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1 Atoms

1.1 What does an atom look like?

1.1.1 Like this?

Abb. 1
Abb. 2

Abb. 3

Abb. 4

1.1.2 Or like this?
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Atoms

Abb. 5: ρ2p0
Abb. 6: ρ3p0

Abb. 7: ρ3d0

Abb. 8: ρ4p0

Abb. 9: ρ4d0
Abb. 10: ρ4 f 0

Abb. 11: ρ5d0

Abb. 12: ρ5 f 0

None of these images depicts an atom as it is. This is because it is impossible to even visualize
an atom as it is. Whereas the best you can do with the images in the first row is to erase them
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Quantum states

from your memory, they represent a way of viewing the atom that is too simplified for the way
we want to start thinking about it, the eight fuzzy images in the next two rows deserve scrutiny.
Each represents an aspect of a stationary state of atomic hydrogen. You see neither the nucleus
(a proton) nor the electron. What you see is a fuzzy position. To be precise, what you see is a
cloud-like blur, which is symmetrical about the vertical axis, and which represents the atom’s
internal relative position — the position of the electron relative to the proton or the position of
the proton relative to the electron.

• What is the state of an atom?
• What is a stationary state?
• What exactly is a fuzzy position?
• How does such a blur represent the atom’s internal relative position?
• Why can we not describe the atom’s internal relative position as it is?

1.2 Quantum states

In quantum mechanics, STATES1 are probability algorithms. We use them to calculate the prob-
abilities of the possible outcomes of MEASUREMENTS2 on the basis of actual measurement out-
comes. A quantum state takes as its input

• one or several measurement outcomes,
• a measurement M,
• the time of M,

and it yields as its output the probabilities of the possible outcomes of M.

A quantum state is called stationary if the probabilities it assigns are independent of the time of
the measurement to the possible outcomes of which they are assigned.

From the mathematical point of view, each blur represents a DENSITY FUNCTION3 ρ(r ). Imagine
a small region R like the little box inside the first blur. And suppose that this is a region of the
(mathematical) space of positions relative to the proton. If you integrate ρ(r ) over R, you obtain
the probability p (R) of finding the electron in R, provided that the appropriate measurement is
made:

p (R) =
∫

R
ρ(r )d 3r .

"Appropriate" here means capable of ascertaining the truth value of the proposition "the elec-
tron is in R", the possible truth values being "true" or "false". What we see in each of the following
images is a surface of constant probability density.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUANTUM%20STATE
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/MEASUREMENT%20IN%20QUANTUM%20MECHANICS
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROBABILITY%20DENSITY%20FUNCTION
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Atoms

Abb. 13: ρ2p0 Abb. 14: ρ3p0 Abb. 15: ρ3d0

Abb. 16: ρ4p0

Abb. 17: ρ4d0
Abb. 18: ρ4 f 0

Abb. 19: ρ5d0

Abb. 20: ρ5 f 0
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Fuzzy observables

Now imagine that the appropriate measurement is made. Before the measurement, the electron
is neither inside R nor outside R. If it were inside, the probability of finding it outside would be
zero, and if it were outside, the probability of finding it inside would be zero. After the measure-
ment, on the other hand, the electron is either inside or outside R.

Conclusions:

• Before the measurement, the proposition "the electron is in R" is neither true nor false; it lacks
a (definite) TRUTH VALUE4.

• A measurement generally changes the state of the system on which it is performed.

As mentioned before, probabilities are assigned not only to measurement outcomes but also on
the basis of measurement outcomes. Each density function ρnlm serves to assign probabilities
to the possible outcomes of a measurement of the position of the electron relative to the proton.
And in each case the assignment is based on the outcomes of a simultaneous measurement of
three observables: the atom’s energy (specified by the value of the principal quantum number n),
its total ANGULAR MOMENTUM5 l (specified by a letter, here p, d, or f), and the vertical component
of its angular momentum m.

1.3 Fuzzy observables

We say that an observable Q with a finite or countable number of possible values qk is fuzzy
(or that it has a fuzzy value) if and only if at least one of the propositions "The value of Q is qk "
lacks a truth value. This is equivalent to the following necessary and sufficient condition: the
probability assigned to at least one of the values qk is neither 0 nor 1.

What about observables that are generally described as continuous, like a position?

The description of an observable as "continuous" is potentially misleading. For one thing, we
cannot separate an observable and its possible values from a measurement and its possible out-
comes, and a measurement with an uncountable set of possible outcomes is not even in princi-
ple possible. For another, there is not a single observable called "position". Different partitions
of space define different position measurements with different sets of possible outcomes.

• Corollary: The possible outcomes of a position measurement (or the possible values of a posi-
tion observable) are defined by a partition of space. They make up a finite or countable set of
regions of space. An exact position is therefore neither a possible measurement outcome nor
a possible value of a position observable.

So how do those cloud-like blurs represent the electron’s fuzzy position relative to the proton?
Strictly speaking, they graphically represent probability densities in the mathematical space of
exact relative positions, rather than fuzzy positions. It is these probability densities that repre-
sent fuzzy positions by allowing us to calculate the probability of every possible value of every
position observable.

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH%20VALUE
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/ANGULAR_MOMENTUM%23ANGULAR_MOMENTUM_IN_QUANTUM_

MECHANICS

7

http://en.wikipedia.org/wiki/Truth%20value
http://en.wikipedia.org/wiki/Angular_momentum%23Angular_momentum_in_quantum_mechanics
http://en.wikipedia.org/wiki/Angular_momentum%23Angular_momentum_in_quantum_mechanics


Atoms

It should now be clear why we cannot describe the atom’s internal relative position as it is. To
describe a fuzzy observable is to assign probabilities to the possible outcomes of a measurement.
But a description that rests on the assumption that a measurement is made, does not describe
an observable as it is (by itself, regardless of measurements).
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2 Serious illnesses require drastic remedies

2.1 Planck

Quantum mechanics began as a desperate measure to get around some spectacular failures of
what subsequently came to be known as CLASSICAL PHYSICS1.

In 1900 MAX PLANCK2 discovered a law that perfectly describes the spectrum of a glowing hot
object. PLANCK’S RADIATION FORMULA3 turned out to be irreconcilable with the physics of his
time. (If classical physics were right, you would be blinded by ultraviolet light if you looked at the
burner of a stove, aka the UV CATASTROPHE4.) At first, it was just a fit to the data, "a fortuitous
guess at an interpolation formula" as Planck himself called it. Only weeks later did it turn out to
imply the quantization of energy for the emission of ELECTROMAGNETIC RADIATION5: the energy
E of a QUANTUM6 of radiation is proportional to the frequency ν of the radiation, the constant of
proportionality being PLANCK’S CONSTANT7 h :

E = hν

.

We can of course use the ANGULAR FREQUENCY8 ω= 2πν instead of ν. Introducing the reduced
Planck constant ħ= h/2π , we then have

E =ħω
.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLASSICAL%20PHYSICS
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/MAX%20PLANCK
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLANCK%27S%20LAW%20OF%20BLACK%20BODY%20RADIATION
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/UV%20CATASTROPHE
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/ELECTROMAGNETIC%20RADIATION
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUANTUM
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLANCK%27S%20CONSTANT
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/ANGULAR%20FREQUENCY
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Serious illnesses require drastic remedies

2.2 Rutherford

In 1911 ERNEST RUTHERFORD9 proposed a MODEL OF THE ATOM10 based on experiments by
GEIGER AND MARSDEN11. Geiger and Marsden had directed a beam of ALPHA PARTICLES12 at
a thin gold foil. Most of the particles passed the foil more or less as expected, but about one in
8000 bounced back as if it had encountered a much heavier object. In Rutherford’s own words
this was as incredible as if you fired a 15 inch cannon ball at a piece of tissue paper and it came
back and hit you. After analysing the data collected by Geiger and Marsden, Rutherford con-
cluded that the diameter of the atomic nucleus (which contains over 99.9% of the atom’s mass)
was less than 0.01% of the diameter of the entire atom, and he suggested that atomic electrons
orbit the nucleus much like planets orbit a star.

The problem of having electrons orbit the nucleus the same way that a planet orbits a star is that
classical electromagnetic theory demands that an orbiting electron will radiate away its energy
and spiral into the nucleus in about 0.5×10-10 seconds. This was the worst quantitative failure
in the history of physics, under-predicting the lifetime of hydrogen by at least forty orders of
magnitude! (This figure is based on the experimentally established lower bound on the proton’s
lifetime.)

2.3 Bohr

In 1913 NIELS BOHR13 postulated that the angular momentum L of an orbiting atomic electron
was quantized: its "allowed" values are integral multiples of ħ:

L = nħ
where

n = 1,2,3, . . .

Why quantize angular momentum, rather than any other quantity?

• Radiation energy of a given frequency is quantized in multiples of Planck’s constant.
• Planck’s constant is measured in the same units as ANGULAR MOMENTUM14.

Bohr’s postulate explained not only the stability of atoms but also why the emission and absorp-
tion of electromagnetic radiation by atoms is discrete. In addition it enabled him to calculate
with remarkable accuracy the spectrum of atomic hydrogen &mdash; the frequencies at which
it is able to emit and absorb light (visible as well as infrared and ultraviolet). The following im-
age shows the visible emission spectrum of atomic hydrogen, which contains four lines of the
BALMER SERIES15.

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/ERNEST%20RUTHERFORD
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/RUTHERFORD%20MODEL
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/GEIGER-{}MARSDEN%20EXPERIMENT
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALPHA%20PARTICLE
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/NIELS%20BOHR
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/ANGULAR%20MOMENTUM
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/BALMER%20SERIES
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Bohr

Abb. 21: Visible emission spectrum of atomic hydrogen, containing four lines of the BALMER

SERIES16.

Abb. 22: frame

Apart from his quantization postulate, Bohr’s reasoning at this point remained completely clas-
sical. Let’s assume with Bohr that the electron’s orbit is a circle of radius r. The speed of the
electron is then given by v = r dβ/d t , and the magnitude of its acceleration by a = d v/d t =
v dβ/d t . Eliminating dβ/d t yields a = v2/r. In the CGS SYSTEM OF UNITS17, the magnitude of the
COULOMB FORCE18 is simply F = e2/r 2, where e is the magnitude of the charge of both the elec-
tron and the proton. Via NEWTON’S19 F = ma the last two equations yield me v2 = e2/r, where
me is the electron’s mass. If we take the proton to be at rest, we obtain T = me v2/2 = e2/2r for
the electron’s kinetic energy.

16 HTTP://EN.WIKIPEDIA.ORG/WIKI/BALMER%20SERIES
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/CENTIMETER%20GRAM%20SECOND%20SYSTEM%20OF%20UNITS
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/COULOMB%27S%20LAW
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/NEWTON%27S%20LAWS%20OF%20MOTION
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Serious illnesses require drastic remedies

If the electron’s potential energy at infinity is set to 0, then its potential energy V at a distance r
from the proton is minus the WORK20 required to move it from r to infinity,

V =−
∫ ∞

r
F (r ′)dr ′ =−

∫ ∞

r

e2

(r ′)2 dr ′ =+
[

e2

r ′

]∞
r

= 0− e2

r
.

The total energy of the electron thus is

E = T +V = e2/2r −e2/r =−e2/2r.

We want to express this in terms of the electron’s angular momentum L = me vr. Remembering
that me v2 = e2/r, and hence r m2

e v2 = me e2, and multiplying the numerator e2 by me e2 and the
denominator 2r by r m2

e v2, we obtain

E =− e2

2r
=− me e4

2m2
e v2r 2

=−me e4

2L2 .

Now comes Bohr’s break with classical physics: he simply replaced L by nħ. The "allowed" values
for the angular momentum define a series of allowed values for the atom’s energy:

En =− 1

n2

(
me e4

2ħ2

)
, n = 1,2,3, . . .

As a result, the atom can emit or absorb energy only by amounts equal to the absolute values of
the differences

∆Enm = En −Em =
(

1

n2 − 1

m2

)
Ry,

one RYDBERG21 (Ry) being equal to me e4/2ħ2 = 13.6056923(12)eV. This is also the IONIZATION

ENERGY22 ∆E1∞ of atomic hydrogen &mdash; the energy needed to completely remove the elec-
tron from the proton. Bohr’s predicted value was found to be in excellent agreement with the
measured value.

Using two of the above expressions for the atom’s energy and solving for r, we obtain r =
n2ħ2/me e2. For the ground state (n = 1) this is the BOHR RADIUS OF THE HYDROGEN ATOM23,
which equals ħ2/me e2 = 5.291772108(18)×10−11m. The mature theory yields the same figure but
interprets it as the most likely distance from the proton at which the electron would be found if
its distance from the proton were measured.

20 HTTP://EN.WIKIPEDIA.ORG/WIKI/MECHANICAL%20WORK
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/RYDBERG
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/IONIZATION%20POTENTIAL
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/BOHR%20RADIUS
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de Broglie

2.4 de Broglie

In 1923, ten years after Bohr had derived the spectrum of atomic hydrogen by postulating the
quantization of angular momentum, LOUIS DE BROGLIE24 hit on an explanation of why the
atom’s angular momentum comes in multiples of ħ. Since 1905, EINSTEIN25 had argued that
electromagnetic radiation itself was quantized (and not merely its emission and absorption, as
Planck held). If electromagnetic waves can behave like particles (now known as PHOTONS26), de
Broglie reasoned, why cannot electrons behave like waves?

Suppose that the electron in a hydrogen atom is a STANDING WAVE27 on what has so far been
thought of as the electron’s circular orbit. (The CRESTS, TROUGHS28, and NODES29 of a standing
wave are stationary.) For such a wave to exist on a circle, the circumference of the latter must be
an integral multiple of the WAVELENGTH30 λ of the former: 2πr = nλ.

Abb. 23 Abb. 24

Abb. 25

Abb. 26

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOUIS%20DE%20BROGLIE
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALBERT%20EINSTEIN
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/PHOTON
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/STANDING%20WAVE
28 HTTP://EN.WIKIPEDIA.ORG/WIKI/CREST%20%28PHYSICS%29
29 HTTP://EN.WIKIPEDIA.ORG/WIKI/NODE%20%28PHYSICS%29
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/WAVELENGTH
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Serious illnesses require drastic remedies

Einstein had established not only that electromagnetic radiation of frequency ν comes in quanta
of energy E = hν but also that these quanta carry a momentum p = h/λ. Using this formula to
eliminate λ from the condition 2πr = nλ, one obtains pr = nħ. But pr = mvr is just the angular
momentum L of a classical electron with an orbit of radius r. In this way de Broglie derived the
condition L = nħ that Bohr had simply postulated.

2.5 Schrödinger

If the electron is a standing wave, why should it be confined to a circle? After de Broglie’s crucial
insight that particles are waves of some sort, it took less than three years for the mature quan-
tum theory to be found, not once but twice, by WERNER HEISENBERG31 in 1925 and by ERWIN

SCHRÖDINGER32 in 1926. If we let the electron be a standing wave in three dimensions, we have
all it takes to arrive at the Schrödinger equation, which is at the heart of the mature theory.

Let’s keep to one spatial dimension. The simplest mathematical description of a wave of ANGU-
LAR WAVENUMBER33 k = 2π/λ and ANGULAR FREQUENCY34 ω= 2π/T = 2πν (at any rate, if you are
familiar with COMPLEX NUMBERS35) is the function

ψ(x, t ) = e i (kx−ωt ).

Let’s express the PHASE36 φ(x, t ) = kx −ωt in terms of the electron’s energy E = hν = ħω and
momentum p = h/λ=ħk :

ψ(x, t ) = e i (px−Et )/ħ.

The PARTIAL DERIVATIVES37 with respect to x and t are

∂ψ

∂x
= i

ħpψ and
∂ψ

∂t
=− i

ħEψ.

We also need the second partial derivative of ψ with respect to x:

∂2ψ

∂x2 =
(

i p

ħ
)2

ψ.

31 HTTP://EN.WIKIPEDIA.ORG/WIKI/WERNER%20HEISENBERG
32 HTTP://EN.WIKIPEDIA.ORG/WIKI/ERWIN%20SCHR%F6DINGER
33 HTTP://EN.WIKIPEDIA.ORG/WIKI/WAVENUMBER
34 HTTP://EN.WIKIPEDIA.ORG/WIKI/ANGULAR%20FREQUENCY
35 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20NUMBER
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Schrödinger

We thus have

Eψ= iħ∂ψ
∂t

, pψ=−iħ∂ψ
∂x

, and p2ψ=−ħ2 ∂
2ψ

∂x2 .

In non-relativistic CLASSICAL PHYSICS38 the kinetic ENERGY39 and the kinetic momentum p of a
FREE PARTICLE40 are related via the DISPERSION RELATION41

E = p2/2m.

This relation also holds in non-relativistic quantum physics. Later you will learn why.

In three spatial dimensions, p is the magnitude of a vector p. If the particle also has a potential
energy V (r, t ) and a potential momentum A(r, t ) (in which case it is not free), and if E and p stand
for the particle’s total energy and total momentum, respectively, then the dispersion relation is

E −V = (p−A)2/2m.

By the square of a vector v we mean the DOT (OR SCALAR) PRODUCT42 v ·v. Later you will learn
why we represent possible influences on the motion of a particle by such FIELDS43 as V (r, t ) and
A(r, t ).

Returning to our fictitious world with only one spatial dimension, allowing for a potential energy
V (x, t ), substituting the DIFFERENTIAL OPERATORS44 iħ ∂

∂t and−ħ2 ∂2

∂x2 for E and p2 in the resulting
dispersion relation, and applying both sides of the resulting operator equation to ψ, we arrive at
the one-dimensional (time-dependent) Schrödinger equation:

iħ∂ψ
∂t =− ħ2

2m
∂2ψ

∂x2 +Vψ

In three spatial dimensions and with both potential energy V (r, t ) and potential momentum
A(r, t ) present, we proceed from the relation E −V = (p−A)2/2m, substituting iħ ∂

∂t for E and

−iħ ∂
∂r for p. The differential operator ∂

∂r is a vector whose components are the differential oper-

ators
(
∂ψ
∂x , ∂ψ∂y , ∂ψ∂z

)
. The result:

iħ∂ψ
∂t

= 1

2m

(
−iħ ∂

∂r
−A

)2

ψ+Vψ,

38 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLASSICAL%20PHYSICS
39 HTTP://EN.WIKIPEDIA.ORG/WIKI/KINETIC%20ENERGY
40 HTTP://EN.WIKIPEDIA.ORG/WIKI/FREE%20PARTICLE
41 HTTP://EN.WIKIPEDIA.ORG/WIKI/DISPERSION%20RELATION
42 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOT%20PRODUCT
43 HTTP://EN.WIKIPEDIA.ORG/WIKI/FIELD%20%28PHYSICS%29
44 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIFFERENTIAL%20OPERATOR
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Serious illnesses require drastic remedies

where ψ is now a function of r = (x, y, z) and t . This is the three-dimensional Schrödinger equa-
tion. In non-relativistic investigations (to which the Schrödinger equation is confined) the po-
tential momentum can generally be ignored, which is why the SCHRÖDINGER EQUATION45 is of-
ten given this form:

iħ∂ψ
∂t =− ħ2

2m

(
∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2

)
+Vψ

The free Schrödinger equation (without even the potential energy term) is satisfied by ψ(x, t ) =
e i (kx−ωt ) (in one dimension) or ψ(r, t ) = e i (k·r−ωt ) (in three dimensions) provided that E = ħω
equals p2/2m = (ħk)2/2m, which is to say: ω(k) =ħk2/2m. However, since we are dealing with a
HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION46 — which tells us that solutions may be added
and/or multiplied by an arbitrary constant to yield additional solutions — any function of the
form

ψ(x, t ) = 1p
2π

∫
ψ(k)e i [kx−ω(k)t ]dk = 1p

2π

∫
ψ(k, t )e i kx dk

with ψ(k, t ) =ψ(k)e−iω(k)t solves the (one-dimensional) Schrödinger equation. If no integration
boundaries are specified, then we integrate over the REAL LINE47, i.e., the integral is defined as
the limit limL→∞

∫ +L
−L . The converse also holds: every solution is of this form. The factor in front

of the integral is present for purely cosmetic reasons, as you will realize presently. ψ(k, t ) is the
FOURIER TRANSFORM48 of ψ(x, t ), which means that

ψ(k, t ) = 1p
2π

∫
ψ(x, t )e−i kx d x.

The Fourier transform of ψ(x, t ) exists because the integral
∫ |ψ(x, t )|d x is finite. In the NEXT

SECTION49 we will come to know the physical reason why this integral is finite.

So now we have a condition that every electron "wave function" must satisfy in order to satisfy
the appropriate dispersion relation. If this (and hence the Schrödinger equation) contains either
or both of the POTENTIALS50 V and A, then finding solutions can be tough. As a budding quantum
mechanician, you will spend a considerable amount of time learning to solve the Schrödinger
equation with various potentials.

51

45 HTTP://EN.WIKIPEDIA.ORG/WIKI/SCHR%F6DINGER%20EQUATION
46 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIFFERENTIAL%20EQUATION
47 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL%20LINE
48 HTTP://EN.WIKIPEDIA.ORG/WIKI/FOURIER%20TRANSFORM
49 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FSERIOUS%20ILLNESSES%

2FBORN
50 HTTP://EN.WIKIPEDIA.ORG/WIKI/POTENTIAL
51 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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Born

2.6 Born

In the same year that Erwin Schrödinger published the equation that now bears his name, the
nonrelativistic theory was completed by MAX BORN’S52 insight that the Schrödinger WAVE FUNC-
TION53 ψ(r, t ) is actually nothing but a tool for calculating probabilities, and that the probability
of detecting a particle "described by" ψ(r, t ) in a region of space R is given by the VOLUME INTE-
GRAL54

∫
R
|ψ(t ,r)|2 d 3r =

∫
R
ψ∗ψd 3r

— provided that the appropriate measurement is made, in this case a test for the particle’s pres-
ence in R. Since the probability of finding the particle somewhere (no matter where) has to be 1,
only a SQUARE INTEGRABLE55 function can "describe" a particle. This rules outψ(r) = e i k·r, which
is not square integrable. In other words, no particle can have a momentum so sharp as to be
given by ħ times a WAVE VECTOR56 k, rather than by a genuine probability distribution over dif-
ferent momenta.

Given a probability density function |ψ(x)|2, we can define the EXPECTED VALUE57

〈x〉 =
∫

|ψ(x)|2 x d x =
∫
ψ∗ xψd x

and the STANDARD DEVIATION58 ∆x =
√∫ |ψ|2(x −〈x〉)2

as well as higher MOMENTS59 of |ψ(x)|2. By the same token,

〈k〉 =
∫
ψ∗ kψdk

and

∆k =
√∫

|ψ|2(k −〈k〉)2.

Here is another expression for 〈k〉 :

52 HTTP://EN.WIKIPEDIA.ORG/WIKI/MAX%20BORN
53 HTTP://EN.WIKIPEDIA.ORG/WIKI/WAVEFUNCTION
54 HTTP://EN.WIKIPEDIA.ORG/WIKI/VOLUME%20INTEGRAL
55 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRABLE%20FUNCTION
56 HTTP://EN.WIKIPEDIA.ORG/WIKI/WAVE%20VECTOR
57 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXPECTED%20VALUE
58 HTTP://EN.WIKIPEDIA.ORG/WIKI/STANDARD%20DEVIATION
59 HTTP://EN.WIKIPEDIA.ORG/WIKI/MOMENT%20%28MATHEMATICS%29
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Serious illnesses require drastic remedies

〈k〉 =
∫
ψ∗(x)

(
−i

d

d x

)
ψ(x)d x.

To check that the two expressions are in fact equal, we plug ψ(x) = (2π)−1/2
∫
ψ(k)e i kx dk into

the latter expression:

〈k〉 = 1p
2π

∫
ψ∗(x)

(
−i

d

d x

)∫
ψ(k)e i kx dk d x = 1p

2π

∫
ψ∗(x)

∫
ψ(k)k e i kx dk d x.

Next we replace ψ∗(x) by (2π)−1/2
∫
ψ∗(k ′)e−i k ′x dk ′ and shuffle the integrals with the mathe-

matical nonchalance that is common in physics:

〈k〉 =
∫ ∫

ψ∗(k ′)kψ(k)

[
1

2π

∫
e i (k−k ′)x d x

]
dk dk ′.

The expression in square brackets is a representation of Dirac’s DELTA DISTRIBUTION60 δ(k −k ′),
the defining characteristic of which is

∫ +∞
−∞ f (x)δ(x)d x = f (0) for any continuous function f (x).

(In case you didn’t notice, this proves what was to be proved.)

2.7 Heisenberg

In the same annus mirabilis of quantum mechanics, 1926, WERNER HEISENBERG61 proved the
so-called "UNCERTAINTY" RELATION62

∆x∆p ≥ħ/2.

Heisenberg spoke of Unschärfe, the literal translation of which is "fuzziness" rather than "uncer-
tainty". Since the relation∆x∆k ≥ 1/2 is a consequence of the fact thatψ(x) andψ(k) are related
to each other via a FOURIER TRANSFORMATION63, we leave the proof to the mathematicians. The
fuzziness relation for position and momentum follows via p = ħk. It says that the fuzziness of a
position (as measured by ∆x ) and the fuzziness of the corresponding momentum (as measured
by ∆p =ħ∆k ) must be such that their product equals at least ħ/2.

64

60 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIRAC%20DELTA%20FUNCTION
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62 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNCERTAINTY%20PRINCIPLE
63 HTTP://EN.WIKIPEDIA.ORG/WIKI/FOURIER%20TRANSFORM
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3 The Feynman route to Schrödinger

The probabilities of the possible outcomes of measurements performed at a time t2 are deter-
mined by the Schrödinger wave functionψ(r, t2). The wave functionψ(r, t2) is determined via the
SCHRÖDINGER EQUATION1 byψ(r, t1). What determinesψ(r, t1) ? Why, the outcome of a measure-
ment performed at t1 — what else? Actual measurement outcomes determine the probabilities
of possible measurement outcomes.

3.1 Two rules

In this chapter we develop the quantum-mechanical probability algorithm from two fundamen-
tal rules. To begin with, two definitions:

• Alternatives are possible sequences of measurement outcomes.
• With each alternative is associated a COMPLEX NUMBER2 called amplitude.

Suppose that you want to calculate the probability of a possible outcome of a measurement given
the actual outcome of an earlier measurement. Here is what you have to do:

• Choose any sequence of measurements that may be made in the meantime.
• Assign an amplitude to each alternative.
• Apply either of the following rules:

Rule A: If the intermediate measurements are made (or if it is possible to infer from
other measurements what their outcomes would have been if they had been made),
first square the absolute values of the amplitudes of the alternatives and then add
the results.

Rule B: If the intermediate measurements are not made (and if it is not possible to
infer from other measurements what their outcomes would have been), first add the
amplitudes of the alternatives and then square the absolute value of the result.

In subsequent sections we will explore the consequences of these rules for a variety of setups,
and we will think about their origin — their raison d’être. Here we shall use Rule B to determine
the interpretation of ψ(k) given Born’s probabilistic interpretation of ψ(x).

In the so-called "continuum normalization", the unphysical limit of a particle with a sharp mo-
mentum ħk ′ is associated with the wave function

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FSERIOUS%20ILLNESSES%
2FSCHROEDINGER

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20NUMBER
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The Feynman route to Schrödinger

ψk ′(x, t ) = 1p
2π

∫
δ(k −k ′)e i [kx−ω(k)t ]dk = 1p

2π
e i [k ′x−ω(k ′)t ].

Hence we may write ψ(x, t ) = ∫
ψ(k)ψk (x, t )dk.

ψ(k) is the amplitude for the outcome ħk of an infinitely precise momentum measurement.
ψk (x, t ) is the amplitude for the outcome x of an infinitely precise position measurement per-
formed (at time t) subsequent to an infinitely precise momentum measurement with outcome
ħk. And ψ(x, t ) is the amplitude for obtaining x by an infinitely precise position measurement
performed at time t .

The preceding equation therefore tells us that the amplitude for finding x at t is the product of

1. the amplitude for the outcome ħk and
2. the amplitude for the outcome x (at time t ) subsequent to a momentum measurement

with outcome ħk,

summed over all values of k.

Under the conditions stipulated by Rule A, we would have instead that the probability for finding
x at t is the product of

1. the probability for the outcome ħk and
2. the probability for the outcome x (at time t ) subsequent to a momentum measurement

with outcome ħk,

summed over all values of k.

The latter is what we expect on the basis of standard probability theory. But if this holds un-
der the conditions stipulated by Rule A, then the same holds with "amplitude" substituted from
"probability" under the conditions stipulated by Rule B. Hence, given thatψk (x, t ) andψ(x, t ) are
amplitudes for obtaining the outcome x in an infinitely precise position measurement, ψ(k) is
the amplitude for obtaining the outcome ħk in an infinitely precise momentum measurement.

Notes:

1. Since Rule B stipulates that the momentum measurement is not actually made, we need
not worry about the impossibility of making an infinitely precise momentum measure-
ment.

2. If we refer to |ψ(x)|2 as "the probability of obtaining the outcome x," what we mean is that
|ψ(x)|2 integrated over any interval or subset of the REAL LINE3 is the probability of finding
our particle in this interval or subset.

4

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL%20LINE
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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An experiment with two slits

3.2 An experiment with two slits

Abb. 27: The setup

In this experiment, the final measurement (to the possible outcomes of which probabilities are
assigned) is the detection of an electron at the backdrop, by a detector situated at D (D being
a particular value of x). The initial measurement outcome, on the basis of which probabilities
are assigned, is the launch of an electron by an electron gun G. (Since we assume that G is the
only source of free electrons, the detection of an electron behind the slit plate also indicates
the launch of an electron in front of the slit plate.) The alternatives or possible intermediate
outcomes are

• the electron went through the left slit (L),
• the electron went through the right slit (R).
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The Feynman route to Schrödinger

The corresponding amplitudes are AL and AR .

Here is what we need to know in order to calculate them:

• AL is the product of two complex numbers, for which we shall use the symbols 〈D|L〉 and 〈L|G〉.
• By the same token, AR = 〈D|R〉〈R|G〉.
• The absolute value of 〈B |A〉 is inverse proportional to the distance d(B A) between A and B.
• The phase of 〈B |A〉 is proportional to d(B A).

For obvious reasons 〈B |A〉 is known as a propagator.

3.2.1 Why product?

Recall the FUZZINESS ("UNCERTAINTY") RELATION5, which implies that ∆p → ∞ as ∆x → 0. In
this limit the particle’s momentum is completely indefinite or, what comes to the same, has no
value at all. As a consequence, the probability of finding a particle at B, given that it was last
"seen" at A, depends on the initial position A but not on any initial momentum, inasmuch as
there is none. Hence whatever the particle does after its detection at A is independent of what it
did before then. In probability-theoretic terms this means that the particle’s propagation from G
to L and its propagation from L to D are independent events. So the probability of propagation
from G to D via L is the product of the corresponding probabilities, and so the amplitude of
propagation from G to D via L is the product 〈D|L 〉〈L|G〉 of the corresponding amplitudes.

3.2.2 Why is the absolute value inverse proportional to the distance?

Imagine (i) a sphere of radius r whose center is A and (ii) a detector monitoring a unit area of
the surface of this sphere. Since the total surface area is proportional to r 2, and since for a free
particle the probability of detection per unit area is constant over the entire surface (explain
why!), the probability of detection per unit area is inverse proportional to r 2. The absolute value
of the amplitude of detection per unit area, being the square root of the probability, is therefore
inverse proportional to r.

3.2.3 Why is the phase proportional to the distance?

The multiplicativity of successive propagators implies the additivity of their phases. Together
with the fact that, in the case of a free particle, the propagator 〈B |A〉 (and hence its phase) can
only depend on the distance between A and B, it implies the proportionality of the phase of 〈B |A〉
to d(B A).

3.2.4 Calculating the interference pattern

According to Rule A, the probability of detecting at D an electron launched at G is

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FSERIOUS%20ILLNESSES%
2FBORN
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An experiment with two slits

p A(D) = |〈D|L〉〈L|G〉|2 +|〈D|R〉〈R|G〉|2.

If the slits are equidistant from G, then 〈L|G〉 and 〈R|G〉 are equal and p A(D) is proportional to

|〈D|L〉|2 +|〈D|R〉|2 = 1/d 2(DL)+1/d 2(DR).

Here is the resulting plot of p A against the position x of the detector:

Abb. 28: Predicted relative frequency of detection according to Rule A

p A(x) (solid line) is the sum of two distributions (dotted lines), one for the electrons that went
through L and one for the electrons that went through R.

According to Rule B, the probability pB (D) of detecting at D an electron launched at G is propor-
tional to

|〈D|L〉+〈D|R〉|2 = 1/d 2(DL)+1/d 2(DR)+2cos(k∆)/[d(DL)d(DR)],

where ∆ is the difference d(DR)−d(DL) and k = p/ħ is the wavenumber, which is sufficiently
sharp to be approximated by a number. (And it goes without saying that you should check this
result.)

Here is the plot of pB against x for a particular set of values for the wavenumber, the distance
between the slits, and the distance between the slit plate and the backdrop:
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The Feynman route to Schrödinger

Abb. 29: Predicted relative frequency of detection according to Rule B

Observe that near the minima the probability of detection is less if both slits are open than it is
if one slit is shut. It is customary to say that destructive interference occurs at the minima and
that constructive interference occurs at the maxima, but do not think of this as the description
of a physical process. All we mean by "constructive interference" is that a probability calculated
according to Rule B is greater than the same probability calculated according to Rule A, and all
we mean by "destructive interference" is that a probability calculated according to Rule B is less
than the same probability calculated according to Rule A.

Here is how an interference pattern builds up over time6:

Abb. 30: 100 electrons Abb. 31: 3000 electrons Abb. 32: 20000 electrons

Abb. 33: 70000 electrons

6 A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, & H. Ezawa, "Demonstration of single-electron buildup of an
interference pattern", American Journal of Physics 57, 117-120, 1989.
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Bohm’s story

<references/>

7

3.3 Bohm’s story

3.3.1 Hidden Variables

Suppose that the conditions stipulated by RULE B8 are met: there is nothing — no event, no state
of affairs, anywhere, anytime — from which the slit taken by an electron can be inferred. Can it
be true, in this case,

• that each electron goes through a single slit — either L or R — and
• that the behavior of an electron that goes through one slit does not depend on whether the

other slit is open or shut?

To keep the language simple, we will say that an electron leaves a mark where it is detected at
the backdrop. If each electron goes through a single slit, then the observed distribution of marks
when both slits are open is the sum of two distributions, one from electrons that went through L
and one from electrons that went through R:

<big><big>
pB (x) = pL(x)+pR (x).

<small> If in addition the behavior of an electron that goes through one slit does not depend on
whether the other slit is open or shut, then we can observe pL(x) by keeping R shut, and we can
observe pR (x) by keeping L shut. What we observe if R is shut is the left dashed hump, and what
we observed if L is shut is the right dashed hump:

Abb. 34

Hence if the above two conditions (as well as those stipulated by Rule B) are satisfied, we will see
the sum of these two humps. In reality what we see is this:

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN%20ROUTE

25

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/This%20quantum%20world%2FFeynman%20route


The Feynman route to Schrödinger

Abb. 35

Thus all of those conditions cannot be simultaneously satisfied. If Rule B applies, then either it is
false that each electron goes through a single slit or the behavior of an electron that goes through
one slit does depend on whether the other slit is open or shut.

Which is it?

According to one attempt to make physical sense of the mathematical formalism of quantum
mechanics, due to LOUIS DE BROGLIE9 and DAVID BOHM10, each electron goes through a single
slit, and the behavior of an electron that goes through one slit depends on whether the other slit
is open or shut.

So how does the state of, say, the right slit (open or shut) affect the behavior of an electron that
goes through the left slit? In both de Broglie’s pilot wave theory and BOHMIAN MECHANICS11, the
electron is assumed to be a well-behaved particle in the sense that it follows a precise path — its
position at any moment is given by three coordinates — and in addition there exists a wave that
guides the electron by exerting on it a force. If only one slit is open, this passes through one slit.
If both slits are open, this passes through both slits and interferes with itself (in the "classical"
sense of interference). As a result, it guides the electrons along wiggly paths that cluster at the
backdrop so as to produce the observed interference pattern:

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOUIS%2C%207TH%20DUC%20DE%20BROGLIE
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/DAVID%20BOHM
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/BOHM%20INTERPRETATION
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Bohm’s story

Abb. 36: none

According to this story, the reason why electrons coming from the same source or slit arrive in
different places, is that they start out in slightly different directions and/or with slightly different
speeds. If we had exact knowledge of their initial positions and momenta, we could make an
exact prediction of each electron’s subsequent motion. This, however, is impossible. The UN-
CERTAINTY PRINCIPLE 12 prevents us from making exact predictions of a particle’s motion. Hence
even though according to Bohm the initial positions and momenta are in possession of precise
values, we can never know them.

If positions and momenta have precise values, then why can we not measure them? It used to
be said that this is because a measurement exerts an uncontrollable influence on the value of
the observable being measured. Yet this merely raises another question: why do measurements
exert uncontrollable influences? This may be true for all practical purposes, but the uncertainty
principle does not say that ∆x∆p ≥ħ/2 merely holds for all practical purposes. Moreover, it isn’t
the case that measurements necessarily "disturb" the systems on which they are performed.

The statistical element of quantum mechanics is an essential feature of the theory. The postu-
late of an underlying determinism, which in order to be consistent with the theory has to be a

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FSERIOUS%20ILLNESSES%
2FBORN%23HEISENBERG
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crypto13-determinism, not only adds nothing to our understanding of the theory but also pre-
cludes any proper understanding of this essential feature of the theory. There is, in fact, a simple
and obvious reason why HIDDEN VARIABLES14 are hidden: the reason why they are strictly (rather
than merely for all practical purposes) unobservable is that they do not exist.

At one time Einstein insisted that theories ought to be formulated without reference to unob-
servable quantities. When Heisenberg later mentioned to Einstein that this maxim had guided
him in his discovery of the uncertainty principle, Einstein replied something to this effect: "Even
if I once said so, it is nonsense." His point was that before one has a theory, one cannot know
what is observable and what is not. Our situation here is different. We have a theory, and this
tells in no uncertain terms what is observable and what is not.

15

3.4 Propagator for a free and stable particle

3.4.1 The propagator as a path integral

Suppose that we make m intermediate position measurements at fixed intervals of duration ∆t .
Each of these measurements is made with the help of an array of detectors monitoring n mutu-
ally disjoint regions Rk , k = 1, . . . ,n. Under the conditions stipulated by Rule B, the PROPAGATOR16

〈B |A〉 now equals the sum of amplitudes

n∑
k1=1

· · ·
n∑

km=1
〈B |Rkm 〉 · · · 〈Rk2 |Rk1〉〈Rk1 |A〉.

It is not hard to see what happens in the double limit ∆t → 0 (which implies that m →∞) and
n →∞. The multiple sum

∑n
k1=1 · · ·

∑n
km=1 becomes an integral

∫
DC over continuous spacetime

paths from A to B, and the amplitude 〈B |Rkm 〉 · · · 〈Rk1 |A〉 becomes a complex-valued functional
Z [C : A → B ] — a complex function of continuous functions representing continuous spacetime
paths from A to B:

〈B |A〉 =
∫

DC Z [C : A → B ].

The integral
∫

DC is not your standard RIEMANN INTEGRAL17
∫ b

a d x f (x), to which each infinitesi-
mal interval d x makes a contribution proportional to the value that f (x) takes inside the interval,
but a FUNCTIONAL OR PATH INTEGRAL18, to which each "bundle" of paths of infinitesimal width
DC makes a contribution proportional to the value that Z [C ] takes inside the bundle.

13 HTTP://EN.WIKIPEDIA.ORG/WIKI/CRYPTO
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/HIDDEN%20VARIABLE%20THEORY
15 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN%20ROUTE%2FTWO%

20SLITS
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/RIEMANN%20INTEGRAL
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTIONAL%20INTEGRATION
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Propagator for a free and stable particle

As it stands, the path integral
∫

DC is just the idea of an idea. Appropriate evalutation methods
have to be devised on a more or less case-by-case basis.

3.4.2 A free particle

Now pick any path C from A to B, and then pick any infinitesimal segment dC of C . La-
bel the start and end points of dC by INERTIAL COORDINATES19 t , x, y, z and t +d t , x +d x, y +
d y, z +d z, respectively. In the general case, the amplitude Z (dC ) will be a function of t , x, y, z
and d t ,d x,d y,d z. In the case of a free particle, Z (dC ) depends neither on the position of
dC in spacetime (given by t , x, y, z) nor on the spacetime orientiaton of dC (given by the
FOUR-VELOCITY20 (c d t/d s,d x/d s,d y/d s,d z/d s) but only on the PROPER TIME21 interval d s =√

d t 2 − (d x2 +d y2 +d z2)/c2.

(Because its norm equals the speed of light, the four-velocity depends on three rather than four
independent parameters. Together with d s, they contain the same information as the four inde-
pendent numbers d t ,d x,d y,d z.)

Thus for a free particle Z (dC ) = Z (d s). With this, the MULTIPLICATIVITY OF SUCCESSIVE PROPA-
GATORS22 tells us that

∏
j

Z (d s j ) = Z
(∑

j
d s j

)
−→ Z

(∫
C

d s
)
.

It follows that there is a complex number z such that Z [C ] = ez s[C :A→B ], where the LINE INTE-
GRAL23 s[C : A → B ] = ∫

C d s gives the time that passes on a clock as it travels from A to B via C .

3.4.3 A free and stable particle

By integrating |〈B |A〉|2 (as a function of rB ) over the whole of space, we obtain the probability
of finding that a particle launched at the spacetime point tA ,rA still exists at the time tB . For a
stable particle this probability equals 1:

∫
d 3rB |〈tB ,rB |tA ,rA〉|2 =

∫
d 3rB

∣∣∣∣∫ DC ez s[C :A→B ]
∣∣∣∣2

= 1.

If you contemplate this equation with a calm heart and an open mind, you will notice that if
the complex number z = a + i b had a real part a 6= 0, then the integral between the two equal
signs would either blow up (a > 0) or drop off (a < 0) exponentially as a function of tB , due to the
exponential factor ea s[C ].

19 HTTP://EN.WIKIPEDIA.ORG/WIKI/INERTIAL%20FRAME%20OF%20REFERENCE
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/FOUR-{}VELOCITY
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROPER%20TIME
22 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN_ROUTE%2FTWO_

SLITS%23WHY_PRODUCT.3F
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINE%20INTEGRAL
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3.4.4 Meaning of mass

The propagator for a free and stable particle thus has a single "degree of freedom": it depends
solely on the value of b. If proper time is measured in seconds, then b is measured in radians
per second. We may think of e i b s , with s a proper-time parametrization of C , as a clock carried
by a particle that travels from A to B via C , provided we keep in mind that we are thinking of an
aspect of the mathematical formalism of quantum mechanics rather than an aspect of the real
world.

It is customary

• to insert a minus (so the clock actually turns clockwise!): Z = e−i b s[C ],
• to multiply by 2π (so that we may think of b as the rate at which the clock "ticks" — the number

of cycles it completes each second): Z = e−i 2πb s[C ],
• to divide by Planck’s constant h (so that b is measured in energy units and called the REST

ENERGY24 of the particle): Z = e−i (2π/h)b s[C ] = e−(i /ħ)b s[C ],
• and to multiply by c2 (so that b is measured in mass units and called the particle’s REST MASS25):

Z = e−(i /ħ)b c2 s[C ].

The purpose of using the same letter b everywhere is to emphasize that it denotes the same
physical quantity, merely measured in different units. If we use NATURAL UNITS26 in which ħ =
c = 1, rather than conventional ones, the identity of the various b’s is immediately obvious.

27

3.5 From quantum to classical

3.5.1 Action

Let’s go back to the propagator

〈B |A〉 =
∫

DC Z [C : A → B ].

For a free and stable particle we found that

Z [C ] = e−(i /ħ)m c2 s[C ], s[C ] =
∫
C

d s,

where d s =
√

d t 2 − (d x2 +d y2 +d z2)/c2 is the proper-time interval associated with the path
element dC . For the general case we found that the amplitude Z (dC ) is a function
of t , x, y, z and d t ,d x,d y,d z or, equivalently, of the coordinates t , x, y, z, the components
c d t/d s,d x/d s,d y/d s,d z/d s of the 4-velocity, as well as d s. For a particle that is stable but not
free, we obtain, by the same argument that led to the above amplitude,

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/REST%20ENERGY
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/INVARIANT%20MASS
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/NATURAL%20UNITS
27 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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From quantum to classical

Z [C ] = e(i /ħ)S[C ],

where we have introduced the functional S[C ] = ∫
C dS, which goes by the name action.

For a free and stable particle, S[C ] is the proper time (or proper duration) s[C ] = ∫
C d s multi-

plied by −mc2, and the infinitesimal action dS[dC ] is proportional to d s:

S[C ] =−m c2 s[C ], dS[dC ] =−m c2 d s.

Let’s recap. We know all about the motion of a stable particle if we know how to calculate the
probability p(B |A) (in all circumstances). We know this if we know the amplitude 〈B |A〉. We
know the latter if we know the functional Z [C ]. And we know this functional if we know the
infinitesimal action dS(t , x, y, z,d t ,d x,d y,d z) or dS(t ,r,d t ,dr) (in all circumstances).

What do we know about dS?

The multiplicativity of successive propagators implies the additivity of actions associated with
neighboring infinitesimal path segments dC1 and dC2. In other words,

e(i /ħ)dS(dC1+dC2) = e(i /ħ)dS(dC2) e(i /ħ)dS(dC1)

implies

dS(dC1 +dC2) = dS(dC1)+dS(dC2).

It follows that the differential dS is homogeneous (of degree 1) in the differentials d t ,dr:

dS(t ,r,λd t ,λdr) =λdS(t ,r,d t ,dr).

This property of dS makes it possible to think of the action S[C ] as a (particle-specific) length as-
sociated with C , and of dS as defining a (particle-specific) spacetime geometry. By substituting
1/d t for λ we get:

dS(t ,r,v) = dS

d t
.

Something is wrong, isn’t it? Since the right-hand side is now a finite quantity, we shouldn’t use
the symbol dS for the left-hand side. What we have actually found is that there is a function
L(t ,r,v), which goes by the name Lagrange function, such that dS = L d t .

3.5.2 Geodesic equations

Consider a spacetime path C from A to B. Let’s change ("vary") it in such a way that every
point (t ,r) of C gets shifted by an infinitesimal amount to a corresponding point (t +δt ,r+δr),
except the end points, which are held fixed: δt = 0 and δr = 0 at both A and B.
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If t → t +δt , then d t = t2 − t1 −→ t2 +δt2 − (t1 +δt1) = (t2 − t1)+ (δt2 −δt1) = d t +dδt .

By the same token, dr → dr+dδr.

In general, the change C →C ′ will cause a corresponding change in the action: S[C ] → S[C ′] 6=
S[C ]. If the action does not change (that is, if it is stationary at C ),

δS =
∫
C ′

dS −
∫
C

dS = 0,

then C is a geodesic of the geometry defined by dS. (A function f (x) is stationary at those values
of x at which its value does not change if x changes infinitesimally. By the same token we call a
functional S[C ] stationary if its value does not change if C changes infinitesimally.)

To obtain a handier way to characterize geodesics, we begin by expanding

dS(C ′) = dS(t +δt ,r+δr,d t +dδt ,dr+dδr)

= dS(t ,r,d t ,dr)+ ∂dS

∂t
δt + ∂dS

∂r
·δr+ ∂dS

∂d t
dδt + ∂dS

∂dr
·dδr.

This gives us

(∗)
∫
C ′

dS −
∫
C

dS =
∫
C

[
∂dS

∂t
δt + ∂dS

∂r
·δr+ ∂dS

∂d t
d δt + ∂dS

∂dr
·d δr

]
.

Next we use the product rule for derivatives,

d

(
∂dS

∂d t
δt

)
=

(
d
∂dS

∂d t

)
δt + ∂dS

∂d t
d δt ,

d

(
∂dS

∂dr
·δr

)
=

(
d
∂dS

∂dr

)
·δr+ ∂dS

∂dr
·d δr,

to replace the last two terms of (*), which takes us to

δS =
∫ [(

∂dS

∂t
−d

∂dS

∂d t

)
δt +

(
∂dS

∂r
−d

∂dS

∂dr

)
·δr

]
+

∫
d

(
∂dS

∂d t
δt + ∂dS

∂dr
·δr

)
.

The second integral vanishes because it is equal to the difference between the values of the ex-
pression in brackets at the end points A and B , where δt = 0 and δr = 0. If C is a geodesic, then
the first integral vanishes, too. In fact, in this case δS = 0 must hold for all possible (infinitesi-
mal) variations δt and δr, whence it follows that the integrand of the first integral vanishes. The
bottom line is that the geodesics defined by dS satisfy the geodesic equations

∂dS
∂t = d ∂dS

∂d t , ∂dS
∂r = d ∂dS

∂dr .
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3.5.3 Principle of least action

If an object travels from A to B , it travels along all paths from A to B , in the same sense in which
an electron goes through both slits. Then how is it that a big thing (such as a planet, a tennis ball,
or a mosquito) appears to move along a single well-defined path?

There are at least two reasons. One of them is that the bigger an object is, the harder it is to satisfy
the conditions stipulated by Rule B. Another reason is that even if these conditions are satisfied,
the likelihood of finding an object of mass m where according to the laws of classical physics it
should not be, decreases as m increases.

To see this, we need to take account of the fact that it is strictly impossible to check whether an
object that has travelled from A to B , has done so along a mathematically precise path C . Let us
make the half realistic assumption that what we can check is whether an object has travelled from
A to B within a a narrow bundle of paths — the paths contained in a narrow tube T . The prob-
ability of finding that it has, is the absolute square of the path integral I (T ) = ∫

T DC e(i /ħ)S[C ],
which sums over the paths contained in T .

Let us assume that there is exactly one path from A to B for which S[C ] is stationary: its length
does not change if we vary the path ever so slightly, no matter how. In other words, we assume
that there is exactly one geodesic. Let’s call it G , and let’s assume it lies in T .

No matter how rapidly the phase S[C ]/ħ changes under variation of a generic path C , it will be
stationary at G . This means, loosly speaking, that a large number of paths near G contribute to
I (T ) with almost equal phases. As a consequence, the magnitude of the sum of the correspond-
ing phase factors e(i /ħ)S[C ] is large.

If S[C ]/ħ is not stationary at C , all depends on how rapidly it changes under variation of C . If
it changes sufficiently rapidly, the phases associated with paths near C are more or less equally
distributed over the interval [0,2π], so that the corresponding phase factors add up to a com-
plex number of comparatively small magnitude. In the limit S[C ]/ħ → ∞, the only significant
contributions to I (T ) come from paths in the infinitesimal neighborhood of G .

We have assumed that G lies in T . If it does not, and if S[C ]/ħ changes sufficiently rapidly, the
phases associated with paths near any path in T are more or less equally distributed over the
interval [0,2π], so that in the limit S[C ]/ħ→∞ there are no significant contributions to I (T ).

For a free particle, as you will remember, S[C ] =−m c2 s[C ]. From this we gather that the likeli-
hood of finding a freely moving object where according to the laws of classical physics it should
not be, decreases as its mass increases. Since for sufficiently massive objects the contributions to
the action due to influences on their motion are small compared to |−m c2 s[C ]|, this is equally
true of objects that are not moving freely.

What, then, are the laws of classical physics?

They are what the laws of quantum physics degenerate into in the limit ħ → 0. In this limit, as
you will gather from the above, the probability of finding that a particle has traveled within a
tube (however narrow) containing a geodesic, is 1, and the probability of finding that a particle
has traveled within a tube (however wide) not containing a geodesic, is 0. Thus we may state
the laws of classical physics (for a single "point mass", to begin with) by saying that it follows a
geodesic of the geometry defined by dS.
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This is readily generalized. The propagator for a system with n degrees of freedom — such as an
m-particle system with n = 3m degrees of freedom — is

〈P f , t f |P i , ti 〉 =
∫

DC e(i /ħ)S[C ],

where P i and P f are the system’s respective configurations at the initial time ti and the final
time t f , and the integral sums over all paths in the system’s n+1-dimensional configuration
spacetime leading from (P i , ti ) to (P f , t f ). In this case, too, the corresponding classical system
follows a geodesic of the geometry defined bythe action differential dS, which now depends on
n spatial coordinates, one time coordinate, and the corresponding n+1 differentials.

The statement that a classical system follows a geodesic of the geometry defined by its action, is
often referred to as the principle of least action. A more appropriate name is principle of station-
ary action.

3.5.4 Energy and momentum

Observe that if dS does not depend on t (that is, ∂dS/∂t = 0 ) then

E =−∂dS

∂d t

is constant along geodesics. (We’ll discover the reason for the negative sign in a moment.)

Likewise, if dS does not depend on r (that is, ∂dS/∂r = 0 ) then

p = ∂dS

∂dr

is constant along geodesics.

E tells us how much the projection d t of a segment dC of a path C onto the time axis contributes
to the action of C . p tells us how much the projection dr of dC onto space contributes to S[C ].
If dS has no explicit time dependence, then equal intervals of the time axis make equal contri-
butions to S[C ], and if dS has no explicit space dependence, then equal intervals of any spatial
axis make equal contributions to S[C ]. In the former case, equal time intervals are physically
equivalent: they represent equal durations. In the latter case, equal space intervals are physically
equivalent: they represent equal distances.

If equal intervals of the time coordinate or equal intervals of a space coordinate are not physically
equivalent, this is so for either of two reasons. The first is that non-inertial coordinates are used.
For if inertial coordinates are used, then every freely moving point mass moves by equal intervals
of the space coordinates in equal intervals of the time coordinate, which means that equal coor-
dinate intervals are physically equivalent. The second is that whatever it is that is moving is not
moving freely: something, no matter what, influences its motion, no matter how. This is because
one way of incorporating effects on the motion of an object into the mathematical formalism of
quantum physics, is to make inertial coordinate intervals physically inequivalent, by letting dS
depend on t and/or r.
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Thus for a freely moving classical object, both E and p are constant. Since the constancy of E
follows from the physical equivalence of equal intervals of coordinate time (a.k.a. the "homo-
geneity" of time), and since (classically) energy is defined as the quantity whose constancy is
implied by the homogeneity of time, E is the object’s energy.

By the same token, since the constancy of p follows from the physical equivalence of equal in-
tervals of any spatial coordinate axis (a.k.a. the "homogeneity" of space), and since (classically)
momentum is defined as the quantity whose constancy is implied by the homogeneity of space,
p is the object’s momentum.

Let us differentiate A FORMER RESULT28,

dS(t ,r,λd t ,λdr) =λdS(t ,r,d t ,dr),

with respect to λ. The left-hand side becomes

d(dS)

dλ
= ∂dS

∂(λd t )

∂(λd t )

∂λ
+ ∂dS

∂(λdr)
· ∂(λdr)

∂λ
= ∂dS

∂(λd t )
d t + ∂dS

∂(λdr)
·dr,

while the right-hand side becomes just dS. Settingλ= 1 and using the above definitions of E and
p, we obtain

−E d t +p ·dr = dS.

dS =−m c2 d s is a 4-scalar. Since (c d t ,dr) are the components of a 4-vector, the left-hand side,
−E d t +p ·dr, is a 4-scalar if and only if (E/c,p) are the components of another 4-vector.

(If we had defined E without the minus, this 4-vector would have the components (−E/c,p).)

In the rest frame F ′ of a free point mass, d t ′ = d s and dS = −m c2 d t ′. Using the LORENTZ

TRANSFORMATIONS29, we find that this equals

dS =−mc2 d t − v d x/c2

p
1− v2/c2

=− mc2

p
1− v2/c2

d t + mvp
1− v2/c2

·dr,

where v = (v,0,0) is the velocity of the point mass in F . Compare with the above framed equation
to find that for a free point mass,

E = mc2

p
1− v2/c2

p = mvp
1− v2/c2

.

28 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS_QUANTUM_WORLD/FEYNMAN_ROUTE/FROM_QUANTUM_
TO_CLASSICAL#ACTION

29 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS_QUANTUM_WORLD/APPENDIX/RELATIVITY/LORENTZ#
THE_ACTUAL_LORENTZ_TRANSFORMATIONS
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3.5.5 Lorentz force law

To incorporate effects on the motion of a particle (regardless of their causes), we must modify
the action differential dS = −mc2 d t

p
1− v2/c2 that a free particle associates with a path seg-

ment dC . In doing so we must take care that the modified dS (i) remains HOMOGENEOUS IN THE

DIFFERENTIALS30 and (ii) remains a 4-scalar. The most straightforward way to do this is to add a
term that is not just homogeneous but linear in the coordinate differentials:

(∗) dS =−mc2 d t
√

1− v2/c2 −qV (t ,r)d t + (q/c)A(t ,r) ·dr.

Believe it or not, all classical electromagnetic effects (as against their causes) are accounted for
by this expression. V (t ,r) is a scalar field (that is, a function of time and space coordinates that
is invariant under rotations of the space coordinates), A(t ,r) is a 3-vector field, and (V ,A) is a
4-vector field. We call V and A the scalar potential and the vector potential, respectively. The
particle-specific constant q is the electric charge, which determines how strongly a particle of a
given species is affected by influences of the electromagnetic kind.

If a point mass is not free, the expressions at the end of the PREVIOUS SECTION31 give its kinetic
energy Ek and its kinetic momentum pk . Casting (*) into the form

dS =−(Ek +qV )d t + [pk + (q/c)A] ·dr

and plugging it into THE DEFINITIONS32

(∗∗) E =−∂dS

∂d t
, p = ∂dS

∂dr
,

we obtain

E = Ek +qV , p = pk + (q/c)A.

qV and (q/c)A are the particle’s potential energy and potential momentum, respectively.

Now we plug (**) into the geodesic equation

∂dS

∂r
= d

∂dS

∂dr
.

For the right-hand side we obtain

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS_QUANTUM_WORLD/FEYNMAN_ROUTE/FROM_QUANTUM_
TO_CLASSICAL#ACTION

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN%20ROUTE%2FFROM_
QUANTUM_TO_CLASSICAL%23ENERGY%20AND%20MOMENTUM

32 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN%20ROUTE%2FFROM_
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From quantum to classical

dpk +
q

c
dA = dpk +

q

c

[
d t
∂A

∂t
+

(
dr · ∂

∂r

)
A
]

,

while the left-hand side works out at

−q
∂V

∂r
d t + q

c

∂(A ·dr)

∂r
=−q

∂V

∂r
d t + q

c

[(
dr · ∂

∂r

)
A+dr×

(
∂

∂r
×A

)]
.

Two terms cancel out, and the final result is

dpk = q

(
−∂V

∂r
− 1

c

∂A

∂t

)
︸ ︷︷ ︸

≡ E

d t +dr× q

c

(
∂

∂r
×A

)
︸ ︷︷ ︸

≡ B

= q Ed t +dr× q

c
B.

As a classical object travels along the segment dG of a geodesic, its kinetic momentum changes
by the sum of two terms, one linear in the temporal component d t of dG and one linear in the
spatial component dr. How much d t contributes to the change of pk depends on the electric
field E, and how much dr contributes depends on the magnetic field B. The last equation is usu-
ally written in the form

dpk

d t
= q E+ q

c
v×B,

called the Lorentz force law, and accompanied by the following story: there is a physical entity
known as the electromagnetic field, which is present everywhere, and which exerts on a charge q
an electric force qE and a magnetic force (q/c)v×B.

(Note: This form of the Lorentz force law holds in the GAUSSIAN SYSTEM OF UNITS33. In the
MKSA SYSTEM OF UNITS34 the c is missing.)

3.5.6 Whence the classical story?

Imagine a small rectangle in spacetime with corners

A = (0,0,0,0), B = (d t ,0,0,0), C = (0,d x,0,0), D = (d t ,d x,0,0).

Let’s calculate the electromagnetic contribution to the action of the path from A to D via B for a
unit charge (q = 1) in natural units ( c = 1 ):

S ABD =−V (d t/2,0,0,0)d t + Ax (d t ,d x/2,0,0)d x

33 HTTP://EN.WIKIPEDIA.ORG/WIKI/CENTIMETER%20GRAM%20SECOND%20SYSTEM%20OF%20UNITS
34 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERNATIONAL%20SYSTEM%20OF%20UNITS
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The Feynman route to Schrödinger

=−V (d t/2,0,0,0)d t +
[

Ax (0,d x/2,0,0)+ ∂Ax

∂t
d t

]
d x.

Next, the contribution to the action of the path from A to D via C :

S AC D = Ax (0,d x/2,0,0)d x −V (d t/2,d x,0,0)d t

= Ax (0,d x/2,0,0)d x −
[

V (d t/2,0,0,0)+ ∂V

∂x
d x

]
d t .

Look at the difference:

∆S = S AC D −S ABD =
(
−∂V

∂x
− ∂Ax

∂t

)
d t d x = Ex d t d x.

Alternatively, you may think of ∆S as the electromagnetic contribution to the action of the loop
A → B → D →C → A.

Abb. 37

Let’s repeat the calculation for a small rectangle with corners

A = (0,0,0,0), B = (0,0,d y,0), C = (0,0,0,d z), D = (0,0,d y,d z).

S ABD = Az (0,0,0,d z/2)d z + Ay (0,0,d y/2,d z)d y

= Az (0,0,0,d z/2)d z +
[

Ay (0,0,d y/2,0)+ ∂Ay

∂z
d z

]
d y,
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From quantum to classical

S AC D = Ay (0,0,d y/2,0)d y + Az (0,0,d y,d z/2)d z

= Ay (0,0,d y/2,0)d y +
[

Az (0,0,0,d z/2)+ ∂Az

∂y
d y

]
d z,

∆S = S AC D −S ABD =
(
∂Az

∂y
− ∂Ay

∂z

)
d y d z = Bx d y d z.

Thus the electromagnetic contribution to the action of this loop equals the flux of B through the
loop. <p></p> Remembering (i) STOKES’ THEOREM35 and (ii) the DEFINITION36 of B in terms of
A, we find that

∮
∂Σ

A ·dr =
∫
Σ

curlA ·dΣ=
∫
Σ

B ·dΣ.

In (other) words, the magnetic flux through a loop ∂Σ (or through any surface Σ bounded by ∂Σ )
equals the circulation of A around the loop (or around any surface bounded by the loop).

The effect of a circulation
∮
∂ΣA ·dr around the finite rectangle A → B → D →C → A is to increase

(or decrease) the action associated with the segment A → B → D relative to the action associated
with the segment A → C → D. If the actions of the two segments are equal, then we can expect
the path of least action from A to D to be a straight line. If one segment has a greater action
than the other, then we can expect the path of least action from A to D to curve away from the
segment with the larger action.

Abb. 38

35 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FAPPENDIX%2FFIELDS
36 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN%20ROUTE%2FFROM_
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The Feynman route to Schrödinger

Compare this with the classical story, which explains the curvature of the path of a charged parti-
cle in a magnetic field by invoking A FORCE THAT ACTS AT RIGHT ANGLES TO BOTH THE MAGNETIC

FIELD AND THE PARTICLE’S DIRECTION OF MOTION37. The quantum-mechanical treatment of the
same effect offers no such explanation. Quantum mechanics invokes no mechanism of any kind.
It simply tells us that for a sufficiently massive charge traveling from A to D, the probability of
finding that it has done so within any bundle of paths not containing the action-geodesic con-
necting A with D, is virtually 0.

Much the same goes for the classical story according to which the curvature of the path of a
charged particle in a spacetime plane is due to a force that acts in the direction of the electric
field. (Observe that curvature in a spacetime plane is equivalent to acceleration or deceleration.
In particular, curvature in a spacetime plane containing the x axis is equivalent to acceleration in
a direction parallel to the x axis.) In this case the corresponding circulation is that of the 4-vector
potential (cV ,A) around a spacetime loop.

38

3.6 Schrödinger at last

The Schrödinger equation is non-relativistic. We obtain the non-relativistic version of the elec-
tromagnetic action differential,

dS =−mc2 d t
√

1− v2/c2 −qV (t ,r)d t + (q/c)A(t ,r) ·dr,

by expanding the root and ignoring all but the first two terms:

√
1− v2/c2 = 1− 1

2

v2

c2 − 1

8

v4

c4 −·· · ≈ 1− 1

2

v2

c2 .

This is obviously justified if v ¿ c, which defines the non-relativistic regime.

Writing the potential part of dS as q [−V + A(t ,r) · (v/c)]d t makes it clear that in most non-
relativistic situations the effects represented by the vector potential A are small compared to
those represented by the scalar potential V. If we ignore them (or assume that A vanishes), and if
we include the charge q in the definition of V (or assume that q = 1), we obtain

S[C ] =−mc2(tB − tA)+
∫
C

d t
[m

2 v2 −V (t ,r)
]

for the action associated with a spacetime path C .

Because the first term is the same for all paths from A to B , it has no effect on the differences
between the phases of the amplitudes associated with different paths. By dropping it we change

37 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FFEYNMAN%20ROUTE%2FFROM_
QUANTUM_TO_CLASSICAL%23LORENTZ%20FORCE%20LAW
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Schrödinger at last

neither the classical phenomena (inasmuch as the extremal path remains the same) nor the
quantum phenomena (inasmuch as interference effects only depend on those differences). Thus

〈B |A〉 =
∫

DC e(i /ħ)
∫
C d t [(m/2)v2−V ].

We now introduce the so-called wave functionψ(t ,r) as the amplitude of finding our particle at r
if the appropriate measurement is made at time t . 〈t ,r|t ′,r′〉ψ(t ′,r′), accordingly, is the ampli-
tude of finding the particle first at r′ (at time t ′) and then at r (at time t ). Integrating over r, we
obtain the amplitude of finding the particle at r (at time t ), provided that Rule B applies. The
wave function thus satisfies the equation

ψ(t ,r) =
∫

d 3r ′ 〈t ,r|t ′,r′〉ψ(t ′,r′).

We again simplify our task by pretending that space is one-dimensional. We further assume that
t and t ′ differ by an infinitesimal interval ε. Since ε is infinitesimal, there is only one path leading
from x ′ to x. We can therefore forget about the path integral except for a normalization factor A

implicit in the integration measure DC , and make the following substitutions:

d t = ε, v = x −x ′

ε
, V =V

(
t+ ε

2
,

x+x ′

2

)
.

This gives us

ψ(t+ε, x) =A

∫
d x ′ e i m(x−x ′)2/2ħε e−(iε/ħ)V (t+ε/2,(x+x ′)/2)ψ(t , x ′).

We obtain a further simplification if we introduce η = x ′− x and integrate over η instead of x ′.
(The integration "boundaries" −∞ and +∞ are the same for both x ′ and η.) We now have that

ψ(t +ε, x) =A

∫
dηe i mη2/2ħε e−(iε/ħ)V (t+ε/2,x+η/2)ψ(t , x+η).

Since we are interested in the limit ε→ 0, we expand all terms to first order in ε. To which power
in η should we expand? As η increases, the phase mη2/2ħε increases at an infinite rate (in the
limit ε→ 0) unless η2 is of the same order as ε. In this limit, higher-order contributions to the
integral cancel out. Thus the left-hand side expands to

ψ(t +ε, x) ≈ψ(t , x)+ ∂ψ

∂t
ε,

while e−(iε/ħ)V (t+ε/2,x+η/2)ψ(t , x+η) expands to

[
1− iε

ħ V (t , x)

][
ψ(t , x)+ ∂ψ

∂x
η+ 1

2

∂2ψ

∂x2 η
2
]
=

[
1− iε

ħ V (t , x)

]
ψ(t , x)+ ∂ψ

∂x
η+ ∂2ψ

∂x2

η2

2
.
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The Feynman route to Schrödinger

The following integrals need to be evaluated:

I1 =
∫

dηe i mη2/2ħε, I2 =
∫

dηe i mη2/2ħεη, I3 =
∫

dηe i mη2/2ħεη2.

The results are

I1 =
p

2πiħε/m, I2 = 0, I3 =
√

2πħ3ε3/i m3.

Putting Humpty Dumpty back together again yields

ψ(t , x)+ ∂ψ

∂t
ε=A

√
2πiħε

m

(
1− iε

ħ V (t , x)

)
ψ(t , x)+ A

2

√
2πħ3ε3

i m3

∂2ψ

∂x2 .

The factor ofψ(t , x) must be the same on both sides, so A =p
m/2πiħε, which reduces Humpty

Dumpty to

∂ψ

∂t
ε=− iε

ħ Vψ+ iħε
2m

∂2ψ

∂x2 .

Multiplying by iħ/ε and taking the limit ε → 0 (which is trivial since ε has dropped out), we
arrive at the Schrödinger equation for a particle with one degree of freedom subject to a poten-
tial V (t , x):

iħ∂ψ
∂t

=− ħ2

2m

∂2ψ

∂x2 +Vψ.

Trumpets please! The transition to three dimensions is straightforward:

iħ∂ψ
∂t =− ħ2

2m

(
∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2

)
+Vψ.
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4 The Schrödinger equation: implications and
applications

In this chapter we take a look at some of the implications of the Schrödinger equation

iħ ∂ψ
∂t

= 1

2m

(ħ
i

∂

∂r
−A

)2

ψ+Vψ.

4.1 How fuzzy positions get fuzzier

We will calculate the rate at which the fuzziness of a position probability distribution increases,
in consequence of the fuzziness of the corresponding momentum, when there is no counterbal-
ancing attraction (like that between the nucleus and the electron in atomic hydrogen).

Because it is easy to handle, we choose a Gaussian function

ψ(0, x) = Ne−x2/2σ2
,

which has a bell-shaped graph. It defines a position probability distribution

|ψ(0, x)|2 = N 2e−x2/σ2
.

If we normalize this distribution so that
∫

d x |ψ(0, x)|2 = 1, then N 2 = 1/σ
p
π, and

|ψ(0, x)|2 = e−x2/σ2
/σ

p
π.

We also have that

• ∆x(0) =σ/
p

2,
• the Fourier transform of ψ(0, x) is ψ(0,k) =

√
σ/

p
πe−σ

2k2/2,
• this defines the momentum probability distribution |ψ(0,k)|2 =σe−σ

2k2
/
p
π,

• and ∆k(0) = 1/σ
p

2.

The fuzziness of the position and of the momentum of a particle associated withψ(0, x) is there-
fore the minimum allowed by the "UNCERTAINTY" RELATION1: ∆x(0)∆k(0) = 1/2.

Now recall that

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FSERIOUS%20ILLNESSES%
2FBORN%23HEISENBERG
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The Schrödinger equation: implications and applications

ψ(t ,k) =φ(0,k)e−iωt ,

where ω=ħk2/2m. This has the Fourier transform

ψ(t , x) =
√

σp
π

1√
σ2 + i (ħ/m) t

e−x2/2[σ2+i (ħ/m) t ],

and this defines the position probability distribution

|ψ(t , x)|2 = 1
p
π
√
σ2 + (ħ2/m2σ2) t 2

e−x2/[σ2+(ħ2/m2σ2) t 2].

Comparison with |ψ(0, x)|2 reveals that σ(t ) =
√
σ2 + (ħ2/m2σ2) t 2. Therefore,

∆x(t ) = σ(t )p
2

=
√
σ2

2
+ ħ2t 2

2m2σ2 =
√

[∆x(0)]2 + ħ2t 2

4m2[∆x(0)]2 .

The graphs below illustrate how rapidly the fuzziness of a particle the mass of an electron grows,
when compared to an object the mass of a C60 molecule or a peanut. Here we see one reason,
though by no means the only one, why for all intents and purposes "once sharp, always sharp"
is true of the positions of macroscopic objects.
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How fuzzy positions get fuzzier

Abb. 39

Above: an electron with ∆x(0) = 1 nanometer. In a second, ∆x(t ) grows to nearly 60 km.

Below: an electron with ∆x(0) = 1 centimeter. ∆x(t ) grows only 16% in a second.
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The Schrödinger equation: implications and applications

Abb. 40

Next, a C60 molecule with ∆x(0) = 1 nanometer. In a second, ∆x(t ) grows to 4.4 centimeters.
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How fuzzy positions get fuzzier

Abb. 41

Finally, a peanut (2.8 g) with ∆x(0) = 1 nanometer. ∆x(t ) takes the present age of the universe to
grow to 7.5 micrometers.
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Abb. 42

2

4.2 Time-independent Schrödinger equation

If the potential V does not depend on time, then the Schrödinger equation has solutions that are
products of a time-independent function ψ(r) and a time-dependent phase factor e−(i /ħ)E t :

ψ(t ,r) =ψ(r)e−(i /ħ)E t .

Because the probability density |ψ(t ,r)|2 is independent of time, these solutions are called sta-
tionary.

Plug ψ(r)e−(i /ħ)E t into

iħ∂ψ
∂t

=− ħ2

2m

∂

∂r
· ∂
∂r
ψ+Vψ

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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Why energy is quantized

to find that ψ(r) satisfies the time-independent Schrödinger equation

Eψ(r) =− ħ2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ψ(r)+V (r)ψ(r).

3

4.3 Why energy is quantized

Limiting ourselves again to one spatial dimension, we write the time independent Schrödinger
equation in this form:

d 2ψ(x)

d x2 = A(x)ψ(x), A(x) = 2m

ħ2

[
V (x)−E

]
.

Since this equation contains no complex numbers except possibly ψ itself, it has real solutions,
and these are the ones in which we are interested. You will notice that if V > E , then A is positive
and ψ(x) has the same sign as its second derivative. This means that the graph of ψ(x) curves
upward above the x axis and downward below it. Thus it cannot cross the axis. On the other
hand, if V < E , then A is negative and ψ(x) and its second derivative have opposite signs. In this
case the graph of ψ(x) curves downward above the x axis and upward below it. As a result, the
graph of ψ(x) keeps crossing the axis — it is a wave. Moreover, the larger the difference E −V ,
the larger the curvature of the graph; and the larger the curvature, the smaller the wavelength.
In particle terms, the higher the kinetic energy, the higher the momentum.

Let us now find the solutions that describe a particle "trapped" in a potential well — a bound
state. Consider this potential:

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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The Schrödinger equation: implications and applications

Abb. 43

Observe, to begin with, that at x1 and x2, where E = V , the slope of ψ(x) does not change since
d 2ψ(x)/d x2 = 0 at these points. This tells us that the probability of finding the particle cannot
suddenly drop to zero at these points. It will therefore be possible to find the particle to the left
of x1 or to the right of x2, where classically it could not be. (A classical particle would oscillates
back and forth between these points.)

Next, take into account that the probability distributions defined by ψ(x) must be normalizable.
For the graph of ψ(x) this means that it must approach the x axis asymptotically as x →±∞.

Suppose that we have a normalized solution for a particular value E . If we increase or decrease
the value of E , the curvature of the graph of ψ(x) between x1 and x2 increases or decreases.
A small increase or decrease won’t give us another solution: ψ(x) won’t vanish asymptotically
for both positive and negative x. To obtain another solution, we must increase E by just the
right amount to increase or decrease by one the number of wave nodes between the "classical"
turning points x1 and x2 and to make ψ(x) again vanish asymptotically in both directions.

The bottom line is that the energy of a bound particle — a particle "trapped" in a potential well —
is quantized: only certain values Ek yield solutions ψk (x) of the time-independent Schrödinger
equation:
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A quantum bouncing ball

Abb. 44

4

4.4 A quantum bouncing ball

As a specific example, consider the following potential:

V (z) = mg z if z > 0 and V (z) =∞ if z < 0.

g is the gravitational acceleration at the floor. For z < 0, the Schrödinger equation as given in
the PREVIOUS SECTION5 tells us that d 2ψ(z)/d z2 =∞ unless ψ(z) = 0. The only sensible solution
for negative z is therefore ψ(z) = 0. The requirement that V (z) = ∞ for z < 0 ensures that our
perfectly elastic, frictionless quantum bouncer won’t be found below the floor.

Since a picture is worth more than a thousand words, we won’t solve the time-independent
Schrödinger equation for this particular potential but merely plot its first eight solutions:

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FIMPLICATIONS%20AND%

20APPLICATIONS%2FWHY%20ENERGY%20IS%20QUANTIZED
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The Schrödinger equation: implications and applications

Abb. 45

Where would a classical bouncing ball subject to the same potential reverse its direction of mo-
tion? Observe the correlation between position and momentum (wavenumber).

All of these states are stationary; the probability of finding the quantum bouncer in any particu-
lar interval of the z axis is independent of time. So how do we get it to move?

Recall that any linear combination of solutions of the Schrödinger equation is another solution.
Consider this linear combination of two stationary states:

ψ(t , x) = Aψ1(x)e−iω1t +Bψ2(x)e−iω2t .

Assuming that the coefficients A,B and the wave functionsψ1(x),ψ2(x) are real, we calculate the
mean position of a particle associated with ψ(t , x):

∫
d xψ∗xψ=

∫
d x (Aψ1e iω1t +Bψ2e iω2t ) x (Aψ1e−iω1t +Bψ2e−iω2t )

= A2
∫

d xψ2
1 x+B 2

∫
d xψ2

2 x+AB(e i (ω1−ω2)t+e i (ω2−ω1)t )
∫

d xψ1xψ2.
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Atomic hydrogen

The first two integrals are the (time-independent) mean positions of a particle associated with
ψ1(x)e iω1t and ψ2(x)e iω2t , respectively. The last term equals

2AB cos(∆ω t )
∫

d xψ1xψ2,

and this tells us that the particle’s mean position oscillates with frequency ∆ω = ω2 −ω1 and
amplitude 2AB

∫
d xψ1xψ2 about the sum of the first two terms.

Visit THIS SITE6 to watch the time-dependence of the probability distribution associated with a
quantum bouncer that is initially associated with a Gaussian distribution.

7

4.5 Atomic hydrogen

While de Broglie’s theory of 1923 featured circular electron waves, Schrödinger’s "wave mechan-
ics" of 1926 features standing waves in three dimensions. Finding them means finding the solu-
tions of the time-independent Schrödinger equation

Eψ(r) =− ħ2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ψ(r)+V (r)ψ(r).

with V (r) =−e2/r, the potential energy of a classical electron at a distance r = |r| from the proton.
(Only when we come to the relativistic theory will we be able to shed the last vestige of classical
thinking.)

Eψ(r) =− ħ2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ψ(r)− e2

r
V (r)ψ(r).

In using this equation, we ignore (i) the influence of the electron on the proton, whose mass
is some 1836 times larger than that of he electron, and (ii) the electron’s spin. Since relativistic
and spin effects on the measurable properties of atomic hydrogen are rather small, this non-
relativistic approximation nevertheless gives excellent results.

For bound states the total energy E is negative, and the Schrödinger equation has a discrete set
of solutions. As it turns out, the "allowed" values of E are precisely the values that Bohr obtained
in 1913:

En =− 1

n2

µe4

2ħ2 , n = 1,2,3, . . .

However, for each n there are now n2 linearly independent solutions. (If ψ1, . . . ,ψk are indepen-
dent solutions, then none of them can be written as a linear combination

∑
aiψi of the others.)

6 HTTP://WWW.UARK.EDU/MISC/JULIO/BOUNCING_BALL/BOUNCING_BALL.HTML
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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Solutions with different n correspond to different energies. What physical differences corre-
spond to linearly independent solutions with the same n?

Abb. 46

Using polar coordinates, one finds that all solutions for a particular value En are linear combina-
tions of solutions that have the form

ψ(r,φ,θ) = e(i /ħ) lz φψ(r,θ).

lz turns out to be another quantized variable, for e(i /ħ) lz φ = e(i /ħ) lz (φ±2π) implies that lz = mħ
with m = 0,±1,±2, . . . In addition, |m| has an upper bound, as we shall see in a moment.

Just as the factorization of ψ(t ,r) into e−(i /ħ)E t ψ(r) made it possible to obtain a t-independent
Schrödinger equation, so the factorization of ψ(r,φ,θ) into e(i /ħ) lz φψ(r,θ) makes it possible to
obtain aφ-independent Schrödinger equation. This contains another real parameterΛ, over and
above m, whose "allowed" values are given by l (l +1)ħ2, with l an integer satisfying 0 ≤ l ≤ n−1.
The range of possible values for m is bounded by the inequality |m| ≤ l . The possible values of
the principal quantum number n, the angular momentum quantum number l , and the so-called
magnetic quantum number m thus are:

l = 2 m = 0,±1,±2
n = 4 . . . . . .

Each possible set of quantum numbers n, l ,m defines a unique wave function ψnlm(t ,r), and
together these make up a complete set of bound-state solutions (E < 0) of the Schrödinger equa-
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tion with V (r) = −e2/r. The following images give an idea of the position probability distribu-
tions of the first three l = 0 states (not to scale). Below them are the probability densities plotted
against r. Observe that these states have n−1 nodes, all of which are spherical, that is, surfaces of
constant r. (The nodes of a wave in three dimensions are two-dimensional surfaces. The nodes
of a "probability wave" are the surfaces at which the sign of ψ changes and, consequently, the
probability density |ψ|2 vanishes.)

Abb. 47

Take another look at these images:

55



The Schrödinger equation: implications and applications

Abb. 48:
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Abb. 49: ρ3p0 Abb. 50: ρ3d0

Abb. 51: ρ4p0

Abb. 52:
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Abb. 53: ρ4 f 0
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Abb. 54: ρ5d0

Abb. 55: ρ5 f 0

The letters s,p,d,f stand for l=0,1,2,3, respectively. (Before the quantum-mechanical origin of
atomic spectral lines was understood, a distinction was made between "sharp," "principal," "dif-
fuse," and "fundamental" lines. These terms were subsequently found to correspond to the first
four values that l can take. From l = 3 onward the labels follows the alphabet: f,g,h...) Observe
that these states display both spherical and conical nodes, the latter being surfaces of constant
θ. (The "conical" node with θ = 0 is a horizontal plane.) These states, too, have a total of n −1
nodes, l of which are conical.

Because the "waviness" in φ is contained in a phase factor e i mφ, it does not show up in repre-
sentations of |ψ|2. To make it visible, it is customary to replace e i mφ by its real part cos(mφ), as
in the following images, which do not represent probability distributions.

Abb. 56: ρ4 f 1

Abb. 57: ρ4 f 3

Abb. 58: ρ5 f 1
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Abb. 59: ρ5 f 2 Abb. 60: ρ5 f 3

Abb. 61: ρ5g 1

Abb. 62: ρ5g 2

Abb. 63: ρ5g 3

The total number of nodes is again n−1, the total number of non-spherical nodes is again l , but
now there are m plane nodes containing the z axis and l −m conical nodes.

What is so special about the z axis? Absolutely nothing, for the wave functions ψ′
nlm , which are

defined with respect to a different axis, make up another complete set of bound-state solutions.
This means that every wave function ψ′

nlm can be written as a linear combination of the func-
tions ψnlm , and vice versa.

8

4.6 Observables and operators

Remember the mean values

〈x〉 =
∫

|ψ|2 x d x and 〈p〉 = ħ〈k〉 =
∫

|ψ|2ħk dk.

As noted already, if we define the operators

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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x̂ = x

("multiply with
x

") and

p̂ =−iħ ∂

∂x
,

then we can write

〈x〉 =
∫
ψ∗ x̂ψd x and 〈p〉 =

∫
ψ∗ p̂ψd x.

By the same token,

〈E〉 =
∫
ψ∗ Êψd x with Ê = iħ ∂

∂t
.

Which observable is associated with the differential operator ∂/∂φ? If r and θ are constant (as
the partial derivative with respect to φ requires), then z is constant, and

∂ψ

∂φ
= ∂y

∂φ

∂ψ

∂y
+ ∂x

∂φ

∂ψ

∂x
.

Given that x = r sinθ cosφ and y = r sinθ sinφ, this works out at x ∂ψ
∂y − y ∂ψ

∂x or

−iħ ∂

∂φ
= x̂ p̂y − ŷ p̂x .

Since, classically, orbital angular momentum is given by L = r×p, so that Lz = x py−y px , it seems
obvious that we should consider x̂ p̂y − ŷ p̂x as the operator l̂z associated with the z component
of the atom’s angular momentum.

Yet we need to be wary of basing quantum-mechanical definitions on classical ones. Here are
the quantum-mechanical definitions:

Consider the wave function ψ(qk , t ) of a closed system S with K degrees of freedom. Suppose
that the probability distribution |ψ(qk , t )|2 (which is short for |ψ(q1, . . . , qK , t )|2) is invariant un-
der translations in time: waiting for any amount of time τ makes no difference to it:

|ψ(qk , t )|2 = |ψ(qk , t +τ)|2.

Then the time dependence of ψ is confined to a phase factor e iα(qk ,t ).

Further suppose that the time coordinate t and the space coordinates qk are homogeneous —
equal intervals are physically equivalent. Since S is closed, the phase factor e iα(qk ,t ) cannot then
depend on qk , and its phase can at most linearly depend on t : waiting for 2τ should have the
same effect as twice waiting for τ. In other words, multiplying the wave function by e iα(2τ) should
have same effect as multiplying it twice by e iα(τ):
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e iα(2τ) = [e iα(τ)]2 = e i 2α(τ).

Thus

ψ(qk , t ) =ψ(qk )e−iωt =ψ(qk )e−(i /ħ)E t .

So the existence of a constant ("conserved") quantity ω or (in conventional units) E is implied
for a closed system, and this is what we mean by the energy of the system.

Now suppose that |ψ(qk , t )|2 is invariant under translations in the direction of one of the spatial
coordinates qk , say q j :

|ψ(q j , qk 6= j , t )|2 = |ψ(q j +κ, qk 6= j , t )|2.

Then the dependence of ψ on q j is confined to a phase factor e iβ(qk ,t ).

And suppose again that the time coordinates t and qk are homogeneous. Since S is closed, the
phase factor e iβ(qk ,t ) cannot then depend on qk 6= j or t , and its phase can at most linearly depend
on q j : translating S by 2κ should have the same effect as twice translating it byκ. In other words,
multiplying the wave function by e iβ(2κ) should have same effect as multiplying it twice by e iβ(κ):

e iβ(2κ) = [e iβ(κ)]2 = e i 2β(κ).

Thus

ψ(qk , t ) =ψ(qk 6= j , t )e i k j qk =ψ(qk 6= j , t )e(i /ħ) p j qk .

So the existence of a constant ("conserved") quantity k j or (in conventional units) p j is implied
for a closed system, and this is what we mean by the j-component of the system’s momentum.

You get the picture. Moreover, the spatial coordiates might as well be the spherical coordinates
r,θ,φ. If |ψ(r,θ,φ, t )|2 is invariant under rotations about the z axis, and if the longitudinal coor-
dinate φ is homogeneous, then

ψ(r,θ,φ, t ) =ψ(r,θ, t )e i mφ =ψ(r,θ, t )e(i /ħ)lzφ.

In this case we call the conserved quantity the z component of the system’s angular momentum.

Now suppose that O is an observable, that Ô is the corresponding operator, and that ψÔ,v satis-
fies

ÔψÔ,v = vψÔ,v .

We say that ψÔ,v is an eigenfunction or eigenstate of the operator Ô, and that it has the eigen-
value v. Let’s calculate the mean and the standard deviation of O for ψÔ,v . We obviously have
that
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〈O〉 =
∫
ψ∗

Ô,v
ÔψÔ,v d x =

∫
ψ∗

Ô,v
vψÔ,v d x = v

∫
|ψÔ,v |2 d x = v.

Hence

∆O =
√∫

ψ∗
Ô,v

(Ô − v) (Ô − v)ψÔ,v d x = 0,

since (Ô − v)ψÔ,v = 0. For a system associated with ψÔ,v , O is dispersion-free. Hence the proba-
bility of finding that the value of O lies in an interval containing v, is 1. But we have that

Êψ(qk )e−(i /ħ)E t = Eψ(qk )e−(i /ħ)E t

p̂ j ψ(qk 6= j , t )e(i /ħ) p j qk = p j ψ(qk 6= j , t )e(i /ħ) p j qk

l̂z ψ(r,θ, t )e(i /ħ) lzφ = lz ψ(r,θ, t )e(i /ħ) lzφ.

So, indeed, l̂z is the operator associated with the z component of the atom’s angular momentum.

Observe that the eigenfunctions of any of these operators are associated with systems for which
the corresponding observable is "sharp": the standard deviation measuring its fuzziness van-
ishes.

For obvious reasons we also have

l̂x =−iħ
(

y
∂

∂z
− z

∂

∂y

)
and l̂y =−iħ

(
z
∂

∂x
−x

∂

∂z

)
.

If we define the commutator [Â, B̂ ] ≡ ÂB̂ − B̂ Â, then saying that the operators Â and B̂ commute
is the same as saying that their commutator vanishes. Later we will prove that two observables
are compatible (can be simultaneously measured) if and only if their operators commute.

Exercise: Show that [l̂x , l̂y ] = iħl̂z .

One similarly finds that [l̂y , l̂z ] = iħl̂x and [l̂z , l̂x ] = iħl̂y . The upshot: different components of a
system’s angular momentum are incompatible.

Exercise: Using the above commutators, show that the operator L̂2 ≡ l̂ 2
x + l̂ 2

y + l̂ 2
z commutes with

l̂x , l̂y , and l̂z .

9

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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4.7 Beyond hydrogen: the Periodic Table

If we again assume that the nucleus is fixed at the center and ignore relativistic and spin effects,
then the stationary states of helium are the solutions of the following equation:

E
∂ψ

∂t
=− ħ2

2m

[
∂2ψ

∂x2
1

+ ∂2ψ

∂y2
1

+ ∂2ψ

∂z2
1

+ ∂2ψ

∂x2
2

+ ∂2ψ

∂y2
2

+ ∂2ψ

∂z2
2

]
+

[
−2e2

r1
− 2e2

r2
+ e2

r12

]
ψ.

The wave function now depends on six coordinates, and the potential energy V is made up of

three terms. r1 =
√

x2
1 + y2

1 + z2
1 and r2 =

√
x2

2 + y2
2 + z2

2 are associated with the respective dis-

tances of the electrons from the nucleus, and r12 =
√

(x2−x1)2 + (y2−y1)2 + (z2−z1)2 is associ-
ated with the distance between the electrons. Think of e2/r12 as the value the potential energy
associated with the two electrons would have if they were at r1 and r2, respectively.

Why are there no separate wave functions for the two electrons? The joint probability of finding
the first electron in a region A and the second in a region B (relative to the nucleus) is given by

p(A,B) =
∫

A
d 3r1

∫
B

d 3r2 |ψ(r1,r2)|2.

If the probability of finding the first electron in A were independent of the whereabouts of
the second electron, then we could assign to it a wave function ψ1(r1), and if the probabil-
ity of finding the second electron in B were independent of the whereabouts of the first elec-
tron, we could assign to it a wave function ψ2(r2). In this case ψ(r1,r2) would be given by the
product ψ1(r1)ψ2(r2) of the two wave functions, and p(A,B) would be the product of p(A) =∫

Ad 3r1 |ψ(r1)|2 and p(B) = ∫
B d 3r2 |ψ(r2)|2. But in general, and especially inside a helium atom,

the positional probability distribution for the first electron is conditional on the whereabouts
of the second electron, and vice versa, given that the two electrons repel each other (to use the
language of classical physics).

For the lowest energy levels, the above equation has been solved by numerical methods. With
three or more electrons it is hopeless to look for exact solutions of the corresponding Schrödinger
equation. Nevertheless, the PERIODIC TABLE10 and many properties of the chemical elements
can be understood by using the following approximate theory.

First,we disregard the details of the interactions between the electrons. Next, since the chemi-
cal properties of atoms depend on their outermost electrons, we consider each of these atoms
subject to a potential that is due to (i) the nucleus and (ii) a continuous, spherically symmet-
ric, charge distribution doing duty for the other electrons. We again neglect spin effects except
that we take account of the PAULI EXCLUSION PRINCIPLE11, according to which the probability of
finding two electrons (more generally, two FERMIONS12) having exactly the same properties is 0.
Thus two electrons can be associated with exactly the same wave function provided that their
spin states differ in the following way: whenever the spins of the two electrons are measured

10 HTTP://EN.WIKIPEDIA.ORG/WIKI/PERIODIC%20TABLE
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/PAULI%20EXCLUSION%20PRINCIPLE
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/FERMION

62

http://en.wikipedia.org/wiki/Periodic%20table
http://en.wikipedia.org/wiki/Pauli%20exclusion%20principle
http://en.wikipedia.org/wiki/Fermion
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with respect to a given axis, the outcomes are perfectly anticorrelated; one will be "up" and the
other will be "down". Since there are only two possible outcomes, a third electron cannot be
associated with the same wave function.

This approximate theory yields stationary wave functions ψnlm(r) called ORBITALS13 for indi-
vidual electrons. These are quite similar to the stationary wave functions one obtains for the
single electron of hydrogen, except that their dependence on the radial coordinate is modified
by the negative charge distribution representing the remaining electrons. As a consequence of
this modification, the energies associated with orbitals with the same quantum number n but
different quantum numbers l are no longer equal. For any given n ≥ 1, obitals with higher l yield
a larger mean distance between the electron and the nucleus, and the larger this distance, the
more the negative charge of the remaining electrons screens the positive charge of the nucleus.
As a result, an electron with higher l is less strongly bound (given the same n), so its IONIZATION

ENERGY14 is lower.

Chemists group orbitals into SHELLS15 according to their principal quantum number. As we have
seen, the n-th shell can "accommodate" up to n2 ×2 electrons. Helium has the first shell com-
pletely "filled" and the second shell "empty." Because the helium nucleus has twice the charge of
the hydrogen nucleus, the two electrons are, on average, much nearer the nucleus than the single
electron of hydrogen. The ionization energy of helium is therefore much larger, 2372.3 J/MOL16

as compared to 1312.0 J/mol for hydrogen. On the other hand, if you tried to add an electron
to create a negative helium ion, it would have to go into the second shell, which is almost com-
pletely screened from the nucleus by the electrons in the first shell. Helium is therefore neither
prone to give up an electron not able to hold an extra electron. It is chemically inert, as are all
elements in the rightmost column of the Periodic Table.

In the second row of the Periodic Table the second shell gets filled. Since the energies of the 2p
orbitals are higher than that of the 2s orbital, the latter gets "filled" first. With each added elec-
tron (and proton!) the entire electron distribution gets pulled in, and the ionization energy goes
up, from 520.2 J/mol for lithium (atomic number Z=3) to 2080.8 J/mol for neon (Z=10). While
lithium readily parts with an electron, fluorine (Z=9) with a single empty "slot" in the second
shell is prone to grab one. Both are therefore quite active chemically. The progression from
sodium (Z=11) to argon (Z=18) parallels that from lithium to neon.

There is a noteworthy peculiarity in the corresponding sequences of IONIZATION ENERGIES17:
The ionization energy of oxygen (Z=8, 1313.9 J/mol) is lower than that of nitrogen (Z=7, 1402.3 J/-
mol), and that of sulfur (Z=16, 999.6 J/mol) is lower than that of phosphorus (Z=15, 1011.8 J/mol).
To understand why this is so, we must take account of certain details of the inter-electronic forces
that we have so far ignored.

Suppose that one of the two 2p electrons of carbon (Z=6) goes into the m=0 orbital with respect
to the z axis. Where will the other 2p electron go? It will go into any vacant orbital that minimizes
the repulsion between the two electrons, by maximizing their mean distance. This is neither of
the orbitals with |m|=1 with respect to the z axis but an orbital with m=0 with respect to some
axis perpendicular to the z axis. If we call this the x axis, then the third 2p electron of nitrogen

13 HTTP://EN.WIKIPEDIA.ORG/WIKI/ATOMIC%20ORBITAL
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/IONIZATION%20POTENTIAL
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/ELECTRON%20SHELL
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/JOULE%20PER%20MOLE
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/IONIZATION%20ENERGIES%20OF%20THE%20ELEMENTS
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goes into the orbital with m=0 relative to y axis. The fourth 2p electron of oxygen then has no
choice but to go — with opposite spin — into an already occupied 2p orbital. This raises its
energy significantly and accounts for the drop in ionization from nitrogen to oxygen.

By the time the 3p orbitals are "filled," the energies of the 3d states are pushed up so high (as
a result of screening) that the 4s state is energetically lower. The "filling up" of the 3d orbitals
therefore begins only after the 4s orbitals are "occupied," with scandium (Z=21).

Thus even this simplified and approximate version of the quantum theory of atoms has the
power to predict the qualitative and many of the quantitative features of the Period Table.

18

4.8 Probability flux

The time rate of change of the probability density ρ(t ,r) = |ψ(t ,r)|2 (at a fixed location r) is given
by

∂ρ

∂t
=ψ∗ ∂ψ

∂t
+ψ∂ψ

∗

∂t
.

With the help of the Schrödinger equation and its complex conjugate,

iħ∂ψ
∂t

= 1

2m

(ħ
i

∂

∂r
−A

)
·
(ħ

i

∂

∂r
−A

)
ψ+Vψ,

ħ
i

∂ψ∗

∂t
= 1

2m

(
iħ ∂

∂r
−A

)
·
(
iħ ∂

∂r
−A

)
ψ∗+Vψ∗,

one obtains

∂ρ

∂t
=− i

ħψ
∗
[

1

2m

(ħ
i

∂

∂r
−A

)
·
(ħ

i

∂

∂r
−A

)
ψ+Vψ

]

+ i

ħψ
[

1

2m

(
iħ ∂

∂r
−A

)
·
(
iħ ∂

∂r
−A

)
ψ∗+Vψ∗

]
.

The terms containing V cancel out, so we are left with

∂ρ

∂t
=− i

2mħ
[
ψ∗

(
iħ ∂

∂r
+A

)
·
(
iħ ∂

∂r
+A

)
ψ−ψ

(
iħ ∂

∂r
−A

)
·
(
iħ ∂

∂r
−A

)
ψ∗

]

= ·· · =− ħ
2mi

(
∂2ψ

∂r2 ψ
∗−ψ∂

2ψ∗

∂r2

)
+ 1

m

(
ψψ∗ ∂

∂r
·A+A

∂ψ

∂r
ψ∗+Aψ

∂ψ∗

∂r

)
.

18 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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Next, we calculate the divergence of j = ħ
2mi

(
ψ∗ ∂ψ

∂r − ∂ψ∗
∂r ψ

)
− 1

m Aψ∗ψ:

∂

∂r
· j = ħ

2mi

(
∂2ψ

∂r2 ψ
∗−ψ∂

2ψ∗

∂r2

)
− 1

m

(
ψψ∗ ∂

∂r
·A+A

∂ψ

∂r
ψ∗+Aψ

∂ψ∗

∂r

)
.

The upshot:

∂ρ
∂t =− ∂

∂r · j.

Integrated over a spatial region R with unchanging boundary ∂R :

∂

∂t

∫
R
ρd 3r =−

∫
R

∂

∂r
· jd 3r.

According to GAUSS’S LAW19, the outward flux of j through ∂R equals the integral of the DIVER-
GENCE20 of j over R :

∮
∂R

j ·dΣ=
∫

R

∂

∂r
· jd 3r.

We thus have that

∂

∂t

∫
R
ρd 3r =−

∮
∂R

j ·dΣ.

If ρ is the continuous density of some kind of stuff (stuff per unit volume) and j is its flux (stuff
per unit area per unit time), then on the left-hand side we have the rate at which the stuff inside R
increases, and on the right-hand side we have the rate at which stuff enters through the surface
of R. So if some stuff moves from place A to place B, it crosses the boundary of any region that
contains either A or B. This is why the framed equation is known as a CONTINUITY EQUATION21.

In the quantum world, however, there is no such thing as continuously distributed and/or con-
tinuously moving stuff. ρ and j, respectively, are a density (something per unit volume) and a
flux (something per unit area per unit time) only in a formal sense. If ψ is the wave function
associated with a particle, then the integral

∫
R ρd 3r = ∫

R |ψ|2 d 3r gives the probability of finding
the particle in R if the appropriate measurement is made, and the framed equation tells us this:
if the probability of finding the particle inside R, as a function of the time at which the measure-
ment is made, increases, then the probability of finding the particle outside R, as a function of
the same time, decreases by the same amount. (Much the same holds if ψ is associated with a
system having n degrees of freedom and R is a region of the system’s configuration space.) This
is sometimes expressed by saying that "probability is (locally) conserved." When you hear this,
then remember that the probability for something to happen in a given place at a given time isn’t
anything that is situated at that place or that exists at that time.

19 HTTP://EN.WIKIPEDIA.ORG/WIKI/GAUSS%27S%20LAW
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVERGENCE
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONTINUITY%20EQUATION
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22

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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5 Entanglement (a preview)

5.1 Bell’s theorem: the simplest version

Quantum mechanics permits us to create the following scenario.

• Pairs of particles are launched in opposite directions.
• Each particle is subjected to one of three possible measurements (1, 2, or 3).
• Each time the two measurements are chosen at random.
• Each measurement has two possible results, indicated by a red or green light.

Here is what we find:

• If both particles are subjected to the same measurement, identical results are never obtained.
• The two sequences of recorded outcomes are completely random. In particular, half of the

time both lights are the same color.

Abb. 64

If this doesn’t bother you, then please explain how it is that the colors differ whenever identical
measurements are performed!

The obvious explanation would be that each particle arrives with an "instruction set" — some
property that pre-determines the outcome of every possible measurement. Let’s see what this
entails.

Each particle arrives with one of the following 23 = 8 instruction sets:

RRR,RRG,RGR,GRR,RGG,GRG,GGR, or GGG.

(If a particle arrives with, say, RGG, then the apparatus flashes red if it is set to 1 and green if it is
set to 2 or 3.) In order to explain why the outcomes differ whenever both particles are subjected
to the same measurement, we have to assume that particles launched together arrive with oppo-
site instruction sets. If one carries the instruction (or arrives with the property denoted by) RRG,
then the other carries the instruction GGR.
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Suppose that the instruction sets are RRG and GGR. In this case we observe different colors with
the following five of the 32 = 9 possible combinations of apparatus settings:

1—1,2—2,3—3,1—2, and 2—1,

and we observe equal colors with the following four:

1—3,2—3,3—1, and 3—2.

Because the settings are chosen at random, this particular pair of instruction sets thus results in
different colors 5/9 of the time. The same is true for the other pairs of instruction sets except the
pair RRR, GGG. If the two particles carry these respective instruction sets, we see different colors
every time. It follows that we see different colors at least 5/9 of the time.

But different colors are observed half of the time! In reality the probability of observing different
colors is 1/2. Conclusion: the statistical predictions of quantum mechanics cannot be explained
with the help of instruction sets. In other words, these measurements do not reveal pre-existent
properties. They create the properties the possession of which they indicate.

Then how is it that the colors differ whenever identical measurements are made? How does one
apparatus "know" which measurement is performed and which outcome is obtained by the other
apparatus?

Whenever the joint probability p(A,B) of the respective outcomes A and B of two measure-
ments does not equal the product p(A) p(B) of the individual probabilities, the outcomes —
or their probabilities — are said to be correlated. With equal apparatus settings we have
p(R,R) = p(G,G) = 0, and this obviously differs from the products p(R) p(R) and p(G) p(G), which
equal 1

2 × 1
2 = 1

4 . What kind of mechanism is responsible for the correlations between the mea-
surement outcomes?

You understand this as much as anybody else!

The conclusion that we see different colors at least 5/9 of the time is Bell’s theorem (or Bell’s in-
equality) for this particular setup. The fact that the universe violates the logic of Bell’s Theorem
is evidence that particles do not carry instruction sets embedded within them and instead have
instantaneous knowledge of other particles at a great distance. Here is a comment by a distin-
guished Princeton physicist as quoted by David Mermin1

Anybody who’s not bothered by Bell’s theorem has to have rocks in his
head.

And here is why Einstein wasn’t happy with quantum mechanics:

I cannot seriously believe in it because it cannot be reconciled with the
idea that physics should represent a reality in time and space, free from
spooky actions at a distance.2

Sadly, Einstein (1879 - 1955) did not know Bell’s theorem of 1964. We know now that

1 N. David Mermin, "Is the Moon there when nobody looks? Reality and the quantum theory," Physics Today, April
1985. The version of Bell’s theorem discussed in this section first appeared in this article.

2 Albert Einstein, The Born-Einstein Letters, with comments by Max Born (New York: Walker, 1971).
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there must be a mechanism whereby the setting of one measurement de-
vice can influence the reading of another instrument, however remote.3

Spooky actions at a distance are here to stay!

<references/>

4

5.2 A quantum game

Here are the rules:5

• Two teams play against each other: Andy, Bob, and Charles (the "players") versus the "inter-
rogators".

• Each player is asked either "What is the value of X?" or "What is the value of Y?"
• Only two answers are allowed: +1 or &minus;1.
• Either each player is asked the X question, or one player is asked the X question and the two

other players are asked the Y question.
• The players win if the product of their answers is &minus;1 in case only X questions are asked,

and if the product of their answers is +1 in case Y questions are asked. Otherwise they lose.
• The players are not allowed to communicate with each other once the questions are asked.

Before that, they are permitted to work out a strategy.

Is there a failsafe strategy? Can they make sure that they will win? Stop to ponder the question.

Let us try pre-agreed answers, which we will call XA, XB, XC and YA, YB, YC. The winning com-
binations satisfy the following equations:

X AYB YC = 1, YA XB YC = 1, YAYB XC = 1, X A XB XC =−1.

Consider the first three equations. The product of their right-hand sides equals +1. The product
of their left-hand sides equals XAXBXC, implying that XAXBXC = 1. (Remember that the possi-
ble values are ±1.) But if XAXBXC = 1, then the fourth equation XAXBXC = &minus;1 obviously
cannot be satisfied.

The bottom line: There is no failsafe strategy with pre-agreed answers.

<references/>

6

3 John S. Bell, "On the Einstein Podolsky Rosen paradox," Physics 1, pp. 195-200, 1964.
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
5 Lev Vaidman, "Variations on the theme of the Greenberger-Horne-Zeilinger proof," Foundations of Physics 29,

pp. 615-30, 1999.
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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5.3 The experiment of Greenberger, Horne, and Zeilinger

And yet there is a failsafe strategy.7

Here goes:

• Andy, Bob, and Charles prepare three particles (for instance, electrons) in a particular way. As
a result, they are able to predict the probabilities of the possible outcomes of any spin mea-
surement to which the three particles may subsequently be subjected. In principle these prob-
abilities do not depend on how far the particles are apart.

• Each player takes one particle with him.
• Whoever is asked the X question measures the x component of the spin of his particle and

answers with his outcome, and whoever is asked the Y question measures the y component
of the spin of his particle and answers likewise. (All you need to know at this point about the
spin of a particle is that its component with respect to any one axis can be measured, and
that for the type of particle used by the players there are two possible outcomes, namely +1
and &minus;1.

Proceeding in this way, the team of players is sure to win every time.

Is it possible for the x and y components of the spins of the three particles to be in possession of
values before their values are actually measured?

Suppose that the y components of the three spins have been measured. The three equations

X AYB YC = 1, YA XB YC = 1, YAYB XC = 1

of the PREVIOUS SECTION8 tell us what we would have found if the x component of any one of the
three particles had been measured instead of the y component. If we assume that the x compo-
nents are in possession of values even though they are not measured, then their values can be
inferred from the measured values of the three y components.

Try to fill in the following table in such a way that

• each cell contains either +1 or &minus;1,
• the product of the three X values equals &minus;1, and
• the product of every pair of Y values equals the remaining X value.

Can it be done?

A B C
X

Y

The answer is negative, for the same reason that the four equations

7 D. M. Greenberger, M. A. Horne, and A. Zeilinger, "Going beyond Bell’s theorem," in Bell’s theorem, Quantum
Theory, and Conception of the Universe, edited by M. Kafatos (Dordrecht: Kluwer Academic, 1989), pp. 69-72.

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/THIS%20QUANTUM%20WORLD%2FGAME
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X AYB YC = 1, YA XB YC = 1, YAYB XC = 1, X A XB XC =−1

cannot all be satisfied. Just as there can be no strategy with pre-agreed answers, there can be no
pre-existent values. We seem to have no choice but to conclude that these spin components are
in possession of values only if (and only when) they are actually measured.

Any two outcomes suffice to predict a third outcome. If two x components are measured, the
third x component can be predicted, if two y components are measured, the x component of the
third spin can be predicted, and if one x and one y component are measurement, the y compo-
nent of the third spin can be predicted. How can we understand this given that

• the values of the spin components are created as and when they are measured,
• the relative times of the measurements are irrelevant,
• in principle the three particles can be millions of miles apart.

How does the third spin "know" which components of the other spins are measured and which
outcomes are obtained? What mechanism correlates the outcomes?

You understand this as much as anybody else!

<references/>

9

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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7 Appendix

7.1 Probability

7.1.1 Basic Concepts

Probability is a numerical measure of likelihood. If an event has a probability equal to 1 (or
100%), then it is certain to occur. If it has a probability equal to 0, then it will definitely not occur.
And if it has a probability equal to 1/2 (or 50%), then it is as likely as not to occur.

You will know that tossing a fair coin has probability 1/2 to yield heads, and that casting a fair die
has probability 1/6 to yield a 1. How do we know this?

There is a principle known as the principle of indifference, which states: if there are n mutually
exclusive and jointly exhaustive possibilities, and if, as far as we know, there are no differences
between the n possibilities apart from their names (such as "heads" or "tails"), then each possi-
bility should be assigned a probability equal to 1/n. (Mutually exclusive: only one possibility can
be realized in a single trial. Jointly exhaustive: at least one possibility is realized in a single trial.
Mutually exclusive and jointly exhaustive: exactly ony possibility is realized in a single trial.)

Since this principle appeals to what we know, it concerns epistemic probabilities (a.k.a. subjec-
tive probabilities) or degrees of belief. If you are certain of the truth of a proposition, then you
assign to it a probability equal to 1. If you are certain that a proposition is false, then you assign
to it a probability equal to 0. And if you have no information that makes you believe that the truth
of a proposition is more likely (or less likely) than its falsity, then you assign to it probability 1/2.
Subjective probabilities are therefore also known as ignorance probabilities: if you are ignorant
of any differences between the possibilities, you assign to them equal probabilities.

If we assign probability 1 to a proposition because we believe that it is true, we assign a subjec-
tive probability, and if we assign probability 1 to an event because it is certain that it will occur,
we assign an objective probability. Until the advent of quantum mechanics, the only objective
probabilities known were relative frequencies.

The advantage of the frequentist definition of probability is that it allows us to measure proba-
bilities, at least approximately. The trouble with it is that it refers to ensembles. You can’t measure
the probability of heads by tossing a single coin. You get better and better approximations to the
probability of heads by tossing a larger and larger number N of coins and dividing the number
NH of heads by N . The exact probability of heads is the limit

p(H) = lim
N→∞

NH

N
.

The meaning of this formula is that for any positive number ε, however small, you can find a
(sufficiently large but finite) number N such that
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∣∣∣∣p(H)− NH

N

∣∣∣∣< ε.

The probability that m events from a mutually exclusive and jointly exhaustive set of n possible
events happen is the sum of the probabilities of the m events. Suppose, for example, you win if
you cast either a 1 or a 6. The probability of winning is

p(1 or 6) = p(1)+p(6) = 1

6
+ 1

6
= 1

3
.

In frequentist terms, this is virtually self-evident. N (1)/N approximates p(1), N (6)/N approxi-
mates p(6), and [N (1)+N (6)]/N approximates p(1 or 6).

The probability that two independent events happen is the product of the probabilities of the
individual events. Suppose, for example, you cast two dice and you win if the total is 12. Then

p(6 and 6) = p(6)×p(6) = 1

6
× 1

6
= 1

36
.

By the principle of indifference, there are now 6×6 = 36 equiprobable possibilities, and casting
a total of 12 with two dice is one of them.

It is important to remember that the joint probability p(A,B) = p(A and B) of two events A,B
equals the product of the individual probabilities p(A) and p(B) only if the two events are in-
dependent, meaning that the probability of one does not depend on whether or not the other
happens. In terms of propositions: the probability that the conjunction P1 and P2 is true is the
probability that P1 is true times the probability that P2 is true only if the probability that either
proposition is true does not depend on whether the other is true or false. Ignoring this can have
the MOST TRAGIC CONSEQUENCES1.

The general rule for the joint probability of two events is

p(A,B) = p(B |A) p(A) = p(A|B) p(B).

p(B |A) is a conditional probability: the probability of B given that A.

To see this, let N (A,B) be the number of trials in which both A and B happen or are true.
N (A,B)/N approximates p(A,B), N (A,B)/N (A) approximates p(B |A), and N (A)/N approxi-
mates p(A). But

p(A,B)
N→∞←− N (A,B)

N
= N (A,B)

N (A)
× N (A)

N
N→∞−→ p(B |A) p(A).

An immediate consequence of this is Bayes’ theorem:

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/SALLY%20CLARK
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p(B |A) = p(A|B)

p(A)
p(B).

The following is just as readily established:

p(X ) = p(X |Y ) p(Y )+p(X |Y ) p(Y ),

where Y happens or is true whenever Y does not happen or is false. The generalization to n > 2
mutually exclusive and jointly exhaustive possibilities should be obvious.

Given a random variable, which is a set X = {x1, . . . , xn} of random numbers, we may want to
know the arithmetic mean

〈X 〉 = 1

n

n∑
k=1

xk = x1 +·· ·+xn

n

as well as the standard deviation, which is the root-mean-square deviation from the arithmetic
mean,

σ(X ) =
√

1

n

n∑
k=1

(xk −〈X 〉)2.

The standard deviation is an important measure of statistical dispersion.

Given n possible measurement outcomes v1, . . . vn with probabilities pk = p(vk ), we have a prob-
ability distribution {p1, . . . , pn}, and we may want to know the expected value of X , defined by

〈X 〉 =
n∑

k=1
pk xk

as well as the corresponding standard deviation

σ(X ) =
√

n∑
k=1

pk (xk −〈X 〉)2,

which is a handy measure of the fuzziness of X .

We have defined probability as a numerical measure of likelihood. So what is likelihood? What is
probability apart from being a numerical measure? The frequentist definition covers some cases,
the epistemic definition covers others, but which definition would cover all cases? It seems that
probability is one of those concepts that are intuitively meaningful to us, but — just like time or
the experience of purple — cannot be explained in terms of other concepts.

2

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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7.1.2 Some Problems

Problem 1 (Monty Hall). A player in a game show is given the choice of three doors. Behind one
door is the Grand Prize (say, a car); behind the other two doors are booby prizes (say, goats). The
player picks a door, and the show host peeks behind the doors and opens one of the remaining
doors. There is a booby prize behind the door he opened. The host then offers the player either
to stay with the door that was chosen at the beginning, or to switch to the other closed door.
What gives the player the better chance of winning: to switch doors or to stay with the original
choice? Or are the chances equal?

Problem 2. Imagine you toss a coin successively and wait till the first time the pattern HTT
appears. For example, if the sequence of tosses was

H H T H H T H H T T H H T T T H T H

then the pattern HTT would appear after the 10th toss. Let A(HTT) be the average number of
tosses until HTT occurs, and let A(HTH) be the average number of tosses until HTH occurs.
Which of the following is true?

(a) A( HTH) < ( HTT), (b) A(HTH) = A(HTT), or (c) A(HTH) > A(HTT).

Problem 3. Imagine a test for a certain disease (say, HIV) that is 99% accurate. And suppose a
person picked at random tests positive. What is the probability that the person actually has the
disease?

Solutions

Problem 1. Let p(C 1) be the probability that the car is behind door 1, p(O3) the probability that
the host opens door 3, and p(O3|C 1) the probability that the host opens door 3 given that the car
is behind door 1. We have

p(O3) = p(O3|C 1) p(C 1)+p(O3|C 2) p(C 2)+p(O3|C 3) p(C 3)

as well as

p(O3|C 2) p(C 2) = p(C 2|O3) p(O3).

If the first choice is door 1, then p(O3|C 1) = 1/2, p(O3|C 2) = 1, and p(O3|C 3) = 0. Hence

p(O3) = 1

2
× 1

3
+1× 1

3
+0× 1

3
= 1

2

and thus

p(C 2|O3) = p(O3|C 2) p(C 2)

p(O3)
= 1× 1

3
1
2

= 2

3
.
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In words: If the player’s first choice is door 1 and the host opens door 3, then the probability that
the car is behind door 2 is 2/3, whereas the probability that it is behind door 1 is 1 – 2/3 = 1/3. A
quicker way to see that switching doubles the chances of winning is to compare this game with
another one, in which the show host offers the choice of either opening the originally chosen
door or opening both other doors (and winning regardless of which, if any, has the car).

Note: This result depends on the show host *deliberately* opening only a door with a goat behind
it. If she doesn’t know - or doesn’t care (!) - which door the car is behind, and opens a remaining
door at random, then 1/3 of the outcomes that were initially possible have been removed by her
having opened a door with a goat. In this case the player gains no advantage (or disadvantage)
by switching. So the answer depends on the rules of the game, not just the sequence of events.
Of course the player may not know what the ’rules’ are in this respect, in which case he should
still switch doors because there can be no disadvantage in doing so.

Problem 2. The average number of tosses until HTT occurs, A(HTT), equals 8, whereas A(HTH)
= 10. To see why the latter is greater, imagine you have tossed HT. If you are looking for HTH and
the next toss gives you HTT, then your next chance to see HTH is after a total of 6 tosses, whereas
if you are looking for HTT and the next toss gives you HTH, then your next chance to see HTT is
after a total of 5 tosses.

Problem 3. The answer depends on how rare the disease is. Suppose that one in 10,000 has
it. This means 100 in a million. If a million are tested, there will be 99 true positives and one
false negative. 99% of the remaining 999,900 — that is, 989,901 — will yield true negatives and
1% — that is, 9,999 — will yield false positives. The probability that a randomly picked person
testing positive actually has the disease is the number of true positives divided by the number of
positives, which in this particular example is 99/(9999+99) = 0.0098 — less than 1%!

7.1.3 Moral

Be it scientific data or evidence in court — there are usually competing explanations, and usually
each explanation has a likely bit and an unlikely bit. For example, having the disease is unlikely,
but the test is likely to be correct; not having the disease is likely, but a false test result is unlikely.
You can see the importance of accurate assessments of the likelihood of competing explanations,
and if you have tried the problems, you have seen that we aren’t very good at such assessments.

3

7.2 Mathematical tools

7.2.1 Elements of calculus

A definite integral

Imagine an object O that is free to move in one dimension — say, along the x axis. Like every
physical object, it has a more or less fuzzy position (relative to whatever reference object we

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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choose). For the purpose of describing its fuzzy position, quantum mechanics provides us with
a probability density ρ(x). This depends on actual measurement outcomes, and it allows us to
calculate the probability of finding the particle in any given interval of the x axis, provided that
an appropriate measurement is made. (Remember our mantra: the mathematical formalism of
quantum mechanics serves to assign probabilities to possible measurement outcomes on the
basis of actual outcomes.)

Abb. 65

We call ρ(x) a probability density because it represents a probability per unit length. The proba-
bility of finding O in the interval between x1 and x2 is given by the area A between the graph of
ρ(x), the x axis, and the vertical lines at x1 and x2, respectively. How do we calculate this area?
The trick is to cover it with narrow rectangles of width ∆x.
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Abb. 66

The area of the first rectangle from the left is ρ(x1 +∆x)∆x, the area of the second is ρ(x1 +
2∆x)∆x, and the area of the last is ρ(x1 + 12∆x)∆x. For the sum of these areas we have the
shorthand notation

12∑
k=1

ρ(x +k∆x)∆x.

It is not hard to visualize that if we increase the number N of rectangles and at the same time
decrease the width ∆x of each rectangle, then the sum of the areas of all rectangles fitting under
the graph of ρ(x) between x1 and x2 gives us a better and better approximation to the area A and
thus to the probability of finding O in the interval between x1 and x2. As ∆x tends toward 0 and
N tends toward infinity (∞), the above sum tends toward the integral

∫ x2

x1

ρ(x)d x.

We sometimes call this a definite integral to emphasize that it’s just a number. (As you can guess,
there are also indefinite integrals, about which more later.) The uppercase delta has turned into
a d indicating that d x is an infinitely small (or infinitesimal) width, and the summation symbol
(the uppercase sigma) has turned into an elongated S indicating that we are adding infinitely
many infinitesimal areas.
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Don’t let the term "infinitesimal" scare you. An infinitesimal quantity means nothing by itself.
It is the combination of the integration symbol

∫
with the infinitesimal quantity d x that makes

sense as a limit, in which N grows above any number however large, d x (and hence the area of
each rectangle) shrinks below any (positive) number however small, while the sum of the areas
tends toward a well-defined, finite number.

4

Differential calculus: a very brief introduction

Another method by which we can obtain a well-defined, finite number from infinitesimal quan-
tities is to divide one such quantity by another.

We shall assume throughout that we are dealing with well-behaved functions, which means that
you can plot the graph of such a function without lifting up your pencil, and you can do the
same with each of the function’s derivatives. So what is a function, and what is the derivative of
a function?

A function f (x) is a machine with an input and an output. Insert a number x and out pops the
number f (x). Rather confusingly, we sometimes think of f (x) not as a machine that churns out
numbers but as the number churned out when x is inserted.

Abb. 67

The (first) derivative f ′(x) of f (x) is a function that tells us how much f (x) increases as x in-
creases (starting from a given value of x, say x0) in the limit in which both the increase ∆x in x
and the corresponding increase ∆ f = f (x +∆x)− f (x) in f (x) (which of course may be negative)
tend toward 0:

f ′(x0) = lim
∆x→0

∆ f

∆x
= d f

d x
(x0).

The above diagrams illustrate this limit. The ratio ∆ f /∆x is the slope of the straight line through
the black circles (that is, the tan of the angle between the positive x axis and the straight line,
measured counterclockwise from the positive x axis). As ∆x decreases, the black circle at x +∆x
slides along the graph of f (x) towards the black circle at x, and the slope of the straight line

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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through the circles increases. In the limit ∆x → 0, the straight line becomes a tangent on the
graph of f (x), touching it at x. The slope of the tangent on f (x) at x0 is what we mean by the
slope of f (x) at x0.

So the first derivative f ′(x) of f (x) is the function that equals the slope of f (x) for every x. To
differentiate a function f is to obtain its first derivative f ′. By differentiating f ′, we obtain the

second derivative f ′′ = d 2 f
d x2 of f , by differentiating f ′′ we obtain the third derivative f ′′′ = d 3 f

d x3 ,
and so on.

It is readily shown that if a is a number and f and g are functions of x, then

d(a f )

d x
= a

d f

d x

and
d( f + g )

d x
= d f

d x
+ d g

d x
.

A slightly more difficult problem is to differentiate the product e = f g of two functions of x.
Think of f and g as the vertical and horizontal sides of a rectangle of area e. As x increases by∆x,
the product f g increases by the sum of the areas of the three white rectangles in this diagram:

Abb. 68

In other "words",

∆e = f (∆g )+ (∆ f )g + (∆ f )(∆g )

and thus
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∆e

∆x
= f

∆g

∆x
+ ∆ f

∆x
g + ∆ f ∆g

∆x
.

If we now take the limit in which∆x and, hence,∆ f and∆g tend toward 0, the first two terms on
the right-hand side tend toward f g ′+ f ′g . What about the third term? Because it is the product of
an expression (either ∆ f or ∆g ) that tends toward 0 and an expression (either ∆g /∆x or ∆ f /∆x)
that tends toward a finite number, it tends toward 0. The bottom line:

e ′ = ( f g )′ = f g ′+ f ′g .

This is readily generalized to products of n functions. Here is a special case:

( f n)′ = f n−1 f ′+ f n−2 f ′ f + f n−3 f ′ f 2 +·· ·+ f ′ f n−1 = n f n−1 f ′.

Observe that there are n equal terms between the two equal signs. If the function f returns
whatever you insert, this boils down to

(xn)′ = n xn−1.

Now suppose that g is a function of f and f is a function of x. An increase in x by ∆x causes

an increase in f by ∆ f ≈ d f
d x∆x, and this in turn causes an increase in g by ∆g ≈ d g

d f ∆ f . Thus
∆g
∆x ≈ d g

d f
d f
d x . In the limit ∆x → 0 the ≈ becomes a = :

d g

d x
= d g

d f

d f

d x
.

We obtained (xn)′ = n xn−1 for integers n ≥ 2. Obviously it also holds for n = 0 and n = 1.

1. Show that it also holds for negative integers n. Hint: Use the product rule to calculate
(xn x−n)′.

2. Show that (
p

x)′ = 1/(2
p

x). Hint: Use the product rule to calculate (
p

x
p

x)′.
3. Show that (xn)′ = n xn−1 also holds for n = 1/m where m is a natural number.
4. Show that this equation also holds if n is a rational number. Use d g

d x = d g
d f

d f
d x .

Since every real number is the limit of a sequence of rational numbers, we may now confidently
proceed on the assumption that (xn)′ = n xn−1 holds for all real numbers n.

5

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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Taylor series

A well-behaved function can be expanded into a power series. This means that for all non-
negative integers k there are real numbers ak such that

f (x) =
∞∑

k=0
ak xk = a0 +a1x +a2x2 +a3x3 +a4x4 +·· ·

Let us calculate the first four derivatives using (xn)′ = n xn−1:

f ′(x) = a1 +2 a2x +3 a3x2 +4 a4x3 +5 a5x4 +·· ·

f ′′(x) = 2 a2 +2 ·3 a3x +3 ·4 a4x2 +4 ·5 a5x3 +·· ·

f ′′′(x) = 2 ·3 a3 +2 ·3 ·4 a4x +3 ·4 ·5 a5x2 +·· ·

f ′′′′(x) = 2 ·3 ·4 a4 +2 ·3 ·4 ·5 a5x +·· ·

Setting x equal to zero, we obtain

f (0) = a0, f ′(0) = a1, f ′′(0) = 2 a2, f ′′′(0) = 2×3 a3, f ′′′′(0) = 2×3×4 a4.

Let us write f (n)(x) for the n-th derivative of f (x). We also write f (0)(x) = f (x) — think of f (x)
as the "zeroth derivative" of f (x). We thus arrive at the general result f (k)(0) = k ! ak , where the
factorial k ! is defined as equal to 1 for k = 0 and k = 1 and as the product of all natural numbers
n ≤ k for k > 1. Expressing the coefficients ak in terms of the derivatives of f (x) at x = 0, we
obtain

f (x) =∑∞
k=0

f (k)(0)
k ! xk = f (0)+ f ′(0)x + f ′′(0) x2

2! + f ′′′(0) x3

3! +·· ·

This is the Taylor series for f (x).

A remarkable result: if you know the value of a well-behaved function f (x) and the values of all of
its derivatives at the single point x = 0 then you know f (x) at all points x. Besides, there is nothing
special about x = 0, so f (x) is also determined by its value and the values of its derivatives at any
other point x0:

f (x) =∑∞
k=0

f (k)(x0)
k ! (x −x0)k .

6
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The exponential function

We define the function exp(x) by requiring that

exp′(x) = exp(x)

and
exp(0) = 1.

The value of this function is everywhere equal to its slope. Differentiating the first defining equa-
tion repeatedly we find that

exp(n)(x) = exp(n−1)(x) = ·· · = exp(x).

The second defining equation now tells us that exp(k)(0) = 1 for all k. The result is a particularly
simple Taylor series:

exp(x) =∑∞
k=0

xk

k ! = 1+x + x2

2 + x3

6 + x4

24 +·· ·

Let us check that a well-behaved function satisfies the equation

f (a) f (b) = f (a +b)

if and only if

f (i+k)(0) = f (i )(0) f (k)(0).

We will do this by expanding the f ’s in powers of a and b and compare coefficents. We have

f (a) f (b) =
∞∑

i=0

∞∑
k=0

f (i )(0) f (k)(0)

i !k !
ai bk ,

and using the binomial expansion

(a +b)i =
i∑

l=0

i !

(i − l )! l !
ai−l bl ,

we also have that

f (a +b) =
∞∑

i=0

f (i )(0)

i !
(a +b)i =

∞∑
i=0

i∑
l=0

f (i )(0)

(i − l )! l !
ai−l bl =

∞∑
i=0

∞∑
k=0

f (i+k)(0)

i !k !
ai bk .
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Voilà.

The function exp(x) obviously satisfies f (i+k)(0) = f (i )(0) f (k)(0) and hence f (a) f (b) = f (a +b).

So does the function f (x) = exp(ux).

Moreover, f (i+k)(0) = f (i )(0) f (k)(0) implies f (n)(0) = [ f ′(0)]n .

We gather from this

• that the functions satisfying f (a) f (b) = f (a +b) form a one-parameter family, the parameter
being the real number f ′(0), and

• that the one-parameter family of functions exp(ux) satisfies f (a) f (b) = f (a+b), the parameter
being the real number u.

But f (x) = v x also defines a one-parameter family of functions that satisfies f (a) f (b) = f (a+b),
the parameter being the positive number v.

Conclusion: for every real number u there is a positive number v (and vice versa) such that
v x = exp(ux).

One of the most important numbers is e, defined as the number v for which u = 1, that is: ex =
exp(x):

e = exp(1) =
∞∑

n=0

1

n!
= 1+1+ 1

2
+ 1

6
+·· · = 2.7182818284590452353602874713526. . .

The natural logarithm ln(x) is defined as the inverse of exp(x), so exp[ln(x)] = ln[exp(x)] = x.
Show that

d ln f (x)

d x
= 1

f (x)

d f

d x
.

Hint: differentiate exp{ln[ f (x)]}.

7

The indefinite integral

How do we add up infinitely many infinitesimal areas? This is elementary if we know a function
F (x) of which f (x) is the first derivative. If f (x) = dF

d x then dF (x) = f (x)d x and

∫ b

a
f (x)d x =

∫ b

a
dF (x) = F (b)−F (a).

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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All we have to do is to add up the infinitesimal amounts dF by which F (x) increases as x increases
from a to b, and this is simply the difference between F (b) and F (a).

A function F (x) of which f (x) is the first derivative is called an integral or antiderivative of f (x).
Because the integral of f (x) is determined only up to a constant, it is also known as indefinite
integral of f (x). Note that wherever f (x) is negative, the area between its graph and the x axis
counts as negative.

How do we calculate the integral I = ∫ b
a d x f (x) if we don’t know any antiderivative of the inte-

grand f (x)? Generally we look up a table of integrals. Doing it ourselves calls for a significant
amount of skill. As an illustration, let us do the Gaussian integral

I =
∫ +∞

−∞
d x e−x2/2.

For this integral someone has discovered the following trick. (The trouble is that different inte-
grals generally require different tricks.) Start with the square of I :

I 2 =
∫ +∞

−∞
d x e−x2/2

∫ +∞

−∞
d y e−y2/2 =

∫ +∞

−∞

∫ +∞

−∞
d x d y e−(x2+y2)/2.

This is an integral over the x−y plane. Instead of dividing this plane into infinitesimal rectangles
d x d y, we may divide it into concentric rings of radius r and infinitesimal width dr. Since the
area of such a ring is 2πr dr, we have that

I 2 = 2π
∫ +∞

0
dr r e−r 2/2.

Now there is only one integration to be done. Next we make use of the fact that d r 2

dr = 2r, hence
dr r = d(r 2/2), and we introduce the variable w = r 2/2:

I 2 = 2π
∫ +∞

0
d

(
r 2/2

)
e−r 2/2 = 2π

∫ +∞

0
d w e−w .

Since we know that the antiderivative of e−w is −e−w , we also know that

∫ +∞

0
d w e−w = (−e−∞)− (−e−0) = 0+1 = 1.

Therefore I 2 = 2π and

∫ +∞

−∞
d x e−x2/2 =p

2π.

Believe it or not, a significant fraction of the literature in theoretical physics concerns variations
and elaborations of this basic Gaussian integral.

One variation is obtained by substituting
p

a x for x:
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∫ +∞

−∞
d x e−ax2/2 =

p
2π/a.

Another variation is obtained by thinking of both sides of this equation as functions of a and
differentiating them with respect to a. The result is

∫ +∞

−∞
d x e−ax2/2x2 =

√
2π/a3.

8

Sine and cosine

We define the function cos(x) by requiring that

cos′′(x) =−cos(x), cos(0) = 1

and
cos′(0) = 0.

If you sketch the graph of this function using only this information, you will notice that wherever
cos(x) is positive, its slope decreases as x increases (that is, its graph curves downward), and
wherever cos(x) is negative, its slope increases as x increases (that is, its graph curves upward).

Differentiating the first defining equation repeatedly yields

cos(n+2)(x) =−cos(n)(x)

for all natural numbers n. Using the remaining defining equations, we find that cos(k)(0) equals 1
for k = 0,4,8,12. . . , –1 for k = 2,6,10,14. . . , and 0 for odd k. This leads to the following Taylor series:

cos(x) =
∞∑

n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+ x4

4!
− x6

6!
+ . . . .

The function sin(x) is similarly defined by requiring that

sin′′(x) =−sin(x), sin(0) = 0, and sin′(0) = 1.

This leads to the Taylor series

sin(x) =
∞∑

n=0

(−1)n x2n+1

(2n +1)!
= x − x3

3!
+ x5

5!
− x7

7!
+ . . . .

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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9

7.2.2 Complex numbers

The natural numbers10 are used for counting. By subtracting natural numbers from natural
numbers, we can create integers11 that are not natural numbers. By dividing integers by in-
tegers (other than zero) we can create rational numbers12 that are not integers. By taking the
square roots of positive rational numbers we can create real numbers13 that are IRRATIONAL14.
And by taking the square roots of negative numbers we can create complex numbers15 that are
IMAGINARY16.

Any imaginary number is a real number multiplied by the positive square root of −1, for which
we have the symbol i = +

p−1.

Every complex number z is the sum of a real number a (the real part17 of z) and an imaginary
number i b. Somewhat confusingly, the imaginary part18 of z is the real number b.

Because real numbers can be visualized as points on a line, they are also referred to as (or thought
of as constituting) the REAL LINE19. Because complex numbers can be visualized as points in a
plane, they are also referred to as (or thought of as constituting) the COMPLEX PLANE20. This
plane contains two axes, one horizontal (the real axis constituted by the real numbers) and one
vertical (the imaginary axis constituted by the imaginary numbers).

Do not be mislead by the whimsical tags "real" and "imaginary". No number is real in the sense
in which, say, apples are real. The real numbers are no less imaginary in the ordinary sense
than the imaginary numbers, and the imaginary numbers are no less real in the mathematical
sense than the real numbers. If you are not yet familiar with complex numbers, it is because you
don’t need them for counting or measuring. You need them for calculating the probabilities of
measurement outcomes.

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/NATURAL%20NUMBER
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGERS
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/RATIONAL%20NUMBER
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL%20NUMBER
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/IRRATIONAL%20NUMBER
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20NUMBER
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/IMAGINARY%20NUMBER
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL%20PART
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/IMAGINARY%20PART
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL%20LINE
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20PLANE
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Abb. 69

This diagram illustrates, among other things, the addition of complex numbers:

z1 + z2 = (a1 + i b1)+ (a2 + i b2) = (a1 +a2)+ i (b1 +b2).

As you can see, adding two complex numbers is done in the same way as ADDING TWO VECTORS21

(a,b) and (c,d) in a plane.

Instead of using rectangular coordinates specifying the real and imaginary parts of a complex
number, we may use polar coordinates specifying the absolute value or modulus r = |z| and the
complex argument or phase22 α, which is an angle measured in RADIANS23. Here is how these
coordinates are related:

a = r cosα, b = r sinα, r = +
√

a2 +b2,

(Remember PYTHAGORAS24?)

21 HTTP://EN.WIKIPEDIA.ORG/WIKI/VECTOR%20%28SPATIAL%29%23VECTOR%20ADDITION%
20AND%20SUBTRACTION

22 HTTP://MATHWORLD.WOLFRAM.COM/COMPLEXNUMBER.HTML
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/RADIAN
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHAGOREAN%20THEOREM
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α=



arctan( b
a ) if a > 0

arctan( b
a )+π if a < 0 and b ≥ 0

arctan( b
a )−π if a < 0 and b < 0

+π
2 if a = 0 and b > 0

−π
2 if a = 0 and b < 0

or α=
{
+arccos( a

r ) if b ≥ 0

−arccos( a
r ) if b < 0

All you need to know to be able to multiply complex numbers is that i 2 =−1:

z1z2 = (a1 + i b1)(a2 + i b2) = (a1a2 −b1b2)+ i (a1b2 +b1a2).

There is, however, an easier way to multiply complex numbers. Plugging the POWER SERIES25 (or
TAYLOR SERIES26) for cos and sin,

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1− x2

2!
+ x4

4!
− x6

6!
+·· ·

sin x =
∞∑

k=0

(−1)k

(2k +1)!
x2k+1 = x − x3

3!
+ x5

5!
− x7

7!
+ . . . ,

into the expression cosα+ i sinα and rearranging terms, we obtain

∞∑
k=0

(i x)k

k !
= 1+ i x + (i x)2

2!
+ (i x)3

3!
+ (i x)4

4!
+ (i x)5

5!
+ (i x)6

6!
+ (i x)7

7!
+·· ·

But this is the power/Taylor series for the EXPONENTIAL FUNCTION27 e y with y = i x! Hence EU-
LER’S FORMULA28

e iα = cosα+ i sinα,

and this reduces multiplying two complex numbers to multiplying their absolute values and
adding their phases:

(z1) (z2) = r1e iα1 r2e iα2 = (r1r2)e i (α1+α2).

An extremely useful definition is the COMPLEX CONJUGATE29 z∗ = a − i b of z = a + i b. Among
other things, it allows us to calculate the absolute square |z|2 by calculating the product

25 HTTP://EN.WIKIPEDIA.ORG/WIKI/POWER%20SERIES
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/TAYLOR%20SERIES
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXPONENTIAL%20FUNCTION
28 HTTP://EN.WIKIPEDIA.ORG/WIKI/EULER%27S%20FORMULA
29 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20CONJUGATE
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zz∗ = (a + i b)(a − i b) = a2 +b2.

1. Show that

cos x = e i x +e−i x

2
and sin x = e i x −e−i x

2i
.

2. Arguably the five most important numbers are 0,1, i ,π,e. Write down an equation containing
each of these numbers just once. (ANSWER?)30

31

7.2.3 Vectors (spatial)

A vector32 is a quantity that has both a magnitude and a direction. Vectors can be visualized as
arrows. The following figure shows what we mean by the components (ax , ay , az ) of a vector a.

Abb. 70

The sum a+b of two vectors has the components (ax +bx , ay +by , az +bz ).

30 HTTP://EN.WIKIPEDIA.ORG/WIKI/EULER%27S%20IDENTITY
31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
32 HTTP://EN.WIKIPEDIA.ORG/WIKI/VECTOR%20%28SPATIAL%29
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• Explain the addition of vectors in terms of arrows.

The dot product33 of two vectors is the number

a ·b = ax bx +ay by +az bz .

Its importance arises from the fact that it is invariant under ROTATIONS34. To see this, we calcu-
late

(a+b) · (a+b) = (ax +bx )2 + (ay +by )2 + (az +bz )2 =

a2
x +a2

y +a2
z +b2

x +b2
y +b2

z +2(ax bx +ay by +az bz ) = a ·a+b ·b+2a ·b.

According to PYTHAGORAS35, the magnitude of a is a =
√

a2
x +a2

y +a2
z . If we use a different co-

ordinate system, the components of a will be different: (ax , ay , az ) → (a′
x , a′

y , a′
z ). But if the new

system of axes differs only by a rotation and/or TRANSLATION36 of the axes, the magnitude of a
will remain the same:

√
a2

x +a2
y +a2

z =
√

(a′
x )2 + (a′

y )2 + (a′
z )2.

The squared magnitudes a · a, b · b, and (a + b) · (a + b) are invariant under rotations, and so,
therefore, is the product a ·b.

• Show that the dot product is also invariant under translations.

Since by a scalar we mean a number that is invariant under certain transformations (in this case
rotations and/or translations of the coordinate axes), the dot product is also known as (a) scalar
product. Let us prove that

a ·b = ab cosθ,

where θ is the angle between a and b. To do so, we pick a coordinate system F in which a =
(a,0,0). In this coordinate system a ·b = abx with bx = b cosθ. Since a ·b is a scalar, and since
scalars are invariant under rotations and translations, the result a ·b = ab cosθ (which makes no
reference to any particular frame) holds in all frames that are rotated and/or translated relative
to F .

We now introduce the unit vectors x̂, ŷ, ẑ, whose directions are defined by the coordinate axes.
They are said to form an orthonormal basis. Ortho because they are mutually orthogonal:

33 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOT%20PRODUCT
34 HTTP://EN.WIKIPEDIA.ORG/WIKI/ROTATION%20%28MATHEMATICS%29
35 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHAGOREAN%20THEOREM
36 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRANSLATION%20%28GEOMETRY%29
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x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0.

Normal because they are unit vectors:

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1.

And basis because every vector v can be written as a linear combination37 of these three vec-
tors — that is, a sum in which each basis vector appears once, multiplied by the corresponding
component of v (which may be 0):

v = vx x̂+ vy ŷ+ vz ẑ.

It is readily seen that vx = x̂ ·v, vy = ŷ ·v, vz = ẑ ·v, which is why we have that

v = x̂ (x̂ ·v)+ ŷ (ŷ ·v)+ ẑ (ẑ ·v).

Another definition that is useful (albeit only in a 3-dimensional space) is the cross product38 of
two vectors:

a×b = (ay bz −az by ) x̂+ (az bx −ax bz ) ŷ+ (ax by −ay bx ) ẑ.

• Show that the cross product is antisymmetric: a×b =−b×a.

As a consequence, a×a = 0.

• Show that a · (a×b) = b · (a×b) = 0.

Thus a×b is perpendicular to both a and b.

• Show that the magnitude of a×b equals ab sinα, where α is the angle between a and b. Hint:
use a coordinate system in which a = (a,0,0) and b = (b cosα,b sinα,0).

Since ab sinα is also the area A of the parallelogram P spanned by a and b, we can think of a×b
as a vector of magnitude A perpendicular to P. Since the cross product yields a vector, it is also
known as vector product.

(We save ourselves the trouble of showing that the cross product is invariant under translations
and rotations of the coordinate axes, as is required of a vector. Let us however note in passing
that if a and b are polar vectors, then a×b is an axial vector. Under a reflection (for instance,
the inversion of a coordinate axis) an ordinary (or polar) vector is invariant, whereas an axial
vector39 changes its sign.)

Here is a useful relation involving both scalar and vector products:

37 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINEAR%20COMBINATION
38 HTTP://EN.WIKIPEDIA.ORG/WIKI/CROSS%20PRODUCT
39 HTTP://EN.WIKIPEDIA.ORG/WIKI/PSEUDOVECTOR
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a× (b×c) = b(c ·a)− (a ·b)c.

40

7.2.4 Fields

As you will remember, a function is a machine that accepts a number and returns a number.
A field is a function that accepts the three coordinates of a point or the four coordinates of a
spacetime point and returns a scalar, a vector, or a tensor (either of the spatial variety or of the
4-dimensional spacetime variety).

Gradient

Imagine a curve C in 3-dimensional space. If we label the points of this curve by some parame-
ter λ, then C can be represented by a 3-vector function r(λ). We are interested in how much the
value of a scalar field f (x, y, z) changes as we go from a point r(λ) of C to the point r(λ+dλ) of C .
By how much f changes will depend on how much the coordinates (x, y, z) of r change, which
are themselves functions of λ. The changes in the coordinates are evidently given by

(∗) d x = d x

dλ
dλ, d y = d y

dλ
dλ, d z = d z

dλ
dλ,

while the change in f is a compound of three changes, one due to the change in x, one due to
the change in y, and one due to the change in z:

(∗∗) d f = d f

d x
d x + d f

d y
d y + d f

d z
d z.

The first term tells us by how much f changes as we go from (x, y, z) to (x+d x, y, z), the second
tells us by how much f changes as we go from (x, y, z) to (x, y+d y, z), and the third tells us by
how much f changes as we go from (x, y, z) to (x, y, z+d z).

Shouldn’t we add the changes in f that occur as we go first from (x, y, z) to (x+d x, y, z), then from
(x+d x, y, z) to (x+d x, y+d y, z), and then from (x+d x, y+d y, z) to (x+d x, y+d y, z+d z)? Let’s cal-
culate.

∂ f (x+d x, y, z)

∂y
=
∂
[

f (x, y, z)+ ∂ f
∂x d x

]
∂y

= ∂ f (x, y, z)

∂y
+ ∂2 f

∂y ∂x
d x.

If we take the limit d x → 0 (as we mean to whenever we use d x), the last term vanishes. Hence
we may as well use ∂ f (x,y,z)

∂y in place of ∂ f (x+d x,y,z)
∂y . Plugging (*) into (**), we obtain

40 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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d f =
(
∂ f

∂x

d x

dλ
+ ∂ f

∂y

d y

dλ
+ ∂ f

∂z

d z

dλ

)
dλ.

Think of the expression in brackets as the dot product of two vectors:

• the gradient ∂ f
∂r of the scalar field f , which is a vector field with components ∂ f

∂x , ∂ f
∂y , ∂ f

∂z ,

• the vector dr
dλ , which is tangent on C .

If we think of λ as the time at which an object moving along C is at r(λ), then the magnitude of
dr
dλ is this object’s speed.

∂
∂r is a differential operator that accepts a function f (r) and returns its gradient ∂ f

∂r .

The gradient of f is another input-output device: pop in dr, and get the difference

∂ f

∂r
·dr = d f = f (r+dr)− f (r).

The differential operator ∂
∂r is also used in conjunction with the dot and cross products.

Curl

The curl of a vector field A is defined by

curlA = ∂

∂r
×A =

(
∂Az

∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax

∂z
− ∂Az

∂x

)
ŷ+

(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ.

To see what this definition is good for, let us calculate the integral
∮

A ·dr over a closed curve C .
(An integral over a curve is called a line integral, and if the curve is closed it is called a loop
integral.) This integral is called the circulation of A along C (or around the surface enclosed
by C ). Let’s start with the boundary of an infinitesimal rectangle with corners A = (0,0,0), B =
(0,d y,0), C = (0,d y,d z), and D = (0,0,d z).
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Abb. 71

The contributions from the four sides are, respectively,

• AB : Ay (0,d y/2,0)d y,

• BC : Az (0,d y,d z/2)d z =
[

Az (0,0,d z/2)+ ∂Az
∂y d y

]
d z,

• C D : −Ay (0,d y/2,d z)d y =−
[

Ay (0,d y/2,0)+ ∂Ay

∂z d z
]

d y,

• D A : −Az (0,0,d z/2)d z.

These add up to

(∗∗∗)

[
∂Az

∂y
− ∂Ay

∂z

]
d y d z = (curlA)x d y d z.
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Abb. 72

Let us represent this infinitesimal rectangle of area d y d z (lying in the y-z plane) by a vector dΣ
whose magnitude equals dΣ = d y d z, and which is perpendicular to the rectangle. (There are
two possible directions. The right-hand rule illustrated on the right indicates how the direction
of dΣ is related to the direction of circulation.) This allows us to write (***) as a scalar (product)
curlA ·dΣ. Being a scalar, it it is invariant under rotations either of the coordinate axes or of the
infinitesimal rectangle. Hence if we cover a surface Σ with infinitesimal rectangles and add up
their circulations, we get

∫
Σ curlA ·dΣ.

Observe that the common sides of all neighboring rectangles are integrated over twice in oppo-
site directions. Their contributions cancel out and only the contributions from the boundary ∂Σ
of Σ survive.

The bottom line:
∮
∂ΣA ·dr = ∫

Σ curlA ·dΣ.
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Abb. 73

This is Stokes’ theorem. Note that the left-hand side depends solely on the boundary ∂Σ of Σ. So,
therefore, does the right-hand side. The value of the surface integral of the curl of a vector field
depends solely on the values of the vector field at the boundary of the surface integrated over.

If the vector field A is the gradient of a scalar field f , and if C is a curve from A to b, then

∫
C

A ·dr =
∫
C

d f = f (b)− f (A).

The line integral of a gradient thus is the same for all curves having identical end points. If b = A
then C is a loop and

∫
C A ·dr vanishes. By Stokes’ theorem it follows that the curl of a gradient

vanishes identically:

∫
Σ

(
curl

∂ f

∂r

)
·dΣ=

∮
∂Σ

∂ f

∂r
·dr = 0.

Divergence

The divergence of a vector field A is defined by

divA = ∂

∂r
·A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
.

To see what this definition is good for, consider an infinitesimal volume element d 3r with sides
d x,d y,d z. Let us calculate the net (outward) flux of a vector field A through the surface of d 3r.
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There are three pairs of opposite sides. The net flux through the surfaces perpendicular to the
x axis is

Ax (x +d x, y, z)d y d z − Ax (x, y, z)d y d z = ∂Ax

∂x
d x d y d z.

It is obvious what the net flux through the remaining surfaces will be. The net flux of A out of d 3r
thus equals

[
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

]
d x d y d z = divAd 3r.

If we fill up a region R with infinitesimal parallelepipeds and add up their net outward fluxes,
we get

∫
R divAd 3r. Observe that the common sides of all neighboring parallelepipeds are inte-

grated over twice with opposite signs — the flux out of one equals the flux into the other. Hence
their contributions cancel out and only the contributions from the surface ∂R of R survive. The
bottom line:

∫
∂R

A ·dΣ=
∫

R
divAd 3r.

This is Gauss’ law. Note that the left-hand side depends solely on the boundary ∂R of R. So,
therefore, does the right-hand side. The value of the volume integral of the divergence of a vector
field depends solely on the values of the vector field at the boundary of the region integrated over.

If Σ is a closed surface — and thus the boundary ∂R or a region of space R — then Σ itself has no
boundary (symbolically, ∂Σ= 0). Combining Stokes’ theorem with Gauss’ law we have that

∮
∂∂R

A ·dr =
∫
∂R

curlA ·dΣ=
∫

R
div curlAd 3r.

The left-hand side is an integral over the boundary of a boundary. But a boundary has no bound-
ary! The boundary of a boundary is zero: ∂∂= 0. It follows, in particular, that the right-hand side
is zero. Thus not only the curl of a gradient but also the divergence of a curl vanishes identically:

∂

∂r
× ∂ f

∂r
= 0,

∂

∂r
· ∂
∂r

×A = 0.

Some useful identities

dr×
(
∂

∂r
×A

)
∂

∂r
(A ·dr)−

(
dr · ∂

∂r

)
A

∂

∂r
×

(
∂

∂r
×A

)
= ∂

∂r

(
∂

∂r
·A

)
−

(
∂

∂r
· ∂
∂r

)
A.
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41

7.3 The ABCs of relativity

See also the Wikibook SPECIAL RELATIVITY42 that contains an in-depth text on this subject.

7.3.1 The principle of relativity

If we use an inertial system43 (a.k.a. inertial coordinate system, inertial frame of reference, or in-
ertial reference frame), then the components x, y, z of the position of any freely moving classical
object ("point mass") change by equal amounts ∆x,∆y,∆z in equal time intervals ∆t . Evidently,
if F1 is an inertial frame then so is a reference frame F2 that is, relative to F1,

1. shifted ("translated") in space by any distance and/or in any direction,
2. translated in time by any interval,
3. rotated by any angle about any axis, and/or
4. moving with any constant velocity.

The principle of relativity states that all inertial systems are "created equal": the laws of physics
are the same as long as they are formulated with respect to an inertial frame — no matter which.
(Describing the same physical event or state of affairs using different inertial systems is like say-
ing the same thing in different languages.) The first three items tell us that one inertial frame is
as good as any other frame as long as the other frame differs by a shift of the coordinate origin in
space and/or time and/or by a rotation of the spatial coordinate axes. What matters in physics
are relative positions (the positions of objects relative to each other), relative times (the times
of events relative to each other), and relative orientations (the orientations of objects relative to
each other), inasmuch as these are unaffected by translations in space and/or time and by rota-
tions of the spatial axes. In the physical world, there are no absolute positions, absolute times,
or absolute orientations.

The fourth item tells us, in addition, that one inertial frame is as good as any other frame as long
as the two frames move with a constant velocity relative to each other. What matters are relative
velocities (the velocities of objects relative to each other), inasmuch as these are unaffected by
a coordinate boost — the switch from an inertial frame F to a frame moving with a constant
velocity relative to F . In the physical world, there are no absolute velocities and, in particular,
there is no absolute rest.

It stands to reason. For one thing, positions are properties of objects, not things that exist even
when they are not "occupied" or possessed. For another, the positions of objects are defined
relative to the positions of other objects. In a universe containing a single object, there is no
position that one could attribute to that object. By the same token, all physically meaningful
times are the times of physical events, and they too are relatively defined, as the times between
events. In a universe containing a single event, there is not time that one could attribute to that
event. But if positions and times are relatively defined, then so are velocities.

41 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
42 HTTP://EN.WIKIBOOKS.ORG/WIKI/SPECIAL%20RELATIVITY
43 HTTP://EN.WIKIPEDIA.ORG/WIKI/INERTIAL%20FRAME%20OF%20REFERENCE
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That there is no such thing as absolute rest has not always been as obvious as it should have
been. Two ideas were responsible for the erroneous notion that there is a special class of inertial
frames defining "rest" in an absolute sense: the idea that electromagnetic effects are transmitted
by waves, and the idea that these waves require a physical medium (dubbed "ether") for their
propagation. If there were such a medium, one could define absolute rest as equivalent to being
at rest with respect to it.

44

7.3.2 Lorentz transformations (general form)

We want to express the coordinates t and r = (x, y, z) of an inertial frame F1 in terms of the
coordinates t ′ and r′ = (x ′, y ′, z ′) of another inertial frame F2. We will assume that the two frames
meet the following conditions:

1. their spacetime coordinate origins coincide (t ′=0,r′=0 mark the same spacetime location
as t=0,r=0),

2. their space axes are parallel, and
3. F2 moves with a constant velocity w relative to F1.

What we know at this point is that whatever moves with a constant velocity in F1 will do so in F2.
It follows that the transformation t ,r → t ′,r′ maps straight lines in F1 onto straight lines in F2.
Coordinate lines of F1, in particular, will be mapped onto straight lines in F2. This tells us that
the dashed coordinates are linear combinations of the undashed ones,

t ′ = A t +B · r, r′ =C r+ (D · r)w+ t .

We also know that the transformation from F1 to F2 can only depend on w, so A, B, C , D, and

ar e f uncti onso f

w.Our t aski sto f i nd these f uncti ons.T her eal−valued f uncti onsAand Cactual l ycandependonl yonw=|w|=_-
+
p

w ·w, so A = a(w) and C = c(w). A vector function depending only on w must be parallel (or
antiparallel) to w, and its magnitude must be a function of w. We can therefore write B = b(w)w,
D = [d(w)/w2]w, and = e(w)w. (It will become clear in a moment why the factor w−2 is included
in the definition of D.) So,

t ′ = a(w) t +b(w)w · r, r′ = c(w)r+d(w)
w · r

w2 w+e(w)w t .

Let’s set r equal to wt . This implies that r′ = (c+d +e)wt . As we are looking at the trajectory of an
object at rest in F2, r′ must be constant. Hence,

c +d +e = 0.

Let’s write down the inverse transformation. Since F1 moves with velocity −w relative to F2, it is

44 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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t = a(w) t ′−b(w)w · r′, r = c(w)r′+d(w)
w · r′

w2 w−e(w)w t ′.

To make life easier for us, we now chose the space axes so that w = (w,0,0). Then the above two
(mutually inverse) transformations simplify to

t ′ = at +bw x, x ′ = cx +d x +ew t , y ′ = c y, z ′ = cz,

t = at ′−bw x ′, x = cx ′+d x ′−ew t ′, y = c y ′, z = cz ′.

Plugging the first transformation into the second, we obtain

t = a(at +bw x)−bw(cx +d x +ew t ) = (a2 −bew2)t + (abw −bcw −bd w)x,

x = c(cx +d x +ew t )+d(cx +d x +ew t )−ew(at +bw x)

= (c2 +2cd +d 2 −bew2)x + (cew +dew −aew)t ,

y = c2 y,

z = c2z.

The first of these equations tells us that

a2 −bew2 = 1

and
abw −bcw −bd w = 0.

The second tells us that

c2 +2cd +d 2 −bew2 = 1

and
cew +dew −aew = 0.
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Combining abw −bcw −bd w = 0 with c +d + e = 0 (and taking into account that w 6= 0), we
obtain b(a +e) = 0.

Using c +d +e = 0 to eliminate d , we obtain e2 −bew2 = 1 and e(a +e) = 0.

Since the first of the last two equations implies that e 6= 0, we gather from the second that e =−a.

y = c2 y tells us that c2 = 1. c must, in fact, be equal to 1, since we have assumed that the space
axes of the two frames a parallel (rather than antiparallel).

With c = 1 and e =−a, c +d + e = 0 yields d = a −1. Upon solving e2 −bew2 = 1 for b, we are left
with expressions for b,c,d , and e depending solely on a:

b = 1−a2

aw2 , c = 1, d = a −1, e =−a.

Quite an improvement!

To find the remaining function a(w), we consider a third inertial frame F3, which moves with
velocity v = (v,0,0) relative to F2. Combining the transformation from F1 to F2,

t ′ = a(w) t + 1−a2(w)

a(w) w
x, x ′ = a(w) x −a(w) w t ,

with the transformation from F2 to F3,

t ′′ = a(v) t ′+ 1−a2(v)

a(v) v
x ′, x ′′ = a(v) x ′−a(v) v t ′,

we obtain the transformation from F1 to F3:

t ′′ = a(v)

[
a(w) t + 1−a2(w)

a(w) w
x

]
+ 1−a2(v)

a(v) v

[
a(w) x −a(w) w t

]

=
[

a(v) a(w)− 1−a2(v)

a(v) v
a(w) w

]
︸ ︷︷ ︸

?

t +
[

. . .
]

x,

x ′′ = a(v)
[

a(w) x −a(w) w t
]
−a(v) v

[
a(w) t + 1−a2(w)

a(w) w
x

]

=
[

a(v) a(w)−a(v) v
1−a2(w)

a(w) w

]
︸ ︷︷ ︸

??

x −
[

. . .
]

t .

The direct transformation from F1 to F3 must have the same form as the transformations from
F1 to F2 and from F2 to F3, namely
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t ′′ = a(u)︸︷︷︸
?

t + 1−a2(u)

a(u)u
x, x ′′ = a(u)︸︷︷︸

??

x −a(u)ut ,

where u is the speed of F3 relative to F1. Comparison of the coefficients marked with stars yields
two expressions for a(u), which of course must be equal:

a(v) a(w)− 1−a2(v)

a(v) v
a(w) w = a(v) a(w)−a(v) v

1−a2(w)

a(w) w
.

It follows that
[
1−a2(v)

]
a2(w)w2 = [

1−a2(w)
]

a2(v)v2, and this tells us that

K = 1−a2(w)

a2(w) w2 = 1−a2(v)

a2(v) v2

is a universal constant. Solving the first equality for a(w), we obtain

a(w) = 1/
√

1+K w2.

This allows us to cast the transformation

t ′ = at +bw x, x ′ = cx +d x +ew t , y ′ = c y, z ′ = cz,

into the form

t ′ = t +K w xp
1+K w2

, x ′ = x −w tp
1+K w2

, y ′ = y, z ′ = z.

Trumpets, please! We have managed to reduce five unknown functions to a single constant.

45

7.3.3 Composition of velocities

In fact, there are only three physically distinct possibilities. (If K 6= 0, the magnitude of K de-
pends on the choice of units, and this tells us something about us rather than anything about
the physical world.)

The possibility K = 0 yields the Galilean transformations of Newtonian ("non-relativistic") me-
chanics:

t ′ = t , r′ = r−wt , u = v +w, d s = d t .

45 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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(The common practice of calling theories with this transformation law "non-relativistic" is in-
appropriate, inasmuch as they too satisfy the principle of relativity.) In the remainder of this
section we assume that K 6= 0.

Suppose that object C moves with speed v relative to object B , and that this moves with speed w
relative to object A. If B and C move in the same direction, what is the speed u of C relative to A?
In the previous section we found that

a(u) = a(v) a(w)− 1−a2(v)

a(v) v
a(w) w,

and that

K = 1−a2(v)

a2(v) v2 .

This allows us to write

a(u) = a(v) a(w)− 1−a2(v)

a2(v) v2 a(v) v a(w) w = a(v) a(w)(1−K v w).

Expressing a in terms of K and the respective velocities, we obtain

1p
1+K u2

= 1−K v wp
1+K v2

p
1+K w2

,

which implies that

1+K u2 = (1+K v2)(1+K w2)

(1−K v w)2 .

We massage this into

K u2 = (1+K v2)(1+K w2)− (1−K v w)2

(1−K v w)2 = K (v +w)2

(1−K v w)2 ,

divide by K , and end up with:

u = v +w

1−K v w
.

Thus, unless K = 0, we don’t get the speed of C relative to A by simply adding the speed of C
relative to B to the speed of B relative to A.
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7.3.4 Proper time

Consider an infinitesimal segment dC of a spacetime path C . In F1 it has the components
(d t ,d x,d y,d z), in F2 it has the components (d t ′,d x ′,d y ′,d z ′). Using the Lorentz transforma-
tion in its general form,

t ′ = t +K w xp
1+K w2

, x ′ = x −w tp
1+K w2

, y ′ = y, z ′ = z,

it is readily shown that

(d t ′)2 +K dr′ ·dr′ = d t 2 +K dr ·dr.

We conclude that the expression

d s2 = d t 2 +K dr ·dr = d t 2 +K (d x2 +d y2 +d z2)

is invariant under this transformation. It is also invariant under rotations of the spatial axes
(why?) and translations of the spacetime coordinate origin. This makes d s a 4-scalar.

What is the physical significance of d s?

A clock that travels along dC is at rest in any frame in which dC lacks spatial components. In
such a frame, d s2 = d t 2. Hence d s is the time it takes to travel along dC as measured by a clock
that travels along dC . d s is the proper time (or proper duration) of dC . The proper time (or
proper duration) of a finite spacetime path C , accordingly, is

∫
C

d s =
∫
C

√
d t 2 +K dr ·dr =

∫
C

d t
√

1+K v2.

7.3.5 An invariant speed

If K < 0, then there is a universal constant c ≡ 1/
p−K with the dimension of a velocity, and we

can cast u = v +w/(1−K v w) into the form

u = v +w

1+ v w/c2 .

If we plug in v = w = c/2, then instead of the Galilean u = v +w = c, we have u = 4
5 c < c. More

intriguingly, if object O moves with speed c relative to F2, and if F2 moves with speed w relative
to F1, then O moves with the same speed c relative to F1: (w + c)/(1+wc/c2) = c. The speed of
light c thus is an invariant speed: whatever travels with it in one inertial frame, travels with the
same speed in every inertial frame.

Starting from
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d s2 = (d t ′)2 −dr′ ·dr′/c2 = d t 2 −dr ·dr/c2,

we arrive at the same conclusion: if O travels with c relative to F1, then it travels the distance
dr = c d t in the time d t . Therefore d s2 = d t 2 −dr 2/c2 = 0. But then (d t ′)2 − (dr ′)2/c2 = 0, and
this implies dr ′ = c d t ′. It follows that O travels with the same speed c relative to F2.

An invariant speed also exists if K = 0, but in this case it is infinite: whatever travels with infinite
speed in one inertial frame — it takes no time to get from one place to another — does so in every
inertial frame.

The existence of an invariant speed prevents objects from making U-turns in spacetime. If K =
0, it obviously takes an infinite amount of energy to reach v = ∞. Since an infinite amount of
energy isn’t at our disposal, we cannot start vertically in a spacetime diagram and then make a
U-turn (that is, we cannot reach, let alone "exceed", a horizontal slope. ("Exceeding" a horizontal
slope here means changing from a positive to a negative slope, or from going forward to going
backward in time.)

If K < 0, it takes an infinite amount of energy to reach even the finite speed of light. Imagine you
spent a finite amount of fuel accelerating from 0 to 0.1c. In the frame in which you are now at
rest, your speed is not a whit closer to the speed of light. And this remains true no matter how
many times you repeat the procedure. Thus no finite amount of energy can make you reach, let
alone "exceed", a slope equal to 1/c. ("Exceeding" a slope equal to 1/c means attaining a smaller
slope. As we will see, if we were to travel faster than light in any one frame, then there would be
frames in which we travel backward in time.)

46

7.3.6 The case against K > 0

In a hypothetical world with K > 0 we can define k ≡ 1/
p

K (a universal constant with the dimen-
sion of a velocity), and we can cast u = v +w/(1−K v w) into the form

u = v +w

1− v w/k2 .

If we plug in v = w = k/2, then instead of the Galilean u = v +w = k we have u = 4
3 k > k. Worse,

if we plug in v = w = k, we obtain u = ∞: if object O travels with speed k relative to F2, and
if F2 travels with speed k relative to F1 (in the same direction), then O travels with an infinite
speed relative to F1! And if O travels with 2k relative to F2 and F2 travels with 2k relative to F1,
O’s speed relative to F1 is negative: u =−4

3 k.

If we use units in which K = k = 1, then the invariant proper time associated with an infinitesimal
path segment is related to the segment’s inertial components via

d s2 = d t 2 +d x2 +d y2 +d z2.

46 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
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This is the 4-dimensional version of the 3-scalar d x2 +d y2 +d z2, which is invariant under rota-
tions in space. Hence if K is positive, the transformations between inertial systems are rotations
in spacetime. I guess you now see why in this hypothetical world the composition of two positive
speeds can be a negative speed.

Let us confirm this conclusion by deriving the composition theorem (for k=1) from the assump-
tion that the x ′ and t ′ axes are rotated relative to the x and t axes.

Abb. 74

The speed of an object O following the dotted line is w = cot(α+t a) relative to F ′, the speed of F ′

relative to F is v = tanα, and the speed of O relative to F is u = cotβ. Invoking the trigonometric
relation

tan(α+β) = tanα+ tanβ

1− tanα tanβ
,

we conclude that 1
w = v+1/u

1−v/u . Solving for u, we obtain u = v+w
1−v w .

How can we rule out the a priori possibility that K > 0? As shown in the body of the book, the
stability of matter — to be precise, the existence of stable objects that (i) have spatial extent (they
"occupy" space) and (ii) are composed of a finite number of objects that lack spatial extent (they
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don’t "occupy" space) — rests on the existence of relative positions that are (a) more or less fuzzy
and (b) independent of time. Such relative positions are described by probability distributions
that are (a) inhomogeneous in space and (b) homogeneous in time. Their objective existence thus
requires an objective difference between spactime’s temporal dimension and its spatial dimen-
sions. This rules out the possibility that K > 0.

How? If K < 0, and if we use natural units, in which c = 1, we have that

d s2 =+d t 2 −d x2 −d y2 −d z2.

As far as physics is concerned, the difference between the positive sign in front of d t and the
negative signs in front of d x, d y, and d z is the only objective difference between time and the
spatial dimensions of spacetime. If K were positive, not even this difference would exist.

7.3.7 The case against zero K

And what argues against the possibility that K = 0?

Recall the propagator for a free and stable particle:

〈B |A〉 =
∫

DC e−i bs[C ].

If K were to vanish, we would have d s2 = d t 2. There would be no difference between inertial
time and proper time, and every spacetime path leading from A to B would contribute the
same amplitude e−i b(tB−tA) to the propagator 〈B |A〉, which would be hopelessly divergent as a
result. Worse, 〈B |A〉 would be independent of the distance between A and B. To obtain well-
defined, finite probabilities, cancellations ("destructive interference") must occur, and this rules
out that K = 0.

7.3.8 The actual Lorentz transformations

In the real world, therefore, the Lorentz transformations take the form

t ′ = t −w x/c2

p
1−w2/c2

, x ′ = x −w tp
1−w2/c2

, y ′ = y, z ′ = z.

Let’s explore them diagrammatically, using natural units (c = 1). Setting t ′ = 0, we have t = w x.
This tells us that the slope of the x ′ axis relative to the undashed frame is w = tanα. Setting x ′ = 0,
we have t = x/w. This tells us that the slope of the t ′ axis is 1/w. The dashed axes are thus rotated
by the same angle in opposite directions; if the t ′ axis is rotated clockwise relative to the t axis,
then the x ′ axis is rotated counterclockwise relative to the x axis.
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Abb. 75

We arrive at the same conclusion if we think about the synchronization of clocks in motion. Con-
sider three clocks (1,2,3) that travel with the same speed w = tanα relative to F . To synchronize
them, we must send signals from one clock to another. What kind of signals? If we want our
synchronization procedure to be independent of the language we use (that is, independent of
the reference frame), then we must use signals that travel with the invariant speed c.

Here is how it’s done:
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Abb. 76

Light signals are sent from clock 2 (event A) and are reflected by clocks 1 and 3 (events B and C ,
respectively). The distances between the clocks are adjusted so that the reflected signals ar-
rive simultaneously at clock 2 (event D). This ensures that the distance between clocks 1 and 2
equals the distance between clocks 2 and 3, regardless of the inertial frame in which they are
compared. In F ′, where the clocks are at rest, the signals from A have traveled equal distances
when they reach the first and the third clock, respectively. Since they also have traveled with the
same speed c, they have traveled for equal times. Therefore the clocks must be synchronized so
that B and C are simultaneous. We may use the worldline of clock 1 as the t ′ axis and the straight
line through B and C as the x ′ axis. It is readily seen that the three angles t a in the above dia-
gram are equal. From this and the fact that the slope of the signal from B to D equals 1 (given
that c=1), the equality of the two angles α follows.

Simultaneity thus depends on the language — the inertial frame — that we use to describe a
physical situation. If two events E1,E2 are simultaneous in one frame, then there are frames in
which E1 hapens after E2 as well as frames in which E1 hapens before E2.

113



Appendix

Where do we place the unit points on the space and time axes? The unit point of the time axis
of F ′ has the coordinates t ′ = 1, x ′ = 0 and satisfies t 2 − x2 = 1, as we gather from the version
(t ′)2 − (x ′)2 = t 2 − x2 of (\ref{ds2}). The unit point of the x ′ axis has the coordinates t ′ = 0, x ′ = 1
and satisfies x2 − t 2 = 1. The loci of the unit points of the space and time axes are the hyperbolas
that are defined by these equations:

Abb. 77

47
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7.3.9 Lorentz contraction, time dilatation

Imagine a meter stick at rest in F ′. At the time t ′ = 0, its ends are situated at the points O and C .
At the time t = 0, they are situated at the points O and A, which are less than a meter apart. Now
imagine a stick (not a meter stick) at rest in F , whose end points at the time t ′ = 0 are O and C.
In F ′ they are a meter apart, but in the stick’s rest-frame they are at O and B and thus more than
a meter apart. The bottom line: a moving object is contracted (shortened) in the direction in
which it is moving.

Abb. 78

Next imagine two clocks, one (C ) at rest in F and located at x = 0, and one (C ′) at rest in F ′

and located at x ′ = 0. At D, C ′ indicates that one second has passed, while at E (which in F

is simultaneous with D), C indicates that more than a second has passed. On the other hand,
at F (which in F ′ is simultaneous with D), C indicates that less than a second has passed. The
bottom line: a moving clock runs slower than a clock at rest.

Example: Muons (µ particles) are created near the top of the atmosphere, some ten kilometers
up, when high-energy particles of cosmic origin hit the atmosphere. Since muons decay spon-
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taneously after an average lifetime of 2.2 microseconds, they don’t travel much farther than 600
meters. Yet many are found at sea level. How do they get that far?

The answer lies in the fact that most of them travel at close to the speed of light. While from its
own point of view (that is, relative to the inertial system in which it is at rest), a muon only lives
for about 2 microseconds, from our point of view (that is, relative to an inertial system in which it
travels close to the speed of light), it lives much longer and has enough time to reach the Earth’s
surface.

48

7.3.10 4-vectors

3-vectors are triplets of real numbers that transform under rotations like the coordinates x, y, z.
4-vectors are quadruplets of real numbers that transform under Lorentz transformations like the
coordinates of~x = (ct , x, y, z).

You will remember that the scalar product of two 3-vectors is invariant under rotations of the
(spatial) coordinate axes; after all, this is why we call it a scalar. Similarly, the scalar product of
two 4-vectors ~a = (at ,a) = (a0, a1, a2, a3) and~b = (bt ,b) = (b0,b1,b2,b3), defined by

(~a,~b) = a0b0 −a1b1 −a2b2 −a3b3,

is invariant under Lorentz transformations (as well as translations of the coordinate origin and
rotations of the spatial axes). To demonstrate this, we consider the sum of two 4-vectors~c =~a+~b
and calculate

(~c,~c) = (~a +~b,~a +~b) = (~a,~a)+ (~b,~b)+2(~a,~b).

The products (~a,~a), (~b,~b), and (~c,~c) are invariant 4-scalars. But if they are invariant under Lorentz
transformations, then so is the scalar product (~a,~b).

One important 4-vector, apart from ~x, is the 4-velocity ~u = d~x
d s , which is tangent on the world-

line~x(s). ~u is a 4-vector because~x is one and because d s is a scalar (to be precise, a 4-scalar).

The norm or "magnitude" of a 4-vector~a is defined as
√
|(~a,~a)|. It is readily shown that the norm

of ~u equals c (exercise!).

Thus if we use natural units, the 4-velocity is a unit vector.

49
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8 Creative Commons Attribution/Share-Alike
License 3.0

Creative Commons Deed This is a human-readable summary of the full license below. You are
free:

• to Share — to copy, distribute and transmit the work, and
• to Remix — to ADAPT1 the work

Under the following conditions:

• Attribution — You must ATTRIBUTE2 the work in the manner specified by the author or LICEN-
SOR3 (but not in any way that suggests that they endorse you or your use of the work.)

• Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same, similar or a compatible license.

With the understanding that:

• Waiver — Any of the above conditions can be WAIVED4 if you get permission from the copyright
holder.

• Other Rights — In no way are any of the following rights affected by the license:
• your FAIR DEALING5 or FAIR USE6 rights;
• the author’s MORAL RIGHTS7; and
• rights other persons may have either in the work itself or in how the work is used, such as

PUBLICITY8 or PRIVACY9 rights.
• Notice — For any reuse or distribution, you must make clear to others the license terms of this

work. The best way to do that is with a link to http://creativecommons.org/licenses/by-sa/3.0/

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/LITERARY%20ADAPTATION
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/ATTRIBUTION%20%28COPYRIGHT%29
3 HTTP://EN.WIKTIONARY.ORG/WIKI/LICENSOR
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/WAIVER
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/FAIR%20DEALING
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/FAIR%20USE
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/MORAL%20RIGHTS%20%28COPYRIGHT%20LAW%29
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/PERSONALITY%20RIGHTS
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRIVACY%20LAW
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9 License

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LE-
GAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BA-
SIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PRO-
VIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPY-
RIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHO-
RIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO
BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CON-
SIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE
IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

9.1 1. Definitions

<ol type="a">"Adaptation" means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or
other alterations of a literary or artistic work, or phonogram or performance and includes cin-
ematographic adaptations or any other form in which the Work may be recast, transformed, or
adapted including in any form recognizably derived from the original, except that a work that
constitutes a Collection will not be considered an Adaptation for the purpose of this License.
For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the
synchronization of the Work in timed-relation with a moving image ("synching") will be consid-
ered an Adaptation for the purpose of this License. "Collection" means a collection of literary or
artistic works, such as encyclopedias and anthologies, or performances, phonograms or broad-
casts, or other works or subject matter other than works listed in Section 1(f) below, which, by
reason of the selection and arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along with one or more other con-
tributions, each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be considered an
Adaptation (as defined below) for the purposes of this License. "Creative Commons Compatible
License" means a license that is listed at http://creativecommons.org/compatiblelicenses that
has been approved by Creative Commons as being essentially equivalent to this License, includ-
ing, at a minimum, because that license: (i) contains terms that have the same purpose, meaning
and effect as the License Elements of this License; and, (ii) explicitly permits the relicensing of
adaptations of works made available under that license under this License or a Creative Com-
mons jurisdiction license with the same License Elements as this License. "Distribute" means
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to make available to the public the original and copies of the Work or Adaptation, as appropriate,
through sale or other transfer of ownership. "License Elements" means the following high-level
license attributes as selected by Licensor and indicated in the title of this License: Attribution,
ShareAlike. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License. "Original Author" means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who created the Work or if no individual or
entity can be identified, the publisher; and in addition (i) in the case of a performance the ac-
tors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, in-
terpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case
of a phonogram the producer being the person or legal entity who first fixes the sounds of a per-
formance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits
the broadcast. "Work" means the literary and/or artistic work offered under the terms of this Li-
cense including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a book, pam-
phlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic
or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are assimilated works ex-
pressed by a process analogous to cinematography; a work of drawing, painting, architecture,
sculpture, engraving or lithography; a photographic work to which are assimilated works ex-
pressed by a process analogous to photography; a work of applied art; an illustration, map, plan,
sketch or three-dimensional work relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a
copyrightable work; or a work performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work. "You" means an individual or entity exercising
rights under this License who has not previously violated the terms of this License with respect to
the Work, or who has received express permission from the Licensor to exercise rights under this
License despite a previous violation. "Publicly Perform" means to perform public recitations of
the Work and to communicate to the public those public recitations, by any means or process,
including by wire or wireless means or public digital performances; to make available to the pub-
lic Works in such a way that members of the public may access these Works from a place and at
a place individually chosen by them; to perform the Work to the public by any means or process
and the communication to the public of the performances of the Work, including by public dig-
ital performance; to broadcast and rebroadcast the Work by any means including signs, sounds
or images. "Reproduce" means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing fixations of
the Work, including storage of a protected performance or phonogram in digital form or other
electronic medium.</ol>

9.2 2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or
rights arising from limitations or exceptions that are provided for in connection with the copy-
right protection under copyright law or other applicable laws.
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9.3 3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

<ol type="a">to Reproduce the Work, to incorporate the Work into one or more Collections, and
to Reproduce the Work as incorporated in the Collections; to create and Reproduce Adaptations
provided that any such Adaptation, including any translation in any medium, takes reasonable
steps to clearly label, demarcate or otherwise identify that changes were made to the origi-
nal Work. For example, a translation could be marked "The original work was translated from
English to Spanish," or a modification could indicate "The original work has been modified.";
to Distribute and Publicly Perform the Work including as incorporated in Collections; and, to
Distribute and Publicly Perform Adaptations. For the avoidance of doubt: <ol type="i">Non-
waivable Compulsory License Schemes. In those jurisdictions in which the right to collect roy-
alties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights granted
under this License; Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor waives the exclusive right to collect such royalties for any exercise by You of the
rights granted under this License; and, Voluntary License Schemes. The Licensor waives the
right to collect royalties, whether individually or, in the event that the Licensor is a member of a
collecting society that administers voluntary licensing schemes, via that society, from any exer-
cise by You of the rights granted under this License.</ol> </ol>

The above rights may be exercised in all media and formats whether now known or hereafter de-
vised. The above rights include the right to make such modifications as are technically necessary
to exercise the rights in other media and formats. Subject to Section 8(f), all rights not expressly
granted by Licensor are hereby reserved.

9.4 4. Restrictions

The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

<ol type="a">You may Distribute or Publicly Perform the Work only under the terms of this Li-
cense. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose
any terms on the Work that restrict the terms of this License or the ability of the recipient of the
Work to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the dis-
claimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You
Distribute or Publicly Perform the Work, You may not impose any effective technological mea-
sures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights
granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection apart from the Work itself
to be made subject to the terms of this License. If You create a Collection, upon notice from any
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Licensor You must, to the extent practicable, remove from the Collection any credit as required
by Section 4(c), as requested. If You create an Adaptation, upon notice from any Licensor You
must, to the extent practicable, remove from the Adaptation any credit as required by Section
4(c), as requested. You may Distribute or Publicly Perform an Adaptation only under the terms
of: (i) this License; (ii) a later version of this License with the same License Elements as this Li-
cense; (iii) a Creative Commons jurisdiction license (either this or a later license version) that
contains the same License Elements as this License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a
Creative Commons Compatible License. If you license the Adaptation under one of the licenses
mentioned in (iv), you must comply with the terms of that license. If you license the Adaptation
under the terms of any of the licenses mentioned in (i), (ii) or (iii) (the "Applicable License"), you
must comply with the terms of the Applicable License generally and the following provisions:
(I) You must include a copy of, or the URI for, the Applicable License with every copy of each
Adaptation You Distribute or Publicly Perform; (II) You may not offer or impose any terms on
the Adaptation that restrict the terms of the Applicable License or the ability of the recipient of
the Adaptation to exercise the rights granted to that recipient under the terms of the Applicable
License; (III) You must keep intact all notices that refer to the Applicable License and to the dis-
claimer of warranties with every copy of the Work as included in the Adaptation You Distribute
or Publicly Perform; (IV) when You Distribute or Publicly Perform the Adaptation, You may not
impose any effective technological measures on the Adaptation that restrict the ability of a recip-
ient of the Adaptation from You to exercise the rights granted to that recipient under the terms of
the Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a Collec-
tion, but this does not require the Collection apart from the Adaptation itself to be made subject
to the terms of the Applicable License. If You Distribute, or Publicly Perform the Work or any
Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a),
keep intact all copyright notices for the Work and provide, reasonable to the medium or means
You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied,
and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor
institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor’s copyright
notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the
title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the copyright notice
or licensing information for the Work; and (iv) , consistent with Ssection 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French translation of
the Work by Original Author," or "Screenplay based on original Work by Original Author"). The
credit required by this Section 4(c) may be implemented in any reasonable manner; provided,
however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if
a credit for all contributing authors of the Adaptation or Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the other contributing authors.
For the avoidance of doubt, You may only use the credit required by this Section for the purpose
of attribution in the manner set out above and, by exercising Your rights under this License, You
may not implicitly or explicitly assert or imply any connection with, sponsorship or endorse-
ment by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written permission of the Original Author,
Licensor and/or Attribution Parties. Except as otherwise agreed in writing by the Licensor or
as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Per-
form the Work either by itself or as part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to the Work which would be prejudi-
cial to the Original Author’s honor or reputation. Licensor agrees that in those jurisdictions (e.g.
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Japan), in which any exercise of the right granted in Section 3(b) of this License (the right to make
Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory
action prejudicial to the Original Author’s honor and reputation, the Licensor will waive or not
assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law,
to enable You to reasonably exercise Your right under Section 3(b) of this License (right to make
Adaptations) but not otherwise.</ol>

9.5 5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OF-
FERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PAR-
TICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DE-
FECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DIS-
COVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WAR-
RANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

9.6 6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE
LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL,
PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

9.7 7. Termination

<ol type="a">This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have received Adapta-
tions or Collections from You under this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with those licenses. Sections 1,
2, 5, 6, 7, and 8 will survive any termination of this License. Subject to the above terms and con-
ditions, the license granted here is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to release the Work under differ-
ent license terms or to stop distributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other license that has been, or is required
to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.</ol>
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9.8 8. Miscellaneous

<ol type="a">Each time You Distribute or Publicly Perform the Work or a Collection, the Licen-
sor offers to the recipient a license to the Work on the same terms and conditions as the license
granted to You under this License. Each time You Distribute or Publicly Perform an Adaptation,
Licensor offers to the recipient a license to the original Work on the same terms and conditions as
the license granted to You under this License. If any provision of this License is invalid or unen-
forceable under applicable law, it shall not affect the validity or enforceability of the remainder
of the terms of this License, and without further action by the parties to this agreement, such
provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable. No term or provision of this License shall be deemed waived and no breach con-
sented to unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent. This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no understandings, agreements or representa-
tions with respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be modi-
fied without the mutual written agreement of the Licensor and You. The rights granted under,
and the subject matter referenced, in this License were drafted utilizing the terminology of the
Berne Convention for the Protection of Literary and Artistic Works (as amended on September
28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Perfor-
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