falling off maze" feature. In order to accomplish this, we'll add something that allows us to check whether the cone has fallen off the maze or not. The simplest way to do this is with a 'skydome' object the entire maze is within, and although there are a number of more elegant ways to accomplish the goal, we will use the skydome method for its simplicity to replicate. From now on we'll need to test the maze with both layers one and two enabled (SHIFT+2KEY)

1. Add a material to your cone called coneMat (F5, press "Add New", Links and Pipeline, Link to Object, MA:coneMat).
2. Add a new cube
3. resize it to gargantuan proportions (SKEY, just large enough to encompass the maze, and all within it)
4. Move it to layer 2 (MKEY, 2KEY, Enter)

Now that you have a massive cube, go to the logic panel and add one Sensor, Controller, Actuator set, and set them as seen in the screenshot.

1. Sensor: Touch, coneMat
2. Controller: And
3. Actuator: Scene, restart

Figure 879

Enable the actor button and press "ghost" this will let the dynamic obstacles, which are added later on, fall through and not get stuck there!

If you test you game now, you should see the game be restarted when you fall off the maze. As we discussed earlier, faces are one-sided in the game engine, so you should not be able to see the cube.
(Answer: The tutorial says to create the cube in layer 2, although the layer shouldn't matter. Make sure you test the game with both layers one and two selected. Also double check the logic for the 'skycube')
(Answer2: I had the same problem. I fixed this by replacing the cube with a grid, scaled and placed under the maze. The grid had the touch logic mentioned above.)
(Answer3: Same here. I thought I'd remove "coneMat" from the material reference, but that wouldn't do if the bricks fell down and touched the cube, it'd just restart the level... the solution: create a property in the cone, a bool value named "isCone" (=true), then in the cube add a sensor 'collision' that checks for the object's property 'isCone' and keep the rest as shown.)
(Answer4 (to restart when block hits cube):Do all as the pic shows you and RMB the cone and go to links and pipelines and rename the MA: to cone or whatever you want, then RMB the cube then in the Touch sensor then rename the MA: to whatever you called the other MA: . :D this is in 24.9b)
(Answer5: For blender 2.57a you need to place a plane or something under the maze. Then give it (touch -> and -> Scene(restart)) game logic. If it isn't working make sure that actor is selected under physics tab.)
(Question 2: How do I make the box translucent? Right now all I see, also when testing, is the skybox. Also, when I put the box underneath the maze, it works fine, but then none of the objects have shading, while when not showing layer 2 everything looks shaded. Can anybody give a solution? This is in 2.48a)
(Answer: To make something transparent- press F5; press the "Material Buttons" button; under the Links and Pipeline tab press Halo and ZTransp, unpress Shadbuf, under Material make A 0.000.)
(Answer 2: My solution was to press the Invisible button (Logic section, next to Ghost in 2.49))
I have put in a new way to die. Add a static Plane, give it a property called Killer and place it just below the level. Add an ALWAYS sensor and connect it to a MOTION actuator that has 0.01 as the top last value. This way it will sloooowly come up. Now, select the player and add a COLLISION sensor. For the property, add Killer. Connect it to a GAME actuator, select Start New Game. You've just added some tension to your game! If you run out of time, you will touch the floor and restart! If you need more time, just put another 0 in 0.01 so it will look like 0.001 Sorry if you can't understand it very well, this is the first time I edited a page on Wikipedia + I don't speak English very well. Have fun! :)

112.6. Camera

SPACE \rightarrow Camera near the protagonist cone. There are two easy ways to do the camera: logic camera and child camera. In this case you might be better off with the logic camera, but it really is a matter of personal preference.

- Logic Camera: Add to the camera's logic panel

1. Sensor: Always
2. Controller: And
3. Actuator: Camera, to object "Cone" (or whatever your protagonist is called--look under the object panel when you have the protagonist selected) height $5, \min 5, \max 10$.

- Child Camera: Select the camera, then select the protagonist (order is important) then CTRL+PKEY to parent the cone to the camera. Align the camera in a view that you like, and test the game.
- First Person Camera: Well, this one doesn't really count as another method, but if you're willing to redo your motion to just move the camera instead of the character, (just do everything you did for the character for the camera) you can run around in the first person. Or you can just put the camera in the cone because one of the sides always are invisible (look in texture mode) and parent it to the cone. REMEMBER: To access the ingame camera during gameplay, before you start, hit ctrl 0 or you can go to (view > camera)
(Answer: Ctrl+0 assigns the selected object as a camera. To solve your problem select your camera and press ctrl+0, to enter camera view press 0)

112.7. Beautification

Blender is a great 3D modeling program, and with such a vast number of tools at your disposal, you should be able to make your game look better than this:

Figure 880

We'll add one or two textures to each of our objects.

Link and Materials

Figure 881: Press the 'new' button then the 'assign' button to assign a material to a number of faces

1. Select the object you want to texture
2. Go into edit mode if you want your object to have more than one color
3. Select all the faces you are going to assign to a color (CTRL+TAB \rightarrow Faces)
4. Go to the edit panel ($\mathbf{F 9)}$) on the buttons window
5. Near the left there should be a panel that says "Link and Materials". Click on the buttons highlighted in the screenshot
6. Adjust the color of that material by going to the material buttons and changing the "Col" (color) value to something other than white

Figure 882: Maze game with materials

It looks better now, but when the camera is nearly horizontal, you can see where the camera stops rendering the maze. You can fix this by selecting the camera and, in its edit buttons, changing its clipping range... but there is a better way. Mist.

Figure 883: With mist and raised sections

Mist obscures everything a certain distance away, is the same color as the world texture, and can be handy. We'll add some mist to our game so the player can't see too far ahead of him, thus making the game too easy.

We'll make the mist quite close, although you can vary the distance. Go to the Material button, and to the World sub-buttons, then copy the settings in the screenshot. When you test this out, make sure you are in texture mode to see the mist.

Figure 884
(Answer: Change Start to a smaller value like 15.)
(Question: Is the screenshot correct, or are my sizes different. I found that a mist distance of 10 was barely visible, yet a distance of 1 had a much better effect.
(Question: I have been able to create the mist, and can see it when I start the game, but the background colour is still grey, so the maze is obscured but everywhe

112.8. Levels

Now all that remains is to create the next level with some obstacles.

1. Add a cube at the end of the maze, just above the floor level so the cone can touch it (SPACE \rightarrow Add \rightarrow Mesh \rightarrow Cube)
2. Press the Scene dropdown menu and select "ADD NEW" \rightarrow Full copy
3. You can now go back to the Maze Surface section to make a new maze mesh
4. Go back to level one via the Scene menu
5. Select the End of level cube
6. Change its logic panel to resemble this:

- Sensor: Touch, coneMat
- Controller: And
- Actuator: Scene, Set Scene, Scene. 001 (or whatever you named your level 2)
(noob: In my level 2 my cone hits the cube and nothing happens!) Answer: Make sure that the Sensors, Controllers and Actuators tabs under the Logic panel (F4) are connected with wires.
(noob: When I went to level two I can't see anything!

Figure 885: The scene button is on the top panel

To make it so multiple objects have to be touched (or acquired by the character, as it may be), give each object the logic settings described above and change the actuator type to Message with the subject "goalget". If you'd like the object to disappear after it is collected, add an Edit Object actuator to the object of the type "End Object", and link it to the existing AND controller.

Next, select the massive cube that restarts the level upon contact with the character. If you chose not to include one such cube, create an empty at the start of the level (so you can easily find it again later). Give the cube or empty the following logical operators:

- Sensor: Message, goalget
- Controller: And
- Actuator: Property, Add, wincon, -1
- Sensor: Property, Equal, wincon, 0
- Controller: And
- Actuator: Scene, Set Scene, Scene. 001 (or whatever you named your level 2)

Then click "Add Property" and give it the Type Int, the Name wincon, and a value equal to the number of objects needed to be collected to complete the level (if all of them, make it equal to the number contained in the level). This can be expanded to include other multiple win conditions besides the collection of an item by making the completion of each condition subtract from "wincon".

You now have a multilevel maze game. Feel free to elaborate on the gameplay mechanics and models so they look better.

Noob note: I typed in where i thought everything should go but it's not doing anything. I'm not sure of what I'm looking for while in playmode.

112.9. Dynamic obstacles

This part of the tutorial will assume increased skills and knowledge of the Blender interface and basic commands. As such, this section will be written less specifically, and the shortcuts for all basic commands will not be covered here. From this point on, this tutorial is of an intermediate
level. If you cannot follow this part of the tutorial, you can learn the basic functions used below in an EARLIER TUTORIAL ${ }^{2}$.

We will now add some dynamic obstacles. In this case, they will constitute a 'brick' wall that can be broken through by your character.

1. Add a cube
2. Scale it (in edit mode) to the dimensions $1,0.5,0.5$
3. Bevel it (WKEY) recursion 1, size 0.03 (press space to enter value manually)
4. In logic panel, set it to Actor, Dynamic, Rigid body, Mass 0.5
5. Go right below that to click Bounds and leave it on "Box". That makes Blender realize that what you added is a box, and should act like it (instead of rolling, it will slide now)
6. Move it to an intersection in your maze (GKEY) and duplicate it until you have a brick wall (ALT DKEY, LMB)

Figure 886

You now have a barrier that your character can break through.

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D:_NOOB_TO_PRO/LEARN_TO_MODEL

By using this

112.10. Conclusion

You have now learned enough of the Blender Game Engine (BGE) to create your own game. If you wish to go very far into Blender games, I recommend you learn Python, as trying to make a full game within the graphical interface for the BGE is like trying to dig a grave with the blunt half of a toothpick. Blindfolded. And the toothpick is glued to your forehead. However, you are now well on your way to becoming a game-maker!

If you have any questions, concerns, or 'noob notes', please post them in the discussion page for this tutorial, and not in the tutorial itself.

113. Platformer: Physics Fixes

This tutorial is intended as an improvement on its prequel, Platformer: Creation and CONTROLS ${ }^{1}$, and will require files created through that tutorial. It is also recommended that you read AN AMAZEING GAME ENGINE TUTORIAL ${ }^{2}$ as well before beginning this tutorial. It will require a familiarity with the Blender UI, simple commands (such as AKEY to select) and basic modeling skills. This tutorial will introduce the following features and improvements:

1. only letting the character jump while touching the ground
2. stop the character from bouncing greatly upon hitting an object
3. where to adjust material friction

This tutorial was written for version 2.45.

113.1. Creating Your Hit Test Object

Copy the cube with SHIFT-D. Go into edit mode, select the bottom four vertices of the cube and delete them. Go back to object mode. Go to the editing panel in the buttons window. In the Link and Materials section, change the ME: value to "Square" and the OB: value to "FloorHit". In the Mesh section, there will be three buttons with the word "center" in them; Center, Center New, and Center Cursor. Press Center New. This will change the origin of the "Square" mesh to the center of all of its vertices, instead of the center of the cube you made it from. Scale it to 0.99% of the original and move it up 0.01 along Z . Now go to the shading panel and make sure you're in the Material buttons subpanel. Find Links and Pipeline, and make sure "ME is selected. Click the X next to the material selection (under the words "Link to Object"). Then select "OB" and press "Add New" and name this material "FloorHit" (again, no quotes). Make it green colored, so you can easily find it while editing, but turn on "Shadeless" and "No Mist" in the Material section and "OnlyCast" in the Links and Pipeline - Render Pipeline section and turn off "Radio", "Traceable", and "Shad(ow)buffer" in the Render Pipeline and "Shadow" in the Shaders section. This will make it completely invisible at runtime and take up little resources.
(question: it wont make it invisible it just flashes rapidly)

113.1.1. Making the sensor require floor contact

Now select Suzanne and go to the logic panel. Add a touch sensor called "jumpcol" (for 'jump collision') and connect it to the same AND controller as the jump keyboard sensor. Set the f to 10 and the MA: to FloorHit. This will make it so your character can only jump while it's touching

[^103]something with the FloorHit material. By that same token you can link this to all of your movement-related AND controllers so that the player can't adjust it's movements in mid-air. This is a nice physics touch but for most platformer games, where mid-air dexterity is almost essential, it doesn't work. You also have to use Force and not dLoc, otherwise your character won't be able to move at all while jumping, useless your character only needs to hit things with his/her head, and not jump over gaps. Note that this still does not keep the character from jumping while touching the hit test object at the sides, so they could still jump if they were touching the side of the collision surface, but at least they can't jump in mid-air or while touching the bottom of the ground. I have yet to find a solution to this problem not involving Python.

113.2. Excessive Bouncing

Another problem with the original model, as you might have noticed, is that when you run into one of the ground cubes you bounce back a great deal. To fix this, turn to the materials panel with one of your green hit test squares selected. Under the color selectors there should be three buttons that say "RGB", "HSV", and "DYN". Select DYN, and turn the restitution most or all the way up. As you can see, you can also find the friction property from here, if you want your ground to be more or less frictional (like mud or ice).

113.3. Final Notes

Always copy your floors, their respective hit test objects, and other generic objects with ALT-D and not SHIFT-D. This keeps you from duplicating things that remain the same for every one, like the material and mesh, which quickly drain resources if not recycled. Since there's not much further you can take the Platformer without learning Python, I suggest you start looking up information on the Blender API. Some essential information is to be found in the PROCEDURAL OBJECT CREATION ${ }^{3}$ tutorial. A Blend file of the tutorial's finished product is coming soon.

Note: A (possibly) simpler method for jump limitation can be found on the discussion page for this tutorial.

[^104]
114. Making exe

This tutorial will show you how to make an executable for your game made in Blender.
Note: The methods listed in the "Windows" and "GNU/Linux or Mac OS X" sections work only for the operating system you are on when you create the file. To make it cross platform, use the "BlenderPlayer" method.

114.1. Windows

First create a folder that will hold all your game information. Name it something meaningful, like "Yo Frankie!".

The folder must contain four files that you can copy from your blender installation directory.(under windows it should be "C:\Program Files\Blender Foundation\Blender") They are:

1. SDL.dll
2. python24.dll (Or other relevant python file; python25.dll, python26.dll etc.)
3. pthreadVC2.dll
4. zlib.dll
(sometimes you will need the following also...
5. avformat-51.dll
6. avutil-49.dll
7. avcodec-51.dll

They are in the same folder.)
Not quite a Noob Note: If you are using the latest version of Blender you WILL need the following files)

I am running windows xp media edition and blender 2.46 , here is a full list of files i needed:

1. avcodec-51.dll
2. avformat-52.dll
3. avutil-49.dll
4. libfaac-0.dll
5. libfaad-0.dll
6. libmp3lame-0.dll
7. libx264-59.dll
8. pthreadVC2.dll
9. python $25 . \mathrm{dll}$
10. SDL.dll
11. swscale-0.dll
12. vcomp90.dll
13. xvidcore.dll
14. zlib.dll

On Blender 2.48a (Windows XP Media Center 2002, SP3), these .manifest files are also required:

1. blender.exe.manifest
2. blenderplayer.exe.manifest
3. Microsoft.VC90.CRT.manifest
4. Microsoft.VC90.OpenMP.manifest

If you use random Python module in your game, you will have to add one more file to your game directory. For Blender 2.49 it would be python26.zip, which you can find in Blender main directory (where blender.exe is). Otherwise there may be some errors during executing the game in system without installed Python.

Since Blender 2.56 you will need to enable Save As Runtime; first open blender with the game that you have created and open the file menu. Click on User Preferences then select Add Ons then Game Engine, check the box Game Engine Save As Runtime and return to the file menu. Save As Runtime will appear as an option in the export menu then save to the new folder that you have created and rename the file yourgamename.exe,
and then you can run the game!
If you encounter errors during the "Save As Runtime" process (I'm on Windows 7) you can right click on the Blender icon and select "Run as administrator". So you will have your fresh .exe and you can spread it with a pice of your favourite peperoni pizza.

114.1.1. Making A Screensaver (Windows Only)

1. First, save your runtime (that's the .exe addressed above.) via File->Save Game as Runtime. ("Save Runtime" in older versions)
2. Now, go to your .exe game and rename it .scr - for instance, if your game was NotMyGame.exe, rename it to NotMyGame.scr. You can now right click to Install it, and then use it as your regular screensaver by applying it as you would any other screensaver (right click on desktop, properties... You know the drill.)

Just a helpful idea; when distributing my games, I often include a real awesome screen saver so that when Person A walks into Person B's room and sees that amazing thing going, they decide that they want my game. Just a note, though; screensavers are not games, and so they should not accept input. At most, they should be videos showing what your game does. If you just rename your regular game as a .scr, it will be remarkably boring, because your game needs input and screensavers do not.

114.1.2. Intel screensaver bug

There is a caveat with Intel Integrated Graphics drivers, found in many laptops though. The graphics driver shuts off OpenGL acceleration for screensavers, for some obscure reason. The way to work around this is to rename the . $\mathbf{s c r}$ extension to a $\mathbf{.} \mathbf{S C r}$ as the driver's algorithm is dependent
on case-sensitive characters. If you experience very low framerates in your screensaver, you should attempt this fix, It is tested and reported to work.

114.2. GNU/Linux or Mac OS X

Open blender with the game that you have created and open the file menu. Click on Save Game as Runtime and then save to the new folder that you have created and rename the file yourgamename...
and then you can run the game!

114.3. BlenderPlayer

The methods shown above only create an executable for your operating system. Well, BlenderPlayer can fix that.

1. Make a new folder to store all your game data.
2. Then save your .blend file into the directory.
3. You can skip this step and the next step if you do not want a Windows version. For the Windows users, copy blenderplayer.exe to the new folder from a Windows copy of Blender. Then copy all your DLL files for Blender as mentioned for Windows to the folder.
4. Next you have to make an MS-DOS batch file (for UNIX users, this is the shell script equivalent). In a simple text editor, in CR-LF mode if available (Notepad is always in this mode, and NOT a word processor!), copy and paste this text:
blenderplayer.exe yourgamename.blend
Save it as YourGameName-Windows.bat in your game folder.
5. You can skip this step if you do not want a UNIX (basically Mac OS X and GNU/Linux) port. For GNU/Linux (at least), make a shell script. (A shell script is the UNIX term for a batch file.) In a simple text editor, in LF mode (unfortunately Notepad can't be used), copy and paste this text:
\#!/bin/bash
./blenderplayer yourgamename.blend
Save the file as YourGameName-UNIX.sh in your game folder. You will need to have BlenderPlayer in the same directory as the .blend game file.
6. Write a readme for your program. This is again best done with a simple text editor like Notepad or gedit, but it does not matter which mode it is in. You should include the name of the game, a description, perhaps a walkthrough or hints, and if you made a *NIX port, mention that it requires BlenderPlayer, available with Blender.

114.4. Legal Issues

Blender and the BlenderPlayer fall under the GNU General Public License. Blend files are copyrighted to their respected owners and do not fall under the GPL as long as they are not packed in the BlenderPlayer. If a user does not want the blend files to fall under the GPL, it is
recommended not to use the "Save Game as Runtime" feature. To put it another way, the user must keep the blend files and the BlenderPlayer in separate files. More information can be found at HTTP://WWW.BLENDER.ORG/EDUCATION-HELP/FAQ/GPL-FOR-ARTISTS/. ${ }^{1}$ (Blender 2.6 now has a run game from file actuator.)

114.5. Proprietary Blend Files

Blender has no built-in functionality to "lock" or protect user generated content. As a result, anyone who has Blender can open and/or modify blend files. However, it's still possible to lock blend files. Common methods involve encrypting the blend file and then temporary decrypting it at runtime. This can be accomplished by using python scripts or by using external 3rd party applications (which are feasible under the GPL v2).

[^105]
115. Build a skybox

One way to add a realistic feeling to your 3d environment in a game engine is to create a skybox. A skybox is a large cube which has on its inside a projection of a 360° environment. When the player (camera) is inside this environment, the scene is rendered with the illusion of being inside a gigantic world. This is a similar effect to Quicktime VR (see hTTP://FULLSCREENQTVR.COM ${ }^{1}$ for examples). And, by setting up the skybox as a simple cube shape, you place the least amount of strain on the graphics engine. It's a great advantage for your game with very little overhead.

This tutorial will show you how to create skyboxes relatively easily from panoramic photos. My favorite part is, you can do it easily using free tools such as Blender and the Gimp.
Using the Gimp to manipulate images is not really in the scope of this tutorial... check out some other page on using that software. You should have an understanding of how to edit images and apply alpha channels. (You could also use the Gimp to apply a polar coordinate texture to your rectangular image in order to create a fisheye image. Hint: it's not the sphereize filter.)

115.1. Gather your graphics

You can take panoramic images yourself using a regular digital camera and a tripod. A quick way to accomplish this is to draw marks on your tripod base at every 30 degrees (think of the hours on a clock face). Make a single mark on the swivel of your tripod to allow you to line up your shots -twelve shots at 30 degrees each. Then, using a program such as THE GIMP ${ }^{2}$ or the incredibly cool Autostitch ${ }^{3}$ to merge the photos into one big panorama.

Or, if you're lazy like me, you can just grab photos online to use as templates to create original images. There are also many places you can download non-copyrighted photos for free as well. One resource for cloudy sky textures, as well as panoramic photography instructions, is Philippe Hurbain's site Philo's Home Page ${ }^{4}$. This tutorial will use a fisheye sky photo from his copyright-free Panoramic Skies images collection.

You'll also probably want a photo for your ground, unless you prefer to use real models such as buildings in your skybox. This EARLIER CHAPTER ${ }^{5}$ on creating landscapes can be incorporated into setting up your skybox. However, this tutorial will use the sky photo for the top half of our world, and a panoramic landscape with an alpha channel for the bottom half. I've created a ground image using copyright-free textures obtained from Accustudio ${ }^{6}$.

```
HTTP:// FULLSCREENQTVR.COM
HTTP:/ /WWW.GIMP.ORG
HTTP://WWW.AUTOSTITCH.NET
HTTP://WWW.PHILOHOME.COM
HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER__3D:_NOOB_TO_PRO/MOUNTAINS_OUT_OF_
MoLEHILLS
HTTP://WWW.ACCUSTUDIO.COM
```

Here are the images I'll be using (you'll want to use images with higher resolution): Note that the sky has trees, etc.

Figure 887

Figure 888

Note: I've outlined the horizon of the ground texture with an alpha channel which will allow me to place the ground mesh right against the sky mesh with a very natural feel.

115.2. Create a dome for the sky

Open a new file in Blender. Your default new file will probably be a two-unit cube in the center of the screen, with a single light source and a camera. You can delete the light source because we won't be needing it. Leave the cube, because that is what will become our skybox.

Figure 889: skybox tutorial 1

The cube will be the center of our environment, so use Object->Snap->Cursor To Selection if your cursor is not centered. Then, from the top view [KEYPAD-7], Use [KEY-SPACEBAR] to insert a new mesh; make it a UV sphere. I find a 32 -segment, 32 -ring sphere to be sufficient. We create the sphere from the top view because that is the projection from which we want to add the sky texture.

Figure 890: skybox tutorial 2

Scale up the sphere so it resembles a large "arena" in comparison to your cube, and select and delete the lower half of the vertices, using the front view [KEYPAD-1] and [KEY-B] to create a bounding box. It helps if "Select Visible" is turned off so you can select all of the vertices in one go.

Figure 891: skybox tutorial 3

Turn on proportional editing with [KEY-O], then select the bottom row of vertices and scale them up with [KEY-S] so that the bottom of the sphere gets a bell shape. Because the projection of the sky texture will be from the Y-axis (ceiling) we need the bottom faces of the sphere to be at an angle, to catch the texture. (Faces perpendicular to the projection will look like smears.) Alter the influence of proportional editing with [KEY-PAGEUP] and [KEY-PAGEDOWN]. Linear or Sharp falloff works best with the sphere shape.

Figure 892: skybox tutorial 4

Now you're ready to add your sky texture to this mesh. In the Materials menu, create a new material and a new texture. Be sure to set your material not to receive shadows by clicking the "Shadeless" button. Then, in the Texture menu, set the texture type to Image, and click the Load Image button to insert our sky texture. Back in the Materials-> Texture->Map Input menu, you may need to scale your image to get rid of the distorted textures at the edges of the fisheye by setting the Size to, say, 0.950 for X, Y and Z .

Figure 893: skybox tutorial 5

Figure 894: skybox tutorial 6

At this point, if you wish, you can reposition the camera and render the scene to see how your sky mesh looks.

115.3. Create a dome for the ground

I found it easiest to move the sky dome to a new layer with the [KEY-M] move to layer command. Then you can select the cube, Object->snap cursor to selection if you need to, select the top view [KEYPAD-7] and insert another UV sphere just as before -- except this time, remove the top hemisphere of vertices. I left an extra row of vertices at the "equator", scaled up, to function as a "billboard" to display the horizon of our ground texture with the alpha channel. This sphere should be slightly smaller than the sky hemisphere.

Figure 895: skybox tutorial 7

This time, I will apply the ground texture with a tube projection, so it is projected onto the mesh horizontally [Materials panel I Map Input tab I Tube button]. Because I have an alpha channel on this texture, I click "Use Alpha" in the Texture menu and Map To $->$ both Col and Alpha buttons [Materials Panel I Map To Tab | -> both Col and Alpha buttons]. You will also need to set ZTransp in the Mirror Transp menu [Materials Panel I Links and Pipelines Tab I ZTransp button] so that your alpha channel shows up in the envmap (which will become your skybox), and Alpha to 0 [Materials panel | Material tab | A slider] to allow the masked areas to be transparent. (Alpha channels appear to require Z buffering to appear on procedural textures.) Also, you may need to adjust the offset of the ground texture (Y-axis), so that the horizon appears properly on the "billboard" area of your ground hemisphere.

Figure 896: skybox tutorial 8

Figure 897: skybox tutorial 9

Again, you can reposition the camera and render the scene to make sure everything is properly aligned. Be sure to activate the layer where you moved the sky mesh. Your results will look similar to the following image. Set OSA on in the render screen for best results. Also, use higher resolution images with cleaner alpha channels -- the image below is rather blurry and you can see a halo around the horizon.

Figure 898: skybox tutorial 10

115.4. Render the environment map

The last step is to use the procedural Envmap texture to project the dome textures onto the cube, which will become our skybox. Select the cube and create a new material. Set the material to "Shadeless" [Materials Panel I Materials Tab I Shadeless button]. Add a new texture and make its type Envmap. Set the CubeRes [Envmap tab I CubeRes setting] to whatever you want the resolution of your skybox to be (512 is a good resolution for a game; 1024 or 2048 are fairly high-res; I stuck with low-res for this tutorial). If your sky \& ground hemispheres are very physically large, you may also need to increase the ClipEnd value to include all of the faces. You may want to set the Envmap calculation to Anim so you don't have to keep freeing envmap data if you're experimenting. (Anim automatically clears Envmap data with every render, otherwise you must click 'Free Data' to reset the Envmap.)

Figure 899: skybox tutorial 11

Once you've created the Envmap texture, you should be ready to render the Envmap for your skybox. If you want to set your file format such as JPG or PNG, you should do that first. Then, simply go to the render screen and click "Render." Again, make sure all layers are visible. The rendering window appears. First, Blender renders the environment map of the cube. Afterward, the camera view is rendered, at which point you can hit [KEY-ESCAPE] to stop rendering -- we are only interested in the environment map which is already complete.

Select the cube again, then get to its texture menu. You will see the newly-rendered Envmap on the sample texture. Click "Save EnvMap" in the texture menu to save the rendered Envmap.

Figure 900: skybox tutorial 12

Blender environment maps are saved as a 3×2 matrix of squares, as seen here:

Figure 901: skybox tutorial 13

The cube faces are in the following order.

Figure 902: skybox tutorial 13

You can now load this image as an envmap texture in a new cube, which you can incorporate into your game as a skybox. This file can also be edited in the Gimp to remove any unwelcome artifacts such as trees, buildings, jet trails, etc. Also, because I used a tube projection on the lower hemisphere, in the bottom face of the envmap you see a strange star shape at the "pole." You'll most likely have a floor in your game, so you probably won't see that face anyway, but sticklers can avoid it with clever use of the Filters->Distorts->Polar Coords filter in the Gimp or Filter->Distort->Polar Coordinates (Polar to Rect.) in Photoshop. Patching also works well.

To make the skybox appear as a static background in your game, vertex-parent it to the current active camera object.

115.5. Video Tutorial

Ira Krakow's Blender 2.49 Skybox Tutorial: http://www.youtube.com/watch?v=azkk3JrM5Es

116. Basic mouse pointer

Making a simple mouse pointer in the game engine. This takes up a lot of resources but it is very simple.

A little Python is involved but it is very easy to use and is only 2 lines of code.

1. Open up blender and split the screen in two.
2. Make the right screen a text editor and add a new text file with ALT+N. Type in the following code.
import Rasterizer as r
r.showMouse (1)
3. Set TX: showpointer in the middle of the Text panel menu bar.
4. Select an object that will always be available - preferably a camera.
5. Go to the logic tab, add a "Property" sensor, a "Python" controller, an "AND" controller and a "Property" actuator.
6. Activate the True Level Triggering (the "" button), set Prop: switch and Value: 0. Connect the property sensor to the python and AND controllers by dragging lines between the bullets.
7. For the python controller set Script: showpointer.

Note: If the value keeps being reverted to blank after setting it, the name you entered is not a legal script name; chances are you did not set the name of your script correctly. Look for the selection menu beginning with "TX:" and make sure it says TX:showpointer.
8. Now connect the AND controller to the property actuator. Set Prop: switch and Value: 1.
9. Select Actor and click on Add Property make it a Int type and set Name:switch.

Now press \mathbf{P} to start the game and now you'll see your mouse pointer.

117. Text in BGE

There are a lot of tutorials that show how to make text for the Blender Game Engine, for example to use in menus. Most involve editors, graphics programs, targa files, UV mapping, scripting, higher magic and so on. Here is a different approach that takes but a minute.

1. Start Blender.
2. Remove the default cube. (X)
3. Add text. (SPACE \rightarrow Add \rightarrow Text)
4. You may want to switch to edit mode (TAB) and use the variety of features that Blender provides for editing, formatting and laying out text. They are described in the BLENDER Manual Section ${ }^{1}$. For a start just use BACKSPACE to delete the letters "Text" and type your own like "This is simple".
5. When finished editing go back to object mode. (TAB)
6. Convert your text to a mesh. (ALT+C \rightarrow Mesh)
7. Press \mathbf{P}

This is as simple as it gets. Of course you can do all kinds of laying out with your text before the conversion in step 6 (check the Blender Manual) as well as modeling, texturing and dynamically manipulating thereafter (as you have a normal mesh). Simply remember that you need to make sure the text is final before you convert it.

This tutorial has been tested with Blender 2.8 RC1.
"However, it should be pointed out that while this is so incredibly simple, it is not poly-count efficient. Remember, there is more to making a game than making it look good--making it run well. If you need a cut-and-dry menu, this is the best way. If you need to worry about performance, then it might be worth it to check out some UV Mapping and external program usage. --BULLERCRUZ1 ${ }^{2}$ (TALK ${ }^{3}$) 23:07, 7 February 2009 (UTC)"

It is also important to note that these fonts can't be dynamic, contrary to bitmap-uvmapped ones...

[^106]
118. Python Platformer: Creation

Note: Python code is placed in a Text Editor window. It might be helpful to split your 3D View window into a separate part, so that you can use a buttons, 3D view, and text editor window simultaneously.

The initial stages of the Python Platformer tutorial series will mostly have to do with replicating what was done in the logic board Platformer tutorials. If you have not read and understood those tutorials, you may not understand exactly what the function of most of this code is. This tutorial details:

1. An explanation of the "code sections" to be modified, rewritten, or redefined frequently throughout the series
2. Creating an object linked to a pre-made mesh
3. Linking an object to a scene
and will detail by completion:
4. How to move an object in response to keyboard triggers

118.1. Code Sections

We will refer to the sections of the code in this manner throughout the series:

118.1.1. Import Section

The series of import commands at the beginning of the piece of code, like the contents of the head tag in HTML documents. Python has a basic set of commands kept naturally in the language, and the rest are imported so that a large amount of commands aren't loaded when not needed, causing unnecessary memory expenditure. This lends the advantage of being able to extend the language by writing custom sets of commands to be imported into Python, which is how Blender interfaces with Python. For this tutorial, our import section is:
import Blender
import bpy
When you import something as something else, it basically creates a variable equal to the imported module's name, so that you don't have to type it out. It is inessential, but it makes the coding go faster. You might want to run a find and replace search on your document afterwards, replacing all instances of the name you imported it as with the real module's name and deleting the part that imports the module by another name, as this can make the code run slightly faster.

118.1.2. Essential Footer

This is the collection of commands that you must remember to include at the end of the document, regardless of any changes made to the code, for it to work. It must be noted whether you should change the entire footer (as if a feature was removed from the main code-in-progress) or adding a command to your existing footer (if the text deals with the addition of a single feature). Every article in the main tutorial line should contain the full footer as it should look at that point in the series. For this tutorial, our essential footer is:

Blender.Redraw()

118.2. Adding the Player Object

To start, create a new document and delete the basic cube. Create a Monkey/Suzanne. In the Editing panel with the monkey selected, change the mesh name (ME:) under Link and Materials to "Hero". Click the F next to the input box to preserve the data block even when nothing links to it. Now delete the monkey object.

The following code will create an object called "Player" in the library and link it to the Hero mesh:

```
player = Blender.Object.New("Mesh","Player")
player.link(bpy.data.meshes["Hero"])
```

In the first line, Blender.Object.New obviously references a new object. The "Mesh" variable should not be changed for the purposes of this code. I don't know exactly it's function, so I don't want to give out misinformation, but I speculate that it has to do with the object type. If the object were to be a lamp or camera type, for example, you would not be able to apply a mesh to it. The second variable, "Player", is the name of the actual object you're creating. Change it to your liking.

In the second line, we link player (which was equated to our new object) to the pre-existing mesh "Hero", which is the Suzanne mesh we dealt with before. Using this method, you can model your character's mesh beforehand but have the actual character created dynamically. Using a complication of this code, you can make player.link() link to a variable and not the bit "bpy.data.meshes[]". That variable can reference an existing mesh or it can create a new one. As for the meaning of the link's value, bpy.data.meshes is an array containing all the meshes in the movie. Likewise, bpy.data.objects contains all the objects in the movie. By going to the Scripts window and going to Scripts->System->Interactive Console you can gain such information as the contents of these arrays. By entering "list(bpy.data.objects)" into the console, you will be rewarded with a list in the format of ObJect "Camera"], [ObJect "Cube"], [ObJect "LAMP" ${ }^{1}$ which is the list of objects in the standard new document set-up. So, to reference the item [Object "Cube"] you would use the line "bpy.data.objects['Cube']" and so on. For these commands to work, you must make sure to import bpy in your import section.

[^107]
118.2.1. Appending the Object to the Scene

Like you must append the mesh to the object, you must also append the object to the scene, or it will just be a floating data block and not actually appear anywhere.

```
scene = Blender.Scene.GetCurrent()
scene.link(player)
```

If you were to test this code by pressing ALT-P while the mouse is hovering over the Text Editor window, it would create an object named Player with the monkey "Hero" mesh at the origin point of your scene. Make sure you included this tutorial's import section before all of the other code and the essential footer after all of other code.

Part IV.

Unit 4 - Taking Off With Advanced Tutorials

119. Python Scripting

i Information

Applicable Blender version: 2.49

One of Blender's powerful features is its Python API. This allows you to interface with Blender through the Python programming language. The Python interface allows you to control almost all aspects of Blender, for example you can write import or export scripts for meshes and materials of various formats or create procedurally generated textures. You can also create complete animations procedurally and write scripts to modify existing scenes in any way you can think of. On top of all, you can easily create a user interface for your script, transforming it into a generally usable tool.

The relevant section of the Blender User's Manual is HERE ${ }^{1}$.
Download Python Scripts from the Blender site HERE ${ }^{2}$.
THIS FORUM ${ }^{3}$ on blenderartists.org discusses Python scripting.
here is a remix and update to the great noob tutorial : /TUTORIAL (BLENDER 2.4.9)/4

119.1. Chapter contents

1. INTRODUCTION ${ }^{5}$
2. Procedural object creation ${ }^{6}$
3. External scripts ${ }^{7}$
4. Creating a GUI for your SCRipt ${ }^{8}$
5. EXPORT SCRIPTS ${ }^{9}$
6. IMPORT SCRIPTS ${ }^{10}$
7. SCRIPTS FOR MODIFYING MESHES ${ }^{11}$
```
HTTP://WIKI.BLENDER.ORG/INDEX.PHP/MANUAL/PYTHON_SCRIPTING
HTTP://WIKI.BLENDER.ORG/INDEX.PHP/EXTENSIONS:PY/SCRIPTS/CATALOG
HTTP://BLENDERARTISTS.ORG/FORUM/FORUMDISPLAY.PHP?F=11
HTTP://EN.WIKIBOOKS.ORG/WIKI/%2FTUTORIAL%20%28BLENDER%202.4.9%29%2F
Chapter 120 on page 1009
Chapter }127\mathrm{ on page 1055
Chapter 128 on page 1059
Chapter 129 on page 1063
9 Chapter 130 on page 1067
10 Chapter 131 on page }107
11 Chapter }132\mathrm{ on page 1081
```


Figure 903

Note:

Scripting in the upcoming version of Blender (currently in development as the version $2.5 x$ series) is completely different, and is described HERE ${ }^{a}$.
$a \quad$ Chapter 121 on page 1013

120. Introduction

(i) Information

Applicable Blender version: 2.49

120.1. Introduction

Python is an incredible language, much akin to C , which also offers linking of C libraries, probably why it was chosen to be integrated into Blender. It was designed to incorporate the extremely quick and easy learning of $A B C$ with the more powerful functionality of C, but at the same time keeping syntaxing and naming conventions simple.

Arguably its main function is in importing and exporting 3D models, an essential task for a 3D modeling application. With the adaptability of Python, it allows you to create custom import/export scripts easily and quickly for Blender, to service filetypes which Blender doesn't natively support.

Next comes its ability to allow automation, such as the Discombobulator, which is a fantastic (but not often used) tool, which turns simple meshes into futuristic panels.

It is also almost universally used in the BGE (Blender Game Engine), to bring life to games.
And yes, Python was named after Monty Python.
The version of Python used with Blender 2.49 is 2.6. If you are unfamiliar with Python, start with THIS TUTORIAL ${ }^{1}$ at python.org.

120.2. First Steps In Blender Scripting

Open a new, default Blender document. Split the 3D View in two vertically. Change the type of one side to a Scripts Window. In the "Scripts" menu in the header of that window, find the "System" submenu, and select "Interactive Python Console". The grey background should turn black, with some initial explanatory blue text; everything you type into this window will display in white, while output from the system will be in blue.
To start with, let's find out what objects are present in the document. Type

Blender.Object.Get ()
The response should be
[[0bject "Camera"], [Object "Cube"], [Object "Lamp"]]

1 HTTP://DOCS.PYTHON.ORG/TUTORIAL/
which shows you the names of the three default objects you can see in the 3D View window. Let's get a reference to the Cube object for more convenient access: type

Cube = Blender.Object.Get("Cu.be")
Now let's try querying the value of one of its attributes: type

Cube. LocX
You should see the response
0.0

Now let's try changing its location: type

Cube. LocX += 1
Nothing seems to happen. But now tell Blender to update its display:

```
Blender.Window.Redraw()
```

and you should see the cube jump to a new position in the 3D View. To make it move again, press UPARROW a couple of times to bring back the command that changed the LocX attribute, followed by ENTER to re-execute it; then do the same with the Redraw command. And that's it-you're scripting!

120.3. Multiple Running Scripts

After starting the console, you should see a popup menu in the Script Window header showing "Interactive Python C", being the truncated name of the script you started running. You can have multiple scripts running at once, and switch between them by selecting from this menu; for example, try starting a second Python console by re-executing the "Interactive Python Console" script. To terminate the currently-running script, press CTRL in this window.

120.4. The Blender Versus bpy Modules

The main functionality that Blender makes available to Python scripts is in the Blender module and its submodules. However, beginning with Blender 2.44, a new bpy module was introduced. This represents a completely revamped way of accessing Blender's functionality, which maps in a more natural fashion onto Python language constructs.

Indeed, in the upcoming $2.5 x$ version of Blender (still under development), the Blender module is abandoned completely, and what equivalent functionality there is must be accessed through bpy.

So, does this sound like a good reason to start using module bpy in preference to module Blender? Unfortunately, in the $2.4 x$ series, the bpy module is still marked as "experimental", and its functionality is far from complete.

In short, there is no way to write scripts for Blender 2.49 so that they will also work seamlessly with Blender 2.5x.

120.5. See Also

Python API Reference ${ }^{2}$

2 HTTP://WWW.BLENDER.ORG/DOCUMENTATION/249PYTHONDOC/INDEX.HTML

121. Introduction (version 2.5)

Python is a powerful, high-level, dynamic language. The version of Python used in Blender $2.5 x$ is version 3.1. If you are unfamiliar with Python, start with THIS TUTORIAL ${ }^{1}$ at python.org. If you are familiar with older ($2 . x$) versions of Python, THIS PAGE ${ }^{2}$ summarizes what's new in 3.x.

If you are familiar with Python scripting in older versions of Blender, be aware that $2.5 x$ is completely different; the old Blender module is gone. Much of the functionality is now available through the bpy module, but don't expect an exact $1: 1$ correspondence.

121.1. First Steps In Blender Scripting

Open a new, default Blender document. If you haven't customized your settings, there will be a Timeline window along the bottom; change this to a Python Console. Perhaps increase its height to let you see more lines at once.
To start with, let's find out what objects are present in the document. At the ">>>" prompt, type

bpy.data.objects

You should see the response
<bpy_collection[3], BlendData.objects>
which isn't actually all that informative. In fact what you have here is an iterator; to see its contents, just do the usual Python thing and convert it to a list. Try entering this:
list (bpy.data.objects) \#or being lazy: bpy.data.objects[:]
This time the response should be
[bpy.data.objects["Camera"], bpy.data.objects["Cube"], bpy.data.objects["Lamp"]]
which shows you how to refer to the three default objects you can see in the 3D View window.
Let's get a reference to the Cube object for more convenient access: type

Cube = bpy.data.objects["Cube"]
Now let's try querying the value of one of its attributes: type

Cube.delta_location
You should see the response

1 HTTP://DOCS.PYTHON.ORG/PY3K/TUTORIAL/
2 HTTP://DOCS.PYTHON.ORG/PY 3 K/WHATSNEW/3.O. HTML

Vector ($0.0,0.0,0.0)$)
The Vector type comes from the mathutils module provided by Blender. But unlike bpy, this is not automatically imported into the Python Console. So let's bring it in for subsequent use: type
import mathutils
OK, now let's try changing the location of the default Cube: type

Cube.delta_location += mathutils. Vector((1, 1, 1))
(Note the doubled parentheses: mathutils.Vector takes a single argument, which is a tuple of X, Y and Z coordinate values.)

Were you watching the 3D View when you pressed ENTER ? You should have seen the cube jump to a different position. To make it move again, press UPARROW to bring back the above command, so you can execute it again with ENTER . As soon as you do this, the cube will jump another step, like before. And that's it-you're scripting!

121.2. The bpy Module

The contents of the bpy module are divided into several submodules (actually classes, but never mind), among which are:

- bpy.data - This is where you find the contents of the current document.
- bpy.types - information about the types of the objects in bpy.data.
- bpy.ops - operators perform the actual functions of Blender; these can be attached to hotkeys, menu items and buttons. And of course they can be invoked from a script. When you write an addon script, it will typically define new operators. Every operator must have a unique name.
- bpy.context - contains settings like the current 3D mode, which objects are selected, and so on. Also accessible in the Console window via the global variable C.
- bpy.props - functions for defining properties. These allow your scripts to attach custom information to a scene, that for example the user can adjust through interface elements to control the behaviour of the scripts.

121.3. The mathutils Module

The module mathutils defines several important classes that are used heavily in the rest of the Blender API.

- Vector: the representation of 2D or 3D coordinates.
- Matrix: the most general way of representing any kind of linear transformation.
- Euler: a straightforward way of representing rotations as a set of Euler angles, which are simply rotation angles about the X, Y and Z axes. Prone to well-known pitfalls such as GIMBAL LOCK ${ }^{3}$.

[^108]- Quaternion: on the face of it, a more mathematically abstruse way of representing rotations. But in fact this has many nice properties, like absence of gimbal lock, and smoother interpolation between two arbitrary rotations. The latter is particularly important in character animation.
- Color: a representation of RGB colours and conversion to/from HSV space (no alpha channel).

121.4. See Also

- Blender 2.5x API Reference ${ }^{4}$

[^109]
122. Addon Anatomy (version 2.5)

An addon is a Python script that can extend the functionality of Blender in various ways. It can reside in a file within your Blender user preferences directory, or it can be stored in a text block within the Blender document. In the former case, the addon needs to be enabled in each Blender document where you want to use it, by ticking the checkbox in its entry in the Add-Ons list in the User Preferences window for that document. In the latter case, the script can be run by pressing ALT in the Text Editor window; or you can tick the "Register" checkbox for that script in the Text Editor, to have the addon be automatically enabled as soon as the document is loaded into Blender.
The main thing an addon script typically does is define one or more new operators. All the user-interface functions in Blender are performed by operators; these are invoked by being associated with menu items, buttons or hotkeys. Each operator is a subclass of the bpy.types.Operator class. The name you give your class in Python is immaterial outside the script where it is defined; it will be referred to from the rest of Blender via its operator name, which must be unique within the document. In the same way, your script can invoke other operators defined elsewhere via Blender API functions that take their operator name.

122.1. Text Blocks

A Blender document can contain text blocks, which are not the same as text objects in a 3D scene (though the former can be converted to the latter). Besides generating text objects, a text block can serve any purpose you like; for example, use it to pass workflow instructions to a colleague along with the document; display a copyright or help message in the initial layout that a user sees on opening the document; or hold a Python script that can be run by the user to perform some useful action related to the document.

122.2. Your First Operator

Open a new, empty Blender document. Bring up the Text Editor in any convenient window; you will see an empty, grey rectangle. Before you can type in text, you need to create a text block; do so by clicking the large button labelled "New" in the window header. As soon as you do this, you should see a popup menu appear listing all the text blocks in your document, with the current (only) entry named "Text". You should also see a red insertion cursor appear at the top left, indicating that you can start typing.

Unlike the Console Window, nothing is automatically imported for you. So as in any other Python script, you need to mention every module you want to access.

You define your operator as a subclass of a subclass of the bpy.types.Operator. It must have a bl_idname class attribute which gives the operator name, while bl_label gives the user-visible
name that appears in the spacebar menu. The former must have valid Python syntax for a name, including a single dot; the part to the left of the dot must be the name of one of the valid categories of operators, which you can find by typing dir (bpy.ops) into the Console Window.

Let's define an operator that will add a new tetrahedron object to the document. The class definition should start something like this:

```
class MakeTetrahedron(bpy.types.Operator) :
    bl_idname = "mesh.make_tetrahedron"
    bl_label = "Add Tetrahedron"
```

It has to define an invoke method, which starts off like this:

```
def invoke(self, context, event) :
```

The invoke method performs the actual function of the operator; after it has finished, it must return a value which is a set of strings, telling Blender things like whether the operator is still executing in a modal state, or whether the operation has finished, and if so whether it was successful or not. To indicate successful completion: end the invoke method with this:

```
return {"FINISHED"}
```

Anyway, let us compute the coordinates of the vertices for the tetrahedron: with edges with a length of 1 Blender unit, suitable values are $\left(0,-\frac{1}{\sqrt{3}}, 0\right),\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, 0\right),\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}, 0\right)$ and $\left(0,0, \sqrt{\frac{2}{3}}\right)$. Or in Python:

```
Vertices = \
    [
        mathutils.Vector((0, -1 / math.sqrt(3),0)),
        mathutils.Vector((0.5, 1 / (2 * math.sqrt(3)), 0)),
        mathutils.Vector((-0.5, 1 / (2 * math.sqrt(3)), 0)),
        mathutils.Vector((0, 0, math.sqrt(2 / 3))),
    ]
```

Then we create the mesh datablock, giving it the name "Tetrahedron":

```
NewMesh = bpy.data.meshes.new("Tetrahedron")
```

Fill it in with the above vertex definitions and associated faces:

```
NewMesh.from_pydata \
    (
        Vertices,
        [],
        [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
    )
```

The Mesh.from_pydata method is not currently well documented in the Blender API, but its first argument is an array of Vector defining the vertices, the second argument is an array of edge definitions, and the third argument is an array of face definitions. Each edge or face is defined as a list of vertex indexes (2 elements in each list for an edge, 3 or 4 for a face), 0-based in usual Python style, being indexes into the array of vertex definitions that you passed. Note that you pass either the edge definitons or the face definitions, but not both: the other one should be passed as the empty list. If this function is not used correctly, it will cause Blender to crash.

We also need to add the following, to tell Blender the mesh has changed and needs updating (as if it couldn't figure it out itself):

```
NewMesh.update()
```

(Omitting this produces a minor quirk: right-clicking the newly-created tetrahedron does not highlight its outline in orange as with other objects, though the problem goes away if you enter edit mode on the object and exit again.)
Now to create the object datablock (I also give it the name "Tetrahedron"), and link it to the mesh:

```
NewObj = bpy.data.objects.new("Tetrahedron", NewMesh)
```

But the object will not appear to the user until it is linked into the scene:

```
context.scene.objects.link (NewObj)
```

To recap, here is the complete script:

```
import math
import bpy
import mathutils
class MakeTetrahedron(bpy.types.Operator) :
    bl_idname = "mesh.make_tetrahedron"
    bl_label = "Add Tetrahedron"
    def invoke(self, context, event) :
        Vertices = \
            [
                mathutils.Vector((0, -1 / math.sqrt(3),0)),
                mathutils.Vector((0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((-0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((0, 0, math.sqrt(2 / 3))),
            ]
        NewMesh = bpy.data.meshes.new("Tetrahedron")
        NewMesh.from_pydata \
            (
                Vertices,
                [],
                [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
                )
            NewMesh.update()
            NewObj = bpy.data.objects.new("Tetrahedron", NewMesh)
            context.scene.objects.link (NewObj)
            return {"FINISHED"}
    #end invoke
bpy.utils.register_class (MakeTetrahedron)
#end MakeTetrahedron
```

Now execute your script by typing ALT. If all goes well nothing should appear to happen;
Blender will see the Python class definition, note that it is an operator, and automatically register it, ready for use.

If you hit any syntax errors, Blender should display these in a popup window; go back and correct them, and reexecute the script with ALT.

122.3. Invoking Your Operator

We haven't (yet) defined any user interface for this operator; so how do we invoke it? Simple.
Go to a 3D View window. Delete the default cube to avoid it obscuring things, and press SPACE. This brings up a searchable menu of every operator defined for the current document. Into the search box, type part or all of the string you defined for the bl_label attribute above (typing "tetra" should probably be enough). This will restrict the menu to only showing items that contain that string, which should include the name of your operator; click with [LMB on this or highlight it and press ENTER . If all goes well, you should see your tetrahedron object appear!

Figure 904

Script does not invoke operator for Blender v.2.57 r36339M (current release as at May 28, 2011). Add the following at foot of py script: bpy.utils.register_class(MakeTetrahedron)

122.4. If You Hit An Error

If there is any error running the script, Blender should display this in a popup. For example, the following simple one-line script
raise RuntimeError("Uh-oh")
displays this message:

4 Error

Traceback (most recent call last):

File "Text.001", line 1 , in <module>

RuntimeError: Uh-oh

location:<unknown location>:-1

Python script fail, look in the console for now...

Figure 905

The Python traceback message is also written to Standard Error; on Linux/Unix systems, the message will appear in the terminal session if you invoked Blender from the command line; otherwise it will be appended to your $\sim /$ xsessionerrors file if you launched Blender from a GUI. On Windows the message appears in the console window.

123. Addon User Interface (version 2.5)

So you've defined a new operator in your addon. Now it would be nice to give that addon a proper interface, so the user doesn't have to hunt through the spacebar menu to find that operator.

The nicest way to do this is to define a panel that shows up in a window somewhere, with controls in it that the user can click on to operate your addon. You can put the panel in all kinds of places, but here we will insert it in the Tool Shelf (which can be hidden or shown on the left side of the 3D View by pressing T.

123.1. Your First Panel

A panel is defined by subclassing the bpy.types.Panel class. You set the value of various attributes (bl_space_type, bl_region_type and bl _context) to determine the context in which the panel will appear, and also give a title to the panel (bl_label):

```
class TetrahedronMakerPanel(bpy.types.Panel) :
    bl_space_type = "VIEW_3D"
    bl_region_type = "TOOLS"
    bl_context = "objectmode"
    bl_label = "Add Tetrahedron"
```

Those first three attributes cause the panel to appear in the Tool Shelf, but only while the 3D View is in Object mode.

Your class also needs to define a draw method, which defines the items that go into the panel. This example creates a new column of UI elements for the panel, and inserts a single UI element which is a button that will invoke the operator with the name you previously defined when clicked:

```
def draw(self, context) :
    TheCol = self.layout.column(align = True)
    TheCol.operator("mesh.make_tetrahedron", text = "Add Tetrahedron")
#end draw
```


123.2. Adding Undo Support

While we're at it, go back and add the following line to the operator definition:

```
bl_options = {"UNDO"}
```

This allows the user to undo the addition of the tetrahedron in the usual way with CTRL, and redo it with CTRL.

123.3. Put It All Together

Here is the complete script for the addon as it stands now:

```
import math
import bpy
import mathutils
class TetrahedronMakerPanel(bpy.types.Panel) :
    bl_space_type = "VIEW_3D"
    bl_region_type = "TOOLS"
    bl_context = "objectmode"
    bl_label = "Add Tetrahedron"
    def draw(self, context) :
        TheCol = self.layout.column(align = True)
        TheCol.operator("mesh.make_tetrahedron", text = "Add Tetrahedron")
    #end draw
#end TetrahedronMakerPanel
class MakeTetrahedron(bpy.types.Operator) :
    bl_idname = "mesh.make_tetrahedron"
    bl_label = "Add Tetrahedron"
    bl_options = {"UNDO"}
    def invoke(self, context, event) :
        Vertices = \
            [
                mathutils.Vector((0, -1 / math.sqrt(3),0)),
                mathutils.Vector((0.5, 1 / (2 * math.sqrt(3)), 0))
                mathutils.Vector((-0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((0, 0, math.sqrt(2 / 3))),
            ]
        NewMesh = bpy.data.meshes.new("Tetrahedron")
        NewMesh.from_pydata \
            l
                Vertices,
                [],
                [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
            )
        NewMesh.update()
        NewObj = bpy.data.objects.new("Tetrahedron", NewMesh)
        context.scene.objects.link (NewObj)
        return {"FINISHED"}
    #end invoke
#end MakeTetrahedron
```

As before, hit ALT to execute it. Nothing should appear to happen; Blender notices your subclass definitions, and automatically registers them for use in the appropriate places.

But now, go back to the 3D View. Make sure you are in Object mode. Bring up the Tool Shelf if it isn't visible, by pressing T. At the bottom, you should see your new panel appear:

Add Tetrahedron

Figure 906

Note the triangle next to the title that Blender automatically gives you, to collapse or expand the panel without any extra work on your part. Get rid of any tetrahedron object that might have been created by following the tutorial on the previous page; now click your new "Add Tetrahedron" button, and watch the object be created again!

For Blender v.2.57 r36339M add to py script at foot
bpy.utils.register_class(MakeTetrahedron)
bpy.utils.register_class(TetrahedronMakerPanel)

123.4. Space Types, Region Types, Contexts, Oh My!

Those values for bl_space_type, bl_region_type and bl_context aren't currently explained anywhere in the Blender API documentation. So here's a list of what I've been able to find from looking at source code:

Attribute	Permissible Values
bl_space_type	"EMPTY", "VIEW_3D", "GRAPH_-
	EDITOR", "OUTLINER", "PROPERTIES",
	"FILE_BROWSER", "IMAGE_EDITOR",
	"INFO", "SEQUENCE_EDITOR",
	"TEXT_EDITOR", "AUDIO_WINDOW",
	"DOPESHEET_EDITOR", "NLA_-
	EDITOR", "SCRIPTS_WINDOW", "TIME-
	LINE", "NODE_EDITOR", "LOGIC_-
	EDITOR", "CONSOLE", "USER_-
	PREFERENCES"
bl_region_type	"WINDOW", "HEADER", "CHAN-
	NELS", "TEMPORARY", "UI", "TOOLS",
	"TOOL_PROPS", "PREVIEW"

Attribute

bl_context

Permissible Values

"mesh_edit", "curve_edit", "surface_edit", "text_edit", "armature_edit", "mball_edit", "lattice_edit", "posemode", "sculpt_mode", "weightpaint", "vertexpaint", "texturepaint", "particlemode", "objectmode"

Of course, not all combinations will make sense.
See also;
http://www.blender.org/documentation/blender_python_api_2_57_release/bpy.types.Panel.html

124. Addon Custom Property (version 2.5)

Addons will commonly do more than unconditionally perform a single action; the user may be able to control their actions in various ways. We can add controls for adjusting settings to our addon panel, and associate these with custom properties that we define for the current scene; Blender will then take care of updating the property values as the user operates those controls, and our operator's invoke routine can fetch those property values when it runs.

124.1. Defining A Property

Properties need to be defined in our register method. Our addon doesn't currently have one, so let's add it:

```
def register() :
    bpy.types.Scene.make_tetrahedron_inverted = bpy.props.BoolProperty \
        (
        name = "Upside Down",
        description = "Generate the tetrahedron upside down",
        default = False
        )
#end register
```

Here we are attaching the property as a new attribute of Blender's Scene class; Python lets us assign new attributes to just about any object, and Blender takes full advantage of that. Note that the property must be created using one of the property-definition routines provided in bpy.props: choose the one that matches the type of property you want to create. Here we are defining a simple true/false toggle, which the user will control via a checkbox. Whatever name you use for your custom class attribute, an instance of that class will have an attribute with the same name, holding the actual value for that property.

The name will be used as the name of a control for examining or changing this property, while the description will appear as a tooltip when the user hovers the mouse over the control. The default is used as the initial value of the property.
Note also I tried to use a name, make_tetrahedron_inverted, which is less likely to clash with names defined by other addons or parts of Blender.

Let's also add an unregister method. This won't actually be used for now, but it will become relevant later when we extract the addon for separate installation:

```
def unregister() :
    del bpy.types.Scene.make_tetrahedron_inverted
#end unregister
```

To make the checkbox appear, add the following line to our panel's draw routine:

TheCol.prop(context.scene, "make_tetrahedron_inverted")
The first argument to the prop method must be an instance of the class to which we attached our property definition above; in this case, it is the current scene.

Finally, all Blender's smarts about automatically registering our Panel and Operator subclasses doesn't extend to finding and executing the register routine (not in the Text Editor, anyway). So we need to finish off our script with the following bit of boilerplate which will handle the custom registration routine in the situations where Blender doesn't do it for us:

```
if __name__== "__main__" :
    register()
#end if
```


124.2. Using The Property

Now we actually need to use the property in our operator's execute routine. We'll use it to negate a scale factor which will be applied to the Z coordinate of the vertices of the tetrahedron:

```
Scale = -1 if context.scene.make_tetrahedron_inverted else 1
```

But only the last vertex has a nonzero Z coordinate, so this is the only one that needs a change in its computation:

```
Vertices = \
    [
        mathutils.Vector((0, -1 / math.sqrt(3),0)),
    mathutils.Vector((0.5, 1 / (2 * math.sqrt(3)), 0)),
    mathutils.Vector((-0.5, 1 / (2 * math.sqrt(3)), 0)),
    mathutils.Vector((0, 0, Scale * math.sqrt(2 / 3))),
]
```


124.3. Put It All Together

To recap all our changes, here is the complete updated script:

```
import math
import bpy
import mathutils
class TetrahedronMakerPanel(bpy.types.Panel) :
    bl_space_type = "VIEW_3D"
    bl_region_type = "T00LS"
    bl_context = "objectmode"
    bl_label = "Add Tetrahedron"
    def draw(self, context) :
        TheCol = self.layout.column(align = True)
        TheCol.prop(context.scene, "make_tetrahedron_inverted")
        TheCol.operator("mesh.make_tetrahedron", text = "Add Tetrahedron")
    #end draw
#end TetrahedronMakerPanel
```

```
class MakeTetrahedron(bpy.types.Operator) :
    bl_idname = "mesh.make_tetrahedron"
    bl_label = "Add Tetrahedron"
    bl_options = {"UNDO"}
    def invoke(self, context, event) :
        Scale = -1 if context.scene.make_tetrahedron_inverted else 1
        Vertices = \
            [
                mathutils.Vector((0, -1 / math.sqrt(3),0)),
                mathutils.Vector((0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((-0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((0, 0, Scale * math.sqrt(2 / 3))),
                ]
        NewMesh = bpy.data.meshes.new("Tetrahedron")
        NewMesh.from_pydata \
            (
                Vertices,
                [],
                [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
            )
        NewMesh.update()
        NewObj = bpy.data.objects.new("Tetrahedron", NewMesh)
        context.scene.objects.link (NewObj)
        return {"FINISHED"}
    #end invoke
#end MakeTetrahedron
def register() :
    bpy.types.Scene.make_tetrahedron_inverted = bpy.props.BoolProperty \
        (
        name = "Upside Down",
        description = "Generate the tetrahedron upside down",
        default = False
        )
#end register
def unregister() :
    del bpy.types.Scene.make_tetrahedron_inverted
#end unregister
if __name__ == "__main__" :
    register()
#end if
```

As before, execute the script with ALT . Check the Tool Shelf in the 3D View, and your panel should now look like this:

Add Tetrahedron

Upside Down

Add Tetrahedron

Figure 907

Try executing it with and without the checkbox checked, and you should end up with two tetrahedra pointing in opposite directions.

125. Separately Installable Addon (version 2.5)

Embedding a script inside a Blender document is useful for some special purposes, but often you want to be able to reuse an addon across any number of Blender documents, and perhaps distribute it to others for use with their Blender projects. To do this, you will need to save the script as a text file that can be copied into your Blender user preferences. It will also need to have some additional information inserted.

125.1. The Addon Info Dictionary

In order for the addon to be installable by Blender, it will need to define a global called bl_info, the value of which is a dictionary. This contains various information about compatibility with versions of Blender, and also descriptive information to be shown to the user as they browse through the list of installable addons.
Here's what the info should look like:

```
bl_info = \
    "name" : "Tetrahedron Maker",
    "author" : "J Random Hacker <jrhacker@example.com>",
    "version" : (1, 0, 0),
    "blender" : (2, 5, 6),
    "api" : 32411,
    "location" : "View 3D > Edit Mode > Tool Shelf",
    "description" :
        "Generate a tetrahedron mesh",
    "warning" : "",
    "wiki_url" : "",
    "tracker_url" : "",
    "category" : "Add Mesh",
    }
```

Most of the fields are informational. The "category" value must be one of the predefined ones that you will see listed in Blender's User Preferences window when you switch to the "Add-Ons" tab; the addon display is sorted by category and by name within category, and the user can list scripts in all categories or in just one category.

The "version" field indicates the version of your script, and can be a tuple of any number of integers; the numbers are shown to the user joined with decimal points. The "blender" and "api" fields indicate compatibility with versions of Blender; I copied the value 32411 from early example scripts that came with Blender 2.54, and it still seems to work with current 2.56 builds; it may or may not need changing as Blender $2.5 x$ approaches release-watch this space.

125.2. Making The Addon Installable

The contents of your addon script are now complete. In the Text Editor, find the "Save As" option under the "Text" menu, and choose a filename for saving your script-perhaps call it TetrahedronMaker.py.

That's it. This saved text file is your complete addon, ready for installation into your Blender user settings, or distribution to others for installation in their settings.

125.3. Installing The Addon

To install the addon into your Blender user settings, go to the User Preferences, and bring up the Add-Ons tab. (It doesn't matter what document you might have open at this stage.) In the window header, click the "Install Add-On..." button, and find the TetrahedronMaker.py file you previously saved; select that, and click the "Install Add-On" button in the file selector. This copies the script file into your personal addons directory, which in Unix/Linux is $\%$.blender $/ 2.5 x /$ scripts/addons/. You can also directly copy your script file into this directory, instead of using the "Install Add-On..." button. To uninstall an addon, delete the script from this directory, together with its .pyc (compiled) version.

125.4. Using The Installed Addon

To make use of the installed addon, open a new Blender document. Go to the User Preferences window, and bring up the Add-Ons tab. Browse through the list of addons (feel free to restrict the display to the "Add Mesh" category as specified above) until you find your Tetrahedron Maker. You can click the white triangle to the left of the name to expand the list item display to show all the details:

Figure 908

Click the checkbox at the top right of the item display to enable the addon for this document.
Now switch to the 3D View, bring up the Tool Shelf if it's not already visible, and you should see that familiar panel appear:

Add Tetrahedron

Upside Down

Add Tetrahedron

Figure 909

You know what to do next...

126. Object, Action, Settings (version 2.5)

Now that we've covered the basics of writing a working addon and making it installable, let's add some refinements to its functionality.

To start with, users normally add new objects via the Add menu which pops up when pressing SHIFT, rather than via a custom panel. Can our script add a new "Tetrahedron" item to that menu? Yes it can.

Also, our script currently requires us to adjust its setting (the "Upside-Down" checkbox) before it performs its action. In user-interface parlance, this is the ordering "Object \rightarrow Setting \rightarrow Action": select an object, specify the settings for the action, then perform the action. Whereas the preferred order in Blender $2.5 x$ is "Object \rightarrow Action \rightarrow Setting": which means the action is performed with some initial settings, which the user is then free to modify while observing their effect. This gives a much smoother workflow, rather than the user having to guess what the effects will be before applying them, and then undoing and trying again if they guessed wrong.
(Of course, since our example script creates a new object rather than modifying an existing one, the initial "Object" step is not relevant here. But it is to other operators.)

So the modifications we need to make to our script are:

- Get rid of the existing Panel subclass.
- Our register function will add a new entry to the Add menu (specifically, the mesh-add submenu) to invoke our Operator subclass.
- When our operator is invoked, a panel will appear, with all the settings controls we previously had, except for the "Add" button. The user can play with these settings, and observe the effect on the newly-created object immediately.

The nice thing is, Blender does most of the hard work for us, so we only need to edit a few lines of code to achieve all the above!

126.1. Adding To The Add Menu

This needs to be done in two steps. First we need a function which will be invoked when Blender creates its Add menu: this will add an entry that invokes our custom operator by its name. Specifically, we will add our custom item to the "Mesh" submenu of the "Add" menu. We can also assign an icon to the menu item; here I'm using the generic plugin icon:

```
def add_to_menu(self, context) :
    self.layout.operator("mesh.make_tetrahedron", icon = "PLUGIN")
#end add_to_menu
```

Having done that, we change our register function to add our add_to_menu item to a list that Blender uses to create its Add \rightarrow Mesh menu:

```
def register() :
    bpy.types.INFO_MT_mesh_add.append(add_to_menu)
#end register
```

Note this bpy.types.INFO_MT_mesh_add object is not currently mentioned in the API documentation; I found it by examining the scripts that come bundled with Blender.

And of course we should clean up ourselves, so the unregister function needs to remove the item we added:

```
def unregister() :
    bpy.types.INFO_MT_mesh_add.remove(add_to_menu)
#end unregister
```


126.2. Fixing Up The UI

Note that previously, our register and unregister functions were attaching a custom property to Blender's Scene class to hold our setting value. That code is now gone, but we still need the property. Instead, it will now be attached directly to our MakeTetrahedron class.

Also, remember we said we were getting rid of the TetrahedronMakerPanel class? In fact we keep the draw method from that, and move it to our MakeTetrahedron operator, only getting rid of the last button in the panel for invoking the operator. This is because by the time the panel is being drawn, the operator has already been invoked.

We also need to tell Blender that we are conforming to the Object \rightarrow Settings \rightarrow Action convention, by adding the "REGISTER" item to our bl_options.

So the header of our operator class now looks like this:

```
class MakeTetrahedron(bpy.types.Operator) :
    bl_idname = "mesh.make_tetrahedron"
    bl_label = "Tetrahedron"
    bl_options = {"REGISTER", "UNDO"}
    inverted = bpy.props.BoolProperty \
        (
            name = "Upside Down",
            description = "Generate the tetrahedron upside down",
            default = False
        )
    def draw(self, context) :
        TheCol = self.layout.column(align = True)
        TheCol.prop(self, "inverted")
    #end draw
```

Previously our custom property was called make_tetrahedron_inverted, but here I just call it inverted, because after all it is being attached to our own class, so there should be no worry about name clashes.

Note that I also changed the bl_label text, taking out the word "Add". This is redundant, because our label will be appearing in a menu that is already titled "Add".

126.3. invoke Versus execute

The last thing to do is rearrange the code for actually creating the tetrahedron object. Previously we had it in a method called invoke, and that method will still be called when our operator is selected from the Add \rightarrow Mesh menu. Then our draw method will be called, so our panel will also appear. But then, if the user makes adjustments to the controls in our panel, Blender will invoke a different operator method, called execute.

To the user, it looks like they are making adjustments to an already-created object. But in fact our execute method can do exactly the same thing as invoke, namely create a new object every time it's called! Blender will take care of getting rid of previously-created objects, so the user won't know the difference.

Nice, isn't it? But in order for this to work, our code needs to do one thing more: ensure that our newly-created object is the only selected, active object. So the following is added after NewObj has been created and linked into the scene:

```
bpy.ops.object.select_all(action = "DESELECT")
NewObj.select = True
context.scene.objects.active = NewObj
```


126.4. Put It All Together

Note that the object-creation code has been moved into a common routine that I have called action_common. This can then be called from both the invoke and execute methods.

```
import math
import bpy
import mathutils
class MakeTetrahedron(bpy.types.Operator) :
    bl_idname = "mesh.make_tetrahedron"
    bl_label = "Tetrahedron"
    bl_options = {"REGISTER", "UNDO"}
    inverted = bpy.props.BoolProperty \
        (
            name = "Upside Down",
            description = "Generate the tetrahedron upside down",
            default = False
        )
    def draw(self, context) :
        TheCol = self.layout.column(align = True)
        TheCol.prop(self, "inverted")
    #end draw
    def action_common(self, context) :
        Scale = -1 if self.inverted else 1
        Vertices = \
            [
                mathutils.Vector((0, -1 / math.sqrt(3),0)),
                mathutils.Vector((0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((-0.5, 1 / (2 * math.sqrt(3)), 0)),
                mathutils.Vector((0, 0, Scale * math.sqrt(2 / 3))),
            ]
            NewMesh = bpy.data.meshes.new("Tetrahedron")
```

```
        NewMesh.from_pydata \
            l
                Vertices,
                [],
                [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
            )
            NewMesh.update()
            NewObj = bpy.data.objects.new("Tetrahedron", NewMesh)
            context.scene.objects.link (NewObj)
            bpy.ops.object.select_all(action = "DESELECT")
            NewObj.select = True
            context.scene.objects.active = NewObj
    #end action_common
    def execute(self, context) :
            self.action_common(context)
            return {"FINISHED"}
    #end execute
    def invoke(self, context, event) :
    self.action_common(context)
    return {"FINISHED"}
    #end invoke
#end MakeTetrahedron
def add_to_menu(self, context) :
    self.layout.operator("mesh.make_tetrahedron", icon = "PLUGIN")
#end add_to_menu
def register() :
    bpy.types.INFO_MT_mesh_add.append(add_to_menu)
#end register
def unregister() :
    bpy.types.INFO_MT_mesh_add.remove (add_to_menu)
#end unregister
if _name_= == "__main__"
    register()
#end if
```


126.5. Undocumented Blender

That INFO_MT_mesh_add object is one of a bunch of undocumented things lurking in the bpy.types module. They all have names of the form prefix_type_restofname, where prefix is an all-uppercase mnemonic for the category of object (mostly a window type, e.g. INFO for the Info window, which is where the main menu bar appears, though there are also names for major object categories like MESH and LAMP), and type indicates the class of object: HT for a window header UI object (bpy.types.Header), MT for a menu (bpy.types.Menu), OT for an operator, and PT for a panel (bpy.types.Panel). The OT ones seem to correspond directly to objects in bpy.ops, but at a lower level; it's probably easier just to use the official bpy.ops objects. As for the HT, MT and PT objects, these all have append, prepend and remove methods that you can use to customize them: append adds a widget at the end (right or bottom), while prepend puts it at the front (left or top).

Since they aren't (yet) mentioned in the official Blender documentation, here is a list of all the ones I've been able to find:

Operator Cate- Header Menu
gory

Data
spline, DATA_-
PT_area, DATA_-
PT_bone_groups,
DATA_PT_-
camera, DATA_-
PT_camera_-
display, DATA_-
PT_context_arm, DATA_-PT_context_camera, DATA_-PT_context_curve, DATA_-PT_context_lamp, DATA_-PT_context_lattice, DATA_-PT_context_mesh, DATA_PT_context_metaball, DATA_PT_-custom_props_arm, DATA_-PT_custom_props_camera, DATA_PT_-custom_props_curve, DATA_PT_-custom_props_lamp, DATA_PT_-custom_props_lattice, DATA_PT_-custom_props_mesh, DATA_-PT_custom_props_metaball, DATA_PT_display, DATA_PT_empty, DATA_-PT_falloff_curve, DATA_PT_font, DATA_-PT_geometry_curve, DATA_PT_ghost, DATA_-PT_iksolver_itasc, DATA_PT_lamp, DATA_PT_lattice, DATA_PT_metaball, DATA_PT_metaball_element, DATA_PT_modifiers, DATA_-

Operator Category	Header	Menu
Dopesheet	DOPESHEET_-	DOPESHEET_-
	HT_header	MT_channel,
		DOPESHEET_-
		MT_gpencil_channel,
		DOPESHEET_-
		MT_gpencil_-
		frame,
		DOPESHEET_-
		MT_key,
		DOPESHEET_-
		MT_key_-
		transform,
		DOPESHEET_-
		MT_marker,
		DOPESHEET_-
		MT_select,
		DOPESHEET_-
		MT_view
Filebrowser	FILEBROWSER_-	
	HT_header	
Graph Editor	GRAPH_HT_-	GRAPH_-
	header	MT channel,
		GRAPH_MT_key,
		GRAPH_MT_-
		key_transform,
		GRAPH_MT_-
		marker, GRAPH_-
		MT_select,
		GRAPH_MT_view

Operator Category	Header	Menu	Panel
UV/Image Editor	IMAGE_HT_- header	IMAGE_MT_image, IMAGE_MT_select, IMAGE_MT_uvs,	IMAGE_PT_game_properties,
			IMAGE_PT_-
			image_properties, IMAGE PT
		mirror, IMAGE_-	IMAGE_PT_paint, IMAGE_-
		MT_uvs_select_mode, IMAGE	PT_paint_curve, IMAGE_PT_-
		MT_uvs_showhide,	paint_stroke,
		IMAGE_-	IMAGE_PT_-
		MT_uvs_snap,	sample_line,
		IMAGE_MT_-	IMAGE_PT_-
		uvs_transform,	scope_sample,
		IMAGE_MT_-	IMAGE_PT_-
		uvs_weldalign,	tools_brush_-
		IMAGE_MT_view	texture, IMAGE_-
			PT_tools_brush_-
			tool, IMAGE_PT
			view_histogram,
			IMAGE_PT_-
			view_properties,
			IMAGE_PT_-
			view_vectorscope,
			IMAGE_PT_-
			view_waveform
Info Window	INFO_HT_header	INFO_MT_add,	
		INFO_MT_-	
		armature_add,	
		INFO_MT_curve_-	
		add, INFO_MT_-	
		edit_curve_add,	
		INFO_MT_file,	
		INFO_MT_file_-	
		export, INFO_-	
		MT_file_external_-	
		data, INFO_-	
		MT_file_import,	
		INFO_MT_-	
		game, INFO_-	
		MT_help, INFO_-	
		MT_mesh_add,	
		INFO_MT_render,	
		INFO_MT_report,	
		INFO_MT_-	
		surface_add	

Operator Cate- gory	Header	Menu	Panel
Lamp Properties		LAMP_MT_-	
Logic Editor	LOGIC_HT_- header	sunsky_presets	
		LOGIC_MT_- logicbricks_add, LOGIC_MT_view	LOGIC_PT_-

Operator Cate- Header gory

Material Properties

Menu	Panel
MATERIAL_- MT_specials, MATERIAL_MT_- sss_presets	```MATERIAL_PT_- context_material, MATERIAL_PT_- custom_props, MATERIAL_- PT_diffuse, MATERIAL_- PT_flare, MATERIAL_- PT_halo, MATERIAL_- PT_mirror, MATERIAL_- PT_options, MATERIAL_- PT_physics, MATERIAL_- PT_preview, MATERIAL_- PT_shading, MATERIAL_- PT_shadow, MATERIAL_- PT_specular, MATERIAL_PT_- sss, MATERIAL_- PT_strand, MATERIAL_- PT_transp, MATERIAL_- PT_transp_game, MATERIAL_PT_- volume_density, MATERIAL_- PT_volume_- integration, MATERIAL_PT_- volume_lighting, MATERIAL_PT_- volume_options, MATERIAL_PT_- volume_shading, MATERIAL_PT_- volume_transp```

$\left.\begin{array}{llll}\begin{array}{l}\text { Operator Cate- } \\ \text { gory } \\ \text { Mesh Properties }\end{array} & \text { Header } & \text { Menu } & \text { Panel } \\ & & \text { MESH_MT_- } \\ \text { shape_key_- } \\ \text { NLA Editor } & & \text { specials, MESH_- }\end{array}\right]$

Operator Cate- Header gory	Menu	Panel	
Particle Properties			PART

PARTICLE_-
PT_boidbrain,
PARTICLE_-
PT_cache,
PARTICLE_-
PT_children,
PARTICLE_PT_-
context_particles, PARTICLE_PT_custom_props, PARTICLE_PT_draw, PARTICLE_PT_emission, PARTICLE_PT_field_weights, PARTICLE_PT_force_fields, PARTICLE_PT_hair_dynamics, PARTICLE_-
PT_physics,
PARTICLE_-
PT_render,
PARTICLE_-
PT_rotation,
PARTICLE_-
PT_velocity, PARTICLE_PT_-
vertexgroups

Operator Category	Header	Menu	Panel
Physics Properties			PHYSICS_PT_-
			cloth, PHYSICS_-
			PT_cloth_cache,
			PHYSICS_PT_-
			cloth_collision,
			PHYSICS_-
			PT_cloth_-
			field_weights,
			PHYSICS_PT_-
			cloth_stiffness,
			PHYSICS_-
			PT_collision,
			PHYSICS_PT_-
			domain_boundary,
			PHYSICS_PT_-
			domain_gravity,
			PHYSICS_PT_-
			domain_particles,
			PHYSICS_PT_-
			field, PHYSICS_-
			PT_fluid,
			PHYSICS_-
			PT_game_-
			collision_bounds,
			PHYSICS_PT_-
			game_physics,
			PHYSICS_-
			PT_smoke,
			PHYSICS_PT_-
			smoke_cache,
			PHYSICS_-
			PT_smoke_-
			field_weights,
			PHYSICS_PT_-
			smoke_groups,
			PHYSICS_PT_-
			smoke highres,
			PHYSICS_-
			PT_softbody,
			PHYSICS_PT_-
			softbody_cache,
			PHYSICS_PT_-
			softbody_collision,
			PHYSICS_PT_-
			softbody_edge,
			PHYSICS_-
			PT_softbody_-
			field_weights,
			PHYSICS_PT_-
			softbody goal,
			PHYSICS PT
			softbody_solver

Operator Cate- Header
gory
Render Properties

Menu	Panel
RENDER_MT_ffmpeg_presets, RENDER_MT_presets	RENDER_PT_antialiasing,
	RENDER_PT_bake, RENDER_-
	PT_dimensions, RENDER_-
	PT_encoding,
	RENDER_PT_game, RENDER_-
	PT_game_performance,
	RENDER_PT_- game player
	RENDER_PT_- game shading
	RENDER_PT_game_sound,
	RENDER_PT_- game stereo,
	RENDER_PT_-
	layers, RENDER_-
	PT_motion_blur,
	RENDER_PT_-
	network_job, RENDER PT
	RENDER_PT_network job -
	vcs, RENDER -
	PT_network_-
	jobs, RENDER_-
	PT_network_master settings,
	RENDER_PT_-
	network_output,
	RENDER_PT_-
	RENDER -
	PT_network_-
	slave_settings,
	RENDER_PT_-
	network_slaves,
	RENDER_-
	PT_network_-
	slaves_blacklist,
	RENDER_PT_-
	output, RENDER_-
	PT_performance,
	RENDER_PT_-
	post_processing,
	RENDER_PT_-
	render, RENDER
	PT_shading,
	RENDER PT -
	stamp

Operator Category	Header	Menu	Panel
Scene Properties			```SCENE_PT_- custom_props, SCENE_PT_- keying_set_- paths, SCENE_- PT_keying_- sets, SCENE_- PT_physics, SCENE_PT_scene, SCENE_PT_- simplify, SCENE_- PT_unit```
Sequencer Window	SEQUENCER_- HT_header	SEQUENCER_- MT_add, SEQUENCER_- MT_add_effect, SEQUENCER_- MT_marker, SEQUENCER_- MT_select, SEQUENCER_- MT_strip, SEQUENCER_- MT_view, SEQUENCER_- MT_view_toggle	SEQUENCER_PT_edit, SEQUENCER_PT_effect, SEQUENCER_PT_filter, SEQUENCER_PT_input, SEQUENCER_PT_preview, SEQUENCER_PT_proxy, SEQUENCER_PT_scene, SEQUENCER_PT_sound, SEQUENCER_PT_view

Operator Cate- Header
gory

Texture Properties

Menu Panel
 TEXTURE_MT_- TEXTURE_envmap_specials, PT_blend, TEXTURE_MT_- TEXTURE_specials
 PT_clouds,
 TEXTURE_-

PT_colors, TEXTURE_PT_context_texture, TEXTURE_PT_custom_props, TEXTURE_PT_distortednoise, TEXTURE_PT_envmap, TEXTURE_PT_envmap_sampling, TEXTURE_PT_image, TEXTURE_PT_image_mapping, TEXTURE_PT_image_sampling, TEXTURE_PT_influence, TEXTURE_-
PT_magic, TEXTURE_PT_mapping, TEXTURE_PT_marble, TEXTURE_PT_musgrave, TEXTURE_PT_pointdensity, TEXTURE_PT_-pointdensity_turbulence, TEXTURE_PT_preview, TEXTURE_PT_stucci, TEXTURE_PT_voronoi, TEXTURE_PT_voxeldata, TEXTURE_PT_wood

Operator Category	Header	Menu	Panel
Text Editor	TEXT_HT_header	TEXT_MT_edit, TEXT_MT_edit_markers, TEXT_MT_edit_select, TEXT_MT_edit_to3d, TEXT_MT_format, TEXT_MT_templates, TEXT_MT_text, TEXT_MT_toolbox, TEXT_MT_view	TEXT_PT_find, TEXT_PT_properties
Timeline	TIME_HT_header	TIME_MT_autokey, TIME_MT_cache, TIME_MT_frame, TIME_MT_playback, TIME_MT_view	
User Preferences	USERPREF_HT_header	USERPREF_- MT_addons_- dev_guides, USERPREF_MT_- interaction_presets, USERPREF_- MT_keyconfigs, USERPREF_MT_splash	USERPREF_- PT_addons, USERPREF_- PT_edit, USERPREF_PT_file, USERPREF_PT_input, USERPREF_PT_interface, USERPREF_PT_system, USERPREF_PT_tabs, USERPREF_PT theme

Operator Category
3D View VIEW3D_HT_header
Header
VIEW3D_HT_-
header

127. Procedural object creation

(i) Information

Applicable Blender version: 2.49

127.1. Text Blocks

A Blender document can contain text blocks, which are not the same as text objects in a 3D scene (though the former can be converted to the latter). Besides generating text objects, a text block can serve any purpose you like; for example, use it to pass workflow instructions to a colleague along with the document; display a copyright or help message in the initial layout that a user sees on opening the document; or hold a Python script that can be run by the user to perform some useful action related to the document.

Text blocks are edited in the Text Editor window. The Text Editor also provides commands to load the contents of a text block from an external file, or save it to an external file. And also execute the text as a Python script.

127.2. Your First Script

Open a new, default Blender document. Split the 3D View in two vertically. Change the type of one side to a Text Editor window. In the header, you will see a small popup menu showing just a double-headed arrow; click on this, and it should show three items: "Text", "ADD NEW" and "OPEN NEW". "ADD NEW" creates a new, empty text block, while "OPEN NEW" creates a new text block by reading its contents from an external file. But "Text" is already the name of a default empty text block, so just use that; as soon as you select it, you should see a red insertion cursor appear at the top left, indicating that you can start typing.

Unlike the Interactive Python Console, nothing is automatically imported for you. So as in any other Python script, you need to mention every module you want to access.

Let us write a script that inserts a new mesh primitive into a Blender document, namely a tetrahedron. First we need to create a new mesh datablock, which we will name "Tetrahedron":

NewMesh = Blender.Mesh.New("Tetrahedron")
Then we need to define the coordinates of the vertices; for a tetrahedron with edges of length 1 Blender unit, suitable values are $\left(0,-\frac{1}{\sqrt{3}}, 0\right),\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, 0\right),\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}, 0\right)$ and $\left(0,0, \sqrt{\frac{2}{3}}\right)$. Or in Python:

```
NewMesh.verts.extend \
    (
        [
            (0, -1 / math.sqrt (3),0),
            (0.5, 1 / (2 * math.sqrt(3)), 0),
            (-0.5, 1 / (2 * math.sqrt (3)), 0),
            (0, 0, math.sqrt(2 / 3)),
        ]
    )
```

We also need to define the faces of the object; each face is defined by listing a sequence of indexes into the above array of vertices (you don't need to bother about defining the edges; Blender will deduce them from the faces):

```
NewMesh.faces.extend \
    (
        [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
    )
```

That suffices for the mesh, now we create an actual object datablock that will appear in the scene (which we also name "Tetrahedron"):

TheObj = Blender.Object.New("Mesh", "Tetrahedron")
Link it to the mesh we just made:

TheObj.link (NewMesh)
And to make the object appear in the scene, it has to be linked to it:

```
TheScene = Blender.Scene.GetCurrent()
TheScene.link(TheObj)
```

And finally, tell Blender that the scene has changed:

TheScene. update ()
and to redraw the 3D view to show the updated scene:

Blender.Window. Redraw()

127.3. Put It All Together

Your complete script should look like this, including the imports of the referenced math and Blender modules; note also the use of the directive to ensure that the " p " operator always returns a real, not an integer, result; this is good practice with Python 2.x, since it becomes mandatory behaviour beginning with Python 3.0.

```
from __future__ import division
import math
import Blender
NewMesh = Blender.Mesh.New("Tetrahedron")
NewMesh.verts.extend \
    l
        (0, -1 / math.sqrt (3),0),
        (0.5, 1 / (2 * math.sqrt(3)), 0),
        (-0.5, 1 / (2 * math.sqrt (3)), 0),
```

```
        (0, 0, math.sqrt(2 / 3)),
    ]
)
NewMesh.faces.extend \
    l
    [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
)
TheObj = Blender.Object.New("Mesh", "Tetrahedron")
TheObj.link (NewMesh)
TheScene = Blender.Scene.GetCurrent()
TheScene.link(TheObj)
TheScene.update()
Blender.Window.Redraw()
```

In your 3D View, get rid of any default cube to avoid it obscuring things. Now come back to the Text Editor window showing the above script, and press ALT to execute it; you should see your new tetrahedron appear in the 3D view!

127.4. If You Hit An Error

If there is any error running the script, Blender will display a cryptic message to let you know. For example, the following simple one-line script
raise RuntimeError("Uh-oh")
displays this message:

1. Error

Python script error: check console

Figure 910

To get more details you will have to look in Standard Error; on Linux/Unix systems, the message will appear in the terminal session if you invoked Blender from the command line; otherwise it will be appended to your \sim.xsessionerrors file if you launched Blender from a GUI. On Windows the message appears in the console window. By hunting around in the appropriate place, you should be able to find the full Python traceback:

```
Traceback (most recent call last):
    File "Text.001", line 1, in <module>
RuntimeError: Uh-oh
```


128. External scripts

i Information

Applicable Blender version: 2.49

Embedding a script inside a Blender document is useful for some special purposes, but often you want to be able to reuse it across any number of Blender documents, and perhaps distribute it to others for use with their Blender projects. To do this, you will need to save the script as a text file that can be copied into your Blender user preferences. It will also need to have some additional information inserted.

128.1. The Script Header

In order for your script to be installable, it needs to have the following as its first line:

\#!BPY

Following this, add a multiline Python string to define a name and other information for the script to appear in the Scripts menu:
"""
Name: 'Add Tetrahedron'
Blender: 249
Group: 'Add'
Tooltip: 'Creates a tetrahedron object'
" " "
The "Blender:" line specifies the minimum required version of Blender that the script is compatible with; here we specify " 249 " to indicate that it wants Blender version 2.49. The "Group:" indicates which of the submenus of the Scripts menu that the script will appear in: it must match one of the existing submenu names, otherwise the script will go into the "Misc" submenu. The "Name:" is the name of the menu item that will be added for invoking this script, and the "Tooltip:" will appear when the user pauses with the mouse over that menu item.

128.2. Put It All Together

So now your complete script looks like this:

```
#!BPY
"""
Name: 'Add Tetrahedron'
Blender: 249
Group: 'Add'
Tooltip: 'Creates a tetrahedron object'
```

```
"""
from __future__ import division
import math
import Blender
NewMesh = Blender.Mesh.New("Tetrahedron")
NewMesh.verts.extend \
    (
        [
        (0, -1 / math.sqrt (3),0),
        (0.5, 1 / (2 * math.sqrt (3)), 0),
        (-0.5, 1 / (2 * math.sqrt(3)), 0),
        (0, 0, math.sqrt (2 / 3)),
    ]
    )
NewMesh.faces.extend \
    (
        [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
    )
TheObj = Blender.Object.New("Mesh", "Tetrahedron")
TheObj.link (NewMesh)
TheScene = Blender.Scene.GetCurrent()
TheScene.link(TheObj)
TheScene.update()
Blender.Window.Redraw()
```


128.3. Making The Script Installable

The contents of your script are now complete. In the Text Editor, find the "Save As" option under the "Text" menu, and choose a filename for saving your script-perhaps call it TetrahedronMaker.py.

That's it. This saved text file is now ready for installation into your Blender user settings, or distribution to others for installation in their settings.

128.4. Installing The Script

To install the script, simply copy the file you previously saved into the user-scripts directory within your Blender user settings.

For different operating systems this is:

- Linux/Unix: ~/.blender/scripts
- Windows XP: C:\Program Files \backslash Blender Foundation\Blender\.blender\scripts
- Windows XP (alt): C:\Documents and Settings\USERNAME\Application Data\Blender Foundation\Blender\blender\scripts
- Windows Vista: C:\Users\USERNAME\AppData\Roaming\Blender Foundation\Blender\.blender\scripts
- Mac OS X:
- Under Mac OSX the path is actually hidden in the blender.app so to know the path you would have to know that the script folder is actually hidden in the blender.app itself. Assuming that Blender is in the applications directory the path would be
"/Applications/blender/blender.app/Contents/MacOS/.blender/scripts" If you try to open the
.app contents from the finder you will notice that .blender section of the path is not visible, while blender will still be able to navigate to this folder.
- Right-click (or ctrl-click) the file "blender", and select "Show Package Contents" in the popup-menu. It will display all the hidden files under blender's folder, and select "scripts" folder inside it.
- To see this folder from the OSX terminal use the ls -a command (lists all folders/files even hidden) in the MacOS folder of the listed path. It is probably a good idea to create an alias to the scripts folder in the "/Applications/blender-2.37a-OSX-10.3-powerpc" folder so that scripts can be easily manipulated through the finder. I know that its confusing that Blender should have its script folder buried inside the app but it is necessary to keep the app portable and not require an install.
- A safer approach than the one above consists in keeping your scripts somewhere in your home folder: with this scheme, there is no risk of deleting your scripts when you upgrade your blender application, as they are not contained within its folder. A method that follows this principle is as follows: create a folder that will contain your scripts (or some of them) inside your own home directory; then, instead of putting your files directly in the .../.blender/scripts/ folder discussed above, simply add a link to your script directory in the .../.blender/scripts/ folder (for instance with the "ln -s" Unix command, or by doing "open /Applications/blender-2.37a-OSX-10.3-powerpc/blender.app/Contents/MacOS/.blender/scripts/" [adapted to your version of blender] and then creating a link through the Finder, with File->Make Alias). Blender will now find all the scripts that you put in your home directory: it will follow the link you created in its .../.blender/scripts/ folder and go to the corresponding folder in your own directory, and find all the python scripts you put there.

128.5. Using The Installed Script

To make use of the installed script, open a new Blender document. Get rid of the default cube to avoid it obscuring things. Split the 3D View into two horizontally, and change one of the two into a Scripts Window. Go to the "Scripts" menu, and see if your "Add Tetrahedron" item appears in the "Add" submenu; if it doesn't, select "Update Menus" (the last item in the "Scripts" menu) and have another look. Select your new menu item, and watch your tetrahedron object appear in the 3D View!

129. Creating a GUI for your script

(i) Information

Applicable Blender version: 2.49

Often, your script will need to get information from the user, such as parameter settings, before performing its action. You can do this in two different ways: either present a modal popup that the user has to deal with before doing anything else, or alternatively you can take over the entire Scripts Window with a custom display that the user can freely switch to and from while doing other things.

129.1. A Modal GUI

The simplest way to add a GUI to your script is to pop up a simple menu with some items to choose from. Let's add an option to our Tetrahedron Maker script to generate the tetrahedron upside-down. Displaying a menu is as simple as calling Blender.Draw.PupMenu and passing it a string containing the menu items separated by "l" characters. Put a "\%t" at the end of the item that defines the menu title:

Orient = Blender.Draw.PupMenu("Add Tetrahedron\%t|Right Way UplUpside Down")
The value returned from the call will be the index of the selected menu item (starting from 1, ignoring the menu title), or -1 to indicate that no selection was made.

When you execute the above line, it displays this:

$$
\begin{aligned}
& \text { Add Tetrahedron } \\
& \text { Right Way Up } \\
& \text { Upside Down }
\end{aligned}
$$

Figure 911

We will use the menu selection to negate a scale factor which will be applied to the Z coordinate of the vertices of the tetrahedron. But only the last vertex has a nonzero Z coordinate, so this is the only one that needs a change in its computation. So the body of our script now looks like this:

```
Orient = Blender.Draw.PupMenu("Add Tetrahedron%t|Right Way Up|Upside Down")
if Orient > 0 :
    Scale = -1 if Orient > 1 else 1
    NewMesh = Blender.Mesh.New("Tetrahedron")
    NewMesh.verts.extend \
            l
                (0, -1 / math.sqrt(3),0),
                    (0.5, 1 / (2 * math.sqrt(3)), 0),
                    (-0.5, 1 / (2 * math.sqrt (3)), 0),
                (0, 0, Scale * math.sqrt(2 / 3)),
            ]
        )
    NewMesh.faces.extend \
            (
            [[0, 1, 2], [0, 1, 3], [1, 2, 3], [2, 0, 3]]
        )
    TheObj = Blender.Object.New("Mesh", "Tetrahedron")
    TheObj.link (NewMesh)
    TheScene = Blender.Scene.GetCurrent()
    TheScene.link(The0bj)
    TheScene.update()
    Blender.Window.Redraw()
#end if
```


129.2. A Modeless GUI

It is very easy to create a GUI for your script, and that way make it easy to change aspects of it for everyone.
The command to create a Graphical User Interface (GUI) is:
Blender. Draw. Register (draw, event, button)
This command registers the functions:

- draw - to draw the GUI
- event - to action mouse and key presses
- button - to action GUI button presses

However, this command will NOT work by itself !!!. You first need to define these 3 functions.
First we will import Blender's library of built in functions: import Blender
Next, we will define the draw function. def $\operatorname{draw}()$:
Inside this function we will draw the GUI. Here is an example of a drawing function we can use. It will clear the current window. Blender.BGL.glClear (Blender.BGL.GL_COLOR_BUFFER_BIT)

And the next command will draw a button. Note that the first number in the command, ' 1 ' identifies the button as button 1. We will refer to this button later.

[^110]Next, we will define the event function. The code of a key pressed on the keyboard is passed into the function as the variable evt. def event (evt,val):

Now we will test to see if the escape key is pressed: if evt == Blender.Draw.ESCKEY:
If it is pressed, exit the script, and return from the function: Blender.Draw.Exit ()
return
Next, we will define the button function. This function will perform an action if the button is pressed. def button (evt):

Now test the variable evt which holds the button number that we previously identified.
if evt == 1 :
If it is pressed, we will move the selected object in the 3 d window back to the centre and redraw
the screen: Blender. Scene.GetCurrent ().getActiveObject ().loc $=(0,0,0)$
Blender.Window.Redraw()
Lastly, we can create the Graphical User Interface by typing the command:
Blender. Draw.Register(draw, event, button)
That's it !!! To enter the script yourself, type the following into the Text Editor window in Blender, and then press alt \mathbf{p} to execute the script. Here's the entire script. Everything after the hash \# is a comment and can be left out.

```
import Blender # This will import the library of blender functions we will use
def draw(): # Define the draw function (which draws your GUI).
        Blender.BGL.glClear(Blender.BGL.GL_COLOR_BUFFER_BIT) # This clears the window
        # Add here drawing commands to draw your GUI, for example:
        Blender.Draw.Toggle("Clear origin",1,10,20,100,20,0,"Tooltip")
        # The line above will draw a toggle button.
        # Note the first number, '1' means this is button number 1
def event(evt,val): # Define mouse and keyboard press events
        if evt == Blender.Draw.ESCKEY: # Example if esc key pressed
            Blender.Draw.Exit() # then exit script
            return # return from the function
def button(evt): # Define what to do if a button is pressed, for example:
    if evt == 1: # If button '1' is pressed, set active object to centre:
            Blender.Scene.GetCurrent().getActiveObject().loc = (0,0,0)
            Blender.Window.Redraw() # This will redraw the 3d window.
# You can now run the Graphical User Interface by typing the command:
Blender.Draw.Register(draw, event,button)
# End of script
```

Noob Note: When I tried to run that script it came up with an error: Attribute Error: 'Scene' object has no attribute 'getActiveObject'. I changed "Blender.Scene.GetCurrent().getActiveObject().loc $=$ $(0,0,0)$ " to "Blender.Scene.GetCurrent().objects.active. $\mathrm{loc}=(0,0,0)$ " and it worked.

130. Export scripts

i Information

Applicable Blender version: 2.59

This page is an update of a great tutorial originally built for blender 2.44
Blender is not just useful to create complete animations, but it's also a great modeller. You can build your complete 3D scene in Blender, and then export it to a useful format. In fact, you can use it for much more, for example I was using it as a level editor for a freeware 2D game someone else made. There was a short deadline for the game to be finished, and 2 weeks before that deadline, there still was no level editor for it. It had a custom ASCII level format, consisting of lists of materials, vertices, triangles and objects. So, remembering the Blender Python exporters, I volunteered to write an export script for Blender, so it could be used as level editor. And it worked out very well, Blender can be completely used as level editor for that game now.

In this tutorial we'll learn how to write a simple Python export script for Blender. Without requiring previous Python knowledge, it will explain how to query the objects in your scene, and how to write them to a file. It will also demonstrate the usefulness of export scripts, by showing how you can process the data while exporting, so you can achieve things that would not work by using any other existing format.

So, open Blender, make sure the default scene is loaded, and let's begin..

130.1. Finding out about things in a scene

Figure 912: Blender259 EditorSelector

Before we can export something, we must know what to export. One way to get this information is the Outliner window (SHIFT-F9). It will list all the things currently known to Blender. Now, we want the same information from a script. Click the editor selection button and from the popup menu choose Python Console.

Now, you are ready for the big moment, you are about to execute the first Blender scripting command. Type this and hit RETURN (or you could type into the scripts window import Blender on the topmost line, then these lines below it, precede all the ' $\operatorname{dir}(\mathrm{x})$ ' lines with print and choose file->Execute):

```
list(bpy.data.objects)
```

As a result, you should see this:

```
[bpy.data.objects["Camera"], bpy.data.objects["Cube"], bpy.data.objects["Lamp"]]
```

Now, what just happened? The variable given to "list" in "list(bpy.data.objects)" consists of three words, separated by two dots. The dots separate different things. The first, bpy, means to use a function from the bpy module. data is a sub-module of Blender. And finally objects is an iterator of bpy.data. The list() function is used to loop through all data in bpy.data.objects and return that as a list of all available objects. In our case, this is a Camera, a Cube, and a Lamp.

To get more information about an object, you can use the object name as a key in bpy.data.objects, and assign it to a variable, like this:

```
camera = bpy.data.objects["Camera"]
cube = bpy.data.objects["Cube"]
lamp = bpy.data.objects["Lamp"]
```

We just assigned the three objects to three variables, camera, cube and lamp. To see the contents of a variable, type just its name:

```
cube
[Object "Cube"]
```

```
camera
[Object "Camera"]
```

```
lamp
[Object "Lamp"]
```

Sometimes it's useful to use Python's dir() function to get more information about an object. For example

```
dir(cube)
```

will write the names of all functions and properties of the object. Quite a lot. But don't worry, soon you will know how to use all of them. You also may want to find out the type of something, which you can do like this:

```
type (cube)
```

In this case, just typing "cube" already displays the type, but from within an actual script, you would use type(). Something else which can be useful is viewing the documentation of Python objects. To do so, use the help() function on a variable or object.

```
help (bpy.data.objects)
```

This will print the documentation of the bpy.data.objects function we used. Of course, an easier way to view the documentation is the online HTML help. Click on Help->Python API Reference. Hopefully now your browser opens and displays the online documentation of the Blender Python API. If not, you should find it also here:
http://www.blender.org/documentation/blender_python_api_2_59_2/

In the documentation, click on bpy, then on data and you can see more examples. Using the documentation will get absolutely vital whenever you need to do something in a script not covered in a tutorial. And you will need to do so, else you wouldn't want to learn scripting at all.

Another resource you will need, depending on how far you will go with scripting, is the Python reference:
http://docs.python.org/
For this tutorial, maybe read the "Tutorial" section in the python docs, but you will understand everything without doing so.

Now, let's try to find out more about our cube. Type:

```
cube.type
```

It will tell us that the cube really is a Mesh object in Blender. Look up "type" in the online docs. Since the variable cube holds an Object, and "type" is an attribute of that Object, click on Object. There you find its "type".

Now that we know that the cube is a mesh, let's find out more about the mesh.

```
cubedata = bpy.data["Cube"]
```

'Note: in Blender 2.6.0 the script command actually looks like this, but the above is still valid: (Chronus001)

```
cubedata = bpy.data.meshes['Cube']
```

Every Blender object has data assigned to it, depending on the type. In the case of a mesh, the data are of type Mesh. In the documentation, go to the top again, and look for the Mesh module. It will contain documentation for the Mesh type. You can also try

```
dir(cubedata)
```

to get an idea about the available functions and properties. Try these:

```
list(cubedata.vertices)
list(cubedata.faces)
```

The first line will list the 8 vertices of the cube's mesh. The second line will list its 6 faces.
To get a member out of a list, you specify the index in square brackets, starting with 0 . So:

```
v = cubedata.vertices[0]
```

This will assign the first vertex of the cube to the variable v. By now, you already know how to use $\operatorname{dir}()$ to get a list of possibly interesting things in v, find out about its type with type(), and where to look for the API documentation. It is in the module Blender/Mesh, when you click one "MVert" under "Classes".

[^111]This will display the 3D coordinates of the first vertex. Now, what if we want to know the coordinates of all vertices? We could of course assign them all to a variable, but the real way to do this is using a looping constructs. There are numerous ways to do this, but one simple way looks like this:
for v in cubedata.vertices: print(v.co)

The for variable in list: construct assigns each element of the list to the variable in turn, and then executes the commands after the colon with the variable having the value of one particular list element. In a real script, you will have much more than a single command after the colon - so you would write them in the following lines.

By now, you should know enough to try yourself at a real script in the next section.

130.2. Creating a script

You can write scripts either in an external text editor, or in Blender's built in text editor. Move to a panel you wish to change to be the text editor, click the editor select button and choose "text editor" (shortcut) SHIFT+F11. Click the + New button at the bottom. If you want, you can enable line numbers and syntax coloring with the buttons at the bottom. Create a new script with File \rightarrow New, paste the code below into it, and save it. Or alternatively, paste the code below into a file, and open that file with File \rightarrow Open in Blender. As name choose something with the extension .py, for example wikibooks.py. Put it into Blender's user scripts path.
For different operating systems this is:

- Linux: \%.blender/scripts
- Windows XP: C:\Program Files\Blender Foundation\Blenderl.blenderlscripts
- Windows XP (alt): C:\Documents and SettingslUSERNAMEXApplication Data\Blender Foundation\Blenderl.blenderlscripts
- Windows Vista: C:\Users\USERNAME\AppData\Roaming\Blender

Foundation\Blenderl.blenderlscripts

- Mac OS X:
- Under Mac OSX the path is actually hidden in the blender.app so to know the path you would have to know that the script folder is actually hidden in the blender.app itself. Assuming that Blender is in the applications directory the path would be "/Applications/blender/blender.app/Contents/MacOS/.blender/scripts" If you try to open the .app contents from the finder you will notice that .blender section of the path is not visible, while blender will still be able to navigate to this folder.
- Right-click (or ctrl-click) the file "blender", and select "Show Package Contents" in the popup-menu. It will display all the hidden files under blender's folder, and select "scripts" folder inside it.
- To see this folder from the OSX terminal use the ls -a command (lists all folders/files even hidden) in the MacOS folder of the listed path. It is probably a good idea to create an alias to the scripts folder in the "/Applications/blender-2.37a-OSX-10.3-powerpc" folder so that scripts can be easily manipulated through the finder. I know that its confusing that Blender should have its script folder buried inside the app but it is necessary to keep the app portable and not require an install.
- A safer approach than the one above consists in keeping your scripts somewhere in your home folder: with this scheme, there is no risk of deleting your scripts when you upgrade your blender application, as they are not contained within its folder. A method that follows this principle is as follows: create a folder that will contain your scripts (or some of them) inside your own home directory; then, instead of putting your files directly in the .../.blender/scripts/ folder discussed above, simply add a link to your script directory in the .../.blender/scripts/ folder (for instance with the "ln -s" Unix command, or by doing "open /Applications/blender-2.37a-OSX-10.3-powerpc/blender.app/Contents/MacOS/.blender/scripts/" [adapted to your version of blender] and then creating a link through the Finder, with File->Make Alias). Blender will now find all the scripts that you put in your home directory: it will follow the link you created in its .../.blender/scripts/ folder and go to the corresponding folder in your own directory, and find all the python scripts you put there.

```
<nowiki>
#!BPY
"""
Name: 'Wikibooks'
Blender: 259
Group: 'Export'
Tooltip: 'Wikibooks sample exporter'
"" "
import Blender
import bpy
def write(filename):
    out = open(filename, "w")
    sce= bpy.data.scenes.active
    for ob in sce.objects:
        out.write(ob.type + ": " + ob.name + "\n")
    out.close()
Blender.Window.FileSelector(write, "Export")
</nowiki>
```

Now, go back into the scripts window, and in its menu, click Scripts \rightarrow Update Menus. If you saved it into the right path, from now on there should be an entry "Wikibooks" in the File \rightarrow Export menu. Try exporting any scene with it. It should open the file chooser dialog, and after you select a file and press the "Export" button, write a list of all objects in the scene into it. There will be one object per line, with the type, followed by a colon and the name.

How does it work? If you look at the script, you probably already know. But just in case, let's look at the script line by line. The first line contains this:

```
#!BPY
```

It tells Blender that this is a Blender script, and therefore it will consider it when scanning for scripts. Next simply follows a string, enclosed in triple quotation marks, so it can span multiple lines.

```
"" "
Name: 'Wikibooks'
Blender: 259
```

```
Group: 'Export'
Tooltip: 'Wikibooks sample exporter'
" ""
```

It contains four items, which Blender uses to place the script into its menus. The name, group (submenu name), and tooltip, all enclosed in single quotes. And the Blender version this is for. Note the group name must be one of those predefined by Blender (check the submenus in its Scripts menu to see the valid names); if Blender doesn't recognize the group name, the script will be put into the "Misc" submenu.

```
import Blender
import bpy
```

Remember how we said all functions from the bpy module start with "Blender."? In the interactive shell, we could simply use them, but in a python script, all used modules must be declared with an import statement (if you want to directly use functions from the Blender module in a script, you can simply replace the import statement above with "from Blender import *": no "Blender." prefix is necessary any more; however, this slows down the loading of your script). So the above simply allows us to use the functions from the Blender module in our script.
the bpy module is new and will replace Blender for data access.

```
def write(filename):
```

This defines a function in Python. The syntax is def name(parameters):. In our case, the name is "write", and we have one parameter, called "filename".

```
out = open(filename, "w")
```

Here we open a file for writing (the "w"), with the name passed to the function (filename). The python function "open" will open the file, and return a reference to it, which we store in the variable "out".

```
sce= bpy.data.scenes.active
for ob in sce.objects:
    out.write(ob.type + ": " + ob.name + "\n")
```

These three lines are our real export script. You already know what the first line does - first we get the current scene, then get a list of all objects in that scene, the for loop is assigning each one in turn to the variable "ob". The second line writes to the file - first the type of the object, then the string ": ", then the name of the object, and finally a newline.

```
Blender.Window.FileSelector(write, "Export")
```

This is where execution of the script starts. It is simply a call of a Blender function (look it up in the API docs), which opens the file selector. It will display an "Export" button, and when the user clicks it, our function "write" from above gets called and is passed the selected filename.

This script isn't really very useful yet, but it shows the basics. You should now be able to e.g. also list all the materials in the scene. (Hint: They are just like objects, try to find them in the API docs.)

In the next section, we will learn how to export additional information about objects to our text file.

130.3. Exporting a Mesh

Our export script lists the type and name of every object, but that's not very useful yet. If we want to load the exported data in another application, we need more. Let's try to export a mesh object in the OBJ format.

The example below is a cube in the OBJ file format. <nowiki>

```
v 1.000000 1.000000 -1.000000
v 1.000000 -1.000000 -1.000000
v -1.000000 -1.000000 -1.000000
v -1.000000 1.000000 -1.000000
v 1.000001 1.000000 1.000000
v 0.999999 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 1.000000 1.000000
f 12 34
f 5 8 7 6
f 1 5 6 2
f 2673
f 3784
f 5148
</nowiki>
```

Here is a simple obj export script that exports a selected mesh object, used to export the OBJ file above. <nowiki>

```
import Blender
```

import bpy
def write_obj(filepath):
out = file(filepath, 'w')
sce = bpy.data.scenes.active
ob = sce.objects.active
mesh = ob.getData(mesh=1)
for vert in mesh.verts:
out.write('v \%f \%f \%f $\mathrm{n}^{\prime} \%$ (vert.co.x, vert.co.y, vert.co.z))
for face in mesh.faces:
out.write('f')
for vert in face.v:
out.write(' \%i' \% (vert.index + 1))
out.write (' $\backslash \mathrm{n}^{\prime}$)
out.close()
Blender.Window.FileSelector(write_obj, "Export")
</nowiki>

This script will export an OBJ file that can be read by many applications. Let's look at what's going on.
<nowiki>
sce $=$ bpy.data.scenes.active
$\mathrm{ob}=$ sce.objects.active
</nowiki>
Here we are getting the object you last selected in the current scene. This will raise an error if there are no selected objects, but its an easy way to test a new exporter.
<nowiki>
mesh $=\mathrm{ob} \cdot \operatorname{getData}($ mesh $=1)$
</nowiki>
This gets the objects linked datablock. At the moment we don't know its a mesh, another case where error checking would need to be added.
<nowiki>
for vert in mesh.verts:
out.write('v \%f \%f \%f $\mathrm{n}^{\prime} \%$ (vert.co.x, vert.co.y, vert.co.z))
</nowiki>
Here we write a line for every vertex, using string formatting to replace the "\%f" on the left, with the 3 values on the right.

```
<nowiki>
for face in mesh.faces:
out.write('f')
for vert in face.v:
out.write( ' %i' % (vert.index + 1) )
out.write('\n')
</nowiki>
```

In the OBJ format each face references a number of vertex indices. For every face we have a line starting with " f ", then loop through the vertices in the face. Just as mesh.verts are a list of all the vertices in a mesh, face.v is a list of verts in the face limited to 4 vertices maximum. (where mesh and face are arbitrary variable names assigned to Mesh and MFace objects) Every vertex writes its index on that same line with 1 added. This is because with the OBJ file format the first vertex is indexed at 1, whereas with Python and Blender the first item in a list is 0 .

A new line is written so the next face will start on a new line. - in python 'ln' represents a new line when written to a file.

131. Import scripts

(i) Information

Applicable Blender version: 2.49

Importing objects into Blender is not that different from exporting. However, there are a few additional things to take care of. Firstly, all references to "export" in the header should be changed to "import". Secondly, instead of simply writing out data that Blender provides to us, we are responsible for giving data to Blender and ensuring that it is properly formatted. Although Blender is flexible, allowing us to ignore things like vertex indices, we do need to be careful that we do things in a sensible order.

Additionally, there is a bit of housekeeping to deal with. We should be in edit mode while modifying the mesh data. We also need to link up our newly created data to the scene, after it has been properly constructed, so that Blender can see it and maintain it. This makes it visible to the user, as well as ensuring that it gets saved along with the scene.

131.1. Importing a Mesh

Here is a simple script that can import an OBJ file created by the EXPORT SCRIPT ${ }^{1}$.

```
import Blender
def import_obj(path):
    Blender.Window.WaitCursor(1)
    name = path.split('\\') [-1].split('/') [-1]
    mesh = Blender.NMesh.New( name ) # create a new mesh
    # parse the file
    file = open(path, 'r')
    for line in file:
        words = line.split()
        if len(words) == 0 or words[0].startswith('#'):
                pass
        elif words[0] == 'v':
                x, y, z = float(words[1]), float(words[2]),
    float(words[3])
        mesh.verts.append(Blender.NMesh.Vert (x, y, z))
        elif words[0] == 'f':
                faceVertList = []
                for faceIdx in words[1:]:
                                    faceVert = mesh.verts[int(faceIdx)-1]
```

[^112]```
 faceVertList.append(faceVert)
newFace = Blender.NMesh.Face(faceVertList)
mesh.addFace (newFace)
```

```
 # link the mesh to a new object
```

    # link the mesh to a new object
    ob = Blender.Object.New('Mesh', name) # Mesh must be spelled just
    ob = Blender.Object.New('Mesh', name) # Mesh must be spelled just
    this--it is a specific type
this--it is a specific type
ob.link(mesh) \# tell the object to use the mesh we just made
ob.link(mesh) \# tell the object to use the mesh we just made
scn = Blender.Scene.GetCurrent()
scn = Blender.Scene.GetCurrent()
for o in scn.getChildren():
for o in scn.getChildren():
o.sel = 0
o.sel = 0
scn.link(ob) \# link the object to the current scene
scn.link(ob) \# link the object to the current scene
ob.sel= 1
ob.sel= 1
ob.Layers = scn.Layers
ob.Layers = scn.Layers
Blender.Window.WaitCursor(0)
Blender.Window.WaitCursor(0)
Blender.Window.RedrawAll()
Blender.Window.RedrawAll()
Blender.Window.FileSelector(import_obj, 'Import')
Blender.Window.FileSelector(import_obj, 'Import')
</nowiki>

```
</nowiki>
```

This will load an OBJ file into Blender, creating a new mesh object. Let's take a look at the more interesting portions. <nowiki>

Blender.Window.WaitCursor(1)
</nowiki>
Turn on the wait cursor so the user knows the computer is importing. <nowiki>

```
name = path.split('\\')[-1].split('/') [-1]
mesh = Blender.NMesh.New(name) # create a new mesh
</nowiki>
```

Here, we create a new mesh datablock. The name is made from the path only with the filename.
<nowiki>

```
ob = Blender.Object.New('Mesh', name)
ob.link(mesh)
</nowiki>
```

Next, we create a new object and link it to the mesh. This instantiates the mesh. <nowiki>

```
scn = Blender.Scene.GetCurrent()
scn.link(ob) # link the object to the current scene
ob.sel= 1
ob.Layers = scn.Layers
</nowiki>
```

Finally, we attach the new object to the current scene, making it accessible to the user and ensuring that it will be saved along with the scene. We also select the new object so that the user can easily modify it after import. Copying the scenes layers ensures that the object will occupy the scenes current view layers. <nowiki>
Blender.Window.WaitCursor (0)
Blender.Window.RedrawAll()
</nowiki>

Now the finishing touches. We turn off the wait cursor. We also redraw the 3D window to ensure that the new object is initially visible. If we didn't do this, the object might not appear until the user changes the viewpoint or forces a redraw in some other way.

## 132. Scripts for modifying meshes

(To be written.)
See SALTSHAKER ${ }^{1}$ a basic but functional Python script for Blender. The page includes details of how it was made.

HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/PYTHON_SCRIPT01_EN.HTM ${ }^{2}$ is a good website for learning about mesh creation.

[^113]
## 133. Advanced Modeling Introduction

### 133.1. Advanced Modeling

We have learned quite a few useful techniques that we can now use to make something really cool or fun. But there are plenty of little tricks hidden within Blender that will allow us to make very realistic or intricate 3D graphics with a much lower amount of memory used. It usually takes an extra application or two, and the more advanced the program, the better; however, in the next few tutorials the Paint program--or it's equivalent on another OS--will be just fine for our purposes.

The purpose of these modeling tutorials will be to lower the poly count on your models--this could range from no effect to cutting out $99.99 \%$ of your original faces, and still being able to keep the realistic look you were going for. Make sure you have read over the other tutorials in this book or at least are very familiar with Blender, so you can better understand how to work these modeling techniques.

## 134. Advanced Modeling

### 134.1. Making Better Models

This section will deal with the actual modeling of objects and how to make better, more detailed objects much faster and more efficient. It will also deal with making more accurate models, whether it is cartoonish or realistic. Either way, this tutorial will deal with making better models and using the more advanced modeling systems in Blender.

## 135. HDRi

### 135.1. Introduction

You may have heard various people talk about HDR images. (WETA, Lucas, even Tim Sweeny). HDR images are part of a technology called HDRi which stands for "High Dynamic Range (image)". So... what on earth does that mean?

Here's a link to Wikipedia's article on THE HDR FORMAT ${ }^{1}$ which I personally give all my credit to Paul Debevec for putting it to use for computer graphics purposes. Anyway, before you start trying to understand the usefulness of HDRi, please read the wikipedia link.

Also, visit Paul Debevec's website ${ }^{2}$ if you've got some more time to spare.
To sum up the excitement of HDR CG, think of it like the hype of the next-generation videogames that are about to come out, except set the stage for 1996 instead of 2006. Paul Debevec pioneered paralax mapping, HDR lighting, image-based modeling, his latest work includes some even more amazing technologies, and for the record he's my hero too.
To use HDRi images for 3D rendering, you need something called a LIGHT PROBE ${ }^{3}$...

### 135.2. Definitions

## HDRI

[^114]

Figure 913: HDR image file example

HDRI stands for High Dynamic Range Imaging, and is basically an image format that contains from the deepest shadow up to the brightest highlight information. While an 'ordinary' digital image contains only 8 bits of information per color (red, green, blue) which gives you 256 gradations per color, the HDR image format stores the 3 colors with floating point accuracy. Thus the 'depth' from dark to light per color is virtually unlimited. Using HDR images in a 3D environment will result in very realistic and convincing shadows, highlights and reflections. This is very important for realistic emulation of chrome for example.

## Light Probe

A Light Probe is a HDR image containing 360 by 360 degrees ( SOLID ANGLE ${ }^{4} 4 \pi$ STERADIANS ${ }^{5}$ ) image information. In other words : it's a 360 degree spherical panorama image, not only looking around the horizon, but also up and down. Thus a Light Probe image contains all visible information as can be seen from a specific point, wherever you turn your head.

### 135.3. Usage

Given that a Light Probe image is an 'all around' image with a high dynamic range, it's the perfect solution for your 'world' background, especially for a 3D animation.

[^115]
### 135.4. Quick Tutorial (for experienced blendies)

First of all, you'll need an HDR image. There is a whole range at HTTP://DEBEVEC.ORG/PROBES/ ${ }^{6}$ that you can download for free. (There are even more at HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=240387 ). I will use the St. Peter's Basilica probe, but any other HDR image will do just fine.

To apply the HDRI environment to your scene:

- Go to the shading settings (press F5) and click the World button.
- Enable "Real" to force the horizon to stay still, as opposed to follow the camera
- If you're rendering with Blender Internal (ver. 2.49), go to "Ambient Occlusion" tab and activate "Ambient Occlusion", then activate "Sky Texture". Skip this step if you're using external renderers.
- In the "Texture and Input" tab, click "Add New" and "Angmap".
- Then go to the "Map To" tab and deactivate "Blend" and activate "Hori".
- Now go to the Texture settings (press F6) and change the "Texture Type" to "Image".
- Click the "Load Image" button and locate your HDR image.
- If you're using YafRay or other external renderers, you need to turn on Global Illumination and to set the quality to something other than "none".


### 135.5. Step-by-step Tutorial

### 135.5.1. Build a simple scene

To see the advantage of using a 360 by 360 world image, the simplest example to demonstrate this is a scene with a mirrored sphere.

[^116]

Figure 914: Scene

1. Add a sphere and a cube to your scene and place them in a bit of an interesting position. (note that I added a second lamp to light up the shadow part of the cube)
2. Perhaps give the cube a different color than the default grey.

$\checkmark$ Preview


$\nabla$ Shaders Mirror Trans SSS


| 4 Filt: 0.000 Ray Transp |
| :--- | :--- | :--- |


IOR 1.00	Depth: 2

Limit $0.00 \mid$ Falloff 1.0 ||

Fresnel $0.0 \mid$ Fac 1.25 ||
SpecTra 1

Figure 915: Material setting for a mirror surface and a preview of it

1. Give the sphere a mirrored material : go to the Shading $->$ Material panel (F5) and find the Mirror Trans buttons.
2. Check that Ray Mirror button is pressed. If it is not, check it.
3. Set the RayMir value to a value of 0.5 or higher. Your preview should show the reflection of the checkboard environment.

### 135.5.2. Render with HDR (Blender Internal v2.49)

1. Download a HDR image (see Paul Debevec's website)
2. Go to the shading settings (press F5) and click the World button.


Figure 916: AngMap enabled

1. Go to "Ambient Occlusion" tab and activate "Ambient Occlusion", then make sure "Raytrace" is chosen as gather method, and activate "Sky Texture"
2. Adjust quality settings:
a) Increasing number of samples reduces noise, but increases render times
b) Adaptive QMC is faster, but generates more noise than Constant QMC
3. In the "Texture and Input" tab, click "Add New" and "Angmap"
4. Then go to the "Map To" tab and deactivate "Blend" and activate "Hori".
5. Now go to the Texture settings (press F6) and change the "Texture Type" to "Image".
6. Click the "Load Image" button and locate your HDR image.

### 135.5.3. Render with YafRay

1. Download a HDR image (see Paul Debevec's website).
2. Go to the shading settings (press F5) and click the World button.
3. In the "Texture and Input" tab, click "Add New" and "Angmap". Note that the Angmap button is the important thing to tell Blender that this file is a Light Probe file!
4. Then go to the "Map To" tab and deactivate "Blend" and activate "Hori".
5. Now go to the Texture settings (press F6) and change the "Texture Type" to "Image".
6. Click the "Load Image" button and locate your HDR image.
(optional step, as it was not needed for my setup :)
7. Press F10 and change the "Blender Internal" to "YafRay". You need to turn on Global Illumination and to set the quality to something other than "none". Note that the YafRay renderer does not come standard with the Blender installation. You need to download and install this separately.

Your result should look like this: (Rendering: left with Blender, right with YafRay) Click for larger version


Figure 917


Figure 918

Note that the reflecting ball reflects the whole interior from every angle, even though we added just a single image to the World settings !

## 136. Creating a Light Probe

The light probe is, in the simplest terms, a photograph of your environment. they work in very much the same way that reflection maps do, and are made the same way.

## Equipment:

1. A pure silver ball. Try a plastic Christmas tree ball ornament.
2. A camera, prefferably digital. If you have a high-end digital camera, you'll have less work ahead.
3. A place you'd like to capture the lighting from. Try laying different things in your environment to get a good idea.
4. Something to fire the shutter without touching the camera. For digital cameras, Paul Debevec recommends using a program that will take all the pictures for you.
5. A tripod.

Set it up like so. Remember that the height of your camera and the height of the ball relative to each other controls the angle at which the horizon will be shot. In other words, shoot the ball at the same angle that you plan to shoot your 3D scene in. If your scene is animated... consider making a similar rig except attaching your reflective ball to a video camera as was done for Flight of ThE NAVIGATOR ${ }^{1}$.

[^117]

Figure 919

1. Note that the diagram is incorrect. The camera will see items reflected from behind the sphere as well.

The process:

1. Set up your rig and take a series of images with varying exposure times.
2. Taking 2 sets of pictures, each offset by 90 degrees, will enable you to get better coverage of the background and eliminate the reflection of the camera taking the picture.

Good article ${ }^{2}$

## 137. Making Landscapes with heightmaps

This tutorial will show you how to make advanced terrain such as mountains using Blender and gimp or any other image editing software. Blender has the ability to use height maps to create meshes. Height maps are black and white images with white representing the highest point and black the lowest.

### 137.1. Creating the heightmap image

Note: This entire Tutorial presumes that you are already familiar with other Editing Software, such as GIMP... and already know how to create "textures" with that software. However, you do not have to use another program to obtain a texture. At the end of the next section, they show you how to generate a random 'cloud' texture which you can use directly. Do not worry about GIMP or Photoshop. Just skip the rest of this section and most of the next one.

To begin with, open your image editing software. This part applies to Gimp only (downloadable at HTTP://GIMP.ORG), ${ }^{1}$ if you use another program you will have to do it another way.

First use the "New" menu option to create an image 1600 wide by 1200 tall. Go to Filters $\rightarrow$ Render $\rightarrow$ Clouds $\rightarrow$ Plasma (In Photoshop, this is Filter $>$ Render $>$ Clouds). For this example just use the default settings, it doesn't really matter. Click OK. You should now have a nice colorful image. We don't want that, we want it in black and white. Make sure your Gradient is set to "FG to BG(RGB)"(this is the default anyway) and that your foreground color is black and the background color is white. Go to Colors $\rightarrow$ Map $\rightarrow$ Gradient Map. This will convert it to black and white for you.

Save your image as PNG or JPEG.
It should look something like this

[^118]

Figure 920

### 137.2. Create grid and add the image as texture

Open Blender and delete the default cube.
Add a grid (SPACE $\rightarrow$ Add $\rightarrow$ Mesh $\rightarrow$ Grid) with resolutions 32 and 32 from top view. Do not scale the grid just yet, zoom instead if you wish to take a closer look at your grid. It will be explained later why you shouldn't scale now.

Note: When I followed this tutorial it didn't work - the vertices in the grid were moving sideways rather than vertically. It turns out I needed to TAB into object mode after creating the grid, then hit CTRL+AKEY to reset the transformation, then TAB back into edit mode. If someone could explain why that was necessary, or what it does exactly, that would be helpful. Response: You should create the basic shape and outline in object mode, then edit the details in edit mode, kinda like the names imply. Response 2: When you create an object using the Front or Side views while having Aligned to View selected in the Edit Methods in Blender Settings Panel, the Local Z axis of the object will be pointing to the Global Y or X axis, respectively. For the matter of this tutorial, if you do that, you'll be forced to rotate the object $90^{\circ}$ in X or Y, before going on. That's where problems may beggin, if you rotate it in Edit Mode which doesn't change local axis orientations. In that case you'll be forced to reset transformations ( $\mathbf{C t r l}+\mathbf{A}->$ Scale and Rotation to ObData). However, if you rotate it in Object Mode, and if you make sure the Local Z axis points upwards after the rotation, you should be seeing good results later on. (To see the Local orientations of an object, Press 'F7for the Object Panel(the one with three arrows, 4th from the left) and in the Drawpane click the Axisbutton.)

Click F5 to go to the Shading panel. By default the Material buttons button should be selected (button with red ball), but if it isn't then click on it. If this window has a panel named Preview and it is empty then look to the right for the Links and Pipeline panel. Here you should find an Add New button beneath Link to Object, click on it. 3 more panels should appear when you do this. You should find the Texture buttons button, it is just to the right of the Material button and is black \& yellow. You may also just hit F6. Now you should get two new panels titled Preview and Texture, in the Texture panel you'll find an Add new button, click it. Where the button just was it should now be a text field saying something like "TE:Tex.001", click in the text field and write "height" instead. Look a bit to the right and down for a dropdown menu allowing you to choose Texture Type, click it and select Image. Two more panels will appear and the rightmost should be Image with a Load button.

Note: The Texture buttons button is not part of the windows that pop up after you click Add New button, but it directly to the right of the Material button that is a red ball.

Note: If you can't find the Texture Type menu, press F6. Once you press F6, or the Texture buttons button, you'll see another panel, also called Texture. This one, however, shows a Texture Type menu after you select Add new. Having two very similar panels can be a nasty trap.

Before you load the image take a look at the Map Image panel. About in the middle there should be 5 buttons, Extend, Clip, ClipCube, Repeat and Checker. Select Clip or your heightmap may wrap around the grid (if this doesn't make sense then do this tutorial twice, one where you keep Repeat selected and one without. In that case make sure there's some bright white spots in your height map on each edge).

Click the Load button and load the heightmap you just created in your favourite image editing software.

If you're going for the random cloud-type image, though, you can make it from within Blender itself - when you add a texture, in the menu where you select 'image,' before actually selecting it, pick 'clouds' instead, and play with the settings.


Figure 921

Click the Material buttons button again (the red ball button) and look in the Preview panel. If this just shows a black ball then click on the uppermost button just to the right of the black ball.


Figure 922

### 137.3. Use texture as heightmap

(Blender 2.5+ note: Now you do this using a "Displace" modifier that applies the Texture you created.)

Look to the top right of the rightmost panel, the window should have 3 panes titled Texture, Map Input and Map To. Click on the Map To pane. A whole lot of buttons will appear:

- Turn off the Col button. "Col" stands for "color," and we don't want our plane to be colored by this texture.
- All of these buttons should be turned off: we're not going to be using this texture to "Map To" anything. Instead, we'll be using it to deform the actual geometry.
Go to the Edit window ( $\mathbf{F 9}$ ) and enter edit mode ( $\mathbf{T A B}$ ) if you're in Object Mode. Go to either front or side view so you can see what you are doing. Click the Noise button in the Mesh Tools-panel (it's located in the top left corner of this panel) and your grid should start to change shape.

Note: make sure all your vertices are selected with AKEY or whatever you want to use to select. If not selected, Noise won't do anything!

- (While you could, theoretically, use this to your advantage ... intentionally de-selecting vertices that you don't want to influence ... in practice that's quite awkward iffor some reason you have to do it again. It's much easier to leave any such areas, that you don't want to influence, "completely white" in the image.)


Figure 923

Continue clicking the button until the terrain has reached the height you want and voilà, you have just made terrain using heightmaps. You may want to subsurf the shape to get a smoother effect. If you wish to scale your new landscape then now is the time. There seems to be a bug or gotcha causing your heightmap to be tiled on your grid rather than resized if you scale the grid before applying the heightmap. Hopefully someone familiar with blender will clarify how this should be done properly, but until then this method will work.


Figure 924

## Tips:

1.If you want a more jagged landscape then adjust the contrast on the image editing software
2.Once you've finished using the Noise button in the Mesh Tools panel as shown above, the texture is no longer needed: the effect it has made on the geometry of the object is permanent. If texture-resources are tight, you can remove it now. But it's advisable to keep it, unchanged, in case you need to re-do your work at some time in the future. If you want to use other kinds of texture-maps (Color, Normal maps, and so-forth), you can use the landscape-image as a handy reference (say in a background-layer in your painting program) for correct placement of these features, but you should not alter the landscape-image itself).
3.Height maps can also be used to make city terrain. Draw white squares on a black background. If you do this make sure you make the squares perfectly parallel to the sides of the image. This prevents jagged edges to buildings. You can also use gray squares to adjust the buildings to different heights.
4.The "Noise" mesh-editing button displaces vertices in the object's Z-Axis and negative Z-Axis only. To deform your mesh's other dimensions, simply rotate your object and "apply rotation," or rotate the vertices in edit mode, and apply Noise. Then, rotate it back again to get your original orientation.
5.The "Noise" button permanently modifies your mesh according to the material texture. Each click adds onto the current mesh. For a temporary effect, map the texture to Disp(lacement) for a render-time effect (and do not click the "Noise" button at all). In object/edit mode your object will appear normal, but will render deformed.
6.Note: The "Noise" mesh-editing button, as used here, is not the same as the "Noise" texture that is referred to in other tutorials!

## 138. How to Do Procedural Landscape Modeling

### 138.1. Mountains

I was playing around in Blender several months ago and messing with cloud textures when I found a great way to make landscapes entirely within Blender (without height maps from The Gimp or some other application) and decided to make a tutorial (yes, it does use the noise tool).

### 138.1.1. Making the Mesh

To start, open up Blender and with the cube selected, press the XKEY and click Erase Selected Objects.

Add a grid (SPACE--> Add--> Mesh--> Grid), using whatever numbers you like, remembering that bigger numbers means more vertices. For this tutorial, I'll use 60 for x and y resolution. Scale the grid up, but only a little bit (I went up to 1.3) as the texture won't make very tall landscape with a very big grid. Press the F5 key to go to the Materials tab, then add a new material.


Figure 925

### 138.1.2. Displace and Shade

Now press the F6 key to go the Textures panel, and add a cloud texture in the very first slot (slot 0 ).
After Pressing F6, look at the windows on the bottom. To the left is the "preview" window and next to that (to the right) is a Texture window with an Add button... click that and then go to the little pull down menu that shows up just below and to the right. From there, find and select "Clouds"... and now, continue!

You may be wondering how we are going to make landscape with a cloud texture, when you could just use the Gimp height map plugin, Terragen, or the A.N.T. modeling script right in Blender. Well, we are going to make the landscape with a height map. The color determines the height: white $=$ very tall; grey = halfway tall; black = no height. This makes the cloud texture a very good candidate for land.

The next thing we are going to do is adjust the size. You can set the noise size to whatever you want, but I want to have several bigger pieces of landscape, instead of a bunch of little ones so I'm setting noise size to 1.00 and noise depth to 6 , as I want a high level of detail. (The Preview immediately shows you the effect of your "tweaks" as you make them.)

Noob Note: You can hold shift and click the number next to noise size then just type 1 and press enter instead of using the arrows. The same applies for NoiseDepth, almost every other setting in blender changes like this as well.

At the top, we can select Hard noise or Soft noise. Each gives a different landscape, so experiment with them. Next, go to the Colors tab (it's right next to the texture button by default). Adjust the brightness and contrast as required. For "Hard noise," try a brightness of 1.9 and a contrast of 3.45 . For "Soft noise," a brightness around 1.0 to 1.2 should be fine.

Noob Note: The above noob note applies to the brightness setting as well!

- Preview			7 Testure	colors		- clouds				
						Defoult	Color	Soft noise Hard noise		
	World									
	Lamp					- Noise	: 1.000		NoiseDepth: 6	D
	Erush									
			R 1.000	$\underline{\square}$						
	Alpha		G 1.000	$\underline{\square}$						
			B 1.000	$\underline{\square}$		Noise Basis				
	efoult vars		ight1.90	Contr3.45	E	Blender 0			Nabla: 0.025	$\bigcirc$

Figure 926

Jump back to material buttons with F5 and go into the "Map To" panel. Turn off col and press nor once.

Noob Note: I had a difficult time finding the "Map To" so if you are too... This is one of the several small Windows that opens at the bottom of your screen after pressing F5 and for me, it was on the far, far right, off my screen. I had to use my mouse wheel to scroll the Windows to the side to bring it into view and found it as a Tab on a Window with two other tabs. "Col" and "Nor" are buttons in the Map To Tab.

- What the buttons are for: The "Map To" settings determine which various attributes of the material will be affected by our "cloudy texture."
- "Col" refers to "color." We turn it off here, because we don't want our surface to look "cloudy."
- "Nor" refers to "surface normals." This is the angle at which light seems to reflect from the surface. (The so-called "bump map.")
- Experiment with the other "Map To" buttons, as well! For instance, "Disp" (for "displacement) actually causes a map to deform the geometry of a surface... but doing so only during rendering.

In this tutorial, as you will see, we are going to combine several techniques to produce a very rocky surface. Here, we are changing the way that the surface reflects light. Then, we'll actually deform the surface geometry.

Turn the nor value all the way up, to 25 (that will give it a nice rocky look). Go into the Shaders tab and then change the "Diffuse Shader" (the top left selector, defaulting to "Lambert") to "Oren-Nayer," and the "Specular Shader" (the 2nd selector, defaulting to "CookTorr") to "Blinn."

Adjust the Rough value in Oren-Nayer to 1.5 (rock is really rough). Also, set the Spec value to 0.01 and Hard to 25 . Now we are ready to make some mountains!

- Trivia note: In computer graphics, a "shader" is a mathematical function, and they're customarily named after the clever people who invented them. These functions determine exactly how the cloudy-texture will "map to" the attributes (e.g. "Nor"...) that we selected.


Figure 927

### 138.1.3. Making Mountains

Press TAB to go into edit mode and press the AKEY twice, in case you had any specific vertices selected. Go into the front view and press the "Noise" button(located under mesh tools in F9). You should see the vertices jump up a good bit.


Figure 928

If not, you may have scaled your grid up too much, so make it somewhat smaller. Depending on how high you want your mountains, press the Noise button to your required amount, though I pressed it 8 more times. The mesh doesn't look very good right now, as it is not only blocky, but it is missing that last bit of random detail.

- Important note! The mesh-editing button named "Noise" causes a permanent change to the geometry of the object in the " Z "-axis, as provided by the texture. (The vertices actually moved, and their new position is permanent.)
- There is also a procedural texture named "Noise," but that is just pure coincidence. The two are unrelated, both in what they do and in how they work.
- Important note! Those using Blender 2.5 Beta in order to get the height map to affect the geometry you will need to use the displace modifier instead.

If you are not in edit mode, go into it and select all the vertices. Press Fractal (in the same row as Noise under mesh tools) and enter a value of 15 in the random factor. Hopefully, your system can manage all these vertices: if not, then don't do any fractal subdivide. If you want to, you can use a smaller value in the fractal box and do it several more times for more displacement. Be careful, though: too much randomness will cause vertices to separate, causing tears in the mesh that you will have to fix by hand.

Finally, tab out of edit mode and press Set Smooth. Then, if you want to make the mesh even more smoother, add a Subsurf modifier, with what ever level you want. (I'm going with 1 for faster render times.)

If you desire, you can scale up the mesh however big you want though for close-ups, you may want another level of subsurf or another subdivide. Then, apply colors, set up the lights, and render! A word to the wise, however: this process creates a huge file (about 986kb).

### 138.1.4. Discussion

You have just made mountains all in Blender, without having to generate height maps in The Gimp, or any other program. The next step is to go beyond the tutorial. Try using different noise sizes and noise basis, and even try using other textures like musgrave and marble. Or try using two textures and see the conclusion. The possibilities are almost infinite! Have fun.

Observe how the technique illustrated this tutorial is "the same, yet different" from the one demonstrated in the tutorial for "height maps":

- A procedural texture was used to supply changes to the Normal Mapping of the object at render time. (This is the angle at which the object reflects light.) (The "height mapping" tutorial did not do this.)
- Then, the mesh-editing button (also...) named "Noise" was used to deform the actual geometry of the mesh. (This is the same technique used in the "Height Map" tutorial, although a different kind of texture .. an image .. was used.)
- The texture, once used for the height-mapping (deformations) was left in place, still mapped to the surface "Nor"mals. The result will be a very mountainous landscape.

Yep! The techniques shown in all of these terrain-modeling tutorials can be combined! And, they frequently are. Very often the most satisfactory results are obtained by combining several different techniques. You could have used an image-map (from the "Height Mapping" tutorial) to deform
the geometry, then used the "noisy Normal-mapping" idea from the first part of this tutorial, and even used smoothing. All at the same time. The choice is yours.

When using "Map To," remember that a single material can have several different textures applied to it, each one mapped to the same or to different attributes. This mapping can even be animated.

Experiment! The sky's the limit!

## 139. Landscape Modeling I: Basic Terrain

I worked with a group to make a small animation for class and I was responsible for the environment modeling. I really liked the results of the process I used, so I decided to share it with others. By the end of this tutorial you'll have the know-how to create your own flexible, realistic terrain utilizing multiple textures for different ground types. This tutorial assumes that you have the very basic understanding of using Blender (how to add/remove a mesh, how to change views, etc...) I use the following textures in this demo. Feel free to use them if you don't have something on hand to use.


Figure 929

NOTE: This is not the actual texture I used in this demo. I couldn't find the original source for the one I used (though I know it was a public image), so to avoid licensing issues I replaced it with one that I did have licensing info on. Sorry.

### 139.1. Creating the Canvas



Figure 930: The grid that will be used to build our landscape.

The "canvas" that we'll use for our terrain is an evenly spaced grid of vertices. Open a new project, delete the default cube, and add a grid mesh. Use whatever size you want. The more vertices you have, the more detailed and realistic your landscape will appear, but don't get crazy with it since we'll apply subsurfacing at the end to smooth it out. At the same time, you do want enough vertices to prevent sharp edges, and we'll need them in the second tutorial when we cover texture stenciling. So consider how big you want your landscape and try to find a reasonable balance. I like to start with $100 \times 100$. The grid will be pretty small, so scale the entire thing up, let's say by a factor of 20 . This grid will be used to build our landscape by pulling hills and mountains out of it.

Noob Note: If you don't want to have to delete the default cube every time you open a new file, just delete the cube once so you have the blank window (only lamp and camera left). Then select File - Save default settings or hit $C t r l+U$. From now on, each new project you create will start off without the cube.

### 139.2. Molding the Mountains

The key to making good mountains is using the proportional edit mode (OKEY) and constantly adjusting the radius of influence. If you've already gone through the Mountains Out OF Molehills ${ }^{1}$ tutorial then this section will be familiar. One major difference is that in this tutorial I recommend rotating the 3D view around so you have a good view of all three axes instead of working in the front or sides view. Using the proportional editing tool affects multiple vertices, and it helps to see what effect your changes are having as you make them.

- Go ahead and turn on proportional editing, either by pressing OKEY or clicking on the grey ring on the 3D View header. You have to be in Edit Mode to select this option. Once proportional editing is enabled, the ring will appear orange and a new drop-down menu will appear next to it with different falloff styles. Select Smooth if it is not already selected.


Figure 931

[^119]- Select any random vertex and grab it (GKEY). You will see a ring around the vertex you are grabbing. This is the radius of influence, and only vertices inside this ring are affected by the transformation. If you are doing this in the orthographic view from the front, side, or top, then this will be obvious. But if you're at a view where you can see all three axes, then it may be less obvious.


Figure 932: The first mountain created using proportional editing.

- Restrict movement to the z-axis (ZKEY) and translate the vertex upward. Throughout this entire process you ONLY want to translate along the z-axis. If you start moving vertices in the x or y directions, things become distorted and you get some nasty creases. Play around with adjusting the size of the radius of influence (Mouse Wheel) to get steeper or flatter hills.


Figure 933: A nice group of hills

- Keep repeating this process with different size radii and different heights until you have a decent mountain range, but leave an area flat. We'll be using that spot later in the second tutorial. Don't be afraid to occasionally translate some vertices down instead of up to create depressions in the hills. Remember, variety is the spice of life. Very few things in nature are naturally geometric, so
mix up your hills and especially make sure they overlap. How often do you see a nice, smooth hill all by itself in nature?

Note: You'll notice in my screenshot that I have reduced the size of my grid. For simplicity's sake, I didn't feel like filling an entire $100 \times 100$ grid with mountains since this can take some time.

- Well now, that's looking pretty good! Now, there's one problem with our hills so far. They're too smooth! Let's bumpify them a little. Change the falloff type from Smooth to Random.


Figure 934


Figure 935: Rougher hills look more realistic

- Select a single vertex and grab it (GKEY). We're still working on the z-axis only, to restrict your movement with the ZKEY. Now when you move the vertex up and down, all vertices in the radius of influence will also move but with a random falloff instead of smoothly. It only takes a little movement to get the effect we want, so something around 0.5-1.0 is enough. Mix up moving up and down with different vertices, again to add variety to the scene.
- Once you have your landscape the way you like it, add a subsurf modifier under the Editing tab (F9) and select Catmull-Clark. This will smooth out your terrain a little so that it's not too rough. Given the number of vertices you already have, it's not necessary to have a higher render value
than 1 unless you just REALLY want it to be smooth, but I don't recommend it. Land is supposed to be bumpy and rocky, we just don't want sharp edges.

Noob note: If you're making mountains using Random Falloff and the peaks stick up too much: in Edit mode, select the points in the area around the peak using circle select, then press WKEY and click 'Smooth' until you're satisfied (or, in the Editing tab (F9), click the 'Smooth' button).

Useful Tip Proportional editing can be used on multiple vertices simultaneously. This is especially useful if you're trying to create a cliff face or a river bed. Use the box tool (BKEY) to select a group of vertices and then translate them. Keep in mind that the size of the radius of influence determines how many vertices around EACH VERTEX will be influenced. So suppose you have a 5 vertex radius, that means that 5 vertices all the way around your selected region will be influenced.

### 139.3. Texturing the Terrain

Alright! We've got some pretty nice hills now! But there's still a few problems. Hills shouldn't be white, and hills shouldn't be SHINY! Let's dress them up a little, shall we?

- With your landscape selected, go to the Shading Panel (F5) and add a new material.
- Under the Shaders tab, drop the Specular value to 0.
- Go to the Texture tab (F6) and add a new texture.
- In the Texture Type drop down menu, select Image.
- Two new tabs will appear. In the Image tab, click Load and load a texture from file.
- In the Map Image tab, increase the Xrepeat and Yrepeat. Depending on the size of your terrain and the image that you use (please use something that tiles!), these values will vary. I've used 10 for each in this tutorial.


Figure 936
(Noob note: Render the scene (F12) to see the applied texture) (Noob note: A quicker way to do this is by using the render preview tool, 3d view window - render preview, View--> Render Preview or press SHIFT--> PKEY) (Noob note: you may also select shaded in the Viewport Shading menu next to where you select object mode or edit mode to see your texture on your mountains without rendering, however it does slow your computer down some which could make editing frustrating. So only do this if you want to see what your textures look like, then switch back to solid for more editing.)

- Finally, let's do something about the lighting. Go to Object Mode (TAB) if you're not already there and select the lamp. Choose the Shading Panel (F5) and then click the icon that looks like a
light bulb to display the Lamp buttons. Change the lamp to a sun and up the energy to 1.5 . You may also need to increase the distance if your terrain is large, or rotate it around if you don't like where it's pointing. The dashed line coming out of the light is the direction. Play around with different angles and energy values for the sun to get different times of day in your scene.

And there you have it! Your landscape is now textured with some nice grass to make it look a little more realistic. Play around with hill sizes and roughness if you're not satisfied with your landscape, but try not to be too picky. Nature shouldn't look too sculpted. Remember, you won't notice a change in texture unless you render your image.

NOTE If you went with the suggested $100 \times 100$ grid, the rendering process could definitely take some time depending on your system, especially if you have ray tracing and shadows enabled. To boost the rendering speed, go to the Scene panel (F10) and under Rendering, disable the buttons that say Shadow and Ray. Also note that because we've created some hills, your camera may now be under the terrain. Switch to the camera view (NUM0) to see what your camera sees and move it if you need to.


Figure 937

Join us next time as we explore how to make the landscape look even better using texture stenciling! And please, if you have any issues with the tutorial, or feedback (positive or negative), drop it in the discussions. I'll try to keep an eye on it to see what people have to say. - Moohasha

### 139.4. Reader Contributions

I'm mainly doing this so the hills look better and more realistic. Reading this will consume more time than doing it. I'm making everything clear for beginners. It will only take about 8 minutes more for your hills to end up like this:


Figure 938

1. First step to achieve it is to switch from the default lamp to Sun.
a) You do this by clicking on the default and go to the shading tab (F5)
b) Click on Sun.
c) Go to rotate manipulator mode with Ctrl Alt R.
d) Rotate the sun until the dotted line is in your desired position. That is where the main energy will go. It will differ if you want to achieve the different time of day. You can make the distance greater or less with dist.. I kept mine at default 30 .
2. Now let's make more realistic, paler sunlight.
a) In the RGB slider, set R for $1, G$ for 1 , and $B$ for .848 .
b) Set energy for 1.63. This will all differ for different times of day, so set your east and west in your head, and the later into the day, the further the sun to the west and the more orange. For midday, keep the energy on 1.63 and put the sun right above your hills. I set mine for earlier in the morning.
3. Now click on the picture of a globe to change the background.
4. Click on the blend button for a more realistic looking sky. On the left of the World toolbar, that will be the color of lower down in the sky and the right sliders will be the color of the top of the sky. Naturally, the top should be darker blue than the bottom.
a) It will differ for different times of the day. So you might want something different from this. But I set up mine for the morning using the settings below:

- The left HoRGB sliders to $0.50,0.68$, and 1 .
- The right ZeRGB sliders to $0.11,0.25$, and 0.66 .

5. Now for the texture. This won't differ for the times of day, but it will differ for what type of landscape you want.
a) I got the texture from HERE ${ }^{2}$. The best textures to use would be either Desert Canyon, Hill Country, Rough Terrain, Class M Planet, or Red Planet. Use Red Planet for a Rocky, Mars-like look. (Note: these textures are no longer available on this URL as of Nov 2010)
b) I chose Hill Country ${ }^{3}$. Click on it, and I know it looks like snot, click on it again, and save the image.
c) Go back to Blender, go to Texture buttons (F6)
d) Click add new
e) Select image for the texture type
f) Go to the image toolbar, and upload the texture. Blender will only allow you to upload from the Blender documents, unless if you click on the up and down arrows on the top left of the screen and choose the place where you saved the texture (or picture).
g) After uploading, the $X$ and $Y$ repeats should be smallish, like $6 x 6$, so the changes aren't noticeable. It will look ugly in the preview, but it will look nice after its wrapped.
6. Render, and 1 minute later, voila! Those are nice looking hills!
7. Now boast in front of your friends!

Noob Note: You need to have your landscape selected if you are in object mode to change the texture, otherwise it will change the texture of the world.

### 139.5. Reader Contributions 2

You can have an even better result if you use the texture to "bumpmap" the mountains.

1. Press $\mathbf{F} 5$ until you are into Material Buttons
2. Select the Map to tab
3. Click on Nor once (the Col option must stay selected as well)
4. Slide the Nor slider to 5 or more (might differ depending on texture size and repeat options)
5. Render with F12
[^120]
### 139.6. Reader Contributions 3

Alternately from making the hill model manually, you can use a program like L3DT ${ }^{4}$. It uses various algorithms to generate very detailed and realistic terrain heightmaps. It also lets you edit them in a more intuitive way than Blender does. After you have L3DT make your height map, you can export it as a .x file, which you can import into Blender. Noob Note: That can be done by going into File->Import->DirectX(.x). And there you have a very realistic landscape mesh with a lot less work. (Noob Question: I want to use Unity3d game engine to create a game, but i want to use blender to create landscapes. To create massive world landscapes, does anybody have any tips? as Unity limits any mesh to 65000 vertices, which i've already passed with my method without doing half the map.)
-If you are using unity 3 d just use it for the terrain. Download the terrain toolbox and just use .raw images. Or simply generate from there and save. 65,000 verts is plenty btw. If you insist on using blender for the terrain then model a high poly terrain fist consisting of around 1 mil+ verts. bake the normal map and ambient occlusion decimate your terrain to around 10 k or w/e looks good for the game. Then bam you got 10k terrain that looks like 1 mil. But to be honest blender terrain texturing is a pain compared to unity. Anyhow hope that helps.

[^121]
## 140. Landscape Modeling II: Texture Stenciling

This is a continuation of the previous tutorial, Landscape Modeling I: Basic Terrain ${ }^{1}$. In this tutorial, we will make our terrain look even better by using some texture stenciling to add multiple textures where we want them in the landscape. This tutorial assumes that you have a basic understanding of how to use Blender (how to add/remove a mesh, how to change views, etc...)

### 140.1. Creating the Stencil

The landscape from the previous example looks pretty good, but the entire thing has the same texture, so it doesn't look very natural. Let's add some rocks to those hills. If we just add a second texture to our material, it will completely cover the previous one. What we want is to have the first texture only show in certain places and the second texture cover the rest. In order to do this we'll have to create a stencil, which is like a mask that determines where textures appear on the material. The stencil is a black and white image, similar to a heightmap, except the intensity of each pixel determines how much of the next texture will appear (black $=0 \%$, white $=100 \%$ ). I highly recommend viewing THIS ${ }^{2}$ tutorial for a more in depth description of how stencils work. If you think you have the gist, then continue on here. We're going to create our own stencil to determine where we want rock in the landscape by "painting" on the object. *IMPORTANT* The next few steps will be performing temporary modifications to your scene, so be sure to save your file before you continue so that the changes will not be saved!! Also, if you have a subsurf modifier on the landscape, remove that at this time as it drastically slows down the following process.

- Select the landscape object and switch from "edit mode" or "object mode" to "Vertex Paint mode". This is found in the Mode drop down menu, on the 3D View header. This mode lets you paint the object, and thereby change the color value of each vertex. When in Vertex Paint mode, you'll notice your object change color to a pixelated version of the texture that is applied to it. This is because with that texture applied, each vertex will be drawn with the colors you see.

Noob Note: Vertex Paint mode is in the drop down menu that contains Object mode and Edit mode. Just select the object while in Object mode, click the drop down menu, and select Vertex Paint mode from the list.

- Switch to the Editing menu (F9) and you'll see a new tab called Paint. Notice the sliders labeled Opacity and Size. Opacity determines how much to blend the selected color with the existing colors when you paint. So 0.2 means that when you click, you'll get $20 \%$ of the selected color mixed with whatever is currently there. Over on the right are different options to combine to colors. We want to mix, so as we paint the colors will mix together and give us a nice smooth blend. Size is the size of your cursor while painting, and thus how many vertices are affected.

[^122]Keep in mind that does not change as you zoom in and out, so a size of 10 can actually paint more pixels if you're zoomed way out than a size of 30 if you're zoomed way in.

## Paint



## All Faces Vertex Dist Normals Spray

## 

Figure 939

- Change the color to black and click the button that says Set VertCol (in 2.48 version, that button is below the color square and named 'SetVCol'). This will change the color of your entire object to black. You'll notice that the object is not lit in Vertex Paint mode, so when the entire object is black it can be difficult to see where your hills are. You'll have to move the camera around to see the shapes.
[Another newbie recommends: if you switch to the "object" buttons (f7) and turn on "Wire" under "Draw Extra" in the "Draw" panel/tab you should see a wireframe on top of the vertex colors you are painting, which makes it much easier to see where the hills are. Remember to switch this back off when you have finished painting.]
- Now we're going to paint the places where we want rock to show through. Change the paint color to white. It's less likely that grass will grow on steep slopes, so start painting the tops and edges of the steeper hills white by holding down LMB and dragging your mouse (think MSPaint). If you didn't heed my earlier advice and still have a subsurf modifier in effect, the painting will be very choppy, so remove that now.
- As you're painting, try to make some spots pure white by going over them again and again, but don't make any one area of white too large as this will make a huge area be all rock, and we're trying to blend two textures.
- This process can just be trial and error getting the landscape painted the way you want. Once we apply our stencil later you may decide there's too much rock in one area, or not enough in another and go back and change it. A few things to keep in mind:
- $20 \%$ opacity means that most of the original texture (grass, in our case) will show through, so the rock won't be very noticeable if at all. You'll have to go over the same spots a few times to increase the intensity.
- You don't want a dramatic change from grass to rock, so be sure to blend white areas with black. That's why we're using the $20 \%$ opacity instead of just bumping it up to $100 \%$.
- Make your patches random and spotty. This will end up creating a more realistic effect once we combine the textures.


Figure 940: Painting the stencil onto the landscape

- Once you're done you should have something that looks like this. Notice the mixture of white and black in some places, how it doesn't just go from pure white to pure black as you move down the hills. This will make a more natural blend and it will cause random rocky areas mixed in when the grass. Now we need to turn this into our stencil.
- Go to the overhead view (NUM7) and make the projection orthographic if it's not already (NUM5).
- Zoom in/out (Mouse Wheel or NUM+/NUM-) until the plane almost occupies the entire window.
- Move the 3D cursor and any lamps or cameras away so that they're not over the landscape and take a screenshot.


Figure 941: The stencil after its been cut from your screenshot

- Open your favorite image editor (I'm a traditionalist, so I still like MSPaint), and cut out the image of landscape. This is now your stencil. Save it under your favorite format.
- Re-open the saved version of your landscape to undo the changes we made to create the stencil.

So why did we make our stencil this way? This allowed us to actually paint on our terrain so that we ensure we get the rock exactly where we want it. Using this method, you can customize your stencil to any object, as long as it has enough vertices. For example, if we just had a flat plane made of 4 vertices, this technique would not have worked because we could only paint the corners. That's why in the previous tutorial I recommended using a high (but not too high) number of vertices in your grid.

### 140.2. Applying the Stencil

So now we need to apply the stencil to the landscape to mix our grass and rock textures together.

- Return to either Object Mode or Edit Mode (TAB), it doesn't matter which.
- Go to the Texture menu (F6) and add two new textures in the material (you should already have the grass texture).
- Make texture 2 (the first new one you added) an image and load your stencil from file. Do not repeat this in the x or y directions. We want it to map to the entire object.
- Make texture 3 an image and load your rock texture from file. This one you do want to repeat, just as you did the grass.
- Now return to the Materials menu and select your stencil texture. It's a good idea to name your textures, materials, objectives, etc... so that they're easily identifiable.
- With your stencil texture selected, switch to the tab labeled MapTo. Deselect Col (which maps the texture to the color), and select Stencil and No RGB. Stencil will treat this image as a stencil, and No RGB treats it as a black and white image. If you didn't select this second option your stencil wouldn't work.


Figure 942: Mapping the stencil texture

- In the preview tab you should notice your material change so that the grass and rock are now mixed. If you render, you'll see a much more realistic landscape than the one from the previous tutorial!

Noob Info: Be sure that for the rock - texture col is selectet because we want to color the landscape with the rock-texture! Otherwise it doesn't work. Select Rock-Texture -> Map To -> col


Figure 943: Landscape with grass and rock textures mixed

### 140.3. Adding Snow

Since you already have some nice mountains, why not add some snow to them? Adding snow is easy. All you have to do is add a fourth texture AFTER all the others. Make this texture the same as your stencil.

- Make sure you're in Shading (F5) > Texture Buttons (F6) > Textures.
- Click on an empty panel beside Texture Type
- Click on the little box to the left of Add New
- Choose your stencil from the menu (hint: it helps if you name your textures)
- Render and see the results.

If you made your stencil properly, you should have some nice, snowcapped peaks. It's not much, but it's enough for a quick fix. If it isn't even, you probably didn't make your stencil properly (meaning pretty much all white on the peaks, and not much anywhere else). Of course, there are better ways to do this, ways I wouldn't know about; I discovered Blender merely three days before the time of writing. I leave it up to you to see the effect: I only have so much room and bandwidth for pictures!

This effect works by saturating the underlying color with white, depending on the amount of white in your stencil. A light gray will saturate it only a bit, whereas a bright, $100 \%$ white will cover it very clearly and efficiently. If you look closely, you'll see that the light gray on the stencil DOES make a difference, but it's not immediately visible and requires lots of fidgeting with the Render Preview and texture options. You might also try fiddling with the Stencil and NoRGB option, although it worked fine for me with both turned off (I use Blender 2.48a)

Some challenges:

- Try to change the color of the snow. Hint: RGB
- I've yet to do this, but try making snow out of a heightmap.


### 140.4. Multiple Stencils

Remember in the first tutorial when I said to leave part of the landscape flat, because I'd be using it later? Well it's time to use it. I want to eventually use the landscape as the backdrop for a military base, so let's texture the ground around where the base will go to give it a dirt ground and road leading to it. *IMPORTANT* Just as before, the next few steps will be performing temporary modifications to your scene, so be sure to save your file before you continue so that the changes will not be saved!!

- Switch to the Vertex Paint mode in the mode menu on the 3D View header.
- Go to an overhead view (NUM7) and make the projection orthographic (NUM5)
- Once again, paint the entire object black by selecting the color black in the Paint tab and clicking on Set VertCol.
- For the next few steps, you may need to TAB back and forth from Vertex Paint mode to Object mode to make sure you're painting in the correct area. Make the opacity of the painter 1.0 and the size 10 so that we can work very precisely.


Figure 944: The stencil for our future base

- Paint an area over the flat terrain in the shape of a generic military base, like you see here.
- Reduce the opacity back down to 0.2 and increase the size to 20 .
- Paint the road leading away from the base. We've reduced the opacity and increased the size so that the road will blend more with the landscape around it instead of being more defined like our base.
- Once you have your stencil looking the way you want, take a screen shot and save it. Then revert back to your previous environment (before you started painting on it).
- Go to the Texture menu (F6) and add two new textures.
- Load your stencil into the forth texture (the first new one), and the dirt image into the fifth texture. Once again, remember to set the x and y repeat for the dirt texture.
- In the Materials menu (F5) select your new stencil and go to the MapTo tab. Deselect Col again, and select Stencil and No RGB. Notice the new preview.
- Wait a second, where's the dirt path?!? Here's the problem and the reason I've included this section: stencils are cumulative. That is, the first stencil defines which portions of ALL successive textures will be drawn, including other stencils! In order for our new dirt path to show up, we need to make sure it's part of the first stencil.


Figure 945: Both stencils combined into one

- Open your first stencil (the one you used to add rocks to the hills) in your image editor and combine the new stencil with it. The result should appear somewhat like this. Be sure that when you combine your dirt stencil with your rock stencil that the dirt stencil remains the same size and in the same place. That is, you want the two to be perfectly aligned.
- Reload your first stencil on your material, the one we used for the rocks. Now the preview should look the way we want it to, and if you render you will see your new dirt area on the flat part of the landscape. You can add even more stencils the same way. Here is how all of the textures blend together:


Figure 946

NOTE I had to replace the grass texture in the above image since I could not find the licensing information for it. I apologize for the inconsistencies in the diagram that result from this.

Well there you have it! This is a pretty useful method of texturing complex objects. Check out our new landscape and how it compares to the previous, boring, single-textured landscape!


Figure 947

Once again, if you have any issues with the tutorial, or feedback (positive or negative), drop it in the discussions.

## 141. Landscape Modeling III: Exporting as a Heightmap

In this tutorial, I will show you how to export your beautiful terrain to a heightmap that can be used in most 3D graphics engines. The benefit to doing this as opposed to just exporting your mesh is that many engines have a special process for dealing with terrains as opposed to regular meshes where it divides the terrain up into different sections so that it can subdivide regions closer to the camera more for greater detail, and also cull (not render) regions outside the camera's field of view, saving precious processing time. This structure is called an OCT TREE ${ }^{1}$ and is a highly optimized way to render large meshes such as terrains.

Before I begin, I must give credit to the Creating a Heightmap from a Plane ${ }^{2}$ tutorial on the BLENDER WIKI ${ }^{3}$. This is how I learned to do this trick, and most of what I will cover came from this tutorial. I'm simply including it here with the other landscaping tutorials I've written for convenience.

### 141.1. A Word About Heightmaps

I will briefly cover what a heightmap is and how it's useful for those who may not know. If you are familiar with heightmaps, you can skip ahead to the next section.

[^123]

Figure 948: An example of a heightmap

A heightmap is a grayscale image that uses various shades of gray to represent different elevations across a map. Since the images are 8-bit (with the exception of some RAW formats that are 16-bit), you have 256 different shades of gray, ranging from pure black (0) to pure white (255). Black represents the lowest elevation on the map, while white represents the highest. Many 3D graphics engines already have functions to read in a heightmap and generate terrain from it. The way it does this is it creates a grid of vertices (like we are going to do in Blender in just a moment), and uses the heightmap to determine the elevation of each point on the grid. The more intense the pixel color (the closer it is to white), the higher the elevation of that vertex. In most cases, if the resolution of the heightmap is smaller than the resolution of the terrain, the engine will interpolate the vertices in between those set by the heightmap. For example, if your heightmap is 256 x 256 and your terrain is $1024 \times 1024$, your heightmap will determine the elevation of every fourth vertex, and the three in between will be interpolated.

Note that these values do not represent the absolute height of any given pixel, but rather the height relative to the rest of the map. That is, your heightmap does not represent a landscape with altitudes ranging from 0 to 256 . When importing a heightmap, you can specify the minimum and maximum altitudes for the map, and the whole thing gets scaled. For example, suppose you decide the minimum is 1000 feet, and the maximum is 5000 feet. When the terrain is rendered, black pixels will represent 1000 , white pixels will represent 5000 , and a pixel that is exactly in between black and white (128) will represent 3000 feet (half of the sum of min and max). This makes heightmaps relatively flexible.

Unfortunately, as you may have already noticed, there is a limitation of using heightmaps. Since you only have 256 shades of gray, you only have 256 possible elevations. This causes a problem. No matter how precise your vertices may be in the mesh that you model, no matter how smooth you may have it looking, each point will get rounded off to an integer value between 0 and 255 . When used to render a terrain, this can cause a "stair step" effect as the terrain goes from one discrete elevation to the next instead of making a smooth transition. But there are ways to avoid this, which I will cover later.

I apologize if you're scratching your head right now saying "Huh?" For a further explanation and example, check the Wikipedia page on HEIGHTMAPS ${ }^{4}$.

### 141.2. Creating the Material



Figure 949: The terrain that will generate the heightmap

To begin this tutorial, I will assume that you already have a landscape that you want to create a heightmap for. If not, read my first tutorial, Landscape Modeling I: BASIC TERRAIN ${ }^{5}$, to quickly create something. WORD OF CAUTION!!! If you've already created a landscape, try to remember the exact size of the plane that you used. If you're about to make one, it's okay to scale the plane to have a larger surface to work with, but REMEMBER how much you scale it by. This will make things easier later. I recommend just working with the default $2 \times 2$ plane or grid and zooming in on it. You may also want to backup your scene since we'll be changing a few things

To create the material we need, do the following steps:

- Remove any existing materials that may be applied to the terrain.

Note: to remove a material, I think you need to go to the links and pipeline window in the shader section and click the little "X" underneath the words "link to Object"

- Add a new material in the Shading tab (F5).
- Go to the Textures tab (F6) and add a new texture. This should be the only texture on your material.
- From the Texture Type drop down menu, select Blend.
- In the same window, find the Colors tab and select Colorband. This will let us define the blend pattern, which by default fades from black with full transparency to a solid cyan. Why cyan? I have no idea. It's an odd default.

[^124]- Select the black color by clicking on the left side of the colorband. You should see a little black and white bar selected.
- Increase the Alpha all the way up to 1 by adjusting the slider labeled "A".
- Select the cyan color and change this to a solid white.
- What you have now should look like my colorband below.


Figure 950: The blend colorband

- Return to the Materials tab (the red ball icon next to the cheese looking icon).
- In the Material pane, select the Shadeless option to disable lighting on the material.
- To the right, find the pane labeled Map Input. In the bottom of this pane is a grid that by default reads:


## XYZ

## XYZ

XYZ

- Set all three rows to $\mathbf{Z}$ so that the texture will map entirely to the $\mathbf{Z}$ coordinate.
- In the preview window to the left, if you select the sphere or cube you should see that it goes from black on the bottom to white on the top. That's the effect we want for the terrain. Remember, in a heightmap, black represents the lowest point and white the highest.


Figure 951: Map the input to the z-axis and make the material Shadeless

- Finally, switch back to the Editing tab (F9) and click the Set Smooth button to enable Gouraud SHADING ${ }^{6}$ so that everything appears smooth.

[^125]
### 141.3. Setting up the Camera

That's all we need to do for the terrain itself. Now what we're going to do is setup the camera in such a way that when we render the scene we'll get an orthographic projection straight down on the terrain so that we can save it as our heightmap.

- If you still have any lights or cameras in the scene, delete them.
- Switch to the top view (NUM7) and place the 3D cursor at the origin $(0,0,0)$ by left clicking near the origin, hitting SHIFT+SKEY and selecting Cursor to Grid.
- Add a new camera, Space->Add->Camera. This will add a new camera to the scene that is looking straight down.


Figure 952: The camera needs to be above the terrain

- Switch to a side view (NUM1 or NUM3) and move the camera up the Z axis so that it is above the highest point in your terrain. Even though the view is going to be orthographic, and therefore distance doesn't matter, the entire terrain still needs to be in front of the camera.
- Now, with the camera selected, go to the Editing tab (F9) and select the "Orthographic" button. This will change the camera to an orthographic projection which basically ignores the z-coordinate for all vertices (except for determining which pixels should be in front of others).
- Just above the orthographic button is a value labeled "Scale". Remember earlier when I told you to remember how big your terrain is? This is why.
- Change the Scale of the lens (default: 6) to match the size of your terrain. If you left the plane the default size, this should be 2 . If you scaled the plane up by a factor of 20 , as suggested in the "Landscape Modeling I: Basic Terrain" tutorial, this should be 40 (the plane is initially 2 units square).
- Now go to the scene tab (F10) and under Format, change the SizeX and SizeY to be the size you want your heightmap to be. For most graphics engines, this is required to be either a power of 2 $\left(2^{\wedge} n\right)$ or one more than a power of $2\left(2^{\wedge} n+1\right)$. So try something like 256 (or 257 if you need it to be $2^{\wedge} n+1$ ).


Figure 953: What the terrain will look like from the camera view

- Now, if you switch to the camera view (NUM0) you should see a "flat" square that completely fills the dotted box which represents the camera's field of view.


Figure 954: The rendered image will be your heightmap.

- Render the scene (F12). You should be looking at your heightmap. Hit F3 to save the rendered image and you're good to go!

Since this image has no color, and some engines require that your heighmap be a grayscale image (only one color channel instead of three), select the BW button in the Format pane before rendering. This will render it as a grayscale image instead of a color image.

## 7 Format

## Game framing settings

SizeX: 256	SizeY: 256
AspX:100	AspY:100



Figure 955: Select BW to save as a grayscale image.

### 141.4. Avoid Stair-Stepping

As mentioned earlier, exporting the heightmap as an 8 -bit image (Blender doesn't support any 16 -bit formats that I'm aware of) has the drawback that you only have 256 discrete height values which can cause a stair-step effect when the terrain is subdivided. Ideally, you could use an application that can export the image in a 16 -bit raw format, such as Terragen. But this is a Blender tutorial, so we'll not go into that. $=P$

### 141.4.1. Reducing the resolution

One way you can "smooth" out the rendered terrain is to actually reduce the resolution of the heightmap. This may sound counter intuitive, but bear with me. Suppose you have a heightmap that is a simple blend from black to white going from left to right. If your heightmap is $1024 \times 1024$, you will get 4 columns of each height since you only have 256 different values. In other words, your grayscale will look something like this:
00001111222233334444...
00001111222233334444...
00001111222233334444...
00001111222233334444...
00001111222233334444...
00001111222233334444...

If you try to render terrain from this, you'll get 4 points with 0 altitude, 4 with 1,4 with 2 , and so on, creating the stair-step effect.

Now suppose you make the same heightmap, but reduce its size to $256 \times 256$. Now you'll have 1 column for each height, and your grayscale will look something like this:
012345678...
012345678...
012345678...
012345678...

You may be thinking, "But then my terrain will be smaller, or less detailed." But it turns out the opposite is actually true. Consider applying the above heightmap to a terrain that is $1024 \times 1024$. The values from your heightmap will be applied to every 4th vertex, and the ones in between will be interpolated. So instead of having something like:

### 0.00 .00 .00 .01 .01 .01 .01 .02 .0

which is what you would get with the $1024 \times 1024$ heightmap, you'll actually get something like this:
$0.00 .250 .50 .751 .01 .251 .51 .75 \mathbf{2} \mathbf{0}$
Where the integers are the values from your heightmap and the fractions are interpolated values. This is assuming that whatever engine you are using will interpolate the values between heights read in from the heightmap.

At the present time, this is the only method I have verified that helps reduce the effects of stair-stepping. As I try different techniques I will update this page with them. For example, I know that Adobe Photoshop can export images in 16-bit raw formats, but I haven't tried it yet so I don't want to suggest it as a solution.

As always, I do these tutorials for you, the reader. So if you have any issues with the tutorial, or feedback (positive or negative), drop it in the discussions. I'll try to keep an eye on it to see what people have to say and update accordingly. Moohasha ${ }^{7}$ (TALK ${ }^{8}$ ) 19:02, 17 December 2007 (UTC)

[^126]
## 142. Realistic Water using Fluid Sim and Yafray

(This was written using Blender v2.43)

### 142.1. Using the Fluid Simulator and Yafray to create realistic looking water

This tutorial will (hopefully) successfully walk you through creating semi-realistic looking water using the Fluid Simulator in Blender, then rendering in Yafray.

### 142.2. Getting Started

When you first open blender there will be nothing but a blank cube.

1. Make sure you are in object mode, and scale the cube up to about 5 . Do this by pressing $S$ in the 3d view and holding ctrl, move your mouse until the numbers in the bottom left of the screen are 5 . Or select the object and press $S$ then 5 .


Figure 956: Where the 5's should appear

1. Next, in the viewport shading box select wireframe. This lets you see through the cube.


Figure 957: Where the wireframe box is (ignore red and blue thing)

1. We are now going to enable the cube for Fluid Simulation. With the cube still selected in object mode, press F7 (object button) and then press the "Physics Button".


Figure 958: Where the fluid sim tab is

1. You should see a tab labeled "Fluid Simulation" press Enable and then Domain. After pressing Domain several buttons will pop up, these will be used later.

## Fluid Simulation

Enable


## Stal Ad Bn

BAKE

Req. BAKE Memory:
12.41 MB

| Resolution: 50 Preview-Res.: 25 |
| :--- | :--- |


| Start time: 0.00 End time: 0.30 |
| :--- | :--- |

$$
\text { Disp--Qual.: Preview } \quad=\text { Final } \quad=
$$

Figure 959: The fluid sim tab

1. Make sure you are in top view now, if not just press NUMPAD7. Next press space $>$ Add $>$ Mesh $>$ Cylinder. 32 vertices is ok.
2. Now middle click and drag in the 3d view to see the cylinder inside your beautiful box. (yay!) What's going to happen is the cylinder is going to be turned into liquid, and the big box is where the liquid can flow about. (it is the "invisible wall")
3. Move the cylinder to a corner of the cube, you can give it some height if you like. Now with the cylinder still selected press Shift-D to duplicate it. Move the new cylinder to the opposite corner.


Figure 960: What you should have now

1. On both of the cylinders go the fluid sim. tab and press Enable then Fluid. This tells blender that these cylinders are fluid.
2. IMPORTANT!!! After this, you MUST subsurf both of the cylinders, but don't apply it. Instead, when the cylinder shows a preview of the subsurf, click the " X " in the top-right of the subsurf preferences.
(noobie note: I don't know what the above step is for, adding the subsurf then click "X" removed it.)
3. Switch to Object Mode then Right click on the big box (the domain) and press the big BAKE button. A little box will pop up and just click on the top option.
4. Now you should see a blob looking thing appear in the cylinders, and it will fall to the ground and splash around. Your computer is "baking" the liquid. (Calculating where it should go)


Figure 961: What you should have now

1. As you see now, the liquid isn't very realistic looking. If you do a render, you will see. You would also see that the cylinders are appearing in the image. This is not wanted, so with both of the cylinders selected, press $M$ then click on one of the little boxes that isn't already pressed. This moves them to another layer.
2. Now we are going to move the camera to a different position for a better view. Move the viewport around until it's where you think will give you the best view and press SHIFT-NUM0 to make the camera match your current view.
3. Drag the newly placed camera back a bit, so the when NUMPAD0 is pressed most of the scene is in view. You should now have something that looks similar to this:


Figure 962: What you should have now

1. Now we are going to rebake the water at a higher resolution for a more detailed result. Select the goo looking mesh, (both blobs should turn purple if either is clicked) and go the fluid simulation tab again. Turn the resolution up to about 100 (or whatever you want) this rebakes the fluid for more detail. If you turn preview mesh up too, you will see it more detailed before rendering. Baking now may take a while.
2. After its done baking, you are ready to change the material of the water to something better looking.
3. First change the renderer to YafRay. Press F10 then under the big Render button select YafRay. Make sure Yafray is installed first, the option still appears if you don't.
4. Change the background white by pressing F5 then click on the box that has world buttons appear when the cursor is hovered over it.
5. You will see HoR, HoG, and HoB. Turn these all the way over to one. The preview should turn white.
6. Now go to the material buttons (red sphere) and make everything look like the following: (I think I circled all the changed options, but maybe not.)


Figure 963: What your material should look like

1. After this is completed look through the frames by pressing right arrow, find one that looks cool then press render and you may get something like this:


Figure 964: Does it look like yours?

Hopefully you got something like that:)
(that's all folks...)
If the render does not look smooth, apply a subsurf.

### 142.3. Extra Practice

This YouTube tutorial on fluids might also help: Link $^{1}$ and this Realistic Water Texture ${ }^{2}$
Video tutorial showing fluid simulator objects in Blender 2.49b:
http://www.youtube.com/watch?v=wX5w1Kmsv_A
User Question: When I click Bake there is no box that shows up, I cannot get it to bake my fluids at all, all it does is add a bunch of files to my hard drive and take a long time, What should I do?

[^127]Answer: Be sure to set the directory that you would like the files to be saved to, the option to do so is in the area where you changed the box to a domain very bottom there is a folder. Chose a directory and all will be good.

User question: When i click the bake button it says there can't be more than one domain object. I did everything you said to do but i don't understand why it says that.

Answer: The only solution I have found around that is to go to the top header and where it says "SR:2-Model" change that to actor and select the different objects until you find something that doesn't highlight. Delete those. I found that occasionally a domain "disappears" and when you make a new one causes this problem. I have also found it better to set up the domain last around your scene to prevent this annoyance as well.

Note: The domain object does NOT disappear - the Domain object IS the object on your screen which represents the fluid itself.

## 143. Bump Mapping

## This tutorial was created using Blender v2.49

Bump Maps are textures that store the relative height of pixels from the viewpoint of the camera. The pixels seem to be moved in the direction of the facenormals, either in direction to or away from the camera. You may either use greyscale pictures or the intensity values of a RGB-Texture (including images).


Figure 965: Image 1a:
A texture grid for bump mapping.


Figure 966: Image 1b: Material settings for the texture.


Figure 967: Image 1c: The texture grid applied to a sphere and to a plane.

Bump Maps are easy to apply. They work well on flat surfaces, only to some extent on curved surfaces. On curved surfaces it is more easily noticeable that you don't create real 3D structures. The visible effect depends on factors like lighting, specularity of your material, camera angle, distance and so forth.

- Add a new texture to your object.
- Activate the Nor button in the Map To panel.
- Set the depth of the bumping with the Nor slider.
- Use the texture type Image and load your bump map.

Bump maps should contain hard transitions between black and white. A gray wedge (e.g. a linear blend texture) would be hardly visible in the rendering.

### 143.1. Creating Bump Maps

You can easily create Bump Maps with Blender yourself, this is especially useful if you have modeled some small details on a surface and you realize at the end that your scene will get too complex. You could also use the Bump Maps in a 2D application like Gimp or other, similar programs.

I will create an animated bump map in highest possible quality, it is not always necessary to make such an effort. The goal is to create a wave effect and make an image sequence of it, to be used as a bump map. The original object has 600.000 vertices, the object the map is applied to has 8 vertices.

### 143.1.1. Setting up the scene



Figure 968: Image 2a: Setting up camera and object in the 3D view.

- Open the default scene and remove the cube.
- Insert a plane and change to edit mode.
- Crease it edges with +1 (Shift-E).
- Subdivide multi with 11 cuts.
- Change to object mode.
- Add a SubSurf modifier with a render level of 6 .
- Add a Wave modifier.
- Time Sta: -10
- Height: 0.2
- Width: 1.5
- Narrow: 1.5
- Set the camera dead upon the plane.
- X/Y/Z: 0/0/5. You can use the Transform Properties Panel to bring the camera to a certain position, the Z-Position is important is this case.
- Set the camera lens to 80.00 (Editing Buttons->Camera Panel).

The plane should now fit exactly into the camera view.

- Save your file.

We're going to use the Z-Buffer information to create the bump texture. The Z-Buffer contains the distance from the camera, this is exactly what a bump map is. To render the Z-Buffer information as an image, we're going to use Composite nodes. To get the highest possible quality, we will use Open EXR as file format, this allows us to store the Z-Buffer information with a numerical accuracy of 32-Bit floating point, instead of a meager 8-Bit value.

### 143.1.2. Render settings

- Change to the Anim tab buttons (f10).
- Set End to 40.
- Activate Do Composite.
- Select Open EXR in the Format panel, set SizeX/Y to both 600 (square image for the square plane).
- Set the Output directory to //BumpAnim/. This creates a subdirectory to the file where the image sequence will be stored. Don't omit the slashes.


### 143.1.3. Node editor



Figure 969: Image 2b: Composite Nodes setup to render the Z-value.

Now the setup for the composite nodes.

- Open a Node Editor window.
- Select Composite Nodes.
- Activate Use Nodes.

A Render Layer and a Composite node will be inserted automatically.

- Add->Vector->Map Value.
- Connect the Z-Output of the Render Layer to the Value input, and the Value output to the Image input of the Composite node.

If you render now the image is plain white, we have to talk a bit about the Map Value node. The Offs value is the distance from the camera where the Z-Buffer should start (in negative BU). It is not to important to get the best range, because we use OpenEXR, but if you would like to use PNG instead, you have to select this value carefully.

- Set Offs to -4.8. This is the smallest distance from the camera needed. You can measure this value if you use the Camera Clipping, or if you render and move your mouse with pressed LMB above the render window.
- Set Size to 4. The size value is a bit complicated. This is not directly the value range, instead range $=\frac{1}{\text { size }}$, and size $=\frac{1}{\text { range }}$.
- If you want to include the Z-Values from -4.8 up to -5.05 the range is 0.25 , so Size is 4 .
- If you want to include the Z-Values from -4.5 to -3.5 the range would be -1 , so Size would be also - 1 .
- If you want to include the Z -Values from -4.5 to -5.5 , the range would be 1 , so Size would be 1 .
- Render the animation.


### 143.2. Applying the animated bump map



Figure 970: Image 3a: The Bump Map applied VideO $^{a}$.
a HTTP://WWW.VIMEO.COM/4959751

- Open a new file.
- Select the default cube and change to the Texture buttons.
- Use the texture type Image.
- Load the first OpenEXR-Image from the directory where you have stored the sequence.
- Activate Sequence in the Image panel, set Frames to 40.
- Change to the Material buttons.
- Activate Nor for the texture and set the Nor slider to 25 in the Map To panel.
- Set the mapping to Cube in the Map Input panel.

This is it. Pretty much the same look as with the real deformation, but using much less resources.

## 144. Normal Mapping

Noob Warning: This technique is best used for models and animation, and is not well used and applied in
the Blender Game Engine the Blender Game Engine

Normal Mapping in 3D graphics development is the process of using an $\mathrm{RGB}^{1}$ color-map to create a three-dimensional relief on a two-dimensional plane. The source for the normal map in blender can either be a texture already installed in Blender, or using an external picture-file (.jpg, .jpeg, .bmp, and so on) and loading it as a normal map. One great aspect of Blender and normal maps is that Blender can very easily be used to create normal maps that can be turn around and used in blender to reduce poly count. This tutorial will show the various ways to create a normal map and how to apply different normal maps to your model in Blender.


Figure 971

[^128]

Figure 972


Figure 973

Sections within Chapter:

1. Texture Normal Mapping ${ }^{2}$
2. Color Map Normal Mapping ${ }^{3}$

2 Chapter 145 on page 1157
3 Chapter 146 on page 1161

## 145. Texture Normal Mapping

### 145.1. The Texture-Normal

To familiarize yourself with normal maps and how they work, we will begin by using the texture engine in Blender to create our first normal map. This process is very useful for creating quick and non-specific normal maps for your projects that need a bit of texture.

To begin, open blender and whatever your basic load settings are, in the 3D view, delete everything so the field is clear. (AKEY to select all, then XKEY to delete)

Move the 3D cursor to the center of the $\mathrm{X}, \mathrm{Y}$, and Z axis, and switch to top view (NUM7) orthographic view (NUM5). Hit Shift-SKEY-4KEY then CKEY to center your view now.


Figure 974

Add a mesh plane to the field, and scale that plane to five times normal size. (Shift-AKEY, select Add->Mesh->Plane, TAB out of edit mode, SKEY then 5KEY to scale five times size.) This plane is going to be our base-it will remain untextured so it can be used as a comparison. Don't give it a material.

Now, with the 3D cursor still on the center, add a mesh cube to the field. Scale this cube 3 times in the X and Y directions, and 0.5 times in the Z direction. (Shift-AKEY, select Add->Mesh->Cube, TAB out of edit mode, SKEY, Shift-XKEY, then 3KEY to scale 3 times in $X$ and $Y$ directions, SKEY, ZKEY, then .KEY-5KEY for Z.) This cube will serve as our texture comparison.


Figure 975

For this tutorial, lets use the "Musgrave" texture to make a 3D relief.
Select the cube, and then in the Buttons Window select the material index. Give the Cube a material, and make this material any light color you wish to differentiate it from the base plane (darker colors won't show the relief that well). Now select the texture icon in the material window. Add a new texture, and make that texture Musgrave.

Make the settings for Musgrave the following:
-Type: Multifractal
-H: 0.5
-Lacu: 3
-Octs: 2
-iScale: 0.45

- NoiseSize: 0.075
-NoiseBasis: Voronoi F2
-Nabla: 0.025


Figure 976

Excellent, now we are ready to show what we have done! If you return to the material window in the material index, then you will probably be wondering what's wrong-your preview window just shows a sphere with a huge purple splotch! Don't worry, we just haven't applied the texture as a normal map yet, it's still just a color map. Click the "Map To" tab in the material window and you will see a whole row of buttons, menus, and sliders. Currently on the top row of buttons the "Col" button is depressed, which is how the texture knows to apply as a color map. Click the "Col" button to remove the color from your preview window. Now click and depress the "Nor" button and look what happens! An intricate texture embeds itself on the sphere in the preview window. The Musgrave texture has caused a depression texture within the preview. If you happen to click the "Nor" button again, you will see the letters turn yellow and now that means the Musgrave texture is causing an elevation texture. Click it once more and the texture is turned off. Keep the "Nor" button depressed for this tutorial.


Figure 977

Now that you know how that works, let's see what it did to your cube. First, go to front view (numpad-1) and zoom out a bit so about $10 \%$ of the screen is filled with your cube. Select the cube and hit Shift-S-key-4-key then C-key to center your view. In the upper-left corner, add a sun-lamp (Shift-A-key, Add->Lamp->Lamp). Adjust the "Dist" Slider to a very far length, to make sure it reaches the cube. In the upper-right corner (make it a little closer to the cube) add a Camera (Shift-A-key, Add->Camera).

Move the Camera to get a better perspective of your work, by rotating it to look at the cube and the plane. If you want exact directions: Switch to top view (numpad-7). Move -4 Units in Y direction. Rotate -75 degrees on Z rotation. Rotate -45 degrees on Y rotation. Now hit numpad-0 to see how well pointed it is to the cube. Make adjustments to your own work if you'd like.

Now you are ready to Render and see how it turned out!


Figure 978

After your first render, I'll let you know that you can adjust the depth of the shading. Select the cube, and in the material index in the "Map To" tab, in the mid-right area, there is a slider called "Nor" that should be set at 0.5 . Just to test, set it to 0 and render to see what happens. Then set it to 2 and render to see the results.

After you see it rendered, you probably realized that the edges of the cube were very sharp and didn't have the rocky texture. This is because the 3D relief on the cube is fake--it's not actual 3D, it's the computer just calculating where light should bounce off and in what direction. Imagine how many faces it would have taken to create this texture shading without Normal Mapping.

If you want, you can move the lamp around and see how the light moves around the fake-bumps.


Figure 979

This is best if you just need a non-specific texture, such as asphalt, cement, carpet, or even fabric. Now if you want to do something like make a low-poly brick wall, you will need to a specifically-tailored normal map for such thing. The next section will show you how you can make your own normal map and apply it as well.

## 146. Color Map Normal Mapping

### 146.1. The Color-Map-Normal

For more advanced Blender users, you probably have at one time or another wanted to create something very detailed and realistic, only to realize that one modeled head or one cool building has taken an enormous amount of memory, and rendering (or worse, animating!) something like that would probably take days! Well there is an awesome trick you can use to create intricate details and design shading, with a relatively low amount of faces. You can use blender to create and apply normal maps, which are RGB colored maps that can be used as a texture to calculate how light will bounce of an objects surface. All you need is blender and photo-editing software to tweak the picture a bit.

### 146.2. Creating a Normal Map

You can very easily create a normal map once you figure out all the necessary settings. You can start by either making a high-poly count version of your object, or making the material that will be applied to the object to make the normal map.

### 146.2.1. High-Poly Version

We will first start by making a simple object with a high-poly count. Start up blender, and let's delete everything there first, then go to top-view, orthographic, and start by adding a camera.


Figure 980

Next, start with a circle, with a radius of 2 and 32 vertices in circumference. Keep it filled. Select the edges of the circle, keeping the inner vertex unselected, and extrude edges only. Scale the new
vertices by 1.1. Repeat this with only the outermost vertices 6 more times, until you have a ring of 7 vertices and a center vertex. Now, we will refer to the center vertex as center, the innermost ring as Ring 1, and the outermost ring as Ring 7. Deselect all vertices, then select all vertices of ring 2, 4, and 6 (This can easily be done by holding the Alt and Shift keys, then selecting an edge adjoining two vertices of the same ring for each ring). With these rings selected, move it 0.4 in the $Z$ direction. Now, let's smooth this bowl out. In the editing index, under the modifiers tab, add a subsurf modifier of 2, and then apply the modifier. Then under the links and materials tab, select Set Smooth. Next after the object looks all nice and smooth, select your Camera and move it positive in the Z direction so it's positioned directly above the object looking straight down at it, and edit the camera Lens properties so that it is set to Orthographic, and scale the lens so that it includes all the bowl and fills up the camera space as much as possible.


Figure 981

### 146.2.2. Creating the Color-Map Material

Now, to be able for the Render to apply the colors on the right areas of the object. For this, we will start by applying a material the bowl. Make this material 0.0 on the $\mathrm{R}, \mathrm{G}$, and B spectra, and depress the shadeless button. Now, go to the textures index and add 3 textures to the material, and set them as "Blend" textures with "Lin" depressed (a linear calculation). For these 3 textures, name them something to do with either "Red"/"Green"/"Blue" or "X"/"Y"/"Z" in that order, because doing this will ensure you keep the channels in order. The following image will show all settings that need to be set to make the material work.


Figure 982

Now before your Rendering you want to make the World texture to be completely black, so this way it won't interfere when you apply it as a normal map. Now Render your image, and hit F3 to save. It should come out to something like this.


Figure 983

As a final note in this subsection, what I suggest doing is deleting the bowl and saving the file as something like "BlenderForNormals.blend" so if you ever want to make another normal, the area and materials are already set up and all you need to do is import or create the object. Just a suggestion.

### 146.2.3. Applying as a Normal Map

Well we got the image, now let's apply it and make it come out as a low poly-count texture. So, let's continue by deleting the high poly bowl and instead add a plane in the middle of the camera. Now, apply a material to the object and make the material hard, soft, rocky, wet, or however you want it to look. After you've made the plane how you want, add a texture to the material, and make it an image texture. Load the image as the texture, depress the normal map button, and set the normal spacing to object. Now, on the materials index under the Map To tab, make sure the Col button is relieved and instead depress the Nor button. Just add a lamp above the plane, and Render! You should now have the same shading effect as the original bowl, with about $0.01 \%$ of the original faces--one.

If your Render comes out odd, it may be because the shading is being applied too heavily. You can alter this by adjusting the Nor slider directly below the "Mix" drop-down menu. O used about 0.2 and it came out just fine, like this picture.


Figure 984

Congratulations, that's all there is to normal mapping. It's a simple technique with many great uses!

## 147. Nodes

Blender's Node Editor lets you assemble various processing blocks (nodes) into combinations which feed data to one another along connections that you specify to produce complex effects. These effects can be used in three different ways: as textures, as materials, or for compositing. The Node Editor makes different kinds of processing blocks available, depending on which of the three kinds of effects you are producing.

## 148. Texture Nodes

Texture nodes allow you to produce textures that are the result of complex computations. This tutorial will just scratch the surface of what's possible.

### 148.1. A Simple "Rainbow" Texture

Start with a new Blender document. Delete the default cube. Add a new plane object. In the Material buttons, click Add New to assign a new material to the plane (the default name of this should be "MA: Material"). In the Texture mini-window, click Add New to assign a new texture to the material (the default name of this should be "TE: Tex"). Now split the area showing the 3D view into two side-by-side areas. In the right-hand area, bring up the Node Editor. In its area header, the group of 3 little icons next to the menu names has tooltips "Material Nodes", "Composite Nodes" and "Texture Nodes" respectively; click on the third one for Texture Nodes. You will see appear, further along the area header, a popup menu containing the names of the textures so far created in your document: this should be showing the name "TE: Tex" of the texture you assigned to the material for your plane object. And to the right of that, there should be a button titled "Use Nodes". Click that, and you should see a pair of initial nodes immediately appear in the editor: an input node titled "Checker" (the name may be truncated to "Che" in the initial sizing of the node window) and an output node titled "Output", with an editable field in it containing "Name: Default".

There must be at least one output node in the texture definition; the data fed to this will make up the final texture. The names you assign in the Name field will appear in the Texture mini-window, in a popup menu titled "Use Output", with one item for each output node. Initially this will contain just one entry, the one named "Default" by default. We'll leave it that way.

Each node window has little coloured circles (terminals) on its left and right edges; the ones on the left edge (if any) are inputs for feeding data from other nodes, and the ones on the right edge (if any) are for supplying data to other nodes. Thus, output nodes have no outputs (they're the final destination for the data), while input nodes have no inputs. Other node types represent intermediate stages in the processing, so they will have both inputs and outputs.

Back in the Node Editor, click on the titlebar of the "Checker" node window and use either XKEY or DEL to delete it. Note that, unlike deleting objects in the 3D view, there is no confirmation popup: the node immediately disappears. (Of course, you can use CTRL-ZKEY to undo operations in the usual way.)

Now go to the "Add" menu, find the "Input" submenu, and select the "Coordinates" item. This will add a new input node, which just produces the unadorned texture coordinates as its data. You will see it has one output terminal, titled "Coordinates". Left-click on this, and drag to the input terminal in the Output window with the word "Color" and a small rectangular colour swatch next
to it. Voilà! A line (effectively a wire) should appear connecting the two terminals, and you should see the big square colour swatch in the Output window change from black to a whole rainbow of colours. That's your texture!


Figure 985

If you make a wrong connection, you can cut it by dragging across the wire with $\mathbf{L M B}$; when you let go the button, the wire will disappear.

At this point, you should be able to hit $\mathbf{F 1 2}$ to render, and you will see your plane object with the rainbow texture applied. You can see why I chose a Plane object: being flat, the entire texture is visible from one camera angle.


Figure 986

Alternatively, in the 3D editor, you can change the Draw Type to Shaded, and you should be able to see the texture immediately applied there. However, there seems to be a bug in version 2.49 b of Blender where changes to the texture definition are not automatically visible in the 3D view, until you make some slight change to the view, like for example rotating it slightly. (After applying the random view rotation, you can hit NUM7 to restore the default top-aligned view.)

### 148.2. Scalars Versus Vectors

The wires carry numbers between nodes. These numbers can be of two kinds: a scalar is a single real quantity, like " 0.5 ", while a vector can consist of two, three or four scalars in a sequence, like " $(0.5,0.75,0.2,1.0)$ ". The number of components in a vector is also known as the dimension of the vector. Two-dimensional vectors can be used to represent texture coordinates, while three-dimensional vectors can represent positions in space. Colours can be represented with 3 dimensions ( $\mathrm{R}, \mathrm{G}, \mathrm{B}$ or $\mathrm{H}, \mathrm{S}, \mathrm{V}$ ) or 4 dimensions (RGB or HSV plus alpha channel).

Some nodes operate on scalars, while others operate on vectors. And there are nodes where some terminals input or output scalars, while others input or output vectors.

Try this. To the above Coordinates and Output nodes, add a "Decompose RGBA" node (under the "Color" submenu of the "Add" menu). Feed the output from the Coordinates node to the "Color" input node of the Decompose node. Now connect just the "Red" output terminal from the Decompose node to the output node:


Figure 987

See how the Output swatch shows just a greyscale ramp running from black on the left to white on the right? This shows how the first dimension of a vector is interpreted as the red component in an RGB colour, but as the X coordinate in a position. Remove the output from the Red terminal, and take it from the Green terminal instead; now you will see the ramp going from black at the bottom to white at the top. The second dimension of a vector is the green component in an RGB colour, and the $Y$ coordinate in a position.

As far as Blender's Node Editor is concerned, colours and positions are not different types. Both are vectors, and one can be interpreted as the other. This can be (ab)used for some creative effects! For example, the name of the "Decompose RGBA" node says it's for decomposing an RGBA colour into its components, but here we are using it to take apart a coordinate vector instead.

Note also in the above, that the Color terminal on the Output node expects a vector RGB colour, but when you feed it a single colour component (i.e. a scalar), it simply replicates it the necessary number of times to make a vector of the required dimension. Since all components of the RGB colour are the same, you get a shade of grey.

## 149. Material Nodes

Material nodes look very similar to texture nodes, and indeed there is a fair amount of overlap in functionality. Some important differences are:

- Functions for performing spatial transformations (e.g. rotation and scaling) are only available for texture nodes.
- Functions for altering diffuse versus specular colours and rendering parameters, like translucency, are only available for material nodes.


### 149.1. A Simple Graduated Material

First of all, let's set up a really basic modelling scene to show off the node-based material you'll be creating in a moment.

Open a new Blender document, with the default cube, default light and default camera. Create a plane object. Rotate and position that so it lies behind the cube from the camera's viewpoint. Scale the plane up to say, 4 x , to form a decent-sized backdrop. Assign it a new default material, and a texture with some detail to it; I used a simple Marble with default settings, except under the "Map To" miniwindow I changed the colour to a medium grey from the default magenta, to stop it hurting my eyes.
Now select the cube. Scale it 3 x in the Z -axis; the elongated proportions should show off a gradation more nicely. In the "Material" miniwindow, set the "Col" (diffuse) colour to white, and the alpha to zero. In the "Mirror Trans" miniwindow, turn on "Ray Transp" and set the "IOR" to some suitable refractive index, say 1.5 for glass.
Hit F12 to do an initial render, just to confirm you've got everything nicely arranged.


Figure 988

With the cube still selected, open the Node Editor. By default, the Material Nodes mode should already be selected, and the combo box should be showing the name of the material you assigned to the cube; select it if it's not. Click the "Use Nodes" button, and immediately two node windows should appear, a Material one and Output one.

Click on the title of the Material node window, and use XKEY or DEL to get rid of it. Go to the "Add" menu, "Input" submenu, and add a new "Geometry" node. Also add a new "Extended Material" node. And from the "Convertor" submenu, a new "Separate RGB" node. In the middle of the Extended Material node window, there is a popup menu showing you the names of the materials in your document; select name of the material you previously assigned to the cube again.

Make sure there are no wires running between any of the nodes; now run one from the "Color" output terminal on the Material node to the "Color" input on the Output node, and one from the "Alpha" output on the former to the "Alpha" input on the latter.

Notice that, next to each of the input terminals in the Material window, there is either a field for entering a scalar value (grey terminals), or a button which pops up a little set of controls for letting you specify $\mathrm{X}, \mathrm{Y}$ and Z components for a vector (blue terminals), or a colour swatch which pops up to let you pick a new colour (yellow terminals). This way, you don't have to make connections to all the inputs, or indeed any of them; any unconnected inputs will be set to the constant value that you specify.

Anyway. connect a wire from the "Global" output of the Geometry node to the "Image" input of the Separate RGB node. "But geometry isn't a colour!?" I hear you cry. But as explained on TEXTURE NODES ${ }^{1}$, a vector is a vector. Feeding in a position instead of a colour to Separate RGB means its outputs are not the $R, G$ and $B$ components of the colour, but the $X, Y$ and $Z$ components of the position. So run another wire from the B (i.e. Z) output of Separate RGB to the Alpha input of the Extended Material window. The resulting layout should look like this:


Figure 989

Now you're ready to render. But before hitting F12, hit JKEY to switch render buffers. That way you still have the previous render to compare with. Once the render window comes up, you can hit JKEY to alternate between the two renders.

1 Chapter 148 on page 1169

Here's what my node example looked like (note I turned the energy of the lamp down to 0.5 , otherwise it seemed too bright):


Figure 990

Notice the gradation of transparency along the Z-axis, from fully transparent at the bottom to fully opaque at the top.

For added fun, try taking the material Alpha setting from the R or G outputs of the Separate RGB node instead, just to see the gradation orient along the X or Y axes.

## 150. Compositing

Compositing is the combination of multiple sources of visual input into a single, final image. This is common functionality in expensive, commercial video editors. Some of these (such as Adobe After Effects) use a layer-based compositing engine. Others (such as Apple Shake, The Foundry's Nuke, and eyeon fusion) use a more powerful node-based compositing engine. Blender features a very advanced and powerful compositing engine through the use of the Nodes Editor window. Although the challenge of learning to use nodes may seem intimidating, it can be very rewarding because of the professional-looking final products that can be easily produced.

### 150.1. Introduction to Composite Nodes

There are several types of nodes, and each has a different purpose. When nodes are first enabled (described later), two types are present: an input and an output. In addition to these, there are nodes that go between these two groups. Images enter a node through the left side (unless the node is an input) and leave the node through the right side (unless the node is an output). Threads of nodes connected together are known as "noodles."

### 150.1.1. Enabling Composition with Nodes

In the Scene tab (F10), select "Do Composite" from the Animate panel. Switch from 3D view to a Nodes Editor window. Select Composite Nodes (the face button) and Use Nodes. Two nodes should appear; one is a Render Layer node and the other is a Composite node. If you haven't already rendered the scene, do so by pressing the picture in the bottom-right corner of the Render Layer node. The scene will render and appear in both nodes.

### 150.1.2. Videos

Composite Nodes Video Tutorial (2.49b):
HTTP://WWW.YOUTUBE.COM/WATCH?V=AANXOJSDAAM ${ }^{1}$

Vector Blur Tutorial (2.49b): http://www.youtube.com/watch?v=qY4WcNgEXv8
Depth of Field (DOF) Using Composite Nodes (2.49b):
http://www.youtube.com/watch?v=HBomEv-bEtw

[^129]
## 151. Introduction

Welcome to the wonderful yet complex world of computer animation! Through these pages I will try to show you everything old and new about the new animation system in Blender 2.4. But, before we get started, there are some basic notions about datablocks you should know. Animation in Blender is based on the fact that you have something moving in a Blender scene. For example, a ball bouncing on a floor plane:
-So you have a scene datablock, which holds some info about the scene itself, as you can see in the Render button window (F10KEY). -You populate this scene with various objects (which in this case refers to containers for data, not the actual mesh data that shapes the object itself). The only goal of an object is to hold the whereabouts of the data you want to see in your scene. It also holds the object instance's properties such as "does it have soft body or particle options, and do we draw its name?". Most of the info on an object can be seen in the Object Window (F7KEY).

An object links to all of the data you can see in a 3D view such as mesh, curves, nurbs, lattices, armatures, metadata, the empty property, text, camera and lamps.

So the ball you just added to the scene is in fact a mesh, linked to an object that is in turn linked to the current scene.

Now there are also data blocks you can't see in 3D view, such as material, texture, Ipo, action and image. Instead, you have a special window in which to edit them. This is the idea behind the Blender interface, wherein each data block has a window for you to edit the data.

So back to this bouncing ball: It's also moving across the plane! So an ""Ipo"" data block is linked to the object, telling it where in space the object will be at each frame of the animation. This Ipo is editable in the Ipo window when selecting the ball in 3D view. In Blender, the work you are performing is always on the currently active (selected) object and data.

Looking at the OOPS (object oriented programming system) view (or SHIFT-F9KEY), we can get a good idea of the internal data structure:


Figure 991

Again, you are working in the scene "Scene", with an object "Sphere" linked to the mesh data block "Sphere" and the Ipo datablock "ObIpo". Why is that important? Because from there, you can start playing with the datablocks, linking them all around your projects to reuse old work. For example you can create more than one Ipo, and use the one you want, or tell more than one object to use the same Ipo, or to use the same object in more than one Scene.

Most of the linking job can be done in the Edit button window (F9KEY). Where you can tell an object to use another mesh's data block for Ipo, material, texture or image. There is always a little dropdown menu button for you to select an already-existing data block.

Now, when it comes to animation, you have to understand the way Blender handles data very well, because using Blender is always a matter of plugging data blocks together when working with Ipos, actions and NLA objects.

## 152. Armature Object

The Armature Object in itself is a tool for the animator to move an object or group of vertices in a reliable way. An armature is made of bones, which can be parented to each other, or connected to each other. It was built with the idea of a skeleton in mind. And in fact, in the 3D world with animation inclusive, its considered to be the skeleton.

You can add it using the SPACEKEY in 3Dview and selecting Armature. You'll then enter into Edit Mode where you can add or move bones to build your default rig. An armature has 3 states. You can switch using the dropdown menu in the header of the 3Dview or use the TABKEY to switch between Editmode <-> [ObjectmodelPosemode] and CTRL-TABKEY to switch between Objectmode <-->Posemode:

- Object Mode ${ }^{1}$ : Your armature is like any other Object, you can move it around the scene, scale it, rotate it and edit options in the button window.
- Edit Mode ${ }^{2}$ : Your armature is in what we call rest position, you can modify the bones it contains.
- Pose Mode ${ }^{3}$ : Your armature is ready to be animated, each bone can be moved, scaled or rotated, constraints get applied, you can pose your character and animate the bones' behavior over time.
Take note that Pose mode is now a state of the armature you can switch on/off using
CTRL-TABKEY. So when in Pose, you are still in object mode (you can select another object, contrary to the edit-mode)

Note: The following 3 pages of this tutorial contain screenshots and discuss techniques that are only available in Blender 2.40a and later. Refer to THE BLENDER 2.40A RELEASE NOTES ${ }^{4}$ on Armature draw types and Armature envelopes.

[^130]
## 153. Object View

### 153.1. The Armature Object

Armature Object is like any other object type:

- It has a center, a position, a rotation and a scale factor.
- It can be edited.
- It can be linked to other scenes, and the same armature data can be reused on multiple objects.
- All animation you do in object mode is only working on the object, not the armature's contents like bones.

Try it now: add an armature to your scene: SPACEKEY --> Add --> Armature.


Figure 992: adding an Armature

Or you can press the Shift + A keys, and select single bone from the armature menu.


Figure 993: Adding an Armature

When you add a new armature, you'll enter editmode automatically. To switch between modes, use the TABKEY or the dropdown menu in the Header of the 3Dview window (This might not be the case with blender 2.49b, you won't enter edit mode in that version):


Figure 994: Adding an Armature

### 153.2. The Edit Panel When in Object Mode

This is how the edit panel looks after you have added a new armature and switched to object mode (TABKEY):


Figure 995

- Link and Materials panel:
- The AR: field let you rename your armature Datablock. The dropdown is a quick way to select which Armature datablock you want to connect to this armature. You can keep more than one version for the same character. Useful when you have a special move to achieve in a shot, you can turn on an armature for a special purpose.
- The F button is an option to assign a Fake user to the Armature. Again if you have more than one armature for your character, it's a good idea to turn the Fake on, because if your armature datablock is not used (linked) it's not going to be saved in your .blend files. You can always do batch Fake-assignment of armatures by opening the Datablock browser (SHIFT-F4KEY), go in Armature datablock, select all the armatures you want to keep, and Press the FKEY.
- The OB: field is just to Rename your armature Object to something more cool and useful than Armature... Armature.001...
- Armature panel:
- Editing Options:
- X-Axis Mirror Edit: Not really useful now, it's more of an editmode option. This feature tells Blender you want to replicate all of your bones on one part of the Armature to the other. It's a clean way to just do half the job ;). The axis of mirroring is X so left<-->right in frontview (NUMPAD_1KEY) and the center is the center of the armature object. We will see this feature in detail in the next page.
- X-Ray: This option will let you see the armature through anything in the scene, solid or not. It's useful to see where your bones are in your character so you can select them.
- Automatic IK is a Posemode option. It lets you pose a chain of bones as if the bone you were holding was an ik target. More info in Posemode page.
- Display Options: These options give you the chance to visualise your bones in various ways. Also note that there is some specific options and features regarding the display mode you're in.
- Octahedron: This is the default view. Nothing exciting except you have a good idea of the rolling of the bones.


Figure 996

- Stick: This display mode is really useful when you have a lot of bones in your view. It lets you "unclutter" the screen a bit. It draws the bones as tiny sticks.


Figure 997

- B-Bones: It's more a feature than a display mode. This is only useful to visualise the effect you get when you activate the B-bones (Bézier-Bones). Each bone acts like a curve handle and lets you get extremely curvy poses. This will be exposed in the following pages.


Figure 998

- Envelope: Again it's more a feature than a display mode. But in this case the visualisation will be useful to tweak your rig later. Envelope lets you easily tell which part of your character this bone will animate and it's visually possible to change the zone of influence exclusively in this display mode. The zone is only visible in Editmode or Posemode though.


Figure 999

- Draw Axes: To draw the axes on each bone of the armature when you are in Editmode or Posemode. Useful when you want to know where you are and which axis to use in a constraint for example. Mental note: Y is up, Z is depth and X is side, contrary to object for which Z is up, Y is depth and X is side.


Figure 1000

- Draw names: This lets you see names of bones whatever the mode you are in. It's useful again to edit your armature, create parent dependencies or add constraints.


Figure 1001

- Ghost: This option lets you see a ghost of the armature in frames behind and over the current time. This is only working when you have an action linked to the armature, as we will see later.
- Step (Armature_button_obj.jpg needs update): This option lets you choose the frames interval between ghost instances.
- Deform options:
- Vertex Groups \& Envelope: These two toggles let you choose if you want the armature to deform your character using the Vertex Groups and/or the Envelopes. We will see that later.
- Rest position: This will bring the character back to factory default (item as Editmode), and no actions will be applied to the armature so you can easily edit it in the middle of an animation.
- Delay Deform: This was useful before as the old system was very slow. What it does is when you do a manipulation to the rig, it waits until you finish to update the view. Can still be useful though.


### 153.3. Extra Practice

This YouTube tutorial might also help: LINK ${ }^{1}$ The short tutorial might be a help LINK $2^{2}$

[^131]
## 154. Edit View

Now you've got your ARMATURE ${ }^{1}$, but it's not much use until you add some more bones to it. Think about your body for a moment -- you've got this thing you call a 'skeleton', which for our purposes corresponds more or less to an armature object. Your skeleton consists of a number of bones (about 206, to be precise), but generally these are not independent from each other. If you move your femur (the bit of your leg between your pelvis and your knee) then conveniently the rest of your leg moves with it. In that example, the tibia/fibula would probably be counted as one bone, with the femur as their 'parent' bone. In this way, you build up a hierarchy of bones, making animation much simpler.

Editing an Armature Object gives you the chance to add, move or connect bones together. Whilst in edit mode, you will see all of the bones within the currently selected Armature.

When you create a new armature in Object mode a single bone will automatically be created for you, centered at the cursor position. Blender will then switch straight to Edit mode to allow you to add further bones. At this point we're just defining the default 'rest' position of the bones and specifying how they connect together -- you'll have to wait until THE NEXT CHAPTER ${ }^{2}$ to find out how to create specific poses.

[^132]
### 154.1. Now the basics about bones



Figure 1002

Having created and selected an armature in Object mode, you can add and modify the bones in this armature by switching to Edit mode.

- You can add a new bone at cursor position by pressing SPACEKEY in the 3DView --> Add --> Armature.
- A bone has two ends: a root (the lower part) and a tip (the upper part). You can select and move the tip or the root independently with RMB, or you can select the entire bone by clicking on its body.
- You can extrude a new bone from the selection using EKEY. This will create a bone connected to the original one, meaning the Root of the new bone will follow the Tip of the original one. You can also CTRL-LMB to extrude a new bone. It will extrude to where you clicked.
- Alternatively, you can connect two existing bones by selecting them one after the other and pressing CTRL-PKEY. You can then choose either 'Connected' (the child bone - the one you selected first - will automatically be moved so that it touches the parent) or 'Keep offset'.
- You can use SHIFT-DKEY to duplicate a bone
- Using the WKEY menu, You can subdivide your bone or flip the name of the bone between Left-Right (See Naming convention below).
- You can delete the bone with XKEY
- You can select a chain of bones (connected together) using LKEY, when you hover your mouse over a bone.


### 154.2. The edit panel



Figure 1003

- Armature Bones Panel
- OB: this field lets you rename your bone.
- "Child of" Dropdown: lets you choose which bone will be the parent of this bone. If a parent is selected, there will be a small button labelled "con", meaning connected. Setting the parent defines the relationship between your bones. When one bone has another as its parent, it will do everything the parent does, such as rotate, move and scale. A dotted line between the parent and child will appear. If you select Connected, the Root of the Children will go stick to the tip of the parent, giving you a chain of bones like the 2 bones in your arm.


Figure 1004: none

- Segm: If you set this value to something greater than 1 , it will cut your bone into several little segments and deform them on a bezier curve - referred to as a 'B-Bone'. You need to create a chain of bones to really show off this feature though. In the example below, the image on the right has 1 segment, and the one on the left has 3 segments each (these are shown in Object mode to show the effect more clearly):


Figure 1005: none

- Dist: This is the area of influence of the bone. It can be visualised using the Envelope ${ }^{3}$ display mode. We generally don't touch this field as there is an easier and faster way to change this option. Turn Envelope on and select a bone. Then using ALT-S, you can scale the zone of influence. This has the advantage that you can do it on multiple bones simultaneously, and it works in both editmode and posemode:


Figure 1006: none

- Weight: This specifies how strongly this bone will influence the geometry around it, relative to the other bones. If two bones crossing each other, both with envelope influence, have the same weight (like 1:1) they will influence the surrounding geometry equally. But if you set one to 0.5 , the geometry will be affected more significantly by the other one, with weight 1 . For example, in this image, 2 bones using envelope influence try to move the same geometry. The 2 on the left have the same weight, you can see the geometry didn't move. On the right, one of the bones has 0.5 so the bone with weight 1 is winning the tug-of-war!:


Figure 1007: none

- Hinge: This tells the bone to remain motionless in a chain. It doesn't copy the rotation and scale of the parent. Useful for mechanical rig I would say, as you can animate the rotation of the hinge bone without having to correct it because the parent rotated:


Figure 1008: none

- Deform: This lets you say if you want the bone to deform the geometry at all. Switching it off is like setting the weight to 0 , except it's faster this way. Useful when using a bone as a target or a controller, i.e. a bone you just want to use to control other bones, but not the geometry itself.
- Mult: to deform geometry you can use VERTEX GROUP ${ }^{4}$ and/or EnVELOPE ${ }^{5}$. The ability to mix both of these methods is handy for using one to tweak the other. For example, you might

[^133]use envelope everywhere but tweak difficult places manually with vertex group. We'll discuss this in more detail later on.

- Hide: This option lets you hide the bone. You can use it to hide the less important bones when you want to see what you're doing or for when you come to animate later on. For example, when you animate you don't need to see the entire chain of the leg, just the controllers. The values you select here apply to both Editmode and Posemode.


### 154.3. Naming convention

In many cases, rigs are symmetrical and can be mirrored in half. In these cases, it is helpful to use a left-right naming convention. This is not only useful for your own sake, but it gives Blender a hint that there is a pair of equivalent bones, and enables the use of some very cool tools that will save you some significant work.

- It's helpful to name your bones with something useful telling you what it's there for, such as leg, arm, finger, back, foot, etc.
- If you get a bone that has a copy on the other side, however, like the arm (you have 2 arms right?), then the convention is to call them arm.Left and arm.Right.
- Other alternatives are also possible, like _L, _LEFT, _left, .L, and .Left. Anyway, when you rig try to keep this left-right thing as accurate as possible; it will pay off later on.
- You can copy a bone named blah.L and flip it over using WKEY --> flip name. So the bone will be blah.L. 001 after you copy it, and flipping the name will give you blah.R. Blender handily detects if the .001 version already exists, and increments the number for you.

This is an example of naming in a simple rig:


Figure 1009

### 154.4. Mirror Editing

Now we come to the X-Axis Mirror Edit feature. This handy little number allows you to define only half of your character and tell Blender to automatically repeat the same actions on the other side. It's cool, it's simple and it saves a whole lot of time.

We will create a little guy out of sticks for the occasion -- don't worry about the geometry yet.

- Create a new, empty scene. Since the mirror editing feature mirrors along the X Axis, make sure you've got the front view selected (NUMPAD_1KEY) so that the X Axis runs from left to right. Add a new armature to the scene (SPACE, AddIArmature). Enable 'Draw names' from the 'Display options' section of the Editbutton panel, so we can see what we're doing.
- Now enable mirror editing by pressing F9 on the buttons window and clicking the $\mathbf{X}$-Axis Mirror button in the Armature panel under Editing options. You'll also need to use the center of the armature (indicated by a purple dot) as the center of your rig, otherwise the symmetry will go wrong when we come to create the mirror image.
- Name the first bone you have "Back". You can scale it to make the entire back of the guy.
- Select the tip of this and extrude a new bone from it to do the Head. Name it Head.
- Select the tip of Back again and do SHIFT-EKEY to tell Blender you're starting a mirrored chain of bones. Blender will automatically extrude another bone and will create an exact mirror of whatever you do. Take note that the name of both bones are Back_L and Back_R. Blender also tries to keep to the naming convention. Unfortunately, since we extruded from the Back bone, the names aren't quite right anymore.
- To change the names: Start by editing one of the names as Arm. Add the suffix to it (_L or _R). Then hover your mouse over the name field and do CTRL-CKEY. You just copied the name of the bone! Select the other bone, hover you mouse over the name field and do CTRL-VKEY. This will paste the name as-is. But as there is already a bone with the same name, Blender will add .001 after it. No problem; just go into 3Dview and do WKEY --> Flip name. There you have it -a working mirror again.
- Mirror editing works using names. If you move a bone named blah_L and there is a bone named blah_R in the same armature, Blender will mirror the move you do to it, so make sure you follow name convention correctly.
- Then we can continue: extrude an other bone to make the lower part of the arm using EKEY or CTRL-LMB. The new set of bones should be arm_L. 001 arm_R. 001 .
- Then we will add the legs. Up till now we have always worked from the tips of the bone. This is easy as Blender understands you want to create children of the selected bone, but to make the legs you need to extrude from the root of "Back". So go ahead, select the root of "Back" and do SHIFT-EKEY to start a pair of chains. Rename them to "leg"+suffix.
- Now take note that doing so will not parent or connect the new bones to anything. We don't want it to be connected to the tip of "Back", it would look silly. But we want it to follow the body!
- The way to go is to parent the two legs we just created to the "Back" bone. The old way (pre 2.40) was to select all bone and select the parent manually in the drop down. In the new version, editmode and posemode have an active bone. The active bone is the last bone you selected. In this case we can't work with more than 2 bones selected. Select the child (a leg) then select the parent (Back) and Do CTRL-PKEY. A menu will popup asking Connected or Keep offset. For now use Keep offset. Do this for the other leg as well.
- it's also possible to remove parent easily. Select any bone you want to remove parent relation from and do ALT-PKEY. A menu will popup asking if you want to clear all or just to unconnect.

Of course you don't need to select the parent and/or the child for this to work since any parent relationship will be cleared. So if you do that on a bone which is parent of 5 bones, then immediately all the children will be parentless.

- Extrude one more time to get a leg with 2 bones.
- Turn on the Stick display mode and enjoy your guy made of sticks!


Figure 1010

- Now you can go into Posemode and pose your guy as you want.
- You can move the entire guy just by moving the "Back" bone, since this is how we built him. This bone is the highest in the bone hierarchy, "The daddy of all bones", you could say!

FASTER WAY TO NAME YOUR BONES 1) Create one side of the armature complete with correct bone names like the way this tutorial describes. 2) Copy the side of the armature you just created and paste it on the opposite side to form a complete armature. 3) On the side that you just duplicated, your names would have numbers added to them. Now select each bone on 3D View and hit "W" then select "FLIP NAME". MAKE SURE YOUR PARENTING IS THE SAME AS THIS TUTORIAL DESCRIBES!

## 155. Pose View

Posemode is a very versatile place where you Animate your character, create and manage constraints and apply your rig to your character.

Contrary to Editmode, Pose mode isn't an obligatory mode where you can't do anything else. It's now part of the UI like any other object. A good example of it is you can be in posemode and still select another object.

### 155.1. So What Can You Do?

When you are done building your armature, you can go into Posemode to add constraints and start creating actions. There are also some new tools accessible in Posemode that you may want to look at. You can easily get into "pose" mode by selecting the mode from IPO type list box in the left portion of the lower screen.

The panel has changed a bit too:


Figure 1011

- What's new in the panels?:
- You can use the Automatic IK feature in the Editbutton(F9) to pose a chain of bones like it was an ik chain. It's usefulness is very limited though. It works well only if there is no other ik solver in the chain, and if your chain is isolated from the rest of the rig.
- Ghost: in the armature panel the ghost option lets you see the action linked to the armature over time. Also called onion skinning.


Figure 1012

- There are two number fields to better tweak the effect of B-Bones. The in/out is used to tell the scale of the virtual handle of the bezier curve. In is the Root of the bone, and Out is the Tip. The bigger the value, the bigger the effect of rotation.


Figure 1013

- There is now a Constraint panel where you can add a constraint to a bone, like any other object in the scene. This will be shown later.
- You can pose your rig using GKEY, SKEY and RKEY. Note that if the bone is part of a chain it can't be moved (except if it's the first of the chain, moving all the chain as they are all children), so you rotate the bone instead.
- You can do ALT-SKEY on one or more bones while in Envelope display mode to tweak the envelope size in real time while animating. Useful when for example you move the hand and some part of the character isn't in the influence zone; the result will be that some vertices will stay behind.
- You can do CTRL-CKEY to copy stuff from a bone to bones. The options are location, rotation, scale and constraint. Constraint is very handy when you wan to copy a constraint to other bone. The way it works is easy.
- The W-KEY menu gets some neat options too:
- Select constraint target: Will select the target of the bone's constraint currently selected.
- Flip name: Yep, you can flip name in Posemode too.
- Calculate/Clear path: This is a visual way to see the action linked to your armature. You can select just some bones and ask Blender to show you the paths of the bones.


Figure 1014

- You can pose your character and select all bones you want to see included in the action and press I-KEY. You can insert a key just for loc, rot or size. Avail will add a key to all available channels in IPO window (all channels you previously added something).
- When you insert key for your armature, a new action is created and linked to the armature if there was no action before. You can also see the curves of each selected bone of the armature in the IPO window. We will see action window and IPO window later.
- You can parent a bone to an external object by selecting this object then selecting the bone in question so it's active (The armature is in Posemode so you can select a bone). Do CTRL-PKEY. Then when you move the bone the object will follow. This kind of Hard relationship doesn't
include any bending at all. It's useful when doing robot rigs as you are just moving objects around.


## 156. Mesh Object

This section will explain how to deform your mesh using the armature.
There are two ways to tell Blender which vertex will go with which bone: Vertex group, and Envelope.
There is also a tool useful when animating which is part of the mesh object: the Shape key, to create a preset deformation. For example: deform the face to look like a smile.

- Connection between Armature and Mesh ${ }^{1}$
- Envelope ${ }^{2}$
- Vertex Groups \& Weight Paint ${ }^{3}$
- Shape Key ${ }^{4}$

[^134]
## 157. Armature and Mesh

How to tell Blender: "use this armature to deform this mesh"

### 157.1. The Armature Modifier

Blender now has a Modifier stack (Editbutton, F9KEY). As such, we should use it over existing methods to pair mesh and armature, as the modifier stack is optimised and simple to use. Note: You don't need to parent the mesh to the Armature anymore. The only case you could need to do this would be animating the Armature object itself. Then the mesh should also follow the armature. In this case select mesh, then armature, and do CTRL-PKEY --> Object.


Figure 1015

The clean way to do so is to go in the Editbutton window (F9KEY) and press "Add modifier" in the Modifier panel, then select "armature" in the dropdown menu. Then you'll get a new modifier "Armature" like the previous picture. Change the OB: field to the name of the armature object that should control the mesh. This step is very important! Without the armature object being defined, Blender won't know how to modify the mesh since there may be multiple armatures within your world. To limit the effect of the modifier, you can enter the name of a vertex group in the VGroup: field. This will minimize unwanted distortions in very dense meshes. There are also fields to
enable/disable the modifier when rendering, enable/disable when working to only move the armature (could get handy with massive character), and when editing (that's very handy, you can edit the topology while it's deformed). There are also two toggles to tell Blender what it should use to deform: Vertex Groups and/or Envelopes. You may have noticed these options are repeated also in the Editbutton $-->$ Armature panel, but as the tooltip says: these two are used when you use virtual modifier (the old way) to keep compatibility with old files.

Parenting the mesh to the "armature" will create an old-way link, still visible in the modifier stack, but not very useful. The first entry with the "make real" button is what appends if you do a CTRL-PKEY to "armature". You should not use that kind of connection when you see that. Press "make real" to get a working modifier.

### 157.2. The Old Way

This way is not recommended but can still be useful. When doing CTRL-PKEY to "armature", you will get a menu like this:


Figure 1016

- Don't Create Groups will just create a virtual modifier so you can deform the mesh (the "make real" button)
- Name Groups is almost useless now as blender will create a group for you when you do weight painting.
- Create From Closest Bones is a function to remember when you want to bake all your envelopes to vertex groups.


### 157.3. Tip: Bake envelope to vertex groups

The workflow is very simple. When you are done with the envelope's tweaking and you have gotten the best out of it, delete the Armature modifier and parent the mesh to the armature. To parent it, go to object mode, first select the mesh and then the armature, then press CTRL-PKEY. Select Create From Closest Bones.

Do ALT-PKEY and redo the Armature modifier. Now all the envelope influence are converted to Vertex Groups. This way you can further tweak influence zone using Weight paint. More info in the following pages.

## 158. Envelope

### 158.1. What is Envelope

Envelope is a new visual tool to help you rig your characters faster and easier. It can often save you a lot of time. Each bone has a special area around it, allowing you to tell Blender what part of the geometry will follow each bone. This zone is customizable so you can move, scale and blend them together.


Figure 1017

### 158.2. Edit Envelope

You can edit this white zone in Editmode or posemode by going in Envelope display mode (Buttons Window $\rightarrow$ Armature $\rightarrow$ Display Options $\rightarrow$ Envelope), selecting bones and using SKEY or CTRL-ALT-SKEY.

In Editmode: you can select the Tip, the Body or the Root and scale using SKEY. This area in the middle will assign a weight of 1 to all vertices contained in here. All vertices with a weight of 1 will completely follow this bone. The white transparent area around the center is a zone of influence which loses power as you go away from the center. This area is scaled when selecting the body of a bone and doing CTRL-ALT-SKEY. In Posemode: You can only scale the zone of influence with ALT-SKEY when in Envelope display mode. It's real time, and lets you tweak the influence while you animate. So if you notice there is a vertex not following in the new pose you just did: Just select the bone it should follow, and scale the zone a bit until the vertex goes back with his friends. Example:


Figure 1018


Figure 1019

### 158.3. Envelope Options

It's possible to enable/disable the use of Envelope in the Modifier stack using the "Envelope" toggle.


Figure 1020

There are also two important buttons in the Armature Bones panel: Deform and Mult.


Figure 1021

Enabling the Deform button will tell Blender to deform geometry with this bone. It's useful because in a more complex rig not all the bones are there to deform, some bones are just there to move other bones.

The Mult option will tell Blender to multiply the weight it gets from envelope (let's say 0.7 ) with the weight you painted in weight paint (let's say 0.5 ). The result will be $0.5 * 0.7=0.35$ so in fact you just tweaked the envelope influence to 0.3 when it was at 0.7 . If you don't want vertices to be part of the zone, you can always paint it with 0 , as $0 *$ (something) will always give 0 . This way you can give custom shape to your envelope. More on weight paint on next page.


Figure 1022

In this example of a formerly flat surface you can see that all the selected vertices are not following the bone when it is moved upwards. This is because I painted a weight of 0 on them. In weight paint you'll see nothing. But just the fact that they are part of the group with a weight of 0 will make that possible. If Mult is off and you have both a vertex group and envelope, Blender will add value.

## 159. Vertex Groups and Weight Paint

### 159.1. What Are Vertex Groups?

Vertex groups are very useful. You can use a vertex group to:

- Group vertices together while you model (keep a selection and come back to it later).
- Define which vertices softbody simulation affects.
- Define which vertices emit particles.
- Define which part of a mesh will follow a specific bone.

Vertex groups are specific to the Mesh object and can be modified in Editmode.
If you have vertices assigned to multiple groups (for example, in a character you may have some vertices in the "upper arm" vertex group that are also in the "lower arm" vertex group), you can assign weights to those vertices to specify how much relative influence the different groups have. A weight can range from 0 to 1 and is assigned when you create the group. Let's take a peek at the GUI of vertex groups in the Editbutton(F9KEY):


Figure 1023

From top down:

- The dropdown menu lets you select an existing vertex group or rename the current one.
- The weight numfield lets you choose the weight value assigned when you add vertices.
- You can add a new group or delete the current one.
- Assign or remove selected vertices to/from current group.
- Select/deselect all vertices in current group.


### 159.2. Weight Paint

As mentioned above, you may often find that you have some vertices that are assigned to more than one vertex group. By assigning weights, you can specify the relative influence each of the vertex groups have. You have two options to assign weights: 1) manually selecting each vertex and typing in a weight value, or 2) use weight painting to - you guessed it - paint weights.

Weight painting lets you paint weight values on the mesh like you were painting on a wall with a can of spray paint. It is a Mode of the 3Dview and is accessible in the 3Dview's header in the dropdown menu with Objectmode, Editmode and such. A hotkey is also available:
CTRL-TABKEY.
In Weightpaint Mode, the first thing you'll notice is the blue color of the mesh. Blender provides an easy way to quickly visualise the weight value of each vertex. This is the color spectrum used:


Figure 1024

When you are in Weightpaint mode you can paint all over the mesh as if it was a solid object on your desk. The paint only works on vertices so don't try to paint in the middle of an edge or a face, it will never work. To help you in your task there is a new panel in Editbutton:


Figure 1025

- The weight slider is just the same thing as the weight numfield we saw earlier in the vertex groups button. It's just easier to work with. It's simply the weight you want to apply to the vertices. In painting terms, think of this as the color.
- The buttons from 0 to 1 are shortcuts for weight value, to speed up the workflow.
- The opacity slider (and shortcuts) tell Blender what is the percent of the weight value you want to apply in one shot. If you set opacity and weight to 1 the vertex will turn red instantly. In painting terms, think of this as the pressure.
- "All faces" tells Blender if you want to paint on all faces in the mesh or just the visible one.
- "Vertex Dist" tells blender to use vertex distance instead of faces. When active, the painting will only check if the vertex is in the brush, then apply a weight value. If it's off, all vertices part of the faces in the brush will receive weight value. Turning on Vertex Dist can give good results when you have a lot of polys in your mesh.
- "Normals" will apply vertex normals before painting. This means Blender will take consideration of the direction the vertex is pointing when painting: the more it's facing away from view, the less it will receive value.
- "Spray" really makes it like spraying paint. Without it, a single click will only paint one value. With Spray on, each time you move the mouse a paint shot will be added. To get a good effect, use a small opacity value so the weight will increase slowly.
- "X-mirror" will tell Blender to apply the weight paint on the other group if there is one. Like Hand.L --> Hand.R. If you paint the group hand.L and there is a hand.R the paint will be copied over. For this to work your groups must be created, the name of the groups have to follow name's convention (left right) and both side of the mesh need to be identical.
- "Wire toggle" toggles the visibility of wire while painting. Useful to find where the vertices are (activate the edit mode option "Draw all edges" to see even better).
- "Mix"/"Add"/"Sub"/"Mul"/"Filter" is how you want to apply the paint based on what is already there. Mixing will do a mean from brute weight value and current weight value, "Add"/"Sub" will directly add or subtract value, "Mul" will multiply (exponential painting) and "Filter" will paint based on alpha value.


### 159.3. Vertex Groups and Armatures

So what use are vertex groups in rigging? You can specify what vertices will move when a bone moves. When you want to paint a mesh for an armature, do the following:

- Make sure the Mesh has an Armature modifier.
- Select the armature and enable Armature Posemode (CTRL-TABKEY).
- Select the mesh and enter Weightpaint mode (CTRL-TABKEY). (Question: if we're in Pose Mode for the Armature, how are we supposed to select the mesh?)
- Select the bone you want to paint for with RMB.
- Paint the parts you want that bone to affect.

You'll notice that, if there is no group created when you first paint, Blender will create a group for you, and give it the same name as the selected bone. This is important, because when the "Vert. Groups" toggle is on in the Armature modifier, Blender will try to match bones with Vertex Groups based on the same names.

What happens when we try to blend groups together? See this simple example of 2 bones trying to bend a tube:


Figure 1026

The Groups are painted so the body of each bone is in red and the zone between the two bones are gradually going from 1 to 0 . This will bend nicely. If, for a special reason, you want a side to react differently, you can always move the bone while painting and try the new modification you just did. By the way, having Subsurf on while painting can be very cpu expensive. It's a good idea to turn it off.

### 159.4. Using Weight Painting with Armatures

Armatures are used for many purposes, but one common use is to deform a mesh with an armature. This example will demonstrate how weight painting can improve armature-deformed meshes.

In this example, we have two objects; each has an armature modifier applied. The one on the left is going to be the "before" and the one on the right will be the "after".


Figure 1027

For the object on the left, take a look at the vertex groups as initially assigned (from left to right: Bone1, Bone2, Bone3, and Bone4). These same vertex groups were assigned for the object on the right:


Figure 1028

Important: A bone in an armature will only act upon those vertices that are in a vertex group with exactly the same name as the bone.

- In Blender 2.37 and previous, this was the ONLY way to get a bone to deform a mesh.
- In Blender 2.40 and on, selecting the "Envelope" button in the armature modifier will allow bones to deform even if you haven't assigned any vertex groups yet.

If you enter Weight Paint mode (CTRL-TAB with object selected) right after assigning the vertex groups, you can see that the vertex groups as assigned all have a weight of 1.0:


Figure 1029

OK: both objects have vertex groups assigned and they have armature modifiers. Let's grab a bone (select the Armature, CTRL-TAB to enter Pose Mode, select Bone4, GKEY to grab, and move) to deform the mesh. We haven't made the objects different from each other, so after moving their armatures in the same way . . there's still no difference. That's good.


Figure 1030

## 160. Shape Key

### 160.1. Shape Key?

Shape keys are modifications of the original mesh that you can animate and mix with each other.
Previously called Relative Vertex Keys (RVK), one of their major uses is to create facial expressions.


Figure 1031

The idea behind Shape keys is simple. The basic, undeformed mesh you start with is the "Basis" shape. You can add a variety of different versions of this shape and store each one as a Shape Key for use in an animation (other software sometimes refers to these as "morph targets"). You can't add or delete vertices as Shape Keys only store the positions of vertices and not the creation/deletion of them.

Ok, to start out, take a plane. I'll add a new shape to it and move a vertex away:


Figure 1032

When I play with the influence, this key has over the basic shape, the result will be as follows ( 0.5 in this example):


Figure 1033

If I play with the slider from 0 to 1 , Blender will gradually apply the Key 1 shape with a constantly varying amount of deformation. So from 0 to 1 , it will slide from the basis shape to the Key 1 shape. The movement of the vertices is linear from start position to end position and you can even set an influence greater than 1 or lower than 0 and Blender will extrapolate the movements of the vertices relative to the basis shape (marked as a dotted line above). This feature allows you to set general shapes such as a smile and then exaggerate the shape without needing to remake it.

### 160.2. The GUI

## Shapes



## VGroup:

Figure 1034

### 160.3. Shape Keys step-by-step

Here's a hand-held walk-through of how shape keys are used.
Start with the default cube or a more interesting mesh of your choice.
1: Select your object in Object mode. Go to F9 Editing window. Find and select the "Shapes" panel. Press the "Add Shape key" button. This adds a key called "Basis" and this stores the "basic" mesh in its undeformed state. Make sure the "Relative" button is pressed (should be default).

2: Press the "Add Shape key" button again. It now says "Key 1" and you have a slider and some other settings. Go into Edit Mode, grab a vertex and move it. Exit Edit Mode. The mesh returns to normal but you've just added a real Shape key and Blender has stored it.

3: Repeat step 2 for as many different shapes as you like. You can rename the keys to whatever you want. Normally you create each new shape by first selecting the "Basis" key but if you select an existing key from the list and immediately press "Add Shape Key" then enter Edit Mode, the mesh will already be deformed. This is useful for making similar but unique keys.

### 160.3.1. Using Shape Keys

1: Starting on frame 1, select each key one by one from the pop-up list (or go to the Action Window, press the sliders button and select the Keys from the list there) and click on the slider and move the slider forward then back to zero. Sometimes just clicking on the slider at the zero point is enough to set the key.

2: Move forward ten frames, select Key 1 from the list and move the slider to 1.00 . You'll see your object deform. Move more frames and slide another key. And so on and so on. You can move them forwards and/or backwards as you move through the frames and they'll just add together if they have to. Each time you move the slider, you set a keyframe for that Shape Key.


Figure 1035

## Setting Shape Keys

### 160.3.2. IMPORTANT NOTE:

You should add shape keys to a finished mesh. Don't work on a mirrored mesh or a partially finished model. Adding geometry (vertices, faces, loops, joining etc...) can result in the loss of the shape keys or to unpredicatable results. Not always, but probably when you least expect it. There are scripts available to make some of these things possible.

That's the basics. Note that shapes will constantly transform between keys so if you set a key at frame 1 to zero and at frame 10 you set the slider to 1 then at frame 5 the slider will be at 0.5 which you may or may not want. If you want it to hold shape for a while before changing (e.g. staying at zero until frame 7), you'll need to set a key at the beginning and end of the time frame you want it to stay the same (So you would set it a zero at the start, then zero again at frame 7 then to one at frame 10). You can also edit the IPO curves (use Shapes pop-up) to really mess with the transformations.

## 161. Lip-Sync

### 161.1. Lip-Sync with Shape Keys

Here I will attempt to explain my recent dealings with using Blender Shape Keys to produce convincing lip-sync (Lip-synchronisation, i.e.: "speech") for simple, humanoid characters.

This is aimed at people with an understanding of Blender fundamentals like vertex loops, face loops, sequencer and of course, Blender's new Shape Key system. If these terms mean nothing to you, then you may well struggle to keep up. If you're familiar with them then I hope this tutorial will prove to be a breeze and your characters will be speaking so fluently you'll have trouble shutting them up!

Other Lip-sync tutorials, if you can find them, recommend using other software like Magpie, Papagayo and others but while I've no doubt they provide a valuable service and maybe make syncing easier, I will be using only Blender for this tutorial. I haven't tried using lip-sync software yet so I can't really say if it's easier or not.

You will find links to interesting audio files you can use for testing animation and lip-sync near the bottom of the page.

### 161.2. The hard work first

### 161.2.1. Setting up for Lip-Sync

First, set up your Blender screen so you have everything you need for this project. You'll need a front 3D Window, an Action Window, the Buttons Window (showing Editing - F9 - panels) and a Timeline Window. If you've got the room, a Side-view 3D Window would be handy too.

The basic sound units are called phonemes and the mouth shapes we use to represent these phonemes for lip-sync are called visemes (or sometimes, phoneme shapes) and there are many references for these around the web. Legendary animator Preston Blair created one of the MOST POPULAR VISEME SETS ${ }^{1}$, which is great for cartoon-style characters. Other visemes are aimed at more-realist, humanoid characters. The shapes you choose depend on the style of your model. (I'll try to provide some useful links later)

[^135]

Figure 1036: Sample phoneme shapes

Sample viseme shapes.
The first and most difficult step in good lip-sync is making the shape keys for these visemes. How well these are made ultimately determines the success of the animation and it is worth spending time getting them right, although they can be modified and tweaked later. So choose your favourite set of visemes (or even look in a mirror and use your own face as a reference) and start setting your keys. A model with good topology - especially well formed edge loops around the mouth area - will be a big help here!

## What on Earth are topology and edge loops?!?!

Topology refers to the way your 3D mesh defines the object, in this case your character's head. Edge loops refers to the flow of consecutive edges around the character's major features. Typically, good edge loops flow around the eyes and around the mouth in a somewhat deformed, "circular" manner. Selecting and deforming a single loop of edges and vertices surrounding a facial feature is much quicker than having to individually select a lot of edges that don't flow naturally around that feature. Similarly, deforming a single loop or collection of related, nested loops is much easier and quicker than trying to deform a seemingly random set of edges. You can easily see these loops in the character screenshots above. The series of edges surrounding the mouth simply stretch from wide ellipses to almost circular to create a useful variety of mouth shapes. The faces defined by paired edge loops are referred to as face loops. The close-up image below shows selected face loops.

There are many tutorials on the web about these topics so if you need more information before proceeding then a quick search is probably a good idea.

## Setting the basic viseme shape keys

First, select your undeformed mesh and create your basis key. Go to Editing (F9) window and go to the "Shapes" panel. Press the "Add Shape Key" button. Enter and exit edit mode to set the basis key. Then create your first key Key 1 and name it "M". Enter edit mode and if your character's mouth isn't already closed (some people make them that way) then close it by carefully selecting the faces and loops around the mouth. You will usually use Size-Z plus a bit of grabbing and shifting to achieve this. Don't forget to include the faces on the inside of the lips or the
deformation will be unpleasant. When you're happy with the shape, exit Edit mode and there you have it. You character can now say "Mmmmmm" whenever you like. Test it by moving the Shape Key slider back and forth but make sure to leave it at zero before making more keys. (If you made your character with a closed mouth then you can just add the new " $M$ " key then enter and exit edit mode to set it.)


Figure 1037: Selecting face loops

## Selecting face loops

For most new keys, you will select the basis key first then press "Add Shape Key" then make the required shape from scratch in edit mode. However, some mouth shapes are very similar, like "OH and OOO" or "EE and SS" and it would be easier if you could start with something close to what you want rather than shifting everything from scratch every time. Luckily, Blender allows you to do just this. Once you've made your "EE" key, for example, you can select it and immediately press "Add Shape Key" then enter edit mode and the mouth will already be deformed and you only need to make subtle changes to it to make your " S " shape.

## Remember that the keys you make are for sounds, not letters.

In general, you'll need shape keys for the following sounds

- M, B, P
- EEE (long " $E$ " sound as in "Sheep")
- Err (As in "Earth", "Fur", Long-er" - also covers phonemes like "H" in "Hello")
- Eye, Ay (As in "Fly" and "Stay")
- $\mathbf{i}$ (Short "I" as in "it", "Fit")
- Oh (As in "Slow")
- OOO, W (As in "Moo" and "Went")
- Y, Ch, J ("You, Chew, Jalopy")
- F, V

These can often be used in combination with each other and with jaw bone rotations and tongue actions to also produce other sounds like "S", "R", "T", "Th" and a short "O" as in "Hot" - or these can also be specifically made with their own shapes. This decision depends largely on your character. Start with the essentials and make others if you need them.

NOTE: I use one jawbone in my current character and this is also used to control the mouth shapes. It doesn't drive the shapes but it moves the bottom teeth and tongue (which can also be controlled separately) and the faces that make up the chin part of the character mesh. For some visemes, I move the jawbone into a logical position before adding the shape key. For example. I open the jaw for the " OH " key and close it for the " M " key. Later, when animating, the jawbone is animated along with the Shapes for a very convincing result.


Figure 1038: Using jawbone with shapes

Using jawbone with shapes

## Load the audio

Once all your viseme shapes are set the time comes to get your character to speak. (Normally you would animate the body first and leave the lip-sync till near the end).

If you haven't already done so, load your audio file into a Blender Video Sequencer Window and position it where you want it. Currently, Blender only supports 16 bit wav format audio files so
you may need some editing or conversion software to process the file if it isn't in this format. "Audacity" is a good, open-source (free) editor that will suit this purpose and much more.


Figure 1039: Blender Soundblock Panel

Blender Video Sequence Editor Window showing loaded Audio Strip
Go to the Scene Window (F10) and press the "Sound block buttons" button --(in the three buttons near the frame counter. It looks like an audio wave)--. Press the "Sync" and "Scrub" buttons. The "Sync" button makes the playback in the 3D window closely match the audio when you press Alt-A (it does this by dropping image frames if necessary and it generally provides only a rough guide of how things match-up). The "Scrub" button is important for lip-sync as it means that whenever you change frames, Blender plays the audio at that point (Currently in some Blender builds you have to press Alt-A at least once to get this feature to start working).


Figure 1040: Blender Soundblock Panel

## Blender Soundblock Panel

Select your character and your Shape Keys should be listed in the Action Window, in the order in which you made them (I don't think they can be shuffled). You will see a small triangle button
labelled "Sliders" at the top of the list - press it to show the sliders for each shape. If you drag the mouse back and forth in this window, you should hear the audio play as you cross frames. This is how you will identify the main viseme/phoneme key frames.


Figure 1041: Shape Key Sliders

Shape Key Sliders

### 161.3. Getting down and dirty

Before you begin your lip-sync, you obviously need to know what your character says. It might be worthwhile writing it down and even speaking it over and over, in time with the audio, to get a feeling for the sounds you'll be dealing with. Some sounds are what I'll call "key sounds" and others are almost dead, non-descript "in-between" sounds that fill in the gaps between the key sounds. Obvious key sounds are those where the lips close and those where they are tightly pursed or wide and round, other key sounds can differ with every piece of audio. Don't make assumptions about the shapes you'll use based on the words you know are there. What you are animating are the actual sounds - not letters or words (Keith Lango has much to say about this on his website and I recommend reading it)

### 161.3.1. The Timeline Window

Go to the Timeline Window. This window seems to have been largely overlooked in previous documentation yet it provides the basics for timed animation plus a few other goodies to make your animation life a little easier. Here you can turn auto-keying on and off at will (you'd normally go to the hidden 'User Preferenceswindow which is a pain and easy to forget), navigate frames, play and pause the animation in the 3D window, turn Audio Sync on and off, set the start and end frames for the animation and 'set frame markers. This last feature is the key to our project.

In recent Blender releases,the audio "Scrub" feature works in most windows. As you scrub through the audio, listen for where the key sounds occur. As you hit a key sound, scrub back and forth to find where that sound commences. In the Timeline Window, press "M" to set a frame marker at this frame. The marker can be labelled by pressing CTRL-M in the Timeline Window while the marker is selected (yellow). Enter a sensible name for the marker that indicates what the marker is for (like the phoneme sound and/or which word it starts or ends). Markers are selectable and moveable and can be deleted just like other Blender items.

NOTE: Depending on the speed of your system, you may find you get more pleasing audio scrubbing and better 3D window playback if you turn off subsurf for your model and hide any unimportant parts of the scene on different layers. The fewer things Blender has to calculate as you scrub or play-back, the faster it can draw the frames to maintain sync with the audio.


Figure 1042

Turn off these buttons to disable subsurf setting in 3D window


Figure 1043: Timeline Window

## Blender Timeline Window

Scrub through the whole audio - or sections of it in a long piece - marking and labelling all the key sounds.

### 161.3.2. Setting the keys

Now you have everything you need for your first lip-sync pass. Start at the first frame and click once on all your Shape Key sliders in the Action Window to set them all to zero. Move through the frames from start to finish setting shape keys where you marked the key sounds in the Timeline Window. If your character has a jaw bone and tongue bone(s), you will need to set these where required as you go.

## Trouble in paradise? A quick lesson in handling Shape Keys

If you haven't set shape keys before you might notice one interesting dilemma - they have great memories! Once you set a slider to any value, it stays at that value until you set another value somewhere. The shapes change in a linear fashion between keys. At first, this appears to be a problem if you want to key "MOO" because after you set the "M" key slider to 1 (one), it will stay there, making it impossible to get your character to say "OO" while his lips are trying to stay shut. So, you have to set the "M" slider on the " M " sound, then as the audio goes into the "OO" sound, you must set the " M " slider back to zero and then set the "OO" slider to its full value.

This introduces another problem. After you set the "OO" key, your "M" sound is messed up because the mouth is now also being affected by the "OO" shape that follows it. So, you must make sure the "OO" sound is set to zero when you want the lips closed in the "M" position.

## In general, you'll find yourself setting each shape $\mathbf{3}$ times

- once to determine where you want the mouth to begin moving to this shape (slider set to zero)
- once to set the slider at the desired level for this phoneme
- and once more to end this shape and move into the next one (slider set to zero)

The same principle applies to the jaw bone and tongue - 3 keys to each move.


Figure 1044: Varying shape key settings

## Setting multiple shape keys

As you get more comfortable with this procedure, you'll find you can leave some shapes set longer or adjust them to different levels as they can provide some interesting mouth shapes when combined with other shapes.

### 161.3.3. Setting the in-between sounds

Once the key sounds are properly set, you should be able to scrub slowly through the Action Window and watch your character speak in time with the audio. It won't be perfect but it's a start. To fix his speech impediment, you now have to fill in the sounds between the key sounds. Mostly these will be dull vowel sounds ("err, $u h, a h "$ ) and silence. These shapes are set in exactly the same way but here you'll have to really watch the 3D view as you set the sliders. Try combinations of sliders like "EE" and "OH" to get the perfect shape for each individual sound. You have to be guided by your character. Does he look like he's saying the sound you're hearing? (Remember that exactly what's being said is not important - it's only the sound that matters). Test each sound as you set it by scrubbing a few frames over and over and watching your character mouth the sounds.
All that's left, hopefully, is some polishing and tweaking. If it's not perfect then don't despair. Like other areas of animation, it can take a while to get a feeling for lip-sync and as the tools and workflow become more familiar you can pay more attention to the important work.

### 161.4. Putting it all together

Once you're reasonably happy, it's time to combine the audio and video and watch the result. Since Blender can't do muxing (combined audio/video) you'll need to composite it with the editing software of your choice (OSX users can use recent versions of iMovie, virtualDub is often recommended for Windows users and Avidemux 2 is often recommended for Linux users.).

What Blender can do is provide a fully synced version of the audio file the same length as the animation - even adding silence at the start and end if need be to maintain the synchronisation. To make this synced audio file, go back to the "Sound block buttons" panel and press "MIXDOWN". This saves a .wav file using the filename and location you entered in your output box (you did didn't you?) plus a frame count (something like 'speech.aviO001_0400.wav'). Then save your animation by pressing the "ANIM" button.

Combine the audio and video in your video editor and export a muxed file. You may find when you play it back that the mouth seems to be just slightly out of sync. This is for two reasons: sound travels much slower than light, so we see the lips move before the sound reaches our ears, and the lag is more the further away the person is (about 3 milliseconds of delay for every metre), and the more exaggerated their expressions as they shout. The second reason is the way the brain processes faces and expressions and mixes it with sounds heard to comprehend speech. This comprehension phenomenon is barely understood and is a common challenge in animation, and some physiologists think our brains read lips and facial expression as a way of setting up to understand the context of sounds received and comprehending the meaning behind language. To solve it, you can go back into Blender, select the audio in the Sequencer Window and move it one or two frames later, then press "MIXDOWN" again to create a new .wav file with a split second of silence at the start. Remix this with your video and watch the results.
From here on its all a matter of testing and tweaking until you're happy!

### 161.5. Using Blender to render Audio AND Video TOGETHER.

Ever since Blender 2.3, it has been possible to render video with the audio attached. Once you have your animation done, and are ready to render: In the buttons window, click scene (F10). In the format tab, choose FFMpeg. There will now be three tabs. Click on Audio. Click Multiplex, and choose your audio codec. Click Video. Choose your video codec (including AVI). Now, in another section of the window, there will be an Anim tab. Click Do Sequence. And click ANIM. When you watch the video, you'll notice that it has sound.

Note: The mac version of blender doesn't have the FFMpeg codec in blender by default.

### 161.6. Audio Files

You can find some interesting audio files selected for animators at HTTP://WWW.ANIMATIONMEAT.COM/PRACTICE/PRACTICE.HTML² ${ }^{2}$ animationmeat. These files come complete with a pre-marked phoneme sheet.

### 161.7. P.S.

One final note. Watch how the pros do this. When actors are doing voice overs for major releases their actions are recorded and even integrated into the final animation. If you have a digital camera, you may also try recording your own mouth performing your dialogue and approximating its positions to your animation. This can give you a great visual reference, possibly frames for frames if your frame rates match, and save you time.

[^136]
## 162. Constraints

### 162.1. The Constraint

A constraint is what makes everything easier, magic, automatic, customised (add more words here) in a rig. It tells a bone or an object to do something special based on the position of another object, and the position of the constrained object itself. There are many constraint types for you to play with. Most will work everywhere but, the IK solver will only be available in the Armature Editmode or Posemode.

There are no strict rules to follow when using constraints. As long as they save you time and make everything work by itself. A constraint should never be "time-consuming" or difficult to use. Think about the animator who is going to work with this rig (it could be you!). So, do everything in a smart way.
It's possible to copy constraints from one object/bone to a bunch of objects/bones. A useful thing to know when doing a repetitive task like rigging all the fingers of a hand. Just select all bones/objects that you want to give a copy of the constraint, and then select the bone/object containing the constraints. Press CTRL-CKEY in 3DView, and select Object Constraints from the popup menu. The idea behind this is to copy the constraints of the active object to the selection.
When working on an armature in Posemode, the bones will change color if they contain a constraint. Green for almost all, except for the IK constraint, which turns the bone Yellow.

### 162.2. The Constraint Panel

You can add a Constraint to an object or a bone by going in Object button window(F7) for objects and bones. Look for a Constraint panel like this (note, it's usually empty):

## Coristraints

## Add Constraint

To Bone: head


Const Const. 00
 Influence 1.0

Figure 1045

The panel also appears in Editbutton $(\mathbf{F 9})$ when you are in Armature Editmode or Posemode. So what you get:

- A button to add a new Constraint. The choice you have is listed down this page.
- When you add a new Constraint, A block gets added in the stack. The UI is almost the same as the Modifier Stack. Each block represents an entry. You can delete it with "X", move it up or down in the stack, close or open it.
- Constraints are evaluated from first to last. So if you have two Constraints working on the same channel, let say Location, The last one will most probably win the chance to move the object. But...
- Most of the constraints have an influence slider to determine how much it will influence the stack. If the last constraint has an influence of 0.5 it will mix the result with the one before.
- You can animate the influence of the Constraint by moving the time, changing the Influence slider and adding a key with the Key button.
- The Show button will display the influence IPO curve in an IPO window for editing. (The IPO window must be opened before pressing the 'show' button).
- You can change the name of the Constraint by clicking on the name when the constraint is open.
- By Clicking on the white jacket of the Constraint you select which one is active for edition, same as "show" button.
- If most of the Constraint you can enter the name of the Object you want to work with as a target or reference. For a bone, you need to enter in which Armature object it is, then an other field for
the bone name will appear. When filling those fields, remember you can use autocompletion using TAB.


### 162.3. The Constraint Index

- Copy Location ${ }^{1}$
- Copy Rotation ${ }^{2}$
- Track-To ${ }^{3}$
- Floor ${ }^{4}$
- Locked Track ${ }^{5}$
- Follow Path ${ }^{6}$
- Stretch-To ${ }^{7}$
- IK Solver ${ }^{8}$
- Action ${ }^{9}$

[^137]
# 163. Copy Location 

163.1. Copy Location


Figure 1046

The Copy Location constraint does as the name states: it will copy the location of the target to the source (constrained object). Less Influence will drag the constrained object less and less to the target.

If it's an armature, a new field will appear to let you tell which bone will be the target. Don't forget TABKEY completion while writing the name of your object/bone!

You can tell Blender to work only on the selected axis. Many uses are possible :)

### 163.2. The Constraint Panel



Figure 1047

- The Target field will let you select which Object the constraint holder will follow.


### 163.3. Where To Use It

Most of the time this little constraint is useful to stick objects to one another. By playing with the Influence you can tell when it will work, when it will remain motionless.

A good use of it is to ask a character to pick up something. By having a bone or empty for each side of the releationship (hand <-> glass), as the hand approaches the glass, you can align the two empties and fire the constraint up (1.00) to stick them together. You add another child-bone in the middle of the hand to tell where the glass will be. Thus moving the hand will move the glass. On the side of the glass just add an empty and make it parent of the glass. Add a copy location to the empty pointing to the bone in the hand we just did. There you go. Of course when the hand rotates the glass will not. For that you will need to add a Copy Rotation Constraint.

Before Blender 2.40, the above method was a good way of faking parent relationship without rotation. But now we have the hinge option which does the same.

Create this kind of tracking device using the X Y Z toggle button


Figure 1048

# 164. Copy Rotation 

### 164.1. Copy Rotation



Figure 1049

This constraint copies the rotation of the target. As simple as that. It can be an object or a bone. As you can see in the example, only the rotation gets copied.

### 164.2. The Constraint Panel



Figure 1050

- You have 3 buttons to select which axis get copied over.


### 164.3. Where To Use It

Can be used with Copy Location to fake parent relationship. As you can key the influence you can make a character pick something up and hold it in his hands. Check the .blend for the hand-glass scene.
(?)link to the Blend(?)
You can also use this to align a plane with a 2D effect on it to the camera at all times. This works better than pointing it at the camera in some cases, such as a ring of atmospheric halo around a planet, where you don't want it disappear behind the planet.

## 165. Track-To

165.1. Track-To


Figure 1051

The Track-To constraint lets you influence the Rotation of the constrained object by making it track a target with one of the constrained object's axis.

### 165.2. The Constraint Panel



Figure 1052

- You can enter the name of the target you want to track.
- You can select which axis is going to track the target.
- You can select which axis is going to stay up.


### 165.3. Where To Use It



Figure 1053

A good example of use is the make a camera track an object. The setting to use on a camera is track: -Z and up: Y. You can turn Axis drawing in objectbutton window to help you choose the good axis.

Another example with armature would be the eyes of a character:


Figure 1054
(?)link to the Blend(?)

## 166. Floor

Using the floor constraint will keep a bone from passing through an object from a given direction. It is useful when making floors of course but also when making walls and other items which are obstacles for the armature.

There is also an offset value which is very useful when say for example you have a foot where the mesh stretches down below the actual tip of the armature you can then use the offset to make the bone stop before it actually reaches the obstacle object.

## 167. Stretch-To

### 167.1. Stretch-To

```
Description
```

Stretch To causes the affected object to scale the Y axis towards a target object. It also has volumetric features, so the affected object can squash down as the target moves closer, or thin out as the target moves farther away. Or you can choose not to make use of this volumetric squash-' $n$ '-stretch feature, by pressing the NONE button. This constraint assumes that the Y axis will be the axis that does the stretching, and doesn't give you the option of using a different one because it would require too many buttons to do so.

This constraint affects object orientation in the same way that Track To does, except this constraint bases the orientation of its poles on the original orientation of the bone! See the page on Tracking for more info. Locked Track also works with this constraint. Options

R
Pressing the R button calculates the rest length as the distance from the centers of the constrained object and its target

Rest Length

```
Rest Length determines the size of the object in the rest position
```

Volume Variation

```
Volume Variation controls the magnitude of the effect
```

Vol
The Vol: buttons control along what axes the volume is preserved (if at all)

Plane
The Plane buttons define which local orientation should be maintained while
tracking the target
7 Constraints
Add Constraint To Object: Cube

- Stretth To Const (8) ..... x
Target: OE:
F 14 Rest Lengtti: 0.00000
Volume Variation: 1.0000
Wol: Hz | $\mathrm{H} \mid \mathrm{Z}$ WOWE ..... Flane $B$ Z
Intluenice 1.00

Figure 1055

## 168. IK Solver

168.1. The IK solver


Figure 1056

The IK solver constraint is a wonderful tool for all animators. IK stands for "Inverse Kinematic" and is the opposite of FK (Forward Kinematic).

- FK: You have a dependency to the root of the chain. In Blender, a FK chain is a chain of bones connected together. You have to animate the bones rotation one by one to get it animated. It takes longer, but gives you entire control over the rig.
- IK: Both ends are roots. All bones in the chain are trying to rotate to keep both ends on targets. Now this Constraint got most of the attention during Animation refactoring, hopefully we have a lot of toys to play with now.

The IK solver has a special shortcut in Posemode to be added easily to a bone. If you select a bone and press 'CTRL-IKEY', You get a little menu asking for more info on the new constraint, the target: to a new empty object or without target. It's now possible to work without target. Though you have less freedom (no rot feature, difficult parent relationship).

You can also select the target and then the IK constraint holder and press CTRL-IKEY. With this way of selecting ensure that your target is selected, but the bone you want to apply the constraint to is active (the last one selected). The menu will then let you add a constraint to the current bone with a target. If the target would itself be part of the IK chain, you get an error message - so make sure the target bone is not connected to the bone you want to add the constraint to.

It's also possible to remove all IK constraints from selected objects or bones with 'ALT-IKEY'.
Q: 'CTRL-IKEY' doesn't seem to do anything
A: Either the 3D Window is out of focus (R-click in empty space to solve) or you're not in Pose Mode ('CTRL-TAB', selected bone will be magenta in color)

A: In the 2.48 version of Blender, the shortcut is 'SHIFT-I'

### 168.2. The Constraint Panel



Figure 1057

- You can rename the constraint.
- You can select which Object or bone will be the target. Don't forget Tab completion.
- The Rot button let you tell Blender to use the rotation of the target to influence the rest of the chain:


Figure 1058

- The Tip button lets you tell Blender which part of the bone is the target, the Tip or the Root. It's interesting to use tip, because this way the Bone holding the IK constraint can be used to deform geometry.


Figure 1059

- Len lets you tell Blender the length of the chain the IK solver will try to rotate. If set to 0 , the entire chain will enter in the constraint. If for example the len is 4 , only the 4 last bones of the chain will try to touch the target.


Figure 1060

- Also If you set len to 0 and your chain's root is a child of another bone, The IK solver will reach and rotate all the bones until it gets to the end of the parent relationship. If all the bones are linked up to a master root, then all other sub-branchs will be affected. If there is another IK target in other sub-branchs of the rig, Blender will try to mix them. This concept of multiple IK targets in a rig is called Tree IK and can be used to get completely automated animations. For example like a doll: if you pull one hand, all the body will follow. In the 3D-view you'll see a yellow line from the IK solver to the root of the chain it covers. This line appears when you select the bone containing the IK solver.


Figure 1061

- PosW and RotW let you tell Blender if this IK solver will influence the final result more of less in the case of a Tree IK setup. With these options it's possible to use an IK solver just for location and an other one just for rotation.
- Tolerance and iterations are performance and precision options. IK solving is done in more than one pass, the more passes you calculate, the more accurate results you get. The tolerance is the distance from the IK solver to the target you can accept. If Blender manages to place the target near enough, it will stop doing iterations. The Iterations value is a hard limit you set to limit the time blender can reach on each IK solver per frame. Try to set it to a very low value to know why Blender needs more than one pass ;).
- You can set the general influence this constraint will have over bones, and it's animatable.


### 168.3. Where To Use It



Figure 1062

In any chain of bones you don't want to animate by hand but you want both ends to be at precise location. The best example is a leg: The leg is connected to the body and to the foot. You don't need to animate the 2 bones in the legs, just place the body and the foot, the leg will follow automagically.

### 168.4. Degree Of Freedom



Figure 1063

In DOF it is now possible to set it for bones in an IK chain. This way you can set what will block where. This is very useful when doing a mechanical rig as you can limit the move or better, lock completely an axis.


Figure 1064

- There you can set a limit on each axis, or completely Lock it.
- No limit gives it complete freedom (which is the same as [min:0 max:360] or [min:0 max:0]).
- The stiffness lets you tell Blender if an axis is more difficult to rotate than the rest. If all bones have a stiffness of 1 on $X$ and you try to curve that chain in a way that all bones need to turn on $X$ to follow the target, the Solving will find really weird poses to find a way to touch the target without rotating on X .

169. NLA Window

## 170. (about this placeholder)

Since there has been nothing written on this page for a while, I asked for some basic information on another forum. I'll just quote what I learned from that forum, and this can be massaged into a real page of documentation over time. I won't attribute the individual various quotes, but thank you all for helping out. Remember, ANYONE can edit a Wiki, so create an account and make this thing better.

## 171. The NLA Window

### 171.1. Forum Notes

It's quite easy and maybe that's why there's no specific tutorial. Let's say you want to make two actions, AC:Hit and AC:Kick. Start with posing Hit and an Action will automatically be created in the Action Editor consisting of all the Bones that use Action IPO's. That's done so return to Frame 1 which will be your default Stance of AC:Hit.

Now, in the Action Editor, click the X (delete) next to AC :Hit and the datablock menu will disappear. (If you Add New instead of deleting then it will copy selected bones to the new action and you don't always want that). If you want a new default pose for $\mathrm{AC}:$ Kick, then Pose it or the same stance will be used as was the default in AC:Hit. Pose and Keyframe your Kick action and name it.

Over in the NLA Editor you can now use Shift-A to add NLA-Strips of your Actions, Grab and Scale them and use the Transform Properties tab to input how they Blend.
If you select an Action with the dropdown menu, at first its name will appear in the NLA window along with its keys. To make this Action into an NLA strip, point at the Action's name in the NLA and press CKEY.

Close any open Actions by clicking the scary X in the Action Editor. If you don't do this, only this action will play. Now in the NLA editor, play the animation.

If you see any keys (diamonds) in the NLA window, instead of strips (rectangles), you're still editing an action. It's so much easier if you have both the Action and NLA windows open so you can see whether an Action is open or not. (Edited by CD38 23 Feb 2006)

### 171.2. Walkthrough

With no Actions selected, both the Action Editor and the NLA Editor appear empty. Here, the NLA Editor window does list one Object called -Empty because that object is not an armature but it has some IPO curves attached.


Figure 1065: empty action window

Select an Action you've already made. Here, an Armature named Yui has bones involved in a one-frame action called -AtEase.


Figure 1066: nla window with action


Figure 1067: action window with action

Convert the listed Action to an NLA Strip in the NLA Editor by pressing the CKEY with the mouse hovering over the Action to be converted. No change in the Action Editor; it is still available as an Action.


Figure 1068: nla window converting to a strip


Figure 1069: nla window after conversion

Once converted, note the changes in the NLA Editor. The Action icon appears next to the Armature's name:


Figure 1070
. This is actually a button though it does not look like it, and you can toggle it between the Action and NLA Strips icon by clicking on it:


Figure 1071

More soon.

## 172. Intro to the NLA Editor

### 172.1. NLA (Non-Linear Animation)

WARNING'-This page assumes the reader to understand the IPO window and the Action Editor window, as well as rigging a character with an armature object. This tutorial will make little sense without this previous knowledge.

Imagine this--yourself, sitting at your computer late at night, beating away at a huge blender animation. You didn't think it would take as long as it did, but you lost your composure staring into the jungle of colorful IPO lines, little white and yellow Action diamonds, and that annoying green current frame line. You know that the NLA window would help you make sense of it all, but you are afraid of opening that Pandora's Box because of the problems that will follow it. Never fear, for this tutorial will clean up all those problems and revolutionize the way you blend for the rest of your life.

### 172.2. Setting up the Scene

It will be easier for you if you start with a small demo file than if you go straight for the big prize. Give a character or other armature-rigged object a few SEPARATE actions (remember to name them something distinct, like "Walk" or "Run" as you always should with everything). For your own sanity, you will want to have a path or an IPO that correlates with the actions in question. All of the blender screenshots I will be using come from a file with a very basic stick person, rigged with an armature skeleton. He has two actions; a normal walk cycle, and then another, hunched over one, as if to pass beneath a low ceiling. If you use this idea in your own test file (and I thoroughly recommend it) do yourself a favor and give them both the same stride length! Give this guy an IPO or a path to follow that keeps his feet from slipping, and make sure that it has a linear interpolation mode. The rest of the scene consists of a floor-plane and an arch too small for him to walk under (hence the crouching walk). Place this arch exactly one walkcycle away for now, we will move it around later.


Figure 1072

```
Complete the scene before going on to the next step.
```


### 172.3. Adding Action Strips

Now, he moves forwards as you scroll through the frames, but how do we get him to walk forward, duck, and walk under the arch, too? First of all, you need to select the armature object and create a link to the normal walk. By pressing the up or right arrows, or pressing "alt+a", you should be able to see him walk up to the arch, stop walking, but keep sliding through, with his head sticking out the top. As ridiculous as this seems, right now, however, you are on the right track. Split your window now and open the NLA window with


Figure 1073

At first glance, this window looks almost identical to the action window we all know and love. This is not totally off of the mark. The NLA window is, in essence, an abbrieviated version of the action and IPO windows.


Figure 1074

```
This is what you should see in the NLA window.
```

You see a space with the name of your armature (named "Armature" in my demo) and in that row you see a few key diamonds. These show the ipo you have put on the person. I made it so the IPO extended on forever, using the first ten frames as a guide. In a subset beneath the armature object, you see the name of an action. The bullet next to it means that the armature is currently linked to that object. In that row, you see key diamonds, and those correlate with the keys you put into the action in question. If you switch actions in the action window, you see that the NLA window also changes. But how do you get it to keep the first and play the second later?

Go to the first frame you want him to walk in (most likely number one) and place your cursor in the NLA window. Press "shift+a" to see a dropdown menu. Pick the name of the first walk cycle. You should see a new subset space appear, with the name of the first walk in it. This space should be occupied by an action strip. Two colors of action strips are yellow and pink, yellow meaning selected and pink meaning deselected, just like IPO vertices. This strip takes up the amount of frames the walk did. The NLA window has now saved your first action. Now to toggle to the next action, move the frame line to the end of the first strip, then press "shift+a" again, this time clicking the other action on the dropdown menu.


Figure 1075

```
The result
```


### 172.4. Getting the Strips to Play

Now, as cool as this seems so far, if you press "alt+a", you will be disappointed and confused. The animation will only play one of the actions. This is a simple problem to fix. If you look carefully, you will see that the armature is still linked to the action it played. This data is overriding any other data from the NLA window. Press the "X" in the action window right next to the name of the action. Press "alt+a" again. It works!

This is, however, a jerky and instantaneous switch from one action to the other. Making it less weird is easy. Press the "N" key with your cursor in the NLA window. You will see a small box with a bunch of functions in it (this will be explained in detail on later pages).

## X $\vee$ Transform Properties

## Timeline Range:

Strip Start: 36.00	Strip End: 76.00
A Action Start: 1.00	Action End: 41.00
Blending:	Dptions:


1 Blendin: 0.00
Eilendout: 0.00
Stride Fath

Disable $/$ Offs: 0.00 | 8 Stri: 0.00
$\mathrm{X}|\mathrm{Y}| \mathrm{Z}$ Stride Bone:
Figure 1076

```
The Properties window.
```

This little box is the lifeblood of the NLA in blender. It contains all the tools you will need to be able to run this feature smoothly. I will illustrate a few of them right know, but most others will be shown in the section on this window.

Make sure you have highlighted the second action strip, and look at the space where it says "Blendin". The number there is the number of frames blender will use to smooth the transitions in to the highlighted action. Depending on how fast your character is walking, you may need to change the number a bit, but I set my "blendin" for seven. Whatever number you used, however, move the second strip back that same amount of frames. The wedge on the end of the action strip should end as the other strip ends.


Figure 1077

```
The NLA solution.
```


### 172.5. Conclusion

You now have the necessary skills to complete much more involved and complex animations. You can, however, increase this even more by continuing to read the other NLA tutorials in this wikibook.

Good Luck!

## 173. The Stride Feature

At the moment, one of the best documentation for Blender Stride features can be found here: Blender Stride Tutorial ${ }^{1}$, which takes on where the Official Blender Stride Page ${ }^{2}$ takes off. Good luck! A simpler and shorter, but still very good tutorial can be found here: Blender wiki: NLA Editor and Stride Path ${ }^{3}$.

[^138]
## 174. Relative Vertex Keys

1. REDIRECT Blender 3D: Noob to Pro/Advanced Tutorials/Relative Vertex KEYS ${ }^{1}$
[^139]
## 175. Piston, Rod and Flywheel

This page relates to Blender v.2.42a

### 175.1. Piston, Rod and Flywheel



Figure 1078: Image 1: Surprisingly difficult: the animation of Piston [Kolben], Rod [Pleuelstange] and Flywheel [Schwungrad
] A setup like that shown in Image 1 is e.g. typical for a steam engine. It is surprisingly difficult to animate this setup, because one has to translate a rotating movement (of the Flywheel) to a horizontal movement (of the Piston). This alone wouldn't be too difficult, but the Rod has to stay attached to the Piston. The shown setup uses three empties and two armatures, each with two bones.

The horizontal direction is the Y-direction, if this is different in your model you have to exchange Y with your horizontal direction.

### 175.1.1. Setup

- Use Ctrl-A->Apply scale and rotation on all mechanical parts in object mode.

This will spare you from bad surprises if you rotate the flywheel afterwards.
We need an object which follows the rotation of the flywheel. We use an Empty, which is parented to a Vertex.


Figure 1079: Image 2: Make vertex parent of an Empty.

- Change to edit mode of the flywheel. Select a Vertex in the middle of the crank.
- Move the cursor to the Vertex (Shift-S->Cursor->Selection).
- Change to object mode and insert an Empty (ERotation).
- Change back to edit mode of the flywheel. The vertex is probably already selected, now select with Ctrl-RMB the Empty and press Ctrl-P->Make vertex parent (Image 2).


Figure 1080: Image 3: The positions of the three Emptys.

We need two more Emptys:

- Place the second Empty (EGelenk) in the center of the joint between Rod and Piston.
- Place the third Empty (ESteuerung) near to the joint.
- Now select at first EGelenk, than Shift-RMB ESteuerung and parent EGelenk to ESteuerung with Ctrl-P.

We're going to insert two armatures, each with two bones. The first armature, helps translate the rotation to a horizontal movement. The second armature drives the Piston and the Rod. The cursor should be positioned at the Empty ERotation (like in Image 3), else set it there.

- Add an armature (AHelfer). The root of the first bone (BHelferl) has the same position as ERotation, the tip has to be positioned to the Empty EGelenk (select Empty first, Cursor $->$ Selection, than select bonetip, Selection->Cursor).
- Extrude another small bone (BHelfer2) in horizontal direction.

BHelfer 2 is automatically Child of BHelferl. The second armature that is driving the movement of piston and rod will be inserted in the opposite direction, i.e. from right to left in our example.

- Position the cursor on the piston.
- Add an armature (AGestaenge).
- Move the tip of the first bone (BKolben) to EGelenk.
- Extrude the first bone and place the tip of the second bone (BPleuelstange) to ERotation.

Connecting the two bones will ensure that the rod cannot disconnect from the piston.


Figure 1081: Image 4: The alignment of the two armatures.

Now we're going to add the "logic".

## Constreints



Figure 1082: Image 5: The constraint settings for BHelferl.

- Add a Copy Location constraint to BHelferl which points to ERotation. To do this change to the pose mode of the armature AHelfer and select BHelfer1. In the Constraints panel click Add Constraint->Copy Location and type ERotation into the Ob : field.
- BHelferl needs a second constraint: Track To to EGelenk (Image 5).

Now the root of the bone BHelferl follows the rotation of the Flywheel. It's tip follows the joint, but with slight deviations upwards and downwards. The position of BHelfer2 governs the horizontal position of the Piston. We just have to "extract" the horizontal position, for that we're going to use a CopyLocation constraint, but only in Y-direction. There is no offset for a copy location constraint - else we could have done with one empty less.

## Constrairits



To Object: ESteuerung


Copy Location
Target: OB:AHelfer BO:BHelfer2


Figure 1083: Image 6: Constraints of ESteuerung.

- ESteuerung gets a CopyLocation constraint in Y-direction to AHelfer->BHelfer2. You have to inactivate X and Z (Image 6).
- Make ESteuerung the parent of AGestaenge.

The armature AGestaenge gets it's horizontal movement from BHelfer 2 via ESteuerung.
Nearly finished:

- Give BPleuelstange a Track To constraint to ERotation.
- Parent the piston and the rod (the meshobjects) to their bones.
175.1.2. Overview about the relations between armature bones and objects


Figure 1084: Image 7: Parent-Child Relations are drawn with slim arrows, Copy Location Constraints are drawn with thick black arrows, Track To Constraints are drawn with thick blue arrows.

- Schwungrad is vertex parent of ERotation.
- BHelferl has a Copy Location X/Y/Z constraint to ERotation.
- BHelferl has a Track To Constraint to EGelenk.
- ESteuerung has a Copy Location Y constraint to BHelfer2.
- ESteuerung is parent of AGestaenge.
- ESteuerung is parent of EGelenk.
- BPleuelstange has a Track To constraint to ERotation.
- BKolben is parent of Kolben.
- BPleuelstange is parent of Pleuelstange.

The Parent-Child relations between the bones are inserted automatically through extruding, you have to insert the other relations yourself.

### 175.1.3. Finishing Touches

- Animate the rotation of the flywheel.

The driving object is the flywheel, all the other movements are synchronized with its rotation. If you've done everything right, your animation should look like in Image 8.


Figure 1085: Image 8: Our working Piston, Rod and Flywheel animation.

### 175.2. Links

THE GERMAN ORIGINAL OF THIS TUTORIAL (SAME AUTHOR) ${ }^{1}$

[^140]ANOTHER METHOD USING CONSTRAINT SYSTEM ${ }^{2}$

2 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=140734

## 176. Cutting Through Steel

## This tutorial has been created with Blender v2.48a

Figure 1086: Figure 1: Cutting out a logo, the result of this tutorial

In order to simulate a laser beam which is cutting through a steel plate, we have in Blender (at least) two possibilities:

1. an animated Mesh with many Shapekeys
2. an animated texture

The latter method is considerably easier to implement and the result is nevertheless convincing enough. We will proceed as follows:

- You need an animated alpha mask for the points at which the metal is changed. For this use a text object as a path. A cube follows the path and emits a particle system. The results are rendered as animation and the images stored.
- Then load these pictures and use them as an animated texture on a plane.
- With a second particle system the sparks are simulated.
- With a third particle system we simulate the annealing of the weld. Again, this sequence is used as an animated texture.
- Smoke is created with a fourth particle system.

The result is shown in Fig. 1.
This guide is based on the well-known tutorial Cutting Through Steel ${ }^{1}$, but remade with the current Blender particle system and with constraints. You need to have basic knowledge of Blender.

[^141]
### 176.1. Creating the Alpha-Map



Figure 1087: Figure 2a: Setup of curve, emitter and camera in the 3D window.

- Start Blender. Save your file. Delete the cube.

We should save the file right at the beginning, because we will save the animated textures in subdirectorys to the current directory. Particle caches are also created as subdirectorys.

- Set the End value to 150 in the Anim panel of the Render buttons. This allows you to specify the total length of the animation.
- In the Output panel use "//AlphaMap/" as output directory. When we render the animation the images are than saved in the subdirectory "AlphaMap" to the current directory.

The animated alpha map consists of gray-scale images whose luminance information is used to calculate the mask. Bright pixels produce transparency, dark pixels remain opaque.

- Use $P N G$ as output format. This avoids compression artifacts wich occur with the JPEG format.

I've left the resolution at $800 \times 600$, but you need to set your desired resolution here.

- Create the shape you want to cut out as Curve object, or use a text object and convert this to a curve. I've done the latter, I've used a text-object (a "W"), and converted this to a Curve object (Object-> Convert Object Type ...-> Curve).
- With the function Center in the Curve and Surface panel I've brought the object in the middle of the 3D-coordinate space.
- The filling of the object is not needed here, therefore activate the option $3 D$ for the curve object, even though the object should remain two-dimensional.

Now we need again a cube. The cube will follow the curve. It's particle system will create a glowing trail, that is later used as alpha map.


Figure 1088: Figure 2b: particle system of the cube.

- Insert a cube.
- Scale the cube as small as the track of the laser beam (the welder) shall become.
- Select the cube, than also select the curve object with Shift-RMB.
- Ctrl-P->Path Constraint creates a Follow Path constraint.
- Select only the cube and activate the option CurveFollow in the Constraints panel in the Object buttons.

If you press Alt-A now and let run the animation, the cube will follow the shape of the curve object, but not necessarily in the desired direction and not from the desired location. So some work needs to be done:

- Change to the Edit mode of the curve object.
- Curve->Toggle Cyclic opens the curve object, by adding (Subdivide) of one or more control points you achieve the desired movement. W->Switch Direction reverses the direction of the motion of the cube.

By adding a Time Ipocurve to the curve you could set the duration and speed of the animation, but I've left the preset duration of 100 Frames. The last 50 Frames the path will glow a bit and the smoke will vanish.

- Add a particle system to the cube, call this Alpha.
- Set the particle lifetime to 150 (or higher) (Fig. 2b). The particles will live the entire length of the animation.
- Bake the particle animation.
- The cube gets a material:
- Halo
- RGB $1 / 1 / 1$, that is completely white
- XAlpha
- HaloSize: 0.03
- Hardness: 40

I want to achieve with these settings, that we will get a grayscale image, that is completely white where the material shall become transparent. We don't need partial transparency, since a relatively sharp cutting edge shall be created. Slight irregularities in the periphery are wanted.


Figure 1089: Figure 2c: A frame of the AlphaMap.

To render the animation, the camera is centered directly over the object.

- View->Top
- Strg-Alt-Num0 sets the camera to the current view. Select the camera.
- With the Transform Properties panel in the 3D-window (Object->Transform Properties) set the coordinates of the camera exactly vertically above the center of the 3D window ( $\mathrm{X} / \mathrm{Y}=0$ ).
- In the Editing buttons of the camera set the option Orthographic in theCamera panel. Scale the size of the animation with the Scale value.
- The the world color to black in the World buttons.
- Render the animation.

Blender now generates an image sequence from 1 to 150 in the subfolder AlphaMap (Fig. 2c).

### 176.2. Welding sparks



Figure 1090: Figure 3a: Adding a new Scene

Now we'll create a new scene, in which the different effects are joined.

- Rename your current scene to AlphaMap.
- Create a new scene as FullCopy (Img. 3a). Name this new scene Cutter.

The welding sparks are created using a particle system.

- Add a UVSphere with 16 segments and 16 rings.
- Delete the lower half of the sphere in Edit Mode and scale it to approximately the same size as the cube.
- Switch to Object Mode.
- Select the cube in addition to the sphere. Copy the Follow-Path-Constraint from the cube to the sphere.

Note that you copy attributes from the active to the selected objects. The active object is the one you've selected last


Figure 1091: Figure 3b: The particle system for the sparks.

- Create a particle system for the sphere.
- Name Sparks
- Amount: 4200
- Life: 5
- Emit From: Random/Verts
- Normal: 0.757
- Random: 0.397
- Rotation Random: 0.116
- AccZ: -1.37

Except for the lifetime the values are relatively arbitrary, I have just experimented with the values until I was halfway satisfied with the results. The sparks have a slight acceleration in negative $Z$ direction to sink down.

- Visualization:
- Line (which corresponds as much as possible to the setting Vect in the particle system before 2.46)
- Speed
- Back: 0.04
- Front: 0.0

You achieve a long spark with these settings.

- Bake the particles. Change to the Bake panel and click on the Bake button. The particle animation is now permanently saved.

The Bake end value is also the final value for the normal particle animation, even if you don't bake. If you need more than 250 frames, you need to increase this value.

### 176.3. Using the alpha map on an object

The alpha map is now used as texture on a plane. Therefore we have to position the texture exactly like the previously rendered animation, so that the sparks run in sync with the blending out of the plane.

- Add a new plane to your scene (Add->Mesh->Plane).
- Scale the plane at about twice it's size - as big as you need it for the final shot.

The main problem is now to fit the texture exactly to the plane. We will give the plane UV coordinates, than fit the plane to the ratio of the texture and finally adjust the position in the 3D window with UV coordinates.

## Draw type:



## Shaded



## Solid



## Wireframe



## Bounding Box

Figure 1092: Figure 4a: Setting the Draw Type

- Switch to Draw Type Textured (Fig. 4a).
- Split the 3D window, and open in one part the UV/Image Editor.
- Switch to edit mode of the plane.
- Unwrap the plane ((Mesh->UV Unwrap).
- Load an image of the alpha map in the image editor (not the first one, so you can see the course of the map).

Normally the texture is not orientated the way I would like it to be.

- Click the padlock icon in the toolbar of the UV/Image Editor (Update other windows in real time).
- Rotate the UV vertices in the UV/Image Editor until the texture fits (e.g., while holding the Ctrl key)
- Switch to object mode.


Figure 1093: Figure 4b: Material settings for the plane

- Add a new material to the plane and name it Rust.
- Select the fifth texture slot and add a new texture. Name it AlphaMap with the parameters:
- Map Input: UV
- Map To:
- Alpha
- Spec
- Nor
- NoRGB
- DVar: 0

With these (Fig. 4b) settings we achieve, that the white pixels in the texture set the Alpha and the Spec value to zero (DVar). Because the texture delivers RGB colors we have to activate $N o R G B$, because we need intensity values. We don't need RayTransp, because the world background is black anyway. We can't use ZTransp, because Halos are not rendered in front of materials with ZTransp (probably a bug in Version 2.48a). With Nor we get a 3D effect.


Figure 1094: Figure 4c: Texture settings for the animated alpha map

- Switch to the Texture buttons.
- Type: Image Texture
- Load the first image of the alpha map sequence.
- Image: Sequence
- Frames: 150
- Map Image: Extend (Fig. 4c)

Now we adjust the UV coordinates.

- Object->Transform->Scale to Image Aspect Ratio. This scales the ratio of the plane automatically to the aspect ratio of the image texture.
- Change to a frame where you can judge the particle animation and it's fitting to the texture.
- Switch to edit mode. Scale the UV coordinates in the UV editor until the texture fits to the particles.
- Switch back to object mode.


### 176.4. Material for the plane



Figure 1095: Figure 5: Material for the plane

We will now give the plane a better material. To judge the material we will first re-focus the camera, give it a texture and make some material settings. If you already have a good metal material, you can use this of course directly and use the Alpha texture from above on your existing material.

- Select the camera.
- Turn Orthographic in the Camera buttons off.
- Position the camera as desired.
- Select the plane.
- I've used the rust texture that is linked at the bottom of the page as image texture.
- Map Input: Orco, SizeX/Y each 0.5. The size change is to use a larger part of the texture on the final image. But this depends on the size of the camera and the texture.
- Map To: Col/Nor
- In the second texture slot I've mapped a Stucci texture to Spec.
- This abridged sentence means: select the texture slot. Set Map To to Spec. Deselect Col. Change to the Texture buttons. Select Texture type Stucci.
- The Specularity is thus determined by a texture. The spec value is increased by the texture ( $D \operatorname{Var}=1$ ). Therefore you have to set the Specularity in the Shaders panel to the smallest value the material shall have (e.g. 0.08).

If you have done a test render, you'll see that the particle track of the cube is still there.

- We don't need the cube anymore, you may delete it. In the Scene Cutter we use the already generated AlphaMap.

Texture with OSA (Antialiasing) are somewhat blurred, for our purpose we use CatRom instead of the default Gauss method.

- Set in the Render panel CatRom as AntiAliasing filter.

We need a new output directory for the animation, to not overwrite the AlphaMap we've created earlier.

- Set the output directory to "//Render/" in the Output panel.


### 176.5. Lighting the torch



Figure 1096: Figure 6: Ipo curve for the energy of the lamp

The torch itself shall cast light, therefore we parent a Lamp to the Sphere and animate the energy of the lamp.

- Change to frame 1.
- Select the Sphere.
- Place the 3D cursor on the Sphere. Object->Snap->Cursor to Selection
- Add->Lamp->Lamp
- Select the lamp in addition to the Sphere.
- Object->Parent->Make Parent->OK
- Select the lamp and move it a bit up (i.e. in positive z-direction). The lighting shall emit from the sparks, not from the hole.

I find it cumbersome to animate the energy of the lamp by setting ipo-keys in the lamp buttons. Instead I do it directly in the 3D window.

- Change to the Ipo Curve Editor in one of the open windows.
- Change the ipo type to Lamp.
- Activate the Energy channel with $\mathbf{L M B}$ click in the ipo window.
- By holding Ctrl key pressed, you create by left-clicking in the ipo window the points of the ipo curve.

These values may be larger than 1 . However, the last maximum value should be reached in frame 100 , and decrease significantly to frame 105 . The sparks are only issued up to frame 100 , and live up to the 105th frame. After that the metal is glowing a bit.

Your result may look somewhat like mine in Fig. 6. If the amplitude of the curve is not large enough, you can scale the ipo curve at the y-axis.

### 176.6. More realistic sparks



Figure 1097: Figure 7: Better sparks

You may animate the material for Line visualization during the lifetime of each individual particle if you use Halo for the material, so you could change the sparks color from white to red.

We will show this in the next step, but confine ourself here to make a better, not animated material (Fig. 7).

- Add a material to the Sphere, name it Sparks.
- Activate Halo in the Links and Pipelines panel.
- Set the RGB color for Halo to white.
- Activate Lines/X Alpha/Shaded in the Shaders panel.
- Halo Size: 0.1
- Add: 0.8


### 176.7. Smoke



Figure 1098: Figure 8a: Sparks and Smoke

Now were going to create an individual material animation for every particle during its own lifetime.

We will use particles with a simple texture and animate the alpha value of the material. We're going to duplicate the Sphere and give it a new particle system.

- Duplicate the Sphere with Object->Duplicate. The new sphere already bears the Path constraint.
- Remove the Sparks system from the new Sphere.
- Create a new particle system. Name it Smoke.
- Amount: 300
- Emit from: Random/Verts
- Initial velocity:
- Object: 0.02
- Normal: 0.1
- Random: 0.01
- AccZ: 0.05
- Bake this particle system.
- Change to the Material buttons.
- Create a new material and call it Smoke.
- Alpha: 0.034. This is the basic visibility for the smoke texture.
- Add an ipo key for Alpha in frame 1.
- Change to frame 100.
- Set Alpha to 0.0 and add the second ipo key.

Now the smoke will disappear within the lifetime of each particle, independently of the lifetime of the particle.

- Halo
- Halo Size: 0.224
- Hard: 12
- Add: 0.014
- Halo Tex This is the crucial setting to use a texture for the shape of the halo.
- X Alpha


Figure 1099: Figure 8b: Particle texture

- Create a new texture, you may also call it Smoke.
- Texture Type: Image
- Load an image with random, smoke-like structures, like that from Fig. 8b.

If the fading goes to quickly, or the texture is to transparent / opaque, change the animation of the Alpha value.

You see, even though we use only a few objects and materials, it is extremly helpful if we designate meaningfull names to the objects, materials, textures etc.

### 176.8. After Glow

Now at last we will create another animated texture, that shall simulate the annealing of the steel plate after it is being cut through.


Figure 1100: Figure 9a: A Frame of the
Glow-Map

- Change to the scene AlphaMap.
- Add a new scene again as a Full Copy.
- Name this scene Glow.
- Enter the output directory "//Glow/" in the Output-Panel of the Render buttons.

The texture shall have nice semi transparencies.

- Therefore we select a different output format in the Format panel, namely RGBA (RGB with Alpha).
- Selecting Premul in the Render panel the world background will become fully transparent, and the particle trace semi transparent.

We use the existing particle system, but change it's material settings.

- Call the material of the cube Glow.
- Increase the HaloSize to 0.04 . Our new texture has to be larger than the cutout of the plane, else it will not be visible.

Now we're going to animate the material of the halos. Again this works only because we have Point visualization of the particles.

- Change to frame 1.
- Set an IPO key for the RGB color (here white).
- Go to 3rd Frame.
- Change the Halo color to $1 / 1 / 0.42$ (light yellow). Set the next IPO key.
- Go to 6th Frame. Change the Halo color to 1/0/0 (red). Set the next IPO key.
- Go to 11 th Frame. Change the Halo color to 0/0/0 (black). Set the next IPO key.

The particle trace will fade out during 11 frames.

- Render the animation.


Figure 1101: Figure 9b: A finished frame of the animation.

- Go back to the scene Cutter.
- Select the plane.
- Load the newly created texture in the third texture slot as an animated image texture.
- Add New. Name the texture Glow.
- Map Input: UV
- Map To: Col/Emit

We need the alpha values in the image for changing the emit value. Also the alpha blends the glow texture nicely with the plane texture.

- Texture Type: Image
- Select the first image from the subdirectory Glow.
- Activate Sequence.
- Frames: 150
- Extend

The settings for the texture are identical with those of the texture AlphaMap (Fig. 4c), except of course for the directory in which the images reside.

In Fig. 9b, see a finished frame of the animation. For the video in Fig. 1 I've changed the animation a bit, scaled the emitter objects a bit smaller, changed the sparks Color and used a different camera perspective.

Suggestions, critics and approval please write on the commentary page of this article. If you find some obvious mistakes you may correct the article directly of course.

### 176.9. Links



Figure 1102: Rust Texture

- The Blend File ${ }^{2}$

[^142]
## 177. Advanced Game Engine

This set of tutorials is for Blender users who stumble up on the basics of certain games, such as making a HUD, menu, or even a simple button. This is also a place where users who know cool ways to spice a game up or explain troublesome aspects of making certain parts of a game genre's content work (like how to get Blender to calculate the damage of a bullet shooting).

There are a couple subsections to this. One is for those who don't like the messiness of python. Learning python to the point of being able to create a game with it will take months, maybe years, just to learn it, not to mention how long it would take to type the specific code and troubleshoot. So, the first section is for those who are much more comfortable with using the GUI Blender screen to make the majority of their game, and the tutorials exist to help them enhance their game.

Note: No matter how much GUI you'd like to use in game creation, there is a certain amount of python you will HAVE to use to be able to really make your game good. Make sure to at least read up on it. Sorry.

## Jump to Game Creating Techniques within a GUI ${ }^{1}$

Then there is the second subsection. This section is to help those who are comfortable with python learn how to use the code in ways they never thought of, and to show those who don't do so well with it just what python can do. While it's a simple language, it can still be incredibly complicated at times, and very, very picky.

> Note: DO NOT SUBMIT ANY CODE YOU DO NOT WANT COPIED A MILLION TIMES! This section is for helping the broad and the narrow range of Blender users to learn how to use python better, and there will be no expectation of attribution for submitting code you found out yourself.

JUMP TO Game Creating Techniques with Python ${ }^{2}$

[^143]
## 178. Game Creating Techniques Part One: The GUI

### 178.1. Making Blender Games Graphically

If you're reading this section, I'm guessing that you have either made a game before or at least are in the process of making one right now. Let's face it: It's probably much harder than you imagined it. A large amount of people take video games and the work put into them for granted. And there are probably quite a few times in which you wanted to do something so simple-such as a menu or even a button-but didn't even know where to start or what to do.

This is why this section exists.
The next few pages will all be tutorials with different techniques on how to make objects in Blender move and respond to things like your mouse, keyboard (a.k.a. "HotKeys") and making it all look like what a real game does. They will be simple versions of a menu, or a button, in which you can use this and put it into your own idea with your own graphics and your own little tweaks.

There will be a certain amount of Python necessary in the next few tutorials, mainly just to allow the mouse icon to appear on screen. However, you can do the rest of the tutorials in the 3D View Window, and under the Logic Index in the Tab window.

## 179. Creating Pop-Up Menus

In this tutorial, we will be making a Title Screen and a Main Menu Screen to come from that Title Screen. While most people hardly pay attention to these areas on a real video game, they do make the game seem much better to play, and gives the player a certain choice of what they can do before they play the game. Before beginning this, make sure you familiarize yourself with several logic sensors and actuators, such as "Scene" and "Property", as they will heavily be relied upon. It is also best if you have several Pictures ready to use for your game or are ready for additional functions with certain programs (a Word Processor Program and Image Editing Program [that has a transparency setting] can help move along your game.)

### 179.1. Making An Easy Title Menu

The Title Screen will be very simple -- it will be the "Press Enter to Continue" kind. This will lead to a more interactive kind of Main Menu, in which you can use either key commands or the mouse pointer. This tutorial will not be the most visually pleasing, but then again, you can always add whatever graphics you would like. Again, it would be wise to have handy a word-processing program and a program like Microsoft Paint. "Print Screen" will be a useful function to use while following this tutorial -- the corresponding button is generally located to the right of the F12 key in the row of function keys on your keyboard.

If you have never used different scenes before, you're about to get a crash course. Also, Blender hotkeys and actions will not be explained with (A-key) or (numpad-6); it is assumed you have already learned at least how to perform basic Blender functions.

### 179.1.1. Making the Menu

First, start up Blender and delete everything in the scene. Then, move to top orthographic view(press numpad 7, or if you have not a numpad, go to the hidden top menu and in the System \& OpenGL section select "emulate numpad").


Figure 1103

The first thing you should do is add a new scene. In the Information view panel at the top, click the SCE: drop-down menu and click on ADD NEW. Label this new scene something like "Main Menu". Now go back to your original scene and name it something like "Title Menu". These names will be important when it comes to changing the scenes around. So, on your "Title Menu" Scene, begin by adding a Camera. Move this Camera in the Z direction about a point, just to get it above the grid. Now, set the camera view to Orthographic. Now switch to Camera View. Add a plane that is scaled to cover the entire surface of the Camera's view-bounds. Move that plane just a little bit in the -Z direction. Then, add another plane, but scale this plane to be a thin rectangle about $2 / 3$ rds down the Y-length of the Camera, centered in X-direction.


Figure 1104

## (Image Shown with Materials for visual purposes, DON'T ADD MATERIALS)

Now this next step isn't necessary, but if you want a good-looking game you will probably need this step.

Let's add some UV textures. Open a good photo/image-editing program like Photoshop, GIMP, or Microsoft Photo Editor; something that preferably supports Transparency. Type some text appropriate for your game such as, "Press any key to continue." What I do is add lots of extra space
and add additional text that I will use in the main menu too, such as "New Game", "Continue", "Story Mode", etc. so it is all in one image for multiple UV textures. If your editor supports it, set the background color to transparent. If not, set it to black so it will register as 0 on the alpha channel in Blender. Save the image (GIF or PNG are reasonable choices for use with transparency). Now, in Blender, split the 3D screen into 2 screens, and change one screen over to UV face select. Select your small rectangle, and switch to Edit Mode and Unwrap the face in the 3D window, then open your saved image in the UV face window. Scale your face in the UV window so it holds only the "Press Any Key to Continue" graphic. If you wish, also add a starting Image on the larger rectangle.

### 179.1.2. Setting Up The Actions

Now this step is necessary. Select the large background rectangle, in the Buttons Window at the bottom switch it to the Logic Tab. This will be very simple. Add one Sensor, one Actuator, and one Controller. Make the sensor a Keyboard Sensor, depress the "True Pulse" button, and in the key area depress the "All Keys" button. Make the Controller an "AND" controller. Make the Actuator a Scene Actuator. Select the Drop-Down box and make it "Set Scene" wit "SCE:Main Menu".
Before you test the game, make sure to save and add a Camera to the "Main Menu" Scene. Otherwise the game WILL crash.

If you want the option of returning to this scene, instead of one Actuator make two. Make both of them Scene, but make one "Suspend Scene" with "SCE:Title Menu" and make the other Actuator "Add Overlay Scene" with "SCE:Main Menu". Also, that means in the Main Menu Scene later you'll have to add some key to hit or some action to "Remove Scene" "SCE:Main Menu" and "Resume Scene" "SCE:Title Menu".

### 179.2. Author's Starting Menu Example

The following contains actual in-progress work by the original Author of this page. The work and ideas are heavily copyrighted and it is highly encouraged (begged) that you do not rip this content off--the author has submitted this work generously to help less advanced users more efficiently.

The following is my work on a game I am making, and I hope it helps you too.


Figure 1105

This will get you to the next menu, which will be on the next section.

### 179.3. A Main Menu

This menu will be more difficult,using a mouse-python function to use and make the mouse appear when you play your game and a maze of sensors and actuators entangled.

Here is the first thing you need: a python script to make the Mouse show ---
*This code is attributed to the author of the chapter "Blender Game Engine/A Simple Mouse Pointer" and this is not my own code.
import Rasterizer as r
r.showMouse (1)

Put this in the text editor, and save the text as something simple like "Mouse". Now, on your Main Menu scene, select the camera and add 1 sensor, 2 controllers, 1 actuator, and 1 property. Name the property "Switch" "Int" Type, and set it to 0 . Set up your logic as follows:


Figure 1106

A change will need to be made in order to make yours work. The python controller should be Script:Mouse, not Script:showpointer. If you can't see the connections:

- Connect the Sensor to the 2 controllers
- Connect the AND controller to the actuator
- Leave the Python controller open-ended

If you play the game, you will see the mouse then! Now, back to the Menu, there are multiple kinds of Menus you can make when it comes to Menus popping up. The one I believe works best is a 3-layered button. To explain what this means, I'll run you through the steps of making one. Let's start with the layers themselves. (For this to work best, make the background of any images you use have transparency, so you can make invisible-yet-clickable faces.) Create a rectangle facing the camera where you want your first menu option to be. Copy the object until you have 3 rectangles, and make each one very slightly in front of the last. Now, Select the back rectangle, and on this one apply the UV face of the option's words. The second rectangle is the UV face for a graphic outline around the words if the option is selected in the game. It's not necessary but then again, it helps the player with selecting options and it looks nice. The top rectangle will be the selectable one--make the UV face applied only over a completely transparent area. Now, for the logic.

Text-Rectangle:

## -No Logic Needed

Outline-Rectangle:
-Give it a Property named "Selected", Int Type, starting at 0.
-Make a Property Sensor, True Pulse, "Selected" Property is Equal to 1, Connected to an AND controller, Connected to a Visibility Actuator at "Visible"
-Make a Property Sensor, True Pulse, "Selected" Property is Equal to 0, Connected to an AND controller, Connected to a Visibility Actuator at "Invisible"
-Make a Property Actuator, "Selected" Property is Assigned Amount 1 -Make a Property Actuator, "Selected" Property is Assigned Amount 0 -Create AND Controller and connect both Mouse Sensors. Make this AND Controller connect to the Outline-Rectangle's Property Actuator "Selected" Assign=1.

Transparent-Rectangle:
-2 Mouse sensors: "Mouse Over" and "Left Button". Set them to "True Pulse".
(Click Image to Enlarge)


Figure 1107

Now here is the trickier part to explain. To make things a little more simple, name that last Outline-Rectangle's AND controller connected to the 2 mouse sensors. Select all 3 layers, and duplicate them 3 times. Make each one (in camera view) below the last, making sure to keep them parallel on the Z axis. Now, to make only one selected at a time, take the named controller of the first, and connect it to the Outline-Rectangle's Property Actuator "Selected" Assign=0 of second and third button. Do the same from the second button to the first and third one, and same with the third to the first and second. It should look like the picture:

Click Image to Enlarge


Figure 1108

This logic arraignment should yield (when the game is played) options in which if you click one it will light up, and if you click another, that one will go down and the other will light up.

Now this looks nice aesthetically, but the use of it is now all you have to do is make some Scene Actuators. Add 2 more actuators to each of the Transparent Planes. Use the same method as you did with the Properties, but instead of "Property Assign 1/0" make 1 AND controller, 1 Scene Overlay and 1 Scene Remove for each transparent button. Now make 3 additional Scenes, and either make an entirely new menu for each, or to be easier just make colored rectangles on the scene, different colors for each scene -- either way, make sure that, if the scenes overlay, the additional scene won't cover up the buttons of the Main Menu Scene. So, now connect the 2 Mouse Sensors to the corresponding AND Controller, and connect that to the Corresponding "Overlay Scene" Actuator and 2 Opposing "Remove Scene" Actuators. Do this with the other 2 Transparent Rectangles. Make sure your new scenes also have cameras and that they are scaled properly.

Click Image to Enlarge


Figure 1109

You can use this technique to make Menus and Sub-Menus Galore! It's fairly simple to make multiple sublevels of this and get back to the original scene with this method.

I hope this helped you make your menus work well.

## 180. Creating Moving Menus

In this section, you are going to learn a variety of ways to make menus with motions. These menus can be used in more ways than the simple pop-Up menus, such as in-game if you need to select something you can use this to bring up a menu smoothly. In this section there is heavy use of Properties, "Property" Logic Blocks, and especially IPO usage. When you do it once, it will be very much easier to do it again.

### 180.1. Making Moving Selectors

To kick this tutorial off, let's just do a simple icon that will be next to the selected menu item. There will be 6 possible menu items, which can be controlled with both the arrow keys and the mouse. Let's begin by booting up Blender, and deleting everything--then adding a camera.


Figure 1110

Set this camera to orthographic. Now I like making things look nice, but here are the basics of what you will need for this tutorial:

- Make 6 Planes, all different objects, and put them in a vertical list.
- Make a circle next to the first plane. This will act as the Selector.

So after you've made you objects, it should look similar to this:


Figure 1111

For me, I made mine look more like this, a little more detailed:


Figure 1112

So now that we have our menu set up, it's time to set up the properties that will tell the selector how to move. Select the selector that will be moving and give it a property name "Selection". Make it "Int" type, and start it out at "1". To get this selector to move the way we want it, we have to set up its movements. Make sure you are on frame 1, and put the cursor on the first menu item, then Insert Keyframe for "Loc". Next, move to frame 2, and put the cursor on the second menu item, then insert "Loc" Keyframe, and continue in this fashion for all your menu items. To get this applied in the Game Engine, in the logic bricks, add an "Always" Sensor (True Pulse Enabled), connected to
an "AND" connector, and connected to a "IPO" Actuator, set to "Property" with Prop:Selection. Now we can do 3 things with this selector to have it move like a selector in a video game:

## Up/Down Arrow Keys

To make the up and down arrow keys work properly, Select the Selector and add four sensors, controllers, and actuators. Make two sensors keyboard, with one set to "Uparrow" and one set to "Downarrow" (do not activate pulse triggering). Make the other two sensors Property Sensors, with True Pulse. For the first, make it "Equal", Prop:Selection, Value:0. For the other, make it "Equal", Prop:Selection, Value:7. For the Actuators, make all four "Property" sensors. For two of them, make them "Add", Prop:Selection, and make the first "Value:-1" and the second "Value:1". The other two should be "Assign", Prop:Selection, with the first at "Value:1" and the next as "Value:6". Now connect them as follows:

Click To Enlarge Image


Figure 1113
"Keyboard:Uparrow"--"AND"--"Prop:Selection/Add/Value:-1"
"Keyboard:Downarrow"--"AND"--"Prop:Selection/Add/Value:1"

# "Prop:Selection/Equal/7"--"AND"--"Prop:Selection/Assign/Value:1" <br> "Prop:Selection/Equal/0"--"AND"--"Prop:Selection/Assign/Value:6" 

Now you can play your game, and the arrow keys should work just fine!

## HotKeys

If you don't know what a HotKey, it's a way to access menu items or action by pressing a specified letter, instead of just clicking or arrow keys. This method will require a different step when you make your UV text textures, as you will need to somehow change one letter (either the color or possibly underline) to let people know that that is a HotKey action.

The HotKey system is easy to set up right alongside the IPO/Selection property. In each menu item, highlight or make special one unique letter in each menu item. Then, with the selector selected, set up 6 keyboard logic sensors, each one for a different letter. Add 6 controllers, and 6 actuators as well. Make all the actuators "Property", "Assign, Prop:Selection, starting with Value: 1 progressing to Value:6"

## Mouse Selection

Our final selection method we can add is the mouse scroll over. Set up the Mouse Sensor to Scroll Over for all 6 invisible selection planes. Then, make the AND Controllers and connect to your original set of "Set Property" Actuators. that matches the Object's IPO property number. It's fairly simple.

## Make the Selection

The final thing to do is, once the selections are set up, make another 8 sensors, 7 controllers, 6 and actuators. Now make the 7th one a keyboard sensor for the ENTER key, as most people usually think they can start a game by pressing ENTER. The 8th Sensor is for another Mouse Sensor for "Left Click" so that if any of them is highlighted and you Left-Click the mouse, then it will be equivalent to pressing the ENTER key. That may be confusing as, unless you set up the dozen extra sensors, controllers, and actuators, you don't need to scroll over the selection to pick it, so that 8 th sensor is your choice whether you want to add it. Connect the 7 th and 8 th sensor to the 7 th controller. If you have the 8 th sensor, make it an OR controller; otherwise, make the controller AND. As for the first 6 sensors, they should be Property Sensors for "Prop:Selection" "Value:[1-6]". Connect each to their own separate controller. Now connect the 7th controller to all 6 Actuators, and the first 6 controllers connect to their own Actuator alongside the 7th. The Actuators can be whatever you want them to: whatever the selection causes to happen when you select the item selection.

### 180.2. Make the Menu Move

So we created a selection-based moving icon on a menu, but what might happen if you select that item and need a sub-menu in-game? You can't very well pause the game every time (unless it's a pause menu). This is where making the menu itself move comes in very handy. In this section, you will make an object clickable, and once clicked it will give out a submenu, which in itself will be able to give out a submenu.

The IPOS

## 181. The "5-Layer" Button

### 181.1. Scheduled Construction

This chapter is scheduled to be created by the Author. Sorry for the inconvenience.

## 182. Creating Object Outlines

### 182.1. Scheduled Construction

This chapter is scheduled to be created by the Author. Sorry for the inconvenience.

## 183. Game Creating Techniques Part Two: Python

### 183.1. Needs Expert

This chapter is not yet created, but it is something that would be very helpful to know about Blender. This book would benefit very much so if readers were to be so generous as to give helpful information on this subject, and expand it further. Thank You.

### 183.2. Additional Resources

- Blender 3D: Blending Into Python ${ }^{1}$


### 183.3. External Links

- http://www.theboomshelter.com/hss.html
- http://www.youtube.com/watch?v=7hbCEyvVYHI

[^144]
## 184. Really Advanced: The Game Engine Source


#### Abstract

Mission Statement: The purpose of this section is to show a programmer how to make sense of the blender game engine source code. It is not intended for those who cannot code in C++. If you're one of the people who have a basic understanding, I'm being careful to use keywords that if you google, should provide enough information to understand.

When you press P , several things are sent to the GE before anything can be done. What might these be?


```
StartKetsjiShell(struct ScrArea *area,
 char* scenename,
 struct Main* maggie1,
 struct SpaceIpo *sipo,
 int always_use_expand_framing)
```

Blender uses a lot of structs and classes. You need to have a working understanding of these as well as inheritance before we can move on. For a refresher: http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Companion/cxx_crib/inheritance.html

The SCA_IObject class Blender Trunk\sourcelgameenginelGameLogic\SCA_IObject.cpp and SCA_IObject.h

This class encapsulates a lot of other things, so we can start here and move downwards to the things that it controls. First off it uses vectors to store all the different Sensors, Controllers and Actuators that are linked to the object. A vector is like an array, but it is dynamic and has built in functions. We will begin by examining how sensors are added.

```
typedef std::vector<SCA_ISensor *> SCA_SensorList;
```

```
SCA_SensorList m_sensors;
```

The first line here is a typedef so it just tells us that we can create a vector of SCA_ISensor by using the name SCA_Sensor list.

The second line creates the vector with the name, $\mathrm{m}_{-}$sensors

```
void SCA_IObject::AddSensor(SCA_ISensor* act)

{ m_sensors.push_back(act); }
```

This function allows the parents of an SCA_IObject to add new sensors by calling: SCA_IObject.AddSensor(keyboard); pseudocode

So now you know how Objects in the GE create sensors (and actuators and controllers, its the same :) So lets look at how Sensors are grabbed! Since they are dynamically added the program can't make assumptions about how many are there or what they will be. Thus there is this helper function:

```
1"SCA_ISensor* SCA_IObject::FindSensor(const STR_String& sensorname)
2{
3SCA_ISensor* foundsensor = NULL;
4
5for (SCA_SensorList::iterator its =
 m_sensors.begin();!(its==m_sensors.end());its++)
6{
7if ((*its)->GetName() == sensorname)
8{

9foundsensor = (*its);
10break;
11}
12}
13return foundsensor;
14}"
```

Put simply, you give this the name of a sensor and it returns a pointer to the sensor.
for the newbies: I know you learned all about classes when i asked you to, but just in case:) the first word, "SCA_ISensor*" this tells us that the function will return a pointer to a SCA_ISensor. And based on the functions arguments, we know that when you call FindSensor you must give it a string between the parenthesis.
in line 3 you create an empty pointer which you will use to store the sensor that you find. Then you loop and go through each sensor in the vector of sensors (remember, it was named m_sensors) until you find the one that matches the name. If you don't find one, you return NULL.
void SCA_IObject::Suspend(void) What this does is it loops through all of the sensors and sends each one a "suspend" call. What this does is change a variable named, "m_suspended" which makes stops the sensors from running when they are called with their Activate() function.

Part V.

## Appendices

## 185. Glossary

### 185.1. A

- Alpha Channel ${ }^{1}$ is an additional channel in a 2D image for transparency. In an image element which stores a color for each pixel, an additional value is stored in the alpha channel containing a value between 0 and 1 . A value of 0 means that the pixel does not have any coverage information; i.e. there was no color contribution from any geometry because the geometry did not overlap this pixel. A value of 1 means that the pixel is fully opaque because the geometry completely overlapped the pixel.
- Ambient Light is light that doesn't seem to come from a specific source, but is just there. Look under the desk - it's pretty dark, but there's some light there. In the real world, this is caused by stray photons bouncing around and occasionally ricocheting under the desk. Ambient light is the basic, minimal amount of light in the whole scene. Adding too much ambient light makes a scene look washed out. Since the light doesn't come from anywhere, all sides of an object are illuminated equally, and it won't have any shading on it.
- Ambient OCClusion ${ }^{2}$ (AO) is a ratio of how much ambient light a surface point would be likely to receive. It simulates a huge dome light surrounding the entire scene. If a surface point is under a foot or table, it will end up much darker than the top of someone's head or the tabletop.
- Armature ${ }^{3}$ is the interconnection of bones that form the skeleton of an animated figure. The Inverse Kinematics library contains the code to make armatures move. The armature must still be RIGGED ${ }^{4}$ with 3D objects to give shape to its head, hands, trunk, feet, etc.


### 185.2. B

- Background image: a 2D image ("picture") that is placed "behind" the entire 3D scene, like a backdrop on a movie set. Blender permits the placement of these images in all six directions from the origin: back, front, top, bottom, left, right.
- Bake: to precompute computationally-intensive elements of an animation. For example, in a physics simulation involving the behaviour of fluids or clothing, you would set up the physical parameters, then compute (bake) the positions and shapes of the objects over the duration of the animation. Afterwards, you can assign materials and lighting, and then render the frames to produce the actual animation. Doing the baking as a separate step, and saving the results from

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/ALPHA%20COMPOSITING
HTTP://EN.WIKIPEDIA.ORG/WIKI/AMBIENT%20OCCLUSION
HTTP://EN.WIKIPEDIA.ORG/WIKI/ARMATURE_%28SCULPTURE%29
HTTP://EN.WIKIPEDIA.ORG/WIKI/RIGGING
```

that, means you can change your mind about the materials and lighting and rerender the frames more quickly.

- BÉZIER SURFACES ${ }^{\mathbf{5}}$ were first described in 1972 by the French engineer Pierre Bézier who used them to design automobile bodies. Bézier surfaces can be of any degree, but bicubic Bézier surfaces generally provide enough degrees of freedom for most applications.
- BF is Blender Foundation
- Blend - to Blend, working with Blender; also Blender's file extension.
- Bounce Light: Simple lighting situations have a single light, called a key light, illuminating one side of an object. This creates strong shading and definition of the volume of the object. However, a 3D light will often make the contrast too great - the dark side of the object is completely black since no light is hitting it. In reality it would still be lit a little, just not as much as the brightly lit side, because of light bouncing around the room and hitting the dark side of the object. In realtime 3D, bounce light is not calculated, so you have to create it yourself. Either add a little ambient color, or put a second, less bright directional light pointing the opposite direction to give a little light to the shadows.
- BUMP MAPPING ${ }^{\mathbf{6}}$ is a technique where at each pixel, a perturbation to the surface normal of the object being rendered is looked up in a texture map and applied before the illumination calculation is done. Bump Mapping use a gray-scale image map to change the direction of surface normals. You can use this to simulate height, so that you can paint wrinkles and bumps. $50 \%$ grey means neutral (no change is made), lighter means higher, darker means lower. Note that the position of faces is not actually changed; by rotating just the normals, lighting will change too, to give the illusion of a height difference. This has downsides too: the outline of objects isn't changed, so the trick is given away. For similar effects you can use Displacement Mapping and Normal Mapping.


### 185.3. C

- Caustics in optics is a bundle of light rays. For example a caustic effect may be seen when light refracts or reflects through some refractive or reflective material, to create a more focused, stronger light on the final location. Such amplification, especially of sunlight, can burn - hence the name. A common situation when caustics are visible is when some light points on glass. There is a shadow behind the glass, but also there is a stronger light spot. Nowadays, almost every advanced rendering system supports caustics. Some of them even support volumetric caustics. This is accomplished by raytracing the possible paths of the light beam through the glass, accounting for the refraction, reflection, etc.

5 HTTP://EN.WIKIPEDIA.ORG/WIKI/B\�ZIER\ SURFACE
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/BUMP\ MAPPING

### 185.4. D

- Depth of Field ${ }^{7}$ (DOF) is the distance in front of and behind the subject which appears to be in focus. For any given lens setting, there is only one distance at which a subject is precisely in focus, but focus falls off gradually on either side of that distance, so there is a region in which the blurring is tolerable. This region is greater behind the point of focus than it is in front, as the angle of the light rays change more rapidly; they approach being parallel with increasing distance.
- Diffuse Light is even, directed light coming off a surface. For most things, the diffuse light is the main lighting we see. Diffuse light comes from a specific direction or location, and creates shading. Surfaces facing towards the light source will be brighter, while surfaces facing away from the light source will be darker.
- Directional Light is a light that has a specific direction, but no location. It seems to come from an infinitely far away source, like the sun. Surfaces facing the light are illuminated more than surfaces facing away, but their location doesn't matter. A Directional Light illuminates all objects in the scene, no matter where they are.
- Displacement Mapping ${ }^{8}$ uses a greyscale heightmap, like Bump Mapping, but the image is used to physically move the vertices of the mesh at render time. This is of course only useful if the mesh has large amounts of vertices, but the (relatively) new "Simple Subdiv" subsurf option allows you to add more vertices at render time which will be moved by the displacement. This makes it much slower than Bump Mapping, as there need to be many more faces to render, but it is much more realistic.


### 185.5. E

- Environment Maps (EnvMaps) is the method of calculating reflections. Involved rendering images at strategic positions and applying them as textures to the mirror. Now in most cases obsoleted by Raytracing, which though slower is easier to use and more accurate.


### 185.6. F

- Focal Length ${ }^{9}$ of a lens is the distance along the optical axis from the lens to the focus (or focal point). The inverse of a lens' focal length is called its power.
- Focus $^{10}$ of a lens is the point onto which collimated light parallel to the axis is focused.


## - Foreshortening

[^145]- Fresnel ${ }^{11}$ lens is a type of lens invented by Augustin-Jean Fresnel. Originally developed for lighthouses, the design enables the construction of lenses of large size and short focal length without the weight and volume of material which would be required in a lens of conventional design.


### 185.7. G

- GE is Game Engine.
- Global Illumination ${ }^{12}$ (GI) is a superset of radiosity and ray tracing. The goal is to compute all possible light interactions in a given scene, and thus obtain a truly photorealistic image. All combinations of diffuse and specular reflections and transmissions must be accounted for. Effects such as colour bleeding and caustics must be included in a global illumination simulation.
- Gouraud shading ${ }^{\mathbf{1 3}}$ is a method used in computer graphics to simulate the differing effects of light and colour across the surface of an object. In practice, Gouraud shading is used to achieve smooth lighting on low-polygon surfaces without the heavy computational requirements of calculating lighting for each pixel. The technique was first presented by Henri Gouraud in 1971.


### 185.8. H

- High Dynamic Range Image ${ }^{14}$ (HDRI) is a set of techniques that allow a far greater dynamic range of exposures than normal digital imaging techniques. The intention is to accurately represent the wide range of intensity levels found in real scenes, ranging from direct sunlight to the deepest shadows. The use of high dynamic range imaging in computer graphics has been popularised by the work of Paul Debevec. Blender uses Yafray for these techniques.


### 185.9. I

- Index Of Refraction ${ }^{15}$ (IOR) is about the way that light passes through different types of materials... diamond, glass, water etc. When a light ray travels through the same volume it follows a straight path. However if it passes from one transparent volume to another, it bends. This is why a straw in water looks bent. The amount of bending differs between materials. The angle by which the ray is bent can be determined by knowing two things: the angle at which the incoming ray has been cast and the Index of Refraction. This IOR value is unique for every material. Glass has an IOR of about 1.5 and water 1.3. By increasing the IOR value for a

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/AUGUSTIN-JEAN%20FRESNEL
HTTP://EN.WIKIPEDIA.ORG/WIKI/GLOBAL%20ILLUMINATION
HTTP://EN.WIKIPEDIA.ORG/WIKI/GOURAUD%20SHADING
HTTP://EN.WIKIPEDIA.ORG/WIKI/HIGH%20DYNAMIC%20RANGE%20IMAGING
HTTP://EN.WIKIPEDIA.ORG/WIKI/REFRACTIVE%20INDEX
```

Blender material, you can control how much the environment behind the transparent object is distorted, and thus improving the realism of the shader.

- Interpolation ${ }^{\mathbf{1 6}}$ (IPO) is an animation curve: it indicates how the object must "move" between an initial and a final position, at the rate determined by the rendering engine. Objects can be animated in many ways. They can be animated as Objects, changing their position, orientation or size in time; they can be animated by deforming them; that is animating their vertices or control points; or they can be animated via very complex and flexible interaction with a special kind of object: the Armature.
- INVERSE KINEMATICS ${ }^{\mathbf{1 7}}$ (IK) is the process of determining the movement of interconnected segments of a body or model, starting from the desired motion of the endpoints of the armature. Using ordinary Kinematics on a hierarchically structured object you can for example move the shoulder of a puppet. The upper and lower arm and hand will automatically follow that movement. IK will allow you to move the hand and let the lower and upper arm go along with the movement. Without IK the hand would come off the model and would move independently in space. The Blender Armature System includes Inverse Kinematics. For general armatures there are many possible solutions to the IK.


### 185.10. J

- JPEG ${ }^{\mathbf{1 8}}$ Acronym for Joint Photographic Expert Group (pronounced jay-peg) is a commonly used standard method of lossy compression for photographic images. The file format which employs this compression is commonly also called JPEG; the most common file extensions for this format are .jpeg, .jfif, .jpg, .JPG, or .JPE although .jpg is the most common on all platforms.


### 185.11. K

- Keyframe is a frame in an animated sequence of frames that was drawn or otherwise constructed directly by the user. When all frames were drawn by animators, the senior artist would draw these frames, leaving the "in between" frames to an apprentice. Now, the animator creates only the first and last frames of a simple sequence; the computer fills in the gap. This is called tweening.


### 185.12. L

- LUMINOSITY ${ }^{\mathbf{1 9}}$ (more properly called luminance) is the density of luminous intensity in a given direction. In astronomy, luminosity is the amount of energy a body radiates per unit time. It is typically expressed in the SI units watts, in the cgs units ergs per second, or in terms of solar

[^146]luminosities, Ls; that is, how many times more energy the object radiates than the Sun, whose luminosity is $3.827 \times 1026 \mathrm{~W}$.

### 185.13. M

- Motion BLUR ${ }^{\mathbf{2 0}}$ is the simulation of the phenomenon that occurs when we perceive a rapidly moving object. The object appears to be blurred because of our persistence of vision. Doing motion blur makes computer animation appear more realistic. It can be thought of as adding back some of the time dependence expressed in the Rendering Equation.


### 185.14. N

- NABLA ${ }^{\mathbf{2 1}}$. Ton wrote: Almost all procedural textures in Blender use derivatives for calculating normals for texture mapping (with as exception "Blend" and "Magic). The texture normal, the derivative, is calculated by using four samples in the texture formula:

```
s0= texture(x, y, z)
s1= texture(x+nabla, y, z)
s2= texture(x, y+nabla, z)
s3= texture(x, y, z+nabla)
```

```
normal[0]= s0-s1
normal[1]= s0-s2
normal[2]= s0-s3
```

Up to now, the "nabla" offset was a constant ( 0.025 ) which worked fine in most cases, but doesn't give proper control over the way a texture is sampled, for example to make the effect smoother or sharper. This feature especially is useful in combination with the ColorBand feature.

- Non-Linear Animation (NLA) allows the animator to edit motions as a whole, not just the individual keys. Nonlinear animation is not just about editing and manipulating groups of keyframes, but it also allows you to combine, mix, and blend motions to create entirely new animations.
- NONUNIFORM RATIONAL B-SPlines ${ }^{22}$ (NURBS) is a computer graphics technique for generating and representing curves and surfaces.
- Normal (Surface Normal) to a flat surface is a three-dimensional vector which is perpendicular to that surface. A normal to a non-flat surface at a point $p$ on the surface is a vector which is perpendicular to the tangent plane to that surface at p .
- Normal Mapping is similar to Bump Mapping, but instead of the image being a greyscale heightmap, the colours define in which direction the normal should be shifted, the 3 colour channels being mapped to the 3 directions $\mathrm{X}, \mathrm{Y}$ and Z . This allows more detail and control over the effect.

```
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/MOTION%20BLUR
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEL
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/NONUNIFORM%20RATIONAL%2OB-SPLINE
```


### 185.15. O

- Orange ${ }^{23}$ is the first Blender open movie project.
- Oversampling (OSA), also called Anti-Aliasing is the technique of minimizing aliasing when representing a high-resolution signal at a lower resolution. In most cases, anti-aliasing means removing data at too high a frequency to represent. When such data is left in a signal, it causes unpredictable artifacts.


### 185.16. $P$

- Phong shading term is used indiscriminately to describe both an illumination model and an interpolation method in 3D computer graphics. Phong reflection is a local illumination model and can produce a certain degree of realism in three-dimensional objects by combining three elements - diffuse, specular and ambient for each considered point on a surface. It has several assumptions - all lights are points, only surface geometry is considered, only local modelling of diffuse and specular, specular colour is the same as light colour, ambient is a global constant.
- Point Light is a light that has a specific location and radiates equally out in all directions. Examples of point lights would be candles or bare lightbulbs. Surfaces close to the point light are brighter than those which are far away. Point lights have attenuation, which controls how quickly the light intensity drops off as you move away from it. Lights with high attenuation are very localized, while lights with low attenuation will spread farther.
- Polygonization (of meta-surfaces) is the process of approximating the meta-surface via polygons so it can be displayed/rendered in Blender.
- Purple runs as a normal Verse client. It implements a node database to mirror the contents of its host. It loads the plug-ins, which reside in libraries, from local disk as DLLs or shared objects depending on the platform.


### 185.17. Q

- QUATERNION ${ }^{24}$ is a representation of 3D rotations with four numbers. It can be interpreted as an extension of complex numbers to 3D. The interpretation of the four numbers is not very intuitive for a human, but the numerical advantage of quaternions is that it is the smallest mathematical representation that does not suffer from the GIMBAL LOCK ${ }^{25}$ SINGULARITY ${ }^{26}$ problem. This problem occurs for example with Euler angle ${ }^{27}$ representations, when a small change in the 3D orientation can give rise to a large change in Euler angles.

```
HTTP://ORANGE.BLENDER.ORG
HTTP://EN.WIKIPEDIA.ORG/WIKI/QUATERNION
HTTP://EN.WIKIPEDIA.ORG/WIKI/GIMBAL%20LOCK
HTTP://EN.WIKIPEDIA.ORG/WIKI/MATHEMATICAL%20SINGULARITY
HTTP://EN.WIKIPEDIA.ORG/WIKI/EULER%20ANGLES
```


### 185.18. R

- Radiosity is a more accurate but also more process-intensive technique than raytracing, that calculates patterns of light and shadow for rendering graphics images from three-dimensional models. One of the many different tools which can simulate diffuse lighting in Blender.
- Raytracing works by tracing the path taken by a ray of light through the scene, and calculating reflection, refraction, or absorption of the ray whenever it intersects an object in the world. More accurate than Scanline, but much slower.
- Render: to generate actual viewable images from a 3D model or scene. This may or may not need to happen in real time; for example an interactive game requires real-time rendering, whereas a feature film does not. These situations require very different rendering techniques.
- Refraction in geometric optics is the change in direction of a wave due to a change in velocity. It happens when waves travel from a medium with a given refractive index to a medium with another. At the boundary between the media the wave changes direction; its wavelength increases or decreases but frequency remains constant. For example, a light ray will refract as it enters and leaves glass.
- Relative Vertex Keys (RVK) are part of a keyframe animation system that operates on vertex level objects. Each (shape) key is stored as a morph target such that several keys may be blended together to achieve complex mesh animation. With RVK you can create facial expressions, speech, and other detailed animated keyframed movements within your mesh-based models.
- Rig: the controls that aid in the manipulation of a digital character.
- Rigging is the process by which a person creates constraints and relationships between objects that will generate controls to aid in the manipulation of a digital character.


### 185.19. $S$

- Scanline is one row of pixels in the final render. Also the term for one of the methods of rendering which Blender can use. It is much faster than Raytracing, but allows fewer effects, such as reflections, refractions, motion blur and focal blur.
- Shader: an algorithm for computing the appearance of a given material based on the colour, angle and intensity of the light. Specular shaders produce a more shiny, mirrorlike finish, while diffuse shaders give a duller surface appearance. There are also toon shaders, which are deliberately designed to produce an effect more akin to a cartoon drawing, with delineated object borders and less gradation of colours over a surface.
- Shadows: simulated lights don't normally cast shadows. And, they also pass through solid objects - so a light inside a closed box would actually illuminate things outside the box as if the box were transparent. The shading on objects is only calculated based on the angle of the surface.
- Specular Light refers to the highlights on reflective objects, like diamonds, billiard balls, and eyes. Specular highlights often appear as bright spots on a surface, at a point where the light source hits it directly. Ambient, Diffuse, and Specular are called the three components of a light source. Each one is given a color, which, when added together, create the final color of a light.

For most lights, the main overall color of the light is defined by the Diffuse color. Sunlight or lightbulbs would be white, while moonlight would be a darker blue, and a candle would be yellow. You can use the ambient color to adjust the overall color range of the light source; or, you can get a slight tint to shadows by making the diffuse component yellow and the ambient a slight blue. In many lights, the ambient color is left at black, meaning that it won't have any effect. Specular components are often left at white, but you can make them different colors to get interesting effects. Most of the time you can completely ignore the specular and diffuse settings on a light, but just be aware that the way you set the color is by specifically setting the diffuse color. The final color that an object appears to be is a combination of the light hitting it and the color of the surface.

- Spotlight is a light with both location and direction. A spotlight sends out a cone of light defined by the spotlight angle, and illuminates only objects within that cone. Spotlights also have attenuation, as well as a parameter that controls whether the spot of light is sharply defined or has smooth edges. These 4 types of lights are listed in order of computational complexity; the more lights you have, the more work the computer has to do. Generally it's a good idea to use directional lights whenever possible, since they're the cheapest, and use pointlights and spotlights sparingly.
- Stucci is one of the classes of blender textures. Stucci is not an English word, but is used in Blender as the plural of STUCCO ${ }^{28}$.
- Subdivision Surface (Subsurf) is the tool which subdivides your model at render-time, without affecting your mesh at design-time. There are two subsurf algorithms in Blender to choose from - Simple Subdiv, which doesn't affect the shape of your mesh, and is used to add detail to displacement mapping or render-time radiosity, both of which operate on a per-vertex basis. The other is Catmull-Clark, a common subdivision algorithm which smooths out curves, and allows you to make complicated smooth surfaces (e.g. people, plants, etc.) with very few faces. However this algorithm can sometimes (read: often) have strange results with meshes containing triangles or verticies with many edges ("poles"), unless it is correctly handled.
- Sub Surface Scattering (SSS) is a mechanism of light transport in which light penetrates the surface of a translucent object, is scattered by interacting with the material, and exits the surface at a different point. All non-metallic materials are translucent to some degree. In particular, materials such as marble, skin, and milk are extremely difficult to simulate realistically without taking subsurface scattering into account.


### 185.20. T

- Tuhopuu is an experimental version of Blender that is like a code playground, developers can put their new code in there to be tested and played with by users before it gets put into the official Blender. Tuhopuu is Finnish for "Tree of destruction".
- Tweening is short for in-betweening, the process of generating intermediate frames between two images to give the appearance that the first image evolves smoothly into the second image. Tweening is a key process in all types of animation, including computer animation.

[^147]Sophisticated animation software enables one to identify specific objects in an image and define how they should move and change during the tweening process. Another word for tweening is INTERPOLATION ${ }^{29}$.

### 185.21. U

- UV Mapping (UV) This refers to the process of re-parameterizing a 3d object with dimensions $\mathrm{x}, \mathrm{y}$ and z into a 2 d plane with coordinates u and v . Most texturing requires this step because it tells the program HOW to apply a 2d image map onto a 3d object. If all your textures must be 2d and flat, the easiest way to determine what pixel goes where is if your model is flattened and made 2d. It also establishes a relationship between a 2 d image and the mesh such that if the mesh deforms, the image map will deform along with it. Think of it as skinning a cat and pinning its hide onto cardboard to facilitate painting it!


### 185.22. V

- Verse is a network protocol that lets multiple applications act together as one large application by sharing data over a network. If one application makes a change to shared data, the change is distributed instantly to all the other interested clients.


### 185.23. W

- WC is Weekend Challenge.
- WIP is Work In Progress.


### 185.24. X

### 185.25. Y

- Yet Another Free Raytracer (YafRay) is an open source ray tracing program that uses an XML scene description language. It has been integrated into, and is often used to render scenes made in, Blender.
185.26. Z

[^148]
## 186. FAQ

The following questions cover general information about Blender 3D: Noob to Pro and the software it is designed to teach, Blender.

### 186.0.1. What is Blender?

Blender is a full-blown 3D content creation suite, usable for 3D editing, animation, texture mapping, compositing and rendering.

It runs on:

- Windows - XP, Vista, and 7, 32- and 64-bit
- Mac OS X - PowerPC and Intel, 32- and 64-bit
- Linux - Intel x86 and AMD, 32- and 64-bit
- BSD
- Solaris
- Irix.

It is free, open-source software, available from BLENDER.ORG ${ }^{1}$.
Blender 2.58a is the latest stable release as of 16/07/11. Beginners are urged to learn using stable 2.5 x versions, as there has been a significant UI overhaul since 2.49 and future tutorials will likely be written or recorded with the new interface. However, keep in mind that many existing tutorials were written for 2.49 . If you're having trouble finding a button or tool that has moved, try pressing Spacebar to search for Blender functions.

For more about Blender's history, functionality, and media productions which have utilized Blender, see the BLENDER ENTRY IN WIKIPEDIA ${ }^{2}$.

### 186.0.2. What is this book? And what isn't it?

Noob to Pro is a collection of tutorials. Following these tutorials you can go from ignorant new Blender user (noob) to proficient Blender power user (pro). Though the tutorials are not strictly linked, we recommend going through them in order. Earlier tutorials introduce skills and information you'll be expected to know in later sections.

Noob to Pro isn't a compendium or reference manual. Use it with other resources, including those in Blender's Help menu. Noob to Pro provides links to outside resources. We're part of the Blender community!

[^149]
### 186.0.3. How accurate is the information in this book?

Blender is still under development! Its appearance, tools, and capabilities change from time to time. For instance, Blender 2.5x alters both the graphical user interface and the Python scripting interface and may also change some keyboard shortcuts.

Most of the tutorials should work with any recent version of Blender. Blender 3D: Noob to Pro readers are encouraged to edit the WikiBook in order help to keep it up to date.

### 186.0.4. I have a question, where can I get help?

Search or post questions at BlenderArtists ${ }^{3}$ and Blender Newbies forum ${ }^{4}$, both large, easy-to-use, English-language forums. BLENDERWIKI ${ }^{5}$ contains a large database of documentation. Find similar forums in other languages at BLENDER.ORG'S COMMUNITY PAGE ${ }^{6}$. The discussion pages there are also useful.

If your question turns out to be very common, please take a moment to see if it can be added to the book! It is best if it can be smoothly incorporated with an existing page.

[^150]
## 187. Tutorial Links List

Here you can find useful BLENDER ${ }^{1}$ Tutorial Links written in English. Feel free to add some cool tutorials, but, on this page, only in English. For tutorials in other languages please read About ${ }^{2}$. A tutorial about editing these pages can be found HERE ${ }^{3}$. New to the 3D world? Read To Those Learning 3D ${ }^{4}$.

### 187.1. Official Blender Documentation

Almost all Manuals can be found in the latest official Blender Manual Books. For additional tutorials look below this topic.

- Tons of Video Tutorials ${ }^{5}$
- Blender MediaWiki ${ }^{6}$ exposed
- Documentation at Blender3D.org ${ }^{7}$
- Categorized list of Blender 3D Tutorials ${ }^{8}$
- official Blender wiki ${ }^{9}$


### 187.2. Interface

- The best website to learn Blender 3d ${ }^{10}$
- Blender Interface Theme Repository ${ }^{11}$
- Basic Editing ${ }^{12}$
- Blender Hotkeys ${ }^{13}$
- Blender Hotkeys II ${ }^{14}$
- Basic Blender ${ }^{15}$ (Broken Link)

```
HTTP://EN.WIKIPEDIA.ORG/WIKI/BLENDER%20%28SOFTWARE%29
Chapter 1 on page 5
HTTP://EN.WIKIPEDIA.ORG/WIKI/WIKIPEDIA%3AINTRODUCTION
HTTP://GLENMOYES.COM/ARTICLES/TO_THOSE_LEARNING_3D.SHTML
HTTP://NYSTIC.COM/BLENDER.PHP
HTTP://MEDIAWIKI.BLENDER.ORG/INDEX.PHP/MAIN_PAGE
HTTP://WWW.BLENDER.ORG/DOWNLOAD/DOCUMENTATION/
HTTP://WWW.SURFNLEARN.COM/VIEW_TUTORIALS/BLENDER_3D/ALL/
HTTP://WIKI.BLENDER.ORG/
HTTP://WWW.ANIMATIONFORCREATION.COM/
HTTP://WWW.GRAPHICALL.ORG/THEMES/
HTTP://WWW.EE.OULU.FI/~{}KAPU/CG_COURSE/BIGFILES/BLENDER/BLENDMAN.HTML
HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%203D%3A%20HOTKEYS
HTTP://BLENDER.EXCELLENTWHALE.COM/
HTTP://WWW.PLANETANNIHILATION.COM/TERRAGEN/TUT_BASIC.SHTML
```

- Basic Interface ${ }^{16}$ (Broken Link)
- Blender Multimedia ${ }^{17}$
- Changing Views ${ }^{18}$
- First Impression ${ }^{19}$
- Getting Started ${ }^{20}$
- Removing Orphan Vertices ${ }^{21}$
- Seeing Textures with Alt-Z ${ }^{22}$
- Stereoscopic camera for editing ${ }^{23}$
- Blueprint Setup : Blender3d Club ${ }^{24}$


### 187.3. Mesh Modeling

- Basic Modeling ${ }^{25}$
- Video - DupliVerts Tutorial ${ }^{26}$
- How to solve Blender's smoothing problems ${ }^{27}$ : discussion about smoothing strategies: Smooth/Solid, Auto Smooth, EdgeSplit modifier...
- Heightmaps ${ }^{28}$
- Mesh Editing Techniques ${ }^{29}$ broken link
- Object Extrusion and Procedural Objects ${ }^{30}$ broken link
- Loops Corkscrews Problem ${ }^{31}$
- Loopings Problem ${ }^{32}$
- Knots in Curves Problem ${ }^{33}$
- ZeTool ${ }^{34}$
- Dupliframes Modeling $\mathrm{I}^{35}$

```
16 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/BEGINNERS_TUTORIALS/TUT1/
 BASIC_INTERFACE.HTML
 HTTP://WWW.MALEFICO3D.ORG/VIEJOS-TUTORIALES/AUDIOVIDEO-EN.HTML
 HTTP://bLENDER3DFR.FREE.FR/ANGLAIS/TUT2/TUT2.HTM
 HTTP://BLENDER3DFR.FREE.FR/ANGLAIS/PREMIERE.HTM
 HTTP://BLENDER3DFR.FREE.FR/ANGLAIS/TUT1/TUT1.HTM
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/REPERER_SOMMETS_ORPHELINS/SOMMETS_
 ORPHILINS.HTML
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/SUBDIVISER_POUR_CONQUERIR_LA_TEXTURE/
 SUBDIVISER_POUR_CONQUERIR_LA_TEXTURE.HTML
 HTTP://BRUNETTON.TUXFAMILY.ORG/INDEX.PHP?N=EN.BLENDERSTEREO
 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=6
 HTTP://WWW.ANIMATIONFORCREATION.COM/2008/09/LESSON-TWO-BASIC-OF-BLENDER.HTML
 HTTP://wWW.YOUTUBE.com/wATCH?V=M6EPXc8N3QS
 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2007/08/13/
 88-HOW-TO-SOLVE-BLENDERS-SMOOTHING-PROBLEMS
 HTTP://MEMBERS.TRIPOD.COM/~{}FUNKY_MUNKY/TUTS/BLENDER/HEIGHTMAPS.HTM
 HTTP://VROTVROT.COM/XOOM/TUTORIALS/CORRIDOR/CORRIDOR.HTML
 HTTP://VROTVROT.COM/XOOM/TUTORIALS/MINERIDE/MINERIDE.HTML
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/TIRE_BOUCHON/TIRE-BOUCHON.HTML
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/LOOPING/LOOPING.HTML
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/APLAT/A_PLAT.HTML
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/ZETOOL/ZETOOL.HTML
 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/DUPLIFRAMES/MODELING/MODELING_WITH_
 DUPLIFAMES_EN_1.HTML
```

- Dupliframes Modeling II $^{36}$
- Dupliframes ${ }^{37}$
- Spin Modeling : Blender3d Club ${ }^{38}$
- Spin and Spin Dup ${ }^{39}$ - Needs a lot more explanation
- Automatized BevOb ${ }^{40}$
- Extrusion along a Path using BevOb ${ }^{41}$
- Path Extrusion ${ }^{42}$
- DupliVerts ${ }^{43}$
- Limit DupliVerts ${ }^{44}$
- Types of Handles for Bezier Curves ${ }^{45}$
- Beveled Cube ${ }^{46}$ (pdf tutorial)(Broken Link)
- Joining/Separating Parts of a Mesh ${ }^{47}$
- Extrusion Controlled by IPO $^{48}$
- Basic objects ${ }^{49}$
- Modelling Techniques and Strategies ${ }^{50}$
- Easily Remove Orphan Edges and Vertices ${ }^{51}$
- Non-destructive bevel effect ${ }^{52}$
- "Cage" Technique Tutorial ${ }^{53}$
- Creating Fire ${ }^{54}$

```
36 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/DUPLIFRAMES/MODELING/PIZZA_BOXES/STACK_
 OF_BOXES_EN.HTML
```



```
HTML
38 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=45
39 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/SPIN_ET_SPIN_DUP/SPIN_AND_SPIN_DUP__
TUTORIAL.HTML
40 HTTP://mEmbRES.LYCOS.FR/bOBOIS/TUTS/EXTRUSION_PAR_BEV_OB/Ext1_EXT2/ExT1_
Ext2_En.htML
41 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/EXTRUSION_PAR_BEV_OB/ALIGNEMENT_DES_
AXES/ALIGNEMENT_DES_AXES_EN.HTML
HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/EXTRUSION_PAR_BEV_OB/LES_BASES/LES_
BASES_EN.HTML
43 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/DUPLIVERTS/DUPLIVERTS/DUPLIVERTS_EN.HTML
44 HTTP://mEmbres.LYCOS.FR/bOBOIS/TUTS/DUPLIVERTS/LIMITER_LES_DUPLIVERTS_EN.
HTML
45 htTP://membres.lycos.fr/boboIS/Tuts/Courbes/Courbes_de_BEZIER/TyPES_DE_
POIGNEES_BEZIER/TYPES_DE_POIGNEES_BEZIER_EN.HTML
HTTP://W1.185.TELIA.COM/~{}U18510119/tutORIALS/MAKEACUBE.PDF
47 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/JOINDRE_ET_SEPARER/JOINDRE_ET_SEPARER_
ANG.HTML
48 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/EN_MODELEXTIPOOO.HTM
49 HTTP://bLENDER3DFR.FREE.FR/ANGLAIS/tUT3/tut3.HTM
50 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=21382
51 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/MODESEL_SOMPARAZ_EN.HTM
52 htTP://bLENDERTIPS.BLOGSPOT.COM/2006/03/BEVEL-MODIFIER-WORKAROUND.HTML
53 HTTP://WWW.CYPHERTXT.COM/BLENDERTECHNIQUETUT.PHP
54 HTTP://FAINTMEDIA.COM/FORUMS/TOPIC/95-FIRE-BALL/
```


### 187.4. Nurbs and Subsurface Modeling

- Subsurface modeling tutorial ${ }^{55}$
- IPOs, Lattices, Nurbs \& Stuff ${ }^{56}$ (Broken Link)
- Cross-Sections ${ }^{57}$
- Curve Resolution ${ }^{58}$
- Weight Parameter ${ }^{59}$
- Orderu, Uniformu and Endpointu ${ }^{60}$
- Curves -n- Bevels ${ }^{61}$
- Making a Hole in Subsurf ${ }^{62}$
- Subsurf Edge Rolling - Round ${ }^{63}$
- Subsurf Edge Rolling - Square ${ }^{64}$
- Modeling with lattices - A FORK ${ }^{65}$
- Subsurf modeling $2^{66}$
- Metaballs ${ }^{67}$
- Abstract SubSurf modeling i ${ }^{68}$


### 187.5. Specific Object Modeling

- Sponge Bob: Blender3d Club ${ }^{69}$
- Double-Helix ${ }^{70}$
- Turtle ${ }^{71}$
- Leaf Shader Tutorial ${ }^{72}$
- Sears-Roebuck Dairy Barn ${ }^{73}$

```
55 HTTP://WWW.ANIMATIONFORCREATION.COM/2008/10/LESSON-6-IMAGESSEPARATING-OBJECTS.
HTML
56 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_BOTTLE.HTM
57 HTTP://WWW.BLENDERNATION.COM/TUTORIALS/BLENDER-3D-BEGINNER-TUTORIAL-THE-CAVE-OF-TORSAN-A/
58 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/EXTRUSION_PAR_BEV_OB/DEFRESOLU/
DefResolU_en.htmL
59 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/COURBES_NURBS/POIDS_DES_VOISINS/
POIDS_DES_VOISINS_EN.HTML
60 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/COURBES_NURBS/INFLUENCE_DE_
ORDER/INFLUENCE_DE_ORDER_EN.HTML
61 HTTP://WWW.INGIEBEE.COM/BLENDERMANIA/CURVES%20AND%20BEVELS.HTM
62 HTTP://mEmbRES.LYCOS.FR/bOBOIS/TUTS/SUBSURFS/TROUER_UNE_SURFACE/TROUER_UNE_
SUBSURF_ANG.HTMI
63 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/SUBSURFS/ROULER_UN_BORD/ROULER_UN_BORD_
ROND_ANG.HTML
64 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/SUBSURFS/ROULER_UN_BORD/ROULER_UN_BORD_
CARRE_ANG.HTML
65 HTTP://WWW.BLENDER3D.ORG/DOCUMENTATION/HTMLI/X10279.HTML
66 HTTP://BLENDER3DFR.FREE.FR/ANGLAIS/TUT5/TUT5.HTM
67 HTTP://BLENDER3DFR.FREE.FR/ANGLAIS/TUT6/tUT6.HTM
68 HTTP://WWW.DEVIANTART.COM/VIEW/26691152/
69 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=61
70 HTTP://WWW.DEVIANTART.COM/VIEW/27132715/
71 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=44686
72 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=39810
73 HTTP://WWW.HARKYMAN.COM/SEARSBARN01.HTML
```

- Golf BaLl ${ }^{74}$
- Celtic Knot ${ }^{75}$
- Simple Tree ${ }^{76}$
- Making a Pedestal ${ }^{77}$ (broken)
- Building a CASTLE ${ }^{78}$ (broken)
- ICE Cube ${ }^{79}$ (pdf tutorial)
- WATER I ${ }^{80}$ (pdf tutorial)
- Water II ${ }^{81}$ (pdf tutorial)
- Space Pod $^{82}$ (Dead link)
- Grass ${ }^{83}$ (Link moved)
- Bongo Creature ${ }^{84}$ (Broken Link)
- Spiral Stairs ${ }^{85}$ (All blenderwars links dead)
- Waste Basket ${ }^{86}$ (Domain Expired)
- Beveled Cube ${ }^{87}$ (Domain Expired)
- Simple Box ${ }^{88}$ (Domain Expired)
- Fountain with Moving Water ${ }^{89}$ (Dead link)
- Track Creation ${ }^{90}$ (Broken link)
- Dolphin ${ }^{91}$ (dead link)
- Dice ${ }^{92}$
- DIE WITH ROUND CORNERS ${ }^{93}$
- Logo ${ }^{94}$
- Cutting through Steel ${ }^{95}$
- Roller Coaster ${ }^{96}$
- Roller Coster Cobra ${ }^{97}$

```
74 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=31781&POSTDAYS=0&POSTORDER=
ASC&START=15
HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_CELTICKNOT_EN.HTM
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=32306
HTTP://WEB.TELIA.COM/~{}U91121962/tuT1_1. HTM
HTTP://WWW.BLENDER3D.ORG/_MEDIA/EDUCATION/QUICKSTART/BUILDING_CASTLE.HTML
HTTP://CARON.YANN.FREE.FR/BLENDER/ICECUBE.PDF
HTTP://WWW.SELLERI.ORG/BLENDER/TUTS/WATER.PDF
HTTP://WWW.SELLERI.ORG/BLENDER/TUTS/WATER2.PDF
HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_POD.HTM
HTTP://LIB.HEL.FI/~{}BASSE/
HTTP://WWW.ENRICOVALENZA.COM/MAKEBONGO.HTML
HTTP://WWW.BLENDERWARS.COM/TUT.PHP?MODULE=STAIRS
HTTP://WWW.BLENDERWARS.COM/TUT.PHP?MODULE=WASTE
HTTP://WWW.BLENDERWARS.COM/TUT.PHP?MODULE=BEVCUBE
HTTP://WWW.BLENDERWARS.COM/TUT-PATH.PHP?MODULE=BOX1
HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/tUTORIALS/tUT5/FOUNTAIN.HTML
HTTP://WWW.GEOCITIES.COM/SWDOUGHTY/BLENDERTUTE1.HTML
HTTP://WWW.BLENDERNATION.COM/TUTORIALS/BLENDER-3D-BEGINNER-TUTORIAL-DOLPHIN/
HTTP://WWW.BLENDERNATION.COM/TUTORIALS/BLENDER-3D-BEGINNER-TUTORIAL-A-DIE/
HTTP://WWW.YOUTUBE.COM/WATCH?V=SP53YWTWDFY/
HTTP://WWW.BLENDERNATION.COM/TUTORIALS/BLENDER-3D-BEGINNER-TUTORIAL-CREATING-A-LOGO/
HTTP://WWW.BLENDERNATION.COM/TUTORIALS/BLENDER-3D-INTERMEDIATE-TUTORIAL-CUTTING-THROUGH-STEE
HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/COMPLETERC/FOREWORD_EN.HTML
HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/COURBES/COBRA/COBRA.HTML
```

- Modelling a Glass ${ }^{98}$ (broken)
- Ocean View ${ }^{99}$
- Solar Systems for beginners ${ }^{100}$ (Domain Expired)
- Chair ${ }^{101}$
- Spiral Stair ${ }^{102}$ (Broken link)
- Lighthouse ${ }^{103}$ (Dead link)
- LANDSCAPE ${ }^{104}$ (Broken link)
- LANDSCAPES EASY ${ }^{105}$ (Dead link)
- Cloth Tutorial ${ }^{106}$ (dead link) ARChived version ${ }^{107}$
- Cup 108
- Cola CANE ${ }^{109}$ (Dead Link)
- Candle ${ }^{110}$
- Volcano ${ }^{111}$
- Orbital Logo ${ }^{112}$
- Realistic Planet ${ }^{113}$ (Dead Link)
- Landscape Cartoon ${ }^{114}$ (pdf tutorial)
- TEXT ${ }^{115}$
- Text Part 1: Manipulate Text ${ }^{116}$ (Old link. Might this be the aimed for one? Text Part 1: Manipulate Text ${ }^{117}$ )


### 187.5.1. Human

- Hand Palm ${ }^{118}$
- EyES ${ }^{119}$

```
98 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/tP1-INDEX-ANG.HTML
99 HTTP://WWW.INGIEBEE.COM/BLENDERMANIA/CREATE%20OCEAN%20VIEW.HTM
100 htTP://www.INGIEBEE.com/BLENDERMANIA/SOLAR%2OSYSTEM.HTM
101 HTTP://MEMBRES.LYCOS.FR/BOBOIS/OBJETS_A_PARTAGER/A_SIMPLE_CHAIR.HTML
102 HTTP://W1.185.TELIA.COM/~{}U18510119/tUTORIALS/SPIRALSTAIR.PDF
103 htTP://WWW.USERS.bIGPOND.NET.AU/BLENDAGE/PAGES/tUTORIALS/tut1/LIGHTHOUSE.
 HTML
104 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/PAYSAGES/
 INDEX-ANG.HTML
105 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/TUT2/LANDSCAPE.HTML
106 HTTP://WWW.FREE-WEBSPACE.BIZ/SONIX/BLENDERTUTES/QuICKClOTHTUTE.HTML
107 HTTP://WEB.ARCHIVE.ORG/WEB/20040805214133/HTTP://WWW.FREE-WEBSPACE.BIZ/
 SONIX/BLENDERTUTES/QUICKClOThTUTE.HTML
108 HTTP://KAHUNA.CLAYTON.EDU/~{}JBROOKS/BLENDER/TUTORIALS/CUP/
109 HTTP://FREE.HOSTDEPARTMENT.COM/B/BLENDER3D/CANTUT/
110 HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/OLDSITE/OLDSITE.BLENDER3D.ORG/93_
 BLENDER%20TUTORIAL%20CANDLE.HTML
111 HTTP://KAHUNA.CLAYTON.EDU/~{}JBROOKS/BLENDER/TUTORIALS/VOLCANO/
112 HTTP://KAHUNA.CLAYTON.EDU/~{}JBROOKS/BLENDER/TUTORIALS/UNIVERSAL/
113 HTTP://WWW.ENRICOVALENZA.COM/REALPLAN.HTML
114 HTTP://WWW.SELLERI.ORG/BLENDER/TUTS/CARTOONISHLANDSCAPE.PDF
115 HTTP://BLENDER3DFR.FREE.FR/ANGLAIS/TUT4/TUT4.HTM
116 HTTP://WWW.RAIVESTUDIOS.COM/TUTORIALS/BLENDER/TEXT/
117 HTTP://WWW.FAINTMEDIA.COM/FORUMS/TOPIC/93-TEXT/
118 HTTP://JLP.NERIM.NET/TUTORIALS/HANDS-MODELLING/HANDS-TUTO-O1.HTML
119 HTTP://WEB.PDX.EDU/~{}WLF/TUT.HTML
```

- Hair Tutorial ${ }^{120}$
- Wikipedia: Human Body Proportions ${ }^{121}$


### 187.5.2. Cars

- Creating a Toon Car ${ }^{122}$ ( Creating a Toon Car ${ }^{123}$, The old, Broken Link)


### 187.6. Texture Mapping

- Video - Basic Materials ${ }^{124}$
- Making a Lightsaber with Halos (Link Repaired!) ${ }^{125}$
- The Unofficial Texturing Tutorial ${ }^{126}$
- Material Indice Tutorial ${ }^{127}$
- Transparency and Refraction ${ }^{128}$
- Reflections ${ }^{129}$
- TEXTURING LANDSCAPES ACCORDING TO SLOPES ${ }^{130}$
- Using Texture Stencils ${ }^{131}$
- Chrome and Shiny Metal Surfaces ${ }^{132}$
- Texturing Tutorial ${ }^{133}$ (NOTE: For the game Total Annihilation, not really a general tut)
- Textures in OrCo mode ${ }^{134}$ (Broken link)
- Material Indices ${ }^{135}$ (Broken link)
- Textures Channels ${ }^{136}$ (Broken link)
- Textures Mapping ${ }^{137}$ (Broken link)

```
120 HTTP://WEB.ARCHIVE.ORG/WEB/20031230091345/HTTP://WWW.ELYSIUN.COM/FORUM/
 VIEWTOPIC.PHP?T=16008
121 HTTP://EN.WIKIPEDIA.ORG/WIKI/BODY_PROPORTIONS
122 HTTP://WWW.FAINTMEDIA.COM/FORUMS/TOPIC/84-TOON-CAR/
123 HTTP://WWW.RAIVESTUDIOS.COM/TUTORIALS/BLENDER/TOONCAR/
124 HTTP://WWW.YOUTUBE.COM/WATCH?V=2KK2BKVQKYK
125 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=62611
126 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=11889
127 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2004/12/21/
 5-BLENDER-INDICES-MATERIAU-MATERIAL-INDICE
128 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2004/12/26/
 7-DIDACTICIEL-LA-REFRACTION-TUTORIAL-REFRACTION
129 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2004/12/26/
 6-DIDACTICIEL-LES-REFLETS-TUTORIAL-REFLECTIONS
130 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2009/10/12/
 113-TEXTURING-LANDSCAPES-ACCORDING-TO-SLOPES
131 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2005/02/27/
 16-DIDACTICIEL-USAGE-DES-MASQUES-DE-TEXTURES-TUTORIAL-USING-TEXTURE-STENCILS
132 HTTP://WWW.UALBERTA.CA/%7ENWY/BLENDER/BLENDER_TUT1.HTM
133 HTTP://WWW.PLANETANNIHILATION.COM/TERRAGEN/TUT_BUILDPICS.SHTML
134 HTTP://WWW.ENRICOVALENZA.COM/TEXTURES.HTML
135 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/TP2-INDEX-ANG.HTML
136 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/DIDAC4-ANG.HTML
137 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/DIDAC3-ANG.HTML
```

- Specular Color ${ }^{138}$ (Broken link)
- The Color ${ }^{139}$ (Broken link)
- Materials in Blender ${ }^{140}$ (Broken link)
- Alpha, Bump, and Specular image textures ${ }^{141}$
- Specular Maps : Blender3d Club ${ }^{142}$
- Image Textures ${ }^{143}$ (Broken link)
- DECALS ${ }^{144}$ (Broken link)
- Chrome ${ }^{145}$ (Broken link)
- Alpha Masks ${ }^{146}$
- Textures with Alpha ${ }^{147}$
- Textures with Bumpmapping ${ }^{148}$
- Using More Than One Color ${ }^{149}$ (Broken link)
- Adding Color To Your Shapes ${ }^{150}$ (Broken link)
- Using Textures and Bumpmapping Them ${ }^{151}$ (Broken link)
- Texture Mapping Tutorial ${ }^{152}$ (pictures ok now 18/03/2006)(Broken link)
- Environment Mapping ${ }^{153}$ (pictures ok now 18/03/2006)(Broken link)
- Mapping Caracter ${ }^{154}$ (Broken link)
- Creation and Mapping ${ }^{155}$
- Displacement Mapping ${ }^{156}$ (Broken link)
- Game Sprites ${ }^{157}$ (Broken link)
- Stencilling Textures ${ }^{158}$ (Broken link)

```
138 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/DIDAC2-ANG.HTML
139 htTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/DIDAC1-ANG.HTML
140 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/BLENDER_
 MATERIAL/INDEX-ANG.HTML
141 http://www.Ingiebee.com/BlendermaniA/BumpSpecAlphatex.htm
142 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=51
143 HTTP://WWW.INGIEBEE.COM/BLENDERMANIA/ATTACH%20IMAGE%20FILE%20TO%20OBJECT.HTM
144 HTTP://WWW.INGIEBEE.COM/TUTORIALS/DECAL%20MIRROR%2OMODELLING/THEETH%20DECAL.
 HTM
145 HTTP://WWW.INGIEBEE.COM/tutORIALS/DIGITAL-MARK.HTM
146 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/TROUER_PAR_TEXTURE/TROUER_PAR_TEXTURE.
 HTML
147 HTTP://WWW-USERS.CS.UMN.EDU/~{}MEIN/BLENDER/TUTORIALS/DUST/ALPHA.HTML
148 HTTP://WWW-USERS.CS.UMN.EDU/~{}MEIN/BLENDER/TUTORIALS/DUST/BUMP.HTML
149 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/tUT9/TWO_COLOURS.
 HTML
150 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/BEGINNERS_TUTORIALS/TUT3/
 ADDING_COLOUR.HTML
151 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/BEGINNERS_TUTORIALS/tUT4/
ADDING_TEXTURE.HTML
152 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_MAPPING.HTM
153 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_ENVMAP.HTM
154 HTTP://OTOTHEGARDENER.FREE.FR/TUTORIALS/LITTLEOTO/ANONCE/ANONCE.HTM
155 hTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/BOITE_DE_PROJECTION/BOITE_DE_
 PROJECTIONOO5_EN.HTML
156 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/
 DISPLACEMENT/INDEX-ANG.HTMI
157 HTTP://WWW.INGIEBEE.COM/BLENDERMANIA/GAME%20SPRITES.HTM
158 htTP://www.InGIEBEE.Com/BLENDERMANIA/StENCILLING.HTM
```


### 187.6.1. UV Mapping

- Video - UV MAPPING ${ }^{159}$
- UV Mapping \& Texturing ${ }^{160}$
- Sub-Surf and UV-Texturing problem ${ }^{161}$
- UV MAPPING ${ }^{162}$
- Complex material for a SWORD ${ }^{163}$


### 187.6.2. Animated Textures

- Video - Changing Colors Of Objects Mid Animation ${ }^{164}$
- Blender TexMesh Tutorial ${ }^{165}$ * exposed
- animating masks for simulating ice freeze ${ }^{166}$
- Animated Procedural Textures ${ }^{167}$ (pdf tutorial)


### 187.6.3. Nodes

- Video - Blender Nodes ${ }^{168}$
- Vector Blur usage with Blender ${ }^{169}$


### 187.7. 2D Texture Painting Techniques

This part isn't about using Blender, but about necessary 2D knowledge for advanced Blender users.

- Steven Stahlberg's Tutorials 170 * exposed
- Dirty Metal Texture ${ }^{171}$ (Broken Link)
- Gritty Pipelines ${ }^{172}$ (Broken Link)
- Digital Painting ${ }^{173}$ (Broken Link)
- NWN Texturing Tutorials ${ }^{174}$
- Fixing Lighting Irregulaties in Self-Tiling Maps ${ }^{175}$

```
159 HTTP://WWW.YOUTUBE.COM/WATCH?V=MVHHZ2KRR4Q
160 HTTP://BIORUST.COM/INDEX.PHP?PAGE=TUTORIAL_DETAIL&TUTID=85
161 HTTP://BARNEY.GONZAGA.EDU/~{}AMOORE1/UV_MAPPING_PROJECT/
162 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/UVMAPPING/UVMAPPINGO1.HTML
163 HTTP://WWW.3DTOTAL.COM/TEAM/TUTORIALS/SWORDS&DAGGERS/SWORDS&DAGGERS_01.ASP
164 HTTP://WWW.YOUTUBE.com/WATCH?V=EluV69HOLR4
165 HTTP://WWW.TELUSPLANET.NET/PUBLIC/KUGYELKA/BLENDER/TUTORIALS/TEXMESH/
TEXMESH.HTM
166 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?P=455683#455683
167 HTTP://WWW.COGFILMS.COM/TUTORIALS.HTML
168 HTTP://WWW.YOUTUBE.COM/WATCH?V=-TM1SPWQ5AW
169 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2006/11/05/
74-BLENDER-AND-THE-VECTOR-BLUR
HTTP://WWW.ANDROIDBLUES.COM/HOWTO.HTML
HTTP://DIV.DYNDNS.ORG/EK/TUTORIAL/TEXTURE/
HTTP://DIV.DYNDNS.ORG/EK/TUTORIAL/GRITTY/
HTTP://WWW.PLANETQUAKE.COM/POLYCOUNT/RESOURCES/GENERAL/TUTORIALS/HITMANDAZ_
Tut01/DIGITALPAINTING.ShtML
174 HTTP://WWW.BTINTERNET.COM/~{}I.NATION/TUTORIALS/TUTORIAL_OO.HTM
175 HTTP://WWW.3DRENDER.COM/LIGHT/EQTUTORIAL/TILING.HTM
```

- Texture Map for the Iris of the Eye ${ }^{176}$ (Broken Link)
- Airplane Texture Tutorial ${ }^{177}$ (Broken Link)
- Game Skinning Tips ${ }^{178}$ (Broken Link)
- Game Lighting Basics I ${ }^{179}$ (Broken Link)
- Game Lighting Basics $I^{180}$ (Broken Link)
- Texturing with Gimp ${ }^{181}$


### 187.8. Lighting, Shadows and Rendering

- Light - a detailed tutorial ${ }^{182}$ (Broken Link)
- Yafray as an Integrated External Renderer ${ }^{183}$ (Broken Link)
- Basic 3 Point Lighting ${ }^{184}$
- Radiosity I ${ }^{185}$
- Radiosity II ${ }^{186}$
- Ramp Shaders ${ }^{187}$
- Simulating Radiosity ${ }^{188}$
- Caustic Sampler Tutorial ${ }^{189}$ (Broken Link)
- Shadows Control ${ }^{190}$ (Broken Link)
- The 'World' buttons within Blender ${ }^{191}$ (Broken Link)
- Mastering Shadows ${ }^{192}$ (Broken Link)
- Ambient Occlusion ${ }^{193}$
- Soft Shadows and Area Lights ${ }^{194}$
- Depth of Field ${ }^{195}$ (Broken Link)
- Soft Lights ${ }^{196}$ (pdf tutorial)

```
176 HTTP://WWW.KANDSDESIGN.COM/KIM/EYEMAP-TUT.HTML
177 HTtP://WWW.GEOCITIES.COM/SILICONVALLEY/HAVEN/2470/tXTRTUT/tXTRTUT.HTML
178 HTTP://WWW.PLANETQUAKE.COM/PANDEMONIUM/HTML/SKINTIPS.HTM
179 HTTP://WWW.PLANETQUAKE.COM/PANDEMONIUM/HTML/SKINTUT3.HTM
180 HTTP://WWW.PLANETQUAKE.COM/PANDEMONIUM/HTML/SKINTUT4.HTM
181 HTTP://OTOTHECLEANER.FREE.FR/TUTORIALS/GIMPTEXTURE/GIMPTEXTURE.HTM
182 HTTP://WWW.ITCHY-ANIMATION.CO.UK/TUTORIALS/LIGHTOI.HTM
183 HTTP://WIKI.YAFRAY.ORG/BIN/VIEW.PL/USERDOC/GAURAVGUIDE
184 HTTP://WWW.ANDREW-WHITEHURST.NET/ 3POINT.HTML
185 HTTP://BLENDERMAN.FREE.FR/TUT/RADIOSITY/UK/
186 HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/HTML/CHAPTER_RENDERING_RADIOSITY.
 HTML
 HTTP://WWW.BLENDER.ORG/DEVELOPMENT/RELEASE-LOGS/BLENDER-234/RAMP-SHADERS/
 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/LUMIERE_RADIOS_EN.HTM
 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=30265
 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_SHADOWS.HTM
 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/WORLD/
 INDEX-ANG.HTML
192 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/SHADOWS/
 INDEX-ANG.HTML
193 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2005/01/16/
 10-DIDACTICIEL-LOCCLUSION-AMBIANTE-TUTORIAL-AMBIENT-OCCLUSION
194 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2005/01/02/
 9-DIDACTICIEL-LES-AIRES-LUMINEUSES-TUTORIAL-AREA-LIGHTS
195 HTTP://WWW.MALEFICO3D.COM.AR/TUTOR/DOF-EN.HTML
196 HTTP://WWW.SELLERI.ORG/BLENDER/TUTS/SOFTLIGHT.PDF
```

- BLENDER's Mist ${ }^{197}$
- BASIC Lighting ${ }^{198}$
- Optimizing Renders ${ }^{199}$
- Flares ${ }^{200}$
- Toon Shading ${ }^{201}$ (Broken Link)
- Simple Gold Ring with Caustics ${ }^{202}$ (Broken Link)


### 187.9. Armatures and IK

- Video - Basic Armatures ${ }^{203}$
- DANCING FLOR ${ }^{204}$ * exposed
- Animation Workshop $\mathrm{II}^{205}$ * exposed
- Using Ipo driven shape keys to correct deformations in joints ${ }^{206}$ * exposed (Broken Link)
- Animation recode project ${ }^{207}$
- Action Constraints tutorial made eas ${ }^{208}$
- Rigged Character ${ }^{209}$ (broken link)
- Driven Hand Rig ${ }^{210}$
- Constrained Mechanics ${ }^{211}$
- Armatures Tutorial ${ }^{212}$ (Broken Link)
- Animation using Armatures ${ }^{213}$ (Broken Link)
- IKAS Blender 3D - Introduction ${ }^{214}$
- Constrained Mechanics ${ }^{215}$ (Broken Link)
- Using Armatures ${ }^{216}$ (Broken Link)
- Making and Using Armatures ${ }^{217}$ (Broken Link)
- Character Animation tools ${ }^{218}$ (Broken Link)

```
197 HTTP://WWW-USERS.CS.UMN.EDU/~{}MEIN/BLENDER/TUTORIALS/DUST/MIST.HTML
198 HTTP://WWW.KATORLEGAZ.COM/tUTORIALS/BASIC_3D_LIGHTING.PHP
199 HTTP://WWW.KATORLEGAZ.COM/INDEX.PHP?A=ARTICLE&DISPLAY=1078185600.PHP
200 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/FLARES/
201 HTTP://FREE.HOSTDEPARTMENT.COM/A/ANER/TUTORIAL.HTML
202 HTTP://WWW.GEOCITIES.COM/SOUND_MAN_DAVE/CAUSTICS.HTM
203 HTTP://WWW.YOUTUBE.COM/WATCH?V=GbFVRILSSNO
204 HTTP://OTOTHECLEANER.FREE.FR/TUTORIALS/FLOR/FLOR.HTML
205 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?P=511798
206 нTTP://KOKCITO.TK/RVK/IPO.HTML
207 HTTP://WWW.BLENDER.ORG/DEVELOPMENT/RELEASE-LOGS/BLENDER-240/
HOW-ARMATURES-WORK/
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=49603
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=31839
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=19347
htTP://ARGOSLABS.com/%7EmALEFICO/tutOR/mECANO-EN.HTML
HTTP://WWW.ANYCITIES.COM/TURBOG/TUTORIAL1.HTML
HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/TUT4/ANIMATIN_
ARMATURES.HTML
HTTP://MMAIGROT.FREE.FR/DIDAC-BLENDER/IKAS/IKAS-ENG/IK-INTRO.PHP
HTTP://WWW.MALEFICO3D.COM.AR/TUTOR/MECANO-EN.HTML
HTTP://WWW.ELYSIUN.COM/TUTORIALS/ANIMATION/
HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/TUT3/ARMATURES.HTML
HTTP://WWW.ELYSIUN.COM/TUTORIALS/ANIMATION/
```

- IK Solver Constraint ${ }^{219}$ (Broken Link)
- Softbody for Rigged Characters ${ }^{220}$ (Broken Link)
- Rigging limbs that can twist ${ }^{221}$ (Broken Link)
- Rigging tricks 222 (Broken Link)
- IKA Tutorial ${ }^{223}$


### 187.10. Animation

- Weight Painting : Blender3d Club ${ }^{224}$
- Learn Animation ${ }^{225}$
- Video - Animation Basics ${ }^{226}$
- Simple Animations ${ }^{227}$
- Basic Keyframing ${ }^{228}$ (Broken Link)
- Effects ${ }^{229}$
- Character Animation ${ }^{230}$ (Broken Link)
- Run Cycle ${ }^{231}$ (Non Blender specific)
- Lip Sync I ${ }^{232}$ Blender 2.23
- Lip Sync II ${ }^{233}$ (Broken Link)
- Walking Blues ${ }^{234}$
- Non Linear Action Editor - NLA I ${ }^{235}$
- Non Linear Action Editor - NLA II ${ }^{236}$
- Wave Effect ${ }^{237}$ (Broken Link)
- Build Effect ${ }^{238}$ (Broken Link)
- Animation Effects ${ }^{239}$ (Broken Link)

```
219 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=42310
220 HTTP://WWW.ENRICOVALENZA.COM/SOFTB.HTML
221 HTTP://KOKCITO.TK/TUT/RIG3.HTML
222 HTTP://KOKCITO.TK/TUT/RIGI.HTML
223 HTTP://KAHUNA.CLAYTON.EDU/~{} JBROOKS/BLENDER/TUTORIALS/IKA/
224 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=21
225 HTTP://WWW.ANIMATIONFORCREATION.COM/2008/10/LESSON-1OBLENDERS-ANIMATION-TOOLS.
 HTML
226 HTTP://WWW.YOUTUBE.COM/WATCH?V=FAZFFLMBD2K
227 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2005/03/08/
 17-DIDACTICIEL-ANIMATIONS - SIMPLES-IERE-PARTIE-TUTORIAL-SIMPLE-ANIMATIONS-IST-PART
228 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/BEGINNERS_TUTORIALS/TUT2/
 KEYFRAMEANIMATION.HTML
229 HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/HTML/C1585.HTML
230 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_CHARANIM.HTM
231 HTTP://RODRI.ANIGUILD.COM/TUTO_RUN/RUN_EN.PHP
232 HTTP://WWW.MELOWARE.COM/BLENDER/LIPSYNC.HTM
233 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_CHARANIM2.HTM
234 HTTP://ARGOSLABS.COM/~{}MALEFICO/TUTOR/WALKING.HTML
235 HTTP://MMAIGROT.FREE.FR/DIDAC-BLENDER/NLA/ENG/INDEX.PHP
236 HTTP://ARGOSLABS.COM/~{}MALEFICO/TUTOR/NLA-EN.HTML
237 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/ANIMATION_
 EFFECTS/DIDAC2-ANG.HTML
238 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/ANIMATION_
 EFFECTS/DIDACI-ANG.HTML
239 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/ANIMATION_
 EFFECTS/INDEX-ANG.HTML
```

- Plane Following a Path ${ }^{240}$ (Broken Link)
- Object Following a Path ${ }^{241}$
- Cyclic Animation ${ }^{242}$
- Animating Materials ${ }^{243}$ (Broken Link)
- Walking Tutorial ${ }^{244}$
- Change Cameras during an Animation ${ }^{245}$
- Camera Tracking With Additional Roll Constraint ${ }^{246}$
- Shape Keys / PDF: Blender3d Club ${ }^{247}$
- Eye Tracking : Blender3d Club ${ }^{248}$
- Simple Armature Animation : Blender3d Club ${ }^{249}$


### 187.11. Particles

- Everything about particles 250
- Video - Particle Basics ${ }^{251}$
- Video - Grass with Particles ${ }^{252}$
- Video - Explosions with Particles and the Explode Modifier ${ }^{253}$
- Particle Interaction ${ }^{254}$
- Static Particles ${ }^{255}$
- Static Particle Effect ${ }^{256}$ (Broken Link)
- Particles Effect ${ }^{257}$ (Broken Link)
- Making a Fireplace ${ }^{258}$ (Broken Link)
- Making a Fountain With Particles ${ }^{259}$ * Dust Particles ${ }^{260}$

```
240 HTTP://WWW.INGIEBEE.COM/BLENDERMANIA/PLANE%20FOLLOW%20PATH.HTM
241 HTTP://WWW.INGIEBEE.COM/TUTORIALS/PATH/THEETH%20PATHS.HTM
242 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/ANIMATION_CYCLIQUE/ANIMATION_CYCLIQUE_
 01_ANG.HTML
243 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/TUT7/
 COLOURCHANGING.HTML
244 HTTP://WWW.FORTUNECITY.COM/SKYSCRAPER/TRUE/947/ID13.HTM
245 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=42840&HIGHLIGHT=CHANGE+CAMERA
246 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=46181
247 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=33
248 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=32
249 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=24
250 HTTP://WWW.ANIMATIONFORCREATION.COM/2008/10/LESSON-11BLENDER-PARTICLE-SYSTEM.
 HTML
 HTTP://WWW.YOUTUBE.COM/WATCH?V=4YLN9YJCP_4
 HtTP://Youtube.com/wAtch?V=M9AG0xBL9IM
 HTTP://WWW.YOUTUBE.COM/WATCH?V=At 3HIC-423C
 HTTP://WWW.BLENDER.ORG/DEVELOPMENT/RELEASE-LOGS/BLENDER-234/
 PARTICLE-INTERACTION/
255 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=41356
 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/ANIMATION_
 EFFECTS/DIDAC4-ANG.HTML
257 HTTP://WWW.LINUXGRAPHIC.ORG/SECTION3D/BLENDER/PAGES/DIDACTICIELS/ANIMATION_
 EFFECTS/DIDAC3-ANG.HTML
258 HTTP://WWW.GEOCITIES.COM/BLENGINE/FIREPLACE1.HTMI
259 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/TUT5/FOUNTAIN.HTML
260 HTTP://WWW-USERS.CS.UMN.EDU/~{}MEIN/BLENDER/TUTORIALS/DUST/PARTICLE.HTML
```

- Flames ${ }^{261}$
- LIQUID ${ }^{262}$
- Explosions ${ }^{263}$
- Smoke ${ }^{264}$
- Making a Rain Effect ${ }^{265}$
- SETTING A PREY-PREDATOR RELATIONSHIP USING BOIDS PARTICLES ${ }^{266}$
- Particle and field basics ${ }^{267}$


### 187.12. Fluid Simulation

- Video - Fluid Simulation ${ }^{268}$
- Fluid Simulation Basics ${ }^{269}$
- Basic Blender Fluid Simulation guide ${ }^{270}$


### 187.13. Compositing

- Matching Real Lighting ${ }^{271}$
- CGI/Live Action Interaction ${ }^{272}$ (Broken Link)
- Compositing CG and Live Action in Blender ${ }^{273}$


### 187.14. Game Engine

- Rigid Body Constraints : Blender3d Club ${ }^{274}$
- Video - Blender Game Engine Basics ${ }^{275}$
- Video - Making Dominoes ${ }^{276}$
- Game Engine Development ${ }^{277}$
- New fully integrated game engine? ${ }^{278}$

```
261 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/FLAMES/
262 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/LIQUID /
263 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/EXPLOSIONS/
264 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/SMOKE/
265 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2004/12/24/
 4-BLENDER-FAIRE-PLEUVOIR-MAKING-RAIN
266 HTTP://FEEBLEMIND.TUXFAMILY.ORG/BLOG/INDEX.PHP?POST/2007/12/28/
 106-SETTING-A-PREY-PREDATOR-RELATIONSHIP-USING-BOIDS-PARTICLES
267 HTTP://WWW.DEVIANTART.COM/VIEW/27104504/
268 HTTP://AU.YOUTUBE.COM/WATCH?V=YMBX2PYIQNY
269 HTTP://WWW.DEVIANTART.COM/VIEW/27479896/
270 HTTP://WWW.XEDIUM3D.COM/TUTORIALS/FLUID/
271 HTTP://WWW.ANDREW-WHITEHURST.NET/FX_LIGHT.HTML
272 HTTP://ST102.STARTLOGIC.COM/~{}BLENDERW/CMS/INDEX.PHP?OPTION=COM_
 CONTENT&TASK=VIEW&ID=212&ITEMID=42
273 HTTP://WWW.WEIRDHAT.COM/BLENDER/COMPOSITING2/
274 HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS&FILE=ARTICLE&SID=19
275 HTTP://WWW.YOUTUBE.COM/WATCH?V=WGYCLDS_DLG
276 HTTP://YOUTUBE.com/wATCH?V=3KB_UTKDU30
277 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/GAMEENGINEDEV
278 HTTP://WWW.BLENDER.ORG/FORUM/VIEWTOPIC.PHP?T=6409&SID=868ED 3B00FD68157B704E87F0CC1684A
```

- Game Blender Documentation ${ }^{279}$ (Last modified 13. 07. 2001)
- [irc://irc.freenode.net/gameblender \#GameBlender]
- Walkthrough Tutorial ${ }^{280}$
- Overlay Scenes ${ }^{281}$
- Walking Tutorial ${ }^{282}$
- Make a Menu ${ }^{283}$
- Flipper ${ }^{284}$ (Broken Link)
- Armatures in the Game Engine ${ }^{285}$ (Broken Link)
- Multilevel Maze ${ }^{286}$ (Broken Link)
- Creating Boulders that make the map restart when hit ${ }^{287}$ (Broken Link)
- Mouse Look 1st Person. Options include capping, invert mouse PITCH AND ADJUST MOUSE SENSITIVITY. 288
- Viewports. Creating a Split screen. ${ }^{289}$
- Python game functions. Sample Code Included. Updated to $2.48^{290}$
- Car Setup. Use Bullet Physics vehicle wrapper. ${ }^{291}$
- Using Blender to host/CONTAIn A Storyboard ${ }^{292}$
- BLENDER GAMES, .BLENDS, MODELS, TEXTURES, TUTORIALS, AND MORE. 293 (Broken Link)
- Python scripting for the Game Engine ${ }^{294}$ at cgmasters.net.
- A whole series of TUTORIALS BY NILUNDER ${ }^{295}$.


### 187.15. Python and Plugins

- Python Lessons ${ }^{296}$ * exposed (Broken Link)
- MAKe Hair 297 * exposed (Broken Link)

```
279 HTTP://WEB.ARCHIVE.ORG/WEB/20011207173733/HTTP://WWW.BLENDER.NL/
 GAMEBLENDERDOC/bookI.htML
280 HTTP://WWW.BLENDER.ORG/EDUCATION-HELP/TUTORIALS/TUTORIAL-FOLDER/
 3D-WALKTHROUGH/
281 HTTP://WWW.FORTUNECITY.COM/SKYSCRAPER/TRUE/947/ID16.HTM
282 HTTP://WWW.FORTUNECITY.COM/SKYSCRAPER/TRUE/947/ID13.HTM
283 HTTP://WWW.FORTUNECITY.COM/SKYSCRAPER/TRUE/947/ID17.HTM
284 HTTP://OTOTHEGARDENER.FREE.FR/TUTORIALS/FLIPPER/FLIPPER.HTM
285 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/TUTORIALS/TUT8/
 REALTIMEARMATURES.HTML
286 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/tUTORIALS/tut6/MAZE.HTML
287 HTTP://WWW.USERS.BIGPOND.NET.AU/BLENDAGE/PAGES/tUTORIALS/TUT10/ADDING_TRAPS.
 HTML
288 htTP://www.tutoriALSFORBLENDER3d.com/GAme_Engine/MouSELOOK/MouSELOok_FIRST_
 1.HTML
289 HTTP://WWW.TUTORIALSFORBLENDER3D.COM/GAME_ENGINE/VIEWPORTS/VIEWPORT_1.HTML
290 HTTP://WWW.TUTORIALSFORBLENDER3D.COM/GAMEFUNCTIONS/GAMELOGICPAGE1.HTML
291 HTTP://WWW.TUTORIALSFORBLENDER3D.COM/GAME_ENGINE/VEHICLE/VEHICLE_1.HTML
292 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D%2FTUTORIALS%2FSTORYBOARD
293 HTTP://WWW.DEADTOADKINGDOM.COM/BLENDER.HTML
294 HTTP://WWW.CGMASTERS.NET/FREE-TUTORIALS/PYTHON-SCRIPTING/
295 HTTP://WWW.NILUNDER.COM/TUTORIALS
296 HTTP://WWW.SUTABI.TK/TIMMEH/INDEX.PHP?OPTION=COM_CONTENT&TASK=
 CATEGORY&SECTIONID=4&ID=20&ITEMID=26
- Povanim Export Script \({ }^{298}\)
- AI Path Importer \({ }^{299}\)
- 3D-No Plugins; Put your 3D Blender space on web! 300
- Randomizer Script \({ }^{301}\) Scroll down the page
- Embedding the 3D web Plugin in a WEB PaGE \({ }^{302}\) (Broken Link)
- Different Useful Scripts \({ }^{303}\)
- Afterglow, Polyline, Hitchcock ZoomEffect, ... \({ }^{304}\) (Broken Link)
- Dynamica \({ }^{305}\) (Broken Link)
- BlendSaber \({ }^{306}\) (Broken Link)
- LSyStem tree maker \({ }^{307}\)
- Python Scripting for Procedural Animation \({ }^{308}\)
- Focalblur - A Matter of Depth \({ }^{309}\) (Broken Link)
- Python API Introduction \({ }^{310}\)
- Python API, Making a Square Mesh \({ }^{311}\)
- Python API, Iterations \({ }^{312}\)
- Python API, Automating Vertex Creation \({ }^{313}\)
- Python API, Automating Face Creation \({ }^{314}\)
- Python API, Making Potatoid \({ }^{315}\)
- Python Script, To build an Empty for EnvMap \({ }^{316}\)
- Python Script, Bezier Curves Import \({ }^{317}\)
- Python Script, Paths import \({ }^{318}\)
- Python Script, Importing Adobe Illustrator Format \({ }^{319}\)
- Python Script, Lionhead The Movies .mSh import/EXport \({ }^{320}\)
- Python Script, Mesh Explosion \({ }^{321}\)
```

298 HTTP://JMSOLER.FREE.FR/UTIL/BLENDERFILE/FR/POVANIM_EN.HTM
299 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_IMPORT_AI_EN.HTM
300 HTTP://WWW.THORO.DE/PORTFOLIO/VERSCHIEDENES/3DNP.HTML
301 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=37400
302 HTTP://WWW.BLENDER3D.ORG/EDUCATION/INDEX_OLD.PHP?SUB=TUTORIALEMBEDPLUGIN
303 HTTP://WWW.SELLERI.ORG/BLENDER/SCRIPTS/TEXT.HTML
304 HTTP://WWW.HGB-LEIPZIG.DE/~{}DANIEL/BLENDER/
305 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/DYNAMICA/
306 HTTP://WWW.BLENDERWARS.COM/TUT.PHP?MODULE=BLENDERSABER
307 HTTP://MARIEF.SOLER.FREE.FR/MONSITE/LSYSTEM_EN.HTM
308 htTP://WWW.INGIEBEE.COM/BLENDERMANIA/GENOS%2OSPRING.HTM
309 HTTP://WWW.ELYSIUN.COM/TUTORIALS.PHP?ID=2
310 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/PYTHON_SCRIPTOO.HTM
311 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/PYTHON_SCRIPTO1.HTM
312 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/PYTHON_SCRIPTO2.HTM
313 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/PYTHON_SCRIPTO3.HTM
314 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/PYTHON_SCRIPT04.HTM
315 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/PYTHON_SCRIPTO5.HTM
316 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/ENGLISH/ENG_SCRIPTMIRROR.
HTM
317 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_CURVESIMPORT_EN.HTM
318 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_PATHS_IMPORT_EN.HTM
319 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_IMPORT_AI_EN.HTM
320 HTTP://WWW.DCMODDING.COM/MAIN/INDEX.PHP?OPTION=COM_DOCMAN\&TASK=CAT_
VIEW\&ITEMID=\&GID=36\&ORDERBY=DMDATECOUNTER\&ASCDESC=DESC
321 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_MESHEXPLOSION_EN.HTM

```
- Python Script, Level Of Detail \({ }^{322}\)
- Python Script, Wire Shadows and extrusions \({ }^{323}\)
- Python Script, Changing the active camera instantly \({ }^{324}\)
- Subsurface Scattering in Blender \({ }^{325}\) (Broken Link)
- Using the Superficial Scattering Script \({ }^{326}\)
- City Block Genarator \({ }^{327}\)
- Blender Camera Calibration with Live Camera \({ }^{328}\)
- Import-export different formats, Different Generators, ETC... \({ }^{329}\) (Broken Link)
- Horn Extrude \({ }^{330}\) (Broken Link)
- Mesh shaker and tutorial \({ }^{331}\)
- Batch STL \({ }^{332}\)
- Vertices to a Curve Converter \({ }^{333}\)
- Zutils, Z-Buffer Utilities \({ }^{334}\)
- Setting Vertex Colors with Python \({ }^{335}\)

\subsection*{187.16. Using other Programs with Blender}
- YafRay 336
- Verse \({ }^{337}\) (Broken Link)
- SPE - Python IDE for Blender \({ }^{338}\)
- Wings 3D Subdivision Modeler \({ }^{339}\)
- Verse Gimp-Blender Plugin \({ }^{340}\)
- Kerkythea Renderer \({ }^{341}\)
- Equinox 3D \({ }^{342}\)
```

322 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_LOD_EN.HTM
323 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/PYTHON_WIRESHADOWS_EN.HTM
324 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_CHANGERDECAMERA_EN.HTM
325 HTTP://WWW.DEDALO-3D.COM/INDEX.PHP?FILENAME=SXCOL/EXPERIMENTS/SS_SCATTERING_
PYTHON.HTML
326 HTTP://FEEBLEMIND.TUXFAMILY.ORG/DOTCLEAR/INDEX.PHP/2005/04/25/
39-MH-TUTORIAL-USING-THE-SUPERFICIAL-SCATTERING-SCRIPT
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=16217
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=32715
HTTP://WWW.REDRIVAL.COM/SCORPIUS/BLENDER-PLUGINS.HTM
HTTP://WWW3.SYMPATICO.CA/EMILIO.AGUIRRE/HORNEXTRUDE.HTML
HTTP://SALTSHAKER.SOURCEFORGE.NET/
HTTP://BLENDER.FORMWORKS.CO.NZ/INDEX.PL?P=2Z/BATCH_STL.HTML
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=45576
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=35355
HTTP://WWW.BLENDER3DCLUB.COM/INDEX.PHP?NAME=NEWS\&FILE=ARTICLE\&SID=54
HTTP://WWW.YAFRAY.ORG
HtTP://blender.org/modules/VERSE/
htTP://PYTHONIDE.STANI.BE
HTTP://WWW.WINGS3D.COM/
HTTP://USERS.PANDORA.BE/bLENDIX/VERSE/OLD/DEMO.HTML
HTTP://WWW.KERKYTHEA.NET/JOOMLA/
HTTP://WWW.EQUINOX3D.COM

```
- Wings3D, A Quick and Accurate UVmapping Tool for BLENDER \({ }^{343}\) (Broken Link)
- Povray export \({ }^{344}\)
- Adobe Illustrator Paths import \({ }^{345}\)
- InKSCAPE SVG import \({ }^{346}\)
- Using Blender content in PowerPoint \(2000^{347}\) (Broken Link)
- Ter2Blend \({ }^{348}\) (Broken Link)
- Batch Processing Images \({ }^{349}\)
- BVH Info \({ }^{350}\)
- Stereogram \({ }^{351}\) (Broken Link)
- Importing VRML \({ }^{352}\) (Broken Link)
- Creating Quicktime VRs \({ }^{353}\)
- Blender, Python and Mac OS X 354
- Stylistic Rendering \({ }^{355}\) (Broken Link)
- Voodoo Camera Tracker \({ }^{356}\)
- Lionhead The Movies \({ }^{357}\)
- Using Blender with IMVU \({ }^{358}\) IMVU - Information \({ }^{359}\) (Broken Link)

\subsection*{187.16.1. Distributed Computing}
- BURP - Big and Ugly Rendering Project \({ }^{360}\)
- Global Rendering-Farm \({ }^{361}\)
- OS X Distributed Blender Network Rendering with Xgrid \({ }^{362}\) (Incorrect link?)
- Bfarm Distributed Rendering via Internet \({ }^{363}\) (Broken Link)
```

343 HTTP://MYWEBPAGES.COMCAST.NET/JMANDMC/UVMAP/UVMAP.HTML
344 HTTP://JMSOLER.FREE.FR/UTIL/BLENDERFILE/FR/POVANIM_EN.HTM
345 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_IMPORT_AI_EN.HTM
346 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/CPL_IMPORT_SVG_EN.HTM
347 HTTP://WWW.BLENDER3D.ORG/EDUCATION/INDEX_OLD.PHP?SUB=TUTORIALPOWERPOINT
348 htTP://USERS.SKYNET.BE/SKY33676/TER2BLEND1.HTML
349 HTTP://MEMBRES.LYCOS.FR/BOBOIS/TUTS/TRAITEMENT_PAR_LOT/TRAITEMENT_PAR_LOT_
ANG.HTML
350 HTTP://WWW.CENTRALSOURCE.COM/BLENDER/BVH/
351 HTTP://WWW.GEOCITIES.COM/BLENDERLAB/TUTORIAL1.HTML
352 HTTP://WWW.BLENDER3D.ORG/EDUCATION/INDEX_OLD.PHP?SUB=TUTORIALVRML
353 HTTP://WWW.KATORLEGAZ.COM/INDEX.PHP?FILENAME=/ARTICLES/BLENDER/QUICKTIME_VR.
PHP
354 HTTP://WWW.KATORLEGAZ.COM/INDEX.PHP?FILENAME=/ARTICLES/BLENDER/PYTHON_AND__
OS_X.PHP
HTTP://WWW.FLIPPYNECK.COM/TEMP/NPR.HTM
HTTP://WWW.DIGILAB.UNI-HANNOVER.DE/DOCS/MANUAL.HTML
HTTP://WWW.DCMODDING.COM/MAIN/INDEX.PHP?OPTION=COM_SMF\&ITEMID=79\&TOPIC=180.0
HTTP://NEO5842.STARLITHOST.INFO/MY VIDEO TUTS 01.HTML
HTTP://WWW.IMVU.COM/CATALOG/WEB_LANDING.PHP?P=POWER\&USERID=10209797
HTTP://buRP.BOINC.DK/
HTTP://RENDERWORLD.FUTUREWARE.AT/
HTTP://WWW.KATORLEGAZ.COM/INDEX.PHP?FILENAME=/ARTICLES/BLENDER/USING_
BLENDER_WITH_XGRID.PHP
363 HTTP://GEOCITIES.COM/tronOVAN3D/

```
- PowUA \({ }^{364}\) Blender renderfarm Requires a Password

\subsection*{187.16.2. Maybe someday ..}
- LightRay \({ }^{365}\) (Broken Link)
- Toxic \({ }^{366}\)

\subsection*{187.17. Video Tutorials}
- Blender Underground \({ }^{367}\)
- Official Blender Video Tutorials \({ }^{368}\) (Broken Link)
- Super3boy's Blender Tutorials \({ }^{369}\)
- Greybeard's Blender Video Tutorials \({ }^{370}\)
- SERIES of Short VTuts that explain basic details \({ }^{371}\)
- LESSONS ON BLENDER 3D \({ }^{372}\) (Broken Link)
- Japanese Blender2.59 Video Tutorials \({ }^{373}\)

\subsection*{187.18. Blender WikiBooks}
- Blender 3D: Blending Into Python \({ }^{374}\)
- Blender 3D: HotKeys 375
- Blender 3D: Import and Render a SolidWorks Model \({ }^{376}\)
- Blender 3D: MemoBook \({ }^{377}\) * exposed
- Blender 3D: Noob to Pro \({ }^{378}\)
- All Blender WikiBooks Modules \({ }^{379}\)

\subsection*{187.19. FAQ}
- BLENDER FAQ \({ }^{380}\) (Generated on September 24, 2001)
```

364 HTTP://WWW.POWUA.COM/
365 HTTP://WWW.TACC.UTEXAS.EDU/~{}CBURNS/LIGHTRAY/LIGHTRAY.PHP
366 HTTP://WWW.TOXICENGINE.ORG/
367 HTTP://BLENDERUNDERGROUND.COM/VIDEO-TUTORIAL-LIST/
368 HTTP://WWW.BLENDER.ORG/TUTORIALS-HELP/VIDEO-TUTORIALS/
369 HTTP://WWW.YOUTUBE.COM/PROFILE_VIDEOS?USER=SUPER3BOY
370 HTTP://WWW.IBIBLIO.ORG/BVIDTUTE/
371 HTTP://WWW.BLENDERNATION.COM/2006/03/01/VIDEOTUTORIALS-BLENDER-3D-WORKSHOP/
372 HTTP://WWW.ANIMATIONFORCREATION.COMFREE
373 HTTP://ORIONSTAFF.BLOG84.FC2.COM/BLOG-ENTRY-1562.HTML
374 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A BLENDING%2OINTO%2OPYTHON
375 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A HOTKEYS
376 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A IMPORT AND%2ORENDER A%
20SolidWORKS%20MODEL
HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A MEMOBOOK
HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A NOOB TO PRO
HTTP://EN.WIKIBOOKS.ORG/WIKI/%3ACATEGORY%3ABLENDER
HTTP://WWW.MUSEUM.STATE.IL.US/ISMDEPTS/LIBRARY/LINUXGUIDES/BLENDER/BLENDER_
FAQ_O.HTML

```
- Blender TiPs \({ }^{381}\) (Broken Link)

\subsection*{187.20. Miscellaneous}

CG artists must see or read:
- How to succeed in Animation \({ }^{382}\)
- Bitter History of 3D Business \({ }^{383}\)
- Blender Art Gallery \({ }^{384}\) (Broken Link)
- Classical Film and Video Knowledge Base \({ }^{385}\)
- Quick Tips in Design\&GFX \({ }^{386}\)

\subsection*{187.20.1. Open Movies}
- Orange \({ }^{387}\) (Broken Link)
- NaNo - Blender Internet Virtual Movie Studio \({ }^{388}\)

\subsection*{187.20.2. IRC}
- irc://irc.freenode.net/blender
- irc://irc.freenode.net/blenderchat
- irc://irc.freenode.net/blenderclasses
- irc://irc.freenode.net/blenderqa
- irc://irc.freenode.net/blendercoders
- irc://irc.freenode.net/blenderwiki
- irc://irc.freenode.net/gameblenderdev
- irc://irc.freenode.net/gameblender
- irc://irc.freenode.net/verse

\subsection*{187.20.3. Tests}
- Blender Benchmarks \({ }^{389}\)

\subsection*{187.21. Other Lists}

Please read more about on TALK \({ }^{390}\) page.
```

381 HTTP://DEV.NEWMEDIAWORX.COM/JOHNNYB/BPLANET/TUT_BLENDERTIPS.HTM
382 HTTP://GENEDEITCH.AWN.COM/
383 HTTP:// HOME.NORDWEST.NET/ADGER/TIPS/TIPO77.HTML
384 HTTP://CENTRALSOURCE.COM/BLENDERART/INDEX.PHP
385 HTTP://WWW.RONDEXTER.COM/
386 HTTP://WWW.ATPM.COM/9.07/DESIGN.SHTML
387 HTTP://ORANGE.BLENDER.ORG/CMS/THE_MOVIE.555.0.HTML
388 HTTP://NANO.PRODS.FREE.FR/
389 HTTP://WWW.EOFW.ORG/INDEX.PHP
390 HTTP://EN.WIKIBOOKS.ORG/WIKI/TALK%3ABLENDER 3D%3A TUTORIAL LINKS%
20LIST

```

\subsection*{187.21.1. Tutorials}
- BLENDERARTISTS.ORG \({ }^{391} *\) exposed
- Categorized list of Blender 3D Tutorials \({ }^{392}\)
- A Monolingual List of Tutorials \({ }^{393}\) French Language
- A Multilingual List of Tutorials \({ }^{394}\)
- Dave Jarvis' Blender Tutorials 395
- Blender Tutorials/Ebooks in PDF format 396
- Dark Scarab Tutorials \({ }^{397}\)

\subsection*{187.21.2. Miscellaneous}
- Blender3d Club : Tutorials, Samples, Links. \({ }^{398}\)
- SurfnLearn.com : Blender 3D Tutorials 399
- Blender 3D Links \& Resources 400
- Blender Heads around the Globe(Where live other BLENDERS?) \({ }^{401}\) (Broken Link)
- Blenderart Magazine \({ }^{402}\) (Broken Link) Mirror \(1^{403}\) (Broken Link), M2 \({ }^{404}\) (Broken Link), M3 \({ }^{405}\) (Broken Link)
- Blender Classroom Tutorial \({ }^{406}\)
- Blender Tutorials Search Engine \({ }^{407}\) (Broken Link)
- Blender Basics 2nd ed - EXCELLENT CLASSRoOm COURSE \({ }^{408}\)
- BLENDERMASTERS \({ }^{409}\) - Many resources for blender users
- LANGUAGES (czech) \({ }^{410}\)
```

391 HTTP://BLENDERARTISTS.ORG/CMS/INDEX.PHP?ID=38
392 HTTP://WWW.SURFNLEARN.COM/VIEW_TUTORIALS/BLENDER_3D/ALL/
393 HTTP://WWW.ZOO-LOGIQUE.ORG/3D.BLENDER/INDEX.PHP3?ZOO=DIF
394 HTTP://MEMBRES.LYCOS.FR/BOBOIS/LIENS_LINKS/BIG_LIST.HTML
395 HTTP://WWW.DAVIDJARVIS.CA/BLENDER/
396 HTTP://BLENDERCOURSE.COM/ENGLISH.ASPX
397 HTTP://WWW.DARKSCARAB.COM/TUTORIALS
398 htTP://WWW.BLENDER3DCLUB.COM
399 HTTP://WWW.SURFNLEARN.COM/VIEW_TUTORIALS/BLENDER_3D/ALL/
400 htTP://WWW.KATORLEGAZ.COM/INDEX.PHP?FILENAME=LINKS/BLENDER_3D.PHP
401 HTTP://WWW.FRAPPR.COM/BLENDERHEADSAROUNDTHEGLOBE
402 HTTP://S12.YOUSENDIT.COM/D.ASPX?ID=14ZVYHLTFHOAK2V3YTCWU38RQ3
403 HTTP://WWW.APOLLUX-DESIGNS.COM/BA-MAGAZINE/BLENDERART_MAG-NOV-05.PDF.ZIP
404 HTTP://BLENDERTESTBUILDS.DE/INDEX.PHP?DIR=BLENDERART/20051115/
405 HTTP://WWW.INTELLIDESIGN.ORG/BLENDERART_MAG/
406 HTTP://WWW.STATIKONLINE.COM/BLENDER/
407 HTTP://WWW.BLENDER 3DTUTORIALS.COM
408 HTTP://WWW.CDSCHOOLS.ORG/54223045235521/BLANK/BROWSE.ASP?A=383\&BMDRN=
2000\&BCOB=0\&C=55205
409 HTTP://WWW.BLENDERMASTERS.COM
410 HTTP://WWW.YOUTUBE.COM/WATCH?V=FSHW7J9DTNE

```

\subsection*{187.22. About}

This links list is language filtered and extended version of personal collection originally provided by IamInnocent. So if you looking for tutorials in other languages check this link at WwW.ELYSIUN.COM \({ }^{411}\).
- German Blenders should have a look at
http://de.wikibooks.org/wiki/Blender_3D:_Tutorial_Linkliste
If you want to add Blender tutorial link in some other language you can add it temporary on TALK \({ }^{412}\) page. We will later made such WikiBooks in other languages too.
Thank you all who contributed to this nice and useful links collection! Feel free to add your name or link if you think you need to be mentioned here. DE:Blender 3D: Tutorial Linkliste \({ }^{413}\)
```

411 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=13380
412 HTTP://EN.WIKIBOOKS.ORG/WIKI/TALK%3ABLENDER 3D%3A TUTORIAL LINKS%
20LIST
413 HTTP://DE.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A TUTORIAL%2OLINKLISTE

```

\section*{188. Hotkeys}

Blender's user interface is very flexible and often provides more than one way to do something. Many operations that can be done by clicking on buttons and menus can also be done with keyboard shortcuts called "hotkeys". The hotkey is usually much faster than the corresponding mouse action, so it's a good idea to learn them as soon as possible.
An entire WikiBook (titled Blender 3D: HotKeys \({ }^{l}\)) is devoted to Blender hotkeys. We encourage you to refer to it as often as necessary.

\section*{189. Output Formats}

Blender can render still images and video to many different file formats. Here is an alphabetical list:
- AVI Codec - AVI codec compression. Available codecs are operating system dependent. When an AVI codec is initially chosen, the codec dialog is automatically launched. The codec can be changed directly using the Set Codec button in AVI Codec settings.
- AVI Jpeg - AVI but with Jpeg compression. Lossy, smaller files but not as small as you can get with a Codec compression algorithm. Jpeg compression is also the one used in the DV format used in many digital camcorders.
- AVI Raw - Audio-Video Interlaced (AVI) uncompressed frames.
- BMP - Bit-Mapped Paint is an early lossless format.
- Cineon - format produced by a Kodak Cineon camera and used in high-end graphics software and directed toward digital film.
- DPX - Digital Moving-Picture eXchange format; an open professional format (close to Cineon) with meta-information about the picture; 16-bit uncompressed bitmap (huge file size). Used in preservation.
- FFMPEG - Fast Forward Moving Pictures Expert Group is a collection of free and open source software libraries that record, convert and stream digital audio and video in numerous formats. You must have the proper codec installed on your computer for Blender to call it and use it to compress the video stream through FFMPEG, but there are preset formats to choose from, such as DV, SVCD, and DVD.
- Frameserver - Blender puts out frames upon request as part of a render farm. The port number is specified in the OpenGL User Preferences panel.
- HamX - Blender's own self-developed 8 bits RLE (Run Length Encoded bitmap) format; it creates extremely compact files that can be displayed quickly. To be used only for previsualization of animations (Play button).
- Iris - the standard Silicon Graphics Inc (SGI) format used on Unix OS machines.
- JPEG - Joint Photographic Experts Group (name of the consortium which defined it), an open format that supports very good compression with little loss of quality. Only saves RGB value. Re-saving images results in more and more compression and loss of quality.
- JPEG 2000
- MultiLayer - an OpenEXR format that supports storing multiple layers of images together in one file. Each layer stores a renderpass, such as shadow, specularity, color, etc. You can specify the encoding used to save the MulitLayer file using the codec selector (ZIP (lossless) is shown and used by default).
- OpenEXR - an open and non-proprietary extended and highly dynamic range (HDR) image format, saving both Alpha and Z-depth buffer information.
- PNG - Portable Network Graphics, a lossless image format often used in web design.
- QuickTime - A proprietary multimedia framework for video and images.
- Radiance HDR
- Targa
- Targa Raw
- TIFF - Tagged Image File Format created by Aldus for desktop publishing.

If the selection seems daunting, here are pointers:
If you need transparency in your images (i.e., an alpha channel that allows any part of the rendered image to have varying degrees of opacity), or you will be compositing, you generally want to use:
- Multilayer
- PNG
- OpenEXR
- Targa

Of the above four formats, you will find that PNG and Targa images can be opened and edited by most any bitmap editing application, such as GIMP or Photoshop. However, OpenEXR and Multilayer offer more options within Blender, and may produce smaller, lossless files.

\section*{190. Image Portfolio}

\subsection*{190.1. Summary}

This is the Blender 3D: Noob to \(\mathrm{Pro}^{1}\) image portfolio page, where all the categories of the images used in the book are here in one place for your reference.

\subsection*{190.2. Categories}

BLENDER 3D \({ }^{2}\)
BLENDER 3D ICONS \({ }^{3}\)
Blender 3D screenshots \({ }^{4}\)
Non Blender 3D screenshots \({ }^{5}\)
BLENDER 3D SPLASH SCREENS \({ }^{6}\)
Blender 3D viewports \({ }^{7}\)
Blender 3D suzanne primitive \({ }^{8}\)

\subsection*{190.3. A sampling of images from the above categories}

Heres a random sample of 200 images from the over 1,800 images in the above categories
```

HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER 3D%3A NOOB TO PRO
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ABLENDER 3D
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ABLENDER 3D ICONS
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ABLENDER 3D SCREENSHOTS
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ANON BLENDER 3D SCREENSHOTS
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ABLENDER 3D SPLASH SCREENS
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ABLENDER 3D VIEWPORTS
HTTP://EN.COMMONS.ORG/WIKI/CATEGORY%3ABLENDER 3D SUZANNE PRIMITIVE

```


Figure 1114

Figure 1115

Figure 1116

Figure 1117

Figure 1118

Figure 1119

Figure 1120

Figure 1121

Figure 1122

Figure 1123

Figure 1124

Figure 1125

Figure 1126

Figure 1127

Figure 1128

Figure 1129

Figure 1130

Figure 1131

Figure 1132
Vertex Groups
\begin{tabular}{|c|c|}
\hline\(=\) & Bone \\
\hline Weight: 1.000 \\
\hline New & Delete \\
\hline Assign & Remove \\
\hline Select & Desel. \\
\hline
\end{tabular}

Figure 1133

Figure 1134

Figure 1135

Figure 1136

Figure 1137

Figure 1138

Figure 1139
© (1)Cube I 8 (1) 0
Figure 1140

Figure 1141

Figure 1142

Figure 1143

Figure 1144

Figure 1145

Figure 1146

\section*{t}

Figure 1147

Figure 1148

Figure 1149

Figure 1150

Figure 1151

Figure 1152

Figure 1153

Figure 1154

Figure 1155

Figure 1156

Figure 1157

Figure 1158

Figure 1159

Figure 1160

Figure 1161

Figure 1162

Figure 1163

Figure 1164

Figure 1165

Figure 1166

Figure 1167

Figure 1168

Figure 1169

\section*{}

Figure 1170

Figure 1171

Figure 1172

Figure 1173

Figure 1174

Figure 1175

Figure 1176

Figure 1177

Figure 1178

Figure 1179

\section*{:}

Figure 1180

Figure 1181

Figure 1182

Figure 1183

Buf. Shado

Figure 1184

Figure 1185

Figure 1186

Figure 1187

Figure 1188

Figure 1189

Figure 1190

Figure 1191

Figure 1192

Figure 1193

Figure 1194

Figure 1195

Figure 1196

Figure 1197

Figure 1198

Figure 1199

Figure 1200

Figure 1201

Figure 1202

Culw Tong
Convert
```

Foly
Eezier

```
 W urt

Figure 1203

Figure 1204

Figure 1205

Figure 1206

Figure 1207

Figure 1208

Figure 1209

Figure 1210

Figure 1211

Figure 1212

Figure 1213

Figure 1214

Figure 1215

Figure 1216

Figure 1217

Figure 1218

Figure 1219

Figure 1220

Figure 1221

Figure 1222

Figure 1223

Figure 1224

Figure 1225

Figure 1226

Figure 1227

Figure 1228

Figure 1229

Figure 1230

Figure 1231
\begin{tabular}{|c|c|c|}
\hline Lock X Rot & Lock Y Rot & Lock Z Rot \\
\hline Stiff X: 0.000 & & Stiff Z: 0.000 \\
\hline Limit X & & Limit Z \\
\hline Min X : -94.7 & & Min Z : -64.8 \\
\hline Max X: 118.4 & & (Max Z: 88.6) \\
\hline
\end{tabular}

Figure 1232

Figure 1233
\begin{tabular}{|l|}
\hline Wave \\
UVProject \\
\hline Sulasurf \\
\hline Smooth \\
SimpleDeform \\
Shrinkwrap \\
ParticleInstance \\
Mirror \\
MeshDeform \\
Mask \\
Lattice \\
Explode \\
Edge Split \\
Displace \\
Decimate \\
Curve \\
Cast \\
Build \\
Boolean \\
Bevel \\
Array \\
Armature \\
\hline Add Modifier \\
\hline
\end{tabular}

Figure 1234

Figure 1235

Figure 1236

Figure 1237

Figure 1238

Figure 1239

Figure 1240

Figure 1241

Figure 1242

Figure 1243

Figure 1244

Figure 1245

Figure 1246

Figure 1247

Figure 1248

Figure 1249

Figure 1250

Figure 1251

Figure 1252

Figure 1253

Figure 1254

Figure 1255

Figure 1256

Figure 1257

Figure 1258

Figure 1259

Figure 1260

Figure 1261

Figure 1262

Figure 1263

Figure 1264

Figure 1265

Figure 1266

Figure 1267

Figure 1268

Figure 1269

Figure 1270

Figure 1271

Figure 1272

Figure 1273

Figure 1274

Figure 1275

Figure 1276

Figure 1277

Figure 1278

Figure 1279

Figure 1280

Figure 1281

Figure 1282

Figure 1283

Figure 1284

Figure 1285

Figure 1286

Figure 1287

Figure 1288

Figure 1289

Figure 1290

Figure 1291

\section*{Select Mode \\ Vertices \\ Edges \\ Faces}

Figure 1292

Figure 1293

Figure 1294

Figure 1295

Figure 1296

Figure 1297

Figure 1298

Figure 1299

Figure 1300

Figure 1301

Figure 1302

Figure 1303

Figure 1304

Figure 1305

Frame 50

Frame I
Figure 1306

Figure 1307

Figure 1308

Figure 1309

Figure 1310

Figure 1311

Figure 1312

Image Portfolio \({ }^{9}\)

\footnotetext{
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY\%3ABLENDER\%203D\%3A\%20NOOB\%20TO\% 20 PRO\% 2FPRoJECT
}

\section*{191. Blender Glossary}

Please add words and phrases to the alphabetical glossary at BLENDER 3D: NOOB TO Pro/Glossary \({ }^{1}\).

\subsection*{191.0.1. General Terminology}
- 2D (adjective): two-dimensional (flat)
- 3D (adjective): three-dimensional
- axis (noun): one of the primary directions used to define a coordinate system; plural: axes
- coordinates (noun): a string of numbers (usually two or three) which denote a location
- coordinate system: a scheme for denoting locations by means of coordinates
- disappearing taskbar: a taskbar which appears only when the mouse pointer reaches an edge of the display
- geometry:
1. the branch of mathematics concerned with positions, directions, angles, lengths, areas, volumes, and so on
2. the portion of a 3D model that deals with shapes
- GIMP: an open-source software tool for editing 2D computer graphics
- illusion of depth: the human propensity to imagine a 3D scene when presented with a flat (2D) picture of it
- light (verb): to describe the intensity, color, direction, etc. of the light sources in a 3D scene
- model (noun): an abstract description of a 3D object (or scene) which is suitable for rendering
- model (verb): to create models
- numpad: a numeric keypad
- orthographic view: a 2D view which represents a scene's parallel edges with parallel edges; contrast with: perspective view
- perpendicular (adjective): forming a 90-degree (right) angle
- perspective view: a 2D view which represents a scene's parallel edges with edges that converge toward a vanishing point
- pose (verb): to position objects and their parts in a 3D scene
- render (verb): to generate a 2D view from a 3D model of a scene, by means of a computer
- rig (noun): to describe how different parts of an object are capable of moving relative to one another
- texture (verb): to describe how a 3D object interacts with light (scattering, bending, etc.)

\footnotetext{
1 Chapter 185 on page 1353
}

\subsection*{191.0.2. Blender User Interface Terminology}
- active window: the window currently responding to keystrokes
- blender unit: the height and width of each grid square in a 3D View window
- header: a row of controls along the top or bottom of a window
- panel: a rectangular area in a Buttons window which can be rearranged relative to other panels
- window (noun): a rectangular area of Blender's user-interface which can be split or resized
- window type (noun): one of the sixteen varieties of windows in Blender's user interface:
- Scripts Browser - This window is used to initiate any Python \({ }^{2}\) scripts saved in Blender to add functionality.
- File Browser - Browses the files on your computer in Blender.
- Image Browser - Browses the files on your computer in Blender with visuals of images displayed.
- Node Editor - The enhanced material editing system in Blender in which you can customize the input/output of materials or scenes and composite them together.
- Buttons Window - Displays the Blender scene and object editing options.
- Outlines - Breaks down the entire collection of objects and their properties in an organized list.
- User Preferences - Allows you to change Blender's controls and preferences.
- Text Editor - Simple text editor for any notes/Python code.
- Audio Window - Allows you to upload, enhance, and save audio files into the Blender library.
- Timeline - Shows the animation's beginning, ending, and current frame, as well as a timeline with marks indicating all the key positions of an object.
- Video Sequence Editor - Feature for the composition of sound, scenes, videos and other cinematographic elements.
- UV/Image Editor - Allows you to add and alter image files in Blender and also apply these images onto the faces of meshes in an editable fashion as a material.
- NLA Editor - Allows you to change the key positions of all actions/IPOs.
- Action Editor - Allows you to alter the key positions of an armature and it's collection of bones.
- IPO Curve Editor - Allows you to insert saved key points of the positions, transformations, and settings of objects of the course of a series of frames.
- 3D View - Window through which you work with, add, and place objects in a 3D world.

\subsection*{191.0.3. Blender Modeling Terminology}
- Quad n. - A face with four sides.
- Mesh \(n\). - A collection of faces, edges, and vertices which can be modeled and manipulated in Edit Mode.
- Vertex (pl. vertices) n. - A 3-dimensional coordinate, which in groups comprise a polygon. With default settings, it is represented in Blender by a purple dot when unselected, or a yellow dot when selected.
- Edge n. - A wire-like line representing the boundary of 2 adjacent vertices.
- Face \(n\). - A planar connection of edges representing a boundary, field, or solid surface. Identified individually in Edit Mode as a black box in the middle of the corresponding face.

\footnotetext{
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/PYTHON
}
- Icosphere \(n\). - A sphere composed of \(n\) triangular faces composed in a manner to give the best "smoothness" for the lowest memory consumption.
- UVSphere \(n\). - A sphere composed of \(n\) square faces arranged in rings to allow the smoothest application of real-time movement of vertices/faces and application of images onto the spectrum of faces.
- Lamps - Category of 5 light-emitting objects:
- Lamp - Light is emitted in the scene with a uniform spherical output which fades with distance, decreasing eventually to 0 . The distance can be specified in its options.
- Sun - Light is emitted in the scene with a uniform spherical output and remains uniform regardless of the distance from it.
- Spot - Light is emitted in the scene in a predetermined conical area with light properties similar to lamp and also initially calculates the shadow (lack of light) present behind an object (Known as ray shadow).
- Hemi - Sun-like light emitted in a 180 degree arc. Works just like a Sun lamp, but with less functionality. Best used for quick, broad illumination.
- Area - Light which works similar to a Spot lamp but shape of the cone is definable.
- Ray shadows \(n\). - Method of generating shadows cast by light by calculating the angle and faces of the interfering object to create a smooth, sharp and complete shadow. Memory-intensive, best quality.
- Buffer Shadows \(n\). - Method of generating shadows cast by light by calculating the angle of a mesh's edge and creating a set amount of shadow "squares" on the shadow-receiving objects which are calculated from a set buffer-ratio. Memory-friendly, while possibly lower quality.
- Camera \(n\). - An object which acts as the viewpoint (when active) for the scene when the scene is to be rendered.
- Armature \(n\). - An object which contains 'bones'. Bones are sub-objects which are connected with each other in a chain, each bone-link is parented to the bone before it. The purpose is to parent any objects to the bone, and also you may parent a mesh to the entire armature and have selected vertices of the mesh parented to bone(s) percentage-wise (\(0 \%\) means no effect, \(50 \%\) means vertices copy half the transformation value, \(100 \%\) means vertices transformed as full child of bone.)
- Empty \(n\). - [Please add description here...]

\section*{192. Every Material Known to Man}

\section*{192.1. 'Every Material Known To Man" Project}

Want to share your material settings with the world? This is the place! This page is going to be turning from a page to a chapter, but to do that we need your support!! If you have an idea for a material, even if you don't know how to make it, just put it in the list to help! Someone out there knows how to make it, and if they come across this page with it listed, they might be willing to share.

\section*{193. Sources of free 3D models}

Here are some sources of free 3d models from across the web. Take them apart, put them back together, understand what makes them tick, to improve your own modeling.

\subsection*{193.1. Blender-Specific}

These sites offer .blend files for download.
- The Official Blender Model Repository \({ }^{1}\)
- HTTP://WWW.BLENDSWAP.COM/ \({ }^{2}\) - specifically for swapping Blender models. But note that all Lego models are offered under the non-Free CC-BY-NC licence, due to some misunderstanding of how trademarks are supposed to work.
- Blender for Architecture \({ }^{3}\)
- HTTP://OPENGAMEART.ORG \({ }^{4}\) — more Blender models
- HTTP://KATORLEGAZ.COM/3D_MODELS/INDEX.PHP \({ }^{5}\)-- they have funriture, arcade video games, joysticks, toys, vechicles, road and sidewalk items, and simple human models
- YORIK'S SITE \({ }^{6}\) - some Blender files for his architectural projects are available for download.

\subsection*{193.2. Non-Blender-Specific}

These sites offer models in other formats.
- HTTP://ARCHIVE3D.NET \({ }^{7}-15,000+\) free models from archive 3d
- HTTP://SKETCHUP.GOOGLE.COM/3DWAREHOUSE/ \({ }^{8}\) - Google's 3d warehouse repository; take the collada version, when available (the Google Earth downloads are actually .zip files with a collada inside them, so just rename and unzip)

Note: some of the 3d warehouse models can't be understood by blender due to a zillion repeating elements, others will show up invisible (one sided, or inside out), be gigantic in size, or all parented to some crazy spot out in space. Fixing these to be usable will push your blender skills to new levels in some cases.
```

HTTP://E2-PRODUCTIONS.COM/REPOSITORY/INDEX.PHP
HTTP://WWW.BLENDSWAP.COM/
HTTP://BLENDER-ARCHI.TUXFAMILY.ORG/MODELS
HTTP://OPENGAMEART.ORG
HTTP://KATORLEGAZ.COM/3D_MODELS/INDEX.PHP
HTTP://YORIK.UNCREATED.NET/
HTTP://ARCHIVE3D.NET
HTTP://SKETCHUP.GOOGLE.COM/ 3DWAREHOUSE/

```

Tips: I've tried importing a few of these 3D Warehouse models, and so far I've only noticed a couple of issues:
- The model imports into a new Blender scene, called something like "SketchupScene" or "SketchupScene001". You may also find additional scenes created with nothing in them, that you can delete. If you try rendering, you may not see anything, because the default camera is only linked into the original default scene named "Scene". Just select the camera and hit CTRL+LKEY to link it into the new scene.
- You may notice parts of the model appearing and disappearing as you try viewing it from different angles. This is because it is scaled very large (several hundred Blender Units on a side). Try scaling it down so it's no more than a few BU on a side.
- There will usually be a lot of doubles, so remove them with WKEY->remove doubles.
- There may be many separate objects, so select what you want to combine and hit CTRL+J to join them all into one object.
- HTTP://ARTIST-3D.COM \(/{ }^{9}\) - wide variety of free models
- HTTP://WWW.NASA.GOV/MULTIMEDIA/3D_RESOURCES \({ }^{10}\) - all kinds of free models from the space program
- HTTP://WWW.3DM3.COM/MODELSBANK/ \({ }^{11}\) - around 300 free models
- HTTP://WWW.AMAZING3D.COM/FREE/FREE.HTML \({ }^{12}\) - free section on amazing 3d about 75 models of all kinds of things.
- HTTP://WWW.CORPORATEMEDIANEWS.COM/2002/03_MAR/FEATURES/3DMODELLIBRARY.HTM \({ }^{13}\) - free models from corporate media news; a very interesting collection from klingon space ships to footballs.
- HTTP://3DPLANTS.0CATCH.COM/DOWNLOAD.HTML \({ }^{14}\) - about 70 free 3d plant models
- HTTP://WWW.3DELICIOUS.NET \({ }^{15}\) - 3d delicious, lots of models, but way too many popover ads! (click the picture, then click the bigger preview in the next page to download)
- HTTP://WWW.TOP3DMODELS.COM/PRODUCTS/3D-MODELS/FREE \({ }^{16}\) - 20 free models
- HTTP://WWW.TOP3D.NET/FREE-3D-MODELS/ \({ }^{17}\) - about 85 models, including washing machines, tires, and jewerly
- HTTP://WWW.OYONALE.COM/MODELES.PHP?LANG=EN\&FORMAT=OBJ \({ }^{18}\) - about 17 free models form guns, to rubber duckies
- HTTP://DMI3D.COMEZE.COM/ \({ }^{19}\) - a few hundred free models of cars, race cars, trucks, tanks, backhoes, etc.
- HTTP://WWW.SCIFI3D.COM/LIST.ASP? INTGENREID=14\&INTCATID=36 \({ }^{20}\) - free models of scfi empires like, Aliens, Babylon5, Blade Runner, BS Galactica, Original SciFi, Other SciFi, Star Trek, Star Wars
```

HTTP://ARTIST-3D.COM/
HTTP://WWW.NASA.GOV/MULTIMEDIA/3D_RESOURCES
HTTP://WWW.3DM3.COM/MODELSBANK/
HTTP://WWW.AMAZING3D.COM/FREE/FREE.HTML
HTTP://WWW.CORPORATEMEDIANEWS.COM/2002/03_MAR/FEATURES/3DMODELLIBRARY.HTM
HTTP:// 3DPLANTS.OCATCH.COM/DOWNLOAD.HTML
HTTP://WWW.3DELICIOUS.NET
HTTP://WWW.TOP 3DMODELS.COM/PRODUCTS/3D-MODELS/FREE
HTTP://WWW.TOP3D.NET/FREE-3D-MODELS/
HTTP://WWW.OYONALE.COM/MODELES.PHP?LANG=EN\&FORMAT=OBJ
HTTP://DMI3D.COMEZE.COM/
HTTP://WWW.SCIFI3D.COM/LIST.ASP?INTGENREID=14\&INTCATID=36

```
- RESOURCES.BLOGSCOPIA.COM \({ }^{21}\) - models in Blender and other formats.
- HTTP://WWW.HOBBYCNCART.COM/ \({ }^{22}\) - Free relief models (all modells are free) in .STL .OBJ and depth map (.BMP) formats.

\subsection*{193.3. Sites Using .RAR Format}

Separated out because they may not be decodable with Free Software.
- HTTP://WWW.3DMODELFREE.COM/ \({ }^{23}\) - 3d model free, lots of variety here
- HTTP://DLEGEND.COM/HTML/FREE-3DMODELS.HTML \({ }^{24}\) - design company with a few huundred free 3d models
- HTTP://3DDB.BLOGSPOT.COM/SEARCH/LABEL/MODELS \({ }^{25}\) - lots of free luxury style models in sets (has a giant picture at the top, just scroll down).

\subsection*{193.4. Sites Requiring Registration}
- HTTP://WWW.TURBOSQUID.COM/SEARCH/INDEX.CFM?KEYWORD=\&MAX_PRICE=0 \({ }^{26}\) \(13,000+\) free models at 3d stock site turbosquid (registration required for download)
- HTTP://www.3DXTRAS.COM/3DXTRAS-FREE-3D-MODELS-LIST.ASP?CATID=-127 3 d extras, lots of variety, but too many popover ads.
- HTTP://DD-FREEBIES.BLOGSPOT.COM/SEARCH/LABEL/3D\%20MODELS \({ }^{28}\) - a few baubles and ornaments
- HTTP://WWW.EXCHANGE3D.COM/FREE-3D-MODELS/CAT_35. HTML?NOREDIRECT=1\&ACT=VIEWCAT\&CATID \(=35^{29}\) - about 100 free models, some even made in blender!
- HTTP://WWW.WIRECASE.COM/GALLERY-FREE-3D-MODELS_S-2_V-20-1_F-FC-0-321_F-FPX-_F-FPN-_F-OID-. HTML \(^{30}-25\) sets of models from airplanes to bottles
- HTTP://WWW.SHARECG.COM/B/5/3DMODELS?PSID=E3AA02D1EF780C432E9F9D7E9540936931 - wide assortment of free models
- HTTP://WWW.CG-FILES.COM/3DMODELS.HTML \({ }^{32}\) - from tires to fans (lots of popover ads)
```

HTTP://RESOURCES.BLOGSCOPIA.COM/CATEGORY/MODELS/
HTTP://WWW.HOBBYCNCART.COM/
HTTP://WWW.3DMODELFREE.COM/
HTTP://DLEGEND.COM/HTML/FREE-3DMODELS.HTML
HTTP:// 3DDB.BLOGSPOT.COM/SEARCH/LABEL/MODELS
HTTP://WWW.TURBOSQUID.COM/SEARCH/INDEX.CFM?KEYWORD=\&MAX_PRICE=0
HTTP://WWW.3DXTRAS.COM/3DXTRAS-FREE-3D-MODELS-LIST.ASP?CATID=-1
HTTP://DD-FREEBIES.BLOGSPOT.COM/SEARCH/LABEL/3D MODELS
HTTP://WWW.EXCHANGE3D.COM/FREE-3D-MODELS/CAT_35.HTML?NOREDIRECT=1\&ACT=
vIEwCAT\&CATID=35
HTTP://WWW.WIRECASE.COM/GALLERY-FREE-3D-MODELS_S-2_V-20-1_F-FC-0-321_
F-FPX-_F-FPN-_F-OID-.HTML
HTTP://WWW.SHARECG.COM/B/5/3D-MODELS?PSID=E3AA02D1EF780c432E9F9d7E95409369
HTTP://WWW.CG-FILES.COM/ 3DMODELS.HTML

```
- http://www.3DCONTENTCENTRAL.COM/DEFAULT.ASPX \({ }^{33}\) - Free 3D Models of Parts \& Assemblies like brackets, resistors, motors, shafts, valves.

\footnotetext{
33 HTTP://WWW. 3DCONTENTCENTRAL.COM/DEFAULT.ASPX
}

\section*{194. Blueprint Links List}

This page contains links to 2D images and drawings that can be useful for constructing models.
- HTTP://WWW.SHIPSCHEMATICS.NET \({ }^{1}\) - Starship Schematics Database
- http://www.suurland.com/blueprints_archive.php
- HTTP://WWW.LUFT46.COM/PROFILES/PROFILES.HTML \({ }^{2}\) - 3 views
- HTTP://WWW.AVIASTAR.ORG/INDEX2. HTML \(^{3}-3\) views
- HTTP://WWW.RCGROUPS.COM/FORUMS/SHOWTHREAD.PHP?T=5574574 - 3 views on a lot lot lot of airplanes
- HTTP://WWW.GOOGLE.COM/INTL/EN/SKETCHUP/3DWH/PDFS/MODELING_A_CITY.PDF \({ }^{5}\) Google's guide on how to model a city
- HTTP://WWW.BOATDESIGN.NET/BOAT-PLANS-ARCHIVE/INDEX.HTM \({ }^{6}\) boats
- HTTP://WWW.MGUSSIN.FREEUK.COM/00PLANS.HTM \({ }^{7}\) old cars
- HTTP://WWW.AIRWAR.RU/OTHER/DRAW_1W.HTML \({ }^{8}\) War Planes
- hTTP://JPRACING.RACERPLANET.COM \(/{ }^{9}\) Cars, Trucks, Buses
- HTTP://WWW.SWAQVALLEY.COM/BLUEPRINTS.PHP?SECTION=SAMPLES \({ }^{10}\) sports cars

\subsection*{194.1. Registration Required}
- HTTP://WWW.THE-BLUEPRINTS.COM/ \({ }^{11}\) — requires registration for full-quality downloads
- http://smcars.net/

\subsection*{194.2. Payment Required}
- HTTP://WWW.EPLANS.COM/ \({ }^{12}\) - floor plans, but if you navigate around a bit to find em.
- HTTP://WWW.EMPORIS.COM/APPLICATION/ \({ }^{13}\) - heights and details of buildings; photos available for purchase
```

HTTP://WWW.SHIPSCHEMATICS.NET
HTTP://WWW.LUFT46.COM/PROFILES/PROFILES.HTML
HTTP://WWW.AVIASTAR.ORG/INDEX2.HTML
HTTP://WWW.RCGROUPS.COM/FORUMS/SHOWTHREAD.PHP?T=557457
HTTP://WWW.GOOGLE.COM/INTL/EN/SKETCHUP/ 3DWH/PDFS/MODELING_A_CITY.PDF
HTTP://WWW.BOATDESIGN.NET/BOAT-PLANS-ARCHIVE/INDEX.HTM
HTTP://WWW.MGUSSIN.FREEUK.COM/OOPLANS.HTM
HTTP://WWW.AIRWAR.RU/OTHER/DRAW_1W.HTML
HTTP://JPRACING.RACERPLANET.COM/
HTTP://WWW.SWAQVALLEY.COM/BLUEPRINTS.PHP?SECTION=SAMPLES
HTTP://WWW.THE-BLUEPRINTS.COM/
HTTP://WWW.EPLANS.COM/
HTTP://WWW.EMPORIS.COM/APPLICATION/

```
- HTTP://SKYSCRAPERPAGE.COM/ \({ }^{14}\) - building heights, diagrams, but downloads and screenshots are prohibited

\subsection*{194.3. Shouldn't Really Be Here?}
- HTTP://WWW.ARCHIPLANET.ORG/WIKI/MAIN_PAGE \({ }^{15}\) - building encyclopedia, can't find any actual plans

\footnotetext{
14 HTTP://SKYSCRAPERPAGE.COM/
15 HTTP://WWW.ARCHIPLANET.ORG/WIKI/MAIN_PAGE
}

\section*{195. Materials, Textures, Photos}

Here are some sources of materials, textures and photos from across the Web.

\subsection*{195.0.1. Materials}
- Large Free Repository of Materials \({ }^{1}\)

\subsection*{195.0.2. Textures}
- Textures Library \({ }^{2}\)
- Mayang's Free Textures Hi-Res \({ }^{3}\)
- Jeremey Engleman's Public Textures Hi-Res \({ }^{4}\) (doesn't seem to display properly)
- Image*After Free Images Hi-Res \({ }^{5}\)
- Free Textures Mid-Res \({ }^{6}\)
- Sky Maps \({ }^{7}\)

\subsection*{195.0.3. Photos}
- HTTP://WWW.MED.HARVARD.EDU/AANLIB/CASES/CASENA/PB9. HTM \(^{8}\) - Brain scan
- HTTP://WWW.MORGUEFILE.COM \({ }^{9}\) - the morgue file
- HTTP://WWW.SXC.HU \({ }^{10}\) - Stock exchange
- HTTP://WWW.EVERYSTOCKPHOTO.COM \({ }^{11}\) everystockphoto
- HTTP://WWW.PIXELPERFECTDIGITAL.COM/FREE_STOCK_PHOTOS \({ }^{12}\) - Pixel Perfect Digital
- hTTP://OPENPHOTO.NET \({ }^{13}\) - OpenPhoto.Net
- HTTP://WWW.IMAGEAFTER.COM \({ }^{14}\) - Image*After
```

HTTP://MATREP.PARASTUDIOS.DE/INDEX.PHP
HTTP://TEXTURES.Z7SERVER.COM/
HTTP://WWW.MAYANG.COM/TEXTURES/INDEX.HTM
HTTP://WWW.ART.NET/~{}JEREMY/PHOTO/PUBLIC_TEXTURE_FRAMESET.HTML
HTTP://WWW.IMAGEAFTER.COM/
HTTP://DIGITALCRAFTSMAN.COM/TEXTUREBIN/TEXTUREBIN.HTM
HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=24738
HTTP://WWW.MED.HARVARD.EDU/AANLIB/CASES/CASENA/PB9.HTM
HTTP://WWW.MORGUEFILE.COM
HTTP://WWW.SXC.HU
HTTP://WWW.EVERYSTOCKPHOTO.COM
HTTP://WWW.PIXELPERFECTDIGITAL.COM/FREE_STOCK_PHOTOS
HTTP://OPENPHOTO.NET
HTTP://WWW.IMAGEAFTER.COM

```
- hTTP://WWW.ABOUTPIXEL.DE \({ }^{15}\) - aboutpixel.de
- HTTP://WWW.FREEPHOTOSWEB.COM/FREEPHOTOSWEB \({ }^{16}\) - Free Photos Web
- HTTP://WWW.BIGFOTO.COM \({ }^{17}\) - Big Foto
- HTTP://WWW.FREEPHOTOSBANK.COM \({ }^{18}\) - FreePhotosBank.com
- HTTP://WWW.FREEJPG.COM.AR \({ }^{19}\) - FreeJPG
- HTTP://WWW.STOCKVAULT.NET \({ }^{20}\) - Stockvault.net
- HTTP://WWW.FREEPIXELS.COM \({ }^{21}\) - FreePixels
- HTTP://WWW.FREERANGESTOCK.COM \({ }^{22}\) - Freerange Stock
```

15 HTTP://WWW.ABOUTPIXEL.DE
16 HTTP://WWW.FREEPHOTOSWEB.COM/FREEPHOTOSWEB
17 HTTP://WWW.BIGFOTO.COM
18 HTTP://WWW.FREEPHOTOSBANK.COM
19 HTTP://WWW.FREEJPG.COM.AR
20 HTTP://WWW.STOCKVAULT.NET
21 HTTP://WWW.FREEPIXELS.COM
22 HTTP://WWW.FREERANGESTOCK.COM

```

\section*{196. Asking for Help}

So you've come to learn Blender, eh? You've made a great choice. Blender is one of the most powerful 3D animation and 3D creation tools out there, especially if you're short on cash. Learning how to use Blender can be a daunting task, so don't give up! With the help of this wikibook, you can become a Blender power user and put those Maya folks to shame.

If you ever get stuck in a tutorial for some reason, there are a number of places you can turn for help. The best way to get help is with an Internet Relay Chat (IRC) client such as X-CHAT \({ }^{1}\). Connect to irc.freenode.net and talk to blender users in the following channels.
- [irc://irc.freenode.net/blenderwiki \#blenderwiki]
- [irc://irc.freenode.net/blender \#blender]
- [irc://irc.freenode.net/blenderchat \#blenderchat]
- [irc://irc.freenode.net/blenderqa \#blenderqa]
- [irc://irc.freenode.net/gameblender \#gameblender]

If you can't get help there, click the "discussion" tab at the top of the page that you're having trouble with, and explain your problem on that page. Wait at least 24 hours for help.

If you're still not getting help, try asking for help in the BLENDERARTISTS.ORG FORUMS \({ }^{2}\). ES:BLENDER 3D: NOVATO A PROFESIONAL/CLASES PARTICULARES DE PRINCIPIANTE \({ }^{3}\)

\footnotetext{
HTTP://XCHAT.ORG
HTTP://BLENDERARTISTS.ORG/FORUM
HTTP://ES.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\% 20 NOVATO 20 A 20 PROFESIONAL \(\%\)
2FCLASES \% 20PARTICULARES \(\% 20\) DE\% 20 PRINCIPIANTE
}

\section*{197. Know What You're Doing}

The following tips may improve your chances of enjoying a successful project with Blender.

\subsection*{197.0.4. Organize early, organize thoroughly}

In Blender projects, you may work with complex scenes containing hundreds of items: models, lights, cameras, scripts, materials, and more. This can be overwhelming if it is not properly organized.

We suggest that you organize as you go, giving each item a descriptive name. There will be ways to search for items by name, so start early. Similarly, give each file a descriptive name and organize files into folders (or directories): a separate folder for each project, with sub-folders for renders, texture images, background images, and so on.

\subsection*{197.0.5. Don't bite off more than you can chew}

One of the greatest challenges faced by Blender users is their own imagination. While it's great to be creative and imaginative, you have to pace yourself. Be aware of your limits and the limits of your computer.

When making something from scratch, start with a very simple version of it and add details gradually.

Test frequently; see how well your recent changes work before proceeding to the next step. In this way, you will meet with fewer problems, and the ones you do run into will be simpler and easier to fix because there will be fewer possible causes to consider.

Monitor the complexity of your projects, watching for "lag" or excessive disk activity which might mean you are nearing your computer's limits.

When working on the computer, take frequent breaks to rest your eyes and stretch your muscles. Eat, sleep and exercise regularly. While focused time at the computer is necessary, inspiration and solutions to problems often come when our bodies are relaxed and our mental focus is elsewhere. While you may be tempted to go wild, keeping a level head while swimming in your imagination will give you a much more satisfying result with fewer headaches along the way.

\section*{198. Modeling Realistically}

Everyone who starts a new career or hobby in 3D Modeling also seems to look around their immediate environment for things to model. Things like your computer monitor, your keyboard, and even the desktop which they are resting are all common "first models." Developing an eye for geometry takes time and this is a great chance to practice.

For this tips and techniques discussion, I'll start with the concepts of furniture and walls, but the ideas really extend to anything and everything you can model in Blender, from spaceships to fantasy demon-women, from your barbecue deck blueprints to biologically accurate squids.

\subsection*{198.1. Assemble Things, Don't Chisel Them}

Let's start with the furniture around you.
You may think it's easy to model your desk using a couple of boolean operations on cubes. But it rarely comes out looking quite right. It seems like such a good idea at first. Then you find that the drawers won't open realistically. The corners are all amazingly sharp and crisp. The writing surface seems to be at the wrong scale for thickness. The woodgrain goes in the same direction everywhere. You then realize it will be hard to bevel just the few edges that need beveling. The more you look at it, even with good render settings, the more it looks like dollhouse furniture instead of a real life, full size desk.

Real furniture is not chiseled out of a half-ton cube of mahogany, because trees don't grow that thick, and it's a real waste to chip out the spaces for drawers. Instead, cabinetmakers tend to assemble a piece of furniture from many component parts. Think of those "self-assembly" kits from the local superstore, or even the showroom examples from a nearby unfinished knotty pine store.

Model several kinds of boards and fittings, then copy and assemble them appropriately. You don't need to model every nail and dowel, and you don't even need to know what a dovetail Joint \({ }^{1}\) is. But you can make realistic furniture when you build things from their natural components.
- Cut lumber in a variety of sizes and thicknesses.
- Measure real example furniture and take note of the construction details.
- Choose varying woodgrains by duplicating materials and adjusting them to be more individual.
- Align those woodgrains or other materials in an appropriate direction and scale for the model.
- Bevel just the parts or edges which are naturally worn or intentionally beveled.
- Any cloth, glass or metal fittings are separate components using their own materials.
- Create an "Empty" type object, give it a descriptive name, and parent all of the pieces to it.

\footnotetext{
1 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOVETAIL\%20JOINT
}

There are a couple more benefits to this form of component modeling:
- Working with things made from multiple real materials is easier: one object, one material.
- The model is more flexible, because they can be reconfigured to other styles more easily.
- Components come in handy for other models: adapt a desk's drawers in kitchen cabinets and bedroom furniture.

\subsection*{198.2. Separate Objects for each Material}

Figure 1313: skateboards, modeled in parts

A common question for new modelers is how to make one mesh that uses more than one material. For example, a skateboard with metal trucks, rubber tires, and a wooden deck. While Blender does provide an interface to allow such a combination, it is not usually the best approach for modeling realistically.

If you model the skateboard as separate parts, based on the way different real parts are assembled, then you have a lot more control over the final model. You can replace the wheels or use trucks of different styles later. You can adjust the mesh that defines the shape of the deck, without having to re-assign the areas that should be one material or the other. And lastly, you can choose to use subsurface tricks on the various parts, while avoiding them on other parts. Even if the whole model needs subsurfaces, it becomes a bit hard to control where one material starts, and another material ends.

\subsection*{198.3. Removing the Fourth Wall}

Just as with furniture, you may model your first building interior as a hollowed-out cube. It seems straightforward to make a big cube, turn it inside out, and call it a living room. There are a lot of drawbacks to working with a room that was carved out of a single chunk of solid rock.

Buildings and rooms are assembled from parts. Just like the furniture modeling tip, design your rooms as a collection of separate pieces.
- You don't need to measure out the internal beams and joists, but remember they're there.
- Each interior or exterior wall should be its own object or assembly.
- Take care to note the correct dimensions and placement of doorways, windows, ceiling.

The benefits of a component-modeled interior include:
- Easier to see inside, just hide some walls on a different layer.
- Walls are much easier to move around to reconfigure the room layout.
- The same modeling work on one area can be copied to other rooms more easily.
- A more realistic architecture with consistent scaling is achieved quickly.

\subsection*{198.4. Proportions and Measurements}

For realism, it's vitally important to get the right proportions for familiar objects. If your audience sees a bookshelf with \(5^{\prime \prime}\) thick shelves, or a human hand which has a \(5^{\prime \prime}\) long thumb, their brain is going to tell them that something is wrong. They might not be able to decide why, but they'll tell you it looks fake.

Even when you're animating fantasy characters, you should develop an understanding for proportion. Many cartoon characters have very large heads when compared to their bodies; this allows room for greater expression and makes the characters seem younger. Deciding how many "heads high" each character should appear will ensure that your figures all maintain proper proportions to each other and to their environment.

Figure 1314: soda cans and glass, modeled in parts

To get good proportions, you need to think about measurements.
- Grab a ruler or find some existing blueprints.
- Think in terms of those measurements for the duration of the project.
- Choose a base scale that will let you work comfortably within a \(500 \times 500 \times 500\) unit volume.
- Blender limits cameras to 1000 unit distances, for better numerical accuracy.

You can mix and match base units, by using Empty objects as parents. For example, you can model your furniture in inches or centimeters, and model your house in feet or meters. Then when you append your bed.blend's objects, just parent that bed to a new Empty object, and scale the Empty. This will conveniently scale all of the separate component pieces of the object together.
There's only one big wrinkle with working with multiple scales: materials should be designed with a certain base scale in mind. Many material surface properties are scaled according to the units you choose for a given object, or the world units. Just consider this as you design, and check your work critically.

\section*{199. Modeling tips}

This is not really a tutorial, but a list of handy tricks you will probably use a lot when modeling.
1: Extrusion: to extrude, press EKEY in edit mode with the vertices selected, move and click to place the extrusion. you'll basically need this for every model in blender, without it, most models would be really hard to create

2: Set Smooth: setting smooth will smoothen everything, without increasing the amount of polygons and vertices you can use it for models with a smooth surface. to apply set smooth, select the mesh, go to the editing buttons (F9) and in the Links and Materials tab, press Set Smooth. if you press the Set Solid button, it will go back to normal.

3: Remove Double: when you remove double vertices, they will melt together, this is good for attaching things to each other. to remove double vertices, select the vertices, go to editing (F9) in edit mode, and in the Mesh tools tab, press Rem Doubl, the limit button next to it is the distance that the vertices have to have to be melted together.

Example use of these techniques:
Extrusion: HTTP://WWW.GEOCITIES.COM/GAURAVNAWANI/TUTORIALS/BEGINNER/A-VASEMODELING.HTML \({ }^{1}\) (they explain subsurf here too, but I'd recommend set smooth, because it doesnt increase the number of polygons and subsurf does)
http://biorust.com/index.php?page=tutorial_detail\&tutid=77\&lang=en
Remove Double:
HTTP://BIORUST.COM/INDEX.PHP?PAGE=TUTORIAL_DETAIL\&TUTID=77\&LANG=EN \({ }^{2}\) (same tutorial as in the extrusion section)

Set smooth: http://www.blender.org/documentation/htmlI/x2681.html
If you want to add more handy techniques, please add them.

\footnotetext{
1 HTTP://WWW.GEOCITIES.COM/GAURAVNAWANI/TUTORIALS/BEGINNER/A-VASE-MODELING. HTML
2 HTTP://BIORUST.COM/INDEX.PHP?PAGE=TUTORIAL_DETAIL\&TUTID=77\&LANG=EN
}

\section*{200. Cheat the 3D}

\subsection*{200.1. Ways to Improve Performance}

In 3D Graphic Design, there are many issues to consider. First, consider how the project moves, how the project performs. Next, consider how you create objects in your project, especially when working with meshes and lighting.

\subsection*{200.1.1. Mesh}

\section*{Modifying an object's properties}

When you add a modifying property to an object, the computer has to calculate that property every time it moves in the animation. These modifying properties include soft bodies, particles, or mirror textures. They can significantly slow down the computer.

To make things move faster, pre-calculate and "bake" the modifier into the object. To bake a modifier, such as a soft body movement, save the modifier as a permanent animation. That way no matter how the object changes, it moves the same way. As a result, your computer does not calculate how the object moves. The move is already set.
There is a drawback. If the object moves and hits another section with different slopes, it will continue to move as if it was in the original baking site. You will have to calculate and bake the section again to get new results.

\section*{Making 2D backgrounds}

Scenes will have a foreground, background, sky, and more.
Your computer will take more time to render a scene that is big, open, and filled with modeled objects. This wastes time and memory, especially when modeling an object far in the distance. I'm guessing however, you do not want to make a quick, plain model. So what do you do?

That is easy. You make a 2D background.
- Put the distant image or background on a plane.
- Verify that everything on the plane around the image is black.

If it is not black, set the Alpha to 0 if the image was saved in a format that supports Alpha. This will retain the detail but reduce the number of faces the computer must count in the scene.
- Set the image to Billboard to prevent the image from skewing by perspective.

\subsection*{200.1.2. Materials}

\section*{Using UV maps}

For those who do not know the term, a UV map is an image applied to a 2D plane. The 2D plane is then applied to the mesh.

Here is how to create a UV map:
- Spread out the image onto a 2D plane.
- Apply the 2 D plane over the face of the mesh using the 3 D view.

\section*{201. Performance vs. Quality}

\author{
201.0.3. Mesh
}

\begin{abstract}
Polygon Count - when you work with meshes in 3D, be aware that the memory usage in Blender with reference to meshes comes from the number of faces (or vertices) the mesh contains. That means that if you have many useless faces (such as 55 faces on the side of a mesh that are as flat as one face), the number of faces will directly affect the Render time of Images and Animations. Also remember that for smooth rounded meshes, you do not need an infinite number of faces to make it look really nice and smooth. You actually don't need that many faces to keep a smooth slope looking smooth when viewed from the side. The viewer's eye will not actually identify every flat face, but will trace it as a smooth curve.
\end{abstract}

Face Structure - 4-side (quad) vs. 3 -side (tri) - Poly Count is very important when working in 3D graphics, and depending on the type of mesh you are making you could be wasting a vast number of faces because they are not the right structure. For example, if you want a smooth object, you can make it look mostly smooth when viewed from the side if you make it with well-structured 3-vertex faces. You will also yield the same results with fewer faces than if you use 4 -vertex faces. Another example is that if you need to apply UVTexture, or have something to animate, a mesh being evenly deformed will yield a lower face-count if it is a 4 -vertex versus a 3 -vertex face-structure.

\subsection*{201.0.4. Lighting}

Using RayShadows or Buffer Shadows - There are a few options you have for using shadows. Ray Shadows use an advanced algorithm to trace the edge of any interfering objects and create a perfect shadow onto the receiving object(s); however, the Ray Shadow calculation is memory-intensive and can seriously slow down your Render-Time. Buffer Shadows, on the other hand, use a different algorithm for similar results. The difference is that buffer shadows use a bit-rate of shadow "pixels" that fill in the shadowing area. You can adjust the bit-rate to make the shadow higher or lower quality. This calculation is much more memory-friendly, and your Render-Time will not jump up as much as with Ray Shadows. An interesting topic because this will change with better hardware performance and eventually won't matter. Until we get into 3D.

\section*{202. Modeling a Gingerbread Man}

In this tutorial you will learn how to make a simple gingerbread man. In a later tutorial you will be able to make an animation with this gingerbread man.

In this tutorial we will tie together everything we've talked about up to this point, including extruding, subdividing and rendering, and throw in basic lighting.

\subsection*{202.1. Modeling}

First, start Blender. You should see the usual top view of a cube in the 3D window, surrounded by a grid 'floor'.

Review- Zoom in or out with SCROLL or CTRL+MMB. Pan with SHIFT+SCROLL and CTRL+SCROLL. Make sure you are in orthographic view. Press NUM5 to toggle between orthographic view and perspective view. You can tell you're looking at an orthographic view while looking down from the top (NUM7) of the cube: wherever you pan the window, you never see any part of the cube except the top.
- Display editing controls in the buttons window by clicking on the Editing context button

Figure 1315
or by pressing \(\mathbf{F 9}\).

\subsection*{202.1.1. Adding Vertices}
- Select the cube by clicking RMB on it. (It may already be selected.) Remember, selected objects are outlined in pink.
- Switch from object mode to edit mode by pressing TAB, which toggles between object and edit modes. In edit mode, at first, you'll see colored dots at the vertices of the cube. Selected vertices are highlighted in yellow. Unselected vertices are pink. (You'll see the dots when editing in vertex select mode. In edge select or face select mode, you'll see colored edges and faces instead.)
- Select all vertices of the cube. Press AKEY once. If the vertices are yellow, you've selected all of them. If they are pink, you've deselected all of them. If necessary, press AKEY again so that all vertices are selected/yellow.

Figure 1316
- Subdivide the faces of the cube, using any of the following methods. (All vertices of the cube should still be selected.)
- Click the Subdivide button in the Mesh Tools panel in the buttons window.
- With the mouse pointer in the 3D window -
- Press WKEY to display the Specials menu, then choose Subdivide.
- Press SPACE to display the toolbox, then choose Edit \(\rightarrow\) Edges \(\rightarrow\) Subdivide.
- Click the 3D window's Mesh menu, and choose Edges \(\rightarrow\) Subdivide.
- Your cube now has more vertices. Subdividing edges adds vertices so you can create more complex shapes.

Figure 1317

\subsection*{202.1.2. Selecting a Subset of Vertices}

We'll select six vertices on the upper half of one side of our cube, where we'll extrude an arm.
- Deselect all vertices by pressing AKEY.
- View the cube from the front (NUM1).
- Select the six vertices on the top half of the left side of the cube (see below) using one of the following methods.
- Press BKEY and drag a rectangle around the top left and middle left vertices (viewing from the front).
- Press BKEY twice to see a circle around your mouse pointer. SCROLL to change the size of the circle. Position the circle around the top left and middle left vertices, together or one at a time, and click LMB. Click RMB to finish.
- Take a closer look at the selected vertices by viewing the model from a different angle (drag with MMB).
- If you find that you have only selected two vertices and not six, make sure the "Occlude Background Geometry" button is off. That button is the right-most of the selection mode buttons, below. (It's called "Limit selection to visible" in Blender 2.45 and earlier. It doesn't appear if Blender is drawing in wireframe style.) Try selecting the vertices again.

Figure 1318
- If you still selected just two vertices, change to a wireframe drawing by pressing ZKEY, which toggles between wireframe and solid drawing types. Try selecting again.
- Yet another way to select the six vertices is to select the two faces they define. Click the Face Select button from the selection mode buttons (above), or press CTRL+TAB to display a Select Mode menu and choose Faces. Rotate the cube to view the left side and click RMB in the center of one of the two upper faces. Hold SHIFT and click RMB in the center of the other upper face.

Figure 1319

\subsection*{202.1.3. Extruding Arms}
- View from the front by pressing NUM1.
- Extrude the selected vertices/faces by pressing EKEY to display an Extrude menu, then choosing Region. Hold CTRL to snap your position to the grid, then move your mouse left to put the new vertices on the adjacent gray line of the grid one unit to the left. Click \(\mathbf{L M B}\).
- Repeat so that your model looks like below (from front view, NUM1).

Figure 1320
- Deselect all vertices/faces with AKEY.
- Perform the same extrusion on the right side of the cube, selecting six vertices and extruding twice as explained above.
- The gingerbread man's arms are in place, as in the illustrations below.

Figure 1321

Figure 1322

\subsection*{202.1.4. Extruding Legs}
- Make sure all vertices are unselected, using AKEY once or twice.
- View from the front (NUM1).
- Select the six vertices on the left half of the cube's bottom. Extrude them downward to a point in between the first and second heavier gray lines beneath the cube. (The gray lines in the grid represent Blender units.) Holding down CTRL, the extruded region may snap to the heavier gray lines-hold down CTRL+SHIFT and the region will snap to tenths of Blender units. Click LMB to finish.
- An alternative to positioning the extrusion with the mouse is simply typing the distance. Enter 1.5 to extrude \(11 / 2\) units out. On a Mac, enter the number 1, press fn with the key that is right under LKEY and MKEY on Azerty (the one with /:,), and press the number 5.

Figure 1323

Figure 1324
- Extrude the same region again, to the third gray line (1.5 again). It should look like this:

Figure 1325
- Shift the lower leg to the outside as follows.
- Select the bottom 12 vertices of the leg (which look like 4 from front view), using BKEY.
- Grab the selection with GKEY. Press XKEY to limit movement to the x axis. Move the vertices to the left by half a square, holding CTRL or CTRL+SHIFT to snap to the grid, and click LMB.

Figure 1326

Figure 1327
- Create a second leg on the right side, in the same fashion.

Figure 1328

\subsection*{202.1.5. Dropping the Groin}

Lengthen the groin (where the two legs join):
- Deselect all vertices by pressing AKEY.
- Select the 3 vertices at the groin (which look like 1 from front view), using BKEY.
- Grab the vertices by pressing GKEY. Press ZKEY to limit movement to the z axis. Move the vertices down \(1 / 2\) of a square, or type -0.5 to specify the distance. (Older versions of Blender require NKEY before typing -0.5.)

Figure 1329

Figure 1330

\subsection*{202.1.6. Adding a Head}
- Switch the 3D window from Edit mode back to Object mode by pressing TAB.

Noob Note: I found it easier to remain in edit mode while creating the cube as this makes the cube part of the original mesh. This allows you to add the subsurf to all parts at once.
- Click RMB on the object to select it then press SHIFT + SKEY and select Cursor \(\rightarrow\) Selection. This will make sure the cube you'll add next will be near where you want it.
- Press SPACE and put your mouse on the mesh option and select cube. In others versions, you can also hit SPACE and, in the menu that comes up, choose Add \(\rightarrow\) Mesh \(\rightarrow\) Cube .
- Press GKEY and put your new cube about \(1 / 3\) of the way down the neck (to achieve this, you can press GKEY and ZKEY : enter 1.33).

Figure 1331

Now we will make it look more like a ginger bread man by making it thinner.
- Select all with AKEY.
- Go to side view with NUM3.
- Press SKEY for scale and press YKEY for Y-axis and then move your mouse to the middle until it is about 0.3 (use CTRL for fixed values).
- Remember X-axis is the Red arrow/line, Y-axis is the Green one, and Z-axis is Blue (like RGB video mode).

Figure 1332
- Use the MMB to spin the view around and examine your handiwork.

At this point, it doesn't look entirely like a gingerbread man, does it? It's a bit too ... chunky. For the last bit, we'll smooth it out.
- Make sure you've selected the body in object mode.
- Select the editing panel in the buttons window (or hit F9).
- In the Modifiers tab, Add a "Subsurf" modifier.
- Set the level of the subdivisions to 2 , and the number of render levels to 3 .

Noob question: When I add the cube for the head, it stops me from being able to edit the body - it will only select the head to apply subsurf to, even if the body looks like it's selected!

Answer: When you created the cube you made a second object. To select a different object, press tab to enter Object mode. Select the body. Then enter edit mode again if you want to edit the body.
- You can press the ZKEY to switch back and forth between wire-frame view and solid view.
- (Noob Note: Easiest way to really get a feel for what is going on in the 3d world is to split into four screens and setting each one to NUM7, NUM3, NUM1, and NUM0 to see all angles and what it will look like at render.)

\section*{Noob Question: How?}

Answer: To split an area move the cursor to an area between two current areas (e.g. between the 3D view and the buttons), when you see the double ended arrow (used to move the divide) click RMB and select Split Area, you will then see a line appear dividing the area in two. Move this to where you want the divide and click LMB.
- In the 'Link and Materials' section, select 'Set Smooth'.
(Note that here I had the same problem as before, with superposed vertices. Select all vertices, then press' WKEYand select Remove Doubles to clean your model. You will see that it will look much better after removing the extra vertices with Remove Doubles)

Figure 1333
- Press the ZKEY to return to wire-frame view.
- Now repeat the process above to smooth the head.

Figure 1334

Looks a lot more like a gingerbread man now, doesn't it?

\subsection*{202.2. Camera Positioning and Rendering}

This guide will show you how to intuitively get the best frame of your 3D scene with no effort!
- Press TAB for Object view mode.
- Press NUM0 to get the Camera View.
- Select the camera by clicking RMB on the outermost rectangle.
- Press GKEY and move your mouse to adjust the position of the camera (XKEY, YKEY, ZKEY and CTRL may be useful here).
- In addition, you can press NUM7 to get the Top View and press RKEY to rotate the camera to the best angle.
- After you are happy with the position, press F12 to render it.

If your render comes out a little dark, try moving the lamp closer to the gingerbread man.
Noob note: Another way to move around the camera is pressing SHIFT + FKEY after pressing NUM0 to enter Fly mode. The keys for fly mode appear in the header of the 3D view pane.

Noob note: Ctrl+Alt+NUM0 "teleports" the camera to your 3d view.

Figure 1335

Noob Note: By pressing X, Y or Z twice you will use a local base of the space, with those it's much easier. For example if you are facing the Z axis from 45 degrees, and you want to go left 1 unit, using the global base, you will have to go 1.72 (around sqrt(2)) along X and the same along Y , instead moving by 1 in the local frame of reference.

\subsection*{202.3. Applying Textures}

This builds on the previous guide: Modeling a Volcano \({ }^{1}\).

Note: It seems that textures can only be applied to one object at a time, so this must be done twice (i.e. The head and body are two separate objects.) The settings that were chosen can successfully be applied to each object for a consistent result. Some settings can not be applied equally for consistent results.

N00b Note: if you join the 2 objects before applying the textures you do not have to do the process 2 times, just select the 2 objects, CTRL+J and the accept

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D:_NOOB_TO_PRO/MODELING_A_VOLCANO
- In "Object Mode," select the body (or the head.)
- Press F5 to open the shading panel or use the shading panel button.
- In the "Links and Pipeline" panel, under "Link to Object," click "Add New."

Figure 1336
- Press F6 to open the "Texture Buttons" panel or use the textures button.
- In the "Texture" panel, click "Add New."

Figure 1337
- Change the "Texture Type" to "Stucci."

Figure 1338
- In the new "Stucci" panel, change "Noise Size" to something near 0.025 and leave the "Turbulence" at 5.00.

Figure 1339

Note: When finished with this section of the guide, come back to this panel and try different combinations of "Plastic," "Wall In," "Wall Out," and "Soft Noise" / "Hard Noise." Press F12 to render after each change to see the effect.
- Press F5 again or use the "Material" button directly on the left of the "Texture" button. Then look for the "Map To" panel.

Figure 1340
- In the "Map To" panel, deselect "Col[or]" and select "Nor[mal]." and change the "Nor" Value to approximately 1.30 .
- In the "Map Input" panel, change the texture coordinates to "Object" by clicking the corresponding button.
- In the "Material" panel, change the "R[ed]" slider to approximately 0.400 and the "G[reen]" slider to approximately half that, about 0.200 . Blue can be set at 0.00 .

\section*{TEMture \\ Mifep liput \\ 14币 To}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Col & Nor \(\mathrm{O}^{\text {c }}\) & E & - & Spees & Amb \\
\hline Hard & Fieplitir & Alphes & Emit & Transild & Dispr \\
\hline
\end{tabular}

\section*{Stencil Weg No RGE}

Milis \(\div\)

Duar 1.00
Yotp fou 0.00

Figure 1341

Figure 1342

Figure 1343

Note: While it is true that textures can only be applied to one object at a time, textures as well as materials can be shared between objects. In this case it is best to let both the head and the body share the same material.
- To do this, simply select the object without the materials(head or body).
- Press F5 to open the shading panel or use the shading panel button.
- In the "Links and Pipeline" panel, under "Link to Object," click the arrow next to(left of) the "Add New" button.
- Select the brown material.

The steps in this section give a nicely textured, brown surface to the "Gingerbread."

Figure 1344

Now all you need to do is add eyes and gumdrop buttons!

\section*{203. Modeling a simple space-ship}

\subsection*{203.1. Modeling a simple spaceship using Blender 2.49b}

This is a simple tutorial on how to build a simple spaceship using blender 2.49b. One of the best things about blender is the adaptability that can be accessed through its user interface. This tutorial will give you a look at some of the included blender scripts. If you would like to make your own, however, you can refer to the scripting chapter of this wiki book. So now, I guess we can get started.

Step 1: First, open blender. You should get the default blender scene with the cube in the center. If you don't, try resetting your blender settings. Select the box in the center of the screen.

Step 2: Now we're going to shape the box into any shape we want. For now, we are going to shape it into a sort of triangle. If you want to use it as a box, that's fine, but I suggest following this tutorial using it as a sort-of triangle. To be able to modify it, in the lower buttons area (with stuff like Modifiers, Shapes, Multires, Mesh, and Link and Materials) you should see a drop-down menu that is currently on Object Mode. Change that to Edit Mode or hit the tab button. Now you will be able to modify different aspects of your box.
Step 3: With your box selected, hit Ctrl+Tab, and choose Faces. This allows you to modify the different faces. Faces are basically the different sides of your object, Edges are the edges of your object, and Vertices are points on your object where edges connect.

Step 4: Now, on your box, right click on one of the sides to select that side. If you want, first take a look around the box and then choose a side, but don't select the bottom or top face. To rotate around the box, hit the \(8,2,4\) or 6 button on your number pad, the one to the right of the arrow keys usually. Those buttons allow you to rotate around your objects and change your view. After you select the face you want, then rotate so that the face is facing towards you and looks like a square, and so that the grid around it looks like a flat horizontal line.

Step 5: There should be three arrows converging in the center of your face (or in the center of your box), and either the red or the green one should now be in the center of your face, and the other should be going off to the left or right, with the blue arrow going straight up or straight down. Use the 4 or 6 number pad button to rotate your view so you can see whichever arrow was in the center of your face, and left click mouse button on it, and hold the left click button, and drag the arrow around. Drag it until you have a rectangle.
http://i238.photobucket.com/albums/ff55/bryguy336/uh.png
http://i238.photobucket.com/albums/ff55/bryguy336/box.png
Step 6: Now to resize that face. With that face still selected, hit the \(S\) key, and move the mouse around. This should enable you to change the size of the face, and once you click, it should stop resizing and stay at that size. Experiment and get the hang of it, and then resize it so that it is an
itsy bitsy teeny tiny box, and your rectangle more like a triangle. Congratulations! You have just made your first shape/object

\section*{204. Creating Weapons based on 2D Images}

Alright, this is my first tutorial here, I made this a while back, but hopefully it will be a good addition to this Wikibook. It was originally made for a game called Fable - The Lost Chapters \({ }^{1}\), but I think it is worthy of another place in the world. Please note that this is a WIP and will be updated time to time.

Screenshots coming soon.
You can find a high quality video HERE. \({ }^{2}\)

\subsection*{204.1. Modeling Technique 1}

Modeling Technique 1 Part 1 Video \({ }^{3}\)

\section*{Part 1:}
1. After emptying the screen, go to view and click background image, load, then choose a picture of the weapon you want
2. Go to top view and add a square, then delete two of the vertices and place one of the remaining on a point on the picture, and the other out of the way.
3. Select both vertices and subdivide.
4. Move the generated point to the next good-looking spot on the picture
5. With that selected still, select the outside vertex also, and subdivide.
(Note: A much easier way is to select one vertex, move it to where you want it, select the other vertex, move it to the next spot, then extrude the second vertex to the next point, rinse and repeat. This requires a lot less effort.) Another guy's note: For an easier way, just click CTRL+LMB where you want the next point to appear.
1. Continue until you are on your third to last one, then select your outside vertex and move it where you would move the next vertex.
2. Select the first and last vertices and go to mesh>>make edge/face
3. Extrude to half your preferred thickness, then extrude the rest of the way.
4. Select the center vertices on the blade, and scale up.

\section*{Modeling Technique 1 Part \(2^{4}\)}

\section*{Part 2:}
```

HTTP://EN.WIKIPEDIA.ORG/WIKI/FABLE_(VIDEO_GAME)
HTTP://FILES.FILEFRONT.COM/MODEL+TECHNIQUE1+HIGHER+QYAVI/;9063237;/FILEINFO.
HTML
HTTP://YOUTUBE.COM/WATCH?V=ISQZBVPGIX8
HTTP://YOUTUBE.COM/WATCH?V=R3UGOXYZMX4

```
cont.)
1. Then move vertices to your liking.
2. Select the vertices of the handle, go to mesh>>vertices>>separate.
3. Add a modifier, choose subSurf, turn up the level until it looks close to what you want without too many vertices. Click apply next to the modifier.
4. Modify vertices (using proportional edit helps) to your liking.
5. Go to object mode, and turn off double-sided on any meshes that are.
6. If black appears on any parts of the mesh, highlight it, go to edit mode, select all vertices, go to mesh \(\gg\) normals \(\gg\) recalculate outside.
7. If there is still black, select those faces and go to mesh>>normals>>flip.
8. If there is still black, then you are missing a piece of mesh. Highlight the vertices around the hole, go to mesh>>vertices>>fill.
9. If black did not appear, then select everything (in object mode) and go to object>>join objects and say yes.

\subsection*{204.2. Modeling Technique 2}

Video HERE \(^{5}\) Download it for high quality.
Blade:
1. Select all with the 'A' key, and delete everything.
2. Go to view and choose background image \(\gg\) use background image \(\gg\) load and pick the sword you'll be doing.
3. Close the dialog after you see it in the background (you can change the brightness of it by changing the 'blend' option)
4. Make a bezier circle by pressing spacebar and going to add \(\gg\) bezier \(\gg\) bezier circle.
5. put a bar at each main point of your weapon (anywhere the curve changes direction)

\section*{Bezier Controls \({ }^{6}\)}
1. Modify the bars until they match.
2. You might want to go into wireframe view.
3. Go down and turn up the bevel depth a little, to give it some sharpness.
4. To lower the poly count you should turn down the DefResolIU number.
5. Go back to object mode, hit spacebar, go to object>>convert object type>>to mesh.
6. Modify vertices to your liking.
\(\square\)
For the handle:
```

5 HTTP://FILES.FILEFRONT.COM/MODELING+TECNIQUE+2+AGKAVI/; 9221627;/FILEINFO.
HTML
6 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/MANUAL/CURVES\#B.C3.A9ZIERS

```
1. Do steps 1-7.
2. Turn up the bevel resolution, to give it some roundness.
3. Repeat steps \(8-10\)

For That one thing (see video):
Just watch the video, but here is a summary.
Extrude and flatten a circle, use proportional edit to make it easier on you when you curve the circle.

For hilt guard:
1. Repeat steps 1-6
2. Add some extrusion.
3. Repeat steps 8-10.

MORERUNES \({ }^{7}\left(\right.\) TALK \(^{8}\)) 17:52, 18 December 2007 (UTC)

\footnotetext{
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMORERUNES
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3AMORERUNES
}

\section*{205. Match Moving}

Match moving is the technique of recreating the position of the camera used in recording live action footage. This information can then be used within Blender to merge 3D objects with live action film. For a more detailed discussion of the concept, take a look at the Wikipedia article on Match Moving \({ }^{1}\).

Blender cannot perform match moving itself, you must use a 3rd party tool to determine the camera position and the way it moves, then import this data into Blender. While there are many software tools to do this, this page references two free options: Voodoo and Icarus.

\subsection*{205.1. Icarus}

ICARUS \(^{2}\) is a discontinued University of Manchester project which can be used for non-commercial work. The download links from the official page no longer function, but Windows and MacOS X versions are available from this Icarus video tutorial \({ }^{3}\) by Colin Levy.

\subsection*{205.2. Voodoo}

Voodoo \({ }^{4}\) is an actively developed free match mover available for Windows and Linux. Here is a tutorial on USING Voodoo and Blender \({ }^{5}\)
```

HTTP://En.WIKIPEDIA.ORG/WIKI/MATCH MOVING
HTTP://AIG.CS.MAN.AC.UK/RESEARCH/REVEAL/ICARUS/
HTTP://PEERLESSPRODUCTIONS.COM/TUTS/PAGES/ICARUS.HTML
HTTP://WWW.DIGILAB.UNI-HANNOVER.DE/DOCS/MANUAL.HTML
HTTP://FICTIONALITY.CO.UK/DOKU.PHP?ID=TUTORIALS:MATCHMOVING

```

\section*{206. Motion Tracking with Icarus}

Motion tracking, also called Match moving \({ }^{1}\), is an essential element when integrating 3D elements with live footage. Motion tracking software is usually pretty expensive, but the Icarus application (Windows and Mac) is available for free for educational use. Icarus, which hasn't been updated for while, was later replaced by the commercial application PFTRACK \({ }^{2}\). Other popular motion tracking applications are PFMATCHIT \({ }^{3}\) and \(\mathrm{PFHOE}^{4}\) (both also from The Pixel Farm), Voodoo \({ }^{5}\) (for Windows/Linux; free for non-commercial and commercial use), SynthEyEs \({ }^{6}\), BOUJOU \(^{7}\) and 3D-EQUALIZER \({ }^{8}\) (commercial).

The excellent CG prodigy Colin LEVY \({ }^{9}\) hosts Icarus(by kind permission of The Pixel Farm Ltd), the Icarus import script for Blender, as well as a splendid video tutorial (see Download ICARUS and Video Tutorial \({ }^{10}\)). However, I lacked a brief text tutorial about motion tracking, so I decided to write my own. This tutorial is extremely brief and high-level, and requires some previous knowledge on video editing, 3D, and Blender.

Note: this tutorial was created using Mac OS X 10.5 Leopard, Blender 2.46, Icarus 2.09, and the ICARUS IMPORT SCRIPT FOR BLENDER \({ }^{11}\) v1.07e (for Blender 2.41, written by Alfredo de Greef).

\subsection*{206.0.1. Tutorial}

\section*{Phase 1: Preparing the Video Footage}

Note: this tutorial explains the Auto-feature Tracking mode in Icarus. There are other options which gives more user control - see the Icarus UserGuide.pdf for more information.
1. Record your video footage. Having the camera on a tripod (thus limiting to just panning/rotating) simplifies the tracking, but Icarus can handle a hand-held camera as well. Filming a background with orthogonal lines (that can align to \(\mathrm{X} / \mathrm{Y} / \mathrm{Z}\) dimensions), such as a room, also helps the tracking.
2. Capture/import your video footage to your computer. Icarus handles video up to DV resolution (720*576 pixels).
```

HTTP://EN.WIKIPEDIA.ORG/WIKI/MATCH_MOVING
HTTP://WWW.THEPIXELFARM.CO.UK/PRODUCT.PHP?PRODUCTID=PFTRACK
HTTP://WWW.THEPIXELFARM.CO.UK/PRODUCT.PHP?PRODUCTID=PFMATCHIT
HTTP://WWW.PFHOE.COM/
HTTP://WWW.DIGILAB.UNI-HANNOVER.DE/DOCS/MANUAL.HTML
HTTP://WWW.SSONTECH.COM/
HTTP://WWW.2D3.COM/PRODUCT/?V=1
HTTP://WWW.SCI-D-VIS.COM
HTTP://WWW.PEERLESSPRODUCTIONS.COM
HTTP://WWW.PEERLESSPRODUCTIONS.COM/TUTS/PAGES/ICARUS.HTML
HTTP://WWW.PEERLESSPRODUCTIONS.COM/TUTS/ICARUSTUTORIALS/ICARUS_IMPORT241.ZIP

```
3. Start the Icarus Calibration application (there is also a Distortion and a Reconstruction application).
4. Create a new project (Project->New).
5. Import your video footage (Project->Import Movie).
6. Fill in the Camera Parameters information in the window that pops up - especially the Camera Motion and the Pixel Aspect options.
7. In the left panel, expand the group called Coordinate Frame. You should see X Axis, Y Axis, etc.
8. Click the Z Axis tool (blue) and mark vertical lines in your video footage. Use the X Axis (red) and Y Axis (green) tools to mark horizontal lines (up to you to decide which should be X and Y).
9. Estimate the focal length (Camera->Estimate Focal Length).
10. Navigate in time in your video footage using the time slider (beneath the video image). Add more \(\mathrm{X} / \mathrm{Y} / \mathrm{Z}\) marker lines on a few key frames, especially as new pieces of the background are revealed when the camera moves.
11. Save your project (Project->Save).
12. Start the tracking process (Camera->Track and Calibrate). This will take some time.
13. Export the results in human-readable form (Project->Export 3D Motion, select Human Readable (*.txt) as file type).

\section*{Phase 2: Importing the Motion Tracking Data into Blender}
1. Start Blender, and open a Text Editor view.
2. Open the Icarus import script ICARUS_import241.py (File->Open).
3. Start the script (File->Run Python Script). You should now see the Icarus Import screen.
4. Press the FSEL button, and open the results you exported from Icarus.
5. Press the Create Curves button. This imports the camera motion from the Icarus data and applies it to the Blender default camera.
6. Press the Feature Points Mesh button. This imports 3D shape dots from the Icarus data, which helps as reference when you want to align your own 3D elements to the video footage.

You are now ready to add your own 3D elements to the Blender scene.

\section*{Phase 3: Compositing 3D Elements on top of Video Footage}

If you want to easily composite the 3D elements on top of an image, you can add the image as the rendering back buffer in Blender (Scene tab in the Buttons view). However, this doesn't work for videos, so we need another solution.
1. In Blender, switch to SR:4-Sequence in the layout dropdown menu at the top of the screen.
2. In the Video Sequence Editor view (middle of screen), add your video file (Add->Movie). Move the new strip to layer 1 , frame 1.
3. Add the current scene to the sequence (Add->Scene, Scene). Move the new strip to layer 2, frame 1.
4. Select the scene strip on the second layer (right-click).
5. Open the Scene panel in the Buttons view, and then open the Sequencer sub-panel.
6. Change the Blend Mode dropdown from Replace to Alpha Over. Your 3D elements should now render over the background video in the top-right preview screen.
7. In the Render panel, enable Do Sequence just below the ANIM button. This will enable the background video when rendering.

\subsection*{206.0.2. Troubleshooting}
- If your imported Feature Points Mesh looks a bit spherical, you need to generate camera distortion data using the Icarus Distortion application.

\section*{207. Create a Clayman}

\subsection*{207.1. Create a Clayman}

\section*{(under construction)}

This Tutorial was made using Blender version 2.41
Upon completing this tutorial, you will have made something like this:

Figure 1345

Completed Clayman Render

\subsection*{207.2. Making The Clayman}

Upon start, delete the default cube (X-KEY) and switch to front view with NUM1. Now add a mesh plane and under The Edit Buttons Window, Mesh Tools Tab click the subdivide button. Now select the 3 vertices on the left and delete them. (B-KEY for Border Select Tool)

If you can't select the vertices then deselect the Limited Selection to Visible button.

Figure 1346

Now select/deselect all vertices with A-KEY (we want them selected)In the Modifiers Tab in the Edit Buttons Window, Click Add Modifier > Mirror You should now see something like this.
\(\square\)
Figure 1347

Now select the 3 right vertices and extrude them on the X axis by movement of 1.0 units by pressing E-KEY (Extrude > Only Edges), X-KEY (to constrain it to the X axis) and holding CTRL to constrain it to simple movements. Do this twice.

Figure 1348

Now extrude the legs by selecting the 3 bottom-right vertices and extruding them on the Z axis by 1 unit. Do this twice as well.
\(\square\)
Figure 1349

Now extrude the top of the clayman on the Z axis (in units of 1.0) 7 times so that it looks like this.
\(\square\)
Figure 1350

Now let's make the arms by extruding the 2 boxes that are 3 boxes down from the top. Let's extrude it on the X axis by 1 unit 4 times so that it looks like this.
\(\square\)
Figure 1351

Now comes the extrusion of the whole body. As you can see, we only have a flat shape of a rough "Block". so lets move our view around with the NUMPAD arrows and extrude it on the Y axis. Select all vertices with A-KEY. Extrude > Region on the Y axis until it reaches 2.0 units. After done correctly, it should look like this.
\(\square\)
Figure 1352

With the Clayman successfully extruded, its now time to add some definition to him by adding a subsurface modifier. In the Edit Buttons window, under Modifiers, click Add Modifier \(>\) Subsurf and set the Levels bar to 2. It should look somewhat like this.
\(\square\)
Figure 1353

Now, Select all vertices with A-KEY, and click the Set Smooth button in the Links and Materials tab. Let's get to shaping the Clayman.Using the Border Select Tool (press B to get the Border Select Tool), grab the according vertices to make a shape like this.
\(\square\)
Figure 1354
after that's done, select the head vertices and grab them on the Z axis and move them up by 0.2 to make it look like this.
\(\square\)
Figure 1355

Now select all vertices with A-KEY, and scale them down (S-KEY) on the Y axis until it reads 0.6000 . And finally, select the underside of the foot (the vertices that make it up) and subdivide it to make ir more flat on the bottom.

\subsection*{207.3. Adding Materials}

Start by going to the Material Buttons window (F5) and Clicking on Add New, and going down to the collumn of 3 rectangles that have one gray one and two blank white ones. Click on the gray one and in the top-right corner of the pop-up window, you'll see a Hex Code. Click on the current hex code and type in this new hex code to get the right color: 73BCF7. Now hit F6 to go to the Texture buttons window and click on Add New. Change the Texture type to Stucci. Now you'll see
a new tab appear. On it, for NoiseSize enter 0.150 . Now go back to the Materials Buttons window. On the far right there will be three tabs in one. On the Map To tab, Deselect Col and select Nor. Now your example should look like this.
\(\square\)
Figure 1356

\subsection*{207.4. Inserting Armatures}

Now lets move on to inserting armatures in our clayman. Lets start by going into object mode (alternate between Object and Edit mode with TAB) and adding an armature. Press Space \(>\) Add \(>\) Armature. It automatically puts you in Edit mode upon adding the object. Switch to Object mode and grab it along the Y axis by 1.0 units so that it's inside the clayman. Sure, you can't see it now, but turn on X-axis Mirror Edit and X-Ray in the Edit Buttons window.
\(\square\)
Figure 1357

Now switch back to edit mode, and select the top of the bone. Etrude it on the Z axis by 1.4 units two times so that the tip of the second extrude is right in the center of the two arms. Now extrude it on the X axis by 3.0 units, then grab the tip of it and move it on the Z axis by 0.1700 units. Now extrude it on the X axis by 2.0 units twice. And do the same to the other side. It should look like this.
\(\square\)
Figure 1358

Now let's extrude the neck. Extrude the top bone along the Z axis by 1.0 units to make a pretty good size neck. Then extrude it up on one side so that the position reads like so. If you can't get it exact then at least try to get it as closest to the number as you can.
\(\square\)
Figure 1359

Then do the same to the other side so that it looks like 2 antennaes. Now let's extrude the hips and legs. Lets start by extruding the bottom bone by 2.0 units on the X axis and for the Z axis, -1.0 units. Then extrude the foot by -2.0 on the Z axis. And last, select a forearm bone (select a whole bone by clicking the middle of it) and in the Edit Buttons window, you'll see a tab called Armature Bones. Deselect the Con button in that tab, and do the same with the other forearm bone. This allows us to be able to move the forearm out, instead of having it locked to another bone.

\subsection*{207.5. Applying The Armature}

Ok, now we're going to apply the armature to the mesh so that when we move the bones, the mesh moves along with them. Lets start by switching to object mode and selecting the clayman mesh,
and under the Modifiers tab, click apply on the Mirror modifier. You may see a pop-up, just click OK. Not only have we just made room in the Modifiers tab, we applied the mirror modifier to the mesh, so now we will have to edit both sides if we want to change something. But worry not, we wont need to change anything from here on. With that new space in the modiifers tab, let's add an Armature modifier. You may see a line that says "OB:" type in the name of the Armature in here (the default name for an armature is "Armature" unless you have made more than one) also, deselect the Envelopes button,for we will not be using envelopes in this tutorial. Here is what you should have.

Figure 1360

Now, select the Armature and press CTRL + TAB. If you already have a bone selected, it should be highlighted blue now. We have just switched to Pose Mode. Now, while in Pose Mode, select the clayman mesh (if you cant select it, zoom in closer to get some of the bones out of the way) and press CTRL + TAB on the clayman mesh. We have just entered Weight Paint Mode. This allows us
to assign vertices to the bones so that the mesh moves with the bones. Let's start by setting up the weight painting. You should see a new tab called Paint in your Edit Buttons window. Adjust your settings so that they conform to this.
\(\square\)
Figure 1361

Start by selecting the top-right bone of the head and start weight painting the front and back (you'll have to switch your view so that you can see the back to get the painting in there) Weight Paint it according to this.
\(\square\)
Figure 1362

Now Weight Paint the Neck. (pictures not shown of back view, but be sure to get the back anyway)

Figure 1363

Now the Shoulder.
\(\square\)
Figure 1364

Now the Forearm.

Figure 1365

Now The Hand.
\(\square\)
Figure 1366

And after getting the other side of the body, let's get the upper chest.

Figure 1367

Now the middle chest.
\(\square\)
Figure 1368

Now the lower chest.

Figure 1369

Now for the hips.
\(\square\)
Figure 1370

Now the Feet.

Figure 1371

After doing the other side of the leg, switch back to Object Mode with CTRL + TAB, and select the Armature. You should already be in Pose Mode with the Armature. Now select a bone and grab it to move it. if you have Weight painted correctly, the Clayman mesh should move with the bone. There's two tips to moving the bones around in Pose Mode.
1) In the Edit Buttons window, whether Automatic IK is turned on or not affects how the bones move.
2) Where your view is affects how the bones rotate. (unless you have it constrained to an axis)

If you find that a part of your clayman isn't moving, just switch back to Weight Paint mode for that bone and repaint it.

\section*{208. Organic Modeling}

\section*{Subsurface modeling}

Organic modeling is considered by some the most challenging. Non-organic can mostly be accomplished by extrusion and scaling. Organic modeling on the other hand involves mainly curves, as nature has a thing against straight lines. Because of this, organic modeling is usually done with subsurfaces. To subsurf a mesh, first select it and navigate to the 'Editing' tab. Then go to the modifiers stack and add a new Subsurf modifier.

Figure 1372

In Blender 2.5 Alpha 0, Subsurf has been removed from the modifiers list. Instead hit Ctrl, followed by a number which will specify the subsurf level. For example Ctrl-1 adds a new Subsurf modifier of level 1. This also works in Blender 2.4. Increasing the level greatly increases the number of verts in your model, so make the level relative to the number of vertices in your original model (pre-subsurfed). Subsurf often works best in conjunction with smoothing, so be sure to set your object to smooth, again in the 'Editing' tab, or in 2.5 A0 under 'Object Tools', which you can bring up by hitting the \(\mathbf{T}\) key in the 3D viewport.

\section*{Modifiers}

\section*{Shapes}

\section*{To: Cube}

Figure 1373

In this way you can create a smoother, higher-poly shape based on that of the original mesh. This is controlled by the vertices, edges and faces of the original.In order to control the rounding of your mesh you can use two methods: loopcuts, which is a very sloppy method as it adds more verts to your mesh, which serve very little purpose and can get in the way of modeling; and Edge Creasing. The latter can work extremely well in most circumstances. By default all edges are declared uncreased, and so allow complete rounding in subsurfing, by creasing the edges using Shift-E you can far better control the amount of rounding on your mesh, and most importantly, without adding extra vertices. However, unfortunately Edge Creasing is not available in Blender 2.5 A0. Yet. And so loopcuts and extra verts are the only option.

Figure 1374: Before

Figure 1375: After

Now, start shaping your mesh into an organic shape. There are various tutorials for modeling bodies and faces, but it is often a good idea to use references. Only use quads - that is, shapes with four vertices. Triangles do not subsurface well, they create bad looking rough surfaces - avoid if at all possible. Also avoid Poles, which are vertices connected to anything other than 2 or 4 other vertices, as they create literal creasing in your subsurfed mesh, that is, sudden bunching up and pinching of faces.

To make the object shape properly, you will need good edgeloops and edgeflow. This means that all your vertices and/or faces line up in a continual line or curve around your model. It is possible to select edgeloops all in one, fantastic when you have to resort to them in controlling rounding, by holding down Alt when selecting a vert. This really expands into topology, which is an advanced subject. I would recommend visiting HTTP://WWW.SUBDIVISIONMODELING.COM/FORUMS, \({ }^{1}\) although it has just been closed down, which was a great place to start, however it still (at the time of revision) is active and well worth a look if you are struggling with modeling heads. It is best not to have too many vertices to avoid making the subsurfaced shape look rough - in other words, the original shape should be quite low-poly.

\footnotetext{
1 HTTP://WWW.SUBDIVISIONMODELING.COM/FORUMS,
}

\title{
209. Understanding the Fluid Simulator
}

\subsection*{209.1. Understanding the Fluid Simulator}

When I first encountered the Fluid Simulator I had a hard time understanding its behavior, especially the Start time and End time didn't seem to make any sense at all. Going on a Google spree revealed that many people have problems figuring out the secrets behind fluid simulation, and I didn't find any truly helpful guides. In this little guide I'll try to explain it in a newbie friendly way. It may not be entirely correct, although it might help newbies understanding how it works.

\subsection*{209.2. First of all}

Start time and End time are in seconds. Don't forget this. Even if your simulation seems to go insanely fast when you set Start time to 0 and End time to 10 and having 250 frames in your animation with 25 frames per second, there is a good reason for this. For now, just remember this, don't let your mind wander and believe that the values are in milliseconds or that you have to do some wicked math dividing/multiplying with frames and so on.

Also notice that the domain is the bounding box for the whole fluid calculation. EVERYTHING is done inside this box. It acts as the floor, ceiling and walls for all of the fluid. This is very important, as the number 1 reason why I couldn't get a good fluid simulation going. If I have time, I will do a section on Fluid > Control, but for now, I will say that it adds a LOT of calculation time. Running on an I7, ATI Radeon 8970 Video, Asus P6X58D Premium, 64-bit Windows 7 and 64-bit Blender, I crashed my computer with the lowest quality settings. So just remember that the domain MUST surround the area in which you do calculations. Also note that after you set up your simulation, the domain becomes the actual liquid, so give it proper material and try not to bake until you're pretty sure of your simulation.

\subsection*{209.3. Setting up the scene}

We'll learn how the fluid works the practical way. plane
- Start with the default box, this simulation will be very simple.
- Let's work in wireframe mode, press the ZKEY to turn off solid mode.
- Go in to camera view by pressing Numpado.
- With the box selected, scale it up to two times by pressing SKEY, then 2, then ENTER. This fits the camera fairly well.
- Press Numpad7 for a top view.
- With the box selected, press Shift-D (don't move the mouse or else the duplicated box will move) then press ENTER to confirm the duplicated box's location.
- While the new box is selected (and in exactly the same spot as the other box), press SKEY, then .5 , then ENTER to scale it to half size.
- Stay away from the mouse, accuracy is important here and I'll explain why later.
- Now we want to move the new box into one of the upper corners. Press the GKEY, then press the XKEY, type in -1, press ENTER and the box should move to the left wall of our larger box.
- We want the box in a corner, so press GKEY Y 1 Enter, the box should now be in the top left corner from our current view.
- However, we're in 3 dimensions, not 2 so click Numpad1 for a side view. This time we'll move the box up along the Z-axis: G Z 1 Enter.
- Excellent, our setup is done.

\subsection*{209.4. Setting up the simulation}
- Make sure you're in Object Mode, and that you followed the above steps precisely.
- Select the smaller box and click F7 twice. You should get a panel where the rightmost pane says "Fluid Simulation". Click Enable.
- Our small box will be the fluid, so just click the Fluid button. That's all there is to do with the small box.
- Now select the large box. The Physics panel should still be visible, click Enable in the Fluid Simulation pane and then select Domain.
- By default your animation should have 250 frames. Rendering should also be set to 25 frames per second by default, this tutorial assumes this setup.
- Since we got 250 frames and 25 frames per second that means our animation is 10 seconds long. So here comes the tricky part, which actually isn't that tricky at all:
- Start time is by default set to 0 seconds. This means that on the very first frame the simulation has just begun. You could increase this value to say, 1 second and that would mean that on the first frame the fluid simulation has already run for 1 second. We don't want to do this, so keep it at 0 seconds.
- End time is by default set to 0.3 seconds. What does this mean? This means that on the 250th frame the simulation has run for 0.3 seconds. However, by default our animation is 250 frames long with 25 frames per second, making those 0.3 seconds stretched over 10 seconds. Basically this means that we're watching the show in slow motion, or slightly less than \(1 / 33\) the realtime speed. So now you may think "it looks quite realtime to me!", and yes, it does, but why does it do that? Well, that's hard to explain. Consider this: In a world without friction, how far would a drop of water fall after 1 second? The answer is about 4.9 meters. So, if a drop of water falls from 4.9 meters it will take 1 second before it reach the ground. How long would it take the waterdrop to reach the ground if it falls from 3 centimeters? About 0.078 seconds. So why do i mention 3 centimeters? Because by default the size of our domain is \(3 \times 3 \times 3\) centimeters, or really small. If you're like me, you were probably thinking that the fluid was flowing around in a bathtub or a barrel, not in the wrapping of a cupcake. Set End time to 10 seconds.
- Since our imagination likes big things, let's crank up that cupcake to say, a swimming pool. Make sure the big box is selected in Object Mode In and look at the Fluid Simulation pane. Just
to the left of the "BAKE" button there should be 3 other buttons, possibly named " St ", "A", "B". Click A for advanced options.
- Some new boxes should appear, Gravity (should be -9.81 for the Z-axis, nothing else), Water and the option we're looking for, "Realworld-size". Also Gridlevels and Compressibility, but let's not care about those now.
- The "Realworld-size" value says how large our domain is in meters, and as you can see it's 0.03 meters by default, or 3 centimeters. We want it huge, so crank it up to 10 , which is the limit for Blender 2.45. Now our swimming pool is \(10 \times 10 \times 10\) meters (don't drown!), remember this because scale matters with fluid. Do not think we're playing with cupcakes again :)
- Now click BAKE, and read on while your computer is chewing zeroes and ones.
- Remember how I told you to be very accurate about placing that second box? And how I began talking about gravity, falling waterdrops and stuff? Well, now you're going to see why.
- As stated, our "swimming pool" is \(10 \times 10 \times 10\) meters. The smaller box we added is exactly half the size (well, in terms of length/width/height, not volume), or \(5 \times 5 \times 5\) meters. Remember that a drop of water would fall 4.9 meters in 1 second? And that our animation got 25 frames per second? This means that the bottommost part of our blob of water will be exactly 5 meters above the "ground", and that after 25 frames our water should be very close to the ground.
- If you got a fast computer, Blender should be done baking by now. Go to frame 25, for example by using the arrow keys (up/down goes 10 frames forwards/backwards, right/left goes 1 frame forward/backward). Take a close look at the blob, then go forward 1 frame. Notice how the blob hits the ground? Rings a bell, doesn't it? :)
- Although, we're not done! We gotta render our swimming pool. It's easy, but takes time, hit Ctrl-F12 and go make dinner.
- When the rendering is done, press Ctrl-F11, and think of a \(10 \times 10\) meter large pool. You might want to keep an eye on your kids if your local swimming pool acts this way, though.

\subsection*{209.5. Final notes}

Scale matters. It's really difficult to understand fluid dynamics on a very small scale, especially when you don't even know what scale is used. The "Realworld-size" value seems to be left out in many guides, I would recommend you set it to something you can relate to, or you'll end up with simulations that look really slow/fast or having an End time value that seemingly makes no sense. Further I'm not a mathematical genius, for all I know I could be way off with my explanation, although this way the values makes sense to me, and I'm able to make fluid simulations without "guessing" on values for End time.

\subsection*{209.6. Extra Practice}

This YouTube tutorial on fluids might also help: Link \({ }^{1}\) and this Realistic Water Texture \({ }^{2}\)
```

HTTP://AU.YOUTUBE.COM/WATCH?V=YMBX2PYIQNY
HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=34\&T=1445

```

\subsection*{209.7. Links}
- Youtube: Comparison of different values for resolution and real-world size \({ }^{3}\)

\footnotetext{
3 HTTP://WWW.YOUTUBE.COM/WATCH?V=OKHT4Z3FGGM\&HD=1
}

\section*{210. Creating a jewel in Blender}

In this tutorial we will create a jewel in Blender. It is fairly simple. I recommend you do this tutorial if you are a noob, because it explains some basic features, but I suggest you read the tutorial syntax and the pages at the very beginning of this Wikibook first.

\subsection*{210.1. Modeling the jewel}

Start up Blender if you haven't already. There is a cube in top view (it looks like a square because it is in top view.) Delete it by pressing the X key. Then, to begin modeling, add a circle by pressing SPACE \(\rightarrow\) Add \(\rightarrow\) Mesh \(\rightarrow\) Circle. Set the vertices to 10 and make sure it is not filled in. Then press OK.

Figure 1374

Next, we will extrude the vertices down. First enter side view by pressing Numpad 3 on your keyboard. As you can see, the circle is flat and not filled in. We will give it some depth. Switch to Edit Mode (TAB) and extrude the circle by pressing the E key and selecting "Only Edges". Move the mouse down and click to confirm the position (you may want to limit to Z axis by pressing the Z key).

Figure 1375

OK, what we just did is turn the circle into a hollow cylinder by extruding. But we don't want a cylinder. We want the bottom to be a nice tip. To do this, press Alt-M. This creates a Merging menu. Select "At Center". Now the bottom is a nice tip, like we want it!

Figure 1376

Now we will edit the top of the jewel. Press A to deselect everything and press the B key. This enters Box-Select Mode. Drag a box over the top vertices to select them.

Figure 1377

Now extrude the vertices upwards a bit (again: E key and "Only Edges"). Next, we will scale down these vertices to look a bit more like a jewel. Make sure the ring of vertices are selected and press the \(S\) key. This enters Scale Mode. Scale down the top vertices a bit and click to confirm.

Figure 1378

To look around your jewel model use the Middle Mouse Button or Alt-Left Click. Your jewel is looking fantastic! But there's a big gaping hole at the top. We'll fix that. First, enter side view (Numpad 3). Now extrude the topmost ring of vertices but don't move them anywhere with the mouse. If you are feeling doubtful, just press 0 and then Enter (or just click right mouse button). This makes a duplicate of rings placed over the original. Next merge this new ring with Alt-M -> At Center. This merges the duplicate ring, thus filling up your hole.

At last! Your jewel is finished! Feel free to rotate around it and make further adjustments if you are more advanced with using Blender.

Figure 1379

\subsection*{210.2. Shading}

Switch back to Object Mode (TAB) and show the Shading Panel (F5). Enable the Material Buttons (click on the button with a red ball). Add new material by clicking on "Add New" button in the "Links and Pipeline" tab. Copy the settings in the screenshot below. If you are having trouble setting the precise value to a slider, just click on the number. This allows a manual type-in. First, make it green by setting R to \(0, G\) to 1 , and \(B\) to 0 . Next set the alpha slider to 0.458 (it looks like an A). Now press "Ray Mirror" (raytracing reflection) to turn it on and set it to 0.13 . Now press "Ray Transparency" and set the IOR value to set 1.44. When you're done it should look like this:

Figure 1380

\subsection*{210.3. The finishing touch}

To improve the effect, add a plane underneath the jewel. In the Object Mode (TAB) press SPACE \(\gg\) ADD \(\gg\) MESH \(\gg\) PLANE. Scale it 5 times using the \(S\) key. Then move it down a bit using the G key (press the Z key to restrict movement to the Z axis).

You may try to render your jewel now. Press the F12 key. You may find that camera doesn't see whole jewel. Move and rotate the camera (using the G and R keys) to set it in the right position. You may want to switch to "Camera View" (Numpad 0) and try out "Camera Fly Mode" (SHIFT F). Try also moving the lamp and see what happens.

I've found that the jewel looks best with Ambient Occlusion on. So go to the Shading window, then the World buttons, click the Amb Occ tab and click the Ambient Occlusion button.

Here is an example of what you can do:

Figure 1381

\subsection*{210.4. External links}
- http://www.blender.org
- http://www.blenderartists.org

\section*{211. Modeling a picture}

\subsection*{211.1. Modeling a picture}

Ever seen an awesome looking picture you wanted to turn into a 3D model? Like a logo or a symbol? Well, it's actually pretty easy... it just takes some time to do.
- First off, you're going to need a picture to trace. I'm currently doing a project for a friend to do with devils and demons, so I chose a demonic looking face for this tutorial: DEMONIC FACE \({ }^{1}\)
- Now open Blender and start a new project. Delete the default cube. Before you start tracing the face, you need to set the face as the background image. To do this, click 'view', then 'Background Image'. A box should pop up with only one button in it (Use Background Image), click it. Now some settings appear, we're only interested in one of them for this tutorial. Click the small button with a picture of a miniature folder on it (it looks kind of like a feather pen). It's the first one under the Use Background Image button. From there, select the picture you want to trace. Like this: Background Selection \({ }^{2}\)
- OK, now for the long part. Zoom in to the new background image just a little bit. Now, add a Bézier curve, and size it down a little. Hit F9 and, in Curve Tools, find and click the Poly button. Now there should be a few more vertices to work with and the curve should be just a bunch of joined lines. Select one point at a time and using the GKEY move it to a point along the background image(or face in this case). Do the same for all of the rest of the vertices, making sure you only have one vertex selected at a time or you'll move more than just the vertex you want to. Once this is done, select one of the end vertices of the curve (it doesn't matter which end) and use SHIFT+DKEY to copy that vertex. Move the newly copied vertex to a point along the edge of the face a small ways away from the vertex you copied it from. Continue doing this until you have a complete outline (of the whole face or just one part, like the ear). Here's what it should look like (I did the left ear): Tracing \({ }^{3}\). You can't see it in the picture, but six of the points on the right side of the ear are connected, while the rest aren't. In order to get the effect we're looking for here, we need to connect all of the points around the edge to make an outline (make sure not to connect the points across the picture or you'll have a messed up outline).
(user note: hitting CTRL-LMB instead of SHIFT-DKEY will add a vertex that is already connected.)
- To get the outline for the whole face, just do exactly the same thing around all of the edges. We still have a problem though: most of the points aren't joined by a line, so all we have is a bunch of dots. This is easily solvable. Using the BKEY or the right click of the mouse, we select a

\footnotetext{
1 HTTP://WWW.MASTERPIECEPUMPKINS.Com/GRAPhICS/DEVIL2\%20(1.5) \(\qquad\) PM. JPG
2 HTTP://K.DOMAINDLX.COM/GENIS/IMAGES/BG_SELECT.JPG
3 HTTP://K.DOMAINDLX.COM/GENIS/IMAGES/POINTS.JPG
}
bunch of vertices at a time (somewhere between 5 and 10), and hit the FKEY a few times. Every time you hit the FKEY it should connect two of the points. Do this until all of the selected points are connected, then deselect them and select another group and use FKEY to join them. Keep doing this until all of your points are connected. To connect the last two points, select all the points and press the CKEY, to close the polygon.
[edit: A better option would be to select a vertex on one of the ends of the whole line, hold down the CTRL and left-click on a certain point on the image. This will create a new vertex, immediately connected to the vertex you selected.]
- Now that we've got the entire face traced (or outlined if you want to call it that), we can make it 3D. Hit F9 again and find the Ext1 and Ext2 properties, shown here: Ext1 \& Ext2 \({ }^{4}\). Change the values and see what happens. They correspond to the depth of the outline. Try changing them around until you find what looks good. Now, you'll notice that the lines just stick out straight. I'm still investigating how to actually model a head from the outlined face ... so if anyone has any ideas, feel free to add them to this page.
- In order to make it have depth you should make the outline out of mesh points instead of a curve. Add a primitive mesh and delete all the vertices in edit mode, then ctrl click to all point outline. Add depth to the surface in a side view (split views so you can see what you're moving). It helps to have 2 or more reference images, but you can wing it. Usually the final result has to be subsurfed.
(USER EDIT: I accidentally started it with mesh instead of curve. You can do the same thing with extrude, but I have no idea how to go on after that) (USER EDIT LATER: If you subsurf it, it creates a relatively 3D looking image. Its really cool)
(Another user, even later: If you want to turn your curve into a mesh, hit Alt-C while in Object Mode. Note that this is NOT reversible.)
(user edit: You can delete one vertex of a plane, in order to get a line. You may find easier to outline the picture extruding and moving points of the line you created.)
(user edit: you can use this tracing technique to make solid and symmetric models, else, you would really have to use normal modelling)

\subsection*{211.2. Printing a Rendered Image}

Render your image. Exit or minimize the "Blender:Render" window. In blender, go to File \(->\) Save Image... Then save your image. Then you can print it as you would print any other picture, using The Gimp, Paint, Microsoft's Photo Editor, or many others.

\footnotetext{
4 HTTP://K.DOMAINDLX.COM/GENIS/IMAGES/MAKE3D.JPG
}

\section*{212. Modeling with the Spin Tool}

Figure 1382: A collection of objects modeled with the spin tool

The Spin tool is a great tool for modeling objects you might make on a lathe quickly and easily.

Lathe objects have circular cross sections along a certain axis. That is to say, when you cut such objects perpendicular to a certain axis you'll get circles. Examples of such objects includes rods, poles, wineglasses, and pails. A Blender render at the left shows some of these.

With the Spin tool you only have to "model" half the outline of your object. The object is completed after you spin this outline. A bit of cleanup here and there and your model is finished.

\section*{213. Spin Tool Introduction}

\subsection*{213.1. How the Spin Tool Works}

The Spin tool works by making copies of the selected vertices in a radial array around an axis indicated by the 3 d cursor. Each copies of vertices are connected to previous vertices that corresponds to it with necessary geometry, i.e. edges and planes.

A picture explains this more clearly.

Figure 1383: Selected vertices before using the Spin tool

Figure 1384: Result after using the Spin tool

Note that the copied vertices are arranged in a radial array around our 3d cursor and parallel to our view plane.

\subsection*{213.2. Typical Work Flow}
1) Make half of the outline of our object with connected vertices. If you want to model a wineglass, make the half of the outline of the wineglass.
2) Spin our outline. After this the Spin tool would complete our object.
3) Clean up the resulting mesh. The mesh created by the Spin tool is not so perfect so we had to "clean" it up.

\section*{Modeling Half of the Outline}

To start we make half of the outline. Here we do it by creating vertices.

Open Blender. Don't remove the default cube cause we are going to use it. If you don't have any object after you open Blender (like mine), add a mesh object. Any of them will do. I tend to use the plane. At this time it is good to give your object a proper name. Name it sensibly, like "wineglass" if we are modeling a wineglass. This will help us locate it if there comes a time when we have a lot of objects in our scene. We don't want to have all objects to be called cube.001, sphere. 003 or something. That could get confusing.

Hit Tab key to enter Edit Mode, if we are not in there yet. Select all vertices by hitting AKey, then delete them with XKey -> Vertices. Then go to the front view be hitting Num1.

Now, we are going to make the outline by creating vertices. Press and hold CtrlKey then click the left mouse button. A new vertici would be created. Click the left mouse button again, another vertici would be created but this time it is connected to the previous vertici by an edge. Click again to add more vertices. We are going to use this to create our outline.

You might notice that the 3d manipulator (red, green and blue arrows) could get in the way. Deactivate it by hitting Ctrl+Space Bar, then select Enable/Disable, or by clicking the white pointing hand icon in the 3d view window.

Lets start making the outline. Delete our previously created vertices first. Using what we have learned, lets create vertices again but this time lets add them to form some sort of outline. let us be creative here. It could be anything you want. Here I make two to illustrate two situations that we might encounter when modeling with the Spin tool. That is modeling objects that are hollow or non hollow.

Figure 1385: Half outline of a drinking glass

Here, the first one, is an outline of a glass. Here, we are modeling an object that is not hollow. We had two vertices that are located in the center of our would be glass bottom. We need to align the two central vertices perfectly along the z axis. Select this two vertices then scale it along the x axis to zero (SKey, xKey, OKey, Enter).

Figure 1386: Half outline of a napkin ring

The second one I will make into a napkin ring. This time our outline is closed and no vertices are located in the center of our would be napkin ring. Here we are modeling an object that is hollow.

To make the closed outline, select the two vertices on the open side then press FKey. The two vertices would be bridged by an edge, thus closing the outline.

Adjust vertices when necessary.
For those who may like to have an image in the background to guide them. Upload a background image by selecting the View menu from the 3d View Window then select "Background Image". A new internal window would appear. Click "Use Background Image" Button, then click "Load". Navigate to where the Image is located select it then click "SELECT IMAGE". Our image would appear on the 3d Window as a background. Bellow, I used a picture of a wineglass.

Figure 1387: Half outline of a wineglass with a background image as a guide

\section*{Spinning Our Outline}

Now that the outline is finished, we are ready to use it with the Spin tool
Two things you must know is that the Spin tool is dependent on the location of the 3d cursor, and view where we activate our Spin tool.

Figure 1388: Setup with an arbitrary shape

Here is our setup with the vertices all selected. In the nest pictures are results when this shape is spun with the 3 d cursor at different locations.

Figure 1389: Shape spun with 3d cursor at the origin

Figure 1390: Shape spun with 3d cursor at another location

Here we have the same shape but is spun around in different views.

Figure 1391: Shape seen in top view

Figure 1392: Shape spun in top view

Figure 1393: Shape seen in an arbitrary view

Figure 1394: Shape spun in an arbitrary view

Note that its important only to place the 3d cursor properly relative to the view where you are going to use the Spin tool

\section*{Placing Our 3d Cursor}

We can see that the location of our 3d cursor is very important in Spin modeling so we need to know how to place it properly. If you prepare it to be, the cursor would already be in position after we make our outline but accidents happen and we accidentally misplaced our 3d cursor. Here are some ways we could make our 3d cursor go to the place where we want it to be.

\section*{Snapping}

Snapping the 3D cursor is a quick and simple way to place our 3d cursor to its proper location. In the 3d window, hit Shift + SKey. A list of options would appear. We are interested with the last three options, namely the cursor snaps options. They are the Cursor->Selection, Cursor->Grid and Cursor->Active. The name are pretty descriptive but we'll give a short description here.

Cursor->Selection places the cursor to the exact location of our selected element or elements. In case of multiple selected elements, our cursor is placed on the median of the selected elements. In
edit mode, select a vertex and use Cursor->Selection snap to it. Our 3d cursor would jump to the exact place where our selected vertex is located.

Cursor->Selection snapping is especially useful when modeling non hollow objects because there are vertex or vertices located at the center of our model to snap to. Just select one central vertex and snap to it.

Figure 1395: Here our 3d cursor is not at the center of our drinking glass outline. We select one of the central vertex and do Cursor->Selection snapping.

Figure 1396: Result after doing the Cursor->Selection snap.

Cursor->Grid snaps the cursor to the nearest cross of the visible grid. Try clicking at a center of a square in our Blender's grid and use it. See its effect.

Cursor->Grid snapping is useful for spin modeling hollow models. Usually if you are careful, our object outline would be on a plane that contains one of the axises. If we make our outline in front view as advised, go to the top view (or side view depending on what we are modeling). If you are doing okay, you will see all our vertices aligned perfectly along the \(x\) axis. It just a matter of LMB close to a cross on the grid that contains our objects center then snap to it.

Cursor->Active might not be so helpful in spin modeling. Cursor->Active snaps the cursor to the active element (usually the element that is last to be selected). Try it by selecting several vertices,
then do Cursor->Active snap. The vertex where the 3d cursor goes is the active element in your selection.

\section*{Spin Tool Parameters}

The spin accepts two parameters to execute its function. These are Degrees (degr) and Steps.

\section*{Mesh Tools}
\begin{tabular}{|c|c|c|c|c|}
\hline Beanty & Short & \multicolumn{2}{|c|}{ Subdivide } & Innervert \\
\hline Noise & Hash & Ssort & Fractal \\
\hline To Sphere & Smooth & Split & Flip Normal \\
\hline Rem Doubl & Limit: 0.001 & Threshold: 0.010 \\
\hline
\end{tabular}

\section*{Extrude}

Extrude Dup

Figure 1397

Degrees specifies the angle at which the selected geometry will be rotated from its initial position around the axis. It accepts values in degrees. A 360 degrees value being a whole turn around the axis. Values lesser than 360 produces something like a wedge is sliced from the side of the form.
p Sample Outline

Figure 1398
p Sample Outline Spun with Degress parameter set at 245 degrees

Figure 1399
p Sample Outline Spun with Degress parameter set at 360 degrees

Figure 1400

\section*{Mesh Tools}
\begin{tabular}{|c|c|c|c|c|}
\hline Beauty & Short & \multicolumn{2}{|c|}{ Subdivide } & \multicolumn{2}{|c|}{ Innervert } \\
\hline Noise & Hash & Xsort & Fractal \\
\hline To Sphere & Smooth & Split & Flip Normal \\
\hline Rem Doubl & \multicolumn{4}{|c|}{ Limit: 0.001}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Estrude } \\
\hline Spin & Soin Dup & Screw \\
\hline Degr: 90.00 & Steps:9 & Tums: 1 \\
\hline \multicolumn{2}{|c|}{ Keep Ongimad } & clockwise \\
\hline \multicolumn{2}{|c|}{ Extude Dup } & \multicolumn{2}{|c|}{ Offset: 1.00 } \\
\hline
\end{tabular}

Figure 1401: none

Steps specifies the number of "copies" of the selected geometry the spin tool makes that it arranges in a radial array around the 3d cursor. A higher value result in much rounder form.
p Sample Outline Spun with Steps parameter set at 4 steps

Figure 1402
p Sample Outline Spun with Steps parameter set at 32 steps

Figure 1403

\section*{Cleaning Up the resulting Mesh}

After using the spin tool, a little up work might be necessary, especially if you specified a 360 degree turn. Though the mesh looks clean to the eye, the tool actually make geometries (vertexes) that are in the same blender position as another one. So what might look like one vertex may actually be two. A simple way to clean up our mesh would be to select the whole geometry then activating the "remove doubles" from the specials menu (Wkey(Specials Menu) -> remove doubles or Wkey->6key). This would remove these problem geometries, finds vertices that are too close to each other and merging them to one.

\subsection*{213.3. Post Modeling}

After the lathe able parts are done it would be ready to adding non latheable parts. For example a cup may have a bowl-like body, that we could use the spintool. Alas the handle can't be so we had to put it there after. Depending on the geometry added. This geometries could be formed from the mesh itself or be adding in a separate mesh.

\section*{214. Illustrative Example: Model a Wine Glass}

Lets start with a classic spin tool model. Here we go step by step in making a wine glass... or any other latheable models... using the spin tool.

\subsection*{214.1. Model half the outline}

Using what you have learned earlier, create a simple outline of the wine glass. Just the half part and leave the center part open. As a recap, go first to front view. Select the cube (or if you have no object create one) and press Tab to go to edit mode. Delete all vertices of the object, then using Ctrl+ LMB, add connected vertices. Keep holding Ctrl and clicking until finished. Adjust vertices as required.
p Finished wineglass outline

Figure 1404

\subsection*{214.2. Spinning the outline}

Remember to align the two end points in the open side. Select the two vertices and scale at the x-axis to zero (Skey->Xkey->0key). Move the 3d cursor to the center by snapping to the selection (Shift+S -> 4key). Then select all vertices by hitting Akey twice.
p Wineglass outline in preparation for spinning

Figure 1405

Now go to top view (Num7). Select the editing button (F9Key) and find the mesh tools tab. Change Degr to 360 for a complete turn and change steps to 20 or higher to form a much rounded shape.
p Parameter settings for the project

Hilesh Tome
\begin{tabular}{|c|c|c|c|}
\hline Eeanty short & \multicolumn{2}{|r|}{Sutudivide} & Inmervert \(=\) \\
\hline Woise & Hesh & Ssort & Freutal \\
\hline To Sphiere & Smooth & Split & Flip Normia \\
\hline Rem Loub & \multicolumn{3}{|l|}{Limit: 0.001 hreshold: 0.010} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Esitude} \\
\hline Spin & 5piplofp & Strew \\
\hline [1eg| 36000 & Sters: 20 & Turtis: 1 \\
\hline \%eep & ginal & Clodrwiss \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Eritude Cup & 4 & 口ffeet: 1.000 & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Join Triargles} & Threshold 0.800 \\
\hline Celimit U0 & Celimit Uc & \\
\hline
\end{tabular}

Figure 1406

Press the Spin button.
p Wineglass result seen in front view

Figure 1407

\subsection*{214.3. Cleaning up the Mesh}

Select all vertices by pressing Akey twice then apply remove doubles operation (WKey->6Key/Remove doubles). Now the model is finished. Make it shade smooth using set smooth (Wkey -> set smooth). If you like, add a Subsurf modifier to the object to make it geometrically smoother. If dark bands appear, recalculate normals outside \((\mathrm{Ctrl}+\mathrm{N})\), to eliminate them.
p Finished wineglass rendered with no textures

Figure 1408

\section*{215. Creating Ogg-Theora movies using Blender}

Wikimedia Commons requires that movies be uploaded as Ogg-Theora (OGG) files. As of Blender 2.42a, this is not a builtin feature of Blender. To get OGG files from your finished animation isn't difficult, though. However, you'll need additional software.

There are basically two ways to generate OGG files: you can use one of the many fine video editors or you can use special conversion programs. Video editors like LiVES or Cinerella allow you to load your AVI or your rendered frames, manipulate them, and create the OGG file from it. Please refer to the editor's documentation on how to achieve this.

A disadvantage of a video editor is they are huge pieces of software, duplicating functionality that you already used when you created your animation file/s with blender. It's actually not necessary to install a video editor just for converting your animation to OGG Theora format.

\subsection*{215.1. Converting saved frame picture files to Ogg Theora}

It's actually possible to convert frame pictures that you saved before to OGG format movies. The FFMPEG2THEORA SOFTWARE PACKAGE \({ }^{1}\), which is available in source or binary for all relevant systems, is capable of batch-processing files into an Ogg format movie. For example, if your frames were saved as PNG (with filenames filename001.png, filename002.png, etc.), you could convert them to a soundless OGG file with:
```

ffmpeg2theora filename%03d.png -o output.ogv

```

Sound is possible too, as well as being able to set the quality and framerates. Consult the ffmpeg2theora documentation for more.

\subsection*{215.2. Converting AVIs to Ogg Theora}
ffmpeg2theora can also convert AVI movies to OGG. Usage example:

\footnotetext{
ffmpeg2theora --optimize my.avi
}

\footnotetext{
1 HTTP://WWW.V2V.CC/~\{\}J/FFMPEG2THEORA/
}

\section*{216. Creating animated GIFs using Blender and Gimp}

This tutorial will guide you through how to make a simple animated Gif Using Blender and Gimp. This is useful for creating Avatars for forums etc. This tutorial assumes basic knowledge of blender and Gimp, see the basic animation tutorial \({ }^{1}\).
To start off you will need an animation, this usually should be no longer than 25 frames long.
1. Open Blender. and delete the default cube and add a UV sphere, the default settings for the sphere work fine.
2. Now set the camera size in the scene buttons (F10) to 50 by 50 (I am creating an avatar for deviant art where the required size is 50 by 50 pixels, you may change this if you want)
3. set the frames to start at frame 1 and end at frame 20.
4. select the sphere and insert a LOC keyframe at frame 1 and 21 , then go to frame 11 , move the sphere and insert another LOC keyframe. this will create a looping animation.
5. Set the image type to PNG or JPEG (it doesn't matter) and render the animation.

Now to combine the images into an animated GIF using Gimp.
1. Open the first image with gimp.
2. Now click File-> open as Layer or press "Ctrl-Alt-O". Select the next frame and it will be added as a new layer. Repeat this for all of the images, or select all of the images by pressing "Ctrl-A".
3. If you press Filters->Animation->Playback it should play the animation. It will probably have a low frame rate making it "choppy". this will be fixed in the next step.
4. Change the frame rate to \(40 \mathrm{~ms}(25\) frames per second). Choose file->Save as-> "Name".gif, then choose Save as Animation.

Note: Don't know wheter this is an additional feature of Gimp 2.6.8 or not, but i found out following: In Gimp 2.6.8, within the export wizard, you have to choose option: -save as animationfirst and next at the option: -single picture where not mentioned- the option: one single picture per layer. -Sorry i use the german version of gimp-

You should end up with something like this:

\footnotetext{
1 Chapter 94 on page 833
}

Figure 1409

\section*{217. 3D Tiling Backgrounds For The Web}

\subsection*{217.1. Overview}

This tutorial will guide you through the process of making 3D tiling backgrounds for use with web pages, your desktop, or anything else for that matter. We will be using Blender and a graphic editing program such as Adobe Photoshop or GIMP. I will provide detailed explanation to cator to beginners, however more experienced Blenderists can probably get away with just following the picture diagrams provided. You may also find the diagrams useful if English is not your native language, or if you hate reading instructions.

\subsection*{217.2. Create The Object You Wish To Tile}

Start up Blender and look at your lonely cube. We will use this cube as a starting point for the sake of demonstration, but feel free to use any shape you like. Press "Tab" to enter Edit Mode. Press the "E" key on your keyboard and the Extrude menu will appear. Select "Individual Faces". As you then drag your mouse cursor you will see some numbers move in the bottom left in the window and text saying "Shrink/Fatten". I recommend setting it to 1.0000 to keep it simple. Hold down the "Ctrl" key while dragging to do so in set increments.
Next, with the six faces of the cube still selected, press the "S" key to scale those faces. I recommend scaling to 0.8000 .

Figure 1410

Good. Now that we have created our object we will prepare to tile it.

\subsection*{217.3. Specify Your Tiling Area}
"Tab" back into Object Mode and press "NumPad 7" to go to the Top View, or manually click "View" at the bottom of the window and select "Top".

Press "spacebar" and from the menu that appears select "Add" > "Mesh" > "Plane". The plane has appeared, but is obstructed by our cube object, so press " \(\mathbf{S}\) " to scale the plane to 5.0000 .

Figure 1411

You'll notice that I've colored my plane black. This is only to make it easier for you to see. You need not bother with this as we will be deleting the face of this plane shortly.

Figure 1412

We now have an easily visible boundary representing the area which will be tiled. If at any point we decide we no longer need or want this we can move it to another layer by pressing " \(\mathbf{M}\) " and selecting a layer to move it to.

\subsection*{217.4. Tile Away!}

Now the fun part begins. If you have created 2D tiling backgrounds before, this concept will be very familiar to you.

While in Object Mode, select your cube object. At this point you have a couple of options. One is to make duplicates of the cube object. Another is to make linked duplicates of the cube object. I recommend making linked duplicates because you can later edit the mesh of one object in order to
change the mesh of all the duplicated objects. This can be especially useful if you later plan to animate your tiling background (careful not to distract from the foreground). It is also useful if you want to experiment with new designs easily without having to re-place all your objects.

With your cube object still selected, press "Alt+D" to make a linked duplicate. (Non-linked duplication is done with "Shift \(+D^{\prime \prime}\)) Now hold down "Ctrl" to move in set increments and move the object to one of the corners of our plane. Make sure the center of the object (represented by a pink dot) is aligned with the very corner of the plane. At this point you may notice it's somewhat difficult to tell whether the center of the object is exactly on the corner of the plane, and that's why we are going to press "NumPad 5" or click "View" and select "Orthographic". For all practical purposes we can spend the rest of the time we are building the tiling pattern in Orthographic View because this view is essential for tiling.

Figure 1413

Now with your duplicate object still selected, scale it ("S" key) so that is somewhat smaller than the first. Then rotate it using the "R" key. While rotating you can constrain to a particular axis by typing "X", "Y", or "Z" respectively.

We will now make linked duplicates (Alt+D) of our rotated and scaled cube object and place one in each corner exactly on the grid (remember to hold "Ctrl" while dragging). If you place an object in one corner, you must place it in all four corners because corners touch both the X axis and the Y axis.

Figure 1414

Now as you will notice in the following diagram, I made an object that is crossing over the edge of our plane. This is good. This is how to make natural tiling backgrounds. However! Whenever we do this we must be absolutely certain to do the same on the opposite side, or else our backgrounds will not tile properly.

Figure 1415

So now we've created a few objects of different sizes and orientations, however they have all been along the same spot on the \(\mathbf{Z}\) axis. So let's give our pattern some depth - after all, that is the joy of working in 3D!

Before we do this, we'll want to get our guide plane out of the way. So right click on the plane to select it, then "Tab" into Edit Mode. Press "X" and from the Erase menu choose "Only Faces".

Now "Tab" back into Object Mode. There! We now have only the segments of the plane as our guide.

Figure 1416

Hold down the middle mouse button while dragging the mouse to see what our design looks like in three dimensions. Now right click one of the cube objects, duplicate a linked copy (Alt+D), and press " \(\mathbf{Z}\) " to constrain movement to the Z axis.

Figure 1417

Navigate in this way along the \(\mathbf{X}\) and \(\mathbf{Y}\) axis as well and once you've found a good spot, scale and rotate. Remember to make a duplicate on the opposite side whenever you cross the outline of the plane guide. You can go on like this and populate your tiling pattern with as many objects as you wish. The grid is your friend during this process, so you should always have your finger on "Ctrl" while moving the duplicate of an object that crosses a border of the guide plane. Also, any object that will "tile" across the border must be at the same point on the \(\mathbf{Z}\) axis as its counterpart on the other side of the seam. Press "NumPad 7" periodically to see where you are from a 2D standpoint. This is the view from which we will eventually render the image, so this perspective is the one that counts. Beginners, remember that mouse wheel zooms in and out, and "Shift+middle mouse button" allows you to "drag" your way around.

Figure 1418

Keep in mind that in Orthographic View we do not perceive the depth of objects. Those far away and those near by appear to be at the same distance. This is what allows us to make a tiled image, but it also limits the apparent depth of the scene. We can compensate for this by scaling down the objects we want to appear further away. Or, as in this example, we can just make each object a different size and place some in front of others.

\subsection*{217.5. Camera Settings}

We will now position the camera directly over our cluster of objects. Press "NumPad 7", center the view on the cluster using "Shift+middle mouse button", and zoom out a couple notches with the mouse wheel. From the 3D View Window's menu, click "View" > "Align View" > "Align Active Camera to View". Now you may be wondering why everything appears to be distorted. This is because when we changed to the camera's perspective, the view automatically reverted to Perspective View because by default the camera is set to that view. But just as we changed to Orthographic View in the 3D View Window, we can change the view of the camera as well. While in Object Mode, swivel the view until you see the camera. It is represented by a pyramidal wireframe with a black triangle atop the opening. Right click to select it. Now press "F9" or click the Editing button (it's icon is four vertices joined in a square). Now in the Camera panel you will see a button labelled "Orthographic". Press it. Above the button is a value labelled Scale. Set it to around 20. (See figure below)

Figure 1419

\subsection*{217.6. Lighting \& Materials}

Place some lights in your scene, and add some materials to your objects. Lighting and materials are subjects which demand their own tutorials, so if you don't know how to do these things yet, please consult the Wiki.

Note: I advise lighting your scene pretty evenly in order to make the tiling seem contiguous.
Note: You could also only use Sun lamp, so the light is clean all over the mesh!

\subsection*{217.7. Rendering}

Now that you've presumably got your lighting and materials as you want them, it's time to render the scene. Under User Preferences click "Render" > "Render Settings" or just press "F10". In the Format tab you can choose the dimensions of your rendered image, the file format you prefer, and the quality. I'm going with \(800 \times 600\) at \(100 \%\) quality.

\section*{217.8. 'Shopping}

And it's time to begin post-production. Open your rendered image in your preferred image editor. I will be using Photoshop in this example. Now find and mark the four corners of your tile (on a new layer of course). Just eyeball it.

Figure 1420

We will use guides to mark the tile boundaries. In Photoshop guides can be inserted by selecting "View" > "New Guide...". Guides can be positioned with the Move Tool. You can zoom in and make sure your guides are accurately positioned by holding "Ctrl" while typing " + " or "-". You can now hide or delete the layer with the markers, as that was only to help us get accurate guides.

Should you decide to make an animated tiling background I recommend layering all your frames on top of one another in your image editor before editing in order to keep the position uniform. You can then animate them using Adobe ImageReady (comes with Photoshop) or find decent low-budget and occasionally free GIF animation programs online.

Figure 1421

Now select an area just outside of the guides with the Marquee Tool. Make sure "Feather" is set to \(\mathbf{0 p x}\) and that the marquee is rectangular and Style is set to Normal (meaning no Fixed Aspect Ratio or Fixed Size). Also, it will help you to have Snap enabled, so go to "View" and make sure it is enabled for guides.

Once you have selected the area, copy \((\mathbf{C t r l}+\mathbf{C})\) and paste \((\mathbf{C t r l}+\mathbf{V})\). Then drag to the right using the Move Tool and that piece should snap to the inside of the rightmost vertical guide.

Figure 1422

Select the Eraser Tool and choose a brush size. I'm going with a diameter of 65 . You'll want to use a soft gradient-like brush for this. Now erase the left edge of the newly pasted selection so that it blends into the picture. Don't erase any of the right edge.

Figure 1423

Press "Ctrl+E" or alternatively, select "Layer" > "Merge Down".
Alright, so that procedure you just performed copying from left to right - now do it bottom to top. Once again, erase the edge. Do a Save As.

Finally, select the square center area that will become your tile and do "Image" > "Crop".
Now scale your new tiling background to a web-friendly size. Save As a JPEG, GIF, or PNG. You're done!

Note:If your pattern still isn't tiling quite perfectly, load the version with the guides again and repeat the copy-paste-erase process. Remember to merge down your layers each time or the corners may not tile correctly. If still no joy, try tiling the background in a web browser, taking a screenshot, pasting that into your graphics editor, and touching up from there.

Here is the final result:

Figure 1424

\section*{218. Cool Things}

Cool things in blender that aren't that obvious. Useful tips and tricks in Blender.

\subsection*{218.1. Attribution}

Many of The Following Tips and Tricks have been contributed by members of the CGSOCIETY.ORG \({ }^{1}\), a Public Society for Digital Artists. The tips have been extracted from a CGSOCIETY THREAD \({ }^{2}\). They have been roughly edited to improve readability.

\subsection*{218.2. File Browser Functions}

\subsection*{218.2.1. Delete, Move, Rename, and Make Directory}

When you are inside a file browser for loading or saving something and you want to create a new directory, just add the name to the path on top of the window and confirm 'Makedir'.
you can also delete(x), move(m), or rename(n) a file. you can do action on multiple files by seling with right click

\subsection*{218.2.2. Preview images when loading them as a texture}

Whenever you are loading images as a texture, you can hold down Ctrl while clicking on the 'load'

\subsection*{218.2.3. Trick for Creating Quick File Revisions}

After you have saved a blend file or an image you can then save it in progression that is:
car .blend. or car .JPG
Next time do "Save As" then press the + (plus) key which will advance the blend file by 1 every time it's pressed. example: car .blend becomes car 1.blend. press again car 2.blend and so on.

The - (minus) key will subtract one. I've gotten into the habit of saving frequently. Yeah I know there is now the undo feature but I like this better because it gives you a history in case you need to back a few levels of a build. You get a saved version at the level you choose.

\footnotetext{
1 HTTP://WWW.CGSOCIETY.ORG/
2 HTTP://FORUMS.CGSOCIETY.ORG/SHOWTHREAD.PHP?T=52560\&PAGE=1\&PP=15
}

Note: Blender automatically detects the number... meaning it does not need to be in any position. For instance: If you have a file named 001starport.png or .blend or whatever, pressing the + (plus) key will automatically name it 002 starport.png. If you want to name it starport1.png, it will change it to starport2.png.

Two rules: The filename has to have a number. It can be 0 , or 1 , or 3.141569 .
If the file number is a negative, pressing + (plus) key will increase the "magnitude" of the negative number. I may have used magnitude wrong, if so, I mean pressing the + (plus) key will make - 0.04 drop to -0.05 . The - (minus) key will bring you only to 0 , and then it will start to eat itself up.

\subsection*{218.2.4. Open Recent}

Control O

\subsection*{218.3. Object/Vertex Manipulation}

\subsection*{218.3.1. Constrain Movement to one Axis or to a plane}
when moving objects/vertices or set of objects/vertices ([G] key) if you move in the direction of the global X axis (Up/Down) and then press the MMB, movement will be constrained to only move in the X axis, or if you move the vertices in the direction of the Y axis and then press \(\mathbf{M M B}\) it will be constrained to move only in the Y axis. The same is true of the Z axis.

You can achieve the same effect by using the X , Y or Z keys while in grab mode. You simply have to press X key, Y or Z, once to lock to X Y or Z global axis,*

To Constrain the Movement to two axes (a plane): Press Ctrl+X to move in the Z-Y-Plane.
\(\mathbf{C t r l}+\mathbf{Z}=\mathrm{XY}, \mathbf{C t r l}+\mathbf{Y}=\mathrm{XZ}\).*
Alternatively, Select scaling mode and select the axis not to scale with the selecting button at the same time as you hit Shift.
- in every case You can hit the \(X, Y\) or \(Z\) button again to constrain movement to a different set of axes. Normally this different set of axes is local. However you can change the identity of this set to global, local, normal, or view by pressing Alt+Space. which cycles through the different identites.

Note: All of these shortcuts work with scaling and Rotating as well

\subsection*{218.3.2. Shrink/fatten mesh in direction of vertex normals}

When you're mesh-editing, Alt+S will shrink/fatten the mesh selection in the direction of the vertex normals.

\subsection*{218.3.3. Vertex Parenting}

You can parent object to a Mesh, in that case you are parenting to the center of the mesh.. BUT if the mesh is translated somehow (let's say by an armature' \([\mathbf{S}]\) pose) the center remains in the same spot, and thus the child object doesn't receive any transformation at all.
To solve this, you can parent the child object to a vertex (or a face) within the mesh, and any transformation that the vertex receives is passed to the child.

There are only 2 options, to parent to any 3 vertex within the mesh or to parent to just one vertex. If you parent to 1 vertex then only location information is passed, with 3 vertex all transformations (rotation, location and size) are passed to the child.

How to do it? Starting out of edit mode select the child(ren), hold Shift and select the parent, enter edit mode, select one or three vertex, press Ctrl+P. That's it!

\subsection*{218.3.4. Work around to welding Verts}

For Edge loop (Verts) position both loops together as close as possible then hit W then 4 (not on numkey pad). You can adjust how far the effect of collapse can go in the Edit window (a button on the right labeled Limit: \({ }^{* * *}\), where \(*\) is a number).

As for individual Verts, e.g. Two vertices welded to become one, select both Verts, scale until they are very close then hit W then 4 .
you can also do this with the snap combo
select the vertex you want to weld together Ctrl+S, Cur -> Sel Ctrl+S, Sel -> Cur [W], Remove Doubles

Also, whenever Blender pop up a menu with different options, you can just type in a number to choose one of the options (use the numbers not on the NumPad)

\subsection*{218.3.5. Make individual objects the camera and Change them back}

If you select certain objects and press \(\mathbf{C t r l + 0} \mathbf{0}\) (zero)it will make them the camera. I use it all the time to align spotlights.

Select your camera and hit \(\mathbf{C t r l}\) NumPad \(\mathbf{0}\) to make it the active camera again

\subsection*{218.3.6. Ordering Meshes in Vertex Groups}

If you are preparing to skin your meshes and you are ready to create the vertex groups, you should pay attention to the order in which you create them, because once they are created there is no way to re-arrange them on the vertex-group list.

That means that if you are a ultra-by-the-book person and you would like the vertex group alphabetically ordered on the list them you must create them in alphabetical order.
.. Or, if you would like them to be ordered according to their function (shoulders, then arms, then forearms, then palms, etc. you must create them in that order.

This may all sound like a stupid thing to care about, but If you have a character with 39 vertex groups you may quickly find that when one of them needs fixing it is a little difficult since they were randomly created.

\subsection*{218.3.7. Position and scale along face normal,}
-Shift V: Position camera along face normal, Alt S: scale selected vertices along face normal

\subsection*{218.3.8. Using Fake Users}
pressing Shift+F4 will turn the window into a "Data Select Window" where you can assign and unassign fake users to almost everything by selecting the name and pressing the F key

Creating a fake user allows you to keep useful data blocks (materials, textures, base meshes) at hand even if they are not linked to an object. You can use it to set a default material that would have the shader you like best.

\subsection*{218.3.9. Align a selection of vertices on a plane}

If you want to perfectly align a selection of vertices on a plane, you just have to follow these little steps:
1.) Before you are selecting the vertices you want to align, position your 3 D cursor in the plane that you want to align to (you could select the 4 vertices of a big plane and hit Shift+S / Cursor->Selection for example, but you can position it anywhere)
2.) Now select those vertices you want to align
3.) Choose "3D Cursor" under "Rotation/Scaling Pivot"
4.) Now with the \([\mathbf{S}]\)-key start scaling mode, hit the key of the axis you want to move the vertices on (X,Y,Z)
5.) Holding down the Ctrl-Key, you can now move the vertices in one line towards the cursor, until the value for the chosen axis is 0.000 . Alternatively, just enter, using the keyboard, the scale factor you want (0 in this case).
6.) Hit LMB. The vertices are perfectly aligned along a plane through the 3D cursor.

This even works very well while in perspective view mode, so you can align on the fly and don't have to switch to front/side/top view all the time.

\subsection*{218.3.10. Welding Vertices}

You can weld vertices by selecting them in edit mode and pressing Alt+M.

\subsection*{218.3.11. View wireframe of hidden Verts}
to view the wireframe of hidden Verts, make sure you are in WIREFRAME MODE and then turn SubSurf on and change the level to 0 If you already knew about this then

\subsection*{218.3.12. Select a true loop}
shortcut is Shift + Alt + right Button of the mouse, serves to select true loop, in vertices as in edges like in faces.

\subsection*{218.3.13. Selecting one object from a single mesh comprised of multiple objects}

If you have more than in Edit Mode, you can place your mouse cursor next to one of the Verts in the desired object, then press the "L" key to select all of the Verts linked to that one. "Alt+L" reselects in the same manner.

\subsection*{218.3.14. Precise Zoom and Select/Deselect}

Selecting: If you Hold down the Ctrl+LMB (left mouse button) and drag the mouse, it will allow you draw a selection as opposed to using the B button which gives you a square.

Deselecting:To draw an area to deselect, Hold down the Ctrl+ Shift+ LMB(left mouse button) and drag the mouse,

Zooming:Hold down the Ctrl+MMB. Move your mouse vertically to can get a more controlled zoom versus scrolling the Mouse wheel.

This feature may not be present in 2.37 or earlier versions.

\subsection*{218.3.15. Mouse Gestures}

Left click and draw:
- a straight line - moves the selected object.
- a circle - rotates the selected object (note: this must be drawn fairly circle-like).
- a V - scales the selected object.

\subsection*{218.3.16. Selecting Obscured or Hidden Objects}

Say you are in front or side view and you want to select an object, but it is obscured or hidden behind other objects. If you press Alt RMB over a group of objects, a menu will be displayed in the 3D window allowing you to pick the object you wish to select.

\subsection*{218.3.17. Select or Deselect Multiple Vertices}

In Edit mode, when you click the RMB near a vertex that vertex (face or edge)will be selected, RMB again will reselect. By holding the Shift key this will allow you to add each selected vertex (face or edge) in that highlighted group.

Pressing the U key (Undo in Edit mode) will also remove the last selection you made.
Alternatively, you can Press B and then draw a box with MMB. Anything caught in the box will be deselected. Also works with BB and the draw selection. Draw with MMB and you reselect.

\subsection*{218.3.18. Selecting multiple items}

You can use right mouse button to select multiple items to append. Doesn't seem to work with files.

\subsection*{218.3.19. Measuring, length, distance on an object.}

Hit "F9" (editing), you should have split (2) windows. One "3d" the other "buttons" go to the Mesh Tools 1 panel and press the Edge Length, Edge Angles and the dimensions will appear on your selections in the 3d view.

\subsection*{218.3.20. Adding Connected Vertices}

In Edit Mode, if only one vertex is selected, pressing "E" will add a vertex, on a freely defined place, connected to the selected one. As will holding CTRL and left clicking the mouse where you want the new vertex to be positioned.

Note: It must be an Image texture and in wireframe mode to be visible.

\subsection*{218.3.21. Recalculate Normals}
\(\mathbf{C t r l}+\mathbf{N}=\) Recalculate normals outside (you might have to select faces before doing so) Shift + \(\mathbf{C t r l}+\mathbf{N}=\) Recalculate normals inside

These two hotkeys are useful when you extrude some edges and see a kind of seam in between (due to normals pointing in different directions).

Then, after selecting an edge, \(\mathbf{C t r l}+\mathbf{N u m P a d}(+)\) selects the face associated with this edge. \(\mathbf{C t r l}+\) NumPad(-) deselect the face.

\subsection*{218.3.22. Create a Quad from two Tris}

Alt \(+\mathbf{J}\) when having two Tris selected makes a Quad.

\subsection*{218.3.23. Remove Doubles}

To Remove Doubles use hotKey: W. You can adjust the "limit" option so that "Remove Doubles" has more or less tolerance. This option is located in editing window under the mesh tools panel, (i.e. weld vertices that are further?)

\subsection*{218.3.24. Combine edit levels on a mesh.}

When in Edit mode for a mesh (TAB key) you can choose the level that you wish to edit at. At the bottom of the 3D window, there are four buttons. Vertex, edge, face \& back-face cull.

By default the vertex level is selected, if you hold Shift and press the edge button, you can use both at once.

\subsection*{218.3.25. Change Select Mode}
to change select mode (vertex, edge or face) you can press Ctrl+Tab. But this way you can't use the Ctrl+Key to ADD the select modes.. Still could be useful, if you don't have a header for the window you're working in..

\subsection*{218.3.26. Precision Warping}

When using the warp tool (Shift+W) you may find that there are times when you have trouble perfectly closing a 360-degree loop. This is because Blender will warp based on the total width of the selection, which may not necessarily be what you want.

Getting around this is simple, just select two verts to denote the new endpoints, duplicate them (Shift+D), scale the two verts times two, so they are just twice as far apart. Then select what you want to warp plus those two marker verts, and warp 720 degrees.

When done, click a vert on your mesh and type \(\mathbf{L}\) to select everything linked to it. Then type \(\mathbf{H}\) to hide it. Once you've hidden all of your mesh, all that remains are the two marker verts. Do a Select All (A) and type \(\mathbf{X}\) to delete them. Now unhide your mesh using Alt+H and you have just the warped mesh, extra guide verts are all cleaned up.

\subsection*{218.3.27. Precision Cutting}

The Knife Tool can actually be quite precise if you take advantage of the snap feature. Press \(\mathbf{K}\), choose "Knife(Exact)" and then hold the Ctrl key while choosing where you wish to cut and you will find that the path to be cut will now snap to nearby vertices.
Keep in mind that the vertices being snapped to don't have to be the ones you are cutting. Say you want to cut the midsection out of a UV sphere and you want the cut to be two grid units in height. While viewing the side of the sphere, add a plane, and scale it to be two grid units tall, and wide enough so that it extends beyond the sphere. Now select the vertices of the sphere (because what we have selected is what gets cut) and when you cut it, snap to the four verts of the plane. Now hit Enter to apply your perfect cut.

Using guide geometry such as a plane to cut other geomery "cookie-cutter" style can be extremely useful when accuracy is needed. Remember to align your view before cutting, since your view will determine the angle from which the geometry is cut.

\subsection*{218.4. Working with Meshes}

\subsection*{218.4.1. Turning Sub-Surfed Mesh into Normal Mesh}

If you have a sub-surfed mesh you can turn THAT sub-surf mesh into a normal mesh. Just select the sub-surfed mesh and press Alt+C (Conversion).

\subsection*{218.4.2. How to remove (numb) black spots on a Mesh}

If a Sub-Surfed mesh becomes (numb) black on some places, that's because of the normals. Select all and press Ctrl+n and then confirm. now it should look prettier!
if the above solution does not work, save your Blend file, Quit Blender then restart. Use \(\mathbf{C t r l} \mathbf{O}\) to open the last file and your mesh will have returned to correct shaded state.

\subsection*{218.4.3. Select all holes in a mesh and fill them}

Shift+M* selects all Non-manifold edges/vertices (holes) in a mesh **. Then all you have to do is hit \(\mathbf{C t r l}+\mathbf{F}\) to auto-fill those holes with "beauty fill".

Shift+M is an alternative shortcut for 'Select Non-manifold'. You'll find this in the select menu when in mesh edit mode. The listed short cut there is Ctrl+Alt+Shift+M. Shift M is obviously a lot more comfortable on the fingers though!

Although 'Non-manifold' usually refers to holes in your mesh, it is not necessarily only holes e.g., an edge with three faces coming out of it is also a non-manifold edge!

\subsection*{218.4.4. Fill in four or fewer vertices}
select the vertexes and press [F], this will fill in the empty space around them
to clean up a filled in space, select all the vertexes for the area, and press [\(\mathbf{F}\)]. choose OK to make FCon For example: add a plane in wireframe mode, extrude it several times, select all vertexes, then hit [F].

\subsection*{218.5. Animation}

\subsection*{218.5.1. Animation Preview in all windows at the same time}

It is well known that Alt+ a is for previewing an animation on the 3D window. But that's not all of it. Divide your screen into multiple 3D Windows, each from a different point of view.

Press Alt + Shift + a
Enjoy!!!
If you have an Action/Ipo Window and 3D windows open, and you issue the Alt + Shift + a command from the Action (or the Ipo) window, it will animate both (the action and the 3D) in sync!! Great for visualization of Ipo's effect on your model.

\subsection*{218.5.2. Choose animation mode, Convert mouse movements to IPO}
-T in IPO window: Choose animation mode, i.e., linear, bezier, constant -[R] in IPO window: Record mouse movements, and convert to IPO

\subsection*{218.5.3. Animate procedural textures}

To animate procedural textures, press ' \(i\) ' with the mouse pointer in the materials window, and select the type of Key-Frame you wish to set in the pop up menu. advance a few frames, tweak your materials, and set another key frame.

\subsection*{218.6. UV Mapping, Particles and Texturing}

\subsection*{218.6.1. Blender color picker}

Blender has a PhotoShop-esque color picker. Simply click on the color preview next to the sliders to use it. Hit enter when you have the color you want.

\subsection*{218.6.2. Saving your face groups selections}

Regarding UV mapping and Face Groups Selections there seems to be the general misconception that you can't save your face groups selections on Blender.

Most people already know that from within the Face Select Mode (Potato Mode) you can switch into Edit Mode and whatever selection you do while in Edit Mode is passed back to Face Select Mode when you exit the Edit Mode.

Well, Did you ever wonder why Material Index Groups (that are nothing more than face groups with a common material on them) have those little 'Select' and 'Deselect' buttons there? Sure they come handy for later modification of the material index but that is not all about them.

Do this: Before starting the UV unwrapping job, cut your mesh by creating as many material indexes as you need, you can even assign each one a different color so you can be sure that there is no face orphan. Once you have the mesh all cut and sliced (so to speak) you enter in Face Select Mode, then switch into Edit Mode, select the index containing the faces you want to unwrap, press 'Select', leave Edit Mode and Voile! You now have an entirely useful face group waiting for you to unwrap. No more manual (and imprecise) face selection is needed.

If you later need to change the mapping of those faces, don't fear. Just make sure there isn't any face selected on Potato Mode, do as you did first (enter edit mode, select the index, exit edit mode) and there are your very same faces selected again with the UV mapping you already assigned to them.

Note: Another benefit of have precise face selection groups is that, initially, you don't have to worry about UV coordinates overlapping, since you know have the way to select ONLY the faces you want to. For example, you unwrap all your faces by groups and when you are done you can start thinking about scale and position within the texture map, not like before when you have to solve those things as you go.

\subsection*{218.6.3. Bulk Texture Change}

Consider a scenario in which you have a scene with a 100 mesh objects, and 50 of them have one texture and 50 of them have another.

If you want to change the texture of the first 50, but don't want to change each individually, do the following. Add a Plane out of the view of the camera. Add your new texture (Material) to the plane. Then use the "Copy to material Buffer" button in the header of the Material buttons. Select one mesh object of the same sort that you want to change, open Material buttons and Paste from Material Buffer.

All the mesh objects with the same texture will now have the new texture.
Alternatively, If you have a material that you want to apply to a lot of objects at once:
1. Select all the objects you want to apply the material to. 2. Apply a material. (this only applies to the last selected object) 3. press \(\mathbf{C t r l}+\mathbf{L}>\) Materials. (this links the material of the last selected object to all the other objects)

\subsection*{218.6.4. Negative Meta-Balls}

Add \(>\) Metaball as usual. Exit EDIT mode and Add \(>\) Metaball. This time before you exit EDIT mode, hit the Negative button in the EDIT buttons window. Then leave edit mode.

If you move the negative Metaball around, you can see the effect it has on the positive metaball.
Be careful though, as negative metaballs are not displayed in the same manner as positive metaballs, you will only see the Pivot point not a meta-mesh.

This is a little test you can try to see the amazing effects negative metaballs can produce.
Make 1 Metaball, make it big. Place three spheres (UV) inside, make them emit particles, one 100, one 200, one 300 particles. Parent three negative metaballs, one to each sphere, and use dupli-vert
on each sphere. Make the 100 duplicate metaball quite big, the 200 medium and the 300 small. Hit Alt A to run animation in 3D window.
(Click here for this author's negative-metaball thread... 'OOPS,it's not there anymore, well, not the AVI anyway! \({ }^{3}\)
(Click here for this author's negative-metaball AVI.) \({ }^{4}\)

\subsection*{218.6.5. Maintain the UV layout when moving/scaling/rotating UV co-ords.}

When you have the UV image/editor window open and have loaded an image you want to UV map to a mesh, click on the UV tab in the header bar and turn off 'Snap UV to pixels'.

This will help to maintain the UV layout when moving/scaling/rotating UV co-ords.

\subsection*{218.7. Rendering}

\subsection*{218.7.1. Tricks, related to the view ports and the render buffers}

First. Switching among screens
So you have your screen made off the 3D window, the buttons window and the info window... but you are doing some fine tunning to the mesh in two places simultaneously, and they both need to zoom in the 3D window. You could scroll or zoom out, translate the view and zoom in again. None of them an elegant solution.

Another situation. You are working on a model and are using an image for reference. You are not tracing over the photo, just take a look at it often to make sure you don't deviate to much from the concept. So you open the photo in a 2D program and keep switching back and forth from Blender.. or you have the photo open in an image window and keep maximizing and minimizing the window... another hassle

Worry no more!!! Blender can handle multiple virtual screen (ala Linux) and you can come and go from them with just one key stroke.

Just press Ctrl+Left Arrow or Ctrl+Right Arrow (for all of you OS X users, add a Shift) and you are switching screens. Go ahead! By default EVERY .blend file comes with 3 screens ... and of course you can add/delete as many as you see fit.
the magic button to add or delete screens is right beside the Tools menu, up there in the info window.

\footnotetext{
3 HTTP://WWW.ELYSIUN.COM/FORUM/VIEWTOPIC.PHP?T=14058\&HIGHLIGHT=METABALL
4 HTTP://WWW.SELLERI.ORG/BLENDER/MOVIES/METABALL.AVI
}

\subsection*{218.7.2. Using the render buffers}

Ok, so you set your scene and press RENDER, a nice window comes up and you see your hard work coming to existence (that's the default behavior, if your change it on the display buttons then this may not work for you).

Do you realize that the window containing your render image is also a render buffer? Actually they are 2 buffers for your to play with. Whenever the render window is open (and you can re-open it by pressing F11 without having to wait again for the render) if you press the J key you can switch from Buffer A and B. (the last active one is what you save when you press F3). You can even switch buffers in the middle of a rendering (but I advice against that when rendering very complex scenes, you have been warned!)

The cool thing about having two separate render buffers is that you can have instant before-and-after images for things that you change in the scene. For example you are searching the perfect position for a light source in a scene, you place it and do a render, place the light in another position, switch to the second buffer and do a new render. Now, with the render window open, just press J to see how the change on the light's position influence your scene and that makes your decision easier.

By the way, the render window can be zoomed (by the normal ways or by pressing Z) to do a closer inspection of the image.

\subsection*{218.7.3. Render window Tricks}

To zoom into the render window, use the ZKEY.
To find out what the (Red, Green, Blue, Alpha) values of rendered image are, left click and hold the button of your mouse.this will reveal the RGBA values of the pixel below the mouse cursor. i.e. R 127, G 255, B 13, A40. The values will appear in the bottom left corner of the render window. You can also hold the button and drag the mouse around. This will display the values of the pixels your mouse pointer passes over.

With the render window open, you can press AKEY to view an alpha version of the image. Press AKEY again to go back to the normal colour view.

To do a before/after comparison after making a change, hit JKEY to switch render buffers, then hit F12 to render. In the render window, use JKEY to alternate between the previous render and the current one, so you can easily see the differences.

\subsection*{218.7.4. Working while you Render}

If you use a X/X11 based window manager, you do not need to watch blender while it renders, go to a different virtual desktop. Blender doesn't have to keep X informed of what's going on and rendering speed may increase.

\subsection*{218.7.5. Border Rendering}

In the rendering buttons find the buttons marked "Border" and "Crop". If you depress "Border", you can get a rendering of any part of what the camera sees. Just do the following :
Go into a camera view using NumPad 0, press Shift+B. Then, mark the limits of the rendering as you want them using LMB. Next, render the usual way and the section you marked will be rendered first, then it will be integrated to the complete rendering. If you wish that *only* the chosen section would be rendered then click on the button marked "Crop" also.

\subsection*{218.7.6. Creating a cluster of particles which takes little time to render}

Render some particles, and make the picture into an alpha mapped tga in GIMP or whatever graphics editing application you use.
Load the image onto a plane. Adjust the alpha settings accordingly. Parent the plane to the emitter. Press dupli-verts.

You now have a cluster of particles which takes relatively little time to render. Of course it doesn't have to be an alpha map of particles. That's entirely up to you.

\subsection*{218.7.7. Alpha from render view}

When cut \& pasting stuff from render window to \{insert your favorite image editor here\} using Alt+ PrtScr, cut and paste the render first, come back to render window and press "A". It changes the view to alpha and you get black \& white mask to cut the background nicely in the \{again, favorite image editor\}. Nice when you do testing in low res.

\subsection*{218.7.8. View alpha texture as wire.}

Ctrl+d in 3d very usefully for preview without rendering.
Also, if you have an object (works best on a mesh plane) with an image texture, you can use Alt+V key outside edit mode. This will adjust the object's size values so that the image won't be stretched when projected.

\subsection*{218.8. Miscellaneous}

\subsection*{218.8.1. Restoring your "lost" work.}

If you go to the temp folder where you have Blender save its temp. Blend files, reload the most recent one and this will save you losing the whole of your work. You don't even need to save a .Blend file for this to work. You can change the settings for this in the tool window at the top of the Blender screen.

\subsection*{218.8.2. Built in Hot-Key List}

Since the few last versions (since 2.28 I think) blender has a built-in all inclusive hot-key list. Just open a text-editor window, and right besides the option to create a new text-buffer there is a menu option called "KEYLIST.intrr". Select that option and the full list is loaded in memory
--Edit: There may be many hot-keys missing, especially the newest ones, like M to mirror a mesh, K for the Knife tool, Alt+Z for textured view... but the list is a good start at least.

\subsection*{218.8.3. Un-compiled PlugIns}

Blender can load plug-ins for texturing, sequence editor, etc. . However, Blender comes with a few of such PlugIns un-compiled.
In Linux they are located on the plug-ins sub-directory of the default Blender install, and all that you need is a Make command to compile them. I don't know how to compile them in Windows, but there they are, just waiting for you to awake them!!!

\subsection*{218.8.4. Blender "Easter Eggs" (Weird things included in blender)}

All Publisher versions of Blender have been shipping with a Monkey mesh called Suzanne. Just open the main tool box (Space Bar) -> Add -> Mesh -> and right below the other primitives you'll see the Monkey.

Why/What it is for? Only NaN programmers know*. It is supposed to be a private joke among the blender developing team. Since then, its considered as a sort of mascot for blender. However, it is incredibly useful as a quick complex object for testing textures, shaders, etc..

By the Way, Suzanne isn't the only joke included... but I won't spoil the surprise. You will bump with them on your daily work, that is for sure.
- NaN was the company that originally developed Blender

Try this: run blender with the -Y argument (open the command prompt/terminal, go to your blender executable file folder, and type blender - Y)

\subsection*{218.8.5. Weird Error Message}

Sometimes, when trying to use a boolean on a tri-based mesh, Blender gives the prompt: "Wanna Crash?" >Yes Please!
but clicking it doesn't crash. This is because Blender is a lot more stable now compared to when that 'crash' request was coded. It also used to appear when using beauty fill after face fill. (\(\mathbf{C} \mathbf{t r l}+\mathbf{F}\) in edit mode)

Blender 2.37 now has a 'widget', which replicates the red/blue/green axis symbol in 3DSMax in the 3d windows. Rotation scaling and movement of objects/Verts/faces etc., can be manipulated using the widget, or in the usual manner of earlier versions of Blender.

\subsection*{218.8.6. Turn your blender animation into a screen-saver (Windows)}
to turn your blender animation Windows binary file into a Windows screen saver, rename the EXE file into SCR and right click it and install !

\subsection*{218.8.7. Discover the FPS rate of a Window}

If you hit Ctrl+Alt+T key in a window, Blender will tell you how much time it takes to render a single frame of that window, in milliseconds. Valuable Benchmark

\section*{218.9. ???}
using construction widget press Shift to get precision mode for fine tuning. Release left mouse button (LMB) and holding Shift down press it again, then you'll get moving along another axis.

\subsection*{218.10. Sculpt Mode Hotkeys}
- F: an interactive brush resize
- Shift F: an interactive brush strength adjuster
- Ctrl F: in interactive texture angle adjuster for your brush.
- Shift B: a rectanglular zoom selection for close-up work
- Alt B: hides all but selected rectangle
- A: toggles airbrush
- S: smooth
- D: draw
- G: grab
- L: layer
- I: inflate
- P: pinch
- V: toggles add and subtract in draw mode
- Use \(\mathrm{X}, \mathrm{Y}\) and Z to toggle axis mirroring.

\section*{219. Troubleshooting}

\subsection*{219.0.1. ATI Radeon Slowdown Problems}

Go the ATI site driver downloads section and select the appropriate OS/graphic card. This will (most likely) link you to the \(\mathrm{d} / \mathrm{l}\) for the current Catalyst 4.4 drivers.
At the bottom of that page is a link to "Previous driver versions".
D/L the Catalyst 3.7 driver package. Run the EXE and it will extract the driver install package to:

\section*{C:\ATIISUPPORT\}}

In this directory will be a directory named (for XP/Win2K users:
\wxp-w2k-7-93-030812a1-010735c-efg
This is where the driver install package is located. DO NOT RUN THE SETUP. You don't need to install the old driver.

Navigate down thru the dir structure to the following dir:
C:\ATISUPPORT\wxp-w2k-7-93-030812a1-010735c-efg12KXP_INF\B_10679
In this dir you'll find a file called: atioglxx.dl_This is a "packed" version of the ATI OGL driver.
The next step specifies how you can extract these files to your hard disk using the 'expand.exe' utility included on the cd.
The ' 1386 ' folder on the Windows XP CD contains a utility 'expand.exe' that can be used to uncompress all compressed dll files. It is a commandline utility, so you have will have to run it from either the command prompt or the Run dialog. Some examples of its usage are:
```

expand X:\I386\ADROT.DL_C:\ADROT.DLL
The above command decompresses the compressed DLL

```

ADROT.DL_on the WinXP CD, copies it to C :, and changes the extension to .DLL .
Just extract that file (atioglxx.dll) to your Blender install directory. Usually C:\Program Files\Blender Foundation\Blender\}

Launch Blender.... no more slowdown.
Addendum: I found this solved a problem of crashing on start up after updating my Catalyst driver from 7.2 to 7.8 , that is expanding the old 7.2 atioglxx.dl_to atioglxx.dll and copying it to the Blender directory.

\subsection*{219.0.2. For people who the above solution leads to Blender crash at start up}

\section*{Thanks to Xenobius at Blenderartists Forum}

This solution is tested on ATI radeon express 200 (x200) integrated video card. However it should work on other ATI card.

Download the Nvidia 53.03 Driver HERE \({ }^{1}\)
Extract the driver to C:INVIDIA
Copy the nvoglnt.dll from the C:\NVIDIA folder to your blender program folder (i.e. C:\Programs Files\Blender 2.40\\)

Rename nvoglnt.dll (the one in the blender program folder) to atioglxx.dll
Run blender...voilà! Blender runs like it should!
[This works, because it can't use proper gl calls and uses no hardware acceleration so speed goes crappy...]

\footnotetext{
1 HTTP://WWW.MEGAGAMES.COM/NEWS/REDIR.CGI?HTTP://DOWNLOAD.NVIDIA.COM/WINDOWS/ 53.03/53.03_WINXP2K_ENGLISH_WHQL.EXE
}

\section*{220. Creating Blender Libraries}

You've finally made that perfect object, armature or material: a gamepiece, a robot, a fully rigged vampire character, or a millimeter-accurate model of the Empire State Building. Besides using this work in your own artistic project, you have made the courageous decision to share that creation with the world.

Sharing your creative work is a great way to "give back to the community," even if you don't write Blender code and you can't translate the Blender documentation to Swahili.

\subsection*{220.1. How to Make a Library}

So how do you make a library? In Blender, you don't need to export to a special format. In fact, you don't need to do anything special beyond saving your regular .blend file. Every .blend is a library file. Users can Append what they like from your .blend file, and ignore parts which they don't need for their own project.

This scheme has some benefits and some drawbacks.
The benefit of using .blend files as a library format is that it's super easy to include extra stuff to help the user see the objects. If the user loads the .blend file directly, it works like the pretty packaging for foods, including a quick and easy way to get a pretty "serving suggestion" rendering of the library contents. What you save in your .blend is what the user will see when they load it, including all your user interface settings, lighting types, and camera positions.
The drawback of using .blend files as a library format is that it's super easy to include unintended things, such as extra meshes, unused material and texture channels, and other things which the user will not find helpful. Blender doesn't save things which are no longer referenced anywhere, but it cannot read your mind if you leave a spare mesh on layer 13 which uses some abandoned Material. 034.

Also, some people are not accustomed to the way that Blender saves all of the user interface settings along with the .blend file. When they load your mesh, they see your way of working. This can be instructive, but unless that's your intention, it's best to try to stick to a simple and clean user interface setup for your library files.

For best results, you need to apply some discipline to publish a clean and useful library.

\subsection*{220.2. Library Usefulness Checklist}

After having used several library .blend files from various sources, I propose that anyone making libraries follow a few suggestions:
- keep to a certain object, theme or area of focus for each library file
- all the test cameras and lights prefixed with a dash; e.g., -Camera, -HemiLight.001, etc.
- any other components not intended for Appending prefixed with a dash; e.g., -ground
- all the test cameras and lights on the last one or two layers (lower right layer button)
- any composite object intended for Appending organized in a group to hold it together
- any groups, objects, materials, textures intended for Appending given meaningful names
- document your unit scheme; e.g., 1 blender unit ==1 imperial foot, etc.
- any other layer contains test-render-ready objects or scenes
- choose rendering and world settings which will not take an hour to make a simple test render
- make visible upon loading the layers required for a camera, a good lighting angle, and a shared object
- make visible upon loading one small text file which lists layers and objects
- make visible upon loading any python script, with instructions on how to start it in a big comment
- make your licensing expectations clear: artistic license, creative commons, etc.
- pack the texture files and other data before saving that final .blend for publishing
- sign your work, stable email address or website url if possible

The dash prefixes for test-rendering cameras, boxes, floors and lights will help the user know at a glance what to Append and what not to Append from your library.

Here's a quick way to throw out all the stuff you really don't need, including extra meshes, materials and user interface complexity.
- save your current .blend (and make a nice backup file too)
- shut down Blender entirely
- open up Blender again, which will load the default settings
- delete the cube and cameras from the default settings
- Append all the useful parts of your library .blend file (including the useful test-rendering items)
- select the proper test-rendering camera for users to try out your model quickly (select, then Ctrl+KEYPAD0)
- adjust the views to ensure important things are visible and ready to render
- save the new library .blend, ready to publish

Blender saves the default settings in a file called .b.blend on your disk. If your own preferred default settings are still too complicated for newcomers to understand, you can move that file away temporarily to get the "factory" built-in default settings which the Blender team produces as a part of each new version of the software. Move the file back again when you want to go back to your individual way of working.

\subsection*{220.3. Publishing Your Library}

It's helpful to include the .txt file and/or post it separately so that people can read a summary before loading the blend file. This should include any credits, usage notes, layer explanations, and licensing information. For you Unix folks, remember to run it through unix2dos to enforce \(\backslash r \backslash n\) CRLF newlines, readable by people with less flexible tools such as Windows Notepad.

It's also of immense benefit to put up small test-renders of your library objects or materials. They don't need to be large but they should give an honest view of the work you're sharing before a potential user takes the time to download library files that will not be useful to them.

So, where do you publish your work of artistic genius?
- HTTP://WWW.E2-PRODUCTIONS.COM/BMR \({ }^{1}\) Blender 3D Model Repository
- HTTP://BLENDERARTISTS.ORG/ \({ }^{2}\) forums
- http://www.deviantart.com/
- http://www.blendswap.com
- your own website

If you post things on your own website, try not to rely on a free site that will over-run your bandwidth limits and disappear two months later. Search engine links will sometimes live on for years, just frustrating those who were hoping to find a millimeter-accurate model of the Empire State Building.

\subsection*{220.4. Beyond Libraries}

If you have even more time to spare, consider writing up a tutorial on how you achieved any tricky results!

\subsection*{220.5. Thank You}

For every artist who chooses to share their creative works with the community, there are a dozen artists, or even hundreds, who thank you immensely.

\footnotetext{
1 HTTP://WWW.E2-PRODUCTIONS.COM/BMR
2 HTTP://BLENDERARTISTS.ORG/
}

\section*{221. Add some depth with stereo}

This tutorial contains some tips for how to work with stereo images.
Stereo viewing is to see the same thing from two slightly different angles. This is what humans normally do with their two eyes. There are many ways to view a stereo image. A perfect method is to use a stereo monitor. But they are quite expensive, and many are of very low quality. In the other end of the price-scale you can use crossviewing. Put the two images next to each other, and look at one with one eye, and the other with the other eye. Needs a bit of practice though. A popular solution is red/blue anaglyph glasses, but they give very bad colors.

\subsection*{221.1. The stereo camera}

I wanted a stereo camera rig that was easy to work with. It should have three cameras (center, left right), have an easy way to set separation (should be \(1 / 30\) of the distance) and I would only need to work with the center cam (position etc.), to others should just follow.

\subsection*{221.1.1. Create it}

\section*{Manually}
1. Reset the cameras position, rotation and size (you can use \(\overline{\mathrm{Alt}}\), \(\overline{\mathrm{Alt}}\) and \(\overline{\mathrm{Altt}}\)). You may want to note these values first, so you can change them back later. I just make sure there's an IPO-curve for them, for example by making a keyframe ((Ikey).
2. Create two new cameras. Reset their position, rotation and size too.
3. Name them Camera.Right and Camera.Left or similar. Set LocX to 1 for Camera.Right and -1 for Camera.Left. (Press Nkey to see data for selected object, in this window you can change name and values.) (Select a camera by clicking RMB several times on the cameras, until the right one is selected.)
4. Create a new cube (remember to press Tab to exit edit mode). Reset position, rotation and size. Name it Distance Cube and set these values: LocZ: -30. SizeX: 0.1. SizeY: 0.1. SizeZ: 30.
5. Switch to front view. (1)
6. Select Camera.Left. Then select Camera while holding down Shift so both are selected. Press \(\overline{\mathrm{Ctrr}}\) and press Enter to register Camera as parent. Then press atrr and select Camera Data. Repeat with right Camera.Right and Distance Cube.

\section*{With a script}

\section*{Editor's note}

I tried making a script that creates the rig, it almost works. Any help finishing it?
```

import Blender
from Blender import *

# Prepare

scene = Scene.getCurrent()
camera = Object.Get("Camera") \# TODO validate that it is a camera
oldLocation = camera.loc
oldRotation = camera.rot
oldSize = camera.size

# Create stuff

c = Camera.New("ortho")
cameraLeft = Object.New("Camera", "Camera.Left")
cameraLeft.link(c)
scene.link(cameraLeft)
c = Camera.New("ortho")
cameraRight = Object.New("Camera", "Camera.Right")
cameraRight.link(c)
scene.link(cameraRight)
dEmpty = Object.New("Empty", "Distance")
scene.link(dEmpty)

# Configure

camera.loc = (0,0,0)
camera.rot = (0,0,0)
camera.size = (1, 1,1)
cameraLeft.loc = (-1,0,0)
cameraLeft.rot = (0,0,0)
cameraLeft.size = (1,1,1)
cameraRight.loc = (1,0,0)
cameraRight.rot = (0,0,0)
cameraRight.size = (1,1,1)
dEmpty.loc = (0,0,-60)
dEmpty.rot = (0,0,0)
dEmpty.size = (1,1,1)
scene.update(1)

# Connect

camera.makeParent([cameraLeft, cameraRight, dEmpty], 0, 0)

# do that CTRL+LKEY thing

cameraLeft.link(Camera.Get("Camera"))
cameraRight.link(Camera.Get("Camera"))

# Reset original values

camera.loc = oldLocation
camera.rot = oldRotation
camera.size = oldSize

# Finish

Blender.Redraw()

```

\subsection*{221.1.2. How to use it}
- Never change the cube or the two side-cameras. Only change the center camera. Use that one for positioning, rotation etc.
- To set the separation: As always, select the center camera. Resize it (with Skey) so you can see the end of the cube if needed. Point at the end of the cube with the mouse pointer, and press Skey . Move the mouse pointer to the point of the main motive, that is closes to the camera. The end of the cube may not end exactly there, but that doesn't matter.
- To render (or preview) with one of the side cameras, select it and press Ctrr.

\subsection*{221.1.3. What needs improvement}

\section*{The cube is visible}

Instead of using a cube, I'd rather use something that doesn't render. It could be an "empty", but see below.

\section*{The cube is hard to see}

It can be hard to see where the cube ends, even in a simple scene. You can select the center camera AND the cube, then it is clearly visible. But you must remember to only select the camera, before you insert a keyframe, so your changes to the cube doesn't get saved.

\section*{Distance plane is at infinity}

The distance plane is where "zero depth is". When viewing a stereo image, the distance plane is where the medium is. In this rig the distance plane is at infinity, meaning everything is in front of it. While stuff popping out in front of the screen is cooler than stuff being "inside" the screen, it's a lot harder to make it look nice. Specially because with everything in front of the screen, it's easy to get stuff that is just way to close to the viewer. It can get so hard to see that the 3 d -effect is completely gone.

A different solution is to make the side cameras point at the end of the cube, or add a plane to the rig, and point at that. But then the cameras are no longer parallel, and that creates distortion.

The compromise solution is to (conceptually) render the images too wide, and then crop the excess from the left side of the left image, and the right side of the right image. Then it will look like it points just like in the previously mentioned solution, but without the distortion.

But this give a lot of problems. First, I'd like to do this a smarter way, instead of just following the path describe above. But I don't think that's possible in Blender. (I think povray can actually do this.) So I need to render the image too wide. But if I increase width in output, it actually renders the same width of the motive, but decreases height. Then I need to do some weird math to get the right FOV, and I don't know half the formulas. Cropping must be done outside Blender, and the rest of "the production line" is hard to get back into Blender if wanted.

I guess a couple of planes in the rig close to the cameras could simulate the cropping, but that is of limited value. To make an adjustable distance plane with them seems quite hard to me, it would need some scripting I guess.

\subsection*{221.2. Stereo viewing with the rig}

This is where it gets exciting, now you are actually getting something to look at.
1. Create a new screen, you could call it Stereo View.
2. The screen should have one big area from side to side.
3. Set the area to \(3 D\) View
4. Unlock it (The Locks layers and used Camera to Scene-lock)
5. Select Camera.Right and press Ctrl
6. Split the area in half so there is two parts next to each other
7. In the right area, select Camera.Left and press Ctrr
8. Adjust zoom in both areas so the frame that shows what is rendered is completely visible, but fill as much as possible. If you can't make them same size, the two areas are not same size.
9. Use cross-view method to see the 3d-effect. Look at the left area with the right eye and right area with the left eye. (It's a skill you need to learn and practice.)
10. Press Shift to see your scene animated in stereo.

If you cannot see these, there is a lot of help with viewing them on the web. Use a search engine to find them.

\subsection*{221.3. Stereo rendering}

\subsection*{221.3.1. Anaglyph}

Create two render layers in the Render Layers tab.

Figure 1425

\section*{Editor's note}

You need to find how to associate one camera with one render layer
Then go the Node Editor and click on the button with a human face. Click on Uses nodes and remove the created items by selecting the items and clicking on Del . Now, using the Add menu, you need to do this diagram:

Figure 1426

Once done, return to the Buttons window and select the button Do Composite on the Anim tab:

Figure 1427

Then click on the button Render on the Render tab:

Figure 1428

You should see your objects as an anaglyph:

Figure 1429

\section*{222. Fluffy Material}

\subsection*{222.1. Spherical Blend Texture}

This technique maps a spherical blend texture to the outsides of an object.
Create a new material and name it something intelligent. Create a new texture for this material, change the texture type to Blend, and then in the texture properties, change the blend shape to "Sphere".

Figure 1430

Back in the material buttons, go the "MapInput" tab and change the texture coordinates to Blank-Blank-Z and Nor and as demonstrated in the next screenshot:

Figure 1431

Finally go the "MapTop" tab, and depress the Emit button and set the Texture Blending Mode to "Add":

Figure 1432

That's all there is to it, and here is how it looks:

Figure 1433

\subsection*{222.2. Backlighting}

This is a technique that a rather famous blender user called "@ndy" uses. Very simple and effective.

All you need to do is place a Hemi light BEHIND the object you want to light in respect to the active camera.

Breakdown: First add a Hemi lamp to your scene:

Figure 1434

Next, Select the lamp THEN press and hold down the Shift key, and select the Camera. Press Control-C to bring up the copy attributes menu, and copy location AND rotation.

Figure 1435

Now select JUST your lamp, press R to rotate it, then press the X key TWICE to rotate around the local X axis. Using your numpad, key in "180" to rotate the object 180Degrees.

All that remains to do is to press G to grab the lamp, then press Z TWICE to move along the local Z axis, and move the lamp until it is past and behind the object of interest. your resulting setup should look something like this:

Figure 1436

And here is the rendered result:

Figure 1437
- COLOR RAMP \({ }^{1}\) with input set to normal.

Pretty straighforward, but many advise against it.
- Minnaert shader

Available in 2.37, "Darkness"<1 actually brightens edge. A cool shader, but not very useful for this purpose.

\footnotetext{
1 HTTP://WWW.BLENDER3D.ORG/CMS/RAMP_SHADERS. 348.0. HTML
}

\section*{223. Human Body}

This tutorial should cover the modelling, skinning and animation of human body, plus facial expressions.

There are some tools to generate human body from parameters like:
- HTTP://WWW.MAKEHUMAN.ORG/ \({ }^{1}\) MAKEHUMAN \({ }^{2}\) free software program (gpl). The models generated are under MIT license. The models generated can be easily imported in blender.

Use lightwave(obj) export. The exported file is located at ..\Documents\makehuman

Figure 1438

\footnotetext{
1 HTTP://WWW.MAKEHUMAN.ORG/
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%20MAKEHUMAN
}

Delete the original cube first. The human object is smaller than the standard cube. Use the UVImage editor to see the UV mapping but it actually uses a texture stored in the image file texture.png

Figure 1439
- HTTP://WWW.FACEGEN.COM/ \({ }^{3}\) FACEGEN \({ }^{4}\) proprietary program. Used for WIKIPEDIA:THE_ELDER_SCROLLS_IV:_OBLIVION \({ }^{5}\).
links to anatomy sites :
```

3 HTTP://WWW.FACEGEN.COM/
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/ FACEGEN
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/THE_ELDER_SCROLLS_IV%3A_OBLIVION

```
- httP://www.Fineart.sk/ \({ }^{6}\) FINEART \(^{7}\)
tutorials: BLENDER_3D:_Tutorial_Links_List\#Human \({ }^{8}\)

\footnotetext{
6 HTTP://WWW.FINEART.SK/
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%20FINEART
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D\%3A_TUTORIAL_LINKS_LIST\%23HUMAN
}

\section*{224. Using Blender Libraries}

You can append libraries in two ways. You can make a local copy of data blocks (like objects, meshes, ...) of the content of a .blend file in your .blend file (appending) or you can use data blocks from another .blend file (dynamic linking).

You can Append with the command in the 3d view File -> Append or SHIFT+F1. When you give this command a file browser window opens. There are two buttons Append and Link at the bottom of the window. The default action is appending. But you can use dynamic linking selecting the link button.

At this point select the .blend file to append. You can select one of the following data blocks type to append:
- Group
- Mesh
- Object
- Scene
- Text
- World
- (not complete yet)

Note that this is a complete list, when you append only block types present in the file will appear. Select the desired type. Now you can select the particular data block to append by selecting its id.

\subsection*{224.1. Indirect linking}

When you give an append or link command almost all relations between data blocks in Blender get expanded. For example, when you link (or append) a specific Group, all its objects, the meshes associated with the objects, the materials and the animations will be linked (or appended) too. That is called "indirect linking". When you use dynamic linking such indirect linked data is not stored when you save a .blend file, when you load the file again blender will look for the indirect linked data blocks in the library file.

\subsection*{224.2. Groups}

When you append a Group, blender will also create links in the current Scene to the objects that are part of the group. The Objects then become visible. However, when you decide to dynamic link a Group, it won't do that. To use the objects in your blender project you can use the group as a duplicator "SHIFT+AKEY -> Group menu -> group id to duplicate".

\subsection*{224.3. See also}
- http://www.blender.org/cms/Library_Linking.769.0.html
- http://www.blender.org/cms/Blender_Architecture.336.0.html

\section*{225. Beginning Modeling Final Project}

Now that you've gotten the hang of 3D modeling, it's important to get some community feedback on your progress. Don't be an idiot and skip this part, or you'll regret it later. Basically this will help you track your progress and give you something that you'll be working on over a long term and something you'll be proud of.
- First, you need to come up with a project idea. You can choose your own modeling project, or choose one from the list below.
- Second, you need to create a model of your idea. Spend a couple of hours on it, and give it some details.
- Third, once you believe you've come far enough with the model, post it in the WORKS In Progress \({ }^{1}\) forum on BlenderArtists.org(formerly elysiun.com) (you will have to create an account if you haven't already). Post several screenshots of your model from within the Blender (note: creating screenshots is outside the scope of this wikibook, though see note lower down the page). You can post whatever subject and message with your posting that you would like, or you can use this suggested subject and message:

\section*{Subject: Beginning Modeling Final Project - <project name>}

Please assist me with any feedback on my model, keeping in mind that I am an absolute beginner still. I appreciate your help.
- Wait for feedback. It usually comes very quickly. If you have any questions about feedback that you are given, don't be afraid to ask your questions in the forum.
- When you and others that have viewed your work feel that you are ready, save your model in some place you can get back to easily. You will continue working on this project once you've learned some new skills.
- Move on to the next page.
(BTW. in Windows and/or maybe other OS, to take a screenshot press 'PrtScn' (PrintScreen). It will copy the screen to clipboard for you to paste in your favourite graphics application. This may not work in other OSs but try anyway. You can also create Blender screenshot directly from Blender using menu File \(>\) Dump 3DView... or File \(>\) Dump Screen...)

1 HTTP://BLENDERARTISTS.ORG/FORUM/FORUMDISPLAY.PHP?S=B6A3696A3B803274BB7C1B49DF9A22A2\&F= 16
(In linux under the KDE I use ksnapshot, check under the graphics tab and see if you have it. If not it should be just a google search away :) gl and happy blendering)
(On Mac OS X, press Command (Apple) + Shift +3 to do a full screen capture)
- List of ideas:
- A Computer and keyboard
- A fishing rod
- A train engine
- A skyscraper
- A robot
- A Tank (real or made up)
- An airplane
- A truck or car
- Household appliances
- A Weapon

\section*{226. Using Inkscape to make advanced Bezier curves}

\subsection*{226.1. Introduction to Inkscape}

Inkscape is a free program that uses SVG (Scalable Vector Graphics) for its file format, and these SVG files can be imported into blender as Bezier curves. Inkscape has some great tools for making advanced shapes that would take forever to make in Blender itself. We will use Inkscape because it is free, and it is very easy to learn.

\subsection*{226.1.1. Installing Inkscape}
- Mac OS X and Windows: Go to InKSCAPE.ORG \({ }^{1}\) and click download. there will be installation files for each operating system.
- Linux: Go into the terminal.

For Arch Linux, type pacman -S inkscape

For Debian based distributions, type sudo apt-get install inkscape

For Fedora and rpm based distributions, type yum -y install inkscape

For any other distribution, check your package manager to see if it has a package for inkscape. if not, download the source code at InKSCAPE.ORG \({ }^{2}\) and run PKGBUILD in the directory of the source.

Inkscape is a pretty large program, so it will take a while to download and install.

\subsection*{226.2. Getting Started}

Because blender doesn't import any effects or filters from SVG files, we will only have to learn basic path modeling. This is very easy to learn, and will take no time at all. Once it's finished installing, open Inkscape. You will see a large empty page and a bunch of buttons to the left. Don't mind the empty page, we won't be needing it. We will re-size this once we are done with the

\footnotetext{
1 HTTP://INKSCAPE.ORG/
2 HTTP://INKSCAPE.ORG/
}
tutorial．Before we get started，I will show you how to use some of the controls．You will probably be right clicking a lot because you＇re used to blender，but that＇s okay．Let＇s start out with a star to practice some of the controls．Click the Star／Polygon tool to the left，and click anywhere on the paper and drag．

\section*{226．2．1．Simple Controls}
go back to＂Object Mode＂by clicking the cursor icon to the left．Now，let＇s try out some of the controls：
\begin{tabular}{ll}
Action & Hotkey \\
Zoom In／Out & CTRL＋SCROLL \\
Move along Y Axis & SCROLL \\
Move along X Axis & SHIFT＋SCROLL \\
Move along both axes & Hold MMB and \\
& Drag \\
Select Path／Curve & LMB \\
Select All & CTRL＋A \\
Select all paths／curves & Hold LMB and \\
within a rectangle & \begin{tabular}{l}
drag（Like select－ \\
\\
\\
\\
\\
\\
\\
\\
\\
ing icons on your \\
desktop）
\end{tabular}
\end{tabular}

These are only a few of the controls，you will learn more controls later in this tutorial．

\section*{226．2．2．Editing your Bezier path}

Go back to the Star／Polygon tool so we can edit the star．You will see 2 dots appear on the star． You can drag these around，and see what happens．Another thing you can do is add more points to the star，change the spike ratio，make it rounded，and make it randomized with the＂CHANGE：＂ Dialog right above your image．
```

Change:
Corners: 5 青 Spoke ratio: 0.286 隹
Rounded: 0.000 㠻 Randomized: 0.000 目

```

Figure 1440

If you want to edit each node separately without symmetry，go back to＇Select and Transform Objects＇mode

Figure 1441
and click Path>Object to Path. Now you can just go to 'Edit Paths by Nodes' mode

Figure 1442
and play around with the shape a bit.
By clicking and dragging, you can move a node or curve an edge. when you make a curve, 2 nodes will show up that you can drag and edit the curve with more precision.

To add a node in the path, select an edge and press the plus button

Figure 1443
to remove a node, press the minus button, and, well, the buttons pretty much explain themselves, so you can just play around and see what you get.

After you think you know how to edit paths pretty well, let's try to make a path from scratch. Click the 'Draw Bezier Curves' button

Figure 1444
and click to add nodes for the shape you want. If you click and drag, you will make a node and curve the node while dragging the mouse. To finish the path, go around to the first node that you made and click on it. This will finish the path and make it a solid shape. When it is done, a outline, or stroke of the shape will appear. If you want it to show as a solid shape, you can click one of the colors on the bottom and it will fill the path with that color.
Now, move the star inside the path (In 'Select and Transform Objects' mode, of course), without it overlapping the borders of the path. If the star is too big, scale it down and hold ctrl to keep the same scale on the X and Y axis. Select both your path and the star, and press Path>Difference to cut a star-shaped hole inside your path.

Congratulations, You have made a completely pointless random shape and learned the basics of creating a shape in inkscape! Now, It's time to get this into Blender! Save your SVG image, and open up blender. Press File>Import>Paths(.svg, .ps, .eps, ai, gimp) (Blender 2.49). Select your

SVG file and the settings are fine how they are. Press OK and see your path appear in blender (You may have to delete the default cube to see it) From here, you can Extrude, bevel, and do whatever you want to you bezier path in blender.

The result may look something like this:

Figure 1445

\section*{227. Platonic Solids}

The Platonic solids or Platonic polyhedra are the convex polyhedra where all faces are copies of the same regular polygon, and the same number of edges meet at every vertex. There are five of these shapes: the tetrahedron (like a pyramid but with a triangular base): cube, octahedron, dodecahedron and icosahedron. Some of these figures ships along with Blender by default. Others can also be built using simple grabs and scales.

\subsection*{227.0.3. The Tetrahedron}

Bring up the Add Mesh menu, and select a Cone. Set the number of Vertices to 3, leave the Radius at its default 1.0 , and set the Depth to \(1.63 \& \# \mathrm{X} 2251 ; \sqrt{\frac{8}{3}}\).

\subsection*{227.0.4. The Cube}

This happens to be a built-in shape in Blender. Just bring up the Add Mesh menu, and select Cube. Done!

\subsection*{227.0.5. The Octahedron}

This shape is the dual of the cube-it has vertexes where the cube has faces, and faces where the cube has vertexes. To make it, first create a cube. Press Tab to switch to Edit mode. All the vertices should already be selected. Press [W to bring up the Specials menu, and select the Bevel function. As you move the mouse, you will see each vertex of the cube turn into a triangular face; simply keep moving the mouse until these faces grow to their maximum extent and meet up with each other; at that point, press \(\boxed{L M B}\) to finish the operation. Finally, bring up the Specials menu again, and this time Remove Doubles.

\subsection*{227.0.6. The Icosahedron}

Bring up the Add Mesh menu, and select an Icosphere. Set the Subdivision to 1. Simple!

\subsection*{227.0.7. The Dodecahedron}

This shape is the dual of the icosahedron. To create it, make an icosahedron as above. Then do what you did to make an octahedron out of a cube: press Tab to switch to Edit mode. All the vertices should already be selected. Press w to bring up the Specials menu, and select the Bevel function. As you move the mouse, you will see each vertex of the icosahedron turn into a
pentagonal face; simply keep moving the mouse until these faces grow to their maximum extent and meet up with each other; at that point, press \([\overline{L M B}\) to finish the operation. Finally, bring up the Specials menu again, and this time Remove Doubles.

Figure 1446

\subsection*{227.0.8. Exercise}

What's the dual of the tetrahedron? Try applying the Bevel operation to one of those; what do you end up with?

\subsection*{227.1. External Link}

Wikipedia article \({ }^{1}\)

\footnotetext{
1 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLATONIC_SOLID
}

\section*{228. Polygonal Modeling}

As the name suggest, polygonal modeling involves constructing the models out of polygons. Strictly, software packages works only with triangles. Blender could show you quads and some software packages could even let you work with polygons with more than 4 sides (n -gons) but these packages work internally only with triangles. These triangles are hidden so that you could concentrate more on modeling.

While different modelers works differently, they would still follow certain workflows (some call this techniques). These are familiarly called box modeling and polygon-by-polygon modeling (poly-by-poly modeling).

Box modeling is a top-down approach where modelers start with a primitive (usually a cube (box), hence the box in box modeling). Then from this primitive, the model's form is build up where details are gradually added.

Poly-by-poly modeling is almost the opposite of box modeling. It is the bottom-up approach where modelers start with a plane or even a vertex. Using extrusion and other tools, more geometries are added. Polygon by polygon the model is gradually build.

None of the two is better than the other but there are instances where one workflow lends much better to the situation. One typical advantage of box modeling is that at early stage, you are able to conceive first the form (the whole) of the model and is better equipped to do general corrections without bothering yet with the details. Poly-by-poly otherwise give you more control on the geometry and is much more easier to use in modeling complex forms like the human ear.
Complications do arise when working with the two. In box modeling, it is typically difficult to manage the geometry when adding details. Experience is necessary so as not to create a mess. Poly-by-poly modeling otherwise has its own quirks. Since you are going detail by detail, it is easy to make a mess with the models form (i.e. wrong proportions).

While the two are opposites, they compliment each other beautifully. Most modelers would combine the two workflows in a variety of proportions, combining the strength of each. For example one might model a human body using box modeling while the head and the ears are done using poly-by-poly modeling.

Blocking with primitives is added to enrich approaches is modeling. It is basically box modeling in conjunction with divide-and-conquer approach. Different parts are modeled separately with their own primitives and later attached with the others to form the whole.

\section*{229. Box Modeling}

Easy to undertake and flexible, box modeling is a favorite of beginners and veterans alike. It is fun to work with and general results are visible in a short time. It is a powerful work flow that any modelers should know.

\subsection*{229.1. Before We Start}

Before doing any modeling, it is vital to plan first. Gather references and make a general plan on how to tackle the modeling phase. Being ready will save you a lot of complications later

\subsection*{229.2. The Work Flow}

With box modeling, start with a primitive that is appropriate for your subject. Most start with a box and generally a good primitive to start. Then, from the primitive, using a variety of tools, mold the essential form of your model. Also called the roughing phase. Don't delve on details here, those are to be tackled later. Finally, on this form, we go to the nearly recursive process of adding details. Layer be layer, details are added until the required amount of detail is achieved.

\section*{Start with a Primitive}
p The Primitive

Figure 1447

Select the proper primitive for your work. Most modelers start with a cube. The cube is the most flexible primitive available and is suitable to almost all form of subjects. But, in many cases, selecting other form of primitives would cut out most of the modeling required. A gun is a cinch to model using a cylinder. With a little adjustment, a torus forms a good doughnut. In an instant a ball can be made out of a sphere. So produce your primitive to work with.

\section*{Rough It Out}
p The Form

Figure 1448

Take the primitive and start modifying it to capture the essential form of your subject. Tools like extrude, loop cut, scale and grab are very handy for this. Avoid worrying about details at this stage. Those are to be done later.

\section*{Adding Details, Details and more Details}
p Details, details and more detials

Figure 1449

Now, we approach the most difficult and unquestionably the most fun part. Using a variety of modeling tools, modify the form again to incorporate details. Add details layer by layer, from general to specific. Planning, studying and experience would help you go through. Continue until you achieve the desired level of detail.

Adding details requires subdivision or addition of polygons. The knife and the loop cut tool is handy for subdividing meshes. Extrusion is great for adding details like horns and fingers. Face and edge loop must be herded to other directions at times and warrants a study by itself. Blender provides you with required tools to achieve all of this.

At this stage, beginners and experienced modelers alike will find their meshes getting more and more difficult to work with as the mesh gets a more and more dense at each level of details added. Planning, an eye to the edge flows and experience alleviate this. So plan and keep practicing.

\section*{230. Illustrative example: Model a Chair (Swan Chair)}

\begin{abstract}
Now let's start with real modeling. In this tutorial we will study in greater depth how to model using box modeling work flow. Let start with a swan chair. It is great piece to model for its a popular piece of furniture so reference images are easy to find. It also have a simple geometric structure so its shape easy to grasp and also contains simple edge and face loop flow so as not to necessitate difficult edge loop face loop flow herding techniques.
\end{abstract}
p Scene with the chair model as seen in Blender

Figure 1450
p Rendered Scene with the chair

Figure 1451

The techniques learned could also be used to model other chairs (Example: the Egg chair, Tulip chair or Parson's chair which is advised to be modeled too) and other subjects.

\section*{231. Model a Chair-Preparations}

Many people do not know what a Swan chair look like. Its time to open up the internet browser and search for images. Or if you have an actual Swan chair with you, your lucky. You can look at a real model while modeling. This would simplify decisions and remove the need for guessing certain details that you are not available with image searches alone.

\subsection*{231.1. Knowing our model}

We need to know what we are modeling look like. You can't do this without references to guide you. A simple image search with Google would provide you the references you need.
Gather several images that gives you different views of the chair. A front and a side view is great to use as a background image to guide as while modeling. Also, gather at least one image that shows the chair at an oblique angle so that it will provide a much more "3d" view. This will shows more clearly the shape of the chair, more than the front and side view alone would give you.

\subsection*{231.2. Loop study}

Take time to study the model. For simple models like this, it would be quite quick, especially with experience. For this project, the loops are as shown bellow.
p Swan chair's loops

Figure 1452

The pink loop goes around the edge of the chair defining the chair's edges and thickness. The light green, light blue and light purple loops follows and create the form of the chair. The crossing green loops forms the bottom of the chair. The light blue and green loops contribute for the form of the "wings", while the purple and green loops form the back. Its a simple loop structure, its topologically (sorry for using the term) the same as this cube extruded to form a T (upside down so the loops would match more).
p The T shape piece loops

Figure 1453

While modeling keep these loops in mind and try to achieve the loops. For this project, the loops are achieved with simple extrusions of a cube, just like the T piece above, but in a form that looks more like the chair.

\section*{232. Model a Chair-The Seat}

After studying the subject, we are ready to tackle modeling it. Start up Blender.

\subsection*{232.1. Start with a Primitive}

For this project we would use a cube. The cube already has several face loop we need and none of that we don't, so this primitive is a good starting point.
Opening Blender, we are already supplied with the default cube which is handy. If you don't have the default cube because you change the setting or remove it, simply add a new cube. Name this primitive something sensible like "Swan Chair" because it would become our chair later. Move the cube or adjust the background image until the cube is centered at our image. After doing that we proceed shaping our cube to create the basic form of our chair.

\subsection*{232.2. Rough it out}

Since we are modeling a symmetrical object, lets take advantage of it and use the mirror modifier. Cut the cube in the front exactly in half by using loop cut at center (Shift + RKey \(->\) middle click, or Ctrl + RKey \(->\) middle click on this editor's computer). For those with no middle buttons you could use subdivide. Select the vertical edges (go to edge select mode first, \(\mathrm{Ctrl}+\mathrm{Tab}->2\)) then use subdivide tool (WKey \(->1\)). Remove the left half by deleting the vertices. Then add a mirror modifier in the modifier stack. This is available at the edit buttons, select the modifiers tab the click the "Add Modifier" button and select "Mirror" from the selection. Activate "do clipping" from the mirror modifier panel that appeared to prevent accidental movement of the central vertices.
(Noob Note: If you follow these instructions, you'll have a gap between the mesh and its mirror. I fixed this by increasing the "Merge Limit" option in the Mirror modifier menu to .1.)
p The cube primitive with mirror modifier on

Figure 1454

Move the vertices so that it would follow the shape of the bottom of the chair image.
p Shaping the bottom

Figure 1455

Note that the reference images used does not match very well. This is because of perspective and camera angle distortion. In this case use the side image sice it shows less distortion. Use the front reference image as an eyeballing guide for the front side of the chair. An oblique reference as stated earlier in planning stages is helpful to guide you in this condition.

Add an edgeloop using the loop cut tool (Shift+RKey) as shown in the image bellow. Move the newly created vertices to follow the references
p Shaping the bottom

Figure 1456

Its is good practice that while modeling you had to view your model at various views not only the standard front, side and top views. Remember that you are modeling a 3d object. What looks good in this some views are not necessarily good in other views. This would result in complications like the familiar flat face look in face models. Moving your view around would help you prevent this. Shown bellow is the view of the model at an oblique view.
p Shaping the bottom oblique view

Figure 1457

Now extrude the back part of the model to form the back part of the chair. Adjust the newly formed vertices to follow your guide images as shown bellow.
p Shaping the back

Figure 1458

Its a good practice to see the model at various views while modeling here is how it look like now at an oblique view:
p Shaping the back oblique view

Figure 1459

Select the following faces. We are going to extrude it to form the sides for the chair. p Shaping the sides, faces to select

Figure 1460

Extrude the faces and adjust newly formed vertices to conform with the guide images.
p Shaping the sides

Figure 1461

And now the oblique view.
p Shaping the sides, oblique view

Figure 1462

The back still does not look good so add the following edge loop. p Shaping the back again

Figure 1463

Adjust it.
p Shaping the back again

Figure 1464

Remember to rotate your view to see problem areas.
p Shaping the back again, oblique view

Figure 1465

Add this edge loop too.
p Shaping the back again

Figure 1466

\section*{Adjust.}
p Shaping the back again

Figure 1467

And keeping with our good practice.
p Shaping the back again, oblique view

Figure 1468

Say, the form is finished. The loops are all in place and the form is easily identified as a rough model of the Swan chair.

\subsection*{232.3. Adding More Details}

Now the basic form of the model is finished and with all important loops in place detailing this model is easy. Lets start by defining the back. Add these edge loops.
p Add these loop

Figure 1469

Move the newly created vertices to fit the references.

Figure 1470

Be sure that the model looks right at various angles. The references images collected earlier will help. Adjust vertices if necessary.
p Our model

Figure 1471

The sides need to be taken care of too so add these edge loops.
p Add these loops

Figure 1472

Then adjust the vertices.

Figure 1473

This is how the model now looks like.
p Our model

Figure 1474

Continue by adding these loops.
p Add these loops

Figure 1475

And adjust as usual.
p Tweak

Figure 1476

Check that it looks good at other views too. Move vertices as necessary.
p Our model

Figure 1477

Keep repeating this procedure. Add loops then adjust. Here is the loops that was added to the model. Tweaked after adding each.
p More loops

Figure 1478

The outline of the chair needs rounding up. Add these loops and tweak so it looks like the one shown.
p Rounding loops

Figure 1479

This is now how the mode looks like.
p Our model

Figure 1480

Its rather tedious to add more loops at this time so lets do a cheat. Select all vertices (press AKey a few times) and then subdivide (WKey -> 1Key) to add more vertices.
p Subdivide the whole mesh

Figure 1481

The model looks blocky so lets smooth it out. While the whole chair is still selected smooth the vertices by clicking Smooth a few times (Edit buttons \(->\) Mesh tools \(->\) Smooth; also available at WKey->Smooth). It would smooth out the model.
p Smoothing the model

Figure 1482

Admire the work (and tweak if necessary).
p Our model

Figure 1483

This is optional. Add this loop and scale along normal (Alt + Skey) to scale it in. Adjust vertices if necessary.
p Modeling the seams

Figure 1484

\section*{233. Model a Chair-The Feet}

Now the seat is finished, time for the legs for it to stand on.

\subsection*{233.1. Starting Primitive}

The leg is mainly made up of cylinders so a cylinder is a very good primitive to start. In object mode add a cylinder with 16 vertices.Center the cylinder on the upper part of the telescope.
p Adding the cylinder primitive

Figure 1485

Tip: to make the cylinder centered relative to the seats center, while in object mode select the seat then hit Shift+Skey (Snap options) then select Cursor->Selection. The 3d cursor would be moved to the center of our seat. Now when you add the cylinder, the cylinders center would be located at the cursor which is also at the seats center. Now all you have to do is to move the cylinder along the y and z axis because it would be properly located relative to the x axis.

Hide or move the Seat to another layer so that it would not intrude while modeling the leg.

\subsection*{233.2. The Upper Telescope}

Go to edit mode and scale the cylinder until its radius match the radius of the upper telescopic element of the chair's leg. Then move the top and bottom vertices to match the reference.
p Modifying the primitive to fit refernce

Figure 1486

Extrude the bottom part and place it a little lower. Extrude again and right click so that the newly created vertices would remain in their position. Scale the vertices a little. Extrude again and move the extruded region up the cylinder.
p Shaping the bottom of the telescope

Figure 1487

Remove the top and bottom vertices that cap the ends.
p Opening ends

Figure 1488

We will be using subsurf modifier to make this part smother. Add this loop to constrain the smoothing on this area.
p Adding control loop

Figure 1489

\subsection*{233.3. The Lower Telescope}

Now lets start with the lower part. Add a cylinder in object mode and adjust the newly created vertices to match the reference.
p Start modeling the lower telescopic part

Figure 1490

The legs would be extruded from this cylinder. Add this loop to prepare. p Add this loop to enable extrusion of legs

Figure 1491

Select the faces between the newly added loop and the bottom loop. Extrude this faces but right click after extrusion so the extruded faces remain in their position. Now scale them constrained along the xy-plane (Skey->Shift+Zkey) a little. This is how it should now look.
p Forming the base

Figure 1492

In top view select the two topmost faces and extrude to form the back leg. Shape the tip according based on the reference. Here is the steps taken to shape the tip. First after extruding, Constrained scale the tip along the x -axis (SKey->XKey) to make the tip thiner. Then move the tip lower. Deselect all, then select the top vertices of the tip and lower this vertices further.
p Extruding a leg

Figure 1493

Shape the base as shown bellow. This is done by selecting the vertices where the leg connects to the base then constrained scaling it along the \(y\)-axis to zero (Skey->YKey->0key). Then move the scaled vertices further back.
p Shaping the leg

Figure 1494

Then add an edge loop as shown bellow. constrained scale the newly created edgeloop along the x -axis to make it thiner.
p Shaping the leg

Figure 1495

We will be using the subsurf modifier to smooth our model so lets add the following edge loops so that the model will smooth properly. Add an edgeloop at the tip.
p Adding control loop

Figure 1496

And this loops on the side.
p Adding control loops

Figure 1497

Also remove the vertex that cap the top because we will not be needing it and it would cause smoothing artifact when subsurfed.
p Shaping the leg

Figure 1498

Now how about the other legs? We will be using Spin duplicate tool to make those. In top view select the central vertex then snap our 3d cursor to it.
p Relocate 3d cursor to the center of the base

Figure 1499

Now remove the other part of the cylinder as shown. We would be left with a quarter part of the whole leg assembly.
p Delete extra vertices

Figure 1500

Select all the vertices that are left. Change the parameters of the spin tool to this: degrees to 360, steps to 4 . Click on the "Spin Dup". If you have multiple 3d views, your mouse cursor would turn into a question mark. Move your cursor to the top view and then click. The other legs would appear as shown bellow. This legs are made of separate mesh and the original leg have a duplicate at exactly the same position creating double vertices. Connect the mesh and remove the doubles by selecting the whole mesh then remove the doubles (Wkey->Remove Doubles).
p Spin duplicating other legs

Figure 1501

\subsection*{233.4. The Stops}

Now lets create the Black Stops on every tip of the leg. We would be creating this joined to the legs as one object then separate it later. Its just that it seems more easy that way.

Without leaving edit mode, add a cube. scale an move it to one of the tip. Move the cube so that it would be lower that usual to separate it from the other mesh making it easier to edit it without disturbing the others.
p Primitive for the stops

Figure 1502

Shape the cube to match the tip. This should be easy by now. The whole step is left out.
p Shape the primitive

Figure 1503

Subsurf would be used to this too so add extra loops to control how the mesh would be smooth. p Stop with control loops added

Figure 1504

Now make copies of the stops using the Spin Duplicate tool. Don't forget to remove the doubles. p Creating the whole stops with Spin duplicate tool

Figure 1505

Select all the tips then move them together up until they intersect with the tips of the legs. p Positioning stops

Figure 1506

Now lets separate separate meshes to individual objects. Press Pkey and select "all loose part" option.
p Separating the Stops

Figure 1507

Notice that the other part of the mesh would suddenly change in appearance. Don't worry. It just means that those meshes are now separate objects by them selves. If you go to object view you would now be able to select the leg and the tips as separate objects.

There are some issues though when you use the subsurf modifier on the leg base as shown.
p Unwanted smoothing effect

Figure 1508

Select the leg and go to edit mode. Add the following edge loop.
p Adding control loop

Figure 1509

Scale the base loop too as shown.
p Scale lower loop

Figure 1510

The issue should now be solved.
p Much better

Figure 1511

This is how the whole leg assembly should look. All have subsurf modifier on.
p Leg assembly

Figure 1512

There is still an issue though. This is not important in most part but will be taken care of for this time.

When one of the leg stops is selected in object mode, it would show that its center is not at the center of the mesh. The center is where the gizzmo (the red, blue and green arrow) would be located.
p object center not at the center of the mesh

Figure 1513

To correct this select the offending object. Click the Mesh menu (located at the header) and navigate to "Transform" and select "Center New" from the options. Blender would automatically calculate the new center based on the objects mesh. Now when the object is selected, the center would be located at a mush more appropriate location.
p Center at proper place

Figure 1514

Do the same to the other stoppers.
Now if you haven't named each individual part yet, You can do it now. Name each part sensible names like uppertelescope, lowertelescope, etc.

\subsection*{233.5. The Whole Chair}

Unhide or Show the layer where your chair seat is so that it would unite with the legs. Now this is how the whole model should look like.
p Finished Model

Figure 1515

\section*{234. Illustrative Example: Modeling a Simple Human Character}
p Simple human figure

Figure 1516

We will be modeling this very simple human figure. This time many details are left out to save time and space. Its assumed that enough knowledge is gained from previous tutorials for readers to understand this stage. Shortcut keys are also left out. Read first the chair modeling tutorial if this comes out too difficult to read.

\section*{235. Modeling a Human Character Preparations}

Actually, this model is made without any background reference images but enough knowledge of human figure makes this possible. Modeling the human body or any model in that case requires knowledge of it beforehand. Even with the background image references, there are still some details (like the armpit) that is not easily visible or are difficult to comprehend with just simple orthogonal projections. It is advised to make some study on basic human figure and proportions first.

For those who likes to have a background reference image to use while modeling, use this orthogonal views of the model. You could still try and test your knowledge on the human figure later by trying to model one without image references.

\title{
236. Modeling a Human Character - Modeling
}

\section*{237. Blocking the Figure}

As with many models done in box modeling, lets start with a cube. The model is symmetrical so lets make use of it. Add a loop running vertically at the middle and delete the vertexes on the left leaving you with only half of the cube. Now add a mirror modifier.
\(p\) Initial box

Figure 1517

Now add a loop running horizontally and fashion out the torso.
p Forming the torso

Figure 1518

Add a vertical loop on the torso so that we will have more geometry to work on. p Adding more geometry

Figure 1519

Extrude the head and the legs. Add loops around the head and the bottom of the legs and extrude out the head and feet.
p Extrude head and legs

Figure 1520
p The model at another view

Figure 1521

Now add a loop around the torso and extrude out the arms. This is all for blocking p Extruding out the arms

Figure 1522
p From another view

Figure 1523

\section*{238. Detailing and Finishing}

Add a loops that goes through the torso and the arms and another at the sides. This geometries will enable us to round and shape the figure.
p Adding more geometry and rounding the figure

Figure 1524

Extrude out to form a rough hand. Add an extra loop around the hand and extrude out the thumb. p Extruding the hand and thumb

Figure 1525

Add more loops around the arm, thumb and hand. Work out this additional geometry to shape the parts.
p Shaping the hand

Figure 1526

Add this loop to add more geometry on the legs and to the torso.
p Adding geometry

Figure 1527

And then shape.
p Shaping

Figure 1528

Add more loops on the leg and shape out the form.
p Forming the legs

Figure 1529

Now time to shape the foot add more geometry and shape out the foot \(p\) Initial form of the foot

Figure 1530
p Final form of the foot

Figure 1531

Now take a look at your model. Adjust the form until satisfied. Work finished.
p Doing finishing touches

Figure 1532

\section*{239. Polygon by Polygon modeling}

Although quite demanding, many modelers savor the control poly-by-poly modeling allows. However, its demanding nature makes many modelers, beginners and experts alike, to avoid it. Still, poly-by-poly modeling, if properly used, is a powerful tool.

\subsection*{239.1. Before we start}

For this work flow, being ready is of great importance. Have several references of your subject, especially a front and side view. Also, have minutes of study on the subject and try to make out an approach in modeling it. Being ready is crucial for this.
p Image used as a reference available at the commons

Figure 1533
p Loop plans for the model

Figure 1534

\subsection*{239.2. The Workflow}

Poly-by-poly modeling provides the most free modeling workflow ever. This freedom, however, causes confusion on how to approach modeling the subject. Searching the internet for tutorials on modeling the face using this method, you will find hundreds and each will be different from each other. Some start with the eyes, others with the mouth, others the ridge of the nose. And then each will proceed differently from that. No wonder its confusing.

Even though poly-by-poly modeling is such a free form method and constitutes a very vogue way to start and continue, a general guideline is provided in the hope that it will help modelers in using this approach.

\subsection*{239.2.1. To Start}

Poly-by-poly modeling rather sets you free on choosing how and where to start. The only requirement is that you have a geometry, a vertex or a plane to start with. Many beginners are stumped by this. Somehow such liberty leaves them undecided.

Figure 1535

A very good approach is to start by creating the important loops first. For example, in modeling the face, you could start by creating the eye, mouth and face loops. With the loops in place, it is easy to build other geometries around them.
p Starting with important loops

Figure 1536

Another good approach is to start with the most important part of the subject. For the face, this is the eyes and the mouth. You could model these parts first and then proceed adding geometry from there.

\section*{p Starting with the mouth}

Figure 1537

As said, poly-by-poly modeling lets you free, so if you would like to start on other parts first, say the nose, then you could do so.

\subsection*{239.2.2. To Continue}
p Continue Adding more geometry. Notice how the loops are placed

Figure 1538

Continuing from your beginnings is not as easy as connecting-the-dots as it first appears to be. Rather than proceeding in a connect the dots fashion, proceed by thinking of edge and face loops
of your model first then creating and adjusting geometry to fit them. Such view would ease decision on placing your geometry.

\subsection*{239.2.3. To Finish}
p Rendered face after few adjustments

Figure 1539

When you find that you don't need to add more geometry, you can call it quits. But still, its a good practice to take another look of your model and make trial renders of it. There might be an awry edge loop, geometries that mess the model, or triangles that you wanted out. Do some fixing and
adjusting and when you finally have the model good, give yourself a pat on the back, OMG ITS A FACE YOU DID IT YAYAYAYAYA

\section*{240. Animation Notes and FAQ}

\subsection*{240.1. Blender 3D: Animation Notes and FAQ}

\subsection*{240.2. IMPORTANT}

This page is under heavy construction. It will probably not be edited better until early May 2012. If someone sends me information on how to convert a OpenOffice odt file to a wikidoc format, then it may be done sooner. Until then this will be quite a work in progress.

\subsection*{240.3. Authors \& Contributors}

See HERE \({ }^{1}\).

\subsection*{240.4. Introduction}

I found it quite cumbersome to find all of the little quirks, problems, and tricks in multiple sources whenever I would forget something. Therefore, I compiled all of the things I found important-primarily with character animation. Almost all the information here is consolidated from many sources. Some sources still need to be cited and any help on this would be much appreciated. For that reason I did not intend to make this public but I think there is enough need for this type of information so here it is.

Just as a special aside, I made these notes to help myself with my animation project. Although I have organized them and posted them online for my and others benefit, I will not be dedicating any large amount of time to this website. All of my extra time needs to be allocated to the animation project. However, I do not mind suggestions and am willing to possible use them. I want to make sure that the viewer understands my time is very limited.

There may be many typos or confusing areas of organization. I tried to organize the mess of notes as best as possible but I am sure there is an even better way. Feel free to fix any aspect of this.

Any suggestions or comments feel free to e-mail me at wiki [at] pagodaproductions.com.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D:_NOOB_TO_PRO/AUTHORS_\%26_ Contributors

\subsection*{240.5. Todo List}

See HERE \({ }^{2}\).

\subsection*{240.6. Animation FAQ}

\subsection*{240.7. Armatures}

Q: I managed to create an acceptable walk cycle finally, now when I reopend the file to add additional animation, It keeps falling back to walk cycle, is their something i am doing wrong. Even after adding the LocRotScale key frame, it still ignores them, and goes back the corisponding frame for the walk. Ugggghhhh!!!

Q: What is the best approach for rigging a character in Blender?
Q: How do I attach a separate object to a bone?
Q: When you try to scale the root bone of the armature(which scales the mesh), the bones move out of the natural placement causing unwanted positioning and distortion. Is there any way around this?

Q: What is a pole vector?
Q: How do I know that my armature is correctly positioned in global space in edit, object, and pose mode with proper bone rolls and axis pointing in proper directions? What are the best methods for building? And what axis is up Y or Z?

\subsection*{240.8. Hotkeys}

Ctrl-C/Ctrl-V Trick One simple way to get the right name is to select the Lattice, go to F9, Link and Materials panel and where it says Ob:Lattice or Ob:Lattice. 001 etc., move the mouse over this field and press Ctrl-C (don't click on it, just hover over it). This copies the Lattice name. Then select your object, go to the Lattice Modifier panel, hover the mouse over the Ob : field and press Ctrl-V to paste the name in. Now it should stay there and your Lattice should work in Edit Mode.

H hides bones
Alt +H shows all bones
Shift+H hides everything except the chain
Ctrl+I [Pose Mode] will automatically add an IK contraint
M [Pose Mode] to move a bone to a bone-layer, select it in POSE mode then press " m " and click on the desired layer button. When the bone is selected, you can see which bone layer it is on in the Editing buttons / Selected Bones panel. Whichever of the 16 layer buttons is enabled is the layer the bone will be on.

\footnotetext{
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D:_NOOB_TO_PRO/TODO
}

Shift+M [Pose Mode] You can use the hotkey SH-M to display a floating bone-layer panel in the 3d viewport. Select the armature, change to POSE mode, then change to the Buttons/Editing panel (F9). Under the Armature-Panel, Display Options SH-LMB the 8th button under the Display Options Bone-Layer buttons to enable it. Check out THIS \({ }^{3}\) by BlenderArtists.com.

Alt-N normalize the bone orientation This can fix problems sometimes.
Alt + P clears parent
Alt + S [Pose Mode] in edit mode allows b-bones shape to scale visual changes without affecting the bones.

W [Edit Mode] subdivides bones
W [Pose Mode] will calculate paths to see how a bones movement is mapped out along a path or If you've named your bones correctly (with .L and .R at the end of the name), you can flip the mirrored bone name by pressing "W" and "flip name". A relevant post on BlenderArtsists.com is available \(\mathrm{HERE}^{4}\).

\subsection*{240.9. Approaches, Techniques, Tips and Tricks}

Constraining IK or FK In the Armature Bones Panel is where you can limit the movement of the bone for IK and Limit Rotation Constraint for FK

Customizing Frame Skipping Steps(F10 playback) allows for a customizable way of skipping frame in increments.

Copying Constraints in pose mode 1. Select all bone(s) you wish to copy the constraints to, from a particular bone 2 . Now, select the bone you wish to copy constraints from 3. Ctrl C --> Constraints (All)

You can do CTRL-CKEY to copy stuff from a bone to bones. The options are location, rotation, scale and constraint. Constraint is very handy when you wan to copy a constraint to other bone. The way it works is easy. The WKEY menu get some neat options too: Select constraint target: Will select the target of the bone's constraint currently selected. Flip name: Yep, you can flip name in Posemode too. Calculate/Clear path: This is a visual way to see the action linked to your armature. You can select just some bones and ask Blender to show you the paths of the bones.

It's possible to copy constraints from one object/bone to a bunch of objects/bones. A useful thing to know when doing a repetitive task like rigging all the fingers of a hand. Just select all bones/objects that you want to give a copy of the constraint, and then select the bone/object containing the constraints. Press CTRL-CKEY in 3DView, and select Object Constraints from the popup menu. The idea behind this is to copy the constraints of the active object to the selection.

Rigging Q: What is the best approach for rigging a character in Blender?

\footnotetext{
3 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=88090\&HIGHLIGHT=HOTKEY+ BONE+LAYER
4 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=93705\&HIGHLIGHT=MIRRORED+ BONES
}

A: Apollux Honestly, I don't think that there is a golden set-up that will solve all your problems. For example, when I design a character rig I need to know beforehand what type of actions he will perform.

If you want general pointers, I guess this would do: Allways set your rigs in a half relaxed fashion.. totally relax your hand for a few minutes and see the position of the palm and fingers, that is position you should model and rig-them on the 3D world. Same goes for mouth, legs, arms, etc. etc. etc.

When in doubt over IK or FK always choose IK, since it is quite easy to switch a IK rig into FK when needed and then back to IK.

Bone's axis orientation can't be an afterthought!! It is no coincidence that every self-respecting rigging tutorial for blender mention it... And don't trust blindly on the automatic axis orientation fix command (Ctrl-N), since it can introduce some odd solutions on complex armatures. Always check each bone by hand, even if Blender says they are fixed.

Ultimate rig design is not the in-and-all of character animation. Sometimes I would spent crazy amounts of time preparing a rig for a special squence, and in the end realize that if I had used a simple FK rig tricked by hand during animation I would get the same results in half of the time and half the frustration. Not because it can be done means that it must be done. BlenderArtists post HERE \({ }^{5}\).

Item Pickup A good use of it is to ask a character to pick up something. By having a bone or empty for each side of the relationship (hand \(<->\) glass), as the hand approaches the glass, you can align the two empties and fire the constraint up (1.00) to stick them together. You add another child-bone in the middle of the hand to tell where the glass will be. Thus moving the hand will move the glass. On the side of the glass just add an empty and make it parent of the glass. Add a copy location to the empty pointing to the bone in the hand we just did. There you go. Of course when the hand rotates the glass will not. For that you will need to add a Copy Rotation Constraint. Before Blender 2.40 , the above method was a good way of faking parent relationship without rotation. But now we have the hinge option which does the same.

\subsection*{240.10. Problems and Questions}

Separate Object/Bone Attachment Q: How do I attach a separate object to a bone?
A: To do that simply Ctrl-Tab into Pose Mode with the armature selected then select the object/mesh you want to parent to a bone then shift-select the bone you want to be the parent and Ctrl-P>"MakeParent to">Bone .

Armature Scaling Problems Q: I have been trying to scale my character which has many similarities to the mancandy and ludwig rigs. However, when you try to scale the root bone of the armature(which scales the mesh), the bones move out of the natural placement causing unwanted positioning and distortion. Both the mancandy and ludwig rigs have this same problem. Is there any way around this?

\footnotetext{
5 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=18480
}

A: Why are you trying to scale the root bone (to scale the whole model)? Are you doing this in pose mode or object mode? If you are trying to scale the whole model try it in Object Mode. Also check if you are scaling around the cursor instead of median point

Q: What is a pole vector?
A: Vertex Pusher 2) Pole vector is actually a term used in Maya. It refers to the direction a bone is set to point towards in Maya rigging. For example, the direction you want the knees to point towards can be set using pole vectors. Apparently, Blender should be getting this feature soon . Right now you have to add target bones so that the knees will only bend one way (see Ryan Dale's BSoD tutorial), but with the option to use pole vectors you won't need to do this in the future .
BlenderArtists POST ABOUT BONES \({ }^{6}\).
Bone Orientation Q: How do I know that my armature is correctly positioned in global space in edit, object, and pose mode with proper bone rolls and axis pointing in proper directions? What are the best methods for building? And what axis is up Y or Z ?

A: 1. Build up all the bones, as you did before. (Every foot, arm, etc. should be a bit bent, and drawn from the proper view.)
2. Select all these armatures, and with Ctrl-J join them into one armature. (Or with parent/child connection, as is necessary.)
3. Select this armature, go to "Editing" (F9), and then turn on "draw axes". Then you can see the axes of the bones. You will see, that the axes are different. Some bones has the Z-axis up, some has the Z -axis to the left, etc.
4. First you should tell Blender that this is the original position of your skeleton/model by pushing Ctrl-A. This is applying rotation. This means, that now all the rotations of the bones will be " 0,0 , \(0^{\prime \prime}\), so if you push later Alt-R (clear rotation), you will get this position. (Turn on numerical menu with N , to see what happens when you make this apply rotation command.)
5. Select the whole skeleton/model again. Go to edit mode. Then push A, to select all the bones. (They should be yellow now.) Then hit Ctrl-N, and you will see all the axises will be changed to stay on the same way.
6. That is, your skeleton now is ready to define the IK solvers, and then the skinning, and finally the animation.
http://blenderartists.org/forum/showthread.php?t=25653
A: Vertex Pusher 4) Yes you should always add in top view[numpad 7]. An armature bone always has its axes set (Y is always up X side to side and Z depth) and you cannot change this like you can with mesh objects, so it seemingly won't matter which view you add a bone while in Edit Mode but in Object Mode your armature object will have a 90 degree rotation around the X axis (if you add it in front view) which can and usually does create problems down the road. If for some reason you want to add bones in front view simply start by adding the first armature bone in top view ad then switch to front view to add additional bones. You can just delete the first bone or rotate it while in Edit Mode .

\footnotetext{
6 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=110721
}

Blender's default views have the Z as the "up" axis while the armature system is coded with the Y as the "up" (like most 3D apps)

When you rotate a bone in the front view, when the bone is aligned to that view and the Z is the up axis, you will give a roll value the bone because it is rotating perpendicular to its coded up axis ... this can cause you problems in some situations when you want a "neutral" roll value in Pose Mode... in most cases you'll want to recalculate the roll value with Ctrl-N (which will remove the visible rotation and insert a value in the "Roll:" field in the Transform Properties subwindow) and give it a non zero roll value in Edit Mode so that in Pose Mode it is properly aligned and rotated for poses and constraints ...

You won't get that behavior if you rotate in either the top or side views if the bone is aligned to the view ...

It's just that if you have the Y axis (the axis the bone rolls on) perpendicular to the Global Y axis then you will have to recalculate the bone roll angles to get it aligned properly for pose space .

By "bone is aligned to the view" I mean what it is like when you first add a bone in a preset view, i.e. head at bottom and tip up at top in Edit Mode with no rotation applied .
http://blenderartists.org/forum/showthread.php?t=110721
A: Fligh If you look at your left hand, palm down, from above, and assume for this exercise that all four fingers have their X-Axis pointing towards the thumb and have a Roll Angle of zero (same as if you created an Armature in Top View), but the thumb would need a Roll Angle of about 90. So if you rotate the first digit of the fingers around their Local X (R-XX) they would go down perpendicular to the back of the hand, but if you rotate the thumb (Roll Angle 90 and again around the Local X) it would go Left, towards the fingers.

Ahh.... but who bothers to pose bones like that? You just grab the IK Target and move it!. Well the Transform Matrix is divided into four chunks (I think? I'm not sure of this but it helps to think of it [or look at it] this way and if you actually test it in Blender it works), Bone Space (the structure of the bone including Roll Angle), Armature Space (the structure of the Armature = the sum of all BoneSpace), Pose Space (transforms relative to Rest Position = recorded changes in BoneSpace within ArmatureSpace) and World Space (the sum of all the above relative to the (transforms of) the Armature Object.
http://blenderartists.org/forum/showthread.php?t=102209
A: Fligh Anyhow, In Blender, In Top View (always add armatures in Top view) the Z-Axis is Facing you and Y is Up. So when you add the first Bone it lies along the Y-Axis. You cannot change that parallel-to-Y and any future Bones you extrude will use that bones axis as reference. If you add an Armature in Front view the bone's (local) Z-axis will point to the Global -Y (Y-Negative) and can lead to problems later on.
http://blenderartists.org/forum/showthread.php?t=102609\&highlight=bone+orientation
A: Vertex Pusher Well I guess I may have a little something to contribute to this ... but I have been trying to learn the armature system in depth for the past few months and this particular issue came up with a complicated rig I was working with ... and I basically "discovered" that you really shouldn't have any other axis other than the Y as the "up" axis. And precisely because the bone roll angle issue .

It seems that despite how the view ports are configured (with the \(Z\) as the "up" axis) the default "up" axis is the Y ... for everything ... This is a bit annoying but if you have, like me, configured Blender to start with the front view open and have the Transform Properties window always open, you will see that everything when created in the front view is actually rotated 90 degrees along the X axis once you tab into Object Mode and that you need to Ctrl-A all objects so created (I guess Blender "out of the box" has the top view open? ... it's been a while so I can't remember ...). This isn't all that important for most things but for the armature system this does create a problem bone roll values that you don't want .

Just as a simple test : Open up Blender and add an armature in the front view. Grab the tip and move it to a corner of the grid so that it is angled 45 degrees. Tab into Object mode. Open up the Transform Properties window. You will notice that your armature is rotated 90 degrees along the X axis . So ... Ctrl-A the armature to have it's "up" axis as Z ... And suddenly you will see the bone rotate along its roll axis. Tab back into Edit Mode, select the entire bone and Ctrl-N to recalculate the bone roll angles ... the bone will rotate back to the way it was ... but with a change in its roll value (-45 or 45 depending on which way it is angled) ... Now repeat the above but this time create the armature in top view ... And you will realize that despite being angle at 45 degrees to the view like above no roll value ... not even after recalculating the bone roll angles (\(\mathrm{Ctrl}-\mathrm{N}\)) ...

Now I am assuming that this occurs because the Y axis is the one used to calculate the bone's roll ... and that if you have anything other than the Y as the "up" axis the roll values get screwed up because now the roll axis \((\mathrm{Y})\) is tangent to the up axis instead of being the up axis. Just turn on "Draw Axes" and look at what the "up" axis is for an individual bone is ... the Y .

And just another bit of proof ... The really great new "limit" constraints (loc,rot and scale) added in the last release ... Try and apply the limit rotation constraint to the first armature (the one with Z up and rotation applied). Now turn LimitX on with no min or max values and do not turn on the "local" co-ordinate space ... it will fall flat along the Y axis as if created in the top view ... This is occurring because despite the fact that you have applied the 90 degree rotation along the X axis to the object, the constraint is enforcing the global up axis ... which is ... the Y .

Now the only work around that I could come up with was to create an empty and parent a Y up armature to it then rotate the empty 90 degrees to be able to use the Z up view ports and also making sure the mesh also had the proper orientation as the armature. This prevents me from accidentally applying the rotation to the armature and I can use the numbpad hotkeys to navigate the views Else you could just clear the roll values manually if you insist on having the Z as the up axis ... though you won't be able to get rid of the rotation that is caused by being tangent to the Y axis without odd roll values ...

Sorry for the long winded response, but this has been bugging me for a while ... Hopefully with the refactoring for v2.5 later this year there will be an option as to which axis will be the "up" axis with regards to the various views ..
http://blenderartists.org/forum/showthread.php?t=93578

\subsection*{240.11. General Armature Information}

Armature Object is like any other object type: It has a center, a position, a rotation and a scale factor. It can be edited. It can be linked to other scenes, and the same armature data can be reused
on multiple objects. All animation you do in object mode is only working on the object, not the armature's contents like bones. Link and Materials panel: The AR: field let you rename your armature Datablock. The dropdown is a quick way to select which Armature datablock you want to connect to this armature. You can keep more than one version for the same character. Useful when you have a special move to achieve in a shot, you can turn on an armature for a special purpose.
The F button is an option to assign a Fake user to the Armature. Again if you have more than one armature for your character, it's a good idea to turn the Fake on, because if your armature datablock is not used (linked) it's not going to be saved in your .blend files. You can always do batch
Fake-assignment of armatures by opening the Datablock browser (SHIFT-F4KEY), go in Armature datablock, select all the armatures you want to keep, and Press the FKEY. The OB: field is just to Rename your armature Object to something more cool and useful than Armature... Armature.001...

Delay Deform: This was useful before as the old system was very slow. What it does is when you do a manipulation to the rig, it waits until you finish to update the view. Can still be useful though.

Weight: This specifies how strongly this bone will influence the geometry around it, relative to the other bones. If two bones crossing each other, both with envelope influence, have the same weight (like \(1: 1\)) they will influence the surrounding geometry equally. But if you set one to 0.5 , the geometry will be affected more significantly by the other one, with weight 1 . For example, in this image, 2 bones using envelope influence try to move the same geometry. The 2 on the left have the same weight, you can see the geometry didn't move. On the right, one of the bones has 0.5 so the bone with weight 1 is winning the tug-of-war!: Deform: This lets you say if you want the bone to deform the geometry at all. Switching it off is like setting the weight to 0 , except it's faster this way. Useful when using a bone as a target or a controller, i.e. a bone you just want to use to control other bones, but not the geometry itself. Mult: to deform geometry you can use vertex group and/or Envelope. The ability to mix both of these methods is handy for using one to tweak the other. For example, you might use envelope everywhere but tweak difficult places manually with vertex group. We'll discuss this in more detail later on. There are two number fields to better tweak the effect of B-Bones. The in/out is used to tell the scale of the virtual handle of the bezier curve. In is the Root of the bone, and Out is the Tip. The bigger the value, the bigger the effect of rotation. You can do ALT-SKEY on one or more bones while in Envelope display mode to tweak the envelope size in real time while animating. Useful when for example you move the hand and some part of the character isn't in the influence zone; the result will be that some vertices will stay behind.

Tip: Bake envelope to vertex groups The workflow is very simple. When you are done with the envelope's tweaking and you have gotten the best out of it, delete the Armature modifier and parent the mesh to the armature(CTRL-PKEY). Parent it to "armature" when asked and "Create From Closest Bones". Do ALT-PKEY and redo the Armature modifier. Now all the envelope influence are converted to Vertex Groups. This way you can further tweak influence zone using Weight paint. More info in the following pages. You can edit this white zone in Editmode or posemode by going in Envelope display mode, selecting bones and using SKEY or ALT-SKEY The Mult option will tell Blender to multiply the weight it get from envelope (let say 0.7) with the weight you painted in weight paint (let say 0.5). The result will be \(0.5 * 0.7=0.35\) so in fact you just tweaked the envelope influence to 0.3 when it was at 0.7 . If you don't want vertices to be part of the zone, you can always paint it with 0 , as \(0 *\) (something) will always give 0 . This way you can give custom shape to your envelope. More on weight paint on next page.

Deform with only things weight painted Deform + Multiply with only things that are weight painted within the envelope radius

Process: Make bones. Make good envelope transformations(including some overlap). Alt +P to make virtual parent(from nearest bones)this will already weight paint parts based on envelope influence
"All faces" tells Blender if you want to paint on all faces in the mesh or just the visible one. "Vertex Dist" tell blender to use vertex distance instead of faces. When active, the painting will only check if the vertex is in the brush, then apply a weight value. If it's off, all vertice part of the faces in the brush will receive weight value. Turning on Vertex Dist can give good results when you have a lot of polys in your mesh. Constraints are calculated from first to last. So if you have two Constraints working on the same channel, let say Location, The last one will most probably win the chance to move the object. But... Most of the constraints have influence slider to tell how much it influence on the stack. If the last constraint have an influence of 0.5 it will mix the result with the one before. Most of the time this little constraint is useful to stick objects to one another. By playing with the Influence you can tell when it will work, when it will remain motionless.

\subsection*{240.12. Building Armatures}

Ludwig's Stretchy Spine In the spine Ludwig model keep in mind the following things. The SpineStretch.null is necessary. It must be set to Hinge and Deform to keep the bones from scaling. IKSpine must have Deform turned off(none selected). Spine 4 or the last bone child in the chain(closest to the neck) must have Deform turned off(none selected). Scaling problem is usually tied(maybe always) tied to an improper child/parent relationship to a bone that is involved with stretching.

Created a mirrored copy without using X-Axis Mirror select the bones that you want to mirror, put the 3D cursor at the center : And make shift +d , and directly, \(\mathrm{S}, \mathrm{X},-1 \ldots\)
Other Information You can extrude a new bone from the selection using EKEY. This will create a bone connected to the original one, meaning the Root of the new bone will follow the Tip of the original one. You can also CTRL-LMB to extrude a new bone. It will extrude to where you clicked.

Alternatively, you can connect two existing bones by selecting them one after the other and pressing CTRL-PKEY. You can then choose either 'Connected' (the child bone - the one you selected second - will automatically be moved so that it touches the parent) or 'Keep offset'. aa Using the WKEY menu, You can subdivide your bone or flip the name of the bone between Left-Right (See Naming convention below). You can delete the bone with XKEY You can select a chain of bones (connected together) using LKEY, when you hover your mouse over a bone. In many cases, rigs are symmetrical and can be mirrored in half. In these cases, it is helpful to use a left-right naming convention. This is not only useful for your own sake, but it gives Blender a hint that there is a pair of equivalent bones, and enables the use of some very cool tools that will save you some significant work. It's helpful to name your bones with something useful telling you what it's there for, such as leg, arm, finger, back, foot, etc. If you get a bone that has a copy on the other side, however, like the arm (you have 2 arms right?), then the convention is to call them arm.Left and arm.Right. Other alternatives are also possible, like _L, _LEFT, _left, .L, and .Left. Anyway, when you rig try to keep this left-right thing as accurate as possible; it will pay off later on. You can copy a bone named blah.L and flip it over using WKEY --> flip name. So the bone will be blah.L. 001 after you copy it, and flipping the name will give you blah.R. Blender handily detects if the .001 version already exists, and increments the number for you.

\subsection*{240.13. Useful Rigs}

Bassam's(slikdigit) Mancandy \(1.0 \mathrm{http}: / / f r e e f a c t o r y . o r g / p o s t s / c a n d y-f o r-e v e r y o n e ~\)
Bassam's(slikdigit) Mancandy 2.0 One of the most complex rig I have available for Blender. It has lattice based stretching. http://freefactory.org/posts/candy-for-everyone

Calvin's 05, 2017 This is an alternate foot roll method to Ludwig's rig.
Calvin's handy02
Clean3D's Mouserig http://blenderartists.org/forum/showthread.php?t=79305
Cognis's AnimTest Interesting use of empty's as a bone.
Daniel Martinez Lara's 3-plender leg This is a complex leg rig. It has many IPO driven bones. http://www.daniel3d.com/pepeland/misc/3dstuff/blender/rig/3-plender_leg_v0-1.zip

Jason Pierce's(sketchy) Ludwig http://jasonpierce.animadillo.com/resource/ludwig/ludwig.html
Kugyelka's Walkcycle
Martin Georgiev's(Animarto) Walk_anim
Master Yoda
Michael Thoenes's Suzanne Rigged
http://creationanimation.com/sites/thoenes/animation/3dtutorials.htm
Nathaniel Shaw's Generi
Noodlesgc's (Mike Roberts) W1r3z
http://www.esnips.com/doc/276d8bd1-0070-4ee4-bd8c-e787b507d6a9/W1r3z.blend
Nozzy's Driven hand http://blenderartists.org/forum/showthread.php?t=18754
Nozzy's Skinny Guy http://blenderartists.org/forum/showthread?t=30994
Otothecleaner's Flor
Virgilio's Otto 1.6 Interesting constraint to keep the feet on the floor.
http://uploader.polorix.net//files/99/otto_v1.6.zip
Rbackman's Bounce9
Rbackman's Zeyne
Simple's Character
Tugkan's Sharlo
Woodman5k's Bunny http://web.pdx.edu/~wlf/Bunny.rar
Yagapayanata's Rig
Yagapayanata's \(\operatorname{Rig}(2,4,6\) legs \()\)

\section*{241. Customization}

\subsection*{241.1. Changing the Theme}

Like many other programs with a graphical user interface, Blender allows you to customize or modify many aspects of its appearance. A collection of such customizations is called a theme.

Theme controls are found in the User Preferences window. Click LMB on the "Themes" button to activate a drop-down menu which can be used to select different themes. Below this is an "Add" button that can be used to create new themes. If any themes have been added, a "Delete" button will appear, along with other controls to adjust the current theme.

This book presents screen shots using the default theme. If you are new to Blender, you should continue using the default theme as you progress through the book, to avoid confusion.

\section*{242. Mist - Make Objects Opaque}

\section*{How Blender's Mist works}

If you render Objects within Blender's Mist, they mix up with the Background-Color,
because Blender decreases their Alpha-Value by increasing Mist-Intensity and distance from the Camera.

\section*{The Problem}

This does a well job if your scene has a constantly-colored Background, but
in case of a real Background or World-Texture it looks not convincing.

All objects are looking like ghosts.

\section*{The Solution explained briefly}

This page will show you two ways to get rid of that Problem.

The major thought is to mix Objects with an opaque color, instead of making them transparent.

The more Transparency, the more of the opaque color will be added.

Because Blender delivers a (dynamic) Alpha-Value with Mist enabled,
we can use this value as a factor for increase or decrease of mixing the objects
with a certain color (or even to enhance or lower the contrast of materials, etc.)

Figure 1540: Here's a render result with mist and the "Mixing-Technique". You see, that you don't see shining the Background through.

The first solution goes with the help of an external compositing program
and won't be explained in depth as we want to focus on how to solve
this issue within blender since it is open source.

\section*{Solution 1: Make use of an external composite software.}

Just render your Background and your Objects separately with Alpha-Channels.

Then you import these files into a composite program on two layers.
(One for the Objects and one for the Background).

Between these layers you set a new "Color-Layer" with a solid greyish-blue color
(because this fits the color of the atmosphere) and create a clipping mask.

A "clipping mask" means that the "Color-Layer" is only visible where the objects of the top layer are.

And where there's no object you can see the Background.

As the object is partially transparent (because of Blender's Mist),
you will see the greyish-blue color shining through.

The more the object is away, the more transparent it is,
and the more the color-Layer will shine through the Objects.

\section*{Solution 2: Make use of Blender's Composite-Nodes.}

Since Solution 1 seems not to be a big deal as we cannot afford expensive packages, we are also able
to achieve this "Mix-Technique" by Blender’s built-in Composite-Nodes.

To continue reading it would be good, if you know a little about Blender's Compositing-Nodes.

Now, here's the interesting part of the tutorial, the Graph of the Nodes in the Node-Editor:

Figure 1541

Description:

\section*{Step 1 Render Layer1}

In the Render Settings Tab you assign the Objects which you don't want to be transparent to Render Layer1.

See HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/RENDER/LAYERS \({ }^{1}\) for how to deal with RenderLayers.

Figure 1542

It is important that you turn off "Sky" and that you turn on "IndexPass". (The Option "Mist" delivers the same Value as the Alpha-Output in the Node RenderLayer1)
"IndexPass" will be explained in Step 5.

\section*{Step 2 Render Layer2}

This Layer renders only the Background, the Sky. In my case I had to enable other elements also, because otherwise the groundplane won't render.

I don' t know why, but this doesn't matter in our case.

\section*{Step 3 Separating RGB+Alpha}

The "Image output" of the Node RenderLayer1 delivers RGB+A, that's a little distracting,
because you can see an Alpha-Output also. Select "Add" -> "Color" -> "Separate RGBA" in the Node-Editor Window.

\section*{Step 4 Combining RGBA}

Now the Separated RGB gets combined again to RGB, but this time with a new Alpha of Step 5.

\footnotetext{
1 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/RENDER/LAYERS
}

\section*{Step 5 Making the transparent Objects opaque}

The good thing is, that Blender's Object-ID Alpha Value does ignore mist.

So we can add an ID-Mask Node to get the Alpha of the Object into the new Image.

Here you must set the ID of the Object to the same number as in the ID-Mask Node.

Select the Object and set its ID Pass-Index!

Beside is a screenshot where you set the Object ID.

Figure 1543: In the red marked section of the buttons window, you can set the ID of the object

\section*{Step 6 Mixing the Object with a Color}

Here you add a Mix-Node to mix the Object with a "Horizon-Color".

The Color should be set to a bright greyish-blue as this is the color of the air inner the atmosphere.

Any color is possible, you may think of a dark red in a fire-hollow or of black if somewhere out in space.

\section*{Step 7 Setting the Factor of how much of the color should be added}

Blender delivers an Alpha-Value to the Objects due to the Mist.

If an object is far away or if the Mist-Intensity is very high,
the Alpha-Value of the Object decreases, which means the Alpha-Value becomes more black.

And if the Object is close, it has accordingly high Alpha, which means getting white.

Black means a Value of R-G-B 0-0-0 and White a Value of R-G-B 1-1-1.
Since we want to use these values as a factor of how much to blend the Object
with our "Horizon-Color", we need to invert this Value.
\((\) Close Objects \(=\) High Alpha \(=\) Factor almost \(1-\) but we need Blend Factor close to 0, because we want low mist as the Object is close)

So let's add an "Invert-Color-Node".

Get the Settings of the Node-Graph for this Node.

This Node inverts Black to white, dark-grey to bright grey, etc.

We now use this inverted alpha-value (or Mist-value)
as a factor for mixing the Horizon-Color with the Object.

\section*{Step 8 Layering the colored Objects over the Sky-Background}

Now you add an Alpha-Over-Node which will layer our Objects over the Sky-Background.

Be aware to use the settings shown in the screenshot and that the order of the two Image-Inputs
of the Alpha-Over-Node is very important.

The second Input always gets over the first Input.

\section*{Step 9 Add an Output-Node}

Finally you need an Output-Node and to enable "Do Composite" in the RenderSettings.

\section*{Step 10 Example}

Here an Example, of how it worked out in my project:

Figure 1544: Close Distance
- Almost no Mist

Figure 1547: Farthermost
Distance - In original size the Object would be so small that it isn't visible -only to make the Logic clear

Figure 1545: Far Distance Low Mist or atmospheric opacity

Figure 1546: Further Distance - (!)The Object is even scaled

\section*{Summary}

Be sure, you got every step right - then all will work out properly.

What is almost of more importance, that you understood the logic behind this,
so that you learn about Blender's Compositing-Nodes and the 01-Logic ;)
Since "Mist" means something like "Bullsh**" in German I did not believe that it really
is like that in Blender - and it isn't! Blender is a quite nice and powerful tool.

And I hope that it'll ever be Open-Source.

\section*{243. Contributors}

\section*{Edits User}

3 00ANME00 \({ }^{1}\)
\(301 \mathrm{MF} 02^{2}\)
\(100000 \mathrm{OK}^{3}\)
\(31983^{4}\)
1 2DCUBE \({ }^{5}\)
2 3DSKI \({ }^{6}\)
2 492STAR \({ }^{7}\)
2 4THOUGHT \({ }^{8}\)
\(250^{9}\)
\(180063 \mathrm{R}^{10}\)
32 AM088 \({ }^{11}\)
1 ABCDAA \(^{12}\)
2 Accurrent \({ }^{13}\)
8 Acsteitz \({ }^{14}\)
1 AdRiley \({ }^{15}\)
1 ADAMP \({ }^{16}\)
1 ADEMOS \({ }^{17}\)
2 ADHEMAR \({ }^{18}\)
16 ADMIJR \({ }^{19}\)
287 ADRIGNOLA \({ }^{20}\)
1 AfroToAd \({ }^{21}\)
```

HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:00ANME00
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:01MF02
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:000000K
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:1983
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:2DCUBE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:3DSKI
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:492STAR
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:4THOUGHT
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:50
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:80063R
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AM088
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ABCDAA
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ACCURRENT
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ACSTEITZ
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRILEY
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADAMP
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADEMOS
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADHEMAR
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADMIJR
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIGNOLA
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AFROTOAD

```

\author{
AGGRESSOR \({ }^{22}\) \\ 2 Aidan.Sullivan \({ }^{23}\) \\ 1 AKHRAM \({ }^{24}\) \\ 2 Alabandit \(^{25}\) \\ 5 AlCHEZ \(^{26}\) \\ 4 Alex \(\mathrm{G}^{27}\) \\ 1 Alex L33 \({ }^{28}\) \\ 1 Alexwill \(84^{29}\) \\ 42 Allefant \(^{30}\) \\ 1 Alpha \(0^{31}\) \\ 47 AmieKim \({ }^{32}\) \\ 6 Amigosg \(^{33}\) \\ 11 AndrewBuck \({ }^{34}\) \\ 5 ANDREWTREFETHEN \({ }^{35}\) \\ 106 ANDYD \({ }^{36}\) \\ 1 Aneeshnl \({ }^{37}\) \\ 1 AnONYMOUS DISSIDENT \({ }^{38}\) \\ 1 AnTCODD \({ }^{39}\) \\ 1 APHAX \({ }^{40}\) \\ 1 Arakade \({ }^{41}\) \\ 70 ARCH DUDE \({ }^{42}\) \\ 1 ARCH DUDE (USURPED) \({ }^{43}\) \\ 8 ARCTICFREEZE8344 \\ 9 Argav \(^{45}\) \\ 68 ARGENTO \({ }^{46}\)
}
```

HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AGGRESSOR
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AIDAN.SULLIVAN
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AKHRAM
HTTP://EN.WIKIbOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALABANDIT
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALCHEZ
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEX_G
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEX_L33
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEXWILL84
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALLEFANT
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALPHAO
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?tITLE=USER:AmIEKIM
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AMIGOSG
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANDREWBUCK
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANDREWTREFETHEN
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANDYD
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANEESHNL
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANONYMOUS_DISSIDENT
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANTCODD
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:APHAX
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARAKADE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARCH_DUDE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARCH_DUDE_(USURPED)
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARCTICFREEZE83
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARGAV
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARGENTO

```
```

2 ARRU47
3 Arturotena**
6 ~ A s C E N 4 9 ~
1 Aschoeke }\mp@subsup{}{}{50
1 ASK
1 Astharoth }\mp@subsup{}{}{52
6 ~ A s t r o n O U T H 7 3 0 3 5 3 ~
5 ~ A t a l l c o s t s k y ~ 5 4 ~
3 ATARUN }\mp@subsup{}{}{5
A ATIMMER }\mp@subsup{}{}{56
ATtILAMH}\mp@subsup{}{}{57
21 AvERIEZEN }\mp@subsup{}{}{58
80 AvICENNASIS }\mp@subsup{}{}{59
11 Az156860
15 BANZ11114
4 BAADTASTE }\mp@subsup{}{}{62
1 BACH}\mp@subsup{}{}{63
2 BACON }\mp@subsup{}{}{64
32 BADALIA}\mp@subsup{}{}{65
2 BAMACSGUY }\mp@subsup{}{}{66
2 \mp@code { B A N Z A I } { } ^ { 6 7 }
1 BeBraw}\mp@subsup{}{68}{
3 BEETLEMANIAC}\mp@subsup{}{}{69
1 BEGEUN }\mp@subsup{}{}{70
1 BEGINNER }\mp@subsup{}{}{71

```
```

47 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARRU
48 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARTUROTENA
49 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASCEN
50 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASCHOEKE
51 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASK
52 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASTHAROTH
53 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASTRONOUTH7303
54 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ATALLCOSTSKY
55 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ATARUN
56 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ATIMMER
57 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ATTILAMH
58 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVERIEZEN
59 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVICENNASIS
60 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:Az1568
61 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BANZ111
62 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BAADTASTE
63 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BACH
64 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BACON
65 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BADALIA
66 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BAMACSGUY
67 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BANZAI
68 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEBRAW
69 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEETLEMANIAC
70 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEGEUN
71 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEGINNER

```
```

    1 BEHEMOTH1472
    2 BEKENN}\mp@subsup{}{}{73
    2 BenwulF}7
    35 BEuc}7
9 ~ \mathrm { BGKS } ^ { 7 6 }
BiJEE }\mp@subsup{}{}{77
BILLINGHURST }\mp@subsup{}{}{78
BILLYMAC00}\mp@subsup{}{}{79
BimBot}\mp@subsup{}{}{80
BIOMEKSENSEI }\mp@subsup{}{}{81
Вк31415982
BLENDERDOCS }\mp@subsup{}{}{83
BLENDERIZER }\mp@subsup{}{}{84
BLENDERMAN }\mp@subsup{}{}{85
BLONDANDY }\mp@subsup{}{}{86
BlUESKIES }\mp@subsup{}{}{87
BlUINCHER }\mp@subsup{}{}{88
2 BMARNZ }\mp@subsup{}{}{89
4 Bmud }\mp@subsup{}{}{90
1 BObJ }\mp@subsup{}{}{91
71 BONAPON }\mp@subsup{}{}{92
1 BOONER }\mp@subsup{}{}{93
36 Bootaleg }\mp@subsup{}{}{94
3 BORISBluE }\mp@subsup{}{}{95
12 BOYAGE }\mp@subsup{}{}{96

```
\begin{tabular}{|c|c|}
\hline 72 & HTtP://EN.WIKIBOOKS.ORG/W/Index.PhP?title=User: Behemothi \\
\hline 73 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEKENN \\
\hline 74 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BENWULF \\
\hline 75 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP? TITLE=USER:BEUC \\
\hline 76 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BGKS \\
\hline 77 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BIJEE \\
\hline 78 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BILLINGHURST \\
\hline 79 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BILLYMAC00 \\
\hline 80 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BIMBOT \\
\hline 81 & HTtP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BIOMEKSENSEI \\
\hline 82 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BK314159 \\
\hline 83 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLENDERDOCS \\
\hline 84 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLENDERIZER \\
\hline 85 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLENDERMAN \\
\hline 86 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLONDANDY \\
\hline 87 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLUESKIES \\
\hline 88 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLUINCHER \\
\hline 89 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BMARNZ \\
\hline 90 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER: BMUD \\
\hline 91 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOBJ \\
\hline 92 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BONAPON \\
\hline 93 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOONER \\
\hline 94 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOOTALEG \\
\hline 95 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BORISBLUE \\
\hline 96 & HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOYAGE \\
\hline
\end{tabular}
```

    9 BRANDISHED }\mp@subsup{}{}{97
    4 Brian 252 }\mp@subsup{}{}{98
    9 BRINMAN }\mp@subsup{}{}{99
    ```

```

    2 ~ B r u c E 8 9 ~ 1 0 1 ~ \$
    ```

```

    3 BRYLIE }\mp@subsup{}{}{103
    5 ~ B T U R N I P ~ 1 0 4 ~
    1 BUCKBEAK}10
    193 BULLERCRUZ1 106
2 BUNYK}\mp@subsup{}{}{107
1 CFREY }\mp@subsup{}{}{108
9 ~ C a l e ~ ' 0 9 ~ \% ~
1 CAMStone }\mp@subsup{}{}{110
CAMEL}\mp@subsup{}{}{111
22 CAMP }\mp@subsup{}{}{112
CAPTBOBO }\mp@subsup{}{}{113
2 CARPETSMOKER }\mp@subsup{}{}{114
1 CARSRACBOT }\mp@subsup{}{}{115
1 CASIMIR }\mp@subsup{}{}{116
1 CASPER DA COSTA-LUIS }\mp@subsup{}{}{117
1 CHANDHAMAMA }\mp@subsup{}{}{118
1 CHARLESLAMBERT }\mp@subsup{}{}{119
17 CharybDIS }\mp@subsup{}{}{120
11 CHELSEAFAN528121

```
```

97 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRANDISHED
98 HTTP://En.wIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:BRIAN_252
99 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRINMAN
100 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRONZED_BISON
101 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRUCE89
102 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRUYNINC
103 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRYLIE
104 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BTURNIP
105 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BUCKBEAK
106 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BULLERCRUZ1
107 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BUNYK
108 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CFREY
109 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CALE
110 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CAMSTONE
111 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CAMEL
112 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CAMP
113 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CAPTBOBO
114 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CARPETSMOKER
115 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CARSRACBOT
116 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CASIMIR
117 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CASPER_DA_COSTA-LUIS
118 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHANDHAMAMA
119 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHARLESLAMBERT
120 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHARYBDIS
121 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHELSEAFAN528

```
```

8 CHINMAY GAUTAM }\mp@subsup{}{}{122
5 ~ C h r i s 0 9 1 7 ~ 1 2 3 ~
1 ChuckhoffmANN }\mp@subsup{}{}{124
1 Chuey }\mp@subsup{}{}{125
Chw333 }\mp@subsup{}{}{126
1 Citizen4288
2 ClemEns }\mp@subsup{}{}{128
2 Cleobod}\mp@subsup{}{}{129
Clone DAD }\mp@subsup{}{}{130
11 CODESNORTER }\mp@subsup{}{}{131
1 COFFEEPARIS }\mp@subsup{}{}{132
1 ColincbN }\mp@subsup{}{}{133
15 COMMONSDELINKER }\mp@subsup{}{}{134
1 ComwIzz2135
3 CORN CHOwDER }\mp@subsup{}{}{136
1 COSWORTH }\mp@subsup{}{}{137
1 CPTLONGSHLONG }\mp@subsup{}{}{138
2 CrAC }\mp@subsup{}{}{139
27 Crouch }\mp@subsup{}{}{140
1 CRystal VisiONS }\mp@subsup{}{}{141
2 CSPURRIER }\mp@subsup{}{}{142
CTHAMES }\mp@subsup{}{}{143
1 CWADRUPLDIJJITGOLDILOX }\mp@subsup{}{}{144
1 CymRU.LASS }\mp@subsup{}{}{145
7 DDD3x }\mp@subsup{}{}{146

```
```

122 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHINMAY_GAUTAM
123 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRIS0917
124 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHUCKHOFFMANN
125 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHUEY
126 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:CHW333
127 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CITIZEN428
128 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLEMENS
129 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLEOBOD
130 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLONE_DAD
131 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CODESNORTER
132 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COFFEEPARIS
133 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COLINCBN
134 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COMMONSDELINKER
135 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COMWIZZ2
136 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CORN_CHOWDER
137 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COSWORTH
138 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CPTLONGSHLONG
139 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CRAC
140 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CROUCH
141 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CRYSTAL_VISIONS
142 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CSPURRIER
143 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CTHAMES
144 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CWADRUPLDIJJITGOLDILOX
145 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CYMRU.LASS
146 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DDD 3x

```

\author{
1 DEAFCODE \({ }^{147}\) \\ 1 DRNZ \({ }^{148}\) \\ 4 Dagnode \({ }^{149}\) \\ 1 DAGONITE \({ }^{150}\) \\ 2 DALHAMIR \({ }^{151}\) \\ 2 DALLAS \(1278^{152}\) \\ 4 Damian Yerrick \({ }^{153}\) \\ 3 DAN-AKA-JACK \({ }^{154}\) \\ 3 DAN13 \({ }^{155}\) \\ 4 DANMAN \({ }^{156}\) \\ 1 DANDELLION \({ }^{157}\) \\ 1 DANHASH \({ }^{158}\) \\ 3 DANIELSIMLIND \({ }^{159}\) \\ 1 DANTHEMANGO \({ }^{160}\) \\ 1 DAPOULTER \({ }^{161}\) \\ 3 DariusWiles \({ }^{162}\) \\ 12 DARKFIRE \({ }^{163}\) \\ 7 DARKLAMA \({ }^{164}\) \\ 1 DARKNESSKNIGHT \({ }^{165}\) \\ 3 DARKONC \({ }^{166}\) \\ 2 DAVEKEISER \({ }^{167}\) \\ 1 DAVID COCHRAN \({ }^{168}\) \\ 10 DAVID Osborn \({ }^{169}\) \\ 5 DAVIDBAIRD \({ }^{170}\) \\ 1 DAVIDCARY \({ }^{171}\)
}
```

147 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DEAFCODE
148 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRNZ
149 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAGNODE
150 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAGONITE
151 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DALHAMIR
152 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DALLAS1278
153 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAMIAN_YERRICK
154 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAN-AKA-JACK
155 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAN13
156 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANMAN
157 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANDELLION
158 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANHASH
159 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANIELSIMLIND
160 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANTHEMANGO
161 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAPOULTER
162 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARIUSWILES
163 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKFIRE
164 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKLAMA
165 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKNESSKNIGHT
166 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKONC
167 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVEKEISER
168 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVID_COCHRAN
169 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVID_OSBORN
170 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDBAIRD
171 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDCARY

```

\author{
8 DAVIDJAQUAY \({ }^{172}\) \\ 1 DAVIDFG \({ }^{173}\) \\ 1 DAVIDWILLIAMS \({ }^{174}\) \\ 7 DAWORM \({ }^{175}\) \\ \(1 \mathrm{DBD}^{176}\) \\ 2 Dbproguy \({ }^{177}\) \\ 1 Dbreece \({ }^{178}\) \\ 14 DeltaSpeeds \({ }^{179}\) \\ 2 DEmoAthon \({ }^{180}\) \\ 1 Dennis G. Jerz \({ }^{181}\) \\ 1 DER KÜNSTLER \({ }^{182}\) \\ 22 DERBETH \({ }^{183}\) \\ 1 DESSYDES \({ }^{184}\) \\ 1 Diblidabliduu \({ }^{185}\) \\ 1 Digitalartist \({ }^{186}\) \\ 1 Digitalcircuit36939 \({ }^{187}\) \\ 1 Digivation \({ }^{188}\) \\ 3 Dimzy Doodle \({ }^{189}\) \\ 2 DIPINGO \({ }^{190}\) \\ 2 Dirk Hünniger \({ }^{191}\) \\ 1 DIRK GENTLY \({ }^{192}\) \\ 2 Ditw0101 \({ }^{193}\) \\ 1 DKARPP \({ }^{194}\) \\ 1 DLR \({ }^{195}\) \\ 1 DMANSOUTH \({ }^{196}\)
}
```

172 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDJAQUAY
173 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDFG
174 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDWILLIAMS
175 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAWORM
176 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DBD
177 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DBPROGUY
178 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DBREECE
179 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DELTASPEEDS
180 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DEMOATHON
181 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DENNIS_G._JERZ
182 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DER_KüNSTLER
183 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DERBETH
184 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DESSYDES
185 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIBLIDABLIDUU
186 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIGITALARTIST
187 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIGITALCIRCUIT 36939
188 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIGIVATION
189 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIMZY_DOODLE
190 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIPINGO
191 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_HüNNIGER
192 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_GENTLY
193 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DITW0101
194 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DKARPP
195 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DLR
196 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DMANSOUTH

```
```

2 DmWICK }\mp@subsup{}{}{197
5 Dobz116 { } ^ { 1 9 8 }
3 DogWYnN }\mp@subsup{}{}{199
1 Doj }\mp@subsup{}{}{\circ200
D DOLSSON5 }\mp@subsup{}{}{201
1 DOMTHEDUDE001202

```

```

DOOGlus 204
2 Dougc}\mp@subsup{}{}{205
2 DOUGLASFEB 15*206
2 DRDIXIE }\mp@subsup{}{}{207
3 DRAGONKINGME 208
5 DrblitZKRIEG }\mp@subsup{}{}{209
2 DREAS }\mp@subsup{}{}{210
5 ~ D S P A U N ~ 2 1 1 ~
12 DuLithGOw }\mp@subsup{}{}{212
1 DUAL SHOCK 2 PS2 CONTROLLER }\mp@subsup{}{}{213
3 DUDEKAHEDRON }\mp@subsup{}{}{214
2 EN-EAGLE 101215
EATMYSHORTZ }\mp@subsup{}{}{216
EB264}\mp@subsup{}{}{217
11 EBSWIFT}\mp@subsup{}{}{218
1 EDMETRIC }\mp@subsup{}{}{219
3 EDR }\mp@subsup{}{}{220
1 EfREN }\mp@subsup{}{}{221

```
```

197 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DMWICK
198 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOBZ116
199 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOGWYNN
200 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOJ°
201 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOLSSON5
202 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOMTHEDUDEOO1
203 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DONLEMAY
204 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOOGLUS
205 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOUGC
206 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOUGLASFEB15
207 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRDIXIE
208 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRAGONKINGME
209 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRBLITZKRIEG
210 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DREAS
211 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DSPAUN
212 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DULITHGOW
213 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DUAL_SHOCK_2_PS2_CONTROLLER
214 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DUDEKAHEDRON
215 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EN-EAGLE_101
216 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EATMYSHORTZ
217 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EB264
218 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EBSWIFT
219 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EDMETRIC
220 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EDR
221 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EFREN

```

\author{
1 EKRICYOTE \({ }^{222}\) \\ 4 El IMP \({ }^{223}\) \\ 1 Electrice \({ }^{224}\) \\ 16 Electro \({ }^{225}\) \\ 3 Electus \({ }^{226}\) \\ 12 Embri \(^{227}\) \\ 1 ENCESIL \({ }^{228}\) \\ 2 EnOCHSDREAM \({ }^{229}\) \\ 1 Enselic \({ }^{230}\) \\ 2 Entera voss \({ }^{231}\) \\ 2 EPICOR \({ }^{232}\) \\ 14 ERIKBONGERS \({ }^{233}\) \\ 2 ERUANTALON \({ }^{234}\) \\ 2 ESBEN \({ }^{235}\) \\ 147 EvanCarroll \({ }^{236}\) \\ 1 ExO \(^{237}\) \\ 3 EyEONUS \({ }^{238}\) \\ 2 FALCONX1096 \(6^{239}\) \\ 1 FALKE \({ }^{240}\) \\ 8 FALSTAFF \({ }^{241}\) \\ 5 FANGIOTOPHIA \({ }^{242}\) \\ 1 FAUX \({ }^{243}\) \\ 9 FEDE.CAMPANA \({ }^{244}\) \\ 1 FEDEXDOOM \({ }^{245}\) \\ 1 Feithless \({ }^{246}\)
}
```

222 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EKRICYOTE
223 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EL_IMP
224 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ELECTRICE
225 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ELECTRO
226 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ELECTUS
227 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EMBRI
228 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ENCESIL
229 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ENOCHSDREAM
230 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ENSELIC
231 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ENTERA_VOSS
232 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EPICOR
233 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ERIKBONGERS
234 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ERUANTALON
235 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ESBEN
236 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EVANCARROLL
237 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EXO
238 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EYEONUS
239 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FALCONX1096
240 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FALKE
241 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FALSTAFF
242 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FANGIOTOPHIA
243 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FAUX
244 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FEDE.CAMPANA
245 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FEDEXDOOM
246 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FEITHLESS

```
```

3 Feureau ${ }^{247}$
5 Fezz ${ }^{248}$
4 Fidoda $^{249}$
2 Filaminae ${ }^{250}$
1 Firecentaur ${ }^{251}$
1 FishFace ${ }^{252}$
1 Fishpi ${ }^{253}$
1 Flavoice ${ }^{254}$
1 Frank ${ }^{255}$
1 Freakazo v2.1 $1^{256}$
2 Freis ${ }^{257}$
1 FriedChiliDog $1{ }^{258}$
2 Ftiercel ${ }^{259}$
9 Funky weasel ${ }^{260}$
6 Furrykef ${ }^{261}$
6 GaAndolf ${ }^{262}$
54 Gabio $^{263}$
5 Gairlochan ${ }^{264}$
3 Garmon Sutrix ${ }^{265}$
1 Gavinmusic ${ }^{266}$
9 GeForce3 ${ }^{267}$
1 Geekboy2000268
1 Geigerho ${ }^{269}$
2 GeniXPro ${ }^{270}$
10 Geocachernemesis ${ }^{271}$

```
```

247 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FEUREAU
248 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FEZZ
249 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FIDODA
250 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FILAMINAE
251 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FIRECENTAUR
252 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FISHFACE
253 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FISHPI
254 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FLAVOICE
255 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FRANK_H
256 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FREAKAZO_V2.1
257 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FREIS
258 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FRIEDCHILIDOGI
259 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FTIERCEL
260 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FUNKY_WEASEL
261 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FURRYKEF
262 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GAANDOLF
263 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GABIO
264 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GAIRLOCHAN
265 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GARMON_SUTRIX
266 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:GAVINMUSIC
267 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEFORCE3
268 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEEKBOY2000
269 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEIGERHO
270 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GENIXPRO
271 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEOCACHERNEMESIS

```

2 Geoff Plourde \({ }^{272}\)
1 GEORDIEMCBAIN \({ }^{273}\)
6 GERI \({ }^{274}\)
1 Ghiraddje 275
1 GiJs.PEEK \({ }^{276}\)
7 GILGAMESH007 \({ }^{277}\)
1 GIRDI \({ }^{278}\)
2 Goatofdeath \({ }^{279}\)
1 GoEland \(86^{280}\)
1 GONCALOPP \({ }^{281}\)
4 GreenBlobWiki \({ }^{282}\)
11 Greenbreen \({ }^{283}\)
12 GREGGREG \({ }^{284}\)
1 Grubham \({ }^{285}\)
2 Gumanoed \({ }^{286}\)
2 Gumba Gumba \({ }^{287}\)
1 GustavTheMushroom \({ }^{288}\)
2 HHBONES \({ }^{289}\)
1 HWV258 290
1 Habstinat \({ }^{291}\)
1 HADPHILD \({ }^{292}\)
7 Hagindaz \({ }^{293}\)
16 HALLEY \(^{294}\)
1 HAMMURDERER \({ }^{295}\)
1 HAppy2PESTER \({ }^{296}\)
```

272 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEOFF_PLOURDE
273 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEORDIEMCBAIN
274 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GERI
275 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GHIRADDJE
276 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GIJS.PEEK
277 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GILGAMESHOO
278 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GIRDI
279 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOATOFDEATH
280 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOELAND86
281 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GONCALOPP
282 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREENBLOBWIKI
283 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREENBREEN
284 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREGGREG
285 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRUBHAM
286 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUMANOED
287 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUMBA_GUMBA
288 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUSTAVTHEMUSHROOM
289 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HHBONES
290 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HWV258
291 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HABSTINAT
292 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HADPHILD
293 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAGINDAZ
294 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HALLEY
295 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAMMURDERER
296 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAPPY2PESTER

```
```

3 HARKIN }\mp@subsup{}{}{297
4 \mp@code { H A S H } { } ^ { 2 9 8 }
1 Hbrown 101299
2 HEINRICH5991300
1 HElderpC }\mp@subsup{}{}{301
1 HENDRIC }\mp@subsup{}{}{302
8 HENRYBISSONNETTE }\mp@subsup{}{}{303
17 HERByTHYME }30
2 HERraotic }\mp@subsup{}{}{305
3 HethrirBot }\mp@subsup{}{}{306
2 ~ H i p p O P O T A M U S E S ~ 3 0 7 ~
1 Hobo JoE }30
1 Hom SEPanta }\mp@subsup{}{}{309
2 ~ H o o ~ m a n ~ 3 1 0 ~
6 ~ H r a k a r o o ~ 3 1 1 ~
1 HXCAN}\mp@subsup{}{}{312
1 Hydriz}\mp@subsup{}{}{313
4 IAMInNOCENT }\mp@subsup{}{}{314
IAMSLITE }\mp@subsup{}{}{315
I IAMUNKNOWN }\mp@subsup{}{}{316
I IbID49}\mp@subsup{}{}{317
7CKY-WIKI }\mp@subsup{}{}{318
4 IDEASMAN42319
1 IGUIMARAESF}\mp@subsup{}{}{320
3 ILLUSIONIST }\mp@subsup{}{}{321

```
```

297 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HARKIN
298 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HASH
299 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HBROWN101
300 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HEINRICH5991
301 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HELDERPC
302 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HENDRIC
303 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HENRYBISSONNETTE
304 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERBYTHYME
305 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERRAOTIC
306 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HETHRIRBOT
307 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HIPPOPOTAMUSES
308 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HOBO_JOE
309 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HOM_SEPANTA
310 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HOO_MAN
311 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HRAKAROO
312 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HXCAN
313 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HYDRIZ
314 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IAMINNOCENT
315 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IAMSLITE
316 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IAMUNKNOWN
317 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IBID49
318 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ICKY-WIKI
319 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IDEASMAN42
320 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IGUIMARAESF
321 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ILLUSIONIST

```
7 ILUVBLENDER \({ }^{322}\)
2 ImAGINATIONAC \({ }^{323}\)
InDIA \(103{ }^{324}\)1 Inductiveload \({ }^{325}\)
1 INITYX \({ }^{326}\)
4 InQuisitor KaOZ \({ }^{327}\)
1 Intuitas \({ }^{328}\)
1 InVENTOR \({ }^{329}\)
10 IQANDREAS \({ }^{330}\)
11 IRAKRAKOW \({ }^{331}\)
1 IRONICABY 332
1 ITINERANTTRADER 333
1 ITISMIKE \({ }^{334}\)
5 IVUCICA \({ }^{335}\)
2 J36miles \({ }^{336}\)
1 JCRAWFORD \({ }^{337}\)
1 JHEATHE \({ }^{338}\)
4 JRTHRO \({ }^{339}\)
1 JacKDuRdEn \({ }^{340}\)
\(2 \mathrm{JACCOG}^{341}\)
27 JACKECHAN \({ }^{342}\)
1 JACKRED \({ }^{343}\)
1 JAKE SCORDATO \({ }^{344}\)
3 JAKE.LEWIS4 \({ }^{345}\)
2 JAMES.DENHOLM \({ }^{346}\)
322 http://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ILUVBLENDER

323 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IMAGINATIONAC

324 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INDIA103

325 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INDUCTIVELOAD

326 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INITYX

327 htip://En.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:INQUISITOR_KAOZ

328 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INTUITAS

329 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INVENTOR

330 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IQANDREAS

331 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IRAKRAKOW

332 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IRONICABY

333 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ITINERANTTRADER

334 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ITISMIKE

335 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IVUCICA

336 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:J36MILES

337 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JCRAWFORD

338 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JHEATHE

339 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JRTHRO

340 htte://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JACKDURDEN

341 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JACCOG

342 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JACKECHAN

343 hTtP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JACKRED

344 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAKE_SCORDATO

345 htte://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAKE.LEWIS 4

346 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMES.DENHOLM
```

1 JAMESCROOK }\mp@subsup{}{}{347
65 JAMESNZ }\mp@subsup{}{}{348
7 JAMESSNELL }\mp@subsup{}{}{349
J JAMIN3D 350
J JAVAC }\mp@subsup{}{}{351
| JAWBOOT }\mp@subsup{}{}{352
1 JbALINT}\mp@subsup{}{}{353
JCLEE }35
2 JENSENNS }\mp@subsup{}{}{355
JEREMYA }\mp@subsup{}{}{356
1 JEROMEROBERT }\mp@subsup{}{}{357
1 JESSEMERRIMAN }35
1 JFIREBALL66 }\mp@subsup{}{}{359
1 JFMANTIS }\mp@subsup{}{}{360
70 JGUK}\mp@subsup{}{}{361
1 JIBRIL }\mp@subsup{}{}{362
| JIMRESTER }\mp@subsup{}{}{363
1 JLEEDEV }\mp@subsup{}{}{364
5 JMARTENS }\mp@subsup{}{}{365
JODA }\mp@subsup{}{}{366
4 Joe 042293367
1 JOEBLENDS }\mp@subsup{}{}{368
JOELGODIN }\mp@subsup{}{}{369
JOGAI }\mp@subsup{}{}{370
JOHN NAGLE }\mp@subsup{}{}{371

```
```

347 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMESCROOK
348 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMESNZ
349 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMESSNELL
350 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMIN3D
351 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAVAC
352 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAWBOOT
353 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JBALINT
354 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JCLEE
355 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JENSENNS
356 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JEREMYA
357 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JEROMEROBERT
358 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JESSEMERRIMAN
359 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JFIREBALL66
360 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JFMANTIS
361 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JGUK
362 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JIBRIL
363 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JIMRESTER
364 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JLEEDEV
365 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JMARTENS
366 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JODA
367 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOE_042293
368 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOEBLENDS
369 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOELGODIN
370 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOGAI
371 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHN_NAGLE

```
```

    2 JOHN.DELANNOY 372
    1 JOHNDB }\mp@subsup{}{}{373
    3 JOHNO }\mp@subsup{}{}{374
    1 JOHNSTARBIRD }\mp@subsup{}{}{375
    J JOLLYROGER }\mp@subsup{}{}{376
    45 JOMEGAT }\mp@subsup{}{}{377
2 JONCOMP12378
I JONNO333379
19 JONON }\mp@subsup{}{}{380
1 JORGE MORAIS }\mp@subsup{}{}{381
4 JoSE DA VINCI }\mp@subsup{}{}{382
JOSELLIS }\mp@subsup{}{}{383
15 JOYSTICK GAME }\mp@subsup{}{}{384
1 JSBROWNDOG }\mp@subsup{}{}{385
1 JSHADIAS }\mp@subsup{}{}{386
1 JTONTI }\mp@subsup{}{}{387
2 JuBlENDER }\mp@subsup{}{}{388
2 Justin6300389
1 JYRIL }\mp@subsup{}{}{390
1 KaIRyU }\mp@subsup{}{}{391
1 KAKURADY }\mp@subsup{}{}{392
4 KAYAU }\mp@subsup{}{}{393
3 KdJERDON }\mp@subsup{}{}{394
14 KEKIE1 }39
8 KENKAKU }39

```
```

372 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHN.DELANNOY
373 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHNDB
374 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHNO
375 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHNSTARBIRD
376 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOLLYROGER
377 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOMEGAT
378 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JONCOMP12
379 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JONNO333
380 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JONON
381 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JORGE_MORAIS
382 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOSE_DA_VINCI
383 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOSELLIS
384 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOYSTICK_GAME
385 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JSBROWNDOG
386 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JSHADIAS
387 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JTONTI
388 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JUBLENDER
389 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JUSTIN6300
390 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JYRIL
391 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KAIRYU
392 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KAKURADY
393 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KAYAU
394 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KDJERDON
395 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KEKIE1
396 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KENKAKU

```
```

2 KentTong }\mp@subsup{}{}{397
5 KERINA YIN}\mp@subsup{}{}{398
1 Kernigh }\mp@subsup{}{}{399
4 Kesten }\mp@subsup{}{}{400
5 \mp@code { K H A N ~ } { } ^ { 4 0 1 }
4 \mp@code { K h o n o ~ } { } ^ { 4 0 2 }
1 KIERAN}\mp@subsup{}{}{403
4 KindELLER }\mp@subsup{}{}{404
9 ~ K i r o n A ~ 4 0 5 ~
6 \mp@code { K i s u b o } { } ^ { 4 0 6 }
14 KlOGE }\mp@subsup{}{}{407
2 Knight13408
1 Kok }\mp@subsup{}{}{409
3 Koltonaugust }\mp@subsup{}{}{410
1 Krand }\mp@subsup{}{}{411
1 KrismaniA }\mp@subsup{}{}{412
2 Ktbluear }\mp@subsup{}{}{413
3 Kylstoman }\mp@subsup{}{}{414
2 LALEENA }\mp@subsup{}{}{415
L LAMBDA (USURPED)416
1 LAPINBLEU417
3 0 ~ L A Z Y - L U M P ~ 4 1 8 ~
275 LDO}\mp@subsup{}{}{419
\ LEBIGOT }\mp@subsup{}{}{420
3 LECHTITSEB }\mp@subsup{}{}{421

```
```

397 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KENTTONG
398 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KERINA_YIN
399 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KERNIGH
400 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KESTEN
401 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KHAN
402 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KHONO
403 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KIERAN
404 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KINDELLER
405 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KIRONA
406 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KISUBO
407 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KLOGE
408 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KNIGHT13
409 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KOK
410 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KOLTONAUGUST
411 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KRAND
412 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KRISMANIA
413 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KTBLUEAR
414 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KYLSTOMAN
415 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LALEENA
416 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LAMBDA_(USURPED)
417 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LAPINBLEU
418 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LAZY-LUMP
419 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LDO
420 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEBIGOT
421 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LECHTITSEB

```

\author{
23 LEE CARRE \({ }^{422}\) \\ 12 LeftClicker \({ }^{423}\) \\ 1 LEINAD13 \(3^{424}\) \\ 1 LethalReflex \({ }^{425}\) \\ 1 Lethargo \({ }^{426}\) \\ 1 Levis501 \(1^{427}\) \\ 5 LIONELB \({ }^{428}\) \\ 12 LIRTFERK \({ }^{429}\) \\ 41 LOKICLOCK \({ }^{430}\) \\ 1 Lokimaros \({ }^{431}\) \\ 4 LONGSWORD \({ }^{432}\) \\ 11 Looterguf \({ }^{433}\) \\ LOPLIN \({ }^{434}\) \\ 6 LORDOFER \({ }^{435}\) \\ 4 LORDELPH \({ }^{436}\) \\ 1 LORDMYTH \({ }^{437}\) \\ 2 LORDSCALES91438 \\ 1 LORHC \({ }^{439}\) \\ 1 Lowbot0 \({ }^{440}\) \\ 1 Lsmoura \({ }^{441}\) \\ 1 LUCKOFBUCK \({ }^{442}\) \\ 1 LUKE321321443 \\ 1 LXXXV \(^{444}\) \\ 1 LYNX7725445 \\ 1 M.NIESSEN \({ }^{446}\)
}
```

422 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEE_CARRE
423 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEFTCLICKER
424 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEINAD13
425 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LETHALREFLEX
426 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LETHARGO
427 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEVIS501
428 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LIONELB
429 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LIRTFERK
430 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LOKICLOCK
431 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LOKIMAROS
432 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LONGSWORD
433 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LOOTERGUF
434 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LOPLIN
435 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LORDOFER
436 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LORDELPH
437 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LORDMYTH
438 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LORDSCALES 91
439 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LORHC
440 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LOWBOTO
441 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LSMOURA
442 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LUCKOFBUCK
443 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LUKE321321
444 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LXXXV
445 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LYNX7725
446 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:M.NIEßEN

```
```

    1 MC10447
    12 MSK61448
7 MA5ABRE { } ^ { 4 4 9 }
2 \mp@code { M a c P e p e ~ } { } ^ { 4 5 0 }
4 ~ M A C P H Y L E ~ * 5 1 ~
1 MACH1723452
1 3 MADCELLO { } ^ { 4 5 3 }
1 MAEBE }\mp@subsup{}{}{454
1 MAJKo02455
25 MALAZ }\mp@subsup{}{}{456
2 MALVINEOUS }\mp@subsup{}{}{457
1 MANX61458
1 MARCo Guardigli }\mp@subsup{}{}{459
2 MARINALAN}\mp@subsup{}{}{460
1 MARKLORENWILSON }\mp@subsup{}{}{461
2 MARKM}\mp@subsup{}{}{462
3 MARKHARPER80463
1 MARr Gilb }\mp@subsup{}{}{464
1 Marty ONE 465
15 MASt3RLINKX }\mp@subsup{}{}{466
1 Mats Halldin }\mp@subsup{}{}{467
5 \mp@code { M a t t ~ H o w a r d ~ } { } ^ { 4 6 8 }
1 Matt Pellegrini469
1 Mattb 112885470
1 Matthewr 100471

```
```

447 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MC10
448 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSK61
449 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MA5ABRE
450 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MACPEPE
H1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MACPHYLE
452 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MACH1723
453 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MADCELLO
454 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAEBE
455 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAJKO02
456 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MALAZ
457 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:MALVINEOUS
458 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MANX61
459 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARCO_GUARDIGLI
460 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARINALAN
461 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARKLORENWILSON
462 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARKM
463 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARKHARPER80
464 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARR_GILB
465 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARTY_ONE
466 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAST3RLINKX
467 HTTP://EN.wIKIbOOKS.ORG/w/indEX.PHP?TITLE=USER:MATS_HALLDIN
468 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:MATt_HoWARD
469 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATT_PELLEGRINI
470 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTB112885
471 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTHEWR100

```
```

    1 Matthewrbowker }\mp@subsup{}{}{472
    3 Mattiasl }\mp@subsup{}{}{473
    1 MAVERIC149474
    1 Mavery 1475
    16 MDD4696476
6 MECALITH }\mp@subsup{}{}{477
MechaBlue }47
3 MEgAloman }\mp@subsup{}{}{479
1 MEmiles }\mp@subsup{}{}{480
9 MERCATOR }\mp@subsup{}{}{481
6 \mp@code { M E R R I L L E E ~ } { } ^ { 4 8 2 }
1 Metahop }\mp@subsup{}{}{483
MFOXDOGG }\mp@subsup{}{}{484
2 \mp@code { M G J V ~ 4 8 5 }
4 MHORAM}\mp@subsup{}{}{486
1 Michael Coupland}48
1 MichaElFrey }\mp@subsup{}{}{488
2 MichaElNELSON }\mp@subsup{}{}{489
17 MichaElsobers }\mp@subsup{}{}{490
1 MiCHAELX153491
1 MiCO492
2 MidnightLIGHTNING }\mp@subsup{}{}{493
3 MigA }\mp@subsup{}{}{494
1 MiIKa22495
1 MIKAHL}\mp@subsup{}{}{496

```
472 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTHEWRBOWKER
473 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTIASL
474 hTtP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAVERIC149
475 hTtP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAVERY1
476 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MDD4696
477 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MECALITH
478 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MECHABLUE
479 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MEGALOMAN
480 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MEMILES
481 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MERCATOR
482 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MERRILLEE
483 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:METAHOP
484 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MFOXDOGG
485 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MGJV
486 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MHORAM
487 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAEL_COUPLAND
488 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAELFREY
489 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAELNELSON
490 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAELSOBERS
491 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAELX153
492 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICO
493 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIDNIGHTLIGHTNING
494 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIGA
495 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIIKA22
496 hTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKAHL
```

28 Mike.LIFEGUARD ${ }^{497}$
3 Mikeg8R ${ }^{498}$
1 Miken700499
1 Mikenube ${ }^{500}$
2 Mikerancourt ${ }^{501}$
4 Mikespedia ${ }^{502}$
1 Milahu ${ }^{503}$
7 Milky ${ }^{504}$
7 MimOOH ${ }^{505}$
1 Mindbulletmatrix ${ }^{506}$
4 MiYaZaki ${ }^{507}$
9 Mochimo ${ }^{508}$
1 MOHAX ${ }^{509}$
50 MOOHASHA ${ }^{510}$
9 Moreejt ${ }^{511}$
13 Morerunes ${ }^{512}$
16 Morrolan ${ }^{513}$
1 Mortennobel ${ }^{514}$
1 Mosquito ${ }^{515}$
1 Mouse among men ${ }^{516}$
1 Mouse is BACK ${ }^{517}$
2 Mouzi ${ }^{518}$
$1 \mathrm{Mr} \mathrm{ME}^{519}$
3 Mr Speaker ${ }^{520}$
11 Mrfelis ${ }^{521}$

```
```

497 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKE.LIFEGUARD
498 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKEG8R
499 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKEN700
500 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKENUBE
501 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKERANCOURT
502 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKESPEDIA
503 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MILAHU
504 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MILKY
505 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIMOOH
506 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MINDBULLETMATRIX
507 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIYAZAKI
508 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOCHIMO
509 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOHAX
510 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOOHASHA
511 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOREEJT
512 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MORERUNES
513 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MORROLAN
514 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MORTENNOBEL
515 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOSQUITO
516 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOUSE_AMONG_MEN
517 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOUSE_IS_BACK
518 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOUZI
519 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MR_ME
520 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MR_SPEAKER
521 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MRFELIS

```
```

    2 MrmagEE2759522
    1 MRWILLEY }\mp@subsup{}{}{523
    16 MSTRAM}\mp@subsup{}{}{524
    1 MSVBDEV }\mp@subsup{}{}{525
    1 3 ~ M T J l T ~ 5 2 6 ~
2 \mp@code { M u d p u d D L E ~ } { } ^ { 5 2 7 }
3 Muimi }\mp@subsup{}{}{528
1 MXN }\mp@subsup{}{}{529
1 MYstictim }\mp@subsup{}{}{530
104 N COMME NUL 531
NO0B HENRY532
2 NODJKQR }53
1 NANKI }\mp@subsup{}{}{54
N4 NANOBUG }\mp@subsup{}{}{535
1 NANODEATH}\mp@subsup{}{}{536
2 NATHANSTOCKS }\mp@subsup{}{}{537
2 NEILWIGHTMAN }\mp@subsup{}{}{538
N NEKO18539
1 NEOPTOLEMUS }\mp@subsup{}{}{540
3 NERDRABIDMONKEY }\mp@subsup{}{}{541
1 NESSUP}\mp@subsup{}{}{542
3 Neurotic}\mp@subsup{}{}{543
2 NEVERbirth 544
NEWbIE }\mp@subsup{}{}{545
2 \mp@code { N E W B I E N M I S S ~ } { } ^ { 5 4 6 }

```
```

522 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MRMAGEE2759
523 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MRWILLEY
524 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSTRAM
525 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSVBDEV
526 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MTJLT
527 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MUDPUDDLE
528 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MUIMI
529 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MXN
530 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MYSTICTIM
531 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:N_COMME_NUL
532 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NOOB_HENRY
533 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NODJKQR
534 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NANKI
535 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NANOBUG
536 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NANODEATH
537 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NATHANSTOCKS
538 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEILWIGHTMAN
539 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEKO18
540 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEOPTOLEMUS
541 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NERDRABIDMONKEY
542 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NESSUP
543 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEUROTIC
544 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEVERBIRTH
545 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEWBIE
546 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEWBIENMISS

```
1 Nick Chang207،547
12 Nick.andereg \({ }^{548}\)
1 NiCOLADIE \({ }^{549}\)
1 Nielmo \({ }^{550}\)
1 Niks \(1024^{551}\)
1 NinJaSARU \({ }^{552}\)
1 NitishP \({ }^{553}\)
1 Nk.WARREN77554
17 NKANSAHREXFORD \({ }^{555}\)
1 Noob Sks DK \({ }^{556}\)
4 Norleaf \({ }^{557}\)
2 Nowic \({ }^{558}\)
1 NuclearWarfare \({ }^{559}\)
7 Nuclearpidgeon \({ }^{560}\)
42 Null Point \({ }^{561}\)
3 NULLPTR \({ }^{562}\)
3 OASIAC \({ }^{563}\)
2 Obiesel \({ }^{564}\)
11 Octava \({ }^{565}\)
5 Odalcet \({ }^{566}\)
5 Odie5533 \({ }^{567}\)
1 OK \({ }^{568}\)
1 OMNIGEEK6569
2 Opa God \({ }^{570}\)
12 Oracleoftruth \({ }^{571}\)
```

547 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NICK_CHANG207`
548 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NICK.ANDEREGG
549 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NICOLADIE
550 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NIELMO
551 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NIKS1024
552 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NINJASARU
553 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NITISHP
554 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NK.WARREN77
555 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NKANSAHREXFORD
556 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NOOB_SKS_DK
557 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NORLEAF
558 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NOWIC
559 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NUCLEARWARFARE
560 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NUCLEARPIDGEON
561 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NULL_POINT
562 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NULLPTR
563 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OASIAC
564 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OBIESEL
565 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OCTAVA
566 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ODALCET
567 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ODIE5533
568 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OK
569 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OMNIGEEK6
570 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OPA_GOD
571 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORACLEOFTRUTH

```
\begin{tabular}{rl}
12 & ORBISONITRUM \(^{572}\) \\
2 & ORDIGDUG \(^{573}\) \\
10 & ORFO \(^{574}\) \\
3 & ORINDLINCOLN \(^{575}\) \\
1 & OSHAYLINUX \(^{576}\) \\
1 & OSXRULES \(^{577}\) \\
5 & OTHMANSKN \(^{578}\) \\
18 & OTHMANSKN2 \(^{579}\) \\
4 & OUTBACKSAM34 \(^{580}\) \\
1 & OWNTHOR \(^{581}\) \\
1 & OZGRIN \(^{582}\) \\
1 & PKHG \(^{583}\) \\
4 & POPZ \(^{584}\) \\
3 & PAMTANGO \(^{585}\) \\
18 & PANIC2K4 \(^{586}\) \\
2 & PAPERCLIP \(^{587}\) \\
15 & PARALLAXTZ \(^{588}\) \\
2 & PARTIERSP \(^{589}\) \\
4 & PATROLBOAT \(^{590}\) \\
10 & PAULJC \(^{591}\) \\
1 & PAVROO \(^{592}\) \\
611 & PEARTS \(^{593}\) \\
11 & PEDRO FONINI \(^{594}\) \\
2 & PENGO \(^{595}\) \\
1 & PETARIOT \(^{596}\) \\
\end{tabular}

\footnotetext{
572 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORBISONITRUM 573 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORDIGDUG
574 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORFO
575 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORINDLINCOLN
576 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OSHAYLINUX
577 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OSXRULES
578 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OTHMANSKN
579 httP://En.WIKIBOOKS.ORG/w/INDEX.PhP?TITLE=USER:OthmANSKN2
580 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OUTBACKSAM34
581 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OWNTHOR
582 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OZGRIN
583 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PKHG
584 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POPZ
585 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PAMTANGO
586 hTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC 2 K 4
587 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PAPERCLIP
588 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PARALLAXTZ
589 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PARTIERSP
590 htte://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PATROLBOAT
591 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PAULJC
592 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PAVROO
593 htte://En.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PEARTS
594 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PEDRO_FONINI
595 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PENGO
596 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PETARIOT
}
```

1 Pete XP }\mp@subsup{}{}{597
P Peteturtle }\mp@subsup{}{}{598
1 PhaEdriEl the VandaL }59
1 PhilipmAC}\mp@subsup{}{}{600
3 PhilippWEISSENBACHER }\mp@subsup{}{}{601
3 Phonuz602
1 PhysicsDUDE }\mp@subsup{}{}{603
4 Pignol23}\mp@subsup{}{}{604
1 PIKPuS }\mp@subsup{}{}{605
1 Pinkmouse}\mp@subsup{}{}{606
1 Pinzo607
2 PixEl Eater }\mp@subsup{}{}{608
1 PIXElStuFF}\mp@subsup{}{}{609
1 PlASMASPHERE }\mp@subsup{}{}{610
1 Polluks }\mp@subsup{}{}{611
1 Pootworm }\mp@subsup{}{}{612
137 POPSKI }\mp@subsup{}{}{613
3 Porlando6}\mp@subsup{}{}{614
2 PowuaTEAM}\mp@subsup{}{}{615
2 PQuijal }\mp@subsup{}{}{616
1 Prilt K. }\mp@subsup{}{}{617
2 ~ P r o f e s s i O N A L ~ N O O B ~ 6 1 8 ~
ProfoX }\mp@subsup{}{}{619
1 PrydAIN55620
4 PSYCHOGEARS }\mp@subsup{}{}{621

```
```

597 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PETE_XP
598 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?tITLE=USER:PETETURTLE
599 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHAEDRIEL_THE_VANDAL
600 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHILIPMAC
601 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHILIPPWEISSENBACHER
602 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHONUZ
603 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHYSICSDUDE
604 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIGNOL23
605 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIKPUS
606 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PINKMOUSE
607 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PINZO
608 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIXEL_EATER
609 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIXELSTUFF
610 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PLASMASPHERE
611 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POLLUKS
612 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POOTWORM
613 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POPSKI
614 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PORLANDO
615 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POWUATEAM
616 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PQUIJAL
617 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PRIIT_K.
618 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PROFESSIONAL_NOOB
619 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PROFOX
620 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PRYDAIN55
621 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PSYCHOGEARS

```

\author{
4 PWD \({ }^{622}\) \\ 1 Pyro Guy \({ }^{623}\) \\ 18 QRC \(^{624}\) \\ 3 QUANTUFINITY@ GMAIL.COM \({ }^{625}\) \\ 184 QUANTUM ANOMALY \({ }^{626}\) \\ 1 Quibik \({ }^{627}\) \\ 27 QUITEUNUSUAL \({ }^{628}\) \\ 1 QWERTYZZZ18629 \\ 2 RVRGEEK \({ }^{630}\) \\ 2 RABENSCHWINGE \({ }^{631}\) \\ 51 Radialronnie \({ }^{632}\) \\ 2 RadiAT-R \({ }^{633}\) \\ 1 RADLY \(^{634}\) \\ 1 RAICUANDI \({ }^{635}\) \\ 1 RAJESHJA \({ }^{636}\) \\ 11 RAMAC \({ }^{637}\) \\ 3 Randolf Richardson \({ }^{638}\) \\ 2 RANDOM9Q \({ }^{639}\) \\ 11 RAVENWHITEHAWK \({ }^{640}\) \\ 1 Ravichandar \(84{ }^{641}\) \\ 1 RAYMONDSUTANTO \({ }^{642}\) \\ 2 RCT36 \({ }^{643}\) \\ \(14 \mathrm{RDP}^{644}\) \\ 1 REKAST \({ }^{645}\) \\ 1 REA00CY \({ }^{646}\)
}
```

622 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PWD
623 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PYRO_GUY
624 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QRC
625 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUANTUFINITY%40GMAIL.COM
626 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUANTUM_ANOMALY
627 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUIBIK
628 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUITEUNUSUAL
629 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QWERTYZZZ18
630 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RVRGEEK
631 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RABENSCHWINGE
632 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RADIALRONNIE
633 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RADIAT-R
634 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RADLY
635 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAICUANDI
636 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAJESHJA
637 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAMAC
638 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RANDOLF_RICHARDSON
639 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RANDOM9Q
640 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVENWHITEHAWK
641 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVICHANDAR84
642 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAYMONDSUTANTO
643 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RCT36
644 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RDP
645 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REKAST
646 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REAOOCY

```
```

1 REALDEALMAGIC}\mp@subsup{}{}{647
1 REBOL}\mp@subsup{}{}{648
1 Recall }\mp@subsup{}{}{649

```

```

1 RED4TRIBE }\mp@subsup{}{}{651
3 REDCONFETTI }\mp@subsup{}{}{652
12 REDDOGZIP}\mp@subsup{}{}{653
2 REDYOSHI49QQ54
REECE }65
2 REILITHION }\mp@subsup{}{}{656
1 REJIQUAR}\mp@subsup{}{}{657
3 ReKOV}\mp@subsup{}{}{658
2 REMI }\mp@subsup{}{}{659
1 REMIOO}\mp@subsup{}{}{660
8 REPTILES EXTINTOS }\mp@subsup{}{}{661

```

```

3 REVERZENTATIVE }66
1 RgRIFFOGOES }\mp@subsup{}{}{664
2 RHEINHARDT2665
2 RHETTRo}\mp@subsup{}{}{666
2 RICHARD 27667
R RJH009668
1 RlTROMBLE }66
22 Rм5248670
1 RobFOX70671

```
```

647 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REALDEALMAGIC
648 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REBOL
649 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECALL
650 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECENT_RUNES
651 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RED4TRIBE
652 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REDCONFETTI
653 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REDDOGZIP
654 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REDYOSHI49Q
655 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REECE
656 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REILITHION
657 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REJIQUAR
658 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REKOV
659 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REMI
660 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REMIOO
661 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REPTILES_EXTINTOS
662 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RESUL4E
663 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REVERZENTATIVE
664 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RGRIFFOGOES
665 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RHEINHARDT2
666 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RHETTRO
667 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RICHARD_27
668 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RJH009
669 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RLTROMBLE
670 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RM5248
671 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROBFOX70

```
\begin{tabular}{rl}
1 & ROBSBOTS \(^{672}\) \\
1 & ROBSTERBERTLING \(^{673}\) \\
1 & ROGERWICKES \(^{674}\) \\
2 & ROLI \(^{675}\) \\
29 & ROMAINBEHAR \(^{676}\) \\
8 & ROOT \(^{677}\) \\
75 & ROSVER \(^{678}\) \\
1 & ROXORZ42 \(^{679}\) \\
11 & RPYLE731 \(^{680}\) \\
1 & RRREUTEL \(^{681}\) \\
2 & RUKARU \(^{682}\) \\
1 & RUVYEN \(^{683}\) \\
5 & RWST \(^{684}\) \\
3 & RYLZ \(^{685}\) \\
1 & SBJOHNNY \(^{686}\) \\
8 & SETH HIKARU \(^{687}\) \\
1 & SK123R \(^{688}\) \\
2 & SAMNSPARKY \(^{689}\) \\
1 & SANDALLE \(^{690}\) \\
1 & SANDOTHEGRATE \(^{691}\) \\
5 & SANDSMERTZ \(^{692}\) \\
4 & SAPALSKIMICHAL \(^{693}\) \\
7 & SATANCLAUS \(^{694}\) \\
1 & SATRIBE101 \(^{695}\) \\
1 & SAVAGE BEEF \(^{696}\) \\
&
\end{tabular}
```

672 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROBSBOTS
673 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:ROBSTERBERTLING
674 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROGERWICKES
675 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROLI
676 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROMAINBEHAR
677 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROOT
678 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROSVER
679 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROXORZ42
680 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RPYLE731
681 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RRREUTEL
682 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RUKARU
683 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RUVYEN
684 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RWST
685 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RYLZ
686 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SBJOHNNY
687 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SETH_HIKARU
688 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SK123R
689 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAMNSPARKY
690 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SANDALLE
691 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SANDOTHEGRATE
692 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SANDSMERTZ
693 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAPALSKIMICHAL
694 htTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:SATANCLAUS
695 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SATRIBE101
696 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAVAGE_BEEF

```
\begin{tabular}{rl}
8 & SAYSAKNOW \(^{697}\) \\
2 & SCAR \(^{698}\) \\
4 & SCARODJ \(^{699}\) \\
32 & SCHMS \(^{700}\) \\
1 & SCHULTZ.RYAN \(^{701}\) \\
1 & SCKOOBS \(^{702}\) \\
1 & SCOTTPLEDGER \(^{703}\) \\
1 & SEAN.FLYNN \(^{704}\) \\
3 & SELFHIDING \(^{705}\) \\
1 & SELKOVJR \(^{706}\) \\
4 & SENDOSHIN \(^{707}\) \\
1 & SEPHLAIRE \(^{708}\) \\
55 & SERGEANTOREO \(^{709}\) \\
8 & SESTINA \(^{710}\) \\
2 & SESU PRIME \(^{711}\) \\
2 & SEVCSIK \(^{712}\) \\
3 & SHADOCRYTR \(^{713}\) \\
1 & SHADOWIMMAGE \(^{714}\) \\
1 & SHELLRIE \(^{715}\) \\
1 & SHERIDAN \(^{716}\) \\
2 & SHINJIN \(^{717}\) \\
7 & SHINMOOS \(^{718}\) \\
12 & SHINYDARKRAI94 \(^{719}\) \\
2 & SHOKUKU \(^{720}\) \\
39 & SHYTHINKER \(^{721}\) \\
\hline
\end{tabular}

\footnotetext{
697 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAYSAKNOW
698 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCAR
699 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCARODJ
700 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCHMS
701 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCHULTZ.RYAN
702 httP://En.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCKOOBS
703 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCOTTPLEDGER
704 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SEAN.FLYNN
705 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SELFHIDING
706 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SELKOVJR
707 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SENDOSHIN
708 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SEPHLAIRE
709 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SERGEANTOREO
710 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SESTINA
711 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SESU_PRIME
712 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SEVCSIK
713 hTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHADOCRYTR
714 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHADOWIMMAGE
715 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHELLRIE
716 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHERIDAN
717 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHINJIN
718 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHINMOOS
719 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHINYDARKRAI94
720 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHOKUKU
721 httP://En.WIKIBOOKS.ORG/W/INDEX.PhP?TITLE=USER:SHYTHINKER
}
\begin{tabular}{|c|c|}
\hline 2 & Siesta \({ }^{722}\) \\
\hline 2 & SigGimund \({ }^{723}\) \\
\hline 8 & Sigma \(7^{724}\) \\
\hline 1 & Simeon \({ }^{725}\) \\
\hline 1 & Simon W \({ }^{726}\) \\
\hline 1 & Sinistra D32 \({ }^{727}\) \\
\hline 4 & SixFt \(122^{728}\) \\
\hline 1 & SJc \({ }^{729}\) \\
\hline 1 & Skaruts \({ }^{730}\) \\
\hline 1 & Skatanist \({ }^{731}\) \\
\hline 3 & Skeep \({ }^{732}\) \\
\hline 2 & Sketlover \({ }^{733}\) \\
\hline 1 & Skirrid \({ }^{734}\) \\
\hline 4 & SLady \({ }^{735}\) \\
\hline 6 & SLashme \({ }^{736}\) \\
\hline 11 & Slayerjp \({ }^{737}\) \\
\hline 1 & Sledz41 \({ }^{738}\) \\
\hline 1 & SLush 15 Player \({ }^{739}\) \\
\hline 1 & SmileyCactus \({ }^{740}\) \\
\hline 2 & Snarius \({ }^{741}\) \\
\hline 2 & Socratesone \({ }^{742}\) \\
\hline 44 & Soeb \({ }^{743}\) \\
\hline 2 & Someguywithnothingtodo \({ }^{744}\) \\
\hline 1 & Sonic4Spuds \({ }^{745}\) \\
\hline 2 & Soriyath \({ }^{76}\) \\
\hline
\end{tabular}

\footnotetext{
722 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIESTA
723 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIGGIMUND
724 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIGMA_7
725 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIMEON
726 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIMON_W
727 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SINISTRA_D32
728 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIXFT12
729 нTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SJC
730 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SKARUTS
731 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SKATANIST
732 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SKEEP
733 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SKETLOVER
734 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SKIRRID
735 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SLADY
736 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SLASHME
737 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SLAYERJP
738 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SLEDZ41
739 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SLUSH15PLAYER
740 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SMILEYCACTUS
741 hTtP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SNARIUS
742 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SOCRATESONE
743 htte://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SOEB
744 http://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SOMEGUYWITHNOTHINGTODO
745 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SONIC4SPUDS
746 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SORIYATH
}
146 SOYLENTGREEN \({ }^{747}\)
12 Soylentgreen \({ }^{748}\)
2 Spartacus3d \({ }^{749}\)
10 Spellmaker \({ }^{750}\)
451 SPIDERWORM \({ }^{751}\)
3 Spiffyandy \({ }^{752}\)
4 Spongebob88 \({ }^{753}\)
3 SQuAREMO \({ }^{754}\)
14 STALEPANDA \({ }^{755}\)
1 Stefantalpalaru \({ }^{756}\)
938 STEPHENG3 \({ }^{75}\)
4 STERRE \({ }^{758}\)
2 Stormy \({ }^{759}\)
1 SumOfwHoly \({ }^{760}\)
15 Sumoncil \({ }^{761}\)
1 Sunny256 \({ }^{762}\)
1 Super Dave \({ }^{763}\)
5 SUPER3BOY \({ }^{764}\)
1 SWAP I \({ }^{765}\)
3 SWIFT \(^{766}\)
2 T.C.FIRE \({ }^{767}\)
27 TBOL3 \({ }^{768}\)
3 TAL500 \({ }^{769}\)
56 TANNERSF \({ }^{770}\)
2 TAROT \(^{771}\)

\footnotetext{
747 htte://En.wIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SOYLENTGREEN
748 htip://En.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SOYLENTGREEN
749 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPARTACUS3D
750 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPELLMAKER
751 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPIDERWORM
752 http://En.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPIFFYANDY
753 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPONGEBOB88
754 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SQUAREMO
755 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STALEPANDA
756 http://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STEFANTALPALARU
757 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STEPHENG3
758 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STERRE
759 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STORMY
760 httP://En.wIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:SUMOFWHOLY
761 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUMONCIL
762 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUNNY256
763 hTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUPER_DAVE
764 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUPER3BOY
765 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SWAP_I
766 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SWIFT
767 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:T.C.FIRE
768 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TBOL3
769 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAL500
770 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TANNERSF
771 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAROT
}
```

    2 TAYE }77
    2 TAYEWIKI773
    2 TDunn7 }\mp@subsup{}{}{774
    12 TEDDYGAGE }77
4 TEDESSON }\mp@subsup{}{}{776
1 TEDKA }\mp@subsup{}{}{777
1 TELMER6}\mp@subsup{6}{}{778
2 TERRYWALLWORK}77
1 ThangALIN}\mp@subsup{}{}{780
1 That.1.GUY }\mp@subsup{}{}{781
1 The ENEmIES OF GOD }\mp@subsup{}{}{782
10 THENUB314}\mp@subsup{}{}{783
THESANDLORD }\mp@subsup{}{}{784
1 THESPEEDYLIFE }\mp@subsup{}{}{785
1 THETEACH}\mp@subsup{}{}{786
2 ThinKInGMAN }\mp@subsup{}{}{787
2 ThOMASB }\mp@subsup{}{}{788
7 THOMASSHEPARD }\mp@subsup{}{}{789
11 ThomasTenCate }\mp@subsup{}{}{790
2 THORACK}\mp@subsup{}{}{791
2 ThriID\& }\mp@subsup{}{792}{
1 Thud }\mp@subsup{}{}{793
4 ThundER }\mp@subsup{}{}{794
2 Thzi }\mp@subsup{}{}{795
1 TiMOCH}\mp@subsup{}{}{796

```
```

772 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAYE
773 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAYEWIKI
774 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TDUNN7
775 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TEDDYGAGE
776 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TEDESSON
777 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TEDKA
778 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TELMER6
779 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TERRYWALLWORK
780 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THANGALIN
781 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THAT.1.GUY
782 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THE_ENEMIES_OF_GOD
783 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THENUB314
784 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THESANDLORD
785 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THESPEEDYLIFE
786 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THETEACH
787 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THINKINGMAN
788 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THOMASB
789 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THOMASSHEPARD
790 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THOMASTENCATE
791 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THORACK
792 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THRIIDæ
793 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THUD
794 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THUNDER
795 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THZI
796 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TIMOCH

```
```

Tictoon }\mp@subsup{}{}{797
2 TigerstickFigure }\mp@subsup{}{}{798
TimDumOL }\mp@subsup{}{}{799
9 Tjв0607800
1 TmANDRY }\mp@subsup{}{}{801
2 TMR232802
9 TOM SODERLUND }\mp@subsup{}{}{803
1 TOMMCIVER }\mp@subsup{}{}{804
1 TOMMY G003805
6 ~ T o s n i c ~ 8 0 6 ~
1 TotaLWRITER0331807
5 TOTOPHE64808
1 TPOWER }\mp@subsup{}{}{809
1 TrezEro }\mp@subsup{}{}{810
6 TRIDENT }\mp@subsup{}{}{811
1 TsDuv21812
3 TuALHA}\mp@subsup{}{}{813
84 Turtle Man }\mp@subsup{}{}{814
16 TwOFINGERSS15
12 TYAEDALIS}\mp@subsup{}{}{816
2 TybEE }\mp@subsup{}{}{817
2 TyRANT MONKEY }\mp@subsup{}{}{818
2 \mp@code { U b a i } { } ^ { 8 1 9 }
1 UNCLE G }\mp@subsup{}{}{820
2 \mp@code { U N K N O W N G U Y } { } ^ { 8 2 1 }

```
```

797 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TICTOON
798 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TIGERSTICKFIGURE
799 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TIMDUMOL
800 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TJB0607
801 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TMANDRY
802 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TMR232
803 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOM_SODERLUND
804 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOMMCIVER
805 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOMMY_G003
806 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOSNIC
807 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOTALWRITER0331
808 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOTOPHE64
809 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TPOWER
810 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TREZERO
811 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TRIDENT
812 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TSDUV21
813 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TUALHA
814 htTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:TURTLE_MAN
815 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TWOFINGERS
816 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TYAEDALIS
817 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TYBEE
818 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TYRANT_MONKEY
819 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UBAI
820 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UNCLE_G
821 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UNKNOWNGUY

```
```

    UsedHONDA }\mp@subsup{}{}{822
    2 VAAKMEISSTER }\mp@subsup{}{}{823
    1 VALDEMARASL}\mp@subsup{}{}{824
    VALID USER }\mp@subsup{}{}{825
    VAN DER HOORN }\mp@subsup{}{}{826
    VAPOR }\mp@subsup{}{}{827
    VAULT}\mp@subsup{}{}{828
    VAXINE19829
    VELOCIOSTRICH }\mp@subsup{}{}{830
    VENAR303}\mp@subsup{}{}{831
    VI3GAMEHKR }\mp@subsup{}{}{832
    VrabEC }\mp@subsup{}{}{833
    WAXIMO }\mp@subsup{}{}{834
    WEBAWARE }\mp@subsup{}{}{835
    WEEIX }\mp@subsup{}{}{836
    WEIRDHaT}\mp@subsup{}{}{837
    5 WESLEYJL }\mp@subsup{}{}{838
    1 WGoelkel }\mp@subsup{}{}{839
    1 WITR}\mp@subsup{}{}{840
    1 Wikibooks is Communism }\mp@subsup{}{}{841
    2 WIKIDIETER }\mp@subsup{}{}{842
    2 WILDERN }\mp@subsup{}{}{843
    1 WILLEMD }\mp@subsup{}{}{844
    1 WIMJONGMAN }\mp@subsup{}{}{845
    3 WINDSORSPRING}\mp@subsup{}{}{846
    ```
```

822 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:USEDHONDA
823 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAAKMEISSTER
824 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VALDEMARASL
825 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VALID_USER
826 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAN_DER_HOORN
827 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAPOR
828 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAULT
829 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAXINE19
830 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VELOCIOSTRICH
831 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VENAR303
832 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VI3GAMEHKR
833 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VRABEC
834 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WAXIMO
835 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEBAWARE
836 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEEIX
837 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEIRDHAT
838 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WESLEYJL
839 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WGOELKEL
840 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WITR
841 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIBOOKS_IS_COMMUNISM
842 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIDIETER
843 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILDERN
844 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILLEMD
845 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIMJONGMAN
846 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WINDSORSPRING

```
\begin{tabular}{rl}
11 & WINTERBOURNE \(^{847}\) \\
2 & WINTERS \(^{848}\) \\
18 & WITHALLIGATORS \(^{849}\) \\
6 & WITHINFOCUS \(^{850}\) \\
1 & WOLFEBAY \(^{851}\) \\
1 & WOLFPRINTFX \(^{852}\) \\
1 & WOLVENMOON \(^{853}\) \\
1 & WOODSJAY \(^{854}\) \\
3 & WOODSTOCKET \(^{855}\) \\
1 & WORM \(^{856}\) \\
1 & WWWWOLF \(^{857}\) \\
51 & WYNNMC \(^{858}\) \\
12 & XDRACONIAN \(^{859}\) \\
2 & XANDER \(^{88989} 9^{860}\) \\
15 & XANIA \(^{861}\) \\
1 & XEMKIS \(^{862} 2^{862}\) \\
2 & XEROL \(^{863}\) \\
1 & XIEPHOIRE \(^{864}\) \\
4 & XLINUXKDEX \(^{865}\) \\
2 & XWRITER \(^{866}\) \\
5 & YMS \(^{867}\) \\
2 & YASHNZ \(^{868}\) \\
2 & YES MAN \(^{869}\) \\
3 & YESPOX \(^{870}\) \\
13 & YESUTO \(^{875} 5^{871}\) \\
&
\end{tabular}
```

847 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WINTERBOURNE
848 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WINTERS
849 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WITHALLIGATORS
850 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WITHINFOCUS
851 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WOLFEBAY
852 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WOLFPRINTFX
853 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WOLVENMOON
854 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WOODSJAY
855 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WOODSTOCKET
856 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WORM_19
857 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WWWWOLF
858 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WYNNMC
859 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XDRACONIAN
860 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XANDER98989
861 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?tITLE=USER:XANIA
862 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XEMKIS12
863 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XEROL
864 htTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XIEPHOIRE
865 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XLINUXKDEX
866 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XWRITER
867 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YMS
868 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YASHNZ
869 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YES_MAN
870 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:YESPOX
871 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YESUTO15

```

\author{
4 Yewbow \({ }^{872}\) \\ 2 Yhevhe \({ }^{873}\) \\ 1 Yhipavahit \({ }^{874}\) \\ 2 YJVYAS \({ }^{875}\) \\ 1 Yosefm \({ }^{876}\) \\ 7 Yoshi \(1476^{877}\) \\ 18 Yosofun \({ }^{878}\) \\ 1 Yoyotweak \({ }^{879}\) \\ 1 YSANGKOK \({ }^{880}\) \\ 1 YUYUYAK \({ }^{881}\) \\ 1 ZACHARY MURRAY \({ }^{882}\) \\ 2 ZARATHOUSTRA \({ }^{883}\) \\ 1 ZBROWN \({ }^{884}\) \\ 27 Zeroone \({ }^{885}\) \\ 8 Zevilon \(^{886}\) \\ 16 ZILCH \(^{887}\) \\ 1 ZiLLA \({ }^{888}\) \\ 5 Zoohouse \({ }^{889}\)
}
```

872 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YEWBOW
873 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YHEVHE
874 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YHIPAVAHIT
875 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YJVYAS
876 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YOSEFM
877 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YOSHI1476
878 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YOSOFUN
879 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YOYOTWEAK
880 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YSANGKOK
881 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YUYUYAK
882 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZACHARY_MURRAY
883 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZARATHOUSTRA
884 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZBROWN
885 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZEROONE
886 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZEVIION
887 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZILCH
888 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZILLA
889 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZOOHOUSE

```

\section*{List of Figures}
- GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html
- cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://creativecommons.org/licenses/by-sa/3.0/
- cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://creativecommons.org/licenses/by-sa/2.5/
- cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://creativecommons.org/licenses/by-sa/2.0/
- cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://creativecommons.org/licenses/by-sa/1.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/deed.en
- cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.org/licenses/by/2.5/deed.en
- cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/deed.en
- GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt
- PD: This image is in the public domain.
- ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
- EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
- LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de
- CFR: Copyright free use.
- EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php
\begin{tabular}{|c|c|c|}
\hline 1 & Michael Otto (user MAYQEL \({ }^{890}\)) & \\
\hline 2 & LDO \({ }^{891}\) & cc-by-sa-3.0 \\
\hline 3 & ABDULL \({ }^{892}\) & GFDL \\
\hline 4 & LDO \(^{893}\) & cc-by-sa-3.0 \\
\hline 5 & SOYLENTGREEN \({ }^{894}\) & PD \\
\hline 6 & LDO \({ }^{895}\) & cc-by-sa-3.0 \\
\hline 7 & LDo \({ }^{896}\) & cc-by-sa-3.0 \\
\hline 8 & LDO \({ }^{897}\) & cc-by-sa-3.0 \\
\hline 9 & LDO \({ }^{898}\) & cc-by-sa-3.0 \\
\hline 10 & LDO \({ }^{899}\) & cc-by-sa-3.0 \\
\hline 11 & LDO \({ }^{900}\) & cc-by-sa-3.0 \\
\hline 12 & \(\mathrm{LDO}^{901}\) & cc-by-sa-3.0 \\
\hline 13 & LDO \({ }^{902}\) & cc-by-sa-3.0 \\
\hline 14 & LDO \({ }^{903}\) & cc-by-sa-3.0 \\
\hline 15 & LDO \({ }^{904}\) & cc-by-sa-3.0 \\
\hline 16 & Original uploader was BANZ111, at EN.WIKIBOOKS \({ }^{905}\) & PD \\
\hline 17 & :B:EN:USER:BANZ111 \({ }^{906}\) & PD \\
\hline 18 & Marco Polo \({ }^{907}\) at En.WIKIPEDIA \({ }^{908}\) & PD \\
\hline 19 & Marco Polo \({ }^{909}\) at En.WIKIPEDIA \({ }^{910}\) & PD \\
\hline 20 & MARCO POLO \({ }^{911}\) at EN.WIKIPEDIA \({ }^{912}\) & PD \\
\hline 21 & SoylentGreen \({ }^{913}\) & GFDL \\
\hline 22 & SoylentGreen \({ }^{914}\) & GFDL \\
\hline 23 & SoylentGreen \({ }^{915}\) & GFDL \\
\hline 24 & SoylentGreen \({ }^{916}\) & GFDL \\
\hline
\end{tabular}
```

890 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/USER%3AMAYQEL
891 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
892 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AABDULL
893 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
894 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
895 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
896 HTTP:// EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
897 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
898 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
899 HTTP:// EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
900 HTTP:// EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
901 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
902 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
903 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
904 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
905 HTTP://EN.WIKIBOOKS.ORG
906 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AB%3AEN%3AUSER%3ABANZ111
907 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AMARCO%2OPOLO
908 HTTP:/ / EN.WIKIPEDIA.ORG
909 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AMARCO%2OPOLO
910 HTTP://EN.WIKIPEDIA.ORG
911 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AMARCO%2OPOLO
912 HTTP://EN.WIKIPEDIA.ORG
913 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
914 HTtP://EN.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
915 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
916 HTTP://EN.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN

```
\begin{tabular}{|c|c|c|}
\hline 25 & SOYLENTGREEN \({ }^{977}\) & GFDL \\
\hline 26 & & cc-by-sa-2.0 \\
\hline 27 & Original uploader was SOEB \({ }^{918}\) at EN.WIKIBOOKS \({ }^{\text {919 }}\) & \\
\hline 28 & JAMESNZ \({ }^{920}\) & \\
\hline 29 & RLTROMBLE \({ }^{921}\) & cc-by-sa-3.0 \\
\hline 30 & JamesNZ (JAMESNZ \({ }^{922}\) (TALK \({ }^{923}\)) & \\
\hline 31 & Blender Foundation & GPL \\
\hline 32 & Blender Foundation & GPL \\
\hline 33 & Blender Foundation & GPL \\
\hline 34 & Blender Foundation & GPL \\
\hline 35 & Blender Foundation & GPL \\
\hline 36 & Blender Foundation & GPL \\
\hline 37 & Blender Foundation & GPL \\
\hline 38 & :B:EN:USER:SPIDERWORM \({ }^{924}\) & PD \\
\hline 39 & :B:EN:USER:SPIDERWORM \({ }^{925}\) & PD \\
\hline 40 & & GPL \\
\hline 41 & & GPL \\
\hline 42 & Blender Foundation & GPL \\
\hline 43 & Blender Foundation & GPL \\
\hline 44 & & GPL \\
\hline 45 & & GPL \\
\hline 46 & & GPL \\
\hline 47 & & GPL \\
\hline 48 & & GPL \\
\hline 49 & & GPL \\
\hline 50 & & GPL \\
\hline 51 & Lawrence D'Oliveiro & GPL \\
\hline 52 & & GPL \\
\hline 53 & & GPL \\
\hline 54 & & GPL \\
\hline 55 & & GPL \\
\hline 56 & Blender Foundation & GPL \\
\hline 57 & JAMESNZ \({ }^{926}\) & \\
\hline 58 & Blender Foundation & GPL \\
\hline 59 & Blender Foundation & GPL \\
\hline 60 & Blender Foundation & GPL \\
\hline 61 & Blender Foundation & GPL \\
\hline 62 & Blender Foundation & GPL \\
\hline 63 & Blender Foundation & GPL \\
\hline 64 & Blender Foundation & GPL \\
\hline 65 & Blender Foundation & GPL \\
\hline
\end{tabular}
```

917 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
918 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASOEB
919 HTTP://EN.WIKIBOOKS.ORG
920 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJAMESNZ
921 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ARLTROMBLE
922 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJAMESNZ
923 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER TALK%3AJAMESNZ
924 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AB%3AEN%3AUSER%3ASPIDERWORM
925 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AB%3AEN%3AUSER%3ASPIDERWORM
926 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJAMESNZ

```
\begin{tabular}{|c|c|c|}
\hline 66 & Blender Foundation & GPL \\
\hline 67 & Original uploader was LAZY-LUMP \({ }^{927}\) at EN.WIKIBOOKS \({ }^{928}\) & PD \\
\hline 68 & Blender Foundation & GPL \\
\hline 69 & Lawrence D'Oliveiro & GPL \\
\hline 70 & Lawrence D'Oliveiro & GPL \\
\hline 71 & Lawrence D'Oliveiro & GPL \\
\hline 72 & Lawrence D'Oliveiro & GPL \\
\hline 73 & & GPL \\
\hline 74 & & GPL \\
\hline 75 & & GPL \\
\hline 76 & Lawrence D'Oliveiro & GPL \\
\hline 77 & Lawrence D'Oliveiro & GPL \\
\hline 78 & & GPL \\
\hline 79 & VI3GAMEHKR \({ }^{929}\) & \\
\hline 80 & Vi3GAMEHKR \({ }^{930}\) & \\
\hline 81 & VI3GAMEHKR \({ }^{931}\) & \\
\hline 82 & & GPL \\
\hline 83 & & GPL \\
\hline 84 & BLENDER FOUNDATION \({ }^{932}\) & GPL \\
\hline 85 & BLENDER FOUNDATION \({ }^{933}\) & GPL \\
\hline 86 & BLENDER FOUNDATION \({ }^{934}\) & GPL \\
\hline 87 & Rurik & PD \\
\hline 88 & \begin{tabular}{llcc}
model by the Yo Frankie! & team & (see \\
HTTP://WWW.YOFRANKIE.ORG/TEAM/); \({ }^{935}\) & rendered & by \\
User:Stepheng3 & & & \\
\(l\)
\end{tabular} & \\
\hline 89 & JAMESNZ \({ }^{936}\) & \\
\hline 90 & JAMESNZ \({ }^{937}\) & \\
\hline 91 & Blender Foundation & GPL \\
\hline 92 & & GPL \\
\hline 93 & Blender Foundation & GPL \\
\hline 94 & Blender Foundation & GPL \\
\hline 95 & Blender Foundation & GPL \\
\hline 96 & JAMESNZ \({ }^{938}\) & \\
\hline 97 & & GPL \\
\hline 98 & Blender Foundation & GPL \\
\hline 99 & Blender Foundation & GPL \\
\hline 100 & Blender Foundation & GPL \\
\hline 101 & Blender Foundation & GPL \\
\hline 102 & Blender Foundation & GPL \\
\hline
\end{tabular}
```

927 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ALAZY-LUMP
928 HTTP://EN.WIKIBOOKS.ORG
929 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AVI3GAMEHKR
930 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AVI3GAMEHKR
931 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AVI3GAMEHKR
932 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
933 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
934 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
935 httP://WWW.YOFRANKIE.ORG/TEAM/);
936 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJAMESNZ
937 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJAMESNZ
HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJAMESNZ

```
\begin{tabular}{|c|c|c|}
\hline 103 & Blender Foundation & GPL \\
\hline 104 & Blender Foundation & GPL \\
\hline 105 & LDO \({ }^{939}\) & \\
\hline 106 & LDO \({ }^{940}\) & \\
\hline 107 & Blender Foundation & GPL \\
\hline 108 & Blender Foundation & GPL \\
\hline 109 & Blender Foundation & GPL \\
\hline 110 & PVTKING \({ }^{941}\) & cc-by-sa-3.0 \\
\hline 111 & & GPL \\
\hline 112 & BAMACSGUY \({ }^{942}\) & \\
\hline 113 & Blender Foundation & GPL \\
\hline 114 & Blender Foundation & GPL \\
\hline 115 & BAMACSGUY \({ }^{943}\) & \\
\hline 116 & Blender Foundation & GPL \\
\hline 117 & Blender Foundation & GPL \\
\hline 118 & Blender Foundation & GPL \\
\hline 119 & Blender Foundation & GPL \\
\hline 120 & Blender Foundation & GPL \\
\hline 121 & PVTKING \({ }^{944}\) & cc-by-sa-3.0 \\
\hline 122 & Blender Foundation & GPL \\
\hline 123 & & \\
\hline 124 & Blender Foundation & GPL \\
\hline 125 & Blender Foundation & GPL \\
\hline 126 & Blender Foundation & GPL \\
\hline 127 & JAMESNZ \({ }^{945}\) & \\
\hline 128 & Jake.lewis4 & GPL \\
\hline 129 & Jake.lewis4 & GPL \\
\hline 130 & JAMESNZ \({ }^{946}\) & \\
\hline 131 & TOADSTER \({ }^{947}\) & cc-by-sa-3.0 \\
\hline 132 & Myself & GPL \\
\hline 133 & JAMESNZ \({ }^{948}\) & \\
\hline 134 & JAMESNZ \({ }^{949}\) & \\
\hline 135 & JAMESNZ \({ }^{950}\) & \\
\hline 136 & JAMESNZ \({ }^{951}\) & \\
\hline 137 & JAMESNZ \({ }^{952}\) & \\
\hline 138 & Blender Foundation & GPL \\
\hline 139 & Blender Foundation & GPL \\
\hline
\end{tabular}

\footnotetext{
939 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ALDO
940 hTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ALDO
941 htip://En.wIKIBOOKS.ORG/WIKI/USER\%3APvtKing
942 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ABAMACSGUY
943 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ABAMACSGUY
944 htip://EN.WIKIBOOKS.ORG/WIKI/USER\%3APVTKING
945 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
946 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
947 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ATOADSTER
948 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
949 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
950 htiP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
951 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
952 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AJAMESNZ
}
\begin{tabular}{|c|c|c|}
\hline 140 & Blender Foundation & GPL \\
\hline 141 & Original uploader was Wwwwolf \({ }^{953}\) at EN.WIKIBOOKS \({ }^{954}\). Later version(s) were uploaded by SPIDERWORM \({ }^{955}\) at EN.WIKIBOOKS \({ }^{956}\). & \\
\hline 142 & Original uploader was WWWWOLF \({ }^{957}\) at EN.WIKIBOOKS \({ }^{958}\) & \\
\hline 143 & Blender Foundation & GPL \\
\hline 144 & Blender Foundation & GPL \\
\hline 145 & Blender Foundation & GPL \\
\hline 146 & Blender Foundation & GPL \\
\hline 147 & Blender Foundation & GPL \\
\hline 148 & Blender Foundation & GPL \\
\hline 149 & Blender Foundation & GPL \\
\hline 150 & Blender Foundation & GPL \\
\hline 151 & Blender Foundation & GPL \\
\hline 152 & Blender Foundation & GPL \\
\hline 153 & Blender Foundation & GPL \\
\hline 154 & Blender Foundation & GPL \\
\hline 155 & FALSTAFF \({ }^{959}\) & GFDL \\
\hline 156 & Blender Foundation & GPL \\
\hline 157 & Blender Foundation & GPL \\
\hline 158 & Blender Foundation \({ }^{960}\) & GPL \\
\hline 159 & BLENDER FOUNDATION \({ }^{961}\) & GPL \\
\hline 160 & Blender Foundation \({ }^{962}\) & GPL \\
\hline 161 & LDO \({ }^{963}\) & cc-by-sa-3.0 \\
\hline 162 & LDO \({ }^{964}\) & cc-by-sa-3.0 \\
\hline 163 & LDO \({ }^{965}\) & cc-by-sa-3.0 \\
\hline 164 & BLENDER FOUNDATION \({ }^{966}\) & GPL \\
\hline 165 & FALSTAFF \({ }^{967}\) & GFDL \\
\hline 166 & & \\
\hline 167 & SOYLENTGREEN \({ }^{968}\) & GPL \\
\hline 168 & SOYLENTGREEN \({ }^{969}\) & \\
\hline 169 & Original uploader was SIESTA \({ }^{970}\) at EN.WIKIBOOKS \({ }^{971}\) & GFDL \\
\hline
\end{tabular}
```

953 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWWWWOLF
954 HTTP://EN.WIKIBOOKS.ORG
955 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASPIDERWORM
956 htTP://En.WIKIBOOKS.ORG
957 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWWWWOLF
958 HTTP://EN.WIKIBOOKS.ORG
959 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AFALSTAFF
960 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
961 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
962 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
963 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
964 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
965 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
966 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER%2OFOUNDATION
967 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AFALSTAFF
968 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
969 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
970 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASIESTA
971 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 170 & \multicolumn{4}{|l|}{Weeix \({ }^{972}\)} & \\
\hline 171 & Original uploader
EN.WIKIBOOKS \({ }^{974}\) & & \[
\text { NUCLEARPIDGEON }{ }^{973}
\] & & \\
\hline 172 & Original uploader
EN.WIKIBOOKS \({ }^{976}\) & & NUCLEARPIDGEON \({ }^{975}\) & at & \\
\hline 173 & Original uploader
EN.WIKIBOOKS \({ }^{978}\) & was & \[
\text { NUCLEARPIDGEON }{ }^{977}
\] & at & \\
\hline 174 & Original uploader
EN.WIKIBOOKS \({ }^{980}\) & was & NUCLEARPIDGEON \({ }^{979}\) & at & \\
\hline 175 & AMIGOSG \({ }^{981}\) & & & & cc-by-sa-3.0 \\
\hline 176 & \[
\begin{aligned}
& \text { Original uploader } \\
& \text { EN.WIKIBOOKS }{ }^{983}
\end{aligned}
\] & & \[
\text { NUCLEARPIDGEON }{ }^{982}
\] & at & \\
\hline 177 & Amigosg \({ }^{984}\) & & & & \\
\hline 178 & \[
\begin{aligned}
& \text { Original uploader } \\
& \text { EN.WIKIBOOKS }{ }^{986}
\end{aligned}
\] & & \[
\text { NUCLEARPIDGEON }{ }^{985}
\] & at & \\
\hline 179 & Original uploader
EN.WIKIBOOKS \({ }^{988}\) & was & \[
\text { NUCLEARPIDGEON }{ }^{987}
\] & at & \\
\hline 180 & Original uploader
EN.WIKIBOOKS \({ }^{990}\) & was & NUCLEARPIDGEON \({ }^{989}\) & at & \\
\hline 181 & AMIGOSG \({ }^{991}\) & & & & \\
\hline 182 & PEARTS \({ }^{992}\) & & & & \\
\hline 183 & & & & & \\
\hline 184 & & & & & \\
\hline 185 & & & & & \\
\hline 186 & & & & & \\
\hline 187 & & & & & \\
\hline 188 & PEARTS \({ }^{993}\) & & & & \\
\hline 189 & & & & & \\
\hline
\end{tabular}
```

972 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AWEEIX
973 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
974 htTP://En.wIKIBOOKS.ORG
975 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
976 HTTP://EN.WIKIBOOKS.ORG
977 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
978 HTTP://EN.WIKIBOOKS.ORG
979 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
980 HTTP://EN.WIKIBOOKS.ORG
981 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AAMIGOSG
982 HTTP://EN.wIKIBOOKS.ORG/wIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
983 HTTP://EN.WIKIBOOKS.ORG
984 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AAMIGOSG
985 htTP://EN.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
986 HTTP://EN.WIKIBOOKS.ORG
987 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
988 HTTP://EN.WIKIBOOKS.ORG
989 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ANUCLEARPIDGEON
990 HTTP://EN.WIKIBOOKS.ORG
991 HTTP://EN.WIKIBOOKS.ORG/wIKI/USER%3AAMIGOSG
992 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APEARTS
993 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ApEARTS

```
\begin{tabular}{|c|c|c|}
\hline 190 & Original uploader was MEGALOMAN \({ }^{994}\) at EN.WIKIBOOKS \({ }^{995}\) & \\
\hline 191 & Original uploader was LIRTFERK \({ }^{996}\) at EN.WIKIBOOKS \({ }^{997}\) & GPL \\
\hline 192 & Original uploader was MEGALOMAN \({ }^{998}\) at EN.WIKIBOOKS \({ }^{999}\) & \\
\hline 193 & Original uploader was MEGALOMAN \({ }^{1000}\) at En.WIKIBOOKS \({ }^{1001}\) & GPL \\
\hline 194 & Original uploader was MEGALOMAN \({ }^{1002}\) at EN.WIKIBOOKS \({ }^{1003}\) & GPL \\
\hline 195 & HENDRIC \({ }^{1004}\) & GFDL \\
\hline 196 & HEndric \({ }^{1005}\) & GFDL \\
\hline 197 & Original uploader was MEGALOMAN \({ }^{1006}\) at EN.WIKIBOOKS \({ }^{1007}\) & GPL \\
\hline 198 & Original uploader was SKEEP \({ }^{1008}\) at EN.WIKIBOOKS \({ }^{1009}\) & GPL \\
\hline 199 & Koltonaugust \({ }^{1010}\) & cc-by-sa-3.0 \\
\hline 200 & Original uploader was Morrolan \({ }^{1011}\) at En.WIKIbOOKS \({ }^{1012}\) & GPL \\
\hline 201 & Original uploader was MORROLAN \({ }^{1013}\) at EN.WIKIBOOKS \({ }^{1014}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1015}\) at EN.WIKIBOOKS \({ }^{1016}\). & GPL \\
\hline 202 & Original uploader was Morrolan \({ }^{1017}\) at EN.WIKIBOOKS \({ }^{1018}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1019}\) at EN.WIKIBOOKS \({ }^{1020}\). & GPL \\
\hline 203 & Original uploader was Morrolan \({ }^{1021}\) at EN.WIKIBOOKS \({ }^{1022}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1023}\) at EN.WIKIBOOKS \({ }^{1024}\). & GPL \\
\hline
\end{tabular}

\footnotetext{
994 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMEGALOMAN 995 HTTP://EN.WIKIBOOKS.ORG
996 http://en.wikibooks.org/wiki/\%3Awikibooks\%3Aen\%3AUSER\%3ALIRtferk
997 HTTP://EN.WIKIBOOKS.ORG
998 htTP://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMEGALOMAN
999 HTTP://EN.WIKIBOOKS.ORG
1000 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMEGALOMAN
1001 http://EN.WIKIBOOKS.ORG
1002 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMEGALOMAN 1003 HTTP://EN.WIKIBOOKS.ORG
1004 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AHENDRIC
1005 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AHENDRIC
1006 http://En.WIKIBOOKS.ORG/WIKI/ \% 3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMEGALOMAN
1007 HTTP://EN.WIKIBOOKS.ORG
1008 http://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3ASkeep
1009 HTTP://EN.WIKIBOOKS.ORG
1010 http://En.WIKIbooks.org/wIKI/USER\%3AKoltonaugust
1011 HTTP://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMORROLAN
1012 нTtP://EN.WIKIBOOKS. ORG
1013 нttp://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3AMorrolan
1014 htte://EN.WIKIBOOKS.ORG
1015 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA 1016 HTTP://EN.WIKIBOOKS.ORG
1017 нTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMORROLAN 1018 HTTP://EN.WIKIBOOKS.ORG
1019 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIbOOKS\%3AEN\%3AUSER\%3AAdRIGNOLA 1020 HTTP://EN.WIKIBOOKS.ORG
1021 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMORROLAN 1022 htTP://EN.WIKIBOOKS.ORG
1023 http://En.wIKIbooks.ORG/wIKI/\%3AwIKIbOOKS\%3AEN\%3AUSER\%3AAdRIGNOLA
1024 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 204 & Original uploader was MORROLAN \({ }^{1025}\) at EN.WIKIBOOKS \({ }^{1026}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1027}\) at EN.WIKIBOOKS \({ }^{1028}\). & GPL \\
\hline 205 & Original uploader was MORROLAN \({ }^{1029}\) at EN.WIKIBOOKS \({ }^{1030}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1031}\) at EN.WIKIBOOKS \({ }^{1032}\). & GPL \\
\hline 206 & Original uploader was MORROLAN \({ }^{1033}\) at EN.WIKIBOOKS \({ }^{1034}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1035}\) at EN.WIKIBOOKS \({ }^{1036}\). & GPL \\
\hline 207 & Original uploader was MORROLAN \({ }^{1037}\) at EN.WIKIBOOKS \({ }^{1038}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1039}\) at EN.WIKIBOOKS \({ }^{1040}\). & GPL \\
\hline 208 & Original uploader was MORROLAN \({ }^{1041}\) at EN.WIKIBOOKS \({ }^{1042}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1043}\) at EN.WIKIBOOKS \({ }^{1044}\). & GPL \\
\hline 209 & Original uploader was Morrolan \({ }^{1045}\) at EN.WIKIBOOKS \({ }^{1046}\) & GPL \\
\hline 210 & Original uploader was Morrolan \({ }^{1047}\) at EN.WIKIBOOKS \({ }^{1048}\) & GPL \\
\hline 211 & Original uploader was MORROLAN \({ }^{1049}\) at EN.WIKIBOOKS \({ }^{1050}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1051}\) at EN.WIKIBOOKS \({ }^{1052}\). & GPL \\
\hline 212 & Original uploader was Morrolan \({ }^{1053}\) at EN.WIKIBOOKS \({ }^{1054}\) & GPL \\
\hline
\end{tabular}
```

1025 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1026 HTTP://EN.WIKIBOOKS.ORG
1027 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1028 HTTP://EN.WIKIBOOKS.ORG
1029 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1030 httP://En.WIKIbOOKS.ORG
1031 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1032 нTTP://EN.WIKIBOOKS.ORG
1033 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1034 HTTP://EN.WIKIBOOKS.ORG
1035 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1036 htTP://En.WIKIbOOKS.ORG
1037 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1038 HTTP://EN.WIKIBOOKS.ORG
1039HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1040 htTP://En.WIKIBOOKS.ORG
1041 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1042 htTP://En.WIKIbOOKS.ORG
1043 htTP://En.WIKIBOOKS.ORG/wIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1044 нTTP://EN.WIKIBOOKS.ORG
1045 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1046 HTTP://EN.WIKIBOOKS.ORG
1047 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1048 HTTP://EN.WIKIBOOKS.ORG
1049 http://En.wIkIbOOKS.ORG/WIKI/%3AwIkIbOOKS%3AEn%3AUSER%3AMORROLAN
1050 HTTP://EN.WIKIBOOKS.ORG
1051 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1052 нTTP://EN.WIKIBOOKS.ORG
1053 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1054 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 213 & Original uploader was Morrolan \({ }^{1055}\) at En.WIKIBOOKS \({ }^{1056}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1057}\) at EN.WIKIBOOKS \({ }^{1058}\). & GPL \\
\hline 214 & Original uploader was Morrolan \({ }^{1059}\) at En.WIKIBOOKS \({ }^{1060}\) & GPL \\
\hline 215 & Original uploader was Morrolan \({ }^{1061}\) at EN.WIKIBOOKS \({ }^{1062}\) & GPL \\
\hline 216 & Original uploader was Morrolan \({ }^{1063}\) at EN.WIKIBOOKS \({ }^{1064}\) & GPL \\
\hline 217 & & \\
\hline 218 & Original uploader was SHYTHINKER \({ }^{1065}\) at EN.WIKIBOOKS \({ }^{1066}\) & GFDL \\
\hline 219 & Romain Behar. Original uploader was Romainbehar \({ }^{1067}\) at EN.WIKIBOOKS \({ }^{1068}\) & PD \\
\hline 220 & & \\
\hline 221 & Screenshot of Blender by me. & GPL \\
\hline 222 & Original uploader was SHYTHINKER \({ }^{1069}\) at EN.WIKIBOOKS \({ }^{1070}\) & GFDL \\
\hline 223 & Original uploader was SHYTHINKER \({ }^{1071}\) at EN.WIKIBOOKS \({ }^{1072}\) & GFDL \\
\hline 224 & Original uploader was SHYTHINKER \({ }^{1073}\) at EN.WIKIBOOKS \({ }^{1074}\) & GFDL \\
\hline 225 & & GPL \\
\hline 226 & Original uploader was SHYTHINKER \({ }^{1075}\) at EN.WIKIBOOKS \({ }^{1076}\) & GFDL \\
\hline 227 & Romain Behar. Original uploader was Romainbehar \({ }^{1077}\) at EN.WIKIBOOKS \({ }^{1078}\) & PD \\
\hline 228 & Original uploader was SHYTHINKER \({ }^{1079}\) at EN.WIKIBOOKS \({ }^{1080}\) & GFDL \\
\hline 229 & BOYAGE \({ }^{1081}\). Original uploader was BOYAGE \(^{1082}\) at
EN.WIKIBOOKS \({ }^{1083}\) & GFDL \\
\hline
\end{tabular}
```

1055 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1056 HTTP://EN.WIKIBOOKS.ORG
1057 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIbOOKS%3AEN%3AUSER%3AADRIGNOLA
1058 HTTP://EN.WIKIBOOKS.ORG
1059 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1060 HTTP://EN.WIKIBOOKS.ORG
1061 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMORROLAN
1062 HTTP://EN.WIKIBOOKS.ORG
1063 HTTP://En.wIKIbOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEn%3AUSER%3AMORROLAN
1064 HTTP://EN.WIKIBOOKS.ORG
1065 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1066 HTTP://EN.WIKIBOOKS.ORG
1067 HTTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1068 HTTP://EN.WIKIBOOKS.ORG
1069 нtTP://En.wIKIbooks.org/wIKI/%3AwIKIbookS%3AEn%3AUSER%3AShythinker
1070 HTTP://EN.WIKIBOOKS.ORG
1071 htTP://En.WIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1072 HTTP://EN.WIKIBOOKS.ORG
1073 HTTP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1074 HTTP://EN.WIKIBOOKS.ORG
1075 http://en.wIKIbooks.org/wIkI/%3AwIkIbooks%3Aen%3AUSER%3AShythinker
1076 HTTP://EN.WIKIBOOKS.ORG
1077 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1078 HTTP://EN.WIKIBOOKS.ORG
1079 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1080 HTTP://EN.WIKIBOOKS.ORG
1081 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1082HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1083 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 230 & BOYAGE \(^{1084}\). Original uploader was BOYAGE
EN.WIKIBOOKS & GFDL \\
\hline 231 & BOYAGE \({ }^{1087}\). Original uploader was BOYAGE \({ }^{1088}\) at EN.WIKIBOOKS \({ }^{1089}\) & GFDL \\
\hline 232 & Romain Behar. Original uploader was Romainbehar \({ }^{1090}\) at EN.WIKIBOOKS \({ }^{1091}\) & PD \\
\hline 233 & Original uploader was SHYTHINKER \({ }^{1092}\) at EN.WIKIBOOKS \({ }^{1093}\) & GFDL \\
\hline 234 & Romain Behar. Original uploader was Romainbehar \({ }^{1094}\) at EN.WIKIBOOKS \({ }^{1095}\) & PD \\
\hline 235 & BOYAGE \({ }^{1096}\). Original uploader was BOYAGE \({ }^{1097}\) at
EN.WIKIBOOKS \({ }^{1098}\) & GFDL \\
\hline 236 & Original uploader was SHYTHINKER \({ }^{1099}\) at EN.WIKIBOOKS \({ }^{1100}\) & GFDL \\
\hline 237 & Romain Behar. Original uploader was Romainbehar \({ }^{1101}\) at EN.WIKIBOOKS \({ }^{1102}\) & PD \\
\hline 238 & Romain Behar. Original uploader was Romainbehar \({ }^{1103}\) at EN.WIKIBOOKS \({ }^{1104}\) & PD \\
\hline 239 & BOYAGE \({ }^{1105}\). Original uploader was BoyaGE \({ }^{1106}\) at EN.WIKIBOOKS \({ }^{1107}\) & GFDL \\
\hline 240 & BOYAGE \(^{1108}\). Original uploader was Boyage \(^{1109}\) at
EN.WIKIBOOKS & GFDL \\
\hline 241 & Romain Behar. Original uploader was Romainbehtar \({ }^{\text {III }}\) at EN.WIKIBOOKS \({ }^{1112}\) & PD \\
\hline
\end{tabular}
```

1084 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1085 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1086 HTTP://EN.WIKIBOOKS.ORG
1087 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1088 HTTP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1089 нTTP://En.WIKIBOOKS.ORG
1090 HTTP:// En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1091 HTTP://EN.WIKIBOOKS.ORG
1092 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1093 нTTP://EN.WIKIBOOKS.ORG
1094 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1095 HTTP://EN.WIKIBOOKS.ORG
1096 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1097 HTTP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1098 HTTP://EN.WIKIBOOKS.ORG
1099 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1100 htTP://EN.WIKIbOOKS.ORG
1101 httP://En.wIKIbooks.org/wIkI/%3AwIkIbookS%3AEn%3AUSER%3AROMAINBEHAR
1102 HTTP://EN.WIKIBOOKS.ORG
1103 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1104 htTP://EN.WIKIBOOKS.ORG
1105 нTtP://En.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1106 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1107 htTP://EN.WIKIBOOKS.ORG
1108 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1109 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1110 HTTP://EN.WIKIBOOKS.ORG
1111 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1112 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 242 & BOYAGE \(^{1113}\). Original uploader was BoyAGE \(^{1114}\) at EN.WIKIBOOKS \({ }^{1115}\) & GFDL \\
\hline 243 & Original uploader was SHYTHINKER \({ }^{1116}\) at EN.WIKIBOOKS \({ }^{1117}\) & GFDL \\
\hline 244 & BOYAGE \({ }^{118}\). Original uploader was BoyAGE \({ }^{119}\) at EN.WIKIBOOKS \({ }^{1120}\) & GFDL \\
\hline 245 & BOYAGE \({ }^{121}\). Original uploader was BOYAGE \(^{1122}\) at EN.WIKIBOOKS \({ }^{1123}\) & GFDL \\
\hline 246 & Romain Behar. Original uploader was Romainbehar \({ }^{1124}\) at EN.WIKIBOOKS \({ }^{1125}\) & PD \\
\hline 247 & Romain Behar. Original uploader was Romainbehar \({ }^{1126}\) at EN.WIKIBOOKS \({ }^{1127}\) & PD \\
\hline 248 & Original uploader was WYNNMC \({ }^{1128}\) at EN.WIKIBOOKS \({ }^{1129}\) & \\
\hline 249 & & PD \\
\hline 250 & & PD \\
\hline 251 & Romain Behar. Original uploader was Romainbehar \({ }^{1130}\) at EN.WIKIBOOKS \({ }^{1131}\) & PD \\
\hline 252 & Original uploader was WYNNMC \({ }^{1132}\) at EN.WIKIBOOKS \({ }^{\text {I133 }}\) & \\
\hline 253 & & GFDL \\
\hline 254 & Original uploader was WYNNMC \({ }^{1134}\) at En.WIKIBOOKS \({ }^{1135}\) & \\
\hline 255 & & GFDL \\
\hline 256 & & GFDL \\
\hline 257 & Original uploader was WYNNMC \({ }^{1136}\) at EN.WIKIBOOKS \({ }^{1137}\) & \\
\hline 258 & Original uploader was WYNNMC \({ }^{1138}\) at EN.WIKIBOOKS \({ }^{1139}\) & \\
\hline 259 & Original uploader was WYNNMC \({ }^{1140}\) at EN.WIKIBOOKS \({ }^{1141}\) & \\
\hline
\end{tabular}
```

1113 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1114 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1115 HTTP://EN.WIKIBOOKS.ORG
1116 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASHYTHINKER
1117 HTTP://EN.WIKIBOOKS.ORG
1118 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1119 htTP:// EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1120 HTTP://EN.WIKIBOOKS.ORG
1121 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1122HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
1123 HTTP://EN.WIKIBOOKS.ORG
1124 htTP://En.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1125 HTTP://EN.WIKIBOOKS.ORG
1126HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1127 HTTP://EN.WIKIBOOKS.ORG
1128 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1129 HTTP://EN.WIKIBOOKS.ORG
1130 htTP://En.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
1131 HTTP://EN.WIKIBOOKS.ORG
1132HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1133 HTTP://EN.WIKIBOOKS.ORG
1134 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1135 HTTP://EN.WIKIBOOKS.ORG
1136 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AWYnNMC
1137 HTTP://EN.WIKIBOOKS.ORG
1138HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1139 HTTP://EN.WIKIBOOKS.ORG
1140HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1141 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|l|l|l|}
\hline 260 & Original uploader was WYNNMC \(^{1142}\) at EN.WIKIBOOKS \({ }^{1143}\) & \\
\hline 261 & Original uploader was WYNNMC \(^{1144}\) at EN.WIKIBOOKS \({ }^{1145}\) & \\
\hline 262 & Original uploader was WYNNMC \({ }^{1146}\) at EN.WIKIBOOKS \({ }^{1147}\) & \\
\hline 263 & Original uploader was WYNNMC \(^{1148}\) at EN.WIKIBOOKS \({ }^{1149}\) & \\
\hline 264 & Original uploader was WYNNMC \(^{1150}\) at EN.WIKIBOOKS \({ }^{1151}\) & \\
\hline 265 & Original uploader was WYNNMC \(^{1152}\) at EN.WIKIBOOKS \({ }^{1153}\) & \\
\hline 266 & Original uploader was WYNNMC \(^{1154}\) at EN.WIKIBOOKS \({ }^{1155}\) & \\
\hline 267 & Original uploader was WYNNMC \(^{1156}\) at EN.WIKIBOOKS \({ }^{1157}\) & \\
\hline 268 & Original uploader was WYNNMC \(^{1158}\) at EN.WIKIBOOKS \({ }^{1159}\) & \\
\hline 269 & Original uploader was WYNNMC \(^{1160}\) at EN.WIKIBOOKS \({ }^{1161}\) & \\
\hline 270 & Original uploader was WYNNMC \({ }^{1162}\) at EN.WIKIBOOKS \({ }^{1163}\) & \\
\hline 271 & Original uploader was WYNNMC \(^{1164}\) at EN.WIKIBOOKS \({ }^{1165}\) & \\
\hline 272 & Original uploader was WYNNMC \({ }^{1166}\) at EN.WIKIBOOKS \({ }^{1167}\) & \\
\hline 273 & Original uploader was WYNNMC \({ }^{1168}\) at EN.WIKIBOOKS \({ }^{1169}\) & \\
\hline 274 & Original uploader was WYNNMC \({ }^{1170}\) at EN.WIKIBOOKS \({ }^{1171}\) & \\
\hline 275 & Original uploader was WYNNMC \({ }^{1172}\) at EN.WIKIBOOKS \({ }^{1173}\) & \\
\hline 276 & Original uploader was WYNNMC \({ }^{1174}\) at EN.WIKIBOOKS \({ }^{1175}\) & \\
\hline
\end{tabular}

\footnotetext{
1142 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1143 htTP://EN.WIKIBOOKS.ORG
1144 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1145 HTTP://EN.WIKIBOOKS.ORG
1146 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1147 нTtP://EN.WIKIBOOKS.ORG
1148 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYNNMC 1149 httP://En.WIKIBOOKS.ORG
1150 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYNNMC 1151 HTTP://EN.WIKIBOOKS.ORG
1152 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1153 нтTP://EN.WIKIBOOKS.ORG
1154 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1155 htTP://En.WIKIBOOKS.ORG
1156 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYNNMC 1157 htTP://EN.WIKIBOOKS.ORG
1158 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1159 htTP://EN.WIKIBOOKS.ORG
1160 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1161 httP://En.WIKIBOOKS.ORG
1162 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1163 HTTP://EN.WIKIBOOKS.ORG
1164 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AWYnNMC
1165 нтTP://EN.WIKIBOOKS.ORG
1166 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYNNMC
1167 httP://EN.WIKIBOOKS.ORG
1168 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1169 htTP://EN.WIKIBOOKS.ORG
1170 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1171 httP://EN.WIKIBOOKS.ORG
1172 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1173 httP://En.WIKIBOOKS.ORG
1174 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYnNMC 1175 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 277 & Original uploader was WYNNMC \({ }^{1176}\) at EN.WIKIBOOKS \({ }^{1177}\) & \\
\hline 278 & Original uploader was WYNNMC \({ }^{1178}\) at EN.WIKIBOOKS \({ }^{1179}\) & \\
\hline 279 & Original uploader was WYNNMC \({ }^{1180}\) at EN.WIKIBOOKS \({ }^{1181}\) & \\
\hline 280 & Original uploader was WYNNMC \({ }^{1182}\) at EN.WIKIBOOKS \({ }^{1183}\) & \\
\hline 281 & Original uploader was WYNNMC \({ }^{1184}\) at En.WIKIBOOKS \({ }^{1185}\) & \\
\hline 282 & Original uploader was WYNNMC \({ }^{1186}\) at EN.WIKIBOOKS \({ }^{1187}\) & \\
\hline 283 & Original uploader was WYNNMC \({ }^{1188}\) at EN.WIKIBOOKS \({ }^{1189}\) & \\
\hline 284 & & GFDL \\
\hline 285 & Original uploader was WYNNMC \({ }^{1190}\) at EN.WIKIBOOKS \({ }^{191}\) & \\
\hline 286 & Original uploader was WYNNMC \({ }^{1192}\) at EN.WIKIBOOKS \({ }^{1193}\) & \\
\hline 287 & Original uploader was WYNNMC \({ }^{1194}\) at EN.WIKIBOOKS \({ }^{1195}\) & \\
\hline 288 & Original uploader was WYNNMC \({ }^{1196}\) at EN.WIKIBOOKS \({ }^{1197}\) & \\
\hline 289 & - Blender: W:BlENDER FOUNDATION 1198 & GPL \\
\hline 290 & Original uploader was SHYTHINKER \({ }^{1199}\) at EN.WIKIBOOKS \({ }^{1200}\) & GFDL \\
\hline 291 & Original uploader was SHYTHINKER \({ }^{1201}\) at EN.WIKIBOOKS \({ }^{1202}\) & GFDL \\
\hline 292 & & PD \\
\hline 293 & & PD \\
\hline 294 & BOYAGE \({ }^{1203}\). Original uploader was BOYAGE \(^{1204}\) at EN.WIKIBOOKS \({ }^{1205}\) & GFDL \\
\hline
\end{tabular}

\footnotetext{
1176 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYnNMC 1177 HTTP://EN.WIKIBOOKS.ORG
1178 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1179 httP://EN.WIKIBOOKS.ORG
1180 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1181 htte://En.WIKIbOOKS.ORG
 1183 HTTP://EN.WIKIBOOKS.ORG
1184 htte://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1185 HTTP://EN.WIKIBOOKS.ORG
1186 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1187 htte://En.WIKIBOOKS.ORG
1188 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AWynNMC 1189 HTTP://EN.WIKIBOOKS.ORG
1190 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1191 HTTP://EN.WIKIBOOKS.ORG
1192 httr://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1193 HTTP://EN.WIKIBOOKS.ORG
1194 http://en.wIkIbooks.org/wiki/\%3AwIKIbooks\%3Aen\%3AUSER\%3AWynnmc 1195 HTTP://EN.WIKIBOOKS.ORG
1196 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1197 httP://EN.WIKIBOOKS.ORG
1198 HTTP://EN.WIKIPEDIA.ORG/WIKI/BLENDER\%2OFOUNDATION\%OA
1199 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1200 HTTP://EN.WIKIBOOKS.ORG
1201 httr://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1202 HTTP://EN.WIKIBOOKS.ORG
1203 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1204 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1205 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 295 & Original uploader was SHYTHINKER \({ }^{1206}\) at EN.WIKIBOOKS \({ }^{1207}\) & GFDL \\
\hline 296 & Original uploader was SHYTHINKER \({ }^{1208}\) at EN.WIKIBOOKS \({ }^{1209}\) & GFDL \\
\hline 297 & BOYAGE \({ }^{1210}\). Original uploader was BoyAGE \({ }^{1211}\) at EN.WIKIBOOKS \({ }^{1212}\) & \\
\hline 298 & Original uploader was SHYTHINKER \({ }^{1213}\) at EN.WIKIBOOKS \({ }^{1214}\) & GFDL \\
\hline 0 & Loremus Ipsemus & None \\
\hline 0 & Loremus Ipsemus & None \\
\hline 301 & Original uploader was SHYTHINKER \({ }^{1215}\) at EN.WIKIBOOKS \({ }^{1216}\) & GFDL \\
\hline 302 & Original uploader was SHYTHINKER \({ }^{1217}\) at EN.WIKIBOOKS \({ }^{1218}\) & GFDL \\
\hline 303 & Original uploader was SHYTHINKER \({ }^{1219}\) at EN.WIKIBOOKS \({ }^{1220}\) & GFDL \\
\hline 0 & Loremus Ipsemus & None \\
\hline 305 & Original uploader was SHYTHINKER \({ }^{1221}\) at EN.WIKIBOOKS \({ }^{1222}\) & GFDL \\
\hline 306 & BOYAGE \({ }^{1223}\). Original uploader was BoyAGE \({ }^{1224}\) at EN.WIKIBOOKS \({ }^{1225}\) & \\
\hline 307 & BOYAGE \({ }^{1226}\). Original uploader was BOYAGE \(^{1227}\) at EN.WIKIBOOKS \({ }^{1228}\) & \\
\hline 308 & BOYAGE \({ }^{1229}\). Original uploader was BoyAGE \(^{1230}\) at EN.WIKIBOOKS \({ }^{1231}\) & \\
\hline 309 & & PD \\
\hline 310 & & PD \\
\hline 311 & Boyage \({ }^{1232}\). Original uploader was BoyAGE \(^{1233}\) at EN.WIKIBOOKS \({ }^{1234}\) & \\
\hline
\end{tabular}

\footnotetext{
1206 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER 1207 httP://En.WIKIbOOKS.ORG
1208 http://en.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1209 нTTP://EN.WIKIBOOKS.ORG
1210 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1211 http://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1212 нтTP://EN.WIKIBOOKS.ORG
1213 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1214 HTTP://EN.WIKIBOOKS.ORG
1215 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1216 htte://En.WIKIBOOKS.ORG
1217 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1218 httP://EN.WIKIBOOKS.ORG
1219 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1220 httP://En.WIKIBOOKS.ORG
1221 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1222 httP://En.WIKIBOOKS.ORG
1223 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1224 нтtP://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1225 httP://En.WIKIBOOKS.ORG
1226 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1227 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3ABOYAGE
1228 HTTP://EN.WIKIBOOKS.ORG
1229 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1230 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3ABOYAGE
1231 htTP://EN.WIKIBOOKS.ORG
1232 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1233 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1234 htte://En.WIKIbOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 312 & BOYAGE \({ }^{1235}\). Original uploader was BOYAGE \(^{1236}\) at EN.WIKIBOOKS \({ }^{1237}\) & \\
\hline 313 & BOYAGE \({ }^{1238}\). Original uploader was BoyAGE \({ }^{1239}\) at EN.WIKIBOOKS \({ }^{1240}\) & \\
\hline 314 & BOYAGE \({ }^{1241}\). Original uploader was BOYAGE \(^{1242}\) at EN.WIKIBOOKS \({ }^{1243}\) & \\
\hline 315 & BOYAGE \(^{1244}\). Original uploader was BOYAGE \(^{1245}\) at
EN.WIKIBOOKS & GFDL \\
\hline 316 & Original uploader was ShYTHINKER \({ }^{1247}\) at EN.WIKIBOOKS \({ }^{1248}\) & GFDL \\
\hline 317 & \[
\begin{aligned}
& \text { BOYAGE }^{1249} \text { Original uploader was } \text { BOYAGE }^{1250} \text { at } \\
& \text { EN.WIKIBOOKS }
\end{aligned}
\] & \\
\hline 318 & BOYAGE \({ }^{1252}\). Original uploader was BoyAGE \({ }^{1253}\) at EN.WIKIBOOKS \({ }^{1254}\) & \\
\hline 319 & Boyage \({ }^{1255}\). Original uploader was Boyage \(^{1256}\) at EN.WIKIBOOKS \({ }^{1257}\) & \\
\hline 320 & Original uploader was SHYTHINKER \({ }^{1258}\) at EN.WIKIBOOKS \({ }^{1259}\) & GFDL \\
\hline 321 & ARCH DUDE \({ }^{1260}\) & GFDL \\
\hline 322 & ARCH DUDE \({ }^{1261}\) & GFDL \\
\hline 323 & PEARTS \({ }^{1262}\) & \\
\hline 324 & PEARTS \({ }^{1263}\) & \\
\hline 325 & Original uploader was AvERIEZEN \({ }^{1264}\) at EN.WIKIBOOKS \({ }^{1265}\) & \\
\hline
\end{tabular}

\footnotetext{
1235 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1236 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1237 HTTP://EN.WIKIBOOKS.ORG
1238 http://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1239 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1240 HTTP://EN.WIKIBOOKS.ORG
1241 htte://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1242 http://en.wIkIbooks.org/wiki/\%3AwIkIbooks 3Aen\%3AUSER\%3ABoyAge 1243 HTTP://EN.WIKIBOOKS.ORG
1244 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1245 HTTP://En.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE 1246 HTTP://EN.WIKIBOOKS.ORG
1247 http://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER 1248 HTTP://EN.WIKIBOOKS.ORG
1249 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1250 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1251 HTTP://EN.WIKIBOOKS.ORG
1252 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1253 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1254 нтtP://EN.WIKIBOOKS.ORG
1255 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3ABOYAGE
1256 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
1257 HTTP://EN.WIKIBOOKS.ORG
1258 нtтP://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASHYTHINKER
1259 HTTP://EN.WIKIBOOKS.ORG
1260 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AARCH\%20DUDE
1261 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AARCH\%20DUDE
1262 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1263 нTtP://En.wIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1264 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1265 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|l|l|l|}
\hline 326 & Original uploader was AVERIEZEN \({ }^{1266}\) at EN.WIKIBOOKS \({ }^{1267}\) & \\
\hline 327 & Original uploader was AVERIEZEN \({ }^{1268}\) at EN.WIKIBOOKS \({ }^{1269}\) & \\
\hline 328 & Original uploader was AVERIEZEN \({ }^{1270}\) at EN.WIKIBOOKS \({ }^{1271}\) & GPL \\
\hline 329 & Original uploader was EYEONUS \(^{1272}\) at EN.WIKIBOOKS \({ }^{1273}\) & \\
\hline 330 & Original uploader was EYEONUS \({ }^{1274}\) at EN.WIKIBOOKS \({ }^{1275}\) & \\
\hline 331 & & PD \\
\hline 332 & Original uploader was WYNNMC \({ }^{1276}\) at EN.WIKIBOOKS \({ }^{\text {I277 }}\) & \\
\hline 333 & Original uploader was WYNNMC \(^{1278}\) at EN.WIKIBOOKS \({ }^{1279}\) & \\
\hline 334 & Original uploader was WYNNMC \({ }^{1280}\) at EN.WIKIBOOKS \({ }^{1281}\) & \\
\hline 335 & Original uploader was WYNNMC \({ }^{1282}\) at EN.WIKIBOOKS \({ }^{1283}\) & \\
\hline 336 & Original uploader was WYNNMC \({ }^{1284}\) at EN.WIKIBOOKS \({ }^{1285}\) & \\
\hline 337 & André Karwath aka AKA \({ }^{1286}\) & cc-by-sa-2.5 \\
\hline 338 & ARCH DUDE \({ }^{1287}\) & GFDL \\
\hline 339 & ARCH DUDE \({ }^{1288}\) & GFDL \\
\hline 340 & Original uploader was AVERIEZEN \({ }^{1289}\) at EN.WIKIBOOKS \({ }^{1290}\) & \\
\hline 341 & Original uploader was AVERIEZEN \({ }^{1291}\) at EN.WIKIBOOKS 1292 & \\
\hline 342 & Original uploader was AVERIEZEN \({ }^{1293}\) at EN.WIKIBOOKS \({ }^{1294}\) & \\
\hline 343 & Original uploader was AVERIEZEN \({ }^{1295}\) at EN.WIKIBOOKS \({ }^{1296}\) & \\
\hline 344 & Original uploader was AVERIEZEN \({ }^{1297}\) at EN.WIKIBOOKS \({ }^{1298}\) & \\
\hline
\end{tabular}

\footnotetext{
1266 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1267 htte://En.WIKIBOOKS.ORG
1268 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1269 htTP://En.WIKIBOOKS.ORG
1270 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1271 HTTP://EN.WIKIBOOKS.ORG
1272 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AEYEONUS
1273 httP://EN.WIKIBOOKS.ORG
1274 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AEYEONUS
1275 httP://En.WIKIBOOKS.ORG
1276 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1277 htte://EN.WIKIBOOKS.ORG
1278 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYnNMC
1279 нTTP://EN.WIKIBOOKS.ORG
1280 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYNNMC
1281 HTTP://EN.WIKIBOOKS.ORG
1282 httr://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1283 HTTP://EN.WIKIBOOKS.ORG
1284 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYnNMC
1285 нTTP://EN.WIKIBOOKS.ORG
1286 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AAKA
1287 http://EN.WIKIBOOKS.ORG/WIKI/USER\%3AARCH\%20DUDE
1288 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AARCH\%20DUDE
1289 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1290 HTTP://EN.WIKIBOOKS.ORG
1291 httP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1292 HTTP://EN.WIKIBOOKS.ORG
1293 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN
1294 нTTP://EN.WIKIBOOKS.ORG
1295 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1296 нTTP://EN.WIKIBOOKS.ORG
1297 httP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1298 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|l|l|l|}
\hline 345 & Original uploader was AVERIEZEN \({ }^{1299}\) at EN.WIKIBOOKS \({ }^{1300}\) & \\
\hline 346 & Original uploader was AVERIEZEN \({ }^{1301}\) at EN.WIKIBOOKS \({ }^{1302}\) & \\
\hline 347 & Original uploader was AVERIEZEN \({ }^{1303}\) at EN.WIKIBOOKS \({ }^{1304}\) & \\
\hline 348 & Original uploader was AVERIEZEN \({ }^{1305}\) at EN.WIKIBOOKS \({ }^{1306}\) & \\
\hline 349 & Original uploader was CLONE DAD \({ }^{1307}\) at EN.WIKIBOOKS \({ }^{1308}\) & GFDL \\
\hline 350 & Original uploader was AVERIEZEN \({ }^{1309}\) at EN.WIKIBOOKS \({ }^{1310}\) & \\
\hline 351 & SLAYERJP \(^{1311}\) & cc-by-sa-3.0 \\
\hline 352 & Original uploader was AVERIEZEN \({ }^{1312}\) at EN.WIKIBOOKS \({ }^{1313}\) & \\
\hline 353 & Original uploader was AVERIEZEN \({ }^{1314}\) at EN.WIKIBOOKS \({ }^{1315}\) & \\
\hline 354 & Original uploader was AVERIEZEN \({ }^{1316}\) at EN.WIKIBOOKS \({ }^{1317}\) & \\
\hline 355 & Original uploader was AVERIEZEN \({ }^{1318}\) at EN.WIKIBOOKS \({ }^{1319}\) & \\
\hline 356 & Original uploader was AVERIEZEN \({ }^{1320}\) at EN.WIKIBOOKS \({ }^{1321}\) & \\
\hline 357 & Original uploader was AVERIEZEN \({ }^{1322}\) at EN.WIKIBOOKS \({ }^{1323}\) & \\
\hline 358 & Original uploader was AVERIEZEN \({ }^{1324}\) at EN.WIKIBOOKS \({ }^{1325}\) & \\
\hline 359 & Original uploader was AVERIEZEN \({ }^{1326}\) at EN.WIKIBOOKS \({ }^{1327}\) & \\
\hline 360 & Original uploader was AVERIEZEN \({ }^{1328}\) at EN.WIKIBOOKS \({ }^{1329}\) & \\
\hline 361 & Original uploader was AVERIEZEN \({ }^{1330}\) at EN.WIKIBOOKS \({ }^{1331}\) & \\
\hline 362 & Original uploader was AVERIEZEN \({ }^{1332}\) at EN.WIKIBOOKS \({ }^{1333}\) & \\
\hline
\end{tabular}

\footnotetext{
1299 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1300 HTTP://EN.WIKIBOOKS.ORG
1301 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1302 htte://EN.WIKIBOOKS.ORG
1303 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1304 HTTP://EN.WIKIBOOKS.ORG
1305 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1306 HTTP://EN.WIKIBOOKS.ORG
1307 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ACLONE\%2ODAD
1308 HTTP://EN.WIKIBOOKS.ORG
1309 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1310 httP://EN.WIKIBOOKS.ORG
1311 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASLAYERJP
1312 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1313 HTTP://EN.WIKIBOOKS.ORG
1314 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1315 HTTP://EN.WIKIBOOKS.ORG
1316 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1317 HTTP://EN.WIKIBOOKS.ORG
1318 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1319 HTTP://EN.WIKIBOOKS.ORG
1320 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1321 HTTP://EN.WIKIBOOKS.ORG
1322 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN 1323 HTTP://EN.WIKIBOOKS.ORG
1324 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1325 HTTP://EN.WIKIBOOKS.ORG
1326 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1327 HTTP://EN.WIKIBOOKS.ORG
1328 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIbOOKS\%3AEN\%3AUSER\%3AAvERIEZEN 1329 HTTP://EN.WIKIBOOKS.ORG
1330 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1331 httP://EN.WIKIBOOKS.ORG
1332 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1333 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|l|l|l|}
\hline 363 & Original uploader was AVERIEZEN \({ }^{1334}\) at EN.WIKIBOOKS \({ }^{1335}\) & \\
\hline 364 & Original uploader was JOSELLIS \({ }^{1336}\) at EN.WIKIBOOKS \({ }^{1337}\) & \\
\hline 365 & Original uploader was AVERIEZEN \({ }^{1338}\) at EN.WIKIBOOKS \({ }^{1339}\) & \\
\hline 366 & Original uploader was AVERIEZEN \({ }^{1340}\) at EN.WIKIBOOKS \({ }^{1341}\) & \\
\hline 367 & Original uploader was AVERIEZEN \({ }^{1342}\) at EN.WIKIBOOKS \({ }^{1343}\) & \\
\hline 368 & Original uploader was AVERIEZEN \({ }^{1344}\) at EN.WIKIBOOKS \({ }^{1345}\) & \\
\hline 369 & Original uploader was AVERIEZEN \({ }^{1346}\) at EN.WIKIBOOKS \({ }^{1347}\) & \\
\hline 370 & PEARTS \(^{1348}\) & \\
\hline 371 & & PD \\
\hline 372 & Original uploader was AVERIEZEN \({ }^{1349}\) at EN.WIKIBOOKS \({ }^{1350}\) & \\
\hline 373 & Original uploader was AVERIEZEN \({ }^{1351}\) at EN.WIKIBOOKS \({ }^{1352}\) & \\
\hline 374 & PEARTS \(^{1353}\) & \\
\hline 375 & Original uploader was AVERIEZEN \({ }^{1354}\) at EN.WIKIBOOKS \({ }^{1355}\) & \\
\hline 376 & & GFDL \\
\hline 377 & Original uploader was AVERIEZEN \({ }^{1356}\) at EN.WIKIBOOKS \({ }^{1357}\) & \\
\hline 378 & PEARTS \({ }^{1358}\) & \\
\hline 379 & Original uploader was AVERIEZEN \({ }^{1359}\) at EN.WIKIBOOKS \({ }^{1360}\) & \\
\hline 380 & Original uploader was AVERIEZEN \({ }^{1361}\) at EN.WIKIBOOKS \({ }^{1362}\) & \\
\hline 381 & Original uploader was AVERIEZEN \({ }^{1363}\) at EN.WIKIBOOKS \({ }^{1364}\) & \\
\hline 382 & PEARTS \({ }^{1365}\) & \\
\hline
\end{tabular}

\footnotetext{
1334 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1335 httP://En.WIKIBOOKS.ORG
1336 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AJOSELLIS
1337 нTtP://EN.WIKIBOOKS.ORG
1338 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1339 нTTP://EN.WIKIBOOKS.ORG
1340 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1341 HTTP://EN.WIKIBOOKS.ORG
1342 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN
1343 нтTP://EN.WIKIBOOKS.ORG
1344 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1345 HTTP://EN.WIKIBOOKS.ORG
1346 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1347 htTP://EN.WIKIBOOKS.ORG
1348 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1349 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1350 HTTP://EN.WIKIBOOKS.ORG
1351 httP://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN 1352 HTTP://EN.WIKIBOOKS.ORG
1353 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1354 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN
1355 нTTP://EN.WIKIBOOKS.ORG
1356 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1357 httP://En.WIKIBOOKS.ORG
1358 нтTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1359 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1360 httP://En.WIKIBOOKS.ORG
1361 httP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1362 httP://En.WIKIBOOKS.ORG
1363 httP://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN
1364 нTTP://EN.WIKIBOOKS.ORG
1365 http://en.wIKIbooks.ORG/WIKI/USER\%3ApEARTS
}
\begin{tabular}{|c|c|c|}
\hline 383 & PEARTS \({ }^{1366}\) & \\
\hline 384 & PEARTS \({ }^{1367}\) & \\
\hline 385 & Original uploaded by AVERIEZEN \({ }^{1368}\) (Transfered by
PEARTS \({ }^{1369}\)) & \\
\hline 386 & PEARTS \({ }^{1370}\) & \\
\hline 387 & Original uploader was AvERIEZEN \({ }^{1371}\) at EN.WIKIBOOKS \({ }^{1372}\) & \\
\hline 388 & PEARTS \({ }^{1373}\) & \\
\hline 389 & PEARTS \({ }^{1374}\) & \\
\hline 390 & PEARTS \({ }^{1375}\) & \\
\hline 391 & PEARTS \({ }^{1376}\) & \\
\hline 392 & PEARTS \({ }^{1377}\) & \\
\hline 393 & PEARTS \({ }^{1378}\) & \\
\hline 394 & PEARTS \({ }^{1379}\) & \\
\hline 395 & Paul James Chatman & PD \\
\hline 396 & Paul James Chatman & PD \\
\hline 397 & Paul James Chatman & PD \\
\hline 398 & PEARTS \({ }^{1380}\) & \\
\hline 399 & PEARTS \({ }^{1381}\) & \\
\hline 400 & PEARTS \({ }^{1382}\) & \\
\hline 401 & PEARTS \({ }^{1383}\) & \\
\hline 402 & PEARTS \({ }^{1384}\) & \\
\hline 403 & PEARTS \({ }^{1385}\) & \\
\hline 404 & PEARTS \({ }^{1386}\) & \\
\hline 405 & PEARTS \({ }^{1387}\) & \\
\hline 406 & PEARTS \({ }^{1388}\) & \\
\hline 407 & Original uploader was AVERIEZEN \({ }^{1389}\) at EN.WIKIBOOKS \({ }^{1390}\) & \\
\hline
\end{tabular}

\footnotetext{
1366 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1367 нttp://en.wIKIbooks.org/wiki/USER\%3ApeARTS
1368 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1369 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1370 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1371 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1372 HTTP://En.WIKIBOOKS.ORG
1373 HTTP://En.wIKIbOOKS.ORG/WIKI/USER\%3ApEARTS
1374 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1375 http://en.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1376 нTtP://En.wIKIbooks.org/wIKI/USER\%3ApEARTS
1377 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1378 http://En.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1379 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1380 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1381 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1382 нTtP://En.wIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1383 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1384 htte://EN.WIKIBOOKS.ORG/WIKI/USER\%3ApEARTS
1385 http://En.wIKIbooks.org/wikI/USER\%3ApeARTS
1386 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1387 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1388 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1389 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1390 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 408 & Original uploader was AverieZEn \({ }^{1391}\) at EN.WIKIBOOKS \({ }^{1392}\) & \\
\hline 409 & PEARTS \({ }^{1393}\) & \\
\hline 410 & Original uploader was AvERIEZEN \({ }^{1394}\) at EN.WIKIBOOKS \({ }^{1395}\) & \\
\hline 411 & PEARTS \({ }^{1396}\) & \\
\hline 412 & PEARTS \({ }^{1397}\) & \\
\hline 413 & PEARTS \({ }^{1398}\) & \\
\hline 414 & PEARTS \({ }^{1399}\) & \\
\hline 415 & Original uploader was AvERIEZEN \({ }^{1400}\) at EN.WIKIBOOKS \({ }^{1401}\) & \\
\hline 416 & Original uploader was AvERIEZEN \({ }^{1402}\) at EN.WIKIBOOKS \({ }^{1403}\) & \\
\hline 417 & Original uploader was AvERIEZEN \({ }^{1404}\) at EN.WIKIBOOKS \({ }^{1405}\) & \\
\hline 418 & Original uploader was AvERIEZEN \({ }^{1406}\) at EN.WIKIBOOKS \({ }^{1407}\) & \\
\hline 419 & Original uploader was AvERIEZEN \({ }^{1408}\) at EN.WIKIBOOKS \({ }^{1409}\) & \\
\hline 420 & Original uploader was AvERIEZEN \({ }^{1410}\) at EN.WIKIBOOKS \({ }^{1411}\) & \\
\hline 421 & Original uploader was AvERIEZEN \({ }^{1412}\) at EN.WIKIBOOKS \({ }^{1413}\) & \\
\hline 422 & Original uploader was AverieZen \({ }^{1414}\) at EN.WIKIBOOKS \({ }^{1415}\) & \\
\hline 423 & Original uploader was ALEXWILL84 \({ }^{1416}\) at En.WIKIBOOKS \({ }^{1417}\) & \\
\hline 424 & Original uploader was ALEXWILL84 \({ }^{1418}\) at EN.WIKIBOOKS \({ }^{1419}\) & \\
\hline 425 & Original uploader was ALEXWILL84 \({ }^{1420}\) at EN.WIKIBOOKS \({ }^{1421}\) & \\
\hline 426 & Original uploader was AlEXWILL84 \({ }^{1422}\) at EN.WIKIBOOKS \({ }^{1423}\) & \\
\hline
\end{tabular}

\footnotetext{
1391 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1392 HTTP://EN.WIKIBOOKS.ORG
1393 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1394 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1395 нTTP://EN.WIKIBOOKS.ORG
1396 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1397 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1398 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1399 нtтP://En.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1400 HTTP://EN.WIKIBOOKS.ORG/WIKI/ \(\%\) 3AWIKIBOOKS \(\%\) 3AEN\%3AUSER \(\%\) 3AAVERIEZEN
1401 нтTP://EN.WIKIBOOKS.ORG
1402 htte://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1403 htTP://En.WIKIBOOKS.ORG
1404 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1405 httP://En.WIKIBOOKS.ORG
1406 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1407 httP://EN.WIKIBOOKS.ORG
1408 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1409 нтTP://En.WIKIBOOKS.ORG
1410 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1411 httP://En.WIKIBOOKS.ORG
1412 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN
1413 нTtP://EN.WIKIBOOKS.ORG
1414 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1415 htTP://EN.WIKIBOOKS.ORG
1416 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84
1417 htTP://EN.WIKIBOOKS.ORG
1418 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84
1419 нTTP://EN.WIKIBOOKS.ORG
1420 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84
1421 httP://En.WIKIBOOKS.ORG
1422 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84
1423 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|l|l|l|}
\hline 427 & Original uploader was ALEXWILL84 \({ }^{1424}\) at EN.WIKIBOOKS \({ }^{1425}\) & \\
\hline 428 & Original uploader was ALEXWILL84 \({ }^{1426}\) at EN.WIKIBOOKS \({ }^{1427}\) & \\
\hline 429 & Original uploader was ALEXWILL84 \({ }^{1428}\) at EN.WIKIBOOKS \({ }^{1429}\) & \\
\hline 430 & Original uploader was ALEXWILL84 \({ }^{1430}\) at EN.WIKIBOOKS \({ }^{1431}\) & \\
\hline 431 & Original uploader was AVERIEZEN \({ }^{1432}\) at EN.WIKIBOOKS \({ }^{1433}\) & \\
\hline 432 & Original uploader was AVERIEZEN \(^{1434}\) at EN.WIKIBOOKS \({ }^{1435}\) & \\
\hline 433 & Original uploader was AVERIEZEN \({ }^{1436}\) at EN.WIKIBOOKS \({ }^{1437}\) & \\
\hline 434 & Original uploader was AVERIEZEN \({ }^{1438}\) at EN.WIKIBOOKS \({ }^{1439}\) & \\
\hline 435 & Original uploader was AVERIEZEN \({ }^{1440}\) at EN.WIKIBOOKS \({ }^{1441}\) & \\
\hline 436 & Original uploader was AVERIEZEN \({ }^{1442}\) at EN.WIKIBOOKS \({ }^{1443}\) & \\
\hline 437 & Original uploader was AVERIEZEN \({ }^{1444}\) at EN.WIKIBOOKS \({ }^{1445}\) & \\
\hline 438 & Original uploader was AVERIEZEN \({ }^{1446}\) at EN.WIKIBOOKS \({ }^{1447}\) & \\
\hline 439 & Original uploader was AVERIEZEN \({ }^{1448}\) at EN.WIKIBOOKS \({ }^{1449}\) & \\
\hline 440 & Original uploader was AVERIEZEN \({ }^{1450}\) at EN.WIKIBOOKS \({ }^{1451}\) & \\
\hline 441 & Original uploader was AVERIEZEN \({ }^{1452}\) at EN.WIKIBOOKS \({ }^{1453}\) & \\
\hline 442 & Original uploader was AVERIEZEN \({ }^{1454}\) at EN.WIKIBOOKS \({ }^{1455}\) & \\
\hline 443 & DDD3x \({ }^{1456}\) & PD \\
\hline 444 & TELMER6 \({ }^{1457}\) & cc-by-sa-3.0 \\
\hline
\end{tabular}

\footnotetext{
1424 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84 1425 HTTP://EN.WIKIBOOKS.ORG
1426 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84 1427 htte://En.WIKIBOOKS.ORG
1428 http://En.wIKIbooks.org/wIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AALEXWILL84
1429 htte://EN.WIKIBOOKS.ORG
1430 http://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AALEXWILL84 1431 http://EN.WIKIBOOKS.ORG
1432 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1433 HTTP://EN.WIKIBOOKS.ORG
1434 http://En.wIKIbooks.org/wiki/\%3AwIKIbooks\%3Aen\%3AUSER\%3AAverieZen 1435 HTTP://EN.WIKIBOOKS.ORG
1436 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1437 HTTP://EN.WIKIBOOKS.ORG
1438 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1439 HTTP://EN.WIKIBOOKS.ORG
1440 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1441 HTTP://EN.WIKIBOOKS.ORG
1442 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1443 HTTP://EN.WIKIBOOKS.ORG
1444 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN 1445 HTTP://EN.WIKIBOOKS.ORG
1446 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAvERIEZEN 1447 HTTP://EN.WIKIBOOKS.ORG
1448 http://En.WIKIBOOKS.ORG/WIKI/ \% 3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AAVERIEZEN 1449 httP://EN.WIKIBOOKS.ORG
1450 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1451 HTTP://EN.WIKIBOOKS.ORG
1452 htip://En.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1453 HTTP://EN.WIKIBOOKS.ORG
1454 htte://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1455 HTTP://EN.WIKIBOOKS.ORG
1456 нTtP://En.WIKIBOOKS.ORG/wIKI/USER\%3ADDD3x
1457 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ATELMER6
}

```

1458HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ARADIALRONNIE
1459 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ARADIALRONNIE
1460 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APEARTS
1461 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APEARTS
1462 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ARADIALRONNIE
1463 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ARADIALRONNIE
1464 HTTP://EN.WIKIBOOKS.ORG
1465 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ARADIALRONNIE
1466 HTTP://EN.WIKIBOOKS.ORG
1467 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APEARTS
1468 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ARADIALRONNIE
1469 HTTP://EN.WIKIBOOKS.ORG
1470HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ARADIALRONNIE
1471 htTP://EN.WIKIBOOKS.ORG
1472 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ARADIALRONNIE
1473 htTP://EN.WIKIBOOKS.ORG
1474 httP://En.wIkIbOOKS.ORG/WIKI/%3AwIkIbOOKS%3AEN%3AUSER%3ASUMONCIL
1475 нтTP://EN.WIKIBOOKS.ORG
1476 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1477 htTP://EN.WIKIBOOKS.ORG
1478 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
1479 HTTP://EN.WIKIBOOKS.ORG
1480 htTP://En.WIKIBOOKS.ORG/wIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1481 нTTP://EN.WIKIBOOKS.ORG
1482 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
1483 HTTP://EN.WIKIBOOKS.ORG
1484 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1485 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|}
\hline 458 & Original uploader was SUMONCIL \({ }^{1486}\) at EN.WIKIBOOKS \({ }^{1487}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1488}\) at EN.WIKIBOOKS \({ }^{1489}\). \\
\hline 459 & Original uploader was SUMONCIL \({ }^{1490}\) at EN.WIKIBOOKS \({ }^{1491}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1492}\) at EN.WIKIBOOKS \({ }^{1493}\). \\
\hline 460 & Original uploader was SUMONCIL \({ }^{1494}\) at EN.WIKIBOOKS \({ }^{1495}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1496}\) at EN.WIKIBOOKS \({ }^{1497}\). \\
\hline 461 & Original uploader was SUMONCIL \({ }^{1498}\) at EN.WIKIBOOKS \({ }^{1499}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1500}\) at EN.WIKIBOOKS \({ }^{1501}\). \\
\hline 462 & Original uploader was SUMONCIL \({ }^{1502}\) at EN.WIKIBOOKS \({ }^{1503}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1504}\) at EN.WIKIBOOKS \({ }^{1505}\). \\
\hline 463 & Original uploader was SUMONCIL \({ }^{1506}\) at EN.WIKIBOOKS \({ }^{1507}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1508}\) at EN.WIKIBOOKS \({ }^{1509}\). \\
\hline 464 & Original uploader was SumONCIL \({ }^{1510}\) at EN.WIKIBOOKS \({ }^{1511}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1512}\) at EN.WIKIBOOKS \({ }^{1513}\). \\
\hline
\end{tabular}

\footnotetext{
1486 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL 1487 нTTP://EN.WIKIBOOKS.ORG
1488 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1489 htte://EN.WIKIBOOKS.ORG
1490 нtte://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1491 HTTP://EN.WIKIBOOKS.ORG
1492 htte://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA 1493 HTTP://EN.WIKIBOOKS.ORG
1494 нTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1495 HTTP://EN.WIKIBOOKS.ORG
1496 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1497 HTTP://EN.WIKIBOOKS.ORG
1498 нTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1499 HTTP://EN.WIKIBOOKS.ORG
1500 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1501 HTTP://EN.WIKIBOOKS.ORG
1502 нTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1503 HTTP://EN.WIKIBOOKS.ORG
1504 htte://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AADRIGNOLA
1505 нTTP://EN.WIKIBOOKS.ORG
1506 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1507 HTTP://EN.WIKIBOOKS.ORG
1508 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1509 HTTP://EN.WIKIBOOKS.ORG
1510 htte://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1511 HTTP://EN.WIKIBOOKS.ORG
1512 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA 1513 HTTP://EN.WIKIBOOKS.ORG
}

\footnotetext{
1514 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL 1515 нTTP://EN.WIKIBOOKS.ORG
1516 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA 1517 httP://EN.WIKIBOOKS.ORG
1518 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1519 нтTP://EN.WIKIBOOKS.ORG
1520 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1521 HTTP://EN.WIKIBOOKS.ORG
1522 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1523 htTP://En.WIKIBOOKS.ORG
1524 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1525 HTTP://EN.WIKIBOOKS.ORG
1526 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1527 htTP://En.WIKIBOOKS.ORG
1528 нTTP://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1529 htTP://En.WIKIBOOKS.ORG
1530 http://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1531 httP://EN.WIKIBOOKS.ORG
1532 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1533 htTP://En.WIKIBOOKS.ORG
1534 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1535 htte://En.WIKIbOOKS.ORG
1536 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1537 нTTP://EN.WIKIBOOKS.ORG
1538 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1539 нтTP://En.WIKIBOOKS.ORG
1540 нTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1541 HTTP://EN.WIKIBOOKS.ORG
}

\footnotetext{
1542 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL 1543 HTTP://EN.WIKIBOOKS.ORG
1544 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA 1545 HTTP://EN.WIKIBOOKS.ORG
1546 нTtP://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1547 HTTP://EN.WIKIBOOKS.ORG
1548 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1549 HTTP://EN.WIKIBOOKS.ORG
1550 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1551 HTTP://EN.WIKIBOOKS.ORG
1552 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1553 HTTP://EN.WIKIBOOKS.ORG
1554 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1555 HTTP://EN.WIKIBOOKS.ORG
1556 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1557 htte://EN.WIKIBOOKS.ORG
1558 нтtP://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1559 HTTP://EN.WIKIBOOKS.ORG
1560 htte://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1561 HTTP://EN.WIKIBOOKS.ORG
1562 нTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1563 HTTP://EN.WIKIBOOKS.ORG
1564 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1565 HTTP://EN.WIKIBOOKS.ORG
1566 htte://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1567 нTTP://EN.WIKIBOOKS.ORG
1568 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1569 HTTP://EN.WIKIBOOKS.ORG
}

\footnotetext{
1570 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1571 HTTP://EN.WIKIBOOKS.ORG
1572 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1573 HTTP: / /EN.WIKIBOOKS.ORG
1574 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1575 нTTP://EN.WIKIBOOKS.ORG
1576 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1577 HTTP://EN.WIKIBOOKS.ORG
1578 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1579 нTTP: / /EN.WIKIBOOKS.ORG
1580 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1581 HTTP://EN.WIKIBOOKS.ORG
1582 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1583 HTTP://EN.WIKIBOOKS.ORG
1584 нTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1585 HTTP: / /EN.WIKIBOOKS.ORG
1586 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1587 HTTP://EN.WIKIBOOKS.ORG
1588 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1589 HTTP://EN.WIKIBOOKS.ORG
1590 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1591 HTTP://EN.WIKIBOOKS.ORG
1592 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1593 HTTP://EN.WIKIBOOKS.ORG
1594 нTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1595 HTTP://EN.WIKIBOOKS.ORG
1596 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASUMONCIL
1597 HTTP: / /EN.WIKIBOOKS.ORG
1598 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
1599 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 487 & Original uploader was SUMONCIL \({ }^{1600}\) at EN.WIKIBOOKS \({ }^{1601}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1602}\) at EN.WIKIBOOKS \({ }^{1603}\). & \\
\hline 488 & Original uploader was SUMONCIL \({ }^{1604}\) at EN.WIKIBOOKS \({ }^{1605}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1606}\) at EN.WIKIBOOKS \({ }^{1607}\). & \\
\hline 489 & Original uploader was SumONCIL \({ }^{1608}\) at EN.WIKIBOOKS \({ }^{1609}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{1610}\) at EN.WIKIBOOKS \({ }^{1611}\). & \\
\hline 490 & Original uploader was WYNNMC \({ }^{1612}\) at EN.WIKIBOOKS \({ }^{1613}\) & \\
\hline 491 & Original uploader was WYNNMC \({ }^{1614}\) at EN.WIKIBOOKS \({ }^{1615}\) & \\
\hline 492 & PEARTS \({ }^{1616}\) & \\
\hline 493 & Original uploader was WYNNMC \({ }^{1617}\) at EN.WIKIBOOKS \({ }^{1618}\) & \\
\hline 494 & Original uploader was WYNNMC \({ }^{1619}\) at EN.WIKIBOOKS \({ }^{1620}\) & \\
\hline 495 & Original uploader was WYNNMC \({ }^{1621}\) at EN.WIKIBOOKS \({ }^{1622}\) & \\
\hline 496 & Original uploader was WYNNMC \({ }^{1623}\) at EN.WIKIBOOKS \({ }^{1624}\) & \\
\hline 497 & Original uploader was WYNNMC \({ }^{1625}\) at EN.WIKIBOOKS \({ }^{1626}\) & \\
\hline 498 & Original uploader was WYNNMC \({ }^{1627}\) at EN.WIKIBOOKS \({ }^{1628}\) & \\
\hline 499 & Original uploader was WYNNMC \({ }^{1629}\) at EN.WIKIBOOKS \({ }^{1630}\) & \\
\hline 500 & Original uploader was WYNNMC \({ }^{1631}\) at EN.WIKIBOOKS \({ }^{1632}\) & \\
\hline
\end{tabular}
```

1600 нTtP://En.wIKIbOOKS.org/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
1601 HTTP://EN.WIKIBOOKS.ORG
1602HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1603 HTTP://EN.WIKIBOOKS.ORG
1604 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
1605 HTTP://EN.WIKIBOOKS.ORG
1606 htTP://En.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1607 HTTP://EN.WIKIBOOKS.ORG
1608 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
1609 HTTP://EN.WIKIBOOKS.ORG
1610HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
1611 HTTP://EN.WIKIBOOKS.ORG
1612 HTTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEn%3AUSER%3AWYnNMC
1613 HTTP://EN.WIKIBOOKS.ORG
1614 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1615 HTTP://EN.WIKIBOOKS.ORG
1616 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APEARTS
1617 hTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1618 HTTP://EN.WIKIBOOKS.ORG
1619HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1620 HTTP://EN.WIKIBOOKS.ORG
1621 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AWynNMC
1622 HTTP://EN.WIKIBOOKS.ORG
1623 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1624 HTTP://EN.WIKIBOOKS.ORG
1625 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1626 HTTP://EN.WIKIBOOKS.ORG
1627 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AWYnNMC
1628 HTTP://EN.WIKIBOOKS.ORG
1629 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1630HTTP://EN.WIKIBOOKS.ORG
1631 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AWYNNMC
1632HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|l|l|l|}
\hline 501 & Original uploader was WYNNMC \({ }^{1633}\) at EN.WIKIBOOKS \({ }^{1634}\) & \\
\hline 502 & PEARTS \(^{1635}\) & \\
\hline 503 & Original uploader was WYNNMC \({ }^{1636}\) at EN.WIKIBOOKS \({ }^{1637}\) & \\
\hline 504 & Original uploader was WYNNMC \({ }^{1638}\) at EN.WIKIBOOKS \({ }^{1639}\) & \\
\hline 0 & Loremus Ipsemus \(^{10}\) & None \\
\hline 506 & PEARTS \(^{1640}\) & \\
\hline 507 & PEARTS \(^{1641}\) & \\
\hline 508 & PEARTS \(^{1642}\) & \\
\hline 509 & PEARTS \(^{1643}\) & \\
\hline 510 & Original uploader was WYNNMC \(^{1644}\) at EN.WIKIBOOKS & \\
\hline 511 & PEARTS \(^{1646}\) & \\
\hline 512 & PEARTS \(^{1647}\) & \\
\hline 513 & PEARTS \(^{1648}\) & \\
\hline 514 & PEARTS \(^{1649}\) & \\
\hline 515 & PEARTS \(^{1650}\) & \\
\hline 516 & PEARTS \(^{1651}\) & \\
\hline 517 & PEARTS \(^{1652}\) & None \\
\hline 518 & Original uploader was WYNNMC
\end{tabular}

\footnotetext{
1633 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC 1634 htTP://EN.WIKIBOOKS.ORG
1635 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1636 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1637 httP://En.WIKIBOOKS.ORG
1638 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3AWYNNMC
1639 htte://En.WIKIbOOKS.ORG
1640 нTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ApEARTS
1641 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1642 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1643 нTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ApEARTS
1644 httP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYnNMC
1645 htip://En.WIKIBOOKS.ORG
1646 нTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1647 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1648 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1649 нтtp://en.wIKIbooks.org/wiki/USER\%3ApeARTS
1650 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1651 htTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1652 нTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1653 нTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1654 HTTP://EN.WIKIBOOKS.ORG
1655 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1656 нTTP://EN.WIKIBOOKS.ORG
1657 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWYNNMC
1658 нтTP://En.WIKIBOOKS.ORG
1659 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1660 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
}
\begin{tabular}{|l|l|l|}
\hline 524 & SOYLENTGREEN \(^{1661}\) & GFDL \\
\hline 525 & SOYLENTGREEN \(^{1662}\) & GFDL \\
\hline 526 & SoYLENTGREEN \(^{1663}\) & GFDL \\
\hline 527 & SOYLENTGREEN \(^{1664}\) & GFDL \\
\hline 528 & & GFDL \\
\hline 529 & Lawrence D’Oliveiro \(_{\text {GPL }}\) \\
\hline 530 & PEARTS \(^{1665}\) & \\
\hline 531 & & PD \\
\hline 532 & Original uploader was LIRTFERK \(^{1666}\) at EN.WIKIBOOKS
\end{tabular}

1661 htte://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1662 http://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1663 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1664 htte://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1665 нTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ApEARTS
1666 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALIRTFERK
1667 HTTP://EN.WIKIBOOKS.ORG
1668 htip://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABADALIA
1669 HTTP://EN.WIKIBOOKS.ORG
1670 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABADALIA
1671 HTTP://EN.WIKIBOOKS.ORG
1672 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABADALIA
1673 HTTP://EN.WIKIBOOKS.ORG
1674 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1675 HTTP://EN.WIKIBOOKS.ORG
1676 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1677 HTTP://EN.WIKIBOOKS.ORG
1678 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1679 HTTP://EN.WIKIBOOKS.ORG
1680 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIbOOKS\%3AEN\%3AUSER\%3AAvERIEZEN
1681 HTTP://EN.WIKIBOOKS.ORG
1682 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1683 HTTP://EN.WIKIBOOKS.ORG
1684 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
1685 HTTP://EN.WIKIBOOKS.ORG
\begin{tabular}{|c|c|c|}
\hline 551 & Original uploader was AVERIEZEN \({ }^{1686}\) at EN.WIKIBOOKS \({ }^{1687}\) & \\
\hline 552 & Original uploader was AVERIEZEN \({ }^{1688}\) at EN.WIKIBOOKS \({ }^{1689}\) & \\
\hline 553 & & GFDL \\
\hline 554 & & GFDL \\
\hline 555 & & GFDL \\
\hline 556 & & GFDL \\
\hline 557 & Original uploader was MrFELIS \({ }^{1690}\) at EN.WIKIBOOKS \({ }^{1691}\) & \\
\hline 558 & Original uploader was YOYOTWEAK \({ }^{1692}\) at EN.WIKIBOOKS \({ }^{1693}\) & \\
\hline 559 & Original uploader was YOYOTWEAK \({ }^{1694}\) at EN.WIKIBOOKS \({ }^{1695}\) & \\
\hline 560 & Original uploader was YOYOTWEAK \({ }^{1696}\) at EN.WIKIBOOKS \({ }^{1697}\) & \\
\hline 561 & Original uploader was YOYOTWEAK \({ }^{1698}\) at EN.WIKIBOOKS \({ }^{1699}\) & \\
\hline 562 & Original uploader was YOYOTWEAK \({ }^{1700}\) at EN.WIKIBOOKS \({ }^{1701}\) & \\
\hline 563 & Original uploader was YOYOTWEAK \({ }^{1702}\) at EN.WIKIBOOKS \({ }^{1703}\) & \\
\hline 564 & Original uploader was YOYOTWEAK \({ }^{1704}\) at EN.WIKIBOOKS \({ }^{1705}\) & \\
\hline 565 & Original uploader was YoYOTWEAK \({ }^{1706}\) at EN.WIKIBOOKS \({ }^{1707}\) & \\
\hline 566 & Original uploader was YoYotweak \({ }^{1708}\) at EN.WIKIBOOKS \({ }^{1709}\) & \\
\hline 567 & Original uploader was YoYotweak \({ }^{1710}\) at EN.WIKIBOOKS \({ }^{1711}\) & \\
\hline 568 & Original uploader was MrFELIS \({ }^{1712}\) at EN.WIKIBOOKS \({ }^{1713}\) & \\
\hline 0 & Loremus Ipsemus & None \\
\hline 0 & Loremus Ipsemus & None \\
\hline 0 & Loremus Ipsemus & None \\
\hline 572 & Original uploader was MrFELIS \({ }^{1714}\) at EN.WIKIBOOKS \({ }^{1715}\) & \\
\hline
\end{tabular}
```

1686 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AAVERIEZEN
1687 нTTP://EN.WIKIBOOKS.ORG
1688 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AAVERIEZEN
1689 нTTP://EN.WIKIBOOKS.ORG
1690 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMRFELIS
1691 HTTP://EN.WIKIBOOKS.ORG
1692 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1693 нTTP://EN.WIKIBOOKS.ORG
1694 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1695 HTTP://EN.WIKIBOOKS.ORG
1696 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1697 HTTP://EN.WIKIBOOKS.ORG
1698 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1699 HTTP://EN.WIKIBOOKS.ORG
1700 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1701 htTP://EN.WIKIBOOKS.ORG
1702 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1703 HTTP://EN.WIKIBOOKS.ORG
1704 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1705 HTTP://EN.WIKIBOOKS.ORG
1706 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1707 htTP://EN.WIKIBOOKS.ORG
1708 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1709 HTTP://EN.WIKIBOOKS.ORG
1710 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AYOYOTWEAK
1711 HTTP://EN.WIKIBOOKS.ORG
1712 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMRFELIS
1713 HTTP://EN.WIKIBOOKS.ORG
1714 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMRFELIS
1715 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 573 & Original uploader was MrFELIS \({ }^{1716}\) at EN.WIKIBOOKS \({ }^{1717}\) & \\
\hline 574 & Original uploader was MrFELIS \({ }^{1718}\) at EN.WIKIBOOKS \({ }^{1719}\) & \\
\hline 575 & Original uploader was MrFELIS \({ }^{1720}\) at EN.WIKIBOOKS \({ }^{1721}\) & \\
\hline 576 & MRFELIS \({ }^{1722}\). Original uploader was MrFELIS \({ }^{1723}\) at EN.WIKIBOOKS \({ }^{1724}\) & \\
\hline 577 & Original uploader was MrFELIS \({ }^{1725}\) at EN.WIKIBOOKS \({ }^{\text {I726 }}\) & \\
\hline 578 & MRFELIS \({ }^{1727}\). Original uploader was MrFELIS \({ }^{1728}\) at EN.WIKIBOOKS \({ }^{1729}\) & \\
\hline 579 & MRFELIS \({ }^{1730}\). Original uploader was MRFELIS \({ }^{1731}\) at EN.WIKIBOOKS \({ }^{1732}\) & \\
\hline 580 & MRFELIS \({ }^{\text {I733 }}\). Original uploader was MRFELIS \({ }^{1734}\) at
EN.WIKIBOOKS & \\
\hline 581 & PEARTS \({ }^{1736}\) & \\
\hline 582 & PEARTS \({ }^{1737}\) & \\
\hline 583 & Original uploader was KiERAN \({ }^{1738}\) at EN.WIKIBOOKS \({ }^{1739}\) & GFDL \\
\hline 584 & Original uploader was KiERAN \({ }^{1740}\) at EN.WIKIBOOKS \({ }^{1741}\) & GFDL \\
\hline 585 & Original uploader was KiERAN \({ }^{1742}\) at EN.WIKIBOOKS \({ }^{1743}\) & GFDL \\
\hline 586 & Original uploader was KiERAN \({ }^{1744}\) at EN.WIKIBOOKS \({ }^{1745}\) & GFDL \\
\hline 587 & Original uploader was KiERAN \({ }^{1746}\) at EN.WIKIBOOKS \({ }^{1747}\) & GFDL \\
\hline
\end{tabular}

\footnotetext{
1716HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS 1717 HTTP://EN.WIKIBOOKS.ORG
1718 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1719 HTTP://EN.WIKIBOOKS.ORG
1720 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1721 HTTP://EN.WIKIBOOKS.ORG
1722 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1723 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1724 HTTP://EN.WIKIBOOKS.ORG
1725 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1726 HTTP://EN.WIKIBOOKS.ORG
1727 http://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1728 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1729 HTTP://EN.WIKIBOOKS.ORG
1730 http://EN.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1731 httP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1732 HTTP://EN.WIKIBOOKS.ORG
1733 http://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1734 httP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMRFELIS
1735 HTTP://EN.WIKIBOOKS.ORG
1736 нtte://en.wIKIbooks.org/wIKI/USER\%3ApeARTS
1737 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1738 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN 1739 HTTP://EN.WIKIBOOKS.ORG
1740 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN
1741 HTTP://EN.WIKIBOOKS.ORG
1742 http://en.wIKIbooks.org/wiki/\%3AwIKIbooks\%3AEn\%3AUSER\%3AKIERAN 1743 HTTP://EN.WIKIBOOKS.ORG
1744 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN 1745 HTTP://EN.WIKIBOOKS.ORG
1746 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN
1747 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 588 & Original uploader was KiERAN \({ }^{1748}\) at EN.WIKIBOOKS \({ }^{1749}\) & GFDL \\
\hline 589 & Original uploader was KIERAN \({ }^{1750}\) at EN.WIKIBOOKS \({ }^{1751}\) & GFDL \\
\hline 590 & PEARTS \({ }^{1752}\) & \\
\hline 591 & Original uploader was KIERAN \({ }^{1753}\) at EN.WIKIBOOKS \({ }^{1754}\) & GFDL \\
\hline 592 & Original uploader was KiERAN \({ }^{1755}\) at EN.WIKIBOOKS \({ }^{1756}\) & GFDL \\
\hline 593 & PEARTS \({ }^{1757}\) & \\
\hline 594 & Original uploader was KiERAN \({ }^{1758}\) at EN.WIKIBOOKS \({ }^{1759}\) & GFDL \\
\hline 595 & Original uploader was Johno \({ }^{1760}\) at EN.WIKIBOOKS \({ }^{1761}\) & \\
\hline 596 & Original uploader was Johno \({ }^{1762}\) at EN.WIKIBOOKS \({ }^{1763}\) & \\
\hline 597 & Original uploader was Johno \({ }^{1764}\) at EN.WIKIBOOKS \({ }^{1765}\) & \\
\hline 598 & Original uploader was Johno \({ }^{1766}\) at EN.WIKIBOOKS \({ }^{\text {I767 }}\) & \\
\hline 599 & & PD \\
\hline 600 & Original uploader was Johno \({ }^{1768}\) at EN.WIKIBOOKS \({ }^{1769}\) & \\
\hline 601 & Original uploader was DARKONC \({ }^{1770}\) at EN.WIKIBOOKS \({ }^{1771}\) & GFDL \\
\hline 602 & & GFDL \\
\hline 603 & Original uploader was DARKONC \({ }^{1772}\) at EN.WIKIBOOKS \({ }^{1773}\) & GFDL \\
\hline 604 & & GFDL \\
\hline 605 & & GFDL \\
\hline 606 & & GFDL \\
\hline 607 & & GFDL \\
\hline 608 & Original uploader was LAZY-LUMP \({ }^{1774}\) at EN.WIKIBOOKS \({ }^{1775}\) & PD \\
\hline 609 & Original uploader was LAZY-LUMP \({ }^{1776}\) at EN.WIKIBOOKS \({ }^{\text {I777 }}\) & PD \\
\hline
\end{tabular}

\footnotetext{
1748 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AKIERAN 1749 нTTP://EN.WIKIBOOKS.ORG
1750 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN
1751 htTP://EN.WIKIBOOKS.ORG
1752 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1753 HTTP://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN
1754 httP://En.WIKIBOOKS.ORG
1755 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AKIERAN
1756 HTTP://EN.WIKIBOOKS.ORG
1757 нTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ApEARTS
1758 http://en.wIKIbooks.ORG/wIKI/\%3AwIKIbooks\%3Aen\%3AUSER\%3AKIERAN
1759 httP://En.WIKIBOOKS.ORG
1760 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AJOHNO
1761 hTTP://EN.WIKIBOOKS.ORG
1762 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AJOHNO
1763 htTP://En.WIKIBOOKS.ORG
1764 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AJOHNO
1765 HTTP://EN.WIKIBOOKS.ORG
1766 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AJOHNO
1767 нтTP://EN.WIKIBOOKS.ORG
1768 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AJOHNO
1769 нTTP://En.WIKIBOOKS.ORG
1770 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ADARKONC
1771 HTTP://EN.WIKIBOOKS.ORG
1772 нTtP://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3ADARKONC
1773 нTTP://EN.WIKIBOOKS.ORG
1774 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP
1775 нTTP://EN.WIKIBOOKS.ORG
1776 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP
1777 htTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 610 & Original uploader was LAZY-LUMP \({ }^{1778}\) at EN.WIKIBOOKS \({ }^{1779}\) & \\
\hline 611 & Original uploader was LAZY-LUMP \({ }^{1780}\) at EN.WIKIBOOKS \({ }^{1781}\) & PD \\
\hline 612 & Original uploader was LAZY-LUMP \({ }^{1782}\) at EN.WIKIBOOKS \({ }^{1783}\) & PD \\
\hline 613 & Original uploader was LAZY-LUMP \({ }^{1784}\) at EN.WIKIBOOKS \({ }^{1785}\) & PD \\
\hline 614 & Original uploader was LAZY-LUMP \({ }^{1786}\) at EN.WIKIBOOKS \({ }^{\text {1787 }}\) & \\
\hline 615 & & PD \\
\hline 616 & Original uploader was Embri \({ }^{1788}\) at EN.WIKIBOOKS \({ }^{\text {I789 }}\) & \\
\hline 617 & Original uploader was Embri \({ }^{1790}\) at EN.WIKIBOOKS \({ }^{\text {I791 }}\) & \\
\hline 618 & Original uploader was Embri \({ }^{1792}\) at EN.WIKIBOOKS \({ }^{1793}\) & \\
\hline 619 & & \\
\hline 620 & Embri. Original uploader was Embri \({ }^{1794}\) at EN.WIKIBOOKS \({ }^{1795}\) & \\
\hline 621 & PEARTS \({ }^{1796}\) & \\
\hline 622 & PEARTS \({ }^{1797}\) & \\
\hline 623 & PEARTS \({ }^{1798}\) & \\
\hline 624 & SOYLENTGREEN \({ }^{1799}\) & GFDL \\
\hline 625 & SOYLENTGREEN \({ }^{1800}\) & \\
\hline 626 & SOYLENTGREEN \({ }^{1801}\) & GPL \\
\hline 627 & SOYLENTGREEN \({ }^{1802}\) & GFDL \\
\hline 628 & SOYLENTGREEN \({ }^{1803}\) & GFDL \\
\hline 629 & SOYLENTGREEN \({ }^{1804}\) using a file from the releasenotes of Blender version 2.32 & GFDL \\
\hline 630 & SOYLENTGREEN \({ }^{1805}\) using a file from the releasenotes of Blender version 2.32 & GFDL \\
\hline 631 & SOYLENTGREEN \({ }^{1806}\) & GPL \\
\hline
\end{tabular}

\footnotetext{
1778 http://En.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP 1779 HTTP://EN.WIKIBOOKS.ORG
1780 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP
1781 htte://EN.WIKIBOOKS.ORG
1782 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP 1783 HTTP://EN.WIKIBOOKS.ORG
1784 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP 1785 HTTP://EN.WIKIBOOKS.ORG
1786 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ALAZY-LUMP
1787 нтTP://EN.WIKIBOOKS.ORG
1788 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AEMBRI
1789 HTTP://EN.WIKIBOOKS.ORG
1790 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AEMBRI
1791 HTTP://EN.WIKIBOOKS.ORG
1792 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AEMBRI
1793 HTTP://EN.WIKIBOOKS.ORG
1794 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AEMBRI
1795 нTTP://EN.WIKIBOOKS.ORG
1796 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1797 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3APEARTS
1798 нтtp://en.wIKIbooks.org/wIKI/USER\%3ApEARTS
1799 htte://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1800 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1801 http://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1802 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1803 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1804 HTTP://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1805 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1806 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
}
\begin{tabular}{|c|c|c|}
\hline 632 & SOYLENTGREEN \({ }^{1807}\) & GPL \\
\hline 633 & SOYLENTGREEN \({ }^{1808}\) & GPL \\
\hline 634 & SOYLENTGREEN \({ }^{1809}\) & GFDL \\
\hline 635 & SOYLENTGREEN \({ }^{1810}\) & GFDL \\
\hline 636 & SOYLENTGREEN \({ }^{1811}\) & GFDL \\
\hline 637 & SOYLENTGREEN \({ }^{1812}\) & GFDL \\
\hline 638 & SOYLENTGREEN \({ }^{1813}\) & PD \\
\hline 639 & SOYLENTGREEN \({ }^{1814}\) & GPL \\
\hline 640 & SOYLENTGREEN \({ }^{1815}\) & \\
\hline 641 & SOYLENTGREEN \({ }^{1816}\) & GPL \\
\hline 642 & SOYLENTGREEN \({ }^{1817}\) & PD \\
\hline 643 & SoylentGreen \({ }^{1818}\), Krzysztof P. Jasiutowicz & GFDL \\
\hline 644 & SOYLENTGREEN \({ }^{1819}\) (Edited by:WEEIX \({ }^{1820}\)) & GPL \\
\hline 645 & SOYLENTGREEN \({ }^{1821}\) & GFDL \\
\hline 646 & WEEIX \({ }^{1822}\) (TALK \({ }^{1823}\)) 14:15, 2 November 2010 (UTC) & GPL \\
\hline 647 & DOBZ116 \({ }^{1824}\) & GFDL \\
\hline 648 & & GFDL \\
\hline 649 & & PD \\
\hline 650 & Original uploader was DAN \(13{ }^{1825}\) at EN.WIKIBOOKS \({ }^{1826}\) & GFDL \\
\hline 651 & & \\
\hline 652 & & \\
\hline 653 & & \\
\hline 654 & & \\
\hline 655 & & \\
\hline 656 & & \\
\hline 657 & & \\
\hline 658 & & \\
\hline 659 & & \\
\hline 660 & & \\
\hline 661 & & \\
\hline 662 & & \\
\hline 663 & & \\
\hline
\end{tabular}

1807 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1808 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1809 HTTP://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1810 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1811 http://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1812 HTtP://En.WIKIbooks.ORG/WIKI/USER\%3ASOYLENTGREEN 1813 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1814 http://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1815 http://en.wIKIbooks.ORG/WIKI/USER\%3ASOYLENTGREEN 1816 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1817 http://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1818 http://en.wikibooks.org/wiki/USER\%3ASoylentGreen 1819 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 1820 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1821 http://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
1822 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1823 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20tALK\%3AWEEIX
1824 httP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ADOBZ116
1825 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ADAN13
1826 HTTP://EN.WIKIBOOKS.ORG
\begin{tabular}{|c|c|c|}
\hline 664 & WEEIX \({ }^{1827}\) & \\
\hline 665 & Original uploader was HRAKAROO \({ }^{1828}\) at EN.WIKIBOOKS \({ }^{1829}\) & PD \\
\hline 666 & Original uploader was WEIRDHAT \({ }^{1830}\) at EN.WIKIBOOKS \({ }^{1831}\). Later version(s) were uploaded by RDP \({ }^{1832}\) at EN.WIKIBOOKS \({ }^{1833}\). & PD \\
\hline 667 & Original uploader was ICKY-WIKI \({ }^{1834}\) at EN.WIKIBOOKS \({ }^{1835}\) & GPL \\
\hline 668 & & \\
\hline 669 & Original uploader was Hrakaroo \({ }^{1836}\) at EN.WIKIBOOKS \({ }^{1837}\) & GPL \\
\hline 670 & Original uploader was ThOMASB \({ }^{1838}\) at EN.WIKIBOOKS \({ }^{1839}\) & GPL \\
\hline 671 & \begin{tabular}{l}
Original uploader \\
EN.WIKIBOOKS
\end{tabular} 年 was CHINMAY GAUTAM \(^{1840}\) at & cc-by-sa-2.5 \\
\hline 672 & Original uploader was HraKaroo \({ }^{1842}\) at EN.WIKIBOOKS \({ }^{\text {I843 }}\) & GPL \\
\hline 673 & Original uploader was ZEROONE \({ }^{1844}\) at EN.WIKIBOOKS \({ }^{1845}\) & \\
\hline 674 & Original uploader was ZEROONE \({ }^{1846}\) at EN.WIKIBOOKS \({ }^{1847}\) & \\
\hline 675 & Original uploader was ZEROONE \({ }^{1848}\) at EN.WIKIBOOKS \({ }^{1849}\) & \\
\hline 676 & Original uploader was ZEROONE \({ }^{1850}\) at EN.WIKIBOOKS \({ }^{1851}\) & \\
\hline 677 & & PD \\
\hline 678 & Original uploader was ZEROONE \({ }^{1852}\) at EN.WIKIBOOKS \({ }^{1853}\) & \\
\hline 679 & Original uploader was ZEROONE \({ }^{1854}\) at EN.WIKIBOOKS \({ }^{1855}\) & \\
\hline 680 & Original uploader was ZEROONE \({ }^{1856}\) at EN.WIKIBOOKS \({ }^{1857}\) & \\
\hline
\end{tabular}

\footnotetext{
1827 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1828 нTTP://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AHRAKAROO
1829 HTTP://EN.WIKIBOOKS.ORG
1830 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AWEIRDHAT
1831 httP://En.WIKIBOOKS.ORG
1832 HTTP://EN.WIKIBOOKS.ORG/WIKI/ \% 3AWIKIBOOKS \% 3AEN\%3AUSER\%3ARDP
1833 HTTP://EN.WIKIBOOKS.ORG
1834 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AICKY-WIKI
1835 HTTP://EN.WIKIBOOKS.ORG
1836 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AHRAKAROO
1837 HTTP://EN.WIKIBOOKS.ORG
1838 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AThOMASB
1839 HTTP://EN.WIKIBOOKS.ORG
1840 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AChINMAY\%20GAUTAM
1841 http://EN.WIKIBOOKS.ORG
1842 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AHRAKAROO
1843 HTTP://EN.WIKIBOOKS.ORG
1844 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
1845 HTTP://EN.WIKIBOOKS.ORG
1846 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
1847 HTTP://EN.WIKIBOOKS.ORG
1848 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE 1849 http://EN.WIKIBOOKS.ORG
1850 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
1851 HTTP://EN.WIKIBOOKS.ORG
1852 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
1853 HTTP://EN.WIKIBOOKS.ORG
1854 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
1855 HTTP://EN.WIKIBOOKS.ORG
1856 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
1857 HTTP://EN.WIKIBOOKS.ORG
}

\footnotetext{
1858 http://En.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AARGENTO
1859 нTTP://EN.WIKIBOOKS.ORG
1860 htTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AOthmANSKN2
1861 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AOTHMANSKN2
1862 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AOTHMANSKN2
1863 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AOTHMANSKN2
1864 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY 1865 HTTP://EN.WIKIBOOKS.ORG
1866 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20AnOMALY
1867 нTTP://EN.WIKIBOOKS.ORG
1868 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY
1869 нTTP://En.WIKIBOOKS.ORG
1870 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY 1871 HTTP://EN.WIKIBOOKS.ORG
1872 http://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20AnOMALY
1873 HTTP://EN.WIKIBOOKS.ORG
1874 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY 1875 нTTP://En.WIKIBOOKS.ORG
1876 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY 1877 htte://En.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 706 & WEEIX \({ }^{1878}\) & \\
\hline 707 & WeEIX \({ }^{1879}\) & \\
\hline 708 & Weeix \({ }^{1880}\) & \\
\hline 709 & Weeix \({ }^{1881}\) & \\
\hline 710 & WeEIX \({ }^{1882}\) & \\
\hline 711 & & PD \\
\hline 712 & Original uploader was Totophe64 \({ }^{1883}\) at EN.WIKIBOOKS \({ }^{1884}\) & \\
\hline 713 & Original uploader was TOTOPHE64 \({ }^{1885}\) at EN.WIKIBOOKS \({ }^{1886}\) & \\
\hline 714 & Original uploader was Totophe64 \({ }^{1887}\) at EN.WIKIBOOKS \({ }^{1888}\) & \\
\hline 715 & Original uploader was Totophe64 \({ }^{1889}\) at EN.WIKIBOOKS \({ }^{1890}\) & \\
\hline 716 & Original uploader was Totophe64 \({ }^{1891}\) at EN.WIKIBOOKS \({ }^{1892}\) & \\
\hline 717 & Original uploader was Totophe64 \({ }^{1893}\) at EN.WIKIBOOKS \({ }^{1894}\) & \\
\hline 718 & Original uploader was Totophe64 \({ }^{1895}\) at EN.WIKIBOOKS \({ }^{1896}\) & \\
\hline 719 & Original uploader was Totophe64 \({ }^{1897}\) at EN.WIKIBOOKS \({ }^{1898}\) & \\
\hline 720 & Original uploader was Totophe64 \({ }^{1899}\) at EN.WIKIBOOKS \({ }^{1900}\) & \\
\hline 0 & Loremus Ipsemus & None \\
\hline 722 & Original uploader was Totophe64 \({ }^{1901}\) at EN.WIKIBOOKS \({ }^{1902}\) & GFDL \\
\hline 723 & Original uploader was Totophe64 \({ }^{1903}\) at EN.WIKIBOOKS \({ }^{1904}\) & GFDL \\
\hline 724 & Original uploader was Totophe64 \({ }^{1905}\) at EN.WIKIBOOKS \({ }^{1906}\) & \\
\hline 725 & Original uploader was TOTOPHE64 \({ }^{1907}\) at EN.WIKIBOOKS \({ }^{1908}\) & GFDL \\
\hline 726 & & GFDL \\
\hline 727 & & GFDL \\
\hline
\end{tabular}

\footnotetext{
1878 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX 1879 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1880 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1881 httP://En.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1882 httP://En.WIKIBOOKS.ORG/WIKI/USER\%3AWEEIX
1883 httr://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64
1884 HTTP://EN.WIKIBOOKS.ORG
1885 http://En.WIKIBOOKS.ORG/wIKI/ \% 3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3ATOTOPhe64
1886 HTTP://EN.WIKIBOOKS.ORG
1887 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64
1888 HTTP://EN.WIKIBOOKS.ORG
1889 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64
1890 HTTP://EN.WIKIBOOKS.ORG
1891 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64
1892 HTTP://EN.WIKIBOOKS.ORG
1893 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64
1894 HTTP://EN.WIKIBOOKS.ORG
1895 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64 1896 HTTP://EN.WIKIBOOKS.ORG
1897 http://En.wIKIBOOKS.ORG/wIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64
1898 HTTP://EN.WIKIBOOKS.ORG
1899 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64 1900 http://EN.WIKIBOOKS.ORG
1901 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64 1902 HTTP://EN.WIKIBOOKS.ORG
1903 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64 1904 HTTP://EN.WIKIBOOKS.ORG
1905 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64 1906 HTTP://EN.WIKIBOOKS.ORG
1907 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ATOTOPHE64 1908 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 728 & & GFDL \\
\hline 729 & & GFDL \\
\hline 730 & & GFDL \\
\hline 731 & & GFDL \\
\hline 732 & Original uploader was Soeb \({ }^{1909}\) at EN.WIKIBOOKS \({ }^{1910}\) & \\
\hline 733 & Original uploader was Soeb \({ }^{1911}\) at EN.WIKIBOOKS \({ }^{1912}\) & \\
\hline 734 & Original uploader was SoEB \({ }^{1913}\) at EN.WIKIBOOKS \({ }^{1914}\) & \\
\hline 735 & Original uploader was SoEB \({ }^{1915}\) at EN.WIKIBOOKS \({ }^{1916}\) & \\
\hline 736 & Original uploader was SoEB \({ }^{1917}\) at EN.WIKIBOOKS \({ }^{1918}\) & \\
\hline 737 & Original uploader was SoEB \({ }^{1919}\) at EN.WIKIBOOKS \({ }^{1920}\) & \\
\hline 738 & Original uploader was SOEB \({ }^{1921}\) at EN.WIKIBOOKS \({ }^{1922}\) & \\
\hline 739 & Original uploader was SOEB \({ }^{1923}\) at EN.WIKIBOOKS \({ }^{1924}\) & \\
\hline 740 & Original uploader was SOEB \({ }^{1925}\) at EN.WIKIBOOKS \({ }^{1926}\) & \\
\hline 741 & Original uploader was SoEB \({ }^{1927}\) at EN.WIKIBOOKS \({ }^{1928}\) & \\
\hline 742 & Original uploader was SoEB \({ }^{1929}\) at EN.WIKIBOOKS \({ }^{1930}\) & \\
\hline 743 & Original uploader was SoEB \({ }^{1931}\) at EN.WIKIBOOKS \({ }^{1932}\) & \\
\hline 744 & Original uploader was SoEB \({ }^{1933}\) at EN.WIKIBOOKS \({ }^{1934}\) & \\
\hline 745 & Original uploader was SoEB \({ }^{1935}\) at EN.WIKIBOOKS \({ }^{1936}\) & \\
\hline 746 & Original uploader was SoEB \({ }^{1937}\) at EN.WIKIBOOKS \({ }^{1938}\) & \\
\hline 747 & Original uploader was SoEB \({ }^{1939}\) at EN.WIKIBOOKS \({ }^{1940}\) & \\
\hline
\end{tabular}

\footnotetext{
1909 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1910 htte://En.WIKIbooks.ORG
1911 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1912 нтTP://EN.WIKIBOOKS.ORG
1913 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1914 httP://En.WIKIBOOKS.ORG
1915 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1916 http://En.WIKIbooks.ORG
1917 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1918 нTTP://EN.WIKIBOOKS.ORG
1919 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1920 HTTP://En.WIKIBOOKS.ORG
1921 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1922 httP://En.WIKIBOOKS.ORG
1923 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB
1924 httP://EN.WIKIBOOKS.ORG
1925 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB
1926 httP://En.WIKIBOOKS.ORG
1927 нTtP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1928 HTTP://EN.WIKIBOOKS.ORG
1929 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB
1930 нтTP://EN.WIKIBOOKS.ORG
1931 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB
1932 httP://En.WIKIBOOKS.ORG
1933 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1934 HTTP://EN.WIKIBOOKS.ORG
1935 http://En.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB
1936 нTTP://EN.WIKIBOOKS.ORG
1937 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB
1938 нтTP://En.WIKIBOOKS.ORG
1939 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 1940 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 748 & Original uploader was SoEB \({ }^{1941}\) at EN.WIKIBOOKS \({ }^{1942}\) & \\
\hline 749 & Original uploader was SOEB \({ }^{1943}\) at EN.WIKIBOOKS \({ }^{1944}\) & \\
\hline 750 & & GFDL \\
\hline 751 & Original uploader was Allefant \({ }^{1945}\) at EN.WIKIBOOKS \({ }^{1946}\) & \\
\hline 752 & Original uploader was Allefant \({ }^{1947}\) at EN.WIKIBOOKS \({ }^{1948}\) & \\
\hline 753 & Original uploader was Allefant \({ }^{1949}\) at EN.WIKIBOOKS \({ }^{1950}\) & \\
\hline 754 & Original uploader was Allefant \({ }^{1951}\) at EN.WIKIBOOKS \({ }^{1952}\) & \\
\hline 755 & Original uploader was Allefant \({ }^{1953}\) at EN.WIKIBOOKS \({ }^{1954}\) & \\
\hline 756 & Original uploader was Allefant \({ }^{1955}\) at EN.WIKIBOOKS \({ }^{1956}\) & \\
\hline 757 & Original uploader was Allefant \({ }^{1957}\) at EN.WIKIBOOKS \({ }^{1958}\) & \\
\hline 758 & Original uploader was Allefant \({ }^{1959}\) at EN.WIKIBOOKS \({ }^{1960}\) & \\
\hline 759 & Othman Ahmad & GPL \\
\hline 760 & Tictoon \({ }^{1961}\) & GFDL \\
\hline 761 & Tictoon \({ }^{1962}\) & GPL \\
\hline 762 & TICTOON \({ }^{1963}\) & GPL \\
\hline 763 & Tictoon \({ }^{1964}\) & GPL \\
\hline 764 & Tictoon \({ }^{1965}\) & GPL \\
\hline 765 & Tictoon \({ }^{1966}\) & GPL \\
\hline 766 & Original uploader was TBOL3 \({ }^{1967}\) at EN.WIKIBOOKS \({ }^{1968}\) & \\
\hline 767 & Original uploader was TBOL3 \({ }^{1969}\) at EN.WIKIBOOKS \({ }^{1970}\) & \\
\hline 768 & Original uploader was ANDYD \({ }^{1971}\) at EN.WIKIBOOKS \({ }^{1972}\) & \\
\hline
\end{tabular}
```

1941 http://En.wIKIbOOKS.ORG/wIKI/%3AwIKIbOOKS%3AEn%3AUSER%3ASOEb
1942 HTTP://EN.WIKIBOOKS.ORG
1943 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASOEB
1944 HTTP://EN.WIKIBOOKS.ORG
1945 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AALLEFANT
1946 HTTP://EN.WIKIBOOKS.ORG
1947 http://en.wIkIbooks.org/wIkI/%3AwIkIbooks%3Aen%3AUSER%3AAllefAnt
1948 HTTP://EN.WIKIBOOKS.ORG
1949 HTtP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AALLEFANT
1950 HTTP://EN.WIKIBOOKS.ORG
1951 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AALLEFANT
1952HTTP://EN.WIKIBOOKS.ORG
1953 http://en.wIkIbooks.org/wiki/%3AwIkIbooks%3Aen%3AUSER%3AAlLEfAnt
1954 HTTP://EN.WIKIBOOKS.ORG
1955 HTTP://En.WIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEn%3AUSER%3AALLEFANT
1956 HTTP://EN.WIKIBOOKS.ORG
1957 httP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AALLEFANT
1958 нтTP://EN.WIKIbOOKS.ORG
1959 http://En.wIkIbooks.org/wIkI/%3AwIkIbooks%3Aen%3AUSER%3AAllefAnt
1960 HTTP://EN.WIKIBOOKS.ORG
1961 htTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATICTOON
1962 нтTP://En.wIKIbOOKS.ORG/WIKI/TICTOON
1963HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATICTOON
1964 htTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATICTOON
1965 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATICTOON
1966 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATICTOON
1967 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ATBOL3
1968 HTTP://EN.WIKIBOOKS.ORG
1969 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATBOL3
1970 HTTP://EN.WIKIBOOKS.ORG
1971 httP://En.wIKIbooks.org/wIkI/%3AwIkIbOOKS%3AEn%3AUSER%3AAndyD
1972 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 769 & Original uploader was ANDYD \({ }^{1973}\) at EN.WIKIBOOKS \({ }^{1974}\) & \\
\hline 770 & Original uploader was ANDYD \({ }^{1975}\) at EN.WIKIBOOKS \({ }^{1976}\) & \\
\hline 771 & Original uploader was ANDYD \({ }^{1977}\) at EN.WIKIBOOKS \({ }^{1978}\) & \\
\hline 772 & Original uploader was ANDYD \({ }^{1979}\) at EN.WIKIBOOKS \({ }^{1980}\) & \\
\hline 773 & Original uploader was ANDYD \({ }^{1981}\) at EN.WIKIBOOKS \({ }^{1982}\) & \\
\hline 774 & Original uploader was ANDYD \({ }^{1983}\) at EN.WIKIBOOKS \({ }^{1984}\) & \\
\hline 775 & Original uploader was AndYD \({ }^{1985}\) at EN.WIKIBOOKS \({ }^{1986}\) & \\
\hline 776 & Original uploader was AndYD \({ }^{1987}\) at EN.WIKIBOOKS \({ }^{1988}\) & \\
\hline 777 & Original uploader was ANDYD \({ }^{1989}\) at EN.WIKIBOOKS \({ }^{1990}\) & \\
\hline 778 & Original uploader was ANDYD \({ }^{1991}\) at EN.WIKIBOOKS \({ }^{1992}\) & \\
\hline 779 & Original uploader was ANDYD \({ }^{1993}\) at EN.WIKIBOOKS \({ }^{1994}\) & \\
\hline 780 & Original uploader was ANDYD \({ }^{1995}\) at EN.WIKIBOOKS \({ }^{1996}\) & \\
\hline 781 & Original uploader was ANDYD \({ }^{1997}\) at EN.WIKIBOOKS \({ }^{1998}\) & \\
\hline 782 & Original uploader was ANDYD \({ }^{1999}\) at EN.WIKIBOOKS \({ }^{2000}\) & \\
\hline 783 & Original uploader was ANDYD \({ }^{2001}\) at EN.WIKIBOOKS \({ }^{2002}\) & \\
\hline 784 & Original uploader was ANDYD \({ }^{2003}\) at EN.WIKIBOOKS \({ }^{2004}\) & \\
\hline 785 & & \\
\hline 786 & JACKSON WILLIAMS (MALAZ) 2005 & PD \\
\hline 787 & Blender Foundation & GPL \\
\hline 788 & Blender Foundation & GPL \\
\hline
\end{tabular}

\footnotetext{
1973 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD 1974 httP://EN.WIKIBOOKS.ORG
1975 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD 1976 HTTP://EN.WIKIBOOKS.ORG
1977 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD 1978 htte://En.WIKIbooks.ORG
1979 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1980 HTTP://EN.WIKIBOOKS.ORG
1981 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1982 нtтP://En.WIKIBOOKS.ORG
1983 нTtP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1984 HTTP://EN.WIKIBOOKS.ORG
1985 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1986 HTTP://EN.WIKIBOOKS.ORG
1987 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1988 htTP://En.WIKIBOOKS.ORG
1989 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1990 нтTP://EN.WIKIBOOKS.ORG
1991 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1992 нтtP://EN.WIKIBOOKS.ORG
1993 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1994 нтtP://En.WIKIBOOKS.ORG
1995 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD 1996 нTTP://EN.WIKIBOOKS.ORG
1997 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
1998 нтtP://EN.WIKIBOOKS.ORG
1999 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD
2000 нтtP://En.WIKIBOOKS.ORG
2001 htte://en.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AANDyD 2002 htip://En.WIKIbOOKS.ORG
2003 http://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3AAndyD
2004 нTtP://EN.WIKIBOOKS.ORG
2005 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMALAZ
}

\footnotetext{
2006 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ARADIALRONNIE 2007 HTTP://EN.WIKIBOOKS.ORG
2008 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ARADIALRONNIE
2009 нtтP://EN.WIKIBOOKS.ORG
2010 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ARADIALRONNIE
2011 HTTP://EN.WIKIBOOKS.ORG
2012 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3ARADIALRONNIE 2013 HTTP://EN.WIKIBOOKS.ORG
2014 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ARADIALRONNIE
2015 HTTP://EN.WIKIBOOKS.ORG
2016 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ARADIALRONNIE
2017 http://EN.WIKIBOOKS.ORG
2018 http://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIbOOKS\%3AEn\%3AUSER\%3ARADIALRONNIE
2019 HTTP://EN.WIKIBOOKS.ORG
2020 http://en.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2021 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2022 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2023 http://En.WIKIbooks.org/wIKI/USER\%3ASOYLENTGREEN
2024 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2025 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2026 HTtP://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2027 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2028 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
}
\begin{tabular}{|c|c|c|}
\hline 810 & SOYLENTGREEN \({ }^{2029}\) & GPL \\
\hline 811 & EILEXE \({ }^{2030}\) & GPL \\
\hline 812 & SOYLENTGREEN \({ }^{2031}\) & GPL \\
\hline 813 & SOYLENTGREEN \({ }^{2032}\) & GFDL \\
\hline 814 & SOYLENTGREEN \({ }^{2033}\) & GPL \\
\hline 815 & SOYLENTGREEN \({ }^{2034}\) & GPL \\
\hline 816 & SOYLENTGREEN \({ }^{2035}\) & PD \\
\hline 817 & SOYLENTGREEN \({ }^{2036}\) & GPL \\
\hline 818 & SOYLENTGREEN \({ }^{2037}\) & cc-by-sa-2.5 \\
\hline 819 & SOYLENTGREEN \({ }^{2038}\) & GFDL \\
\hline 820 & SOYLENTGREEN \({ }^{2039}\) & GPL \\
\hline 821 & Blender Foundation & GPL \\
\hline 822 & SOYLENTGREEN \({ }^{2040}\) & GPL \\
\hline 823 & SOYLENTGREEN \({ }^{2041}\) & GPL \\
\hline 824 & SOYLENTGREEN \({ }^{2042}\) & GFDL \\
\hline 825 & SOYLENTGREEN \({ }^{2043}\) & GFDL \\
\hline 826 & SOYLENTGREEN \({ }^{2044}\) & GFDL \\
\hline 827 & SOYLENTGREEN \({ }^{2045}\) & \\
\hline 828 & SOYLENTGREEN \({ }^{2046}\) & GPL \\
\hline 829 & SOYLENTGREEN \({ }^{2047}\) & GPL \\
\hline 830 & SOYLENTGREEN \({ }^{2048}\) & GPL \\
\hline 831 & SOYLENTGREEN \({ }^{2049}\) & GFDL \\
\hline 832 & SOYLENTGREEN \({ }^{2050}\) & GFDL \\
\hline 833 & SOYLENTGREEN \({ }^{2051}\) & GPL \\
\hline 834 & SOYLENTGREEN \({ }^{2052}\) & GPL \\
\hline 835 & SOYLENTGREEN \({ }^{2053}\) & GPL \\
\hline
\end{tabular}

\footnotetext{
2029 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2030 Http://de.wIKIbooks.ORG/wIKI/USER\%3AEILEXE
2031 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2032 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2033 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2034 htte://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2035 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2036 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2037 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2038 http://En.wIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2039 http://En.wIKIbOOKS.ORG/WIKI/USER\%3ASOYLEntGreen 2040 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2041 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2042 http://En.wIKIbooks.org/WIKI/USER\%3ASOYLEntGreen 2043 httr://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2044 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2045 http://En.wIKIbooks.org/WIKI/USER\%3ASOYLEntGreen 2046 httr://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2047 htte://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2048 http://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2049 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2050 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2051 http://En.wIKIbooks.org/WIKI/USER\%3ASOYLEntGreen 2052 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN 2053 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
}
\begin{tabular}{|c|c|c|}
\hline 836 & SOYLENTGREEN \({ }^{2054}\) & GPL \\
\hline 837 & SOYLENTGREEN \({ }^{2055}\) & GPL \\
\hline 838 & SOYLENTGREEN \({ }^{2056}\) & GPL \\
\hline 839 & SoylentGreen \({ }^{2057}\) & GPL \\
\hline 840 & SOYLENTGREEN \({ }^{2058}\) & GPL \\
\hline 841 & SOYLENTGREEN \({ }^{2059}\) & PD \\
\hline 842 & SOYLENTGREEN \({ }^{2060}\) & GPL \\
\hline 843 & SOYLENTGREEN \({ }^{2061}\) & GPL \\
\hline 844 & SOYLENTGREEN \({ }^{2062}\) & GPL \\
\hline 845 & SOYLENTGREEN \({ }^{2063}\) & PD \\
\hline 846 & SOYLENTGREEN \({ }^{2064}\) & PD \\
\hline 847 & Original uploader was Porlando \({ }^{2065}\) at EN.WIKIBOOKS 2066 . Later version(s) were uploaded by ADRIGNOLA \({ }^{2067}\) at EN.WIKIBOOKS \({ }^{2068}\). & \\
\hline 848 & Original uploader was Porlando \({ }^{2069}\) at EN.WIKIBOOKS \({ }^{2070}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2071}\) at EN.WIKIBOOKS \({ }^{2072}\). & \\
\hline 849 & Original uploader was Porlando \({ }^{2073}\) at EN.WIKIBOOKS \({ }^{2074}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2075}\) at EN.WIKIBOOKS \({ }^{2076}\). & \\
\hline 850 & & PD \\
\hline 851 & LDO \({ }^{2077}\) & cc-by-sa-3.0 \\
\hline 852 & & PD \\
\hline 853 & & PD \\
\hline 854 & & PD \\
\hline 855 & & PD \\
\hline 856 & & PD \\
\hline 857 & & PD \\
\hline
\end{tabular}
```

2054 HtTP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2055 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2056 HTtP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2057 HTtP://En.wIKIbooks.org/wIKI/USER%3ASOYLENTGREEN
2058 HTtP://EN.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2059 HTtP://EN.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2060 HTtP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2061 нtтP://En.wIKIbooks.org/wIKI/USER%3ASoYlentGreen
2062HtTP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2063 HtTP://En.wIKIbooks.ORG/WIKI/USER%3ASOYLENTGREEN
2064 HTtP://En.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2065 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3APORLANDO
2066 HTTP://EN.WIKIBOOKS.ORG
2067 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2068 HTTP://EN.WIKIBOOKS.ORG
2069 HTtP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3APORLANDO
2070 HTtP://EN.WIKIBOOKS.ORG
2071 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2072 HTTP://EN.WIKIBOOKS.ORG
2073 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3APORLANDO
2074 HTTP://EN.WIKIBOOKS.ORG
2075 htTP://EN.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2076 HTTP://EN.WIKIBOOKS.ORG
2077 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO

```
\begin{tabular}{|c|c|c|}
\hline 858 & & PD \\
\hline 859 & & PD \\
\hline 860 & & PD \\
\hline 861 & & PD \\
\hline 862 & & PD \\
\hline 863 & & PD \\
\hline 864 & & PD \\
\hline 865 & & PD \\
\hline 866 & & PD \\
\hline 867 & & PD \\
\hline 0 & Loremus Ipsemus & None \\
\hline 869 & OTHMAN AHMAD \({ }^{2078}\) & cc-by-sa-3.0 \\
\hline 870 & Original uploader was LOKIClOCK \({ }^{2079}\) at EN.WIKIBOOKS \({ }^{2080}\) & GFDL \\
\hline 871 & Original uploader was LOKICLOCK \({ }^{2081}\) at EN.WIKIBOOKS \({ }^{2082}\) & \\
\hline 872 & Original uploader was LOKICLOCK \({ }^{2083}\) at EN.WIKIBOOKS \({ }^{2084}\) & \\
\hline 873 & & PD \\
\hline 874 & JACKSON Williams (Malaz) \({ }^{2085}\) & PD \\
\hline 875 & JACKSON WILLIAMS (MALAZ) \({ }^{2086}\) & PD \\
\hline 876 & & PD \\
\hline 877 & JACKSON WILLIAMS (MALAZ) \({ }^{2087}\); Original uploader was MALAZ \(^{2088}\) at EN.WIKIBOOKS \({ }^{2089}\) & PD \\
\hline 878 & & PD \\
\hline 879 & JACKSON WILLIAMS (MALAZ) \({ }^{2090}\); Original uploader was MALAZ \(^{2091}\) at EN.WIKIBOOKS \({ }^{2092}\) & PD \\
\hline 880 & JACKSON WILLIAMS (MALAZ) \({ }^{2093}\) & PD \\
\hline 881 & JACKSON WILLIAMS (MALAZ) \({ }^{2094}\). Original uploader was MALAZ \({ }^{2095}\) at EN.WIKIBOOKS \({ }^{2096}\) & PD \\
\hline 882 & JACKSON WILLIAMS (MALAZ) \({ }^{2097}\) & PD \\
\hline 883 & Jackson Williams (Malaz) \({ }^{2098}\) & PD \\
\hline
\end{tabular}
```

2078 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AOthmANSKN2
2079 httP://En.wIKIbooks.org/wIKI/%3AwIKIbooks%3AEn%3AUSER%3ALOKIClOCK
2080 httP://En.WIKIbOOKS.ORG
2081 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ALOKICLOCK
2082 HTTP://EN.WIKIBOOKS.ORG
2083 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ALOKICLOCK
2084 HTTP://EN.WIKIBOOKS.ORG
2085 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMALAZ
2086 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMALAZ
2087 http://en.wIkIbooks.org/wIkI/%3AwIkIbooks%3Aen%3AUSER%3AMALAZ
2088 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMALAZ
2089 htTP://EN.WIKIBOOKS.ORG
2090 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMALAZ
2091 HTtP://En.wIKIbooks.ORG/wIKI/%3AwIKIbOOKS%3AEN%3AUSER%3AMALAZ
2092 HTTP://EN.WIKIBOOKS.ORG
2093 нTTP://En.wIKIBOOKS.ORG/wIKI/USER%3AMALAZ
2094 HTTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMALAZ
2095 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMALAZ
2096 HTTP://En.WIKIBOOKS.ORG
2097 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMALAZ
2098 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMALAZ

```
\begin{tabular}{|c|c|c|}
\hline 884 & JACKSON WILLIAMS (MALAZ) \({ }^{2099}\). Original uploader was MALAZ \(^{2100}\) at EN.WIKIBOOKS \({ }^{2101}\) & PD \\
\hline 885 & JACKSON WILLIAMS (MALAZ) \({ }^{2102}\). Original uploader was MALAZ \({ }^{2103}\) at EN.WIKIBOOKS \({ }^{2104}\) & PD \\
\hline 886 & Jackson Williams (Malaz) \({ }^{2105}\) & PD \\
\hline 887 & Original uploader was GREENSWEATER \(^{2106}\) at
EN.WIKIBOOKS \({ }^{2107}\) & PD \\
\hline 888 & & PD \\
\hline 889 & & \\
\hline 890 & & \\
\hline 891 & Original uploader was GREENSWEATER \(^{2116}\) at
EN.WIKIBOOKS \({ }^{2117}\) & \\
\hline 892 & Original uploader \(\quad\) was \begin{tabular}{l}
GREENSWEATER \({ }^{2118}\)
\end{tabular} at
EN.WIKIBOOKS 2119 . Later version(s)
ADRIGNOLA \({ }^{2120}\) at \({ }^{\text {at }}\) EN. WIKIBOOKS \({ }^{2121}\). & \\
\hline 893 & Original uploader was GREENSWEATER \(^{2122}\) at
EN.WIKIBOOKS \({ }^{2123}\) & \\
\hline 894 & Original uploader was GREENSWEATER \(^{2124}\) at
EN.WIKIBOOKS \({ }^{2125}\) & \\
\hline
\end{tabular}

\footnotetext{
2099 http://en.wIKIbooks.org/wIkI/\%3AwIkIbOOKS\%3AEn\%3AUSER\%3AMALAZ
2100 http://en.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMALAZ
2101 HTTP://EN.WIKIBOOKS.ORG
2102 http://en.wIKIbooks.ORG/wIkI/\%3AwIkIbOOKS\%3AEn\%3AUSER\%3AMALAZ
2103 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMALAZ
2104 HTTP://EN.WIKIBOOKS.ORG
2105 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMALAZ
2106 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2107 HTTP://EN.WIKIBOOKS.ORG
2108 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2109 HTTP://EN.WIKIBOOKS.ORG
2110 httP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2111 htte://EN.WIKIBOOKS.ORG
2112 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2113 HTTP://EN.WIKIBOOKS.ORG
2114 httP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2115 HTTP://EN.WIKIBOOKS.ORG
2116 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2117 http://en.wIKIBOOKS.ORG
2118 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2119 HTTP://EN.WIKIBOOKS.ORG
2120 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2121 HTTP://EN.WIKIBOOKS.ORG
2122 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2123 HTTP://EN.WIKIBOOKS.ORG
2124 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREENSWEATER
2125 HTTP://EN.WIKIBOOKS.ORG
}

```

2126HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2127 HTTP://EN.WIKIBOOKS.ORG
2128 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2129HTTP://EN.WIKIBOOKS.ORG
2130HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2131 HTTP://EN.WIKIBOOKS.ORG
2132HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2133 HTTP://EN.WIKIBOOKS.ORG
2134 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2135 нTTP://EN.WIKIBOOKS.ORG
2136 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2137 HTTP://EN.WIKIBOOKS.ORG
2138 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2139 нTTP://EN.WIKIBOOKS.ORG
2140HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2141 нтTP://EN.WIKIBOOKS.ORG
2142HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2143 HTTP://EN.WIKIBOOKS.ORG
2144 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2145 нTTP://EN.WIKIBOOKS.ORG
2146HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AKESTEN

```
\begin{tabular}{|c|c|c|}
\hline 916 & & PD \\
\hline 917 & & PD \\
\hline 918 & & PD \\
\hline 919 & & GFDL \\
\hline 920 & Original uploader was AIDAN.SULLIVAN \({ }^{2147}\) at EN.WIKIBOOKS \({ }^{2148}\). Later version(s) were uploaded by AdRIGNOLA \({ }^{2149}\), SWIFT \(^{2150}\), DAL308 \({ }^{2151}\) at EN.WIKIBOOKS \({ }^{2152}\). & \\
\hline 921 & Original uploader was ASCEN \({ }^{2153}\) at EN.WIKIBOOKS \({ }^{2154}\) & GPL \\
\hline 922 & Original uploader was ASCEN \({ }^{2155}\) at EN.WIKIBOOKS \({ }^{2156}\) & GPL \\
\hline 923 & Original uploader was AIDAN.SULLIVAN \({ }^{2157}\) at
EN.WIKIBOOKS \({ }^{2158}\) & GPL \\
\hline 924 & Original uploader was AIDAN.SULLIVAN \({ }^{2159}\) at
EN.WIKIBOOKS \({ }^{2160}\) & GPL \\
\hline 925 & & GFDL \\
\hline 926 & & GFDL \\
\hline 927 & & GFDL \\
\hline 928 & & GFDL \\
\hline 929 & . Original uploader was MoOHASHA \({ }^{2161}\) at EN.WIKIBOOKS \({ }^{2162}\) & PD \\
\hline 930 & Moohasha \({ }^{2163}\). Original uploader was Moohasha \({ }^{2164}\) at EN.WIKIBOOKS \({ }^{2165}\) & \\
\hline 931 & Original uploader was MOOHASHA \({ }^{2166}\) at EN.WIKIBOOKS \({ }^{2167}\) & \\
\hline 932 & MOOHASHA \({ }^{2168}\). Original uploader was MOOHASHA \({ }^{2169}\) at EN.WIKIBOOKS \({ }^{2170}\) & \\
\hline 933 & Moohasha \({ }^{2171}\). Original uploader was Moohasha \({ }^{2172}\) at EN.WIKIBOOKS \({ }^{2173}\) & \\
\hline
\end{tabular}
```

2147 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AAIDAN.SULLIVAN
2148 HTTP://EN.WIKIBOOKS.ORG
2149 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2150 HTtP://En.wIKIbOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ASWIFT
2151 htTP://EN.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ADAL 308
2152HTTP://EN.WIKIBOOKS.ORG
2153 HTTP://En.wIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AASCEN
2154 HTTP://EN.WIKIBOOKS.ORG
2155 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AASCEN
2156 HTTP://EN.WIKIBOOKS.ORG
2157 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AAIDAN.SULLIVAN
2158 HTTP://EN.WIKIBOOKS.ORG
2159HTTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AAIDAN.SULLIVAN
2160HTTP://EN.WIKIBOOKS.ORG
2161 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2162HTTP://EN.WIKIBOOKS.ORG
2163 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2164 HTtP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2165 HTTP://EN.WIKIBOOKS.ORG
2166 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2167 HTTP://EN.WIKIBOOKS.ORG
2168 HTtP://EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2169 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2170HTTP://EN.WIKIBOOKS.ORG
2171 HTtP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2172 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMOOHASHA
2173HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|l|l|l|}
\hline 934 & Original uploader was MOOHASHA \(^{2174}\) at EN.WIKIBOOKS \({ }^{2175}\) & \\
\hline 935 & \begin{tabular}{l}
MOOHASHA \\
EN.WIKIBOOKS \\
2178
\end{tabular} & Original uploader was MOOHASHA \({ }^{2177}\) at
\end{tabular}\(|\)

\footnotetext{
2174 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMOOHASHA 2175 нтTP://EN.WIKIBOOKS.ORG
2176 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMOOHASHA 2177 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMOOHASHA 2178 нTTP://EN.WIKIBOOKS.ORG
2179 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMOOHASHA 2180 нтtP://En.WIKIBOOKS.ORG
2181 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2182 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2183 HTTP://EN.WIKIBOOKS.ORG
2184 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2185 HTTP://EN.WIKIBOOKS.ORG
2186 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2187 http://En.WIKIBOOKS.ORG/WIKI/ \(\%\) 3AWIKIBOOKS \% 3AEN\%3AUSER\%3AMOOHASHA 2188 нтTP://EN.WIKIBOOKS.ORG
2189 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2190 HTTP://EN.WIKIBOOKS.ORG/WIKI/ \% 3AWIKIBOOKS \% 3AEN\%3AUSER\%3AMOOHASHA 2191 нтTP://EN.WIKIBOOKS.ORG
2192 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2193 HTTP://EN.WIKIBOOKS.ORG
2194 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMOOHASHA
2195 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMOOHASHA
2196 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AMOOHASHA 2197 нTTP://EN.WIKIBOOKS.ORG
2198 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2199 HTtP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2200 нтtP://En.WIKIBOOKS.ORG
2201 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2202 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2203 нTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 947 & Moohasha \({ }^{2204}\). Original uploader was Moohasha \({ }^{2205}\) at EN.WIKIBOOKS \({ }^{2206}\) & \\
\hline 948 & MOOHASHA \({ }^{2207}\). Original uploader was MOOHASHA \({ }^{2208}\) at EN.WIKIBOOKS \({ }^{2209}\) & GFDL \\
\hline 949 & Moohasha \({ }^{2210}\). Original uploader was Moohasha \({ }^{2211}\) at EN.WIKIBOOKS \({ }^{2212}\) & GFDL \\
\hline 950 & Moohasha \({ }^{2213}\). Original uploader was Moohtsha \({ }^{2214}\) at EN.WIKIBOOKS \({ }^{2215}\) & GFDL \\
\hline 951 & MOOHASHA \({ }^{2216}\). Original uploader was Moohasha \({ }^{2217}\) at EN.WIKIBOOKS \({ }^{2218}\) & GFDL \\
\hline 952 & MOOHASHA \({ }^{2219}\). Original uploader was MOOHASHA \({ }^{2220}\) at EN.WIKIBOOKS \({ }^{2221}\) & GFDL \\
\hline 953 & Moohasha \({ }^{2222}\). Original uploader was Moohasha \({ }^{2223}\) at EN.WIKIBOOKS \({ }^{2224}\) & GFDL \\
\hline 954 & MOOHASHA \({ }^{2225}\). Original uploader was MOOHASHA \({ }^{2226}\) at EN.WIKIBOOKS \({ }^{2227}\) & GFDL \\
\hline 955 & MOOHASHA \({ }^{2228}\). Original uploader was Moohasha \({ }^{2229}\) at EN.WIKIBOOKS \({ }^{2230}\) & GFDL \\
\hline 956 & & GFDL \\
\hline 957 & & GFDL \\
\hline 958 & & GFDL \\
\hline 959 & & GFDL \\
\hline 960 & & GFDL \\
\hline 961 & & GFDL \\
\hline 962 & & GFDL \\
\hline 963 & & GFDL \\
\hline
\end{tabular}

\footnotetext{
2204 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2205 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2206 нтtP://En.WIKIBOOKS.ORG
2207 http://en.wikibooks.org/wiki/\%3AwIkIbooks \(\% 3\) Aen \(\%\) 3AUSER \(\%\) 3AMoohasha
2208 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2209 htte://EN.WIKIBOOKS.ORG
2210 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AMOOHASHA
2211 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2212 HTTP://EN.WIKIBOOKS.ORG
2213 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2214 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA 2215 HTTP://EN.WIKIBOOKS.ORG
2216 HTtP://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2217 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2218 HTTP://EN.WIKIBOOKS.ORG
2219 http://en.wikibooks.org/wiki/\%3Awikibooks\%3Aen\%3AUSER\%3AMoohasha
2220 нTtP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2221 htte://En.WIKIbOOKS.ORG
2222 http://En.wIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AMOOHASHA
2223 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2224 htte://En.WIKIBOOKS.ORG
2225 http://En.wIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AMOOHASHA
2226 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2227 нTTP://EN.WIKIBOOKS.ORG
2228 http://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3AMoohasha
2229 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AMOOHASHA
2230 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 964 & & GFDL \\
\hline 965 & SoYLENTGREEN \({ }^{2231}\) & PD \\
\hline 966 & SOYLENTGREEN \({ }^{2232}\) & GPL \\
\hline 967 & SOYLENTGREEN \({ }^{2233}\) & PD \\
\hline 968 & SOYLENTGREEN \({ }^{2234}\) & GPL \\
\hline 969 & SOYLENTGREEN \({ }^{2235}\) & GPL \\
\hline 970 & SoyLENTGREEN \({ }^{2236}\) & PD \\
\hline 971 & Jeremy B.. Original uploader was BULLERCRUZ1 \({ }^{2237}\) at EN.WIKIBOOKS \({ }^{2238}\) & \\
\hline 972 & Jeremy B.. Original uploader was BULLERCRUZ1 \({ }^{2239}\) at EN.WIKIBOOKS \({ }^{2240}\) & \\
\hline 973 & Jeremy B.. Original uploader was BULLERCRUZ1 \({ }^{2241}\) at EN.WIKIBOOKS \({ }^{2242}\) & \\
\hline 974 & Jeremy B. Original uploader was Bullercruz1 \({ }^{2243}\) at EN.WIKIBOOKS \({ }^{2244}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2245}\) at EN.WIKIBOOKS \({ }^{2246}\). & PD \\
\hline 975 & Jeremy B. & PD \\
\hline 976 & Jeremy B. & PD \\
\hline 977 & Jeremy B. & PD \\
\hline 978 & Jeremy B. & PD \\
\hline 979 & Jeremy B. & PD \\
\hline 980 & Jeremy B. Original uploader was BuLLERCRUZ1 \({ }^{2247}\) at EN.WIKIBOOKS \({ }^{2248}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2249}\) at EN.WIKIBOOKS \({ }^{2250}\). & PD \\
\hline 981 & Jeremy B. Original uploader was Bullercruz1 \({ }^{2251}\) at EN.WIKIBOOKS \({ }^{2252}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2253}\) at EN.WIKIBOOKS \({ }^{2254}\). & PD \\
\hline
\end{tabular}

\footnotetext{
2231 http://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2232 httr://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2233 htte://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2234 http://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2235 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2236 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2237 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2238 нтте://En.WIKIBOOKS.ORG
2239 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2240нтTP://EN.WIKIBOOKS.ORG
2241 httr://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \% 3AEN\%3AUSER\%3ABULLERCRUZ1
2242 HTTP://EN.WIKIBOOKS.ORG
2243 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIbOoks\%3AEn\%3AUSER\%3ABULLERCRUZ1
2244 нтTP://EN.WIKIBOOKS.ORG
2245 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2246 нтTP://EN.WIKIBOOKS.ORG
2247 httr: //En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2248 нтTP://En.WIKIBOOKS.ORG
2249 http://En.wIKIBOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2250 нтTP://EN.WIKIBOOKS.ORG
2251 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2252 нтTP://EN.WIKIBOOKS.ORG
2253 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2254 нтTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 982 & Jeremy B.. Original uploader was BuLLERCRUZ1 \({ }^{2255}\) at EN.WIKIBOOKS \({ }^{2256}\) & \\
\hline 983 & Jeremy B. & PD \\
\hline 984 & Jeremy B.. Original uploader was Bullercruz1 2257 at EN.WIKIBOOKS \({ }^{2258}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2259}\) at EN.WIKIBOOKS \({ }^{2260}\). & PD \\
\hline 985 & Lawrence D'Oliveiro & GPL \\
\hline 986 & Lawrence D'Oliveiro & GPL \\
\hline 987 & Lawrence D'Oliveiro & GPL \\
\hline 988 & Lawrence D'Oliveiro & GPL \\
\hline 989 & Lawrence D'Oliveiro & GPL \\
\hline 990 & Lawrence D'Oliveiro & GPL \\
\hline 991 & Original uploader was GABIO \({ }^{2261}\) at EN.WIKIBOOKS \({ }^{2662}\) & \\
\hline 992 & Nkansah Rexford & cc-by-sa-3.0 \\
\hline 993 & Nkansah Rexford & cc-by-sa-3.0 \\
\hline 994 & Original uploader was GABIO \({ }^{2263}\) at EN.WIKIBOOKS \({ }^{2264}\) & \\
\hline 995 & Original uploader was GABIO \({ }^{2265}\) at EN.WIKIBOOKS \({ }^{2266}\) & \\
\hline 996 & Original uploader was Gabio \({ }^{2267}\) at EN.WIKIBOOKS \({ }^{2268}\) & PD \\
\hline 997 & Original uploader was GABIO \({ }^{2269}\) at EN.WIKIBOOKS \({ }^{2270}\) & PD \\
\hline 998 & Original uploader was GABIO \({ }^{2271}\) at EN.WIKIBOOKS \({ }^{2272}\) & PD \\
\hline 999 & Original uploader was GABIO \({ }^{2273}\) at EN.WIKIBOOKS \({ }^{2274}\) & PD \\
\hline 1000 & Original uploader was GABIO \({ }^{2275}\) at EN.WIKIBOOKS \({ }^{2276}\) & PD \\
\hline 1001 & Original uploader was GABIO \({ }^{2277}\) at EN.WIKIBOOKS \({ }^{2278}\) & PD \\
\hline 1002 & Original uploader was GABIO \({ }^{2279}\) at EN.WIKIBOOKS \({ }^{2880}\) & PD \\
\hline 1003 & Original uploader was GABIO \({ }^{2281}\) at EN.WIKIBOOKS \({ }^{2282}\) & \\
\hline
\end{tabular}

\footnotetext{
2255 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1 2256 нтtP://En.wIKIBOOKS.ORG
2257 httr://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3ABullercruz1
2258 HTTP://EN.WIKIBOOKS.ORG
2259 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2260 нtтP://EN.WIKIBOOKS.ORG
2261 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2262 HTTP://En.WIKIBOOKS.ORG
2263 HTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2264 HTTP://EN.WIKIBOOKS.ORG
2265 HTTP://En.wIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AGABIO
2266 HTTP://EN.WIKIBOOKS.ORG
2267 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2268 нтtP://En.WIKIbooks.org
2269 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2270 HTTP://EN.WIKIBOOKS.ORG
2271 http://en.wIKIbooks.ORG/wIkI/\%3AwIkIbooks\%3Aen\%3AUSER\%3AGAbIO
2272 HTTP://EN.WIKIBOOKS.ORG
2273 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2274 нtтP://En.WIKIbooks.org
2275 HTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2276 HTTP://EN.WIKIBOOKS.ORG
2277 HTtP://En.wIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AGABIO
2278 нтtP://En.WIKIBOOKS.ORG
2279 http://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2280 HTTP://EN.WIKIBOOKS.ORG
2281 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2282 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 1004 & Original uploader was GABIO \({ }^{2283}\) at EN.WIKIBOOKS \({ }^{2284}\) & PD \\
\hline 1005 & Original uploader was GABIO \({ }^{2285}\) at EN.WIKIBOOKS \({ }^{2286}\) & PD \\
\hline 1006 & Original uploader was GABIO \({ }^{2287}\) at EN.WIKIBOOKS \({ }^{2288}\) & PD \\
\hline 1007 & Original uploader was GABIO \({ }^{2289}\) at EN.WIKIBOOKS \({ }^{2290}\) & PD \\
\hline 1008 & Original uploader was GABIO \({ }^{2291}\) at EN.WIKIBOOKS \({ }^{2292}\) & PD \\
\hline 1009 & Original uploader was GABIO \({ }^{2293}\) at EN.WIKIBOOKS \({ }^{2294}\) & PD \\
\hline 1010 & Original uploader was GABIO \({ }^{2295}\) at EN.WIKIBOOKS \({ }^{2296}\) & PD \\
\hline 1011 & Original uploader was GABIO \({ }^{2297}\) at EN.WIKIBOOKS \({ }^{2298}\) & \\
\hline 1012 & Original uploader was GABIO \({ }^{2299}\) at EN.WIKIBOOKS \({ }^{2300}\) & PD \\
\hline 1013 & Original uploader was GABIO \({ }^{2301}\) at EN.WIKIBOOKS \({ }^{2302}\) & PD \\
\hline 1014 & Original uploader was GABIO \({ }^{2303}\) at EN.WIKIBOOKS \({ }^{2304}\) & PD \\
\hline 1015 & Original uploader was GABIO \({ }^{2305}\) at EN.WIKIBOOKS \({ }^{2306}\) & \\
\hline 1016 & Original uploader was GABIO \({ }^{2307}\) at EN.WIKIBOOKS \({ }^{2308}\) & PD \\
\hline 1017 & Original uploader was GABIO \({ }^{2309}\) at EN.WIKIBOOKS \({ }^{2310}\) & PD \\
\hline 1018 & Original uploader was GABIO \({ }^{2311}\) at EN.WIKIBOOKS \({ }^{2312}\) & PD \\
\hline 1019 & Original uploader was GABIO \({ }^{2313}\) at EN.WIKIBOOKS \({ }^{2314}\) & PD \\
\hline 1020 & Original uploader was GABIO \({ }^{2315}\) at EN.WIKIBOOKS \({ }^{2316}\) & \\
\hline
\end{tabular}

\footnotetext{
2283 http://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AGABIO 2284 нтtP://En.WIKIBOOKS.ORG
2285 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AGABIO 2286 HTTP://EN.WIKIBOOKS.ORG
2287 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2288 нттР://EN.WIKIBOOKS.ORG
2289 http://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2290 нттр://En.WIKIBOOKS.ORG
2291 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2292 HTTP://EN.WIKIBOOKS.ORG
2293 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2294 нтTP://EN.WIKIBOOKS.ORG
2295 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2296 нтTP://EN.WIKIBOOKS.ORG
2297 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2298 HTTP://EN.WIKIBOOKS.ORG
2299 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2300 HTTP://EN.WIKIBOOKS.ORG
2301 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2302 нтTP://EN.WIKIBOOKS.ORG
2303 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2304 HTTP://EN.WIKIBOOKS.ORG
2305 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2306 HTTP://EN.WIKIBOOKS.ORG
2307 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2308 нтtP://En.WIKIBOOKS.ORG
2309 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2310 HTTP://EN.WIKIBOOKS.ORG
2311 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2312 нTTP://EN.WIKIBOOKS.ORG
2313 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2314 нтTP://EN.WIKIBOOKS.ORG
2315 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2316 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 1021 & Original uploader was GABIO \({ }^{2317}\) at EN.WIKIBOOKS \({ }^{2318}\) & \\
\hline 1022 & Original uploader was GABIO \({ }^{2319}\) at EN.WIKIBOOKS \({ }^{2320}\) & PD \\
\hline 1023 & Original uploader was GABIO \({ }^{2321}\) at EN.WIKIBOOKS \({ }^{2322}\) & \\
\hline 1024 & Gabio & PD \\
\hline 1025 & Original uploader was GABIO \({ }^{2323}\) at EN.WIKIBOOKS \({ }^{2324}\) & \\
\hline 1026 & Original uploader was GABIO \({ }^{2325}\) at EN.WIKIBOOKS \({ }^{2326}\) & PD \\
\hline 1027 & Original uploader was StaLEPANDA \({ }^{2327}\) at EN.WIKIBOOKS \({ }^{2328}\) & GFDL \\
\hline 1028 & Original uploader was Stalepandi \({ }^{2329}\) at EN.WIKIBOOKS \({ }^{2330}\) & GFDL \\
\hline 1029 & Original uploader was StaLEPANDA \({ }^{2331}\) at EN.WIKIBOOKS \({ }^{2332}\) & GFDL \\
\hline 1030 & Original uploader was STALEPANDA \({ }^{2333}\) at EN.WIKIBOOKS \({ }^{2334}\) & GFDL \\
\hline 1031 & Original uploader was GABIO \({ }^{2335}\) at EN.WIKIBOOKS \({ }^{2336}\) & PD \\
\hline 1032 & & PD \\
\hline 1033 & & PD \\
\hline 1034 & Original uploader was GABIO \({ }^{2337}\) at EN.WIKIBOOKS \({ }^{2338}\) & \\
\hline 1035 & & GPL \\
\hline 1036 & & \\
\hline 1037 & & \\
\hline 1038 & & \\
\hline 1039 & & GPL \\
\hline 1040 & Original uploader was Andyd \({ }^{2339}\) at EN.WIKIBOOKS \({ }^{2340}\) & \\
\hline 1041 & & GPL \\
\hline 1042 & Original uploader was Andy \({ }^{2341}\) at EN.WIKIBOOKS \({ }^{2342}\) & \\
\hline 1043 & & GPL \\
\hline 1044 & & GPL \\
\hline 1045 & Original uploader was GABIO \({ }^{2343}\) at EN.WIKIBOOKS \({ }^{2344}\) & \\
\hline
\end{tabular}

\footnotetext{
2317 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2318 http://EN.WIKIBOOKS.ORG
2319 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2320 HTTP://EN.WIKIBOOKS.ORG
2321 http://en.wIkIbooks.ORG/wIkI/\%3AwIkIBOOKS\%3AEN\%3AUSER\%3AGABIO
2322 HTTP://EN.WIKIBOOKS.ORG
2323 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2324 HTTP://EN.WIKIBOOKS.ORG
2325 http://En.wIKIbooks.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2326 HTTP://EN.WIKIBOOKS.ORG
2327 http://En.wIKIbooks.org/wIkI/\%3AwIKIbooks\%3AEn\%3AUSER\%3AStALEPANDA
2328 HTTP://EN.WIKIBOOKS.ORG
2329 http://En.WIKIbOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASTALEPANDA
2330 http://EN.WIKIBOOKS.ORG
2331 httr://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASTALEPANDA
2332 нTtP://EN.WIKIBOOKS.ORG
2333 http://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3AStALEPANDA
2334 HTTP://EN.WIKIBOOKS.ORG
2335 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2336 http://EN.WIKIBOOKS.ORG
2337 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2338 HTTP://EN.WIKIBOOKS.ORG
2339 http://En.wIKIbooks.ORG/wIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AAndyD
2340 HTTP://EN.WIKIBOOKS.ORG
2341 HTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AANDYD 2342 нTTP://En.WIKIBOOKS.ORG
2343 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2344 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 1046 & Original uploader was GABIO \({ }^{2345}\) at EN.WIKIBOOKS \({ }^{2346}\) & PD \\
\hline 1047 & Original uploader was GABIO \({ }^{2347}\) at EN.WIKIBOOKS \({ }^{2348}\) & \\
\hline 1048 & Original uploader was GABIO \({ }^{2349}\) at EN.WIKIBOOKS \({ }^{2350}\) & PD \\
\hline 1049 & Original uploader was GABIO \({ }^{2351}\) at EN.WIKIBOOKS \({ }^{2352}\) & PD \\
\hline 1050 & Original uploader was GABIO \({ }^{2353}\) at EN.WIKIBOOKS \({ }^{2354}\) & \\
\hline 1051 & Original uploader was GABIO \({ }^{2355}\) at EN.WIKIBOOKS \({ }^{2356}\) & PD \\
\hline 1052 & Original uploader was GABIO \({ }^{2357}\) at EN.WIKIBOOKS \({ }^{2358}\) & \\
\hline 1053 & Original uploader was GABIO \({ }^{2359}\) at EN.WIKIBOOKS \({ }^{2360}\) & PD \\
\hline 1054 & Original uploader was GABIO \({ }^{2361}\) at EN.WIKIBOOKS \({ }^{2362}\) & PD \\
\hline 1055 & & GFDL \\
\hline 1056 & Original uploader was GABIO \({ }^{2363}\) at EN.WIKIBOOKS \({ }^{2364}\) & PD \\
\hline 1057 & Original uploader was GABIO \({ }^{2365}\) at EN.WIKIBOOKS \({ }^{2366}\) & \\
\hline 1058 & Original uploader was GABIO \({ }^{2367}\) at EN.WIKIBOOKS \({ }^{2368}\) & PD \\
\hline 1059 & Original uploader was GABIO \({ }^{2369}\) at EN.WIKIBOOKS \({ }^{2370}\) & PD \\
\hline 1060 & Original uploader was GABIO \({ }^{2371}\) at EN.WIKIBOOKS \({ }^{2372}\) & PD \\
\hline 1061 & Original uploader was GABIO \({ }^{2373}\) at EN.WIKIBOOKS \({ }^{2374}\) & PD \\
\hline 1062 & Original uploader was GABIO \({ }^{2375}\) at EN.WIKIBOOKS \({ }^{2376}\) & PD \\
\hline 1063 & Original uploader was GABIO \({ }^{2377}\) at EN.WIKIBOOKS \({ }^{2378}\) & PD \\
\hline
\end{tabular}

\footnotetext{
2345 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2346 нTTP://EN.WIKIBOOKS.ORG
2347 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2348 HTTP://EN.WIKIBOOKS.ORG
2349 HTtP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2350 нттР://EN.WIKIBOOKS.ORG
2351 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2352 нтTP://EN.WIKIBOOKS.ORG
2353 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2354 HTTP://EN.WIKIBOOKS.ORG
2355 HTtP://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2356 HTTP://EN.WIKIBOOKS.ORG
2357 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2358 нTTP://EN.WIKIBOOKS.ORG
2359 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2360 HTTP://EN.WIKIBOOKS.ORG
2361 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2362 нTTP://EN.WIKIBOOKS.ORG
2363 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2364 нтTP://En.WIKIBOOKS.ORG
2365 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2366 HTTP://EN.WIKIBOOKS.ORG
2367 HTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2368 нTTP://EN.WIKIBOOKS.ORG
2369 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2370 HTTP://EN.WIKIBOOKS.ORG
2371 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2372 HTTP://EN.WIKIBOOKS.ORG
2373 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2374 нтTP://EN.WIKIBOOKS.ORG
2375 HTTP://EN.WIKIBOOKS.ORG/WIKI/ \% 3AWIKIBOOKS \% 3AEN\%3AUSER \(\%\) 3AGABIO 2376 нтtP://En.WIKIBOOKS.ORG
2377 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2378 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|l|l|l|}
\hline 1064 & Original uploader was GABIO \(^{2379}\) at EN.WIKIBOOKS \({ }^{2380}\) & \\
\hline 1065 & Original uploader was HALLEY \(^{2381}\) at EN.WIKIBOOKS \({ }^{2382}\) & GFDL \\
\hline 1066 & & GFDL \\
\hline 1067 & Original uploader was HALLEY \(^{2383}\) at EN.WIKIBOOKS \({ }^{2384}\) & GFDL \\
\hline 1068 & & GFDL \\
\hline 1069 & & GFDL \\
\hline 1070 & & GFDL \\
\hline 1071 & & GFDL \\
\hline 1072 & & GFDL \\
\hline 1073 & & GFDL \\
\hline 1074 & & GFDL \\
\hline 1075 & & GFDL \\
\hline 1076 & & GFDL \\
\hline 1077 & & GFDL \\
\hline 1078 & SOYLENTGREEN & \\
\hline 1079 & SOYLENTGREEN \(^{2386}\) & GFDL \\
\hline 1080 & SOYLENTGREEN \(^{2387}\) & GFDL \\
\hline 1081 & SOYLENTGREEN \(^{2388}\) & GFDL \\
\hline 1082 & SOYLENTGREEN \(^{2389}\) & GFDL \\
\hline 1083 & SOYLENTGREEN \(^{2390}\) & GFDL \\
\hline 1084 & SOYLENTGREEN \(^{2391}\) & GFDL \\
\hline 1085 & SOYLENTGREEN \(^{2392}\) & GFDL \\
\hline 1086 & SOYLENTGREEN \(^{2393}\) & GFDL \\
\hline 1087 & SOYLENTGREEN \(^{2394}\) & GFDL \\
\hline 1088 & SOYLENTGREEN \(^{2395}\) & GPL \\
\hline 1089 & SOYLENTGREEN \(^{2396}\) & GPL \\
\hline 1090 & SOYLENTGREEN \(^{2397}\) & GFDL \\
\hline 1091 & SOYLENTGREEN \(^{2398}\) & GPL \\
\hline 1092 & SOYLENTGREEN \(^{2399}\) & GPL \\
\hline 1093 & SOYLENTGREEN \(^{2400}\) & GPL \\
\hline & & GPL \\
\hline
\end{tabular}

\footnotetext{
2379 http://En.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO 2380 нтtP://En.wIKIBOOKS.ORG
2381 http://En.wIKIbooks.ORG/wIKI/\%3AwIKIbooks\%3AEn\%3AUSER\%3AHALLEy 2382 нTtP://En.WIKIBOOKS.ORG
2383 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AHALLEY
2384 HTTP://EN.WIKIBOOKS.ORG
2385 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2386 htip://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2387 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2388 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2389 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2390 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2391 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2392 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2393 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2394 htte://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2395 http://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2396 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2397 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2398 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2399 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2400 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
}
\begin{tabular}{|c|c|c|}
\hline 1094 & SOYLENTGREEN \({ }^{2401}\) & GPL \\
\hline 1095 & SOYLENTGREEN \({ }^{2402}\) & GFDL \\
\hline 1096 & SOYLENTGREEN \({ }^{2403}\) & GPL \\
\hline 1097 & SOYLENTGREEN \({ }^{2404}\) & GFDL \\
\hline 1098 & SOYLENTGREEN \({ }^{2405}\) & GFDL \\
\hline 1099 & SOYLENTGREEN \({ }^{2406}\) & PD \\
\hline 1100 & SOYLENTGREEN \({ }^{2407}\) & GFDL \\
\hline 1101 & SoybentGreen \({ }^{2408}\) & GFDL \\
\hline 1102 & Roger McLassus \({ }^{2409}\) & GFDL \\
\hline 1103 & Jeremy B. Original uploader was BuLLERCRUZ1 \({ }^{2410}\) at EN.WIKIBOOKS \({ }^{2411}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2412}\) at EN.WIKIBOOKS \({ }^{2413}\). & PD \\
\hline 1104 & Jeremy B. Original uploader was BULLERCRUZ1 \({ }^{2414}\) at EN.WIKIBOOKS \({ }^{2415}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2416}\) at EN.WIKIBOOKS \({ }^{2417}\). & PD \\
\hline 1105 & JEREMY BULLER \({ }^{2418}\). Original uploader was BULLERCRUZ1 \({ }^{2419}\) at EN.WIKIBOOKS \({ }^{2420}\). Later version(s) were uploaded by AdRIGNOLA \({ }^{2421}\) at EN.WIKIBOOKS \({ }^{2422}\). & \\
\hline 1106 & Jeremy B. Original uploader was BuLLERCRUZ1 \({ }^{2423}\) at EN.WIKIBOOKS \({ }^{2424}\) & \\
\hline 1107 & Jeremy B. Original uploader was BuLLERCRUZ1 \({ }^{2425}\) at EN.WIKIBOOKS \({ }^{2426}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2427}\) at EN.WIKIBOOKS \({ }^{2428}\). & PD \\
\hline
\end{tabular}

\footnotetext{
2401 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2402 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2403 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2404 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2405 http://En.wIKIbooks.org/wiki/USER\%3ASoylent Green
2406 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2407 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2408 httP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2409 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROGER\%2OMCLASSUS
2410 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2411 HTTP://EN.WIKIBOOKS.ORG
2412 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2413 нTtP://En.WIKIBOOKS.ORG
2414 htTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2415 HTTP://EN.WIKIBOOKS.ORG
2416 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2417 нтTP://EN.WIKIBOOKS.ORG
2418 httr://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2419 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS \(\%\) 3AEN\%3AUSER\%3ABULLERCRUZ1
2420 нтtP://En.WIKIBOOKS.ORG
2421 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2422 HTTP://EN.WIKIBOOKS.ORG
2423 http://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2424 нтTP://EN.WIKIBOOKS.ORG
2425 htte://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABULLERCRUZ1
2426 нтTP://En.WIKIBOOKS.ORG
2427 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2428 нтTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|l|l|l|l|}
\hline 1108 & \begin{tabular}{l}
Jeremy B.. Original uploader was BULLERCRUZ1 \({ }^{2429}\) at \\
EN.WIKIBOOKS \\
NOLA \({ }^{2431}\). Later version(s) were uploaded by ADRIG-
\end{tabular} & PD.WIKIBOOKs \({ }^{2432}\).
\end{tabular}
```

2429 htTP://En.wIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABULLERCRUZ1
2430 HTTP://EN.WIKIBOOKS.ORG
2431 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEn%3AUSER%3AAdRIGNOLA
2432 нTTP://EN.WIKIBOOKS.ORG
2433HTTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABULLERCRUZ1
2434 нтTP://En.wIKIBOOKS.ORG
2435 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2436 HTTP://EN.WIKIBOOKS.ORG
2437 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABULLERCRUZ1
2438 HTTP://EN.WIKIBOOKS.ORG
2439 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2440нtтP://En.WIKIBOOKS.ORG
2441 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABULLERCRUZ1
2442 HTTP://EN.WIKIBOOKS.ORG
2443HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2444 нтTP://EN.WIKIBOOKS.ORG
2445 httP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABULLERCRUZ1
2446 нтTP://En.WIKIBOOKS.ORG
2447 httP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2448 HTTP://EN.WIKIBOOKS.ORG
2449 htTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABULLERCRUZ1
2450 нтTP://En.wIKIBOOKS.ORG
2451 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2452 HTTP://EN.WIKIBOOKS.ORG
2453 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AGUILLAUME22
2454 HTTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ALUIZALVAREZ
2455 нтTP://EN.WIKIBOOKS.ORG
2456 HTTP://En.WIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AGOELAND86
2457 нттP://En.wIKIBOOKS.ORG
2458 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABENUTZERNAMEAUFCOMMONS

```
\begin{tabular}{|c|c|c|}
\hline 1119 & USER:TONI GRAPPA \({ }^{2459}\) & \\
\hline 1120 & SOYLENTGREEN \({ }^{2460}\) & GFDL \\
\hline 1121 & Original uploader was JAWBOOT \({ }^{2461}\) at EN.WIKIBOOKS \({ }^{2462}\) & PD \\
\hline 1122 & USER:TONI GRAPPA \({ }^{2463}\) & \\
\hline 1123 & :B:EN:USER:SIGGIMUND \({ }^{2464}\) & PD \\
\hline 1124 & SOYLENTGREEN \({ }^{2465}\) & cc-by-2.5 \\
\hline 1125 & Imageday \({ }^{2466}\) & GFDL \\
\hline 1126 & GUILLAUME22 \({ }^{2467}\) & GFDL \\
\hline 1127 & Blender Foundation & GPL \\
\hline 1128 & SOYLENTGREEN \({ }^{2468}\) & PD \\
\hline 1129 & Alex Grace & GFDL \\
\hline 1130 & Original uploader was Totophe64 \({ }^{2469}\) at EN.WIKIBOOKS \({ }^{2470}\) & \\
\hline 1131 & USER:TONI GRAPPA \({ }^{2471}\) & \\
\hline 1132 & GUILLAUME22 \({ }^{2472}\) & GFDL \\
\hline 1133 & Original uploader was GABIO \({ }^{2473}\) at EN.WIKIBOOKS \({ }^{2474}\) & \\
\hline 1134 & Original uploader was Totophe64 \({ }^{2475}\) at EN.WIKIBOOKS \({ }^{2476}\) & \\
\hline 1135 & SOYLENTGREEN \({ }^{2477}\) & GFDL \\
\hline 1136 & USER:TONI GRAPPA \({ }^{2478}\) & \\
\hline 1137 & MANGARM \({ }^{2479}\) & GPL \\
\hline 1138 & Blender Foundation & GPL \\
\hline 1139 & Blender Foundation & GPL \\
\hline 1140 & Blender Foundation & GPL \\
\hline 1141 & TONI Grappa \({ }^{2480}\) & GFDL \\
\hline 1142 & Original uploader was ZEROONE \({ }^{2481}\) at EN.WIKIBOOKS \({ }^{2482}\) & \\
\hline 1143 & USER:TONI GRAPPA \({ }^{2483}\) & \\
\hline 1144 & USER:TONI GRAPPA \({ }^{2484}\) & \\
\hline
\end{tabular}
```

2459HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI%20GRAPPA
2460 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2461 HTtP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AJAWBOOT
2462 нTTP://EN.WIKIBOOKS.ORG
2463 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2464 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AB%3AEN%3AUSER%3ASIGGIMUND
2465 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2466 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AIMAGEDAY
2467 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AGUILLAUME22
2468 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2469 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATOTOPHE64
2470 нтTP://EN.WIKIBOOKS.ORG
2471 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2472HTTP://EN.WIKIbOOKS.ORG/WIKI/USER%3AGUILLAUME22
2473 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGABIO
2474 HTTP://EN.WIKIBOOKS.ORG
2475 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATOTOPHE64
2476 нTTP://EN.WIKIBOOKS.ORG
2477 htTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2478HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI%20GRAPPA
2479 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMANAGARM
2480 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2481 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AZEROONE
2482 нтTP://EN.WIKIBOOKS.ORG
2483 нTTP://EN.WIKIBOOKS.ORG/wIKI/USER%3ATONI%20GRAPPA
2484 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA

```
\begin{tabular}{|c|c|c|}
\hline 1145 & TONI Grappa \({ }^{2485}\) & \\
\hline 1146 & Original uploader was GABIO \({ }^{2486}\) at EN.WIKIBOOKS \({ }^{2487}\) & PD \\
\hline 1147 & Original uploader was MIKAYUOADAS \({ }^{2488}\) at
FR.WIKIVERSITY \({ }^{2489}\) & GFDL \\
\hline 1148 & & \\
\hline 1149 & Original uploader was SUMONCIL \({ }^{2490}\) at EN.WIKIBOOKS \({ }^{2491}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2492}\) at EN.WIKIBOOKS \({ }^{2493}\). & \\
\hline 1150 & Original uploader was SUMONCIL \({ }^{2494}\) at EN.WIKIBOOKS \({ }^{2495}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2496}\) at EN.WIKIBOOKS \({ }^{2497}\). & \\
\hline 1151 & Blender Foundation & GPL \\
\hline 1152 & Original uploader was ZEROONE \({ }^{2498}\) at EN.WIKIBOOKS \({ }^{2499}\) & \\
\hline 1153 & SOYLENTGREEN \({ }^{2500}\) & GFDL \\
\hline 1154 & CWADRUPLDIJJITGOLDILOX \({ }^{2501}\) & PD \\
\hline 1155 & BANLU KEMIYATORN \({ }^{2502}\) & PD \\
\hline 1156 & Blender Foundation & GPL \\
\hline 1157 & USER:TONI GRAPPA \({ }^{2503}\) & \\
\hline 1158 & John Whelan. Original uploader was JOHNWHELAN \({ }^{2504}\) at EN.WIKIBOOKS \({ }^{2505}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2506}\) at EN.WIKIBOOKS \({ }^{2507}\). & \\
\hline 1159 & Original uploader was ARGENTO \({ }^{2508}\) at EN.WIKIBOOKS \({ }^{2509}\) & \\
\hline 1160 & & GFDL \\
\hline 1161 & Blender Foundation & GPL \\
\hline 1162 & :B:EN:USER:LAZY-LUMP \({ }^{2510}\) & PD \\
\hline
\end{tabular}
```

2485HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2486HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGABIO
2487 HTTP://EN.WIKIBOOKS.ORG
2488 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIVERSITY%3AFR%3AUSER%3AMIKAYUOADAS
2489 нтtP://FR.WIKIVERSITY.ORG
2490 HTtP://EN.WIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2491 нтTP://EN.WIKIBOOKS.ORG
2492HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2493 HTTP://EN.WIKIBOOKS.ORG
2494 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2495 HTTP://EN.WIKIBOOKS.ORG
2496 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2497 HTTP://EN.WIKIBOOKS.ORG
2498 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AZEROONE
2499HTTP://EN.WIKIBOOKS.ORG
2500 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2501 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ACWADRUPLDIJJITGOLDILOX
2502HtTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABANLU%2OKEMIYATORN
2503 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2504 HTTP://En.WIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AJOHNWHELAN
2505 HTTP://EN.WIKIBOOKS.ORG
2506 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2507 HTTP://EN.WIKIBOOKS.ORG
2508 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2509 HTTP://EN.WIKIBOOKS.ORG
2510 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AB%3AEN%3AUSER%3ALAZY-LUMP

```
\begin{tabular}{|c|c|c|}
\hline 1163 & Original uploader was Gregareg \({ }^{2511}\) at EN.WIKIBOOKS \({ }^{2512}\) & \\
\hline 1164 & Gabio & PD \\
\hline 1165 & Original uploader was Argento \({ }^{2513}\) at EN.WIKIBOOKS \({ }^{2514}\) & \\
\hline 1166 & SaphireS & cc-by-sa-3.0 \\
\hline 1167 & :B:EN:USER:SPIDERWORM \({ }^{2515}\) & PD \\
\hline 1168 & Original uploader was AvERIEZEN \({ }^{2516}\) at EN.WIKIBOOKS \({ }^{2517}\) & \\
\hline 1169 & :B:EN:USER:SPIDERWORM \({ }^{2518}\) & PD \\
\hline 1170 & Original uploader was Allefant \({ }^{2519}\) at EN.WIKIBOOKS \({ }^{2520}\) & \\
\hline 1171 & Romain Behar. Original uploader was Romainbehar \({ }^{2521}\) at EN.WIKIBOOKS \({ }^{2522}\) & PD \\
\hline 1172 & John Whelan. Original uploader was Johnwhelan \({ }^{2523}\) at EN.WIKIBOOKS \({ }^{2524}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2525}\) at EN.WIKIBOOKS \({ }^{2526}\). & \\
\hline 1173 & & \\
\hline 1174 & me & GFDL \\
\hline 1175 & TONI GRAPPA \({ }^{2527}\) & GFDL \\
\hline 1176 & Blender Foundation & GPL \\
\hline 1177 & GUILLAUME22 \({ }^{2528}\) & GFDL \\
\hline 1178 & Original uploader was GABIO \({ }^{2529}\) at EN.WIKIBOOKS \({ }^{2530}\) & PD \\
\hline 1179 & BOYAGE \({ }^{2531}\). Original uploader was BoyAGE \({ }^{2532}\) at EN.WIKIBOOKS \({ }^{2533}\) & \\
\hline 1180 & Blender Foundation & GPL \\
\hline 1181 & Romain Behar. Original uploader was Romainbehar \({ }^{2534}\) at EN.WIKIBOOKS \({ }^{2535}\) & PD \\
\hline 1182 & Original uploader was ROBPERS \(2003{ }^{2536}\) at EN.WIKIBOOKS \({ }^{2537}\) & \\
\hline
\end{tabular}

\footnotetext{
2511 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGREGGREG 2512 нтTP://EN.WIKIBOOKS.ORG
2513 HTtP://EN.WIKIbOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AARGENTO
2514 нтTP://EN.WIKIBOOKS.ORG
2515 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AB\%3AEN\%3AUSER\%3ASPIDERWORM
2516 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AAVERIEZEN
2517 нтTP://EN.WIKIBOOKS.ORG
2518 нтtp://en.wIKIbooks.org/wIKI/\%3Ab\%3Aen\%3AUSER\%3ASPIDERWORM
2519 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AALLEFANT
2520 нтTP://EN.WIKIBOOKS.ORG
2521 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AROMAINBEHAR 2522 нтTP://En.WIKIBOOKS.ORG

2524 HTTP://EN.WIKIBOOKS.ORG
2525 htTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2526 нттР://En.WIKIBOOKS.ORG
2527 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ATONI_GRAPPA
2528 HTtP://En.WIKIbOOKS.ORG/WIKI/USER\%3AGUILLAUME22
2529 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2530 HTTP://EN.WIKIBOOKS.ORG
2531 htte://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
2532 httP://En.wIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
2533 HTTP://EN.WIKIBOOKS.ORG
2534 http://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3AROMAINBEHAR
2535 нтTP://En.WIKIBOOKS.ORG
2536 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AROBPERS2003
2537 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 1183 & USER:TONI Grappa \({ }^{2538}\) & \\
\hline 1184 & Original uploader was Totophe64 \({ }^{2539}\) at EN.WIKIBOOKS \({ }^{2540}\) & \\
\hline 1185 & Blender Foundation & GPL \\
\hline 1186 & BOYAGE \({ }^{2541}\). Original uploader was BOYAGE \({ }^{2542}\) at EN.WIKIBOOKS \({ }^{2543}\) & \\
\hline 1187 & SOYLENTGREEN \({ }^{2544}\) & cc-by-2.5 \\
\hline 1188 & Original uploader was Totophe64 \({ }^{2545}\) at EN.WIKIBOOKS \({ }^{2546}\) & \\
\hline 1189 & Blender Foundation & GPL \\
\hline 1190 & Original uploader was SCHMS \({ }^{2547}\) at EN.WIKIBOOKS \({ }^{2548}\) & GFDL \\
\hline 1191 & Blender Foundation & GPL \\
\hline 1192 & SOYLENTGREEN \({ }^{2549}\) & GFDL \\
\hline 1193 & USER:TONI GRAPPA \({ }^{2550}\) & \\
\hline 1194 & USER:TONI GRAPPA \({ }^{2551}\) & \\
\hline 1195 & me & GFDL \\
\hline 1196 & Blender Foundation & GPL \\
\hline 1197 & USER:TONI GRAPPA \({ }^{2552}\) & \\
\hline 1198 & USER:TONI GRAPPA \({ }^{2553}\) & \\
\hline 1199 & Toni Grappa; VEröffentlichung mit freundlicher Genehmigung von Paddy - Blend.polis \({ }^{2554}\) & \\
\hline 1200 & USER:BASTIQUE \({ }^{2555}\), USER:RAMAC \({ }^{2556}\) et al. & \\
\hline 1201 & SaphireS & cc-by-sa-3.0 \\
\hline 1202 & Blender Foundation & GPL \\
\hline 1203 & Original uploader was MRFELIS \({ }^{2557}\) at EN.WIKIBOOKS \({ }^{2558}\) & \\
\hline 1204 & Original uploader was MIKAYUOADAS
FR.WIKIVERSITY & GFDL \\
\hline 1205 & me & GFDL \\
\hline 1206 & TONI Grappa \({ }^{2561}\) & \\
\hline
\end{tabular}
```

2538 HTTP://En.wIKIBOOKS.ORG/wIKI/USER%3ATONI GRAPPA
2539 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATOTOPHE64
2540 HTTP://EN.WIKIBOOKS.ORG
2541 htTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ABOYAGE
2542HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOYAGE
2543 HTTP://En.WIKIBOOKS.ORG
2544 HTtP://EN.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2545 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATOTOPHE64
2546 нтtP://En.WIKIBOOKS.ORG
2547 HTtP://En.wIKIbooks.ORg/wIkI/%3AwIkIbOOKS%3AEN%3AUSER%3ASChmS
2548 HTTP://EN.WIKIBOOKS.ORG
2549 HTtP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2550 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2551 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2552HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI%20GRAPPA
2553HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI%20GRAPPA
2554 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2555HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ABASTIQUE
2556 httP://En.wIKIBOOKS.ORG/wIKI/USER%3ARAMAC
2557 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMRFELIS
2558 нтtP://En.WIKIBOOKS.ORG
2559 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIVERSITY%3AFR%3AUSER%3AMIKAYUOADAS
2560 HTTP://FR.WIKIVERSITY.ORG
2561 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA

```
\begin{tabular}{|c|c|c|}
\hline 1207 & Original uploader was STALEPANDA \({ }^{2562}\) at EN.WIKIBOOKS \({ }^{2563}\) & GFDL \\
\hline 1208 & TONI GRAPPA \({ }^{2564}\) & GFDL \\
\hline 1209 & SOYLENTGREEN \({ }^{2565}\) & GFDL \\
\hline 1210 & Original uploader was SumONCIL \({ }^{2566}\) at EN.WIKIBOOKS \({ }^{2567}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2568}\) at EN.WIKIBOOKS \({ }^{2569}\). & \\
\hline 1211 & Original uploader was DARKONC \({ }^{2570}\) at EN.WIKIBOOKS \({ }^{2571}\). Later version(s) were uploaded by Argento \({ }^{2572}\) at EN.WIKIBOOKS \({ }^{2573}\). & GFDL \\
\hline 1212 & FROGULIS \({ }^{2574}\) & PD \\
\hline 1213 & GUILLAUME22 \({ }^{2575}\) & GFDL \\
\hline 1214 & Blender Foundation & GPL \\
\hline 1215 & Original uploader was GREENSWEATER \(^{2576}\) at
EN.WIKIBOOKS & \\
\hline 1216 & GUILLAUME22 \({ }^{2578}\) & GFDL \\
\hline 1217 & Original uploader was STALEPANDA \({ }^{2579}\) at EN.WIKIBOOKS \({ }^{2580}\) & GFDL \\
\hline 1218 & SOYLENTGREEN \({ }^{2581}\) & GFDL \\
\hline 1219 & USER:TONI GRAPPA \({ }^{2582}\) & \\
\hline 1220 & SaphireS & cc-by-sa-3.0 \\
\hline 1221 & USER:TONI GRAPPA \({ }^{2583}\) & \\
\hline 1222 & SOYLENTGREEN \({ }^{2584}\) & GFDL \\
\hline 1223 & USER:TONI GRAPPA \({ }^{2585}\) & \\
\hline 1224 & blender Foundation & PD \\
\hline 1225 & & \\
\hline 1226 & USER:TONI GRAPPA \({ }^{2586}\) & \\
\hline 1227 & USER:TONI GRAPPA \({ }^{2587}\) & \\
\hline
\end{tabular}
```

2562HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASTALEPANDA
2563 HTTP://EN.WIKIBOOKS.ORG
2564 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2565 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2566HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2567 HTTP://EN.WIKIBOOKS.ORG
2568 htTP://En.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2569HTTP://EN.WIKIBOOKS.ORG
2570HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2571 HTTP://EN.WIKIBOOKS.ORG
2572HTTP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2573 нтTP://EN.WIKIBOOKS.ORG
2574 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AFROGULIS
2575 HTTP://EN.WIKIbOOKS.ORG/WIKI/USER%3AGUILLAUME22
2576 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2577 нтTP://EN.WIKIBOOKS.ORG
2578 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AGUILLAUME22
2579HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASTALEPANDA
2580 нтTP://EN.WIKIBOOKS.ORG
2581 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2582HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI%20GRAPPA
2583 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2584 HtTP://En.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2585 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2586 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2587 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA

```
\begin{tabular}{|c|c|c|}
\hline 1228 & SOYLENTGREEN \({ }^{2588}\) & GFDL \\
\hline 1229 & USER:TONI GRAPPA \({ }^{2589}\) & \\
\hline 1230 & PEARTS \({ }^{2590}\) & \\
\hline 1231 & Blender Foundation & GPL \\
\hline 1232 & Original uploader was GABIO \({ }^{2591}\) at EN.WIKIBOOKS \({ }^{2592}\) & \\
\hline 1233 & SVG version was created by USER:GRUNT \({ }^{2593}\) and cleaned up by \(3247^{2594}\), based on the earlier PNG version, created by REIDAB \({ }^{2595}\). & \\
\hline 1234 & MANGARM \({ }^{2596}\) & GPL \\
\hline 1235 & SOYLENTGREEN \({ }^{2597}\) & GFDL \\
\hline 1236 & Original uploader was MEGALOMAN \({ }^{2598}\) at EN.WIKIBOOKS \({ }^{2599}\) & \\
\hline 1237 & SOYLENTGREEN \({ }^{2600}\) & GPL \\
\hline 1238 & Blender Foundation & GPL \\
\hline 1239 & Original uploader was DARKONC \({ }^{2601}\) at EN.WIKIBOOKS \({ }^{2602}\). Later version(s) were uploaded by ARGENTO \({ }^{2603}\) at EN.WIKIBOOKS \({ }^{2604}\). & GFDL \\
\hline 1240 & SOYLENTGREEN \({ }^{2605}\) & GPL \\
\hline 1241 & & GFDL \\
\hline 1242 & SOYLENTGREEN \({ }^{2606}\) & GFDL \\
\hline 1243 & SOYLENTGREEN \({ }^{2607}\) & PD \\
\hline 1244 & TONI GRAPPA \({ }^{2608}\) & GFDL \\
\hline 1245 & & GFDL \\
\hline 1246 & SOYLENTGREEN \({ }^{2609}\) & GPL \\
\hline 1247 & TONI GRAPPA \({ }^{2610}\) & GFDL \\
\hline 1248 & & \\
\hline 1249 & SOYLENTGREEN \({ }^{2611}\) & GFDL \\
\hline 1250 & TONI GRAPPA \({ }^{2612}\) & GFDL \\
\hline
\end{tabular}
```

2588 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2589 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2590 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APEARTS
2591 HTTP://EN.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGABIO
2592HTTP://EN.WIKIBOOKS.ORG
2593 HTTP://En.WIKIBOOKS.ORG/WIKI/USER%3AGRUNT
2594 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3A3247
2595 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3Am%3AUSER%3AREIDAB
2596 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMANAGARM
2597 HttP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2598 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AMEGALOMAN
2599 HTTP://EN.WIKIBOOKS.ORG
2600 HTtP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2601 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2602 HTTP://EN.WIKIBOOKS.ORG
2603 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2604 HTTP://EN.WIKIBOOKS.ORG
2605 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2606 HtTP://En.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2607 HTtP://En.wIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2608 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2609 HTtP://EN.WIKIbOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2610 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2611 HTtP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2612HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA

```
\begin{tabular}{|c|c|c|}
\hline 1251 & SaphireS & cc-by-sa-3.0 \\
\hline 1252 & USER:TONI GRAPPA \({ }^{2613}\) & \\
\hline 1253 & USER:TONI GRAPPA \({ }^{2614}\) & \\
\hline 1254 & unknown & GFDL \\
\hline 1255 & Romain Behar. Original uploader was Romainbehtr \({ }^{2615}\) at EN.WIKIBOOKS \({ }^{2616}\) & PD \\
\hline 1256 & USER:TONI GRAPPA \({ }^{2617}\) & \\
\hline 1257 & SOYLENTGREEN \({ }^{2618}\) & GFDL \\
\hline 1258 & BOYAGE \({ }^{2619}\). Original uploader was BOYAGE \({ }^{2620}\) at EN.WIKIBOOKS \({ }^{2621}\) & \\
\hline 1259 & & GFDL \\
\hline 1260 & SOYLENTGREEN \({ }^{2622}\) & GFDL \\
\hline 1261 & & \\
\hline 1262 & SOYLENTGREEN \({ }^{2623}\) & \\
\hline 1263 & SOYLENTGREEN \({ }^{2624}\) & GFDL \\
\hline 1264 & Original uploader was SPIDERWORM \({ }^{2625}\) at EN.WIKIBOOKS \({ }^{2626}\) & GPL \\
\hline 1265 & Original uploader was GABIO \({ }^{2627}\) at EN.WIKIBOOKS \({ }^{2628}\) & PD \\
\hline 1266 & SOYLENTGREEN \({ }^{2629}\) & GFDL \\
\hline 1267 & USER:TONI GRAPPA \({ }^{2630}\) & \\
\hline 1268 & SoYLENTGREEN \({ }^{2631}\) & GFDL \\
\hline 1269 & Blender Foundation & GPL \\
\hline 1270 & SOYLENTGREEN \({ }^{2632}\) & GPL \\
\hline 1271 & Binky1206 \({ }^{2633}\) & PD \\
\hline 1272 & SOYLENTGREEN \({ }^{2634}\) & GFDL \\
\hline 1273 & Original uploader was BGKS \({ }^{2635}\) at EN.WIKIBOOKS \({ }^{2636}\) & \\
\hline 1274 & MANGARM \({ }^{2637}\) & GPL \\
\hline
\end{tabular}
```

2613 http://En.WIKIBOOKS.ORG/WIKI/USER\%3ATONI\ GRAPPA 2614 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ATONI\ GRAPPA
2615 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AROMAINBEHAR 2616 HTTP://EN.WIKIBOOKS.ORG
2617 htTP://En.wIKIBOOKS.ORG/WIKI/USER\%3ATONI\ GRAPPA
2618 http://En.wikibooks.org/wiki/USER\%3ASoylentGreen
2619 httP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
2620 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ABOYAGE
2621 HTTP://EN.WIKIBOOKS.ORG
2622 http://En.WIKIbOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2623 http://en.wikibooks.org/wiki/USER\%3ASoylentGreen
2624 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2625 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASPIDERWORM
2626 HTtP://EN.WIKIBOOKS.ORG
2627 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AGABIO
2628 HTTP://EN.WIKIBOOKS.ORG
2629 http://en.wikibooks.org/wiki/USER\%3ASoylentGreen
2630 httP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ATONI\ GRAPPA
2631 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2632 http://En.wIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2633 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ABINKY1206
2634 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3ASOYLENTGREEN
2635 http://en.wIKIbooks.org/wIKI/\%3AwIKIbOOKS\%3AEn\%3AUSER\%3ABGKS
2636 HTTP://EN.WIKIBOOKS.ORG
2637 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMANAGARM

```
\begin{tabular}{|c|c|c|}
\hline 1275 & Original uploader was MrFELIS \({ }^{2638}\) at EN.WIKIBOOKS \({ }^{2639}\) & \\
\hline 1276 & USER:TONI GRAPPA \({ }^{2640}\) & \\
\hline 1277 & Original uploader was MEGALOMAN \({ }^{2641}\) at En.WIKIBOOKS \({ }^{2642}\) & GPL \\
\hline 1278 & Original uploader was SUMONCIL \({ }^{2643}\) at EN.WIKIBOOKS \({ }^{2644}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2645}\) at EN.WIKIBOOKS \({ }^{2646}\). & \\
\hline 1279 & Original uploader was SumONCIL \({ }^{2647}\) at EN.WIKIBOOKS \({ }^{2648}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2649}\) at EN.WIKIBOOKS \({ }^{2650}\). & \\
\hline 1280 & me & GFDL \\
\hline 1281 & Original uploader was GABIO \({ }^{2651}\) at EN.WIKIBOOKS \({ }^{2652}\) & PD \\
\hline 1282 & \begin{tabular}{l}
Original uploader was \\
EN.WIKIBOOKS
\end{tabular} GREENSWEATER \({ }^{2653}\) at & \\
\hline 1283 & Toni Grappa \({ }^{2655}\) & GFDL \\
\hline 1284 & Blender Foundation & GPL \\
\hline 1285 & Original uploader was MIKAYUOADAS \({ }^{2656}\) at
FR.WIKIVERSITY \({ }^{2657}\) & GFDL \\
\hline 1286 & Yhevhe & GFDL \\
\hline 1287 & Toni Grappa \({ }^{2658}\) & GFDL \\
\hline 1288 & SOYLENTGREEN \({ }^{2659}\) & GPL \\
\hline 1289 & Thomas Dinges The scene in the program is my own work. & GFDL \\
\hline 1290 & WEbBIRD \({ }^{2660}\) & GFDL \\
\hline 1291 & :B:EN:USER:SPIDERWORM \({ }^{2661}\) & PD \\
\hline 1292 & Original uploader was Argento \({ }^{2662}\) at EN.WIKIBOOKS \({ }^{2663}\) & \\
\hline
\end{tabular}
```

2638 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMRFELIS
2639 HTTP://EN.WIKIBOOKS.ORG
2640 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI%2OGRAPPA
2641 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AMEGALOMAN
2642 HTTP://EN.WIKIBOOKS.ORG
2643 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2644 HTTP:/ / EN.WIKIBOOKS.ORG
2645 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2646 HTTP:/ / EN.WIKIBOOKS.ORG
2647 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2648 HTTP://EN.WIKIBOOKS.ORG
2649 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2650 HTTP:/ / EN.WIKIBOOKS.ORG
2651 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGABIO
2652 HTTP:/ / EN.WIKIBOOKS.ORG
2653 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AGREENSWEATER
2654 HTTP:/ / EN.WIKIBOOKS.ORG
2655 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2656 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIVERSITY%3AFR%3AUSER%3AMIKAYUOADAS
2657 HTTP:/ / FR.WIKIVERSITY.ORG
2658 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/USER%3ATONI_GRAPPA
2659 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2660 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AWEBBIRD
2661 HTTP:/ / EN.WIKIBOOKS.ORG/WIKI/%3AB%3AEN%3AUSER%3ASPIDERWORM
2662 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2663 HTTP:/ / EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 1293 & Romain Behar. Original uploader was Romainbehar \({ }^{2664}\) at EN.WIKIBOOKS \({ }^{2665}\) & PD \\
\hline 1294 & GUILLAUME22 \({ }^{2666}\) & GFDL \\
\hline 1295 & Original uploader was BGKS \({ }^{2667}\) at EN.WIKIBOOKS \({ }^{2668}\) & PD \\
\hline 1296 & Original uploader was BADALIA \({ }^{2669}\) at EN.WIKIBOOKS \({ }^{2670}\) & cc-by-sa-2.5 \\
\hline 1297 & Original uploader was DARKONC \({ }^{2671}\) at EN.WIKIBOOKS \({ }^{2672}\). Later version(s) were uploaded by Argento \({ }^{2673}\) at EN.WIKIBOOKS \({ }^{2674}\). & GFDL \\
\hline 1298 & Original uploader was Totophe64 \({ }^{2675}\) at EN.WIKIBOOKS \({ }^{2676}\) & \\
\hline 1299 & Blender Foundation & GPL \\
\hline 1300 & USER:TONI GRAPPA \({ }^{2677}\) & \\
\hline 1301 & SOYLENTGREEN \({ }^{2678}\) & GFDL \\
\hline 1302 & SOYLENTGREEN \({ }^{2679}\) & GFDL \\
\hline 1303 & Original uploader was SUMONCIL \({ }^{2680}\) at EN.WIKIBOOKS \({ }^{2681}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2682}\) at EN.WIKIBOOKS \({ }^{2683}\). & \\
\hline 1304 & SOYLENTGREEN \({ }^{2684}\) & GFDL \\
\hline 1305 & GUILLAUME22 \({ }^{2685}\) & GFDL \\
\hline 1306 & SOYLENTGREEN \({ }^{2686}\) & PD \\
\hline 1307 & GUILLAUME22 \({ }^{2687}\) & GFDL \\
\hline 1308 & Original uploader was SUMONCIL \({ }^{2688}\) at EN.WIKIBOOKS \({ }^{2689}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2690}\) at EN.WIKIBOOKS \({ }^{2691}\). & \\
\hline
\end{tabular}
```

2664 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AROMAINBEHAR
2665 HTTP://EN.WIKIBOOKS.ORG
2666 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AGUILLAUME22
2667 htTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABGKS
2668 нтTP://EN.WIKIBOOKS.ORG
2669 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABADALIA
2670 HTTP://EN.WIKIBOOKS.ORG
2671 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2672 HTTP://EN.WIKIBOOKS.ORG
2673 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2674 нтTP://EN.WIKIBOOKS.ORG
2675 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATOTOPHE64
2676 нTTP://EN.WIKIBOOKS.ORG
2677 htTP://En.WIKIBOOKS.ORG/WIKI/USER%3ATONI GRAPPA
2678HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2679HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2680HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2681 нTTP://EN.WIKIBOOKS.ORG
2682HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2683 нTTP://EN.WIKIBOOKS.ORG
2684 httP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2685 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AGUILLAUME22
2686HtTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASOYLENTGREEN
2687 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AGUILLAUME22
2688HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASUMONCIL
2689 нтTP://EN.WIKIBOOKS.ORG
2690 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AADRIGNOLA
2691 нTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 1309 & Original uploader was ZEROONE \({ }^{2692}\) at EN.WIKIBOOKS \({ }^{2693}\) & \\
\hline 1310 & Original uploader was SUMONCIL \({ }^{2694}\) at EN.WIKIBOOKS \({ }^{2695}\). Later version(s) were uploaded by ADRIGNOLA \({ }^{2696}\) at EN.WIKIBOOKS \({ }^{2697}\). & \\
\hline 1311 & Original uploader was ZEROONE \({ }^{2698}\) at EN.WIKIBOOKS \({ }^{2699}\) & \\
\hline 1312 & Original uploader was DARKONC \({ }^{2700}\) at EN.WIKIBOOKS \({ }^{2701}\). Later version(s) were uploaded by Argento \({ }^{2702}\) at EN.WIKIBOOKS \({ }^{2703}\). & GFDL \\
\hline 1313 & & PD \\
\hline 1314 & & PD \\
\hline 1315 & Original uploader was Gregareg \({ }^{2704}\) at EN.WIKIBOOKS \({ }^{2705}\) & \\
\hline 1316 & Original uploader was SCHMS \({ }^{2706}\) at EN.WIKIBOOKS \({ }^{2707}\) & GFDL \\
\hline 1317 & Original uploader was SCHMS \({ }^{2708}\) at EN.WIKIBOOKS \({ }^{2709}\) & GFDL \\
\hline 1318 & & \\
\hline 1319 & & \\
\hline 1320 & Original uploader was ARGENTO \({ }^{2710}\) at EN.WIKIBOOKS \({ }^{2711}\) & \\
\hline 1321 & Original uploader was ARGENTO \({ }^{2712}\) at EN.WIKIBOOKS \({ }^{2713}\) & \\
\hline 1322 & & \\
\hline 1323 & & \\
\hline 1324 & & \\
\hline 1325 & Original uploader was SCHMS \({ }^{2714}\) at EN.WIKIBOOKS \({ }^{2715}\) & GFDL \\
\hline 1326 & Original uploader was DARKONC \({ }^{2716}\) at EN.WIKIBOOKS \(^{2717}\).
Later version(s) were uploaded by ARGENTO \({ }^{2718}\) at
EN.WIKIBOOKS \({ }^{2719}\). & GFDL \\
\hline
\end{tabular}

\footnotetext{
2692 http://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE 2693 нтtP://En.wIKIBOOKS.ORG
2694 http://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3ASUMONCIL
2695 нтtP://en.wIKIbooks.org
2696 http://En.wIKIBOOKS.ORG/wIKI/ \% 3AwIKIBOOKS \(\%\) 3AEN\%3AUSER\%3AADRIGNOLA
2697 нтTP://En.WIKIBOOKS.ORG
2698 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AZEROONE
2699 нтtP://En.wIKIBOOKS.ORG
2700 http://En.wIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ADARKONC
2701 HTTP://EN.WIKIBOOKS.ORG
2702 http://En.wIKIbooks.org/wiki/\%3AwIKIbooks\%3AEn\%3AUSER\%3AARGEnto
2703 HTTP://EN.WIKIBOOKS.ORG
2704 http://en.wIKIbooks.org/wIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AGREGGREG
2705 нtтP://En.WIKIbooks.org
2706 HTtP://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASCHMS
2707 HTTP://EN.WIKIBOOKS.ORG
2708 нtтp://en.wikibooks.org/wiki/\%3AwIkIbooks\%3Aen\%3AUSER\%3ASchmS
2709 нтtP://En.WIKIBOOKS.ORG
2710 http://En.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AARGENTO
2711 нтtP://En.WIKIbOOKS.ORG
2712 httP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AARGENTO
2713 HTTP://EN.WIKIBOOKS.ORG
2714 HTTP://En.WIKIBOOKS.ORG/WIKI/\%3AwIKIBOOKS\%3AEN\%3AUSER\%3ASCHMS
2715 HTTP://EN.WIKIBOOKS.ORG
2716 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ADARKONC
2717 HTTP://EN.WIKIBOOKS.ORG
2718 http://En.wIKIbOOKS.ORG/wIKI/\%3AwIKIBOOKS\%3AEn\%3AUSER\%3AARGENTo
2719 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 1327 & Original uploader was SATANCLAUS \({ }^{2720}\) at EN.WIKIBOOKS \({ }^{2721}\) Later versions were uploaded by ARGENTO \({ }^{2722}\) at EN.WIKIBOOKS \({ }^{2723}\). & GPL \\
\hline 1328 & Original uploader was DARKONC \({ }^{2724}\) at EN.WIKIBOOKS \({ }^{2725}\). Later version(s) were uploaded by ARGENTO \({ }^{2726}\) at EN.WIKIBOOKS \({ }^{2727}\). & GFDL \\
\hline 1329 & Original uploader was DARKONC \({ }^{2728}\) at EN.WIKIBOOKS \({ }^{2729}\). Later version(s) were uploaded by Argento \({ }^{2730}\) at EN.WIKIBOOKS \({ }^{2731}\). & GFDL \\
\hline 1330 & & \\
\hline 1331 & Original uploader was DARKONC \({ }^{2732}\) at EN.WIKIBOOKS \({ }^{2733}\). Later version(s) were uploaded by Argento \({ }^{2734}\) at EN.WIKIBOOKS \({ }^{2735}\). & \\
\hline 1332 & Original uploader was DARKONC \({ }^{2736}\) at EN.WIKIBOOKS \({ }^{2737}\). Later version(s) were uploaded by Argento \({ }^{2738}\) at EN.WIKIBOOKS \({ }^{2739}\). & GFDL \\
\hline 1333 & Original uploader was DARKONC \({ }^{2740}\) at EN.WIKIBOOKS
Later version(s) were uploaded by ARGENTO \(^{2742}\) at
EN.WIKIBOOKS & GFDL \\
\hline 1334 & Original uploader was DARKONC \({ }^{2744}\) at EN.WIKIBOOKS \({ }^{2745}\). Later version(s) were uploaded by Argento \({ }^{2746}\) at EN.WIKIBOOKS \({ }^{2747}\). & GFDL \\
\hline 1335 & Original uploader was ArGENTO \({ }^{2748}\) at EN.WIKIBOOKS \({ }^{2749}\) & PD \\
\hline
\end{tabular}
```

2720HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASATANCLAUS
2721 HTTP://EN.WIKIBOOKS.ORG
2722HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2723 HTTP://EN.WIKIBOOKS.ORG
2724 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2725 HTTP://EN.WIKIBOOKS.ORG
2726 нTtP://En.wIKIbooks.org/wIKI/%3AwIKIbooks%3Aen%3AUSER%3AARgento
2727 HTTP://EN.WIKIBOOKS.ORG
2728 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2729 HTTP://EN.WIKIBOOKS.ORG
2730 http://En.wIkIbooks.org/wIkI/%3AwIkIbooks%3AEn%3AUSER%3AARGEnto
2731 HTTP://EN.WIKIBOOKS.ORG
2732 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2733 HTTP://EN.WIKIBOOKS.ORG
2734 HTtP://En.WIKIbOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2735HTTP://EN.WIKIBOOKS.ORG
2736 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2737 HTTP://EN.WIKIBOOKS.ORG
2738 httP://En.wIkIbooks.org/wIkI/%3AwIkIbooks%3Aen%3AUSER%3AARgento
2739 HTTP://EN.WIKIBOOKS.ORG
2740 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ADARKONC
2741 нTTP://EN.WIKIBOOKS.ORG
2742 нtTP://En.wIKIBOOKS.ORG/wIKI/%3AwIKIBOOKS%3AEN%3AUSER%3AARGENTO
2743 HTTP://EN.WIKIBOOKS.ORG
2744 HtTP://En.wIKIbOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ADARKONC
2745 HTTP://EN.WIKIBOOKS.ORG
2746 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2747 нTTP://EN.WIKIBOOKS.ORG
2748 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3AARGENTO
2749 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|}
\hline 1336 & DDD3 \({ }^{2750}\) & GPL \\
\hline 1337 & DDD3 \({ }^{2751}\) & GPL \\
\hline 1338 & DDD3 \({ }^{2752}\) & GPL \\
\hline 1339 & DDD3 \({ }^{2753}\) & GPL \\
\hline 1340 & DDD3 \({ }^{2754}\) & GPL \\
\hline 1341 & DDD3 \({ }^{2755}\) & GPL \\
\hline 1342 & DDD3 \({ }^{2756}\) & GPL \\
\hline 1343 & DDD3 \({ }^{2757}\) & GPL \\
\hline 1344 & DDD3 \({ }^{2758}\) & PD \\
\hline 1345 & & cc-by-sa-2.0 \\
\hline 1346 & Original uploader was BoOTALEG \({ }^{2759}\) at EN.WIKIBOOKS \({ }^{2760}\) & cc-by-sa-2.0 \\
\hline 0 & Loremus Ipsemus & None \\
\hline 1372 & Blender Foundation & GPL \\
\hline 1373 & Blender Foundation & GPL \\
\hline 1374 & Michał Sapalski (username: sapalskimichal) & PD \\
\hline 1375 & Michał Sapalski (username: sapalskimichal) & PD \\
\hline
\end{tabular}
```

2750HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ADDD3x
2751 httP://En.WIKIBOOKS.ORG/WIKI/USER%3ADDD3x
2752HTTP://En.wIKIBOOKS.ORG/wIKI/USER%3ADDD3x
2753 нтtP://En.WIKIBOOKS.ORG/WIKI/USER%3ADDD3x
2754 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ADDD3x
2755 htTP://En.wIKIBOOKS.ORG/wIKI/USER%3ADDD3x
2756 нTtP://EN.WIKIBOOKS.ORG/WIKI/USER%3ADDD3x
2757 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ADDD 3x
2758 htTP://En.wIKIBOOKS.ORG/wIKI/USER%3ADDD3x
2759 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ABOOTALEG
2760 HTTP://EN.WIKIBOOKS.ORG

```
\begin{tabular}{|c|c|c|c|}
\hline 1376 & \multicolumn{2}{|l|}{Michał Sapalski (username: sapalskimichal)} & PD \\
\hline 1377 & \multicolumn{2}{|l|}{Michał Sapalski (username: sapalskimichal)} & PD \\
\hline 1378 & \multicolumn{2}{|l|}{Michał Sapalski (username: sapalskimichal)} & PD \\
\hline 1379 & \multicolumn{2}{|l|}{Michał Sapalski (username: sapalskimichal)} & PD \\
\hline 1380 & \multicolumn{2}{|l|}{Michał Sapalski (username: sapalskimichal)} & PD \\
\hline 1381 & \multicolumn{2}{|l|}{Michał Sapalski (username: sapalskimichal)} & PD \\
\hline 1382 & \multicolumn{2}{|l|}{ROSVER \({ }^{2761}\)} & cc-by-sa-3.0 \\
\hline 1383 & \multicolumn{2}{|l|}{ROSVER \({ }^{2762}\)} & PD \\
\hline 1384 & \multicolumn{2}{|l|}{blender Foundation} & PD \\
\hline 1385 & \multicolumn{2}{|l|}{Blender Foundation} & PD \\
\hline 1386 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1387 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1388 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1389 & \multicolumn{2}{|l|}{Blander Foundation} & GPL \\
\hline 1390 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1391 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1392 & \multicolumn{2}{|l|}{Blender 3d Screen Shots} & GPL \\
\hline 1393 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1394 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1395 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1396 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1397 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1398 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1399 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1400 & \multicolumn{2}{|l|}{<Blender Foundation} & GPL \\
\hline 1401 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1402 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1403 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1404 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1405 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1406 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1407 & \multicolumn{2}{|l|}{Blender Foundation} & GPL \\
\hline 1408 & \multicolumn{2}{|l|}{Rosver \({ }^{2763}\)} & PD \\
\hline 1409 & \multicolumn{2}{|l|}{} & PD \\
\hline 1410 & Original uploader was QUANTUM
EN.WIKIBOOKS \({ }^{2765}\) & \[
\text { ANOMALY }{ }^{2764} \text { at }
\] & GFDL \\
\hline 1411 & Original uploader was QuANTUM
EN.WIKIBOOKS \({ }^{2767}\) & \[
\text { ANOMALY }^{2766} \text { at }
\] & GFDL \\
\hline 1412 & Original uploader
EN.WIKIBOOKS \({ }^{2769}\) was QUANTUM & \[
\text { ANOMALY }{ }^{2768} \text { at }
\] & GFDL \\
\hline
\end{tabular}

\footnotetext{
2761 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER
2762 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER
2763 htte://En.WIKIbooks.ORG/WIKI/USER\%3AROSVER
2764 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY
2765 HTTP://EN.WIKIBOOKS.ORG
2766 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20ANOMALY
2767 нттP://En.WIKIBOOKS.ORG
2768 http://En.wIkIbooks.ORG/wIKI/\%3AwIKIbOOKS\%3AEN\%3AUSER\%3AQUANTUM\%20AnOMALY 2769 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1413 & Original uploader EN.WIKIBOOKS \({ }^{2771}\) & was & QUANTUM & ANOMALY \({ }^{2770}\) & at & GFDL \\
\hline 1414 & Original uploader EN.WIKIBOOKS \({ }^{2773}\) & was & QUANTUM & \[
\text { ANOMALY }^{2772}
\] & at & GFDL \\
\hline 1415 & Original uploader EN.WIKIBOOKS \({ }^{2775}\) & was & QUANTUM & \[
\text { ANOMALY }{ }^{2774}
\] & at & GFDL \\
\hline 1416 & \begin{tabular}{l}
Original uploader \\
EN.WIKIBOOKS \({ }^{2777}\)
\end{tabular} & was & QUANTUM & \[
\text { ANOMALY }^{2776}
\] & at & GFDL \\
\hline 1417 & Original uploader EN.WIKIBOOKS \({ }^{2779}\) & was & QUANTUM & ANOMALY \({ }^{2778}\) & at & GFDL \\
\hline 1418 & \begin{tabular}{l}
Original uploader \\
EN.WIKIBOOKS \({ }^{2781}\)
\end{tabular} & was & QUANTUM & \[
\text { ANOMALY }^{2780}
\] & at & GFDL \\
\hline 1419 & Original uploader EN.WIKIBOOKS \({ }^{2783}\) & was & QUANTUM & \[
\text { ANOMALY }^{2782}
\] & at & GFDL \\
\hline 1420 & \begin{tabular}{l}
Original uploader \\
EN.WIKIBOOKS \({ }^{2785}\)
\end{tabular} & was & QUANTUM & \[
\text { ANOMALY }^{2784}
\] & at & GFDL \\
\hline 1421 & Original uploader EN.WIKIBOOKS \({ }^{2787}\) & was & QUANTUM & \[
\text { ANOMALY }^{2786}
\] & at & GFDL \\
\hline 1422 & \begin{tabular}{l}
Original uploader \\
EN.WIKIBOOKS \({ }^{2789}\)
\end{tabular} & was & QUANTUM & \[
\text { ANOMALY }{ }^{2788}
\] & at & GFDL \\
\hline 1423 & Original uploader EN.WIKIBOOKS \({ }^{2791}\) & was & QUANTUM & \[
\text { ANOMALY }^{2790}
\] & at & GFDL \\
\hline 1424 & Original uploader EN.WIKIBOOKS \({ }^{2793}\). ADRIGNOLA \({ }^{2794}\) at & \begin{tabular}{l}
was \\
Lat \\
N.WIK
\end{tabular} & \begin{tabular}{l}
QUANTUM \\
r version(s) воокS \({ }^{2795}\).
\end{tabular} & ANOMALY \({ }^{2792}\) were uploaded & & GFDL \\
\hline
\end{tabular}

\footnotetext{
2770 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2771 HTTP://EN.WIKIBOOKS.ORG
2772 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2773 HTTP://EN.WIKIBOOKS.ORG
2774 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2775 HTTP://EN.WIKIBOOKS.ORG
2776 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2777 HTTP://EN.WIKIBOOKS.ORG
2778 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2779 HTTP://EN.WIKIBOOKS.ORG
2780 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2781 HTTP://EN.WIKIBOOKS.ORG
2782 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2783 HTTP://EN.WIKIBOOKS.ORG
2784 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2785 HTTP://EN.WIKIBOOKS.ORG
2786 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2787 HTTP://EN.WIKIBOOKS.ORG
2788 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2789 HTTP://EN.WIKIBOOKS.ORG
2790 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2791 HTTP://EN.WIKIBOOKS.ORG
2792 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AQUANTUM\%2OANOMALY 2793 HTTP://EN.WIKIBOOKS.ORG

2794 HTTP://EN.WIKIBOOKS.ORG/wIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3AADRIGNOLA
2795 HTTP://EN.WIKIBOOKS.ORG
}
\begin{tabular}{|c|c|c|}
\hline 1425 & Original uploader was SOEB \({ }^{2796}\) at EN.WIKIBOOKS \({ }^{2797}\) & \\
\hline 1426 & FABRICE TIERCELIN \({ }^{2798}\) & GFDL \\
\hline 1427 & Original uploader was SOEB \({ }^{2799}\) at EN.WIKIBOOKS \({ }^{2800}\) & \\
\hline 1428 & Original uploader was SOEB \({ }^{2801}\) at EN.WIKIBOOKS \({ }^{2802}\) & \\
\hline 1429 & FABRICE TIERCELIN \({ }^{2803}\) & GFDL \\
\hline 1430 & & PD \\
\hline 1431 & & PD \\
\hline 1432 & & PD \\
\hline 1433 & & PD \\
\hline 1434 & & PD \\
\hline 1435 & & PD \\
\hline 1436 & & PD \\
\hline 1437 & & PD \\
\hline 1438 & othman ahmad & GPL \\
\hline 1439 & Othman Ahmad & GPL \\
\hline 1440 & Original uploader was TjB0607 \({ }^{2804}\) at EN.WIKIBOOKS \({ }^{2805}\) & \\
\hline 1441 & Original uploader was TjB0607 \({ }^{2806}\) at EN.WIKIBOOKS \({ }^{2807}\) & \\
\hline 1442 & Original uploader was TjB0607 \({ }^{2808}\) at EN.WIKIBOOKS \({ }^{2809}\) & \\
\hline 1443 & tjb0607 & \\
\hline 1444 & UsER:TJB0607 \({ }^{2810}\) & \\
\hline 1445 & TJB0607 \({ }^{2811}\) & cc-by-sa-3.0 \\
\hline 1446 & \(\mathrm{LDO}^{2812}\) & \\
\hline 1447 & Blender Foundation & GPL \\
\hline 1448 & Blender Foundation & GPL \\
\hline 1449 & Blender Foundation & GPL \\
\hline 1450 & RoSVER \({ }^{2813}\) & PD \\
\hline 1451 & ROSVER \({ }^{2814}\) & PD \\
\hline 1452 & ROSVER \({ }^{2815}\) & PD \\
\hline 1453 & ROSVER \({ }^{2816}\) & PD \\
\hline 1454 & RoSVER \({ }^{2817}\) & PD \\
\hline
\end{tabular}
```

2796 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3AWIKIBOOKS\%3AEN\%3AUSER\%3ASOEB 2797 HTTP://EN.WIKIBOOKS.ORG
2798 нтTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AFTIERCEL
2799 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASOEB
2800 HTTP://EN.WIKIBOOKS.ORG
2801 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ASOEB
2802 нTTP://EN.WIKIBOOKS.ORG
2803 HtTP://En.wIKIbookS.org/wIKI/USER%3AFtIERCEL
2804 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AwIKIBOOKS%3AEN%3AUSER%3ATJB0607
2805 нTTP://EN.WIKIBOOKS.ORG
2806 HTtP://En.WIKIbOOKS.ORG/WIKI/%3AwIkIBOOKS%3AEN%3AUSER%3ATJB0607
2807 нTTP://EN.WIKIBOOKS.ORG
2808 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AWIKIBOOKS%3AEN%3AUSER%3ATJB0607
2809 нтTP://EN.WIKIBOOKS.ORG
2810HtTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATJB0607
2811 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATJB0607
2812 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ALDO
2813 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AROSVER
2814 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AROSVER
2815 HTTP://EN.WIKIbOOKS.ORG/WIKI/USER%3AROSVER
2816 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AROSVER
2817 HTtP://EN.WIKIbOOKS.ORG/WIKI/USER%3AROSVER

```
\begin{tabular}{|l|l|l|}
\hline 1455 & ROSVER \(^{2818}\) & PD \\
\hline 1456 & ROSVER \(^{2819}\) & PD \\
\hline 1457 & ROSVER \(^{2820}\) & PD \\
\hline 1458 & ROSVER \(^{2821}\) & \\
\hline 1459 & ROSVER \(^{2822}\) & PD \\
\hline 1460 & ROSVER \(^{2823}\) & PD \\
\hline 1461 & ROSVER \(^{2824}\) & PD \\
\hline 1462 & ROSVER \(^{2825}\) & PD \\
\hline 1463 & ROSVER \(^{2826}\) & PD \\
\hline 1464 & ROSVER \(^{2827}\) & PD \\
\hline 1465 & RosVER \(^{2828}\) & PD \\
\hline 1466 & ROSVER \(^{2829}\) & PD \\
\hline 1467 & ROSVER \(^{2830}\) & PD \\
\hline 1468 & ROSVER \(^{2831}\) & PD \\
\hline 1469 & ROSVER \(^{2832}\) & PD \\
\hline 1470 & ROSVER \(^{2833}\) & PD \\
\hline 1471 & ROSVER \(^{2834}\) & PD \\
\hline 1472 & ROSVER \(^{2835}\) & PD \\
\hline 1473 & ROSVER \(^{2836}\) & PD \\
\hline 1474 & ROSVER \(^{2837}\) & PD \\
\hline 1475 & ROSVER \(^{2838}\) & PD \\
\hline 1476 & ROSVER \(^{2839}\) & PD \\
\hline 1477 & ROSVER \(^{2840}\) & PD \\
\hline 1478 & ROSVER \(^{2841}\) & PD \\
\hline 1479 & ROSVER \(^{2842}\) & PD \\
\hline 1480 & ROSVER \(^{2843}\) & PD \\
\hline
\end{tabular}

\footnotetext{
2818 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2819 htte://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2820 нttp://en.wIKIbooks.org/wikI/USER\%3ARoSver 2821 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2822 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2823 HTTP://En.wIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2824 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2825 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2826 HTTP://En.WIKIbooks.org/wIKI/USER\%3AROSVER 2827 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2828 нтtp://en.WIKIbooks.org/wIKI/USER\%3AROSVER 2829 нтtp://En.wIKIbooks.org/wIKI/USER\%3ARoSver 2830 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2831 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2832 нtte://en.wIKIbooks.org/wiki/User\%3ARosver 2833 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2834 нTtP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2835 нTtP://En.wIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2836 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2837 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2838 нтtp://en.wIKIbooks.org/wikI/USER\%3ARoSver 2839 нTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2840 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2841 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2842 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2843 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER
}
\begin{tabular}{|l|l|l|}
\hline 1481 & ROSVER \(^{2844}\) & PD \\
\hline 1482 & ROSVER \(^{2845}\) & PD \\
\hline 1483 & ROSVER \(^{2846}\) & PD \\
\hline 1484 & ROSVER \(^{2847}\) & PD \\
\hline 1485 & ROSVER \(^{2848}\) & PD \\
\hline 1486 & ROSVER \(^{2849}\) & PD \\
\hline 1487 & ROSVER \(^{2850}\) & PD \\
\hline 1488 & ROSVER \(^{2851}\) & PD \\
\hline 1489 & ROSVER \(^{2852}\) & PD \\
\hline 1490 & ROSVER \(^{2853}\) & PD \\
\hline 1491 & ROSVER \(^{2854}\) & PD \\
\hline 1492 & ROSVER \(^{2855}\) & PD \\
\hline 1493 & ROSVER \(^{2856}\) & PD \\
\hline 1494 & ROSVER \(^{2857}\) & PD \\
\hline 1495 & ROSVER \(^{2858}\) & PD \\
\hline 1496 & ROSVER \(^{2859}\) & PD \\
\hline 1497 & ROSVER \(^{2860}\) & PD \\
\hline 1498 & ROSVER \(^{2861}\) & PD \\
\hline 1499 & ROSVER \(^{2862}\) & PD \\
\hline 1500 & ROSVER \(^{2863}\) & PD \\
\hline 1501 & ROSVER \(^{2864}\) & PD \\
\hline 1502 & ROSVER \(^{2865}\) & PD \\
\hline 1503 & ROSVER \(^{2866}\) & PD \\
\hline 1504 & ROSVER \(^{2867}\) & PD \\
\hline 1505 & ROSVER \(^{2868}\) & PD \\
\hline 1506 & ROSVER \(^{2869}\) & PD \\
\hline
\end{tabular}

\footnotetext{
2844 http://en.wikibooks.org/wiki/USER\%3ARosver 2845 Htte://En.WIKIbooks.ORG/WIKI/USER\%3AROSVER 2846 Http://En.wIKIbooks.org/wIKI/USER\%3AROSVER 2847 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2848 Htte://En.WIKIbOOKS.ORG/WIKI/USER\%3AROSVER 2849 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2850 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2851 htte://En.WIKIbooks.ORG/WIKI/USER\%3AROSVER 2852 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2853 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2854 http://En.WIKIbooks.ORG/WIKI/USER\%3AROSVER 2855 HTtP://En.WIKIbOOKS.ORG/WIKI/USER\%3AROSVER 2856 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2857 HTtP://En.WIKIbOOKS.ORG/WIKI/USER\%3AROSVER 2858 нtтp://En.WIKIbooks.ORG/WIKI/USER\%3AROSVER 2859 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2860 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2861 HTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2862 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2863 HTtP://En.WIKIbOOKS.ORG/WIKI/USER\%3AROSVER 2864 HtTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2865 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2866 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2867 HtTP://En.WIKIbooks.ORG/WIKI/USER\%3AROSVER 2868 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2869 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER
}
\begin{tabular}{|c|c|c|}
\hline 1507 & Rosver \({ }^{2870}\) & PD \\
\hline 1508 & RoSVER \({ }^{2871}\) & PD \\
\hline 1509 & RoSVER \({ }^{2872}\) & PD \\
\hline 1510 & Rosver \({ }^{2873}\) & PD \\
\hline 1511 & RoSVER 2874 & PD \\
\hline 1512 & RoSVER \({ }^{2875}\) & PD \\
\hline 1513 & RoSVER \({ }^{2876}\) & PD \\
\hline 1514 & RoSVER \({ }^{2877}\) & PD \\
\hline 1515 & RoSVER \({ }^{2878}\) & PD \\
\hline 1516 & ROSVER \({ }^{2879}\) & PD \\
\hline 1517 & ROSVER \({ }^{2880}\) & PD \\
\hline 1518 & ROSVER \({ }^{2881}\) & PD \\
\hline 1519 & ROSVER \({ }^{2882}\) & PD \\
\hline 1520 & RoSver \({ }^{2883}\) & PD \\
\hline 1521 & Rosver \({ }^{2884}\) & PD \\
\hline 1522 & ROSVER \({ }^{2885}\) & PD \\
\hline 1523 & ROSVER \({ }^{2886}\) & PD \\
\hline 1524 & RoSVER \({ }^{2887}\) & PD \\
\hline 1525 & RoSVER \({ }^{2888}\) & PD \\
\hline 1526 & ROSVER \({ }^{2889}\) & PD \\
\hline 1527 & RoSVER \({ }^{2890}\) & PD \\
\hline 1528 & RoSVER \({ }^{2891}\) & PD \\
\hline 1529 & RoSVER \({ }^{2892}\) & \\
\hline 1530 & Rosver \({ }^{2893}\) & \\
\hline 1531 & RoSVER \({ }^{2894}\) & \\
\hline 1532 & ROSVER \({ }^{2895}\) & \\
\hline
\end{tabular}

\footnotetext{
2870 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2871 htte://en.WIKIbooks.org/wIKI/USER\%3ARoSVER 2872 нtte://en.wIKIbooks.org/wikI/USER\%3ARoSver 2873 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2874 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2875 HTTP://En.wIKIbooks.org/wIKI/USER\%3ARoSVER 2876 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2877 htte://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2878 HTTP://En.wIKIbooks.org/wIKI/USER\%3ARoSVER 2879 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2880 нtte://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2881 нтtp://En.wIKIbooks.org/wIKI/USER\%3ARoSver 2882 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2883 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2884 нтtp://en.wIKIbooks.org/wiki/USER\%3ARoSver 2885 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2886 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2887 нTtP://En.wIKIBOOKS.ORG/WIKI/USER\%3ARoSVER 2888 нTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2889 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2890 нтtp://En.wIKIbooks.org/wIKI/USER\%3ARoSVER 2891 нTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2892 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2893 HTTP://En.wIKIBOOKS.ORG/WIKI/USER\%3ARoSVER 2894 нTtP://En.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER 2895 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER
}
\begin{tabular}{|l|l|l|}
\hline 1533 & & GFDL \\
\hline 1534 & \begin{tabular}{l}
PHGCOM \\
\(\bullet\) derivative work: RosVER \(^{2896}\left(\right.\) TALK \(\left.^{2897}\right)\)
\end{tabular} & GFDL \\
\hline 1535 & Blender Foundation & GPL \\
\hline 1536 & blender foundation & GPL \\
\hline 1537 & Blender Foundation & GPL \\
\hline 1538 & Blender Foundation & GPL \\
\hline 1539 & ROSVER \({ }^{2898}\) & PD \\
\hline 1540 & \({\text { KOME } 111^{2899}}^{1541}\) & \\
\hline 1542 & & GFDL \\
\hline 1543 & & GPL \\
\hline
\end{tabular}

\footnotetext{
2896 http://en.wIKIbooks.org/wiki/USER\%3ARoSver
2897 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3AROSVER
2898 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AROSVER
2899 http://EN.WIKIBOOKS.ORG/WIKI/USER\%3AKome111
}

\section*{244. Licenses}

\subsection*{244.1. GNU GENERAL PUBLIC LICENSE}

\author{
Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>
}

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to
take away your freedom to share and change the works. By contrast the take away your freedom to share and change the works. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change all versions of a program-to make sure it remains free software
for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free sottware, we are referring to freedom, not price. Ou General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for them if yo wish), that your execive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you change the software or use piec
know you can do these things.

To protect your rights, we need to prevent others from denying you these
rights or asking you to surrender the rights. Therefore, you have certain rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribuete copies of the soft.
responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis of
for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the sourc
code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that
there is no warranty for this free software. For both users' and authors' sake the GPL requires that modified versions be marked as changed, so that their

Some devices are designed to deny users access to install or run modified This is fundamentally incompatible with the aim of protecting users' Tis is fundamentally incompatible with the aim of protecting users
freedom to change the software. The systematic pattern of such abuse freedom to change he sotware. Te systeals to use, which is precisely
occurs in the area of product for individual
where it is most unacceptable. Therefore, we have designed this version of where it is most unacceptable. Therefore, we have designed this version of
the GPL to prohibit the practice for those products. If such problems arise the GPL to prohibit the practice for those products. If such problems ariso
substantially in other domains, we stand ready to extend this provision to
those domains in future versions of the GPL, as needed to protect the thosedomains in future versions of the GPL, as needed to protect the
Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid th
special danger that patents applied to a free program could make it specia danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot used to render the program non-free

"This License" refers to version 3 of the GNU General Public License
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" To "modify" a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a "modified version" of the earlier work copy. The resulting work is called a " m
or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for infringement
under applicable copyright law, except executing it on a computer or permission, would make you directly or secondarily liable for infringem
under applicable copyright law, except exceuting it on a computer or
modifying a private copy. Propagation includes copying, distribution (wi modifying a private copy. Propagation includes copying, distribution (w
or without modification), making available to the public, and in some or without modification), making
countries other activities as well.

To "convey" a work means any kind of propagation that enables other To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is
no warranty for the work (except to the extent that warranties are provided) no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a that licensees may convey the work under this License, and how to view a
copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion. 1 . options, such
Source Code.

The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of

Standard Interface \({ }^{\text {mencran }}\). defined by a recognized standards body, or, in the case of interfaces
specified for a particular programming language, one that is widely used specified for a particular programming langua
among developers working in that language.

The "System Libraries" of an executable work include anything, other than
the work as a whole, that (a) is included in the normal form of packaging a the work as a whole, that (a) is included in the normal form of packaging a
Major Componet. Major Component, but which is not part of that Major Component, and (b)
serves only to enable use of the work with that Major Component, or to serves only to enable see
implement a Standard Interface for which an implementatation is available to
the public in source code form. A "Major Component", in this context, the public in source code form. A "Major Component", in this context,
means a major essential component (kernel, window system, and so on) of means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or the specific operating system (if any) on which the executable work runs, or
a compiler used to produce the work, or an object code interpreter used to a compile
run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) ru
object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition file associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow designed to require, such as by intimate data communication or control flo

The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work. 2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are
This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other
equivalent, as provided by copyright law. equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force. You Without conditions so long as your license otherwise remains in force. Yo
may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligation sunder article 11 of
the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumve covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users,
your or third parties' legal rights to forbid circumvention of technological your or third parties' legal rights to forbid
measures. 4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice; ke intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of
the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and
you may offer support or warranty protection for a fee. 5. Conveying
Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of
section 4, provided that you also meet all of these conditions:
*a) The work must carry prominent notices stating that you modified it, and giving a relevant date. * b) The work must carry prominent notices stating
that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all 7. This requirement modifies the requirement in section 4 to "keep intact al
notices". * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the
whole of the work, and all its parts, regardless of how they are packaged. whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but
it does not invalidate such permission if you have separately received it. * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices, however, if the Program has interactive interfacasesthat do no
display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work, and
which are not combined with it such as to form a larger program, in or on volume of a storage or distribution medium, is called an "aggregate" if the
compilation and its resulting copyright are not used to limit the access or compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause this permit. Inclusion of a covered work in an aggregate does not cause
License to apply to the other parts of the aggregate. 6. Conveying

You may convey a covered work in object code form under the terms of
sections 4 and 5 , provided that you also convey the machine-readable sections 4 and 5 , provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
*a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used
for software interchange. * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give an
who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, o a durable physical medium customarily used for software interchange, for a durable physical medium customarily used for software interchange,
price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge. * c) Convey individual copies of the object network server at no charge. *c) Convey individual copies of the object
code with a copy of the written offer to provide the Corresponding Source. code with a copy of the written offer to provide the Corresponciing So
This alternative is allowed only occasionally and noncommercially and only if you received the object code with such an offer, in accord with
subsection 6 b . d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent accesss to the
Corresponding Source in the same way through the same place at no furth Corresponding
charge. You n
along with the along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent topying facilities, provided you or a third party) that supports equivalent copying facilities, provided
you maintain clear directions next to the object code saying were to find you maintain clear directions next to the object code saying where to fi
the Corresponding Source. Regardless of what server hosts the the Corresponding Source. Regardless of what server hosts the for as long as needed to satisfy these requirements. *e) Convey the object
code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means an tangible personal property which is normally used for personal, family, or
household purposes, or (2) anything designed or sold for incorporation int a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a typical product received by a particular user, "normally used" refers to a ty
common use of that class of product, regardess of the status of the particular user or of the way in which the particular user actually yses, or
expects or is expected to use, the product. A product is a consumer product regardess of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.

\section*{"Installation Information" for a User Product means any methods,}
procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice case prevented or interfered with solely because modification has been
made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as part of a
transaction in which the right of possession and use of the User Product is transaction in which hee right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. Bu this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the ability to install modified object co
work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for
a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the seration of the network or violates the rules and protocols for

Corresponding Source conveyed, and Installation Information provided, in Corresponding Source conveyed, and nnstalation information provided, in
accord ith this section must be in a format that is publicly documented
(and with an implementation available to the public in source code form), or key for unpacking, reading o copying. 7. Additional Terms.
"Additional permissions" are terms that supplement the terms of thi License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that the are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions,
but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of it.
(Additional permissions may be written to require their own removal in (Additional permissions may be written to require their own removal in
certain cases when you modify the work.) You may place additional certain cases when you modify the work.) You may place additional
permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add Notwithstanding any other provision of this License, for material you a
a covered work, you may if if uthorized by the copyright holders of that
material supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the terms sections 15 and 16 of this License; or \({ }^{}\) b) Requiring preservation of the Appropriate Legal Notices displayed by works containing it; or * c) Prohibiting misrepresentation of the origin of that material, or requiring tha modified versions of such material be marked in reasonable ways as
different from the original version; or \({ }^{*}\) d) Limiting the use for publicity purposes of names of licensors or authors of the material: or *e) Declin to grant rights under trademark law for use of some trade names, trademarks, or service marks; or *f f) Requiring indemnification, of licenso
and authors of that material by anyone who conveys the material (or and authors of that material by anyone who conveys the material (or
modified versions of it) with contractual assumptions of liability to the moditied versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is governed by received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove this License along with a term that is a further restriction, you may remove
that term. If a license document contaians a further restriction but permits relicensing or conveying under this License, you may add to a covered wor
material governed by the terms of that license document, provided that the material governed by the terms of that license document, provided that
further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that
apply to those files, or a notice indicating where to find the applicable term

Additional terms, permissive or non-permissive, may be stated in the form
Additional terms, permissive or non-permissive, may be stated in
of a separately written license, or stated as exceptions; the above
requirements apply either way. 8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any attempt therwise to propagate or modify (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from
particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b) permanently if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the of this License (for any work) from that copyright holder,
violation prior to 30 days after your receipt of the notice.
your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same
9. Acceptance Not Required for Having Copies.
ou are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License. Therefore, by
modifying or propagating a covered work, you indicate your acceptance of modifying or propagating a covered work, you indicate your acceptance of
this License to do so. 10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives license from the original licensors, to run, modify and propagate tha compliance by third parties with this License.
cole to

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an rganization, or merging organizations. If propagation of a covered work sults from an entity transaction, each party to that transaction who partys predecessor in interest thad or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the party's predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the
work from the predecessor in interest. if the predecessor has it or can get it with from the predeces.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a
license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Program or any making, using, selling, off
portion of it. 11. Patents.
"contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus
licensed is called the contributor's "contributor versio""

A contributor's "essential patent claims" are all patent claims owned or acquired, that would be infringed by some manner, permitted by this icense, of making, using, or selling its contributor version, but do not
nclude claims that would be infringed only as a consequence of furthe odification of the contributor version. For purposes of this definition
control" includes the right to grant patent sublicenses in a manner onsistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent icense under the contributor's essential patent claims, to make, use, sell,
offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.
the following three paragraphs, a "patent license" is any express greement or commitment, however denominated, not to enforce a patent such as an express permission to practice a patent or covenant not to sue
for patent infringement). To "grant" such a patent license to a party means make such an agreement or commitment not to enforce a patent against he party.

If you convey a covered work, knowingly relying on a patent license, and
the Corresponding Source of the work is not available for anyone to copy free of charge and under the terms of this License, through a publicly vailable network server or other readily accessible means, then you must
ither (1) cause the Corresponding Source to be so available or (2) arrang either (1) cause the Corresponding Source to be so available, or \((2)\) arrang
o deprive yourself of the benefit of the patent license for this particular deprive yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements of thi License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient's use of the your conveying the covered work in a country, or your recipient's use of the
covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and
grant a patent license to some of the parties receiving the covered work grant a patent license to some of the parties receiving the covered work
uthorizing them to use, propagate, modify or convey a specific copy of the overed work, then the patent license you grant is automatically extended to
patent license is "discriminatory" if it does not include within the scope its coverage, prohibits the exercise of, or is conditioned on the is License You or mer his License. You may not convey a covered work if you are a party
arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from
you, a discriminatory patent license (a) in connection with copies of the you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) overed work conveyed by you (or copies made from those copiess), or (b)
primarily for and in connection with specific products or compilations that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any mplied license or other defenses to inffingement that may otherwise be
vailable to you under applicable patent law. 12. No Surrender of Others' vailable to you under applicable patent law. 12. No Surrender of Others
conditions are imposed on you (whether by court order, agreement or therwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered
work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey
it at all. For example, if you agree to terms that obligate you to collect a fy both those terns id convey he Pogral or refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License.
otwithstanding any other provision of this License, you have permission ol link or combine any covered work with a work licensed under version 3 .
of the GNU Affero General Public License into a single combined work, d to convey the resulting work. The terms of this License will continue pply to the part which is the covered work, but the special requirements of he GNU Affero General Public License, section 13 , concerning interact

The Free Software Foundation may publish revised and/or new versions of he GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address ew problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public specines uat a certain numbered version of the GNU General Public
License "or any later version" applies to it, you have the option of follow
the terms and conditionseither of the the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does no
specify y version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the
GNU General Public License can be used, that proxy's public statement of aceptance or an the Prognanenly aunorizes you to choose that version Later license versions may give you additional or different permissions. holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABLITY AND FITNESS FOR A PARTICULAR MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIIING OUT OF THE USE O INABILITY TO USE THE PROGRAM (INCLUDING BUT NO
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FALLURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts
shall apply local law that most closely approximates an absolute waiver of Shall apply local law that most closely approximates an absolute waiver
all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a
fee.

END OF TERMS AND CONDITIONS How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free so
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach then to the start of each source file to most effectively state the exclusi
warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

\section*{<one line to give the program's name and
Copyright (C) <year> <name of author>}

This program is free software: you can redistribute it and/or modiry it und the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your optio

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the inplied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>

Also add information on how to contact you by electronic and paper mail.
the program does terminal interaction, make it output a short notice like
<program> Copyright (C) <year> <name of author> This program comes
with ABSOLUTELY NO WARRANTY; for details type 'show \(w\) '. This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the ppropriate parts of the General Public License. Of course, your program's
commands might be different; for a GUI interface, you would use an "about

You should also get your employer (if you work as a programmer) chool, if any, to sign a "copyright disclaimer" for the program, if GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser General with the library. If this is what you want to do, use the GNU L
Public License instead of this License. But first, please read ubblic License instead of this License. But first, please
hhtp://www.gnu.org/philosophy/why-not-lgpl.html>.

\subsection*{244.2. GNU Free Documentation License}

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/> <http://sf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license

The purpose of this License is to make a manual, textbook, or other The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of he document mas the he GNU General Public License, which is a copyleft license designed f free software
oftware, because free software needs free documentation: should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals, it can be used for
any textual work, regardless of subject matter or whether it is published as a any textual work, regardless of subject matter or whether it is published as
printed book. We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND purpose is instru
DEFINITIONS

This License applies to any manual or other work, in any medium, that ontains a notice placed by the copyright holder saying it can ber oyalty-free license, unlimited in duration to use that work under the conditions stated herein. The "Document", below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". work. Any member of the public is a licensee, and is addressed "you' You accept the license if you copy, modify

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modification.
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related regarding them. designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated a
Invariant. The Document may contain zero Invariant Sections. If the The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is avalable to the general generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in therwise Transparent file format whose markup, or absence of markup, ha been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called substantial amount of text. A copy that is not "Transparent" is called
"Opaque". Examples of suitable formats for Transparent copies include plain ASCII using a publicly available DTD, and standard-conforming simple HTML, Postsccript or PDF designed for human modification. Examples of
ransparent image formats include PNG, XCF and JPG Opaque for transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by propriet include proprietary formats that can be read and edited only by proprietay
word processors, SGML or XML for which the DTD and/or processing word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License equires to appear in the title page. For works in formats which do not have requirest o appear in the title page. For works in formats which do not have
any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the

The "publisher" means any person or entity that distributes copies of the

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document mea
section "Entitled XYZ" according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this Lice Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of Whrranty Disclaimers may have is void a
this License. 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, eithe commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document notices, and the license notice saying this License applies to the Do
are reproduced in all copies, and that you add no other conditions are reproduced in alt copies, and hat you add no other conditions
whatsover to toose of this License. Pou may not use technical measures to
obstruct or control the reading or further copying of the copies you make or obstruct or control the reading or further copying of the copies you make or
distribut. However you may accept tomensation in exchange for copies. distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies. 3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed coverss of the Document, numbering more than 100 , and the
Document's license notice requires Cover Texts, you must Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: copies in covers that carry, clearly and legibly, alt these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the bac Pron-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must allo cleary and legibl identify you as the
publi sher of these copies. The front cover must present the full title with al publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering If you pubish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent more han 10 , you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using public-standard network protocols a comple Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until ar least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document. 4 . MODIFICATIONS

You may copy and distribute a Modified Version of the Document under th conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it In addition, you must Mo these things in the Modified Version:
*A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document) You may use the same title as a previous version if the oiginal publisher of that may use the same title as a previous version if the original publisher of that
version gives permission. \(*\) B. List on the Title Page, as authors, one or version gives permisision. . B. List on the hitte Page, as authors, one or
more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of they release you from this requirement. *C. State on the Title page the they release you from this requirement. *C. State on the Title page the
name of the publisher of the Modified Version, as the pubbisher. *D. name of the publisher of the Modified Version, as the pubbisher. *D.
Preserve all the copyright notices of the Document. * E. Add an appropriat copyright notice for your modifications adjacent to the other copyright notices. *F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified Version under notice giving the public permission to use the Modified Version under the
terms of this License, in the form shown the Addendum below *G. terms of this License, in the form shown in the Addendum below. *
Preserve in that license notice the full lists of Invariant Sections and
 an unaltered copy of this License. *I. Preserve the section Entitled
"History", Preserve its Title, and add to it an item stating at least the "History". Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the year, new authors, and publisher of the Modified Version as given on the
Titte Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Titte Page, then add an item describing the Modified Version as stated in the previous sentence. * J. Preserve the network location, if any, given in
the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous version it was based on. These may be placed in the "History" section. You may mefore network location for a work that was pubbished at least four year
befont itself, or if the original publisher of the version it befers to gives permission. * K. For any section Entitled
"Acknowledgements" or "
and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein. *L Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered and in their titles. Section numbers or the equivalent are not considered part
of the section titles. * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. * N. Do not retitle
any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. * O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the Document you may your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's sicense notice. These titles must be distinct from any as invariant. To do this, add their tites to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various partiesexample, statements of peer review or that the text has been approved by example, statements of peer review or that the text has be
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher may replace the old one
that added the old one.

The author(s) and publisher(s) of the Docurent don the give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version. 5 . COMBINING DOCUMENTS

You may combe ho Document with other docunens released under this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserv Sections of your combined wo
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If
there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to
section titles in the list of Invariant Sections in the license notice of the section titles in
combined work. In the combination, you must combine any sections Entitled "History" in
the various original doccuments, forming one section Entitled ""istory";
likewise likewise combine any sections Entitled "Acknowledgements", and any
sections Entitled "Dedications". You must delete all sections Entitled sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements". 6 COLIECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included in this License in the various documents with a single copy that is incl
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
individually under this License, provided you insert a a oopy of this License individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects regarding verbatim copying
INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright resulting from distribution medium, is called an "aggregate" if the copyright resulting fr
the compilation is ot used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire
aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear
on printed covers that bracket the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You Sections in addition to the original versions of these Invariant Sections. Yo may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the those notices and disclaimers. In case of a disagreement between the translation and the original versio
the original version will prevail.

If a section in the Document is Entitled "Acknowledgements"
(section 1) will typically require changing the actual title.
TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, odify, sublicense, or distribute it is void and will automatically terminate ghts under this License.

However, if you cease all violation of this License, then your license from particular copyright holder is reinstated (a) provisionally, unless and until位 copyright holder explicitly and finally terminates your license, and (b) ermanently, if the copyright holder fails to notify you of the violation by

Moreover, your license from a particular copyright holder is reinstated ermanently if the copyright holder notifies you of the violation by some of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.
ermination of your rights under this section does not terminate the licenses f parties who have received copies or rights from you under this License. a copy of have orenll of the same material does not give you any rights of a copy of some or all of the same material does not give
use it. 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or ny later version" applies to it, you have the option of following the terms
nd conditions either of that specififed version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software hoose any version ever published (not as a draft) by the Free Software
oundation. If the Document specifies that a proxy can decide which fut versions of this License can be used, that proxy's public statement of acceptance of a version permanently aut.
for the Document. 11. RELICENSING

Massive Multiauthor Collaboration Site" (or "MMC Site") means ant World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public hat anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, California orporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this License, nd if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part
into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
inder CC-BY-SA on the same site at any time before August 1,2009 provided the MMC is eligible for relicensing. ADDENDUM: How to use

To use this License in a document you have written, include a copy of the just after the title page

Copyright (C) YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the ection entitled "GNU Free Documentation License",
you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with ... Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the

If you have Invariant Sections without Cover Texts, or some other
your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their```

[^0]: 1 Chapter 191 on page 1437
 2 HTTP://WWW.BLENDER.ORG/DOWNLOAD/GET-BLENDER

[^1]: 3 httP://En.WIKIBOOKS.ORG/WIKI/UBUNTU

[^2]: 4 HTTP://WWW.GIMP.ORG/DOWNLOADS/
 5 HTTP://EN.WIKIPEDIA.ORG/WIKI/PINTA\% $20 \% 28$ SOFTWARE\%29
 6 HTTP://EN.WIKIPEDIA.ORG/WIKI/PAINT\%20.NET
 7 Chapter 196 on page 1451
 8 http://En.WIKIBOOKS.ORG/WIKI/...\%2F\%23ApPENDICES
 9 HTTP://WWW.BLENDER.ORG/FEATURES-GALLERY/REQUIREMENTS/
 10 HTTP://EN.WIKIBOOKS.ORG/WIKI/GIMP
 11 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/INTRODUCTION/INSTALLING_ BLENDER/WIndows
 12 htTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/INTRODUCTION/INSTALLING_ BLender/Linux
 13 htte://wIKI.BLENDER.ORG/INDEX.PhP/DOC:MANUAL/INTRODUCTION/INSTALLING_ Blender/Mac
 14 HTTP://WWW.PYTHON.ORG/ABOUT/

[^3]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/FREE\% 20SOFTWARE

[^4]: 6 HTTP://WWW.BLENDER.ORG/FEATURES-GALLERY/GALLERY/ART-GALLERY/
 7 HTTP://WWW.BLENDER.ORG/

[^5]: 2 HTTP://EN.WIKIPEDIA.ORG/WIKI/ANALYTIC\%20GEOMETRY
 3 HTTP://EN.WIKIPEDIA.ORG/WIKI/CARTESIAN\%20COORDINATE\%20SYSTEM
 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/RIGHTーHAND\%20RULE
 5 HTTP://EN.WIKIPEDIA.ORG/WIKI/ROTATION

[^6]: 1 Chapter 5 on page 27

[^7]: 2 Chapter 6 on page 31
 3 htip://En.WIKIPEDIA.ORG/WIKI/ALHAZEN
 4 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ANKANSAHREXFORD
 5 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ANKANSAHREXFORD
 6 HTTP://EN.WIKIBOOKS.ORG/WIKI/SPECIAL\%3ACONTRIBUTIONS\%2FNKANSAHREXFORD

[^8]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/PERSPECTIVE\% $20 \% 28$ GRAPHICAL 29

[^9]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ANKANSAHREXFORD
 2 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ANKANSAHREXFORD
 3 HTTP://EN.WIKIBOOKS.ORG/WIKI/SPECIAL\%3ACONTRIBUTIONS\%2FNKANSAHREXFORD

[^10]: 1 Chapter 10 on page 49

[^11]: 2 Chapter 10 on page 49

[^12]: 3 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ANKANSAHREXFORD
 4 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ANKANSAHREXFORD
 5 HTTP://EN.WIKIBOOKS.ORG/WIKI/SPECIAL\%3ACONTRIBUTIONS\%2FNKANSAHREXFORD

[^13]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/WINDOWS\%207

[^14]: 2 HTTP://SUPPORT.MICROSOFT.COM/KB/967893
 3 HTTP://EN.WIKIPEDIA.ORG/WIKI/STICKYKEYS

[^15]: 1 Chapter 1 on page 5

[^16]: 3 Chapter 10.0.2 on page 50

[^17]: 1 Chapter 10 on page 49

[^18]: 2 Chapter 7 on page 35

[^19]: 1 HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/BC2008/EVOLUTION_OF_BLENDERS_UI. PDF

[^20]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYGON\% 20 MESH

[^21]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/JPEG
 2 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOSSY\% 20COMPRESSION
 3 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOSSLESS\%20DATA\%20COMPRESSION
 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/PORTABLE\%20NETWORK\%20GRAPHICS
 5 HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=34\&T=2966\#
 6 HTTP://WWW.YOUTUBE.COM/WATCH?V=NZEY2SCZCHo

[^22]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLAT\%20SHADING
 2 HTTP://EN.WIKIPEDIA.ORG/WIKI/GOURAUD\%20SHADING
 3 HTTP://EN.WIKIPEDIA.ORG/WIKI/PHONG\%20SHADING
 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBDIVISION\%20SURFACE

[^23]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/SURFACE\% 200F\%20REVOLUTION
 2 HTTP://WWW.YOUTUBE.COM/WATCH?V=-MPTXA_MEPA

[^24]: 1 http://en.wikipedia.org/wiki/HSL\%20And\%20HSV
 2 http://en.wikipedia.org/wiki/RGB\%20color\%20model

[^25]: 1 HTTP://WWW.GIMP.ORG

[^26]: 2 HTTP://WWW.SPIRALGRAPHICS.BIZ/WW_OVERVIEW.HTM
 HTTP://WWW.MAPZONEEDITOR.COM/
 HTTP: / /WINEHQ.ORG/

[^27]: $5 \quad$ Chapter 72 on page 675

[^28]: 1 Chapter 38 on page 243
 2 Chapter 39 on page 247
 3 Chapter 72 on page 675
 4 Chapter 36 on page 229

[^29]: $1 \quad$ Chapter 30 on page 187

[^30]: 2 Chapter 152 on page 1181
 3 Chapter 30 on page 187
 4 htip://WWW.nUSOY.COM/BLENDER

[^31]: 1 Chapter 31 on page 201

[^32]: 2 Chapter 34 on page 219

[^33]: 1 Chapter 44 on page 279

[^34]: 2 Chapter 30 on page 187

[^35]: a htip://WWW.BLENDER. ORG/DOCUMENTATION/ HTMLI/X4448.htML b HTTP://EN. WIKIBOOKS.ORG/WIKI/
 USER\%3ABNTY

[^36]: 1 HTTP://WWW.VIDEOLAN.ORG/VLC/

[^37]: 2 Chapter 48.5.1 on page 363
 3 Chapter 48.5 .2 on page 366
 4 Chapter 48.5 .4 on page 369

[^38]: 5 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMSK61
 6 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3AMSK61

[^39]: 1 httP://I88. Photobucket.com/ALBums/K185/CAPTHEATHMALC/GOBLETINBLENDER.JPG
 2 HTTP://I88.PHOTOBUCKET.COM/ALBUMS/K185/CAPTHEATHMALC/GOBLET.JPG

[^40]: 2 Default model:select file \rightarrow new.
 Front view:press NUM1
 manipulator off: press CtrI to bring up the Manipulator menu, then select Enable/Disable
 Place a vertex: CtrT .
 Add a vertex:press Ctr , or E Enter
 Add a vertex:press Ctr , or $\mathrm{E}, \mathrm{Enter}$
 Move a vertex: select it with RMB , move it with the cursor, and then press LMB.

[^41]: 9 Cursor to selection: (Shift , then cursor \rightarrow selection
 top view: NUM7
 Select all: AKEY once or twice, until all are displayed in yellow
 Front view:press NUM1
 Remove duplicate vertices:press WKEY and select Remove Doubles
 Merge at center:Press \bar{W},Merge \rightarrow At Center, confirm with LMB or Enter

[^42]: 15 Chapter 36 on page 229

[^43]: 1 Chapter 50 on page 391

[^44]: 1 Chapter 36 on page 229
 2 http://wiki.blender.org/index.php/Doc:Manual/Materials/Multiple_Materials

[^45]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20NOOB\%20TO\%20PRO\%2FEVERY\% 20MATERIAL\%20KNOWN\%20TO\%20MAN\%2FGLASS

[^46]: 1 HTTP://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/BLENDERTUTORIALGUIDE1.TAR.GZ
 2 htte://DOWNLOAD.BLENDER.ORG/DOCUMENTATION/BLENDERTUTORIALGUIDE1.zIP

[^47]: 1 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/MODELLING/MESHES/REMAKING_THE_ TOLOPOGY

[^48]: 2 HTTP://VIDEO.GOOGLE.COM/VIDEOSEARCH?SOURCEID=NAVCLIENT\&RLZ=1T4GGLR_ ENUS 262 US $264 \& Q=$ BLENDER 20 RETOPO 20 TUTORIAL\&UM=1\&IE=UTF-8\&SA=N\&HL=EN\&TAB=WV\#

[^49]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIVIEW\%20ORTHOGRAPHIC\%20PROJECTION

[^50]: 2 Chapter 14 on page 69
 3 Chapter 13.3 on page 60

[^51]: 8 HTTP://EN.WIKIBOOKS.ORG/WIKI/GIMP
 9 Chapter 1 on page 5

[^52]: 10 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARALLAX
 11 Chapter 64.3 on page 576

[^53]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/B\%E9ZIER\%20CURVE

[^54]: <!-- these images never seems to have been uploaded

[^55]: 2
 Chapter 33 on page 215

[^56]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/B\%25C3\%25A9ZIER_CURVE

[^57]: a HTTP://EN.WIKIBOOKS.ORG/WIKI/ \% 3AFILE\%
 3AWALES-TENBY-DIE\%20StADT.JPG

[^58]: 1 http://wiki.blender.org/index.php/Doc:Manual/Textures
 2 http://www.LeIGhVANDERBy.COM/tutorials.htmi
 3 Chapter 80 on page 733

[^59]: 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIFFUSE\%20REFLECTION

[^60]: 9 HTTP://EN.WIKIPEDIA.ORG/WIKI/BUMP\%20MAPPING
 10 hTtP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/TEXTURES/MAPS/BUMP_AND_NORMAL_ MAPS

[^61]: 11 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/MODIFIERS/MESH/DISPLACE

[^62]: 12 HTTP://WWW.CGCOOKIE.COM/ARTICLES/2008/12/21/BLENDER-INTRO-TO-STENCIL-MAPS

[^63]: 13
 Chapter 80 on page 733

[^64]: 1 HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=34\&T=1445

[^65]: 1 HTTP://WWW.MEDIAFIRE.COM/FILE/WWKZD9BE907681G/BASIC-SCENE.BLEND

[^66]: 1 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=85722\&HIGHLIGHT=EYEBALL
 2 HTTP://WWW.AURELLEM.COM/AURELLEM/EYEBALL_TUTORIAL.PDF

[^67]: 7 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ABONAPON
 8 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ABONAPON
 9 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ABONAPON
 10 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ABONAPON

[^68]: 17 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWITHALLIGATORS
 htte://En.WIKIbooks.org/WIKI/USER\%20tALK\%3AWIThALLIGATORS
 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ABONAPON
 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ABONAPON

[^69]: 2 hTTP://EN.WIKIPEDIA.ORG/WIKI/SCLERA
 3 Chapter 36 on page 229
 4 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A_NOOB_TO_PRO\%2FQUICKIE_TEXTURE\% 20

[^70]: Figure 669: Setting the iris color.

[^71]: 5 HTTP://FORUM.IRAKRAKOW.COM/VIEWTOPIC.PHP?F=19\&T=250
 6 HTTP://RJNLK94.GOOGLEPAGES.COM/EYEBALLTUTORIAL

[^72]: 1 HTTP://WWW.BLENDER3D.ORG

[^73]: 2

[^74]: 3 HTTP://WWW.PYTHON.ORG/DOWNLOAD/RELEASES/2.5.4/
 4 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER $203 \mathrm{D} \% 3 \mathrm{~A} \% 20 \mathrm{NOOB}$ O 20 TO 20 PRO $2 \mathrm{FTHE} 20 \mathrm{GAME} \%$ 20EngIne

[^75]: 1 http://www.mediafire.com/file/mfk4k39w6fu38j5/ifght-test.blend

[^76]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ARADIALRONNIE
 2 HTTP://En.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ARADIALRONNIE
 3 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ARADIALRONNIE
 4 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ARADIALRONNIE

[^77]: 1 Chapter 91 on page 817

[^78]: 2 Chapter 89 on page 809
 3 Chapter 88 on page 807

[^79]: 1 Chapter 216 on page 1577
 2 Chapter 215 on page 1575

[^80]: 3 HTTP://EN.WIKIPEDIA.ORG/WIKI/PAL
 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/NTSC
 5 Chapter 88 on page 807
 6 HTTP://EN.WIKIPEDIA.ORG/WIKI/PALPLUS
 7 Chapter 88 on page 807

[^81]: 1 HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=34\&T=3102
 2 HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=9\&T=5355

[^82]: 1 HTTP://I245. PHOTOBUCKET.COM/ALBUMS/GG79/TICTOON/SCREENSHOT8.PNG[/IMG]

[^83]: 13 HTTP://GRAPHICALL.ORG/BUILDS/INDEX.PHP
 14 HTTP://FREESTYLEINTEGRATION.WORDPRESS.COM/
 15 HTTP://FREESTYLEINTEGRATION.WORDPRESS.COM/FREQUENTLY-ASKED-QUESTIONS-FAQ/

[^84]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/HTTP\% 3A\%2F\%2FEN.WIKIBOOKS.ORG\%2FWIKI\%2FBLENDER_ 3D\%3A_NOOB_TO_PRO\%2FDIE_EASY_2
 2 http://wIKI.BLENDER.ORG/INDEX.PhP/MANUAL/EDGE_AND_FACE_TOOLS

[^85]: 1 Chapter 96 on page 839

[^86]: 2 htip://MEMBERS.WESTNET.COM.AU/ANDYDOLPHIN/BLENDER/BOUNCE.AVI

[^87]: HTTP://WWW.PKBLENDER.IT/
 HTTP://MIKEPAN.COM/MOTIONS. HTM

[^88]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ARADIALRONNIE
 2 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ARADIALRONNIE

[^89]: 1 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/PARTICLES

[^90]: 2 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/MATERIALS/HALOS

[^91]: 1 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/PARTICLES
 2 htip://wWW.BLENDERART.ORG/ISSUES/

[^92]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20NOOB\%20TO\%20PRO\%2FFURRY\%202. 40

[^93]: 2 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/MATERIALS/PROPERTIES/StRANDS

[^94]: 3 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/PARTICLE_MODE
 4 HTTP://WWW.SNAPDRIVE.NET/FILES/180816/BLENDER3D_FURTUTORIAL.ZIP
 5 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3ADE\%3ABLENDER\%20DOKUMENTATION\%2F\%20TUTORIALS\% 2F\%20PARTIKEL\%2F\%20GRAS
 6 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=124839

[^95]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%20FILE\%3ABLENDER3D\%20FIREWORKS-REACTOR2-MATERIAL-2. 48A.PNG

[^96]: 3 HTTP://WWW.SNAPDRIVE.NET/FILES/180816/BLENDER3D_HARMONICFIELDTEXT.BLEND.ZIP
 4 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/FORCE_FIELDS

[^97]: 1 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/PARTICLES/VISUALISATION

[^98]: 2 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/DOC:MANUAL/PHYSICS/PARTICLES/CONTROLLING_ EmISSION\%2C_INTERACTION_AND_TIME

[^99]: 3 HTTP://WWW.VIMEO.COM/4121571
 4 HTTP://WWW.SNAPDRIVE.NET/FILES/180816/BILLBOARDFADEUVS.BLEND.ZIP

[^100]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AWITHALLIGATORS
 2 htte://En.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3AWITHALLIGATORS

[^101]: 1 HTTP://AU.YOUTUBE.COM/WATCH?V=MGYHZ3HWWTQ

[^102]: $1 \quad$ Chapter 111 on page 957

[^103]: 1 Chapter 111 on page 957
 2 Chapter 112 on page 961

[^104]: 3 Chapter 127 on page 1055

[^105]: 1 HTTP://WWW.BLENDER.ORG/EDUCATION-HELP/FAQ/GPL-FOR-ARTISTS/.

[^106]: 1 HTTP://wIKI.BLENDER.ORG/INDEX.PHP/MANUAL/TEXT
 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3ABULLERCRUZI
 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3ABULLERCRUZ1

[^107]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/OBJECT\% $20 \% 22$ CAMERA\% $22 \% 5 \mathrm{D} \% 2 \mathrm{C} \% 20 \% 5$ BOBJECT $\% 20 \%$ $22 \mathrm{CUBE} \% 22 \% 5 \mathrm{D} \% 2 \mathrm{C} \% 20 \% 5$ BOBJECT $\% 20 \% 22$ LAMP $\% 22$

[^108]: 3 HTTP://EN.WIKIPEDIA.ORG/WIKI/GIMBAL_LOCK

[^109]: 4 HTTP://WWW.BLENDER.ORG/DOCUMENTATION/BLENDER_PYTHON_API_2_56_0/

[^110]: Blender.Draw.Toggle("Clear origin",1,10,20,100,20,0,"Tooltip")

[^111]: V.co

[^112]: 1 Chapter 130 on page 1067

[^113]: 1 HTTP://SALTSHAKER.SOURCEFORGE.NET/
 2 HTTP://JMSOLER.FREE.FR/DIDACTICIEL/BLENDER/TUTOR/PYTHON_SCRIPTO1_EN.HTM

[^114]: 1 http://en.wikipedia.org/wiki/High_dynamic_RANGE_IMAGING
 2 http://www.Debevec.org
 3 Chapter 136 on page 1095

[^115]: 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOLID_ANGLE
 5 HTTP://EN.WIKIPEDIA.ORG/WIKI/STERADIAN

[^116]: 6 HTTP://DEBEVEC.ORG/PROBES/
 7 HTTP://BLENDERARTISTS.ORG/FORUM/SHOWTHREAD.PHP?T=24038

[^117]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLIGHT_OF_THE_NAVIGATOR

[^118]: 1 HTTP://GIMP.ORG),

[^119]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER_3D:_NOOB_TO_PRO/MOUNTAINS_OUT_OF_ Molehills

[^120]: 2 HTTP://ONEODDDUDE.NET/FREETEXTURES.PHP?ACTION=BROWSE\&CATID=5
 3 HTTP://ONEODDDUDE.NET/FREETEXTURES.PHP?ACTION=DISPLAY\&ID=10\&PAGE=1\&SORT= ID\&CATID=5

[^121]: 4 HTTP://WWW.BUNDYSOFT.COM/L3DT/DOWNLOADS/STANDARD.PHP

[^122]: 1 Chapter 139 on page 1113
 2 HTTP://FEEBLEMIND.ORG/BLOG/INDEX.PHP?POST/2005/02/27/16-DIDACTICIEL-USAGE-DES-MASQUES-DE-TEX

[^123]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/OCT_TREE
 2 http://wIKI.BLENDER.ORG/INDEX.PHP/TUTORIALS/CREATING_A_HEIGHTMAP_FROM_A_ Plane
 3 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/MAIN_PAGE

[^124]: 4 HTTP://EN.WIKIPEDIA.ORG/WIKI/HEIGHTMAP
 5 Chapter 139 on page 1113

[^125]: 6 HTTP://EN.WIKIPEDIA.ORG/WIKI/GOURAUD_SHADING

[^126]: 7 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%3AMOOHASHA
 8 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER\%20TALK\%3AMOOHASHA

[^127]: 1 HTTP://AU.YOUTUBE.COM/WATCH?V=YMBX2PYIQNY
 2 HTTP://FORUM.NYSTIC.COM/VIEWTOPIC.PHP?F=34\&T=1445

[^128]: 1 HTTP://EN.WIKIPEDIA.ORG/WIKI/RGB

[^129]: 1 HTTP://WWW.YOUTUBE.COM/WATCH?V=AANXOUSDAAM

[^130]: 1 Chapter 153 on page 1183
 Chapter 154 on page 1195
 Chapter 155 on page 1207
 HTTP://WWW.BLENDER.ORG/CMS/BLENDER_2_40_ALPHA.598.0. HTML

[^131]: 1 HTTP://YOUTUBE.COM/WATCH?V=GBFVRILSSNO
 2 HTTP://WWW.YOUTUBE.COM/WATCH?V=T1-TVJVOKR8

[^132]: 1 Chapter 153 on page 1183
 2 Chapter 155 on page 1207

[^133]: 4 Chapter 159 on page 1225
 5 Chapter 158 on page 1219

[^134]: 1 Chapter 157 on page 1215
 2 Chapter 158 on page 1219
 3 Chapter 159 on page 1225
 4 Chapter 160 on page 1233

[^135]: 1 HTTP://WWW.GARYCMARTIN.COM/MOUTH_SHAPES.HTML

[^136]: 2 HTTP://WWW.ANIMATIONMEAT.COM/PRACTICE/PRACTICE.HTML

[^137]: 1 Chapter 163 on page 1255
 2 Chapter 164 on page 1259
 3 Chapter 165 on page 1261
 4 Chapter 166 on page 1265
 5 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20NOOB\%20TO\%20PRO\%2FADVANCED\% 20TUTORIALS 2 FADVANCED $\% 20$ ANIMATION $\% 2$ FGUIDED 20 TOUR 2 FCONST $\% 2$ FLT
 6 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20NOOB\%20TO\%20PRO\%2FADVANCED\%

 7 Chapter 167 on page 1267
 8 Chapter 168 on page 1269
 9 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20NOOB\%20TO\%20PRO\%2FADVANCED\% 20TUTORIALS 2 FADVANCED 20 ANIMATION 2 FGUIDED 20 TOUR 2 FCONST $\% 2$ FACT

[^138]: 1 htip://WWW.telusplanet.net/public/kugyelka/blender/tutorials/stride/stride. HTML
 2 HTTP://WWW.BLENDER3D.ORG/CMS/ADVANCED_STRIDE_SUPPOR. 720.0. HTML
 3 HTTP://WIKI.BLENDER.ORG/INDEX.PHP/NLA_EDITOR_AND_STRIDE_PATH\#STRIDE_SUPPORT

[^139]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20NOOB\%20TO\%20PRO\%2FADVANCED\% 20TUTORIALS $\% 2$ FRELATIVE $\% 20 \mathrm{VERTEX} \% 20 \mathrm{KEyS}$

[^140]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%3ADE\%3ABLENDER\%20DOKUMENTATION\%2F\%20TUTORIALS\% $2 \mathrm{~F} \% 20$ ARMATURES $\% 2 \mathrm{~F} \% 20 \mathrm{KOLBEN} \% 20$ UND $\% 20 \mathrm{ZYLINDER}$

[^141]: 1 HTTP://WWW.BLENDERNATION.COM/TUTORIALS/BLENDER-3D-INTERMEDIATE-TUTORIAL-CUTTING-THROUGH-STEE

[^142]: 2 HTTP://WWW.SNAPDRIVE.NET/FILES/180816/CuttingThroughSteet. ZIP

[^143]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/\%2FGAME\%20CREATING\%20TECHNIQUES\%28GUI\%29
 2 HTTP://EN.WIKIBOOKS.ORG/WIKI/ \% 2FGAME\%20CREATING\%20TECHNIQUES\%28PYTHON\%29

[^144]: 1 HTTP://EN.WIKIBOOKS.ORG/WIKI/BLENDER\%203D\%3A\%20BLENDING\%20INTO\%2OPYTHON

[^145]: 7 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEPTH\%200F\%20FIELD
 8 HTTP://EN.WIKIPEDIA.ORG/WIKI/DISPLACEMENT\%20MAPPING
 9 HTTP://EN.WIKIPEDIA.ORG/WIKI/FOCAL\%20LENGTH
 10 HTTP://EN.WIKIPEDIA.ORG/WIKI/FOCUS\%20\%28OPTICS\%29

[^146]: 16 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPOLATION
 17 htip://En.wIKIPEdIA.ORG/wIKI/INVERSE\%20KINEMATICS
 18 httP://En.WIKIPEDIA.ORG/WIKI/JPEG
 19 HTTP://EN.WIKIPEDIA.ORG/WIKI/LUMINOSITY

[^147]: 28 HTTP://EN.WIKIPEDIA.ORG/WIKI/STUCCO

[^148]: 29 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPOLATION

[^149]: 1 HTTP://WWW.BLENDER.ORG
 2 HTTP://EN.WIKIPEDIA.ORG/WIKI/BLENDER\% $20 \% 28$ SOFTWARE\%29

[^150]: 3 HTTP://WWW.BLENDERARTISTS.ORG/FORUM
 4 HTTP://FORUMS.BLENDERNEWBIES.COM/
 5 HTTP://wIKI.BLENDER.ORG/
 6 HTTP://WWW.BLENDER.ORG/COMMUNITY/USER-COMMUNITY/

