
MATH 235 Midterm 1 SOS Review Package

June 4, 2011

Fundamental Subspaces

First we review the four fundamental subspaces of a matrix and the associated
subspace of the linear map which represents the matrix mapping.

Definition. Let A be an m×n matrix with columns ~c1, · · · ,~cn ∈ Rm and rows

~r1, · · ·~rm ∈ Rn so A =
[
~c1 · · · ~cn

]
=

~r
T

1
...
~r Tm

.

The column space of A is the set col(A) = span({~c1, · · · ,~cn}).
The null space of A is the set null(A) = {~x ∈ Rn : A~x = ~0}.
The row space of A is the set row(A) = span({~r1, · · · , ~rm}).
The left null space of A is the set null(AT ).

Definition. Let L : Rn → Rm be a linear map.
The range of L is the set {L(~x) : ~x ∈ Rn}.
The kernel of L is the set {~x ∈ Rn : L(~x) = ~0}.

We recall the following:

1. null(A), row(A), ker(L) are subspaces of Rn

2. col(A), null(AT ), range(L) are subspaces of Rm

3. Let L : Rn → Rm be defined by L(~x) = A~x. Then range(L) = col(A) and
ker(L) = null(A).

Proof. We prove only part 3 which follows immediately from the fact that

a1~c1 + · · ·+ an~cn =
[
~c1 · · · ~cn

] a1...
an

 = A~x

where ~x =

a1...
an

.
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Definition. Let A be an m×n matrix. The rank of A is the number of leading
ones in the reduced row echelon form of A.

Example. If A =

1 2 3
4 5 6
7 8 9

, then R = RREF(A) =

1 0 −1
0 1 2
0 0 0

 and so

rank(A) = 2.

Using the definition of the reduced row echelon form, we obtain the following
fact.

Fact. Let A be an m× n matrix and let R = RREF(A). Then the columns of
R with leading ones form a basis for col(R) and the non-zero rows of R form a
basis for row(R).

Theorem. Let A be an m× n matrix. Then

1. rank(A) = dim(col(A))

2. rank(A) = dim(row(A)).

Proof. We prove part 1. Let rank(A) = r. The idea of the proof is to find a
basis for col(A) with r elements. We consider two cases.
Case 1: r = 0. If r = 0, then R = 0. Let E1, · · ·Ek be a sequence of elementary
row operations such that R = Ek · · ·E1A so

A = E−11 · · ·E
−1
k R = E−11 · · ·E

−1
k 0 = 0.

Therefore col(A) = {~0} and dim(col(A)) = 0 = r.
Case 2: r > 0. Let i1 · · · ir be the columns where the leading ones occur
and let B = {~ci1 , · · · ,~cin} be the set of corresponding columns. of R. By
the fact B is basis for col(R). Our plan now is to use B to find a basis for
col(A). Let E = Ek · · ·E1. Then R = EA and A = E−1R. We claim
C = {A~ei1 , · · · , A~eir} is basis for col(A). Notice that A~eij = E−1R~eij = E−1~cij
and so C = {E−1~ci1 , · · · , E−1~cir}.
We must verify C is linearly independent. Suppose a1E

−1~ci1 +· · ·+arE−1~cir = ~0
for some scalars a1 · · · ar ∈ R. Then E−1(a1~ci1 + · · · + ar~cir ) = ~0 and hence
a1~ci1 + · · · ar~cir ∈ null(E−1) = {~0} since E is one-to-one.
Hence a1~ci1 + · · · + ar~cir = ~0 =⇒ a1 = · · · = ar = 0 as B is linearly indepen-
dent.
We must check span(C) = col(A).
“ ⊆ ” It is easy to see that C ⊆ col(A) and so (C) ⊆ col(A).
“ ⊇ ” Let ~y ∈ col(A). Then ~y = A~x for some ~x ∈ Rn. But A = E−1R so
~y = E−1(R~x). Since R~x ∈ col(R), we can write R~x = a1~ci1 · · · + ~cir for some
scalars a1, · · · , ar ∈ R.
Therefore ~y = E−1(R~x) = a1E

−1~ci1 + · · ·+ arE
−1~cir ∈ span(C).

We have shown C is a basis for col(A) and so dim(col(A)) = r = rank(A).
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Corollary. Let A be an m× n matrix. Then rank(A) = rank(AT ).

Proof. We have

rank(A) = dim(row(A)) = dim(col(AT )) = rank(AT )

.

Rank-Nullity Theorem

Definition. Let V and W be vector spaces. L : V → W is linear if for each
~x, ~y ∈ V and c ∈ R, we have

L(~x+ ~y) = L(~x) + L(~y) (L preserves addition)

L(c~x) = cL(~x) (L preserves scalar multiplication)

Given vector spaces V and W, we have the following important construction
of a linear map L : V→W.

Lemma. Let V and W be vector spaces. Let B = {~v1, · · · , ~vn} be a basis for V
and let C = {~w1, · · · , ~wn} ⊂ W. Then the map L : V→ W given by L(~vi) = ~wi
is linear.

Proof. Let ~x, ~y ∈ V and c ∈ R be given. Then ~x = a1~v1 + · · · + an~vn and
~y = b1~v1 + · · ·+ bn~vn for some a1, · · · , an, b1, · · · , bn ∈ R and

L(c~x+ ~y) = L((ca1 + b1)~v1 + · · ·+ (can + bn)~vn)

= (ca1 + b1)~w1 + · · ·+ (can + bn)~wn)

= c(a1 ~w1 + · · ·+ an ~wn) + (b1 ~w1 + · · ·+ bn ~wn)

= cL(~x) + L(~y)

We give an example demonstrating the use of this construction.

Example. Let V be a vector space with dim(V) = n. Let S be a subspace of
V. Show that there exists a linear map L with ker(L) = S.

Solution. Let B = {~v1, · · · , ~vk} be a basis for S. We can get {~vk+1, · · · , ~vn} ⊂ V
such that C = {~v1, · · · , ~vn} is a basis for V. We define a linear map L : V → V
by L(~vi) = ~0 for 1 ≤ i ≤ k and L(~vi) = ~vi for k+ 1 ≤ i ≤ n. It remains to verify
that ker(L) = S.

Let ~x ∈ S. Then ~x = a1~v1 + · · · + an~vk for some a1, · · · , ak ∈ R. Therefore
L(~x) = ~0 and thus S ⊆ ker(L).

Let ~x ∈ ker(L). Let ~x = a1~v1 + · · ·+ an~vn. Then

L(~x) = ak+1~vk+1 + · · ·+ an~vn = ~0
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and, since C is linearly independent, ak+1 = · · · = an = 0. Thus

~x = a1~v1 + · · ·+ ak~vk ∈ S

and ker(L) ⊆ S.

Remark. Notice how we first obtained a basis for ker(L) and then extended
it to a basis for V, as opposed to starting with a basis for V. In the latter
approach, it is not necessary that any subset of our basis is a basis for ker(L).
Starting with a basis for a subspace and then extending it is an important proof
technique. This idea was also used in the proof of the Rank-Nullity theorem.

Definition. Let L : V→W be a linear map from a vector space V to a vector
space W. The nullity of L is nullity(L) = dim(ker(L)) and the rank of L is
rank(L) = dim(range(L)).

The following theorem is the first of two extremely important theorems in
this course. The other theorem is the Principal Axis Theorem which will be
covered on Midterm 2.

Theorem (Rank-Nullity). Let V and W be vector spaces with dim(V) finite
and let L : V→W be a linear map. Then

rank(L) + nullity(L) = dim(V).

We give an example.

Example. Let L : M2×2(R)→ P3 be defined by

L

([
a b
c d

])
= (a+ b)x3 + cx.

Find a basis for range(L) and ker(L) and verify the Rank-Nullity theorem.

Solution. We have

~x =

[
a b
c d

]
∈ kerL ⇐⇒ (a+ b)x3 + cx = 0

⇐⇒ a = −b and c = 0

⇐⇒ ~x =

[
a −a
0 d

]
= a

[
1 −1
0 0

]
+ d

[
0 0
0 1

]
⇐⇒ ~x ∈ span

({[
1 −1
0 0

]
,

[
0 0
0 1

]})

Therefore ker(L) = span

({[
1 −1
0 0

]
,

[
0 0
0 1

]})
and so nullity(L) = 2.
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Also, we have

range(L) =

{
L

([
a b
c d

])
:

[
a b
c d

]
∈M2×2(R)

}
= {(a+ b)x3 + cx : a, b, c ∈ R}
= {ax3 + bx : a, b ∈ R}
= span({x, x3})

Therefore rank(L) = 2 and so rank(L) + nullity(L) = 4 = dim(M2×2(R)).

Next we give some examples to show how the Rank-Nullity theorem can be
used in theoretical problems.

Example. Let L : Rn → Rm and M : Rm → Rp be linear mappings. Show
that (i) rank(M ◦ L) ≤ rank(M) and (ii) rank(M ◦ L) ≤ rank(L).

Solution. (i) We see that range(M ◦ L) = {M(L(~x)) : ~x ∈ Rn} ⊆ range(M) so
it follows that rank(M ◦ L) ≤ rank(M).

(ii) We see that ker(L) ⊆ ker(M ◦ L) since if ~x ∈ ker(L) then we have
(M ◦ L)(~x) = M(~0) = ~0. Thus nullity(L) ≤ nullity(M ◦ L). Therefore

rank(M ◦ L) = dim(Rn)− nullity(M ◦ L)

= n− nullity(M ◦ L)

≤ n− nullity(L)

= rank(L).

Remark. Notice how we proved something about the nullity(L) then used the
Rank-Nullity theorem to say something about rank(L). This is an important
proof technique.

Example. Let A be an n ×m matrix. Show that A~x = ~b is consistent for all
~b ∈ Rm ⇐⇒ AT~y = ~0 has only the trivial solution.

Solution. (=⇒) Suppose A~x = ~b is consistent for all ~b ∈ Rm. Then col(A) = Rm

since for each ~b ∈ Rm we can find ~x ∈ Rn with A~x = ~b so ~b ∈ col(A). Then
rank(A) = m. We wish to show nullity(AT ) = 0. We have

nullity(AT ) = Rm − rank(AT ) by the Rank-Nullity theorem

= m− rank(A) since rank(A) = rank(AT )

= 0

Therefore null(AT ) = {~0} and so AT~y = ~0 has only the trivial solution.
(⇐=) Suppose AT~y = ~0 has only the trivial solution. Then nullity(AT ) = 0 so

rank(A) = rank(AT ) = Rm − nullity(AT ) = m and A~x = ~b is consistent for all
~b as col(A) = Rm.
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Remark. Notice here how we turned the statements “A~x = ~b is consistent for
all ~b ∈ Rm” and “AT~y = ~0 has only the trivial solution” into statements about
rank(A) and nullity(A) so that we could apply the Rank-Nullity Theorem.

Isomorphisms

We recall the following definitions from calculus.

Definition. Let X,Y be non-empty sets and let f : X → Y be a function.

1. f is one-to-one if whenever f(x1) = f(x2) for some x1, x2 ∈ X, then
x1 = x2

2. f is onto if for each y ∈ Y , there exists x ∈ X such that f(x) = y.

The following is easily verified.

Proposition. Let U,V,W be vector spaces and let L : U→ V and M : V→ be
linear maps. Then

1. M ◦ L : U→W given by (M ◦ L)(~u) = M(L(~u)) is linear.

2. If L and M are one-to-one, then M ◦ L is one-to-one.

3. If L and M are onto- then M ◦ L is onto.

4. L is one-to-one ⇐⇒ ker(L) = {~0}.

Proof. This is a good exercise and likely to appear on your midterm!

Example. Let U,V,W be vector spaces and let L : U → V and M : V → be
linear maps.

1. If M ◦ L is one-to-one, is L one-to-one? Is M one-to-one?

2. If M ◦ L is onto, is L onto? Is M onto?

Solution. 1. We see that L is one-to-one. We could verify this using the defini-
tion, however, we use the previous proposition. Since ker(L) ⊆ ker(M◦L) = {~0},
we have that ker(L) = {~0} and so L is one-to-one.
M may not be one-to-one. For instance, consider the maps L : R→ R2 defined

by L(t) = t

[
1
1

]
and M : R2 → R2 defined by M

([
x
y

])
=

[
x+ 2y
2x+ 4y

]
. Then

ker(M) = span

({[
2
−1

]})
. Then we have

(M ◦ L)(t) = ~0 ⇐⇒ t

[
1
1

]
∈ span

{([
2
−1

])}
⇐⇒ t = 0
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and thus ker(M ◦L) = {0} and so M ◦L is one-to-one. But M is not one-to-one

as M

([
2
−1

])
= ~0.

2. We see that M is onto. Let ~w ∈ W be given. Since M ◦ L is onto, there
exists ~u ∈ U such that (M ◦ L)(~u) = ~w. Setting ~v = L(~u) we have M(~v) = ~w.
Thus we have M is onto.

L may not be onto. Consider the maps L : R → R2 given by L(t) =

[
t
0

]
and

M : R2 → R given by M

([
x
y

])
= x. Then M ◦ L is onto as for each x ∈ R,

(M ◦ L)(x) = x. But L is not onto because

[
0
1

]
/∈ range(L).

Definition. Let V and W be vector spaces. We say a map L : V → W is
an isomorphism if L is linear, one-to-one, and onto and we say V and W are
isomorphic.

Example. Determine if the following vector spaces are isomorphic:

(a) M2×2(R) and R4

(b) R and R3

Solution.

(a) M2×2(R) and R4 are isomorphic. Consider the following map:

L : M2×2(R)→ R4 defined by L

([
a b
c d

])
=


a
b
c
d

 .
We leave it as an exercise to check that L is an isomorphism.

(b) R and R3 are not isomorphic. To show this, we must show that there does
not exist an isomorphism from R to R3. Suppose that L : R → R3 is an
isomorphism. Then, we must have ker(L) = {~0} and range(L) = R3 so
nullity(L) = 0 and rank(L) = 3. But then

rank(L) + nullity(L) = 3 6= 1 = dim(R)

which contradicts the Rank-Nullity theorem.
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The next lemma shows that in some sense isomorphic vector spaces have the
same bases.

Lemma. Let V and W be vector spaces and let L : V→W be an isomorphism.
Then

1. If B = {~v1, · · ·~vn} is a basis for V then C = {L(~v1), · · · , L(~vn)} is a basis
for W.

2. If B = {~w1, · · · , ~wn} is a basis for W, then C = {L−1(~w1), · · ·L−1(~wn)} is
a basis for V.

Proof. Notice that part 2 of the lemma is part with applied to the isomorphism
L−1 so it is enough to prove part 1. We must check that C is linearly independent
and spans W.
C is linearly independent.
Suppose c1L(~v1) + · · ·+ cnL(~vn) = ~0 for some scalars c1, · · · , cn ∈ R.
Then L(c1~v1 + · · · + cn~vn) = ~0 =⇒ c1~v1 + · · · + cn~vn ∈ ker(L) = {~0} as L is
one-to-one.
Then c1~v1 + · · ·+ cn~vn = ~0 so c1 = · · · = cn = 0 as B is linearly independent so
C is linearly independent.
C spans W.
Let ~w ∈ W be given. Then since L is an isomorphism, we can find ~v ∈ V with
L(~v) = ~w. Since B is a basis for V we may write ~v = a1~v1 + · · ·+ an~vn for some
scalars a1, · · · , an ∈ R. Then ~w = a1L(~v1) + · · ·+ cnL(~vn) ∈ span(C).

Theorem. Let V and W be finite-dimensional vector spaces. Then V and W
are isomorphic if and only if dim(V) = dim(W).

Proof. (=⇒) follows from the previous lemma and (⇐=) follows from our linear
map construction.

Two Important Isomorphisms

The “Taking Coordinates” Map

This section is a review of some MATH 136 material. We recall the following
definition.

Definition. Let V be a vector space and let B = {~v1, · · · , ~vn} be a basis for V.
Let ~v ∈ V. We define the B-coordinates of ~v, denoted [~v]B ,by

[~v]B =

a1...
an


where a1, · · · , an ∈ R are such that ~v = a1~v1 + · · ·+ an~vn.
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We also have the taking B-coordinates map [·]B : V→ Rn defined by mapping
~v to [~v]B. The next theorem, which we saw in MATH 136, says that this map
is linear.

Theorem. Let V be a vector space and let B = {~v1, · · · , ~vn} be a basis for V.
Then, for any ~v, ~w ∈ V and c ∈ R, we have

[c~v + ~w]B = c[~v]B + [~w]B.

Proof. We may write ~v = a1~v1 + · · ·+ an~vn and ~w = b1~v1 + · · ·+ bn~vn for some
unique scalars a1, · · · , an, b1, · · · , bn ∈ R. Then we have

c~v + ~w = (ca1 + b1)~v1 + · · ·+ (can + bn)~vn

and therefore

[c~v + ~w]B =

ca1 + b1
...

can + bn

 = c

a1...
an

+

b1...
bn

 = c[~v]B + [~w]B.

We give an example to review working with B-coordinates.

Example. Let B =

{[
2
3

]
,

[
1
2

]}
and C =

{[
2
1

]
,

[
1
1

]}
and define L : R2 → R2

by
[L(~x)]C = [~x]B.

a) Find L

([
3
5

])
.

b) Find L

([
x1
x2

])
.

Solution.

a) We have

[
L

([
3
5

])]
C

=

[[
3
5

]]
B

=

[
1
1

]
since

[
3
5

]
= 1

[
2
3

]
+ 1

[
1
2

]
and so

L

([
3
5

])
= 1

[
2
1

]
+ 1

[
1
1

]
=

[
3
2

]
.

b) Similarly, we have

[
L

([
x1
x2

])]
C

=

[[
x1
x2

]]
B

so we must find a1, a2 ∈ R

such that

[
x1
x2

]
= a1

[
2
3

]
+ a2

[
1
2

]
=

[
2 1
3 2

] [
a1
a2

]
.
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We get

[
a1
a2

]
=

[
2 1
3 2

]−1 [
x1
x2

]
=

[
2 −1
−3 2

] [
x1
x2

]
=

[
2x1 − x2
−3x1 + 2x2

]
.

Thus

[
L

([
x1
x2

])]
C

=

[
2x1 − x2
−3x1 + 2x2

]
Therefore L

([
x1
x2

])
= (2x1 − x2)

[
2
1

]
+ (−3x1 + 2x2)

[
1
1

]
=

[
x1

4x1 − 4x2

]
.

Next we show [·]B is one-to-one and onto and hence is an isomorphism be-
tween the vector spaces V and Rn. This gives an alternate proof of the result
that two n-dimensional vector spaces are isomorphic.

Theorem. Let V be a vector space and let B = {~v1, · · · , ~vn} be a basis for V.
Then [·]B : V→ Rn is an isomorphism.

Proof. First we show [·]B is onto. Let ~x =

a1...
an

 ∈ Rn be given and set

~v = a1~v1 + · · ·+ an~v. Then [~v]B = ~x which shows [·]B is onto. Since dim(V) =
n = dim(Rn), we conclude [·]B is also one-to-one and hence an isomorphism.
Another way to show this is to appeal to the Unique Representation Theorem
from MATH 136.

We also recall the change of basis map.
Let B = {~v1, · · · , ~vn} and C = {~w1, · · · , ~wn} be bases for a vector space V.
The change of basis map from B-coordinates to C-coordinates, which
we denote C [I]B is given by

C [I]B =
[
[~v1]C · · · [~vn]C

]
.

C [I]B has the following properties.

1. C [I]B[~v]B = [~v]C

2. C [I]BB[I]C = B[I]CC [I]B = I so in particular C [I]B is invertible.

Proof. Good midterm review for you.
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Matrix Representation of a Linear Map

Definition. Let V and W be vector spaces and let L : V → W be linear. Let
B = {~v1, · · · , ~vm} be a basis for V and let C = {~w1, · · · , ~wn} be a basis for W.
The matrix of L with respect to B and C is

C
[
L
]B

=
[
[L(~v1)]C · · · [L(~v)]C

]
Proposition. [L(~x)]C = C [L]B[~x]B

Proof. Suppose ~x = a1~v1+· · ·+am~vm for some a1, · · · , am ∈ R so [~x]B =

a1...
am

.

Then we have

[L(~x)]C = [a1L(~v1) + · · ·+ amL(~vm)]C

= a1[L(~v1)]C + · · ·+ am[L(~vm)]C

=
[
[L(~v1)]C · · · [L(~vm)]C

] a1...
am


= C

[
L
]B

[~x]B

Proposition. Let U,V,W be vector spaces and let β, γ, δ be bases for U,V,W
respectively. Let L : U→ V,M : U→ V, T : V→W be linear maps. Then

1. γ [cL+M ]β = cγ [L]β +γ [M ]β

2. δ[T ◦ L]β = δ[T ]γγ [L]β

Proof. 1. Let ~v ∈ V. Then we have

[(cL+M)(~v)]γ = γ [cL+M ]β [~v]β

and

[(cL+M)(~v)]γ = c[L(~v)]γ + [M(~v)]γ

= cγ [L]β [~v]β + γ [M ]β [~v]β

= (cγ [L]β + γ [M ]β)[~v]β

Therefore for each ~v ∈ V we have γ [cL+M ]β [~v]β = (cγ [L]β + γ [M ]β)[~v]β and so
we conclude that [cL+M ]β = cγ [L]β +γ [M ]β .
2. Let ~v ∈ V. Then, by the above proposition,

[(M ◦ L)(~v)]δ = δ[M ◦ L]β [~v]β .
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But we also have

[(M ◦ L)(~v)]δ = [M(L(~v))]δ = δ[M ]γ [L(~v)]γ = δ[M ]γγ [L]β [~v]β

and hence for all ~v ∈ V

δ[M ◦ L]β [~v]β = δ[M ]γγ [L]β [~v]β .

Therefore δ[M ◦ L]β = δ[M ]γγ [L]β .

We now also have an explicit isomorphism between L(V,V), the set of linear
operators from V to V and Mn×n(R).

Fix a basis B = {~v1, · · · , ~vn} for V and define T : L(V,V) → Mn×n(R) by
T (L) = B[L]B.

Proposition. T is an isomorphism.

Proof.

1. T is linear. Suppose L,M ∈ L(V,V) and c ∈ R. Then we have

T (cL+M) = B[cL+M ]B = cB[L]B + B[M ]B = cT (L) + T (M).

2. T is one-to-one. We show ker(T ) = {0} where 0 : V → V is defined by
0(~v) = ~0. Let L ∈ ker(T ). Then B[L]B = 0n×n and so for each ~v ∈ V,
[L(~v)]B = B[L]B[~v]B = ~0 =⇒ L(~v) = ~0. Hence L = 0 and ker(T ) = {0}.

3. T is onto. Let M =
[
~c1 · · · ~cn

]
be given. Choose ~wi so that [~wi]B = ~ci

and define L : V→ V by L(~vi) = ~wi. Then

T (L) = B[L]B =
[
[L(~v1)]B · · · [L(~vn)]B

]
= M

Example. Find a basis for L(R2,R2).

Solution. By our work above, we know L(R2,R2) is isomorphic to M2×2(R). A
basis for M2×2(R) is the set

{~v1, ~v2, ~v3, ~v4} =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
and so by the theory we know

{T−1(~v1), T−1(~v2), T−1(~v3), T−1(~v4)}

is a basis for L(R2,R2), where

T−1(~v1) : R2 → R2 is defined by T (x, y) = (x, 0)

T−1(~v2) : R2 → R2 is defined by T (x, y) = (0, x)

T−1(~v3) : R2 → R2 is defined by T (x, y) = (y, 0)

T−1(~v4) : R2 → R2 is defined by T (x, y) = (0, y)
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Example. Let π be the plane with basis


 1

0
−1

 ,
 1
−1
1

. Exhibit an isomor-

phism between π and P1.

Solution. First we establish isomorphisms between π and R2 and P1 and R2.

It is easy to see that the map L : P1 → R2 given by L(ax + b) =

[
a
b

]
is

an isomorphism. The map M : π → R2 defined by M

 1
0
−1

 =

[
1
0

]
and

M

 1
−1
1

 =

[
0
1

]
is also an isomorphism.

More explicitly, if P : a

 1
0
−1

+ b

 1
−1
1

, then M(P ) =

[
a
b

]
.

Therefore L−1 ◦M : π → P1 is an isomorphism, being the composition of two
isomorphisms, which sends P to the polynomial ax+ b.

Inner Product Spaces

Definition. Let V be a vector space. An inner product on V is a function
〈, 〉 : V × V→ R satisfying for all ~u,~v, ~w ∈ V and c ∈ R

1. 〈~v,~v〉 ≥ 0 and 〈~v,~v〉 = 0 ⇐⇒ ~v = ~0

2. 〈~v, ~w〉 = 〈~w,~v〉

3. 〈c~u+ ~v, ~w〉 = c〈~u, ~w〉+ 〈~v, ~w〉

The pair (V, 〈, 〉) is called an inner product space.

Example. For the vector space V = R2, determine if each 〈, 〉 is an inner
product on V.

1.

〈[
x
y

]
,

[
a
b

]〉
= xa+ 6yb+ xb+ 2ya

2.

〈[
x
y

]
,

[
a
b

]〉
= xa+ 2yb+ 1

2xb+ 1
2ya

Solution.

1. This is not an inner product on V. We have

〈[
1
2

]
,

[
3
4

]〉
= 67 but〈[

3
4

]
,

[
1
2

]〉
= 65.
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2. This is not an inner product on V. We have

〈[
−2
1

]
,

[
−2
1

]〉
= −3 < 0.

Lemma. In an inner product space (V, 〈, 〉), for each ~v ∈ V, 〈~v,~0〉 = 0.

Definition. Let (V, 〈, 〉) be an inner product space. We define the norm or
length of ~v ∈ V by ∥∥~v∥∥ =

√
〈~v,~v〉

Proposition (Properties of the Norm). Let (V, 〈, 〉) be an inner product space.
Then for each ~v, ~w ∈ V and c ∈ R

1.
∥∥~v∥∥ ≥ 0 and

∥∥~v∥∥ = 0 ⇐⇒ ~v = ~0

2.
∥∥c~v∥∥ =

∣∣c∣∣ ∥∥~v∥∥
3.
∣∣〈~v, ~w〉∣∣ ≤ ∥∥~v∥∥∥∥~w∥∥ [Cauchy-Schwarz Inequality]

4.
∥∥~v + ~w

∥∥ ≤ ∥∥~v∥∥+
∥∥~w∥∥

We also have a generalization of the Pythagorean Theorem.

Theorem (Pythaogrean Theorem). Let (V, 〈, 〉) be an inner product space.
Then if ~v, ~w ∈ V are orthogonal, then∥∥~v + ~w

∥∥2 =
∥∥~v∥∥2 +

∥∥~w∥∥2 .
Proof. We have ∥∥~v + ~w

∥∥2 = 〈~v + ~w,~v + ~w〉
= 〈~v,~v〉+ 2〈~v, ~w〉+ 〈~w, ~w〉

=
∥∥~v∥∥2 +

∥∥~w∥∥2

Definition. Let (V, 〈, 〉) be an inner product space.

1. ~v, ~w ∈ V are orthogonal if 〈~v, ~w〉 = 0.

2. ~v is a unit vector if
∥∥~v∥∥ = 1.

3. S ⊂ V is orthogonal if for each ~v 6= ~w ∈ S, 〈~v, ~w〉 = 0.

4. S ⊂ V is orthonormal if S is orthogonal and if for each ~v ∈ S
∥∥~v∥∥ = 1.

5. B = {~v1, · · · , ~vn is an orthogonal basis for V if B is a basis for V and
B is orthogonal. B is an orthonormal basis for B if B is a basis for V
and B is orthonormal.

14



Proposition. Let (V, 〈, 〉) be an inner product space. If B = {~v1, · · · , ~vn} is
orthonormal, then B is linearly independent.

Proof. Suppose a1~v1 + · · · + an~vn = ~0 for some a1, · · · , an ∈ R. Then for each
1 ≤ i ≤ n we have

〈a1~v1 + · · ·+ an~vn, ~vi〉 = a1〈~v1, ~vi〉+ · · ·+ an〈~vn, ~vi〉
= ai〈~vi, ~vi〉
= ai

On the other hand,

〈a1~v1 + · · ·+ an~vn, ~vi〉 = 〈~0, ~vi〉 = 0

and so ai = 0. Thus B is linearly independent.

Proposition. Let (V, 〈, 〉) be an inner product space. If B = {~v1, · · · , ~vn} is an
orthonormal basis, then for each ~v ∈ V, ~v = 〈~v,~v1〉~v1 + · · ·+ 〈~v,~vn〉~vn.

Proof. Since B is a basis for V, we may write ~v = a1~vn + · · · + an~vn for some
c1, · · · , cn ∈ R. It remains to show that ci = 〈~v,~vi〉. We have

〈~v,~vi〉 = 〈a1~vn + · · ·+ an~vn, ~vi〉
= a1〈~v1, ~vi〉+ · · ·+ an〈~vn, ~vi〉
= ai〈~vi, ~vi〉
= ai

as claimed.

Definition. Let U ∈ Mn×n(R). U is orthogonal if UUT = UTU = I. That
is U−1 = UT .

Proposition. The following are equivalent.

1. U is orthogonal.

2. The columns of U form an orthonormal basis for Rn.

3. The rows of U form an orthonormal basis for Rn.

Proof. Let U =
[
~v1 · · · ~vn

]
.

1 =⇒ 2. Suppose U is orthogonal. Then we have

I = UTU =

~v
T

1
...
~v T
n

 [~v1 · · · ~vn
]
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and so [I]ij = (UTU)ij = ~v T
i ~vj = ~vi · ~vj . Therefore ~vi · ~vi = 1 and ~vi · ~vj = 0

for i 6= j. Hence the columns of U are an orthonormal set and hence linearly
independent. Therefore, they form a basis, being n linearly independent vectors
in an n-dimensional space.
2 =⇒ 1. Suppose the columns of U are an orthonormal basis for Rn. By the
same calculation above, we see

[UTU ]ij = ~vi · ~vj =

{
1 if i = j

0 otherwise

and so UTU = I. By a theorem from MATH 136, U−1 = UT .
2 ⇐⇒ 3. We have

the columns of U form an orthonormal basis

⇐⇒ U is orthonormal

⇐⇒ UT is orthonormal

⇐⇒ the columns of UT form an orthonormal basis

⇐⇒ the rows of U form an orthonormal basis

Proposition. Let U be orthogonal. Then for each ~x, ~y ∈ Rn

1.
∥∥U~x∥∥ =

∥∥~x∥∥
2. U~x · U~y = ~x · ~y

Proof. We have ∥∥U~x∥∥2 = U~x · U~x
= (U~x)TU~x

= ~x TUTU~x

= ~x T~x

= ~x · ~x

=
∥∥~x∥∥2

=⇒
∥∥U~x∥∥ =

∥∥~x∥∥
2 is similar and omitted.

Example. Let V be finite-dimensional and let L : V→ V be a linear operator.
Prove that if B = {~v1, · · · , ~vn} is an orthonormal basis for V, then the ij-entry
of B[L]B is 〈L(~vj), ~vi〉.
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Solution. Recall that B[L]B =
[
[L(~v)1]B · · · [L(~vn)B]

]
. So ij-entry is the ith

element of [L(~vj)]B. But by our work above since B is orthonormal

[L(~vj)]B =

〈L(~vj), ~v1〉
...

〈L(~vj), ~vn〉

 .

Example. Let T : V→ V be a linear operator on the vector space V such that
for all ~x, ~y ∈ V, 〈T (~x), T (~y)〉 = 〈~x, ~y〉 ( T is called an isometry). Show that T
is an isomorphism.

Solution. Suppose T (~x) = T (~y). Then we have

〈~x− ~y, ~x− ~y〉 = 〈T (~x− ~y), T (~x− ~y)〉
= 〈~0,~0〉
= 0

and so ~x−~y = ~0, which shows that T is one-to-one. Since T is a linear operator,
T is one-to-one ⇐⇒ T is onto. Therefore T is an isomorphism.
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