
Python Programming

Wikibooks.org

June 9, 2012

This PDF was generated by a program written by Dirk Hünniger, which is freely available under an open source
license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf. The list of con-
tributors is included in chapter Contributors on page 143. The licenses GPL, LGPL and GFDL are included in
chapter Licenses on page 153, since this book and/or parts of it may or may not be licensed under one or more
of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 149. On the 28th of April 2012 the contents of the English as well as German Wikibooks and
Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An
URI to this license is given in the list of figures on page 149. If this document is a derived work from the con-
tents of one of these projects and the content was still licensed by the project under this license at the time of
derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section
4b of the license.

http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Overview 3

2 Getting Python 5
2.1 Python 2 vs Python 3 . 5
2.2 Installing Python in Windows . 5
2.3 Installing Python on Mac . 6
2.4 Installing Python on Unix environments . 6
2.5 Keeping Up to Date . 8

3 Interactive mode 9

4 Creating Python programs 11
4.1 Hello, World! . 11
4.2 Exercises . 13
4.3 Notes . 13

5 Basic syntax 15

6 Data types 19

7 Numbers 21

8 Strings 23
8.1 String manipulation . 23

9 Lists 33
9.1 About lists in Python . 33
9.2 List methods . 38
9.3 operators . 39

10 Dictionaries 41
10.1 About dictionaries in Python . 41

11 Sets 43

12 Operators 49
12.1 Basics . 49
12.2 Powers . 49
12.3 Division and Type Conversion . 49
12.4 Modulo . 50
12.5 Negation . 50
12.6 Augmented Assignment . 50

III

Contents

12.7 Boolean . 51
12.8 References . 51

13 Flow control 53

14 Functions 59

15 Scoping 63

16 Exceptions 65

17 Input and output 69
17.1 Input . 69
17.2 Output . 72

18 Modules 75
18.1 Importing a Module . 75
18.2 Creating a Module . 76
18.3 External links . 77

19 Classes 79

20 MetaClasses 95

21 Regular Expression 99
21.1 Pattern objects . 99
21.2 Matching and searching . 100
21.3 Replacing . 102
21.4 Other functions . 102
21.5 External links . 103

22 GUI Programming 105
22.1 Tkinter . 105
22.2 PyGTK . 106
22.3 PyQt . 106
22.4 wxPython . 106
22.5 Dabo . 107
22.6 pyFltk . 108
22.7 Other Toolkits . 108

23 Game Programming in Python 109
23.1 3D Game Programming . 109
23.2 2D Game Programming . 110
23.3 See Also . 111

24 Sockets 113
24.1 HTTP Client . 113
24.2 NTP/Sockets . 113

IV

Contents

25 Files 115
25.1 File I/O . 115
25.2 Testing Files . 116
25.3 Common File Operations . 117

26 Database Programming 119
26.1 Generic Database Connectivity using ODBC . 119
26.2 Postgres connection in Python . 120
26.3 MySQL connection in Python . 120
26.4 SQLAlchemy in Action . 120
26.5 See also . 120
26.6 References . 120
26.7 External links . 120

27 Web Page Harvesting 121

28 Threading 123
28.1 Examples . 123

29 Extending with C 125
29.1 Using the Python/C API . 125
29.2 Using SWIG . 128

30 Extending with C++ 131
30.1 A Hello World Example . 131
30.2 An example with CGAL . 132
30.3 Handling Python objects and errors . 133

31 WSGI web programming 135

32 WSGI Web Programming 137
32.1 External Resources . 137

33 References 139
33.1 Language reference . 139
33.2 External links . 139

34 Authors 141
34.1 Authors of Python textbook . 141

35 Contributors 143

List of Figures 149

36 Licenses 153
36.1 GNU GENERAL PUBLIC LICENSE . 153
36.2 GNU Free Documentation License . 154
36.3 GNU Lesser General Public License . 154

1

Contents

2

1 Overview

Python1 is a high-level2, structured3, open-source4 programming language that can be used for
a wide variety of programming tasks. Python was created by Gudio Van Rossum in the early 1990s,
its following has grown steadily and interest is increased markedly in the last few years or so. It is
named after Monty Python's Flying Circus comedy program.

Python5 is used extensively for system administration (many vital components of Linux6 Distribu-
tions are written in it), also its a great language to teach programming to novice. NASA has used
Python for its software systems and has adopted it as the standard scripting language for its Integrated
Planning System. Python is also extensively used by Google to implement many components of its
Web Crawler and Search Engine & Yahoo! for managing its discussion groups.

Python within itself is an interpreted programming language that is automatically compiled into byte-
code before execution (the bytecode is then normally saved to disk, just as automatically, so that com-
pilation need not happen again until and unless the source gets changed). It is also a dynamically typed
language that includes (but does not require one to use) object oriented features and constructs.

The most unusual aspect of Python is that whitespace is significant; instead of block delimiters (braces
→ "{}" in the C family of languages), indentation is used to indicate where blocks begin and end.

For example, the following Python code can be interactively typed at an interpreter prompt, display
the famous "Hello World!" on the user screen:

>>> print "Hello World!"
Hello World!

Another great Python feature is its availability for all Platforms. Python can run onMicrosoftWindows,
Macintosh & all Linux distributions with ease. This makes the programs very portable, as any program
written for one Platform can easily be used at another.

Python provides a powerful assortment of built-in types (e.g., lists, dictionaries and strings), a number
of built-in functions, and a few constructs, mostly statements. For example, loop constructs that can
iterate over items in a collection instead of being limited to a simple range of integer values. Python also
comes with a powerful standard library7, which includes hundreds of modules to provide routines
for a wide variety of services including regular expressions8 and TCP/IP sessions.

1 http://en.wikibooks.org/wiki/Python
2 http://en.wikibooks.org/wiki/Computer%20programming%2FHighlevel
3 http://en.wikibooks.org/wiki/Computer%20programming%2FStructured%20programming
4 http://en.wikibooks.org/wiki/Open%20Source
5 http://en.wikibooks.org/wiki/Python
6 http://en.wikibooks.org/wiki/Linux
7 http://en.wikibooks.org/wiki/Python%20Programming%2FStandard%20Library
8 Chapter 21 on page 99

3

http://en.wikibooks.org/wiki/Python
http://en.wikibooks.org/wiki/Computer%20programming%2FHighlevel
http://en.wikibooks.org/wiki/Computer%20programming%2FStructured%20programming
http://en.wikibooks.org/wiki/Open%20Source
http://en.wikibooks.org/wiki/Python
http://en.wikibooks.org/wiki/Linux
http://en.wikibooks.org/wiki/Python%20Programming%2FStandard%20Library

Overview

Python is used and supported by a large PythonCommunity9 that exists on the Internet. The mailing
lists and news groups10 like the tutor list11 actively support and help new python programmers.
While they discourage doing homework for you, they are quite helpful and are populated by the authors
of many of the Python textbooks currently available on the market.

9 http://www.python.org/community/index.html
10 http://www.python.org/community/lists.html
11 http://mail.python.org/mailman/listinfo/tutor

4

http://www.python.org/community/index.html
http://www.python.org/community/lists.html
http://mail.python.org/mailman/listinfo/tutor

2 Getting Python

In order to program in Python you need the Python interpreter. If it is not already installed or if the
version you are using is obsolete, you will need to obtain and install Python using the methods below:

2.1 Python 2 vs Python 3

In 2008, a new version of Python (version 3) was published that was not entirely backward compatible.
Developers were asked to switch to the new version as soon as possible but many of the common
external modules are not yet (as of Aug 2010) available for Python 3. There is a program called 2to3
to convert the source code of a Python 2 program to the source code of a Python 3 program. Consider
this fact before you start working with Python.

2.2 Installing Python in Windows

Go to the Python Homepage1 or the ActiveState website2 and get the proper version for your
platform. Download it, read the instructions and get it installed.

In order to run Python from the command line, you will need to have the python directory in your
PATH.Alternatively, you could use an IntegratedDevelopment Environment (IDE) for Python like Dr-
Pythonhttp://drpython.sourceforge.net/3, erichttp://www.die-offenbachs.de/eric/index.html4,
PyScripterhttp://mmm-experts.com/Products.aspx?ProductID=45, or Python's own IDLE6 (which
ships with every version of Python since 2.3).

The PATH variable can be modified from the Window's System control panel. The advanced tab will
contain the button labelled Environment Variables, where you can append the newly created folder to
the search path.

If you prefer having a temporary environment, you can create a new command prompt short-cut that
automatically executes the following statement:

PATH %PATH%;c:\python26

1 http://www.python.org/download/
2 http://activestate.com
3 http://drpython.sourceforge.net/
4 http://www.die-offenbachs.de/eric/index.html
5 http://mmm-experts.com/Products.aspx?ProductID=4
6 http://en.wikipedia.org/wiki/IDLE_%28Python%29

5

http://www.python.org/download/
http://activestate.com
http://drpython.sourceforge.net/
http://www.die-offenbachs.de/eric/index.html
http://mmm-experts.com/Products.aspx?ProductID=4
http://en.wikipedia.org/wiki/IDLE_%28Python%29

Getting Python

If you downloaded a different version (such as Python 3.1), change the "26" for the version of Python
you have (26 is 2.6.x, the current version of Python 2.)

2.2.1 Cygwin

By default, the Cygwin installer for Windows does not include Python in the downloads. However, it
can be selected from the list of packages.

2.3 Installing Python on Mac

Users on Apple Mac OS X will find that it already ships with Python 2.3 (OS X 10.4 Tiger) or Python
2.6.1 (OS X Snow Leopard), but if you want the more recent version head to Python Download
Page7 follow the instruction on the page and in the installers. As a bonus you will also install the
Python IDE.

2.4 Installing Python on Unix environments

Python is available as a package for some Linux distributions. In some cases, the distribution CD will
contain the python package for installation, while other distributions require downloading the source
code and using the compilation scripts.

2.4.1 Gentoo GNU/Linux

Gentoo is an example of a distribution that installs Python by default - the package system Portage
depends on Python.

2.4.2 Ubuntu GNU/Linux

Users of Ubuntu will notice that Python comes installed by default, only it sometimes is not the latest
version. If you would like to update it, click here8.

2.4.3 Arch GNU/Linux

Arch does not install python by default, but is easily available for installation through the package
manager to pacman. As root (or using sudo if you've installed and configured it), type:
$ pacman -Sy python

This will be update package databases and install python. Other versions can be built from source from
the Arch User Repository.

7 http://www.python.org/download/mac
8 http://appnr.com/install/python

6

http://www.python.org/download/mac
http://appnr.com/install/python

Installing Python on Unix environments

2.4.4 Source code installations

Some platforms do not have a version of Python installed, and do not have pre-compiled binaries. In
these cases, you will need to download the source code from the official site9. Once the download
is complete, you will need to unpack the compressed archive into a folder.

To build Python, simply run the configure script (requires the Bash shell) and compile using make.

2.4.5 Other Distributions

Python, which is also referred to as CPython10, is written in the C Programming11 language. The C
source code is generally portable, that means CPython can run on various platforms. More precisely,
CPython can be made available on all platforms that provide a compiler to translate the C source code
to binary code for that platform.

Apart from CPython there are also other implementations that run on top of a virtual machine. For
example, on Java's JRE (Java Runtime Environment) or Microsoft's .NET CLR (Common Language
Runtime). Both can access and use the libraries available on their platform. Specifically, they make
use of reflection12 that allows complete inspection and use of all classes and objects for their very
technology.

Python Implementations (Platforms)

Environment Description Get From
Jython Java Version of Python Jython13

IronPython C# Version of Python IronPython14

2.4.6 Integrated Development Environments (IDE)

CPython ships with IDLE15, an Integrated Development Environment built with the tkinter GUI toolkit.
IDLE is a is multi-window text editor and debugger, provides syntax highlighting and an interactive
shell window, is coded in 100% pure Python and therefore cross-platform (i.e. works onWindows and
Unix). The table below lists some IDLE alternatives.

Some Integrated Development Environments (IDEs) for Python

Environment Description Get From
Eclipse Open Source IDE Eclipse16

9 http://www.python.org/download/
10 http://en.wikibooks.org/wiki/CPython
11 http://en.wikibooks.org/wiki/C%20Programming
12 http://en.wikipedia.org/wiki/Reflection_(computer_programming)
13 http://www.jython.org
14 http://www.ironpython.net
15 http://en.wikibooks.org/wiki/IDLE
16 http://www.eclipse.org

7

http://www.python.org/download/
http://en.wikibooks.org/wiki/CPython
http://en.wikibooks.org/wiki/C%20Programming
http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://www.jython.org
http://www.ironpython.net
http://en.wikibooks.org/wiki/IDLE
http://www.eclipse.org

Getting Python

Environment Description Get From
KDevelop Cross Language IDE for

KDE
KDevelop17

ActivePython Highly Flexible, Pythonwin
IDE

ActivePython18

Anjuta IDE Linux/Unix Anjuta19

Pythonwin Windows Oriented Environ-
ment

Pythonwin20

VisualWx Free GUI Builder VisualWx21

Komodo A Commercial IDE Komodo22

BlackAdder Commercial IDE & GUI
Builder

BlackAdder23

Code Crusader Commercial IDE Code Crusader24
Code Forge Commercial IDE Code Forge25
PyCharm Commercial IDE PyCharm26

2.5 Keeping Up to Date

Python has a very active community and language itself evolves continuously. Do frequently visit
Python.Org27 for recent releases and relevant tools. The website is an invaluable asset.

If you want to keep up with newly released third party-modules or software for Python, have a look at
Python email list python-announce-list. General discussion can be found at python-list, both of these
lists can be found at PythonMail28. Usenet users can easily user the newsgroups comp.lang.python.announce
& comp.lang.python.

17 http://www.kdevelop.org
18 http://www.activestate.com/
19 http://anjuta.sf.net/
20 http://www.python.org/windows/
21 http://visualwx.altervista.org
22 http://www.activestate.com/komodo-ide/
23 http://www.thekompany.com/
24 http://www.newplanetsoftware.com/
25 http://www.codeforge.com/
26 http://www.jetbrains.com/pycharm/
27 http://www.python.org
28 http://mail.python.org

8

http://www.kdevelop.org
http://www.activestate.com/
http://anjuta.sf.net/
http://www.python.org/windows/
http://visualwx.altervista.org
http://www.activestate.com/komodo-ide/
http://www.thekompany.com/
http://www.newplanetsoftware.com/
http://www.codeforge.com/
http://www.jetbrains.com/pycharm/
http://www.python.org
http://mail.python.org

3 Interactive mode

Python has two basic modes: normal and interactive. The normal mode is the mode where the scripted
and finished .py files are run in the Python interpreter. Interactive mode is a command line shell
which gives immediate feedback for each statement, while running previously fed statements in active
memory. As new lines are fed into the interpreter, the fed program is evaluated both in part and in
whole.

To start interactive mode, simply type "python" without any arguments. This is a good way to play
around and try variations on syntax. Python should print something like this:

$ python
Python 3.0b3 (r30b3:66303, Sep 8 2008, 14:01:02) [MSC v.1500 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

(If Python doesn't run, make sure your path is set correctly. See Getting Python1.)

The >>> is Python's way of telling you that you are in interactive mode. In interactive mode what you
type is immediately run. Try typing 1+1 in. Python will respond with 2. Interactive mode allows you
to test out and see what Python will do. If you ever feel the need to play with new Python statements,
go into interactive mode and try them out.

A sample interactive session:

>>> 5
5
>>> print (5*7)
35
>>> "hello" * 4
'hellohellohellohello'
>>> "hello".__class__
<type 'str'>

However, you need to be careful in the interactive environment to avoid confusion. For example, the
following is a valid Python script:

if 1:
print("True")

print("Done")

If you try to enter this as written in the interactive environment, you might be surprised by the result:

1 Chapter 2 on page 5

9

Interactive mode

>>> if 1:
... print("True")
... print("Done")

File "<stdin>", line 3
print("Done")

ˆ
SyntaxError: invalid syntax

What the interpreter is saying is that the indentation of the second print was unexpected. You should
have entered a blank line to end the first (i.e., "if") statement, before you started writing the next print
statement. For example, you should have entered the statements as though they were written:

if 1:
print("True")

print("Done")

Which would have resulted in the following:

>>> if 1:
... print("True")
...
True
>>> print("Done")
Done
>>>

3.0.1 Interactive mode

Instead of Python exiting when the program is finished, you can use the -i flag to start an interactive
session. This can be very useful for debugging and prototyping.

python -i hello.py

10

4 Creating Python programs

Welcome to Python! This tutorial will show you how to start writing programs.

Python programs are nothing more than text files, and they may be edited with a standard text editor1
program.2 What text editor you use will probably depend on your operating system: any text editor can
create Python programs. It is easier to use a text editor that includes Python syntax highlighting3,
however.

4.1 Hello, World!

The first program that every programmer writes is called the "Hello, World!" program. This program
simply outputs the phrase "Hello, World!" and then ends. Let's write "Hello, World!" in Python!

Open up your text editor and create a new file called hello.py containing just this line (you can
copy-paste if you want):

print("Hello, world!")

or

def hello(message):
message = "Hello, world!"
print(message)
return message

print(hello("message"))

This program uses the print function, which simply outputs its parameters to the terminal. print
ends with a newline character, which simply moves the cursor to the next line.

Now that you've written your first program, let's run it in Python! This process differs slightly depend-
ing on your operating system.

Note:
In Python 2.6, print is a statement rather than a function. As such, it printed everything until the
end of the line, did not utilize parenthesis and required using a standalone comma after the final
printed item to identify that the current line was not yet complete.

1 http://en.wikipedia.org/wiki/Text%20editor
2 Sometimes, Python programs are distributed in compiled form. We won't have to worry about that for quite a while.
3 http://en.wikipedia.org/wiki/Syntax%20highlighting

11

http://en.wikipedia.org/wiki/Text%20editor
http://en.wikipedia.org/wiki/Syntax%20highlighting

Creating Python programs

4.1.1 Windows

• Create a folder on your computer to use for your Python programs, such as C:\pythonpractice,
and save your hello.py program in that folder.

• In the Start menu, select "Run...", and type in cmd. This will cause the Windows terminal to open.
• Type cd \pythonpractice to change directory to your pythonpractice folder, and hit Enter.
• Type python hello.py to run your program!

If it didn't work, make sure your PATH contains the python directory. See Getting Python4.

4.1.2 Mac

• Create a folder on your computer to use for your Python programs. A good suggestion would be
to name it pythonpractice and place it in your Home folder (the one that contains folders for
Documents, Movies, Music, Pictures, etc). Save your hello.py program into this folder.

• Open the Applications folder, go into the Utilities folder, and open the Terminal program.
• Type cd pythonpractice to change directory to your pythonpractice folder, and hit Enter.
• Type python hello.py to run your program!

4.1.3 Linux

• Create a folder on your computer to use for your Python programs, such as ˜/pythonpractice,
and save your hello.py program in that folder.

• Open up the terminal program. In KDE, open the main menu and select "Run Command..." to open
Konsole. In GNOME, open the main menu, open the Applications folder, open the Accessories
folder, and select Terminal.

• Type cd ˜/pythonpractice to change directory to your pythonpractice folder, and hit Enter.
• Type python hello.py to run your program!

Note:
If you have both python version 2.6.1 and version 3.0 installed (Very possible if you are us-
ing Ubuntu, and ran sudo apt-get python3 to have python3 installed), you should run python3
hello.py

An Alternative

There is a file called idle.py in your Python file. It is in the idlelib folder, located in the Lib folder.
This is a Python programmer written in Python. You might find it a bit easier to use than cmd.

4.1.4 Result

The program should print:

4 Chapter 2 on page 5

12

Exercises

Hello, world!

Congratulations! You're well on your way to becoming a Python programmer.

4.2 Exercises

1. Modify the hello.py program to say hello to a historical political leader (or toAdaLovelace5).
2. Change the program so that after the greeting, it asks, "How did you get here?".
3. Re-write the original program to use two print statements: one for "Hello" and one for "world".

The program should still only print out on one line.

Solutions6

4.3 Notes

5 http://en.wikipedia.org/wiki/Ada%20Lovelace
6 http://en.wikibooks.org/wiki/Python%20Programming%2FCreating%20Python%20programs%

2FSolutions

13

http://en.wikipedia.org/wiki/Ada%20Lovelace
http://en.wikibooks.org/wiki/Python%20Programming%2FCreating%20Python%20programs%2FSolutions
http://en.wikibooks.org/wiki/Python%20Programming%2FCreating%20Python%20programs%2FSolutions

Creating Python programs

14

5 Basic syntax

There are five fundamental concepts in Python1.

5.0.1 Case Sensitivity

All variables are case-sensitive. Python treats 'number' and 'Number' as separate, unrelated entities.

5.0.2 Spaces and tabs don't mix

Because whitespace is significant, remember that spaces and tabs don't mix, so use only one or the
other when indenting your programs. A common error is to mix them. While they may look the same
in editor, the interpreter will read them differently and it will result in either an error or unexpected
behavior. Most decent text editors can be configured to let tab key emit spaces instead.

Python's Style Guideline described that the preferred way is using 4 spaces.

Tips: If you invoked python from the command-line, you can give -t or -tt argument to python to
make python issue a warning or error on inconsistent tab usage.

pythonprogrammer@wikibook: python − tt myscript.py

This will issue an error if you have mixed spaces and tabs.

5.0.3 Objects

In Python, like all object oriented languages, there are aggregations of code and data called Objects,
which typically represent the pieces in a conceptual model of a system.

Objects in Python are created (i.e., instantiated) from templates called Classes2 (which are covered
later, as much of the language can be used without understanding classes). They have "attributes",
which represent the various pieces of code and data which comprise the object. To access attributes,
one writes the name of the object followed by a period (henceforth called a dot), followed by the name
of the attribute.

1 http://en.wikibooks.org/wiki/Python%20Programming
2 Chapter 19 on page 79

15

http://en.wikibooks.org/wiki/Python%20Programming

Basic syntax

An example is the 'upper' attribute of strings, which refers to the code that returns a copy of the string
in which all the letters are uppercase. To get to this, it is necessary to have a way to refer to the object
(in the following example, the way is the literal string that constructs the object).

'bob'.upper

Code attributes are called "methods". So in this example, upper is a method of 'bob' (as it is of all
strings). To execute the code in a method, use a matched pair of parentheses surrounding a comma
separated list of whatever arguments the method accepts (upper doesn't accept any arguments). So to
find an uppercase version of the string 'bob', one could use the following:

'bob'.upper()

5.0.4 Scope

In a large system, it is important that one piece of code does not affect another in difficult to predict
ways. One of the simplest ways to further this goal is to prevent one programmer's choice of names
from preventing another from choosing that name. Because of this, the concept of scope was invented.
A scope is a "region" of code in which a name can be used and outside of which the name cannot be
easily accessed. There are two ways of delimiting regions in Python: with functions or with modules.
They each have different ways of accessing the useful data that was produced within the scope from
outside the scope. With functions, that way is to return the data. The way to access names from other
modules lead us to another concept.

5.0.5 Namespaces

It would be possible to teach Python without the concept of namespaces because they are so similar
to attributes, which we have already mentioned, but the concept of namespaces is one that transcends
any particular programming language, and so it is important to teach. To begin with, there is a built-in
function dir() that can be used to help one understand the concept of namespaces. When you first
start the Python interpreter (i.e., in interactive mode), you can list the objects in the current (or default)
namespace using this function.

Python 2.3.4 (#53, Oct 18 2004, 20:35:07) [MSC v.1200 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> dir()
['__builtins__', '__doc__', '__name__']

This function can also be used to show the names available within a module namespace. To demon-
strate this, first we can use the type() function to show what __builtins__is:

>>> type(__builtins__)
<type 'module'>

Since it is a module, we can list the names within the __builtins__namespace, again using the dir()
function (note the complete list of names has been abbreviated):

>>> dir(__builtins__)
['ArithmeticError', ... 'copyright', 'credits', ... 'help', ... 'license', ...

16

Notes

'zip']
>>>

Namespaces are a simple concept. A namespace is a place in which a name resides. Each name within
a namespace is distinct from names outside of the namespace. This layering of namespaces is called
scope. A name is placed within a namespace when that name is given a value. For example:

>>> dir()
['__builtins__', '__doc__', '__name__']
>>> name = "Bob"
>>> import math
>>> dir()
['__builtins__', '__doc__', '__name__', 'math', 'name']

Note that I was able to add the "name" variable to the namespace using a simple assignment statement.
The import statement was used to add the "math" name to the current namespace. To see what math
is, we can simply:

>>> math
<module 'math' (built-in)>

Since it is a module, it also has a namespace. To display the names within this namespace, we:

>>> dir(math)
['__doc__', '__name__', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh',
'degrees', 'e',
'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', 'log10',
'modf', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']
>>>

If you look closely, you will notice that both the default namespace, and the math module namespace
have a '__name__' object. The fact that each layer can contain an object with the same name is what
scope is all about. To access objects inside a namespace, simply use the name of the module, followed
by a dot, followed by the name of the object. This allow us to differentiate between the __name_-
_ object within the current namespace, and that of the object with the same name within the math
module. For example:

>>> print __name__
__main__
>>> print math.__name__
math
>>> print math.__doc__
This module is always available. It provides access to the
mathematical functions defined by the C standard.
>>> math.pi
3.1415926535897931

17

Basic syntax

18

6 Data types

Data types determine whether an object can do something, or whether it just would not make sense.
Other programming languages often determine whether an operation makes sense for an object by
making sure the object can never be stored somewhere where the operation will be performed on the
object (this type system1 is called static typing). Python does not do that. Instead it stores the type of
an object with the object, and checks when the operation is performed whether that operation makes
sense for that object (this is called dynamic typing).

Python's basic datatypes are:

• Integers, equivalent to C longs
• Floating-Point numbers, equivalent to C doubles
• Long integers of non-limited length
• Complex Numbers.
• Strings
• Some others, such as type and function

Python's composite datatypes are:

• lists
• tuples
• dictionaries, also called dicts, hashmaps, or associative arrays

Literal integers can be entered as in C:

• decimal numbers can be entered directly
• octal numbers can be entered by prepending a 0 (0732 is octal 732, for example)
• hexadecimal numbers can be entered by prepending a 0x (0xff is hex FF, or 255 in decimal)

Floating point numbers can be entered directly.

Long integers are entered either directly (1234567891011121314151617181920 is a long integer) or
by appending an L (0L is a long integer). Computations involving short integers that overflow are
automatically turned into long integers.

Complex numbers are entered by adding a real number and an imaginary one, which is entered by
appending a j (i.e. 10+5j is a complex number. So is 10j). Note that j by itself does not constitute a
number. If this is desired, use 1j.

Strings can be either single or triple quoted strings. The difference is in the starting and ending de-
limiters, and in that single quoted strings cannot span more than one line. Single quoted strings are
entered by entering either a single quote (') or a double quote (") followed by its match. So therefore

1 http://en.wikipedia.org/wiki/Type_system%23Type%20checking

19

http://en.wikipedia.org/wiki/Type_system%23Type%20checking

Data types

'foo' works, and
"moo" works as well,

but
'bar" does not work, and
"baz' does not work either.
"quux'' is right out.

Triple quoted strings are like single quoted strings, but can span more than one line. Their starting and
ending delimiters must also match. They are entered with three consecutive single or double quotes, so

'''foo''' works, and
"""moo""" works as well,

but
'"'bar'"' does not work, and
"""baz''' does not work either.
'"'quux"'" is right out.

Tuples are entered in parenthesis, with commas between the entries:

(10, 'Mary had a little lamb')

Also, the parenthesis can be left out when it's not ambiguous to do so:

10, 'whose fleece was as white as snow'

Note that one-element tuples can be entered by surrounding the entry with parentheses and adding a
comma like so:

('this is a stupid tuple',)

Lists are similar, but with brackets:

['abc', 1,2,3]

Dicts are created by surrounding with curly braces a list of key,value pairs separated from each other
by a colon and from the other entries with commas:

{ 'hello': 'world', 'weight': 'African or European?' }

Any of these composite types can contain any other, to any depth:

((((((((('bob',),['Mary', 'had', 'a', 'little', 'lamb']), { 'hello' : 'world' }
),),),),),),)

20

7 Numbers

Python supports 4 types of Numbers, the int, the long, the float and the complex. You don’t have to
specify what type of variable you want; Python does that automatically.

• Int: This is the basic integer type in python, it is equivalent to the hardware 'c long' for the platform
you are using.

• Long: This is a integer number that's length is non-limited. In python 2.2 and later, Ints are auto-
matically turned into long ints when they overflow.

• Float: This is a binary floating point number. Longs and Ints are automatically converted to floats
when a float is used in an expression, and with the true-division // operator.

• Complex: This is a complex number consisting of two floats. Complex literals are written as a + bj
where a and b are floating-point numbers denoting the real and imaginary parts respectively.

In general, the number types are automatically 'up cast' in this order:

Int → Long → Float → Complex. The farther to the right you go, the higher the precedence.

>>> x = 5
>>> type(x)
<type 'int'>
>>> x = 187687654564658970978909869576453
>>> type(x)
<type 'long'>
>>> x = 1.34763
>>> type(x)
<type 'float'>
>>> x = 5 + 2j
>>> type(x)
<type 'complex'>

However, some expressions may be confusing since in the current version of python, using the / oper-
ator on two integers will return another integer, using floor division. For example, 5/2 will give you
2. You have to specify one of the operands as a float to get true division, e.g. 5/2. or 5./2 (the dot
specifies you want to work with float) to have 2.5. This behavior is deprecated and will disappear in a
future python release as shown from the from __future__import.

>>> 5/2
2
>>>5/2.
2.5
>>>5./2
2.5
>>> from __future__ import division
>>> 5/2
2.5
>>> 5//2
2

21

Numbers

22

8 Strings

8.1 String manipulation

8.1.1 String operations

Equality

Two strings are equal if and only if they have exactly the same contents, meaning that they are both the
same length and each character has a one-to-one positional correspondence. Many other languages test
strings only for identity; that is, they only test whether two strings occupy the same space in memory.
This latter operation is possible in Python using the operator is.

Example:

>>> a = 'hello'; b = 'hello' # Assign 'hello' to a and b.
>>> print a == b # True
True
>>> print a == 'hello' #
True
>>> print a == "hello" # (choice of delimiter is unimportant)
True
>>> print a == 'hello ' # (extra space)
False
>>> print a == 'Hello' # (wrong case)
False
>>> a is a # True
True
>>> a is b # True, because python caches small strings, thus
stores both strings in the same location
True
>>> a is 'hello' # In this case 'hello' uses another cache then
variables
False
>>> 'hello' is 'hello' # But all 'hello's use the same cache
True
>>> a*2 is a*2 # No caching if operations are applied
False

Numerical

There are two quasi-numerical operations which can be done on strings -- addition and multiplication.
String addition is just another name for concatenation. String multiplication is repetitive addition, or
concatenation. So:

>>> c = 'a'
>>> c + 'b'
'ab'

23

Strings

>>> c * 5
'aaaaa'

Containment

There is a simple operator 'in' that returns True if the first operand is contained in the second. This also
works on substrings

>>> x = 'hello'
>>> y = 'ell'
>>> x in y
False
>>> y in x
True

Note that 'print x in y' would have also returned the same value.

Indexing and Slicing

Much like arrays in other languages, the individual characters in a string can be accessed by an integer
representing its position in the string. The first character in string s would be s[0] and the nth character
would be at s[n-1].

>>> s = "Xanadu"
>>> s[1]
'a'

Unlike arrays in other languages, Python also indexes the arrays backwards, using negative numbers.
The last character has index -1, the second to last character has index -2, and so on.

>>> s[-4]
'n'

We can also use "slices" to access a substring of s. s[a:b] will give us a string starting with s[a] and
ending with s[b-1].

>>> s[1:4]
'ana'

None of these are assignable.

>>> print s
>>> s[0] = 'J'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
>>> s[1:3] = "up"
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object does not support slice assignment
>>> print s

Outputs (assuming the errors were suppressed):

24

String manipulation

Xanadu
Xanadu

Another feature of slices is that if the beginning or end is left empty, it will default to the first or last
index, depending on context:

>>> s[2:]
'nadu'
>>> s[:3]
'Xan'
>>> s[:]
'Xanadu'

You can also use negative numbers in slices:

>>> print s[-2:]
'du'

To understand slices, it's easiest not to count the elements themselves. It is a bit like counting not on
your fingers, but in the spaces between them. The list is indexed like this:

Element: 1 2 3 4
Index: 0 1 2 3

-4 -3 -2 -1

So, when we ask for the [1:3] slice, that means we start at index 1, and end at index 3, and take
everything in between them. If you are used to indexes in C or Java, this can be a bit disconcerting
until you get used to it.

8.1.2 String constants

String constants can be found in the standard string module. Either single or double quotes may be
used to delimit string constants.

8.1.3 String methods

There are a number of methods or built-in string functions:

• capitalize
• center
• count
• decode
• encode
• endswith
• expandtabs
• find
• index
• isalnum
• isalpha

25

Strings

• isdigit
• islower
• isspace
• istitle
• isupper
• join
• ljust
• lower
• lstrip
• replace
• rfind
• rindex
• rjust
• rstrip
• split
• splitlines
• startswith
• strip
• swapcase
• title
• translate
• upper
• zfill

Only emphasized items will be covered.

is*

isalnum(), isalpha(), isdigit(), islower(), isupper(), isspace(), and istitle() fit into this category.

The length of the string object being compared must be at least 1, or the is* methods will return False.
In other words, a string object of len(string) == 0, is considered "empty", or False.

• isalnum returns True if the string is entirely composed of alphabetic and/or numeric characters (i.e.
no punctuation).

• isalpha and isdigit work similarly for alphabetic characters or numeric characters only.
• isspace returns True if the string is composed entirely of whitespace.
• islower, isupper, and istitle return True if the string is in lowercase, uppercase, or titlecase respec-
tively. Uncased characters are "allowed", such as digits, but there must be at least one cased character
in the string object in order to return True. Titlecase means the first cased character of each word is
uppercase, and any immediately following cased characters are lowercase. Curiously, 'Y2K'.istitle()
returns True. That is because uppercase characters can only follow uncased characters. Likewise,
lowercase characters can only follow uppercase or lowercase characters. Hint: whitespace is un-
cased.

Example:

>>> '2YK'.istitle()
False
>>> 'Y2K'.istitle()

26

String manipulation

True
>>> '2Y K'.istitle()
True

title, upper, lower, swapcase, capitalize

Returns the string converted to title case, upper case, lower case, inverts case, or capitalizes, respec-
tively.

The title method capitalizes the first letter of each word in the string (and makes the rest lower case).
Words are identified as substrings of alphabetic characters that are separated by non-alphabetic char-
acters, such as digits, or whitespace. This can lead to some unexpected behavior. For example, the
string "x1x" will be converted to "X1X" instead of "X1x".

The swapcase method makes all uppercase letters lowercase and vice versa.

The capitalize method is like title except that it considers the entire string to be a word. (i.e. it makes
the first character upper case and the rest lower case)

Example:

>>> s = 'Hello, wOrLD'
>>> s
'Hello, wOrLD'
>>> s.title()
'Hello, World'
>>> s.swapcase()
'hELLO, WoRld'
>>> s.upper()
'HELLO, WORLD'
>>> s.lower()
'hello, world'
>>> s.capitalize()
'Hello, world'

count

Returns the number of the specified substrings in the string. i.e.

>>> s = 'Hello, world'
>>> s.count('o') # print the number of 'o's in 'Hello, World' (2)
2

Hint: .count() is case-sensitive, so this example will only count the number of lowercase letter 'o's. For
example, if you ran:

>>> s = 'HELLO, WORLD'
>>> s.count('o') # print the number of lowercase 'o's in 'HELLO, WORLD' (0)
0

strip, rstrip, lstrip

Returns a copy of the string with the leading (lstrip) and trailing (rstrip) whitespace removed. strip
removes both.

27

Strings

>>> s = '\t Hello, world\n\t '
>>> print s

Hello, world

>>> print s.strip()
Hello, world
>>> print s.lstrip()
Hello, world

ends here
>>> print s.rstrip()

Hello, world

Note the leading and trailing tabs and newlines.

Strip methods can also be used to remove other types of characters.

import string
s = 'www.wikibooks.org'
print s
print s.strip('w') # Removes all w's from outside
print s.strip(string.lowercase) # Removes all lowercase letters from outside
print s.strip(string.printable) # Removes all printable characters

Outputs:

www.wikibooks.org
.wikibooks.org
.wikibooks.

Note that string.lowercase and string.printable require an import string statement

ljust, rjust, center

left, right or center justifies a string into a given field size (the rest is padded with spaces).

>>> s = 'foo'
>>> s
'foo'
>>> s.ljust(7)
'foo '
>>> s.rjust(7)
' foo'
>>> s.center(7)
' foo '

join

Joins together the given sequence with the string as separator:

>>> seq = ['1', '2', '3', '4', '5']
>>> ' '.join(seq)
'1 2 3 4 5'
>>> '+'.join(seq)
'1+2+3+4+5'

28

String manipulation

map may be helpful here: (it converts numbers in seq into strings)

>>> seq = [1,2,3,4,5]
>>> ' '.join(map(str, seq))
'1 2 3 4 5'

now arbitrary objects may be in seq instead of just strings.

find, index, rfind, rindex

The find and index methods return the index of the first found occurrence of the given subsequence. If
it is not found, find returns -1 but index raises a ValueError. rfind and rindex are the same as find and
index except that they search through the string from right to left (i.e. they find the last occurrence)

>>> s = 'Hello, world'
>>> s.find('l')
2
>>> s[s.index('l'):]
'llo, world'
>>> s.rfind('l')
10
>>> s[:s.rindex('l')]
'Hello, wor'
>>> s[s.index('l'):s.rindex('l')]
'llo, wor'

Because Python strings accept negative subscripts, index is probably better used in situations like the
one shown because using find instead would yield an unintended value.

replace

Replace works just like it sounds. It returns a copy of the string with all occurrences of the first
parameter replaced with the second parameter.

>>> 'Hello, world'.replace('o', 'X')
'HellX, wXrld'

Or, using variable assignment:

string = 'Hello, world'
newString = string.replace('o', 'X')
print string
print newString

Outputs:

Hello, world
HellX, wXrld

Notice, the original variable (string) remains unchanged after the call to replace.

29

Strings

expandtabs

Replaces tabs with the appropriate number of spaces (default number of spaces per tab = 8; this can be
changed by passing the tab size as an argument).

s = 'abcdefg\tabc\ta'
print s
print len(s)
t = s.expandtabs()
print t
print len(t)

Outputs:

abcdefg abc a
13
abcdefg abc a
17

Notice how (although these both look the same) the second string (t) has a different length because
each tab is represented by spaces not tab characters.

To use a tab size of 4 instead of 8:

v = s.expandtabs(4)
print v
print len(v)

Outputs:

abcdefg abc a
13

Please note each tab is not always counted as eight spaces. Rather a tab "pushes" the count to the next
multiple of eight. For example:

s = '\t\t'
print s.expandtabs().replace(' ', '*')
print len(s.expandtabs())

Output:

16

s = 'abc\tabc\tabc'
print s.expandtabs().replace(' ', '*')
print len(s.expandtabs())

Outputs:

30

String manipulation

abc*****abc*****abc
19

split, splitlines

The splitmethod returns a list of the words in the string. It can take a separator argument to use instead
of whitespace.

>>> s = 'Hello, world'
>>> s.split()
['Hello,', 'world']
>>> s.split('l')
['He', '', 'o, wor', 'd']

Note that in neither case is the separator included in the split strings, but empty strings are allowed.

The splitlinesmethod breaks a multiline string into many single line strings. It is analogous to split('\n')
(but accepts '\r' and '\r\n' as delimiters as well) except that if the string ends in a newline character,
splitlines ignores that final character (see example).

>>> s = """
... One line
... Two lines
... Red lines
... Blue lines
... Green lines
... """
>>> s.split('\n')
['', 'One line', 'Two lines', 'Red lines', 'Blue lines', 'Green lines', '']
>>> s.splitlines()
['', 'One line', 'Two lines', 'Red lines', 'Blue lines', 'Green lines']

31

Strings

32

9 Lists

9.1 About lists in Python

A list in Python is an ordered group of items (or elements). It is a very general structure, and list
elements don't have to be of the same type. For instance, you could put numbers, letters, and strings
all on the same list.

If you are using a modern version of Python (and you should be), there is a class called 'list'. If you
wish, you can make your own subclass of it, and determine list behaviour which is different than the
default standard. But first, you should be familiar with the current behaviour of lists.

9.1.1 List notation

There are two different ways to make a list in Python. The first is through assignment ("statically"),
the second is using list comprehensions("actively").

To make a static list of items, write them between square brackets. For example:

[1,2,3,"This is a list",'c',Donkey("kong")]

A couple of things to look at.

1. There are different data types here. Lists in Python may contain more than one data type.
2. Objects can be created 'on the fly' and added to lists. The last item is a new kind of Donkey.

Writing lists this way is very quick (and obvious). However, it does not take into account the current
state of anything else. The other way to make a list is to form it using list comprehension. That means
you actually describe the process. To do that, the list is broken into two pieces. The first is a picture
of what each element will look like, and the second is what you do to get it.

For instance, lets say we have a list of words:

listOfWords = ["this","is","a","list","of","words"]

List comprehensions

--> see also Tips and Tricks1

We will take the first letter of each word and make a list out of it (using so-called list comprehension).

1 http://en.wikibooks.org/wiki/Python%20Programming%2FTips_and_Tricks%23List_
comprehension_and_generators

33

http://en.wikibooks.org/wiki/Python%20Programming%2FTips_and_Tricks%23List_comprehension_and_generators
http://en.wikibooks.org/wiki/Python%20Programming%2FTips_and_Tricks%23List_comprehension_and_generators

Lists

>>> listOfWords = ["this","is","a","list","of","words"]
>>> items = [word[0] for word in listOfWords]
>>> print items
['t', 'i', 'a', 'l', 'o', 'w']

List comprehension allows you to use more than one for statement. It will evaluate the items in all of
the objects sequentially and will loop over the shorter objects if one object is longer than the rest.

>>> item = [x+y for x in 'flower' for y in 'pot']
>>> print item
['fp', 'fo', 'ft', 'lp', 'lo', 'lt', 'op', 'oo', 'ot', 'wp', 'wo', 'wt', 'ep',
'eo', 'et', 'rp', 'ro', 'rt']

List comprehension also allows you to use an if statement, to only include members into the list that
fulfill a certain condition. We can thus exclude all cases where x is equal to w and y is equal to o; or
we can only exclude the case where x is equal to w and y is equal to o (and thus removing the 'wo'
from the list).

>>> print [x+y for x in 'flower' for y in 'pot']
['fp', 'fo', 'ft', 'lp', 'lo', 'lt', 'op', 'oo', 'ot', 'wp', 'wo', 'wt', 'ep',
'eo', 'et', 'rp', 'ro', 'rt']
>>> print [x+y for x in 'flower' for y in 'pot' if x != 'w' and y != 'o']
['fp', 'ft', 'lp', 'lt', 'op', 'ot', 'ep', 'et', 'rp', 'rt']
>>> print [x+y for x in 'flower' for y in 'pot' if x != 'w' or y != 'o']
['fp', 'fo', 'ft', 'lp', 'lo', 'lt', 'op', 'oo', 'ot', 'wp', 'wt', 'ep', 'eo',
'et', 'rp', 'ro', 'rt']

Python's list comprehension does not define a scope. Any variables that are bound in an evaluation
remain bound to whatever they were last bound to when the evaluation was completed:

>>> print x, y
r t

This is exactly the same as if the comprehension had been expanded into an explicitly-nested group of
one or more 'for' statements and 0 or more 'if' statements.

List creation shortcuts

Python provides a shortcut to initialize a list to a particular size and with an initial value for each
element:

>>> zeros=[0]*5
>>> print zeros
[0, 0, 0, 0, 0]

This works for any data type:

>>> foos=['foo']*8
>>> print foos
['foo', 'foo', 'foo', 'foo', 'foo', 'foo', 'foo', 'foo']

with a caveat. When building a new list by multiplying, Python copies each item by reference. This
poses a problem for mutable items, for instance in a multidimensional array where each element is
itself a list. You'd guess that the easy way to generate a two dimensional array would be:

34

About lists in Python

listoflists=[[0]*4] *5

and this works, but probably doesn't do what you expect:

>>> listoflists=[[0]*4] *5
>>> print listoflists
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
>>> listoflists[0][2]=1
>>> print listoflists
[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]]

What's happening here is that Python is using the same reference to the inner list as the elements of the
outer list. Another way of looking at this issue is to examine how Python sees the above definition:

>>> innerlist=[0]*4
>>> listoflists=[innerlist]*5
>>> print listoflists
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
>>> innerlist[2]=1
>>> print listoflists
[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]]

Assuming the above effect is not what you intend, one way around this issue is to use list comprehen-
sions:

>>> listoflists=[[0]*4 for i in range(5)]
>>> print listoflists
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
>>> listoflists[0][2]=1
>>> print listoflists
[[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

9.1.2 Operations on lists

List Attributes

To find the length of a list use the built in len() method.

>>> len([1,2,3])
3
>>> a = [1,2,3,4]
>>> len(a)
4

Combining lists

Lists can be combined in several ways. The easiest is just to 'add' them. For instance:

>>> [1,2] + [3,4]
[1, 2, 3, 4]

Another way to combine lists is with extend. If you need to combine lists inside of a lambda, extend
is the way to go.

35

Lists

>>> a = [1,2,3]
>>> b = [4,5,6]
>>> a.extend(b)
>>> print a
[1, 2, 3, 4, 5, 6]

The other way to append a value to a list is to use append. For example:

>>> p=[1,2]
>>> p.append([3,4])
>>> p
[1, 2, [3, 4]]
>>> # or
>>> print p
[1, 2, [3, 4]]

However, [3,4] is an element of the list, and not part of the list. append always adds one element only
to the end of a list. So if the intention was to concatenate two lists, always use extend.

Getting pieces of lists (slices)

Continuous slices

Like strings2, lists can be indexed and sliced.

>>> list = [2, 4, "usurp", 9.0,"n"]
>>> list[2]
'usurp'
>>> list[3:]
[9.0, 'n']

Much like the slice of a string is a substring, the slice of a list is a list. However, lists differ from strings
in that we can assign new values to the items in a list.

>>> list[1] = 17
>>> list
[2, 17, 'usurp', 9.0,'n']

We can even assign new values to slices of the lists, which don't even have to be the same length

>>> list[1:4] = ["opportunistic", "elk"]
>>> list
[2, 'opportunistic', 'elk', 'n']

It's even possible to append things onto the end of lists by assigning to an empty slice:

>>> list[:0] = [3.14,2.71]
>>> list
[3.14, 2.71, 2, 'opportunistic', 'elk', 'n']

You can also completely change contents of a list:

>>> list[:] = ['new', 'list', 'contents']

2 Chapter 8 on page 23

36

About lists in Python

>>> list
['new', 'list', 'contents']

On the right-hand side of assignment statement can be any iterable type:

>>> list[:2] = ('element',('t',),[])
>>> list
['element', ('t',), [], 'contents']

With slicing you can create copy of list because slice returns a new list:

>>> original = [1, 'element', []]
>>> list_copy = original[:]
>>> list_copy
[1, 'element', []]
>>> list_copy.append('new element')
>>> list_copy
[1, 'element', [], 'new element']
>>> original
[1, 'element', []]

but this is shallow copy and contains references to elements from original list, so be careful with
mutable types:

>>> list_copy[2].append('something')
>>> original
[1, 'element', ['something']]

Non-Continuous slices

It is also possible to get non-continuous parts of an array. If one wanted to get every n-th occurrence
of a list, one would use the :: operator. The syntax is a:b:n where a and b are the start and end of the
slice to be operated upon.

>>> list = [i for i in range(10)]
>>> list
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list[::2]
[0, 2, 4, 6, 8]
>>> list[1:7:2]
[1, 3, 5]

Comparing lists

Lists can be compared for equality.

>>> [1,2] == [1,2]
True
>>> [1,2] == [3,4]
False

Sorting lists

Sorting lists is easy with a sort method.

37

Lists

>>> list = [2, 3, 1, 'a', 'b']
>>> list.sort()
>>> list
[1, 2, 3, 'a', 'b']

Note that the list is sorted in place, and the sort() method returns None to emphasize this side effect.

If you use Python 2.4 or higher there are some more sort parameters:

sort(cmp,key,reverse)

cmp : method to be used for sorting key : function to be executed with key element. List is sorted by
return-value of the function reverse : sort(reverse=True) or sort(reverse=False)

Python also includes a sorted() function.

>>> list = [5, 2, 3, 'q', 'p']
>>> sorted(list)
[2, 3, 5, 'p', 'q']
>>> list
[5, 2, 3, 'q', 'p']

Note that unlike the sort() method, sorted(list) does not sort the list in place, but instead returns the
sorted list. The sorted() function, like the sort() method also accepts the reverse parameter.

9.2 List methods

9.2.1 append(x)

Add item x onto the end of the list.

>>> list = [1, 2, 3]
>>> list.append(4)
>>> list
[1, 2, 3, 4]

See pop(i)3

9.2.2 pop(i)

Remove the item in the list at the index i and return it. If i is not given, remove the the last item in the
list and return it.

>>> list = [1, 2, 3, 4]
>>> a = list.pop(0)
>>> list
[2, 3, 4]
>>> a
1
>>> b = list.pop()
>>>list
[2, 3]

3 Chapter 9.2.2 on page 38

38

operators

>>> b
4

9.3 operators

9.3.1 in

the operator 'in' is used for two purposes ether to iterate over every item in a list in a for loop or to
check if a value is in a list retuning true or false.

>>> list = [1, 2, 3, 4]
>>> if 3 in list:
>>>
>>> l = [0, 1, 2, 3, 4]
>>> 3 in l
True
>>> 18 in l
False

}}

39

Lists

40

10 Dictionaries

10.1 About dictionaries in Python

A dictionary in python is a collection of unordered values which are accessed by key.

10.1.1 Dictionary notation

Dictionaries may be created directly or converted from sequences. Dictionaries are enclosed in curly
braces, {}

>>> d = {'city':'Paris', 'age':38, (102,1650,1601):'A matrix coordinate'}
>>> seq = [('city','Paris'), ('age', 38), ((102,1650,1601),'A matrix
coordinate')]
>>> d
{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}
>>> dict(seq)
{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}
>>> d == dict(seq)
True

Also, dictionaries can be easily created by zipping two sequences.

>>> seq1 = ('a','b','c','d')
>>> seq2 = [1,2,3,4]
>>> d = dict(zip(seq1,seq2))
>>> d
{'a': 1, 'c': 3, 'b': 2, 'd': 4}

10.1.2 Operations on Dictionaries

The operations on dictionaries are somewhat unique. Slicing is not supported, since the items have no
intrinsic order.

>>> d = {'a':1,'b':2, 'cat':'Fluffers'}
>>> d.keys()
['a', 'b', 'cat']
>>> d.values()
[1, 2, 'Fluffers']
>>> d['a']
1
>>> d['cat'] = 'Mr. Whiskers'
>>> d['cat']
'Mr. Whiskers'
>>> 'cat' in d
True
>>> 'dog' in d
False

41

Dictionaries

10.1.3 Combining two Dictionaries

You can combine two dictionaries by using the update method of the primary dictionary. Note that the
update method will merge existing elements if they conflict.

>>> d = {'apples': 1, 'oranges': 3, 'pears': 2}
>>> ud = {'pears': 4, 'grapes': 5, 'lemons': 6}
>>> d.update(ud)
>>> d
{'grapes': 5, 'pears': 4, 'lemons': 6, 'apples': 1, 'oranges': 3}
>>>

10.1.4 Deleting from dictionary

del dictionaryName[membername]

42

11 Sets

Python also has an implementation of the mathematical set1. Unlike sequence objects such as lists and
tuples, in which each element is indexed, a set is an unordered collection of objects. Sets also cannot
have duplicate members - a given object appears in a set 0 or 1 times. For more information on sets,
see the Set Theory2 wikibook. Sets also require that all members of the set be hashable. Any object
that can be used as a dictionary key can be a set member. Integers, floating point numbers, tuples, and
strings are hashable; dictionaries, lists, and other sets (except frozensets3) are not.

11.0.5 Constructing Sets

One way to construct sets is by passing any sequential object to the "set" constructor.

>>> set([0, 1, 2, 3])
set([0, 1, 2, 3])
>>> set("obtuse")
set(['b', 'e', 'o', 's', 'u', 't'])

We can also add elements to sets one by one, using the "add" function.

>>> s = set([12, 26, 54])
>>> s.add(32)
>>> s
set([32, 26, 12, 54])

Note that since a set does not contain duplicate elements, if we add one of the members of s to s again,
the add function will have no effect. This same behavior occurs in the "update" function, which adds
a group of elements to a set.

>>> s.update([26, 12, 9, 14])
>>> s
set([32, 9, 12, 14, 54, 26])

Note that you can give any type of sequential structure, or even another set, to the update function,
regardless of what structure was used to initialize the set.

The set function also provides a copy constructor. However, remember that the copy constructor will
copy the set, but not the individual elements.

>>> s2 = s.copy()
>>> s2
set([32, 9, 12, 14, 54, 26])

1 http://en.wikipedia.org/wiki/set%20
2 http://en.wikibooks.org/wiki/Set%20Theory
3 Chapter 11.0.11 on page 47

43

http://en.wikipedia.org/wiki/set%20
http://en.wikibooks.org/wiki/Set%20Theory

Sets

11.0.6 Membership Testing

We can check if an object is in the set using the same "in" operator as with sequential data types.

>>> 32 in s
True
>>> 6 in s
False
>>> 6 not in s
True

We can also test the membership of entire sets. Given two sets S1 and S2, we check if S1 is a subset4
or a superset of S2.

>>> s.issubset(set([32, 8, 9, 12, 14, -4, 54, 26, 19]))
True
>>> s.issuperset(set([9, 12]))
True

Note that "issubset" and "issuperset" can also accept sequential data types as arguments

>>> s.issuperset([32, 9])
True

Note that the <= and >= operators also express the issubset and issuperset functions respectively.

>>> set([4, 5, 7]) <= set([4, 5, 7, 9])
True
>>> set([9, 12, 15]) >= set([9, 12])
True

Like lists, tuples, and string, we can use the "len" function to find the number of items in a set.

11.0.7 Removing Items

There are three functions which remove individual items from a set, called pop, remove, and discard.
The first, pop, simply removes an item from the set. Note that there is no defined behavior as to which
element it chooses to remove.

>>> s = set([1,2,3,4,5,6])
>>> s.pop()
1
>>> s
set([2,3,4,5,6])

We also have the "remove" function to remove a specified element.

>>> s.remove(3)
>>> s
set([2,4,5,6])

However, removing a item which isn't in the set causes an error.

4 http://en.wikipedia.org/wiki/Subset

44

http://en.wikipedia.org/wiki/Subset

About dictionaries in Python

>>> s.remove(9)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

KeyError: 9

If you wish to avoid this error, use "discard." It has the same functionality as remove, but will simply
do nothing if the element isn't in the set

We also have another operation for removing elements from a set, clear, which simply removes all
elements from the set.

>>> s.clear()
>>> s
set([])

11.0.8 Iteration Over Sets

We can also have a loop move over each of the items in a set. However, since sets are unordered, it is
undefined which order the iteration will follow.

>>> s = set("blerg")
>>> for n in s:
... print n,
...
r b e l g

11.0.9 Set Operations

Python allows us to perform all the standard mathematical set operations, using members of set. Note
that each of these set operations has several forms. One of these forms, s1.function(s2) will return
another set which is created by "function" applied to S1 and S2. The other form, s1.function_update(s2),
will change S1 to be the set created by "function" of S1 and S2. Finally, some functions have equivalent
special operators. For example, s1 & s2 is equivalent to s1.intersection(s2)

Union

The union5 is the merger of two sets. Any element in S1 or S2 will appear in their union.

>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.union(s2)
set([1, 4, 6, 8, 9])
>>> s1 | s2
set([1, 4, 6, 8, 9])

Note that union's update function is simply "update" above6.

5 http://en.wikipedia.org/wiki/union_%28set_theory%29
6 Chapter 11.0.5 on page 43

45

http://en.wikipedia.org/wiki/union_%28set_theory%29

Sets

Intersection

Any element which is in both S1 and S2 will appear in their intersection7.

>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.intersection(s2)
set([6])
>>> s1 & s2
set([6])
>>> s1.intersection_update(s2)
>>> s1
set([6])

Symmetric Difference

The symmetric difference8 of two sets is the set of elements which are in one of either set, but not
in both.

>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.symmetric_difference(s2)
set([8, 1, 4, 9])
>>> s1 ^ s2
set([8, 1, 4, 9])
>>> s1.symmetric_difference_update(s2)
>>> s1
set([8, 1, 4, 9])

Set Difference

Python can also find the set difference9 of S1 and S2, which is the elements that are in S1 but not in
S2.

>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.difference(s2)
set([9, 4])
>>> s1 - s2
set([9, 4])
>>> s1.difference_update(s2)
>>> s1
set([9, 4])

11.0.10 Multiple sets

Starting with Python 2.6, "union", "intersection", and "difference" can work with multiple input by
using the set constructor. For example, using "set.intersection()":

7 http://en.wikipedia.org/wiki/intersection_%28set_theory%29
8 http://en.wikipedia.org/wiki/symmetric_difference
9 http://en.wikipedia.org/wiki/Complement_%28set_theory%29%23Relative_Complement

46

http://en.wikipedia.org/wiki/intersection_%28set_theory%29
http://en.wikipedia.org/wiki/symmetric_difference
http://en.wikipedia.org/wiki/Complement_%28set_theory%29%23Relative_Complement

About dictionaries in Python

>>> s1 = set([3, 6, 7, 9])
>>> s2 = set([6, 7, 9, 10])
>>> s3 = set([7, 9, 10, 11])
>>> set.intersection(s1, s2, s3)
set([9, 7])

11.0.11 frozenset

A frozenset is basically the same as a set, except that it is immutable - once it is created, its members
cannot be changed. Since they are immutable, they are also hashable, which means that frozensets can
be used as members in other sets and as dictionary keys. frozensets have the same functions as normal
sets, except none of the functions that change the contents (update, remove, pop, etc.) are available.

>>> fs = frozenset([2, 3, 4])
>>> s1 = set([fs, 4, 5, 6])
>>> s1
set([4, frozenset([2, 3, 4]), 6, 5])
>>> fs.intersection(s1)
frozenset([4])
>>> fs.add(6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'frozenset' object has no attribute 'add'

11.0.12 Reference

Python Library Reference on Set Types10

10 http://docs.python.org/library/stdtypes.html#set-types-set-frozenset

47

http://docs.python.org/library/stdtypes.html#set-types-set-frozenset

Sets

48

12 Operators

12.1 Basics

Python math works like you would expect.

>>> x = 2
>>> y = 3
>>> z = 5
>>> x * y
6
>>> x + y
5
>>> x * y + z
11
>>> (x + y) * z
25

Note that Python adheres to the PEMDAS order of operations1.

12.2 Powers

There is a built in exponentiation operator **, which can take either integers, floating point or complex
numbers. This occupies its proper place in the order of operations.

>>> 2**8
256

12.3 Division and Type Conversion

For Python 2.x, dividing two integers or longs uses integer division, also known as "floor division"
(applying the floor function2 after division. So, for example, 5 / 2 is 2. Using "/" to do division this
way is deprecated; if you want floor division, use "//" (available in Python 2.2 and later).

"/" does "true division" for floats and complex numbers; for example, 5.0/2.0 is 2.5.

For Python 3.x, "/" does "true division" for all types.344

Dividing by or into a floating point number (there are no fractional types in Python) will cause Python
to use true division. To coerce an integer to become a float, 'float()' with the integer as a parameter

1 http://en.wikipedia.org/wiki/Order%20of%20operations%20
2 http://en.wikipedia.org/wiki/Floor%20function
3 [http://www.python.org/doc/2.2.3/whatsnew/node7.html What's New in Python 2.2
4 PEP 238 -- Changing the Division Operator ˆ{http://www.python.org/dev/peps/pep-0238/}

49

http://en.wikipedia.org/wiki/Order%20of%20operations%20
http://en.wikipedia.org/wiki/Floor%20function
http://www.python.org/doc/2.2.3/whatsnew/node7.html
http://www.python.org/dev/peps/pep-0238/

Operators

>>> x = 5
>>> float(x)
5.0

This can be generalized for other numeric types: int(), complex(), long().

Beware that due to the limitations of floating point arithmetic5, rounding errors can cause unex-
pected results. For example:

>>> print 0.6/0.2
3.0
>>> print 0.6//0.2
2.0

12.4 Modulo

The modulus (remainder of the division of the two operands, rather than the quotient) can be found
using the% operator, or by the divmod builtin function. The divmod function returns a tuple containing
the quotient and remainder.

>>> 10%7
3

12.5 Negation

Unlike some other languages, variables can be negated directly:

>>> x = 5
>>> -x
-5

12.6 Augmented Assignment

There is shorthand for assigning the output of an operation to one of the inputs:

>>> x = 2
>>> x # 2
2
>>> x *= 3
>>> x # 2 * 3
6
>>> x += 4
>>> x # 2 * 3 + 4
10
>>> x /= 5
>>> x # (2 * 3 + 4) / 5

5 http://en.wikipedia.org/wiki/floating%20point

50

http://en.wikipedia.org/wiki/floating%20point

Boolean

2
>>> x **= 2
>>> x # ((2 * 3 + 4) / 5) ** 2
4
>>> x %= 3
>>> x # ((2 * 3 + 4) / 5) ** 2 % 3
1

>>> x = 'repeat this '
>>> x # repeat this
repeat this
>>> x *= 3 # fill with x repeated three times
>>> x
repeat this repeat this repeat this

12.7 Boolean

or:

if a or b:
do_this

else:
do_this

and:

if a and b:
do_this

else:
do_this

not:

if not a:
do_this

else:
do_this

12.8 References

51

Operators

52

13 Flow control

As with most imperative languages, there are three main categories of program flow control:

• loops
• branches
• function calls

Function calls are covered in the next section1.

Generators and list comprehensions are advanced forms of program flow control, but they are not
covered here.

13.0.1 Loops

In Python, there are two kinds of loops, 'for' loops and 'while' loops.

For loops

A for loop iterates over elements of a sequence (tuple or list). A variable is created to represent the
object in the sequence. For example,

l = [100,200,300,400]
for i in l:

print i

This will output

100
200
300
400

The for loop loops over each of the elements of a list or iterator, assigning the current element to the
variable name given. In the first example above, each of the elements in l is assigned to i.

A builtin function called range exists to make creating sequential lists such as the one above easier.
The loop above is equivalent to:

l = range(100, 401,100)
for i in l:

print i

1 Chapter 14 on page 59

53

Flow control

The next example uses a negative step (the third argument for the built-in range function):

for i in range(10, 0, -1):
print i

This will output

10
9
8
7
6
5
4
3
2
1

or

for i in range(10, 0, -2):
print i

This will output

10
8
6
4
2

for loops can have names for each element of a tuple, if it loops over a sequence of tuples. For instance

l = [(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
for x, xsquared in l:

print x, ':', xsquared

will output

1 : 1
2 : 4
3 : 9
4 : 16
5 : 25

While loops

A while loop repeats a sequence of statements until some condition becomes false. For example:

x = 5
while x > 0:

print x
x = x - 1

54

References

Will output:

5
4
3
2
1

Python's while loops can also have an 'else' clause, which is a block of statements that is executed
(once) when the while statement evaluates to false. The break statement inside the while loop will not
direct the program flow to the else clause. For example:

x = 5
y = x
while y > 0:

print y
y = y - 1

else:
print x

This will output:

5
4
3
2
1
5

Unlike some languages, there is no post-condition loop.

Breaking, continuing and the else clause of loops

Python includes statements to exit a loop (either a for loop or a while loop) prematurely. To exit a
loop, use the break statement

x = 5
while x > 0:

print x
break
x -= 1
print x

this will output

5

The statement to begin the next iteration of the loop without waiting for the end of the current loop is
'continue'.

l = [5,6,7]
for x in l:

continue
print x

55

Flow control

This will not produce any output.

The else clause of loops will be executed if no break statements are met in the loop.

l = range(1,100)
for x in l:

if x == 100:
print x
break

else:
print x," is not 100"

else:
print "100 not found in range"

Another example of a while loop using the break statement and the else statement:

expected_str = "melon"
received_str = "apple"
basket = ["banana", "grapes", "strawberry", "melon", "orange"]
x = 0
step = int(raw_input("Input iteration step: "))

while(received_str != expected_str):
if(x >= len(basket)): print "No more fruits left on the basket."; break
received_str = basket[x]
x += step # Change this to 3 to make the while statement

evaluate to false, avoiding the break statement, using the else
clause.

if(received_str==basket[2]): print "I hate",basket[2],"!"; break
if(received_str != expected_str): print "I am waiting for my

",expected_str,"."
else:

print "Finally got what I wanted! my precious ",expected_str,"!"
print "Going back home now !"

This will output:

Input iteration step: 2
I am waiting for my melon .
I hate strawberry !
Going back home now !

13.0.2 Branches

There is basically only one kind of branch in Python, the 'if' statement. The simplest form of the if
statement simple executes a block of code only if a given predicate is true, and skips over it if the
predicate is false

For instance,

>>> x = 10
>>> if x > 0:
... print "Positive"
...
Positive
>>> if x < 0:

56

References

... print "Negative"

...

You can also add "elif" (short for "else if") branches onto the if statement. If the predicate on the first
“if” is false, it will test the predicate on the first elif, and run that branch if it’s true. If the first elif is
false, it tries the second one, and so on. Note, however, that it will stop checking branches as soon as
it finds a true predicate, and skip the rest of the if statement. You can also end your if statements with
an "else" branch. If none of the other branches are executed, then python will run this branch.

>>> x = -6
>>> if x > 0:
... print "Positive"
... elif x == 0:
... print "Zero"
... else:
... print "Negative"
...
'Negative'

13.0.3 Conclusion

Any of these loops, branches, and function calls can be nested in any way desired. A loop can loop
over a loop, a branch can branch again, and a function can call other functions, or even call itself.

57

Flow control

58

14 Functions

14.0.4 Function calls

A callable object is an object that can accept some arguments (also called parameters) and possibly
return an object (often a tuple containing multiple objects).

A function is the simplest callable object in Python, but there are others, such as classes1 or certain
class instances.

Defining functions

A function is defined in Python by the following format:

def functionname(arg1, arg2, ...):
statement1
statement2
...

>>> def functionname(arg1,arg2):
... return arg1+arg2
...
>>> t = functionname(24,24) # Result: 48

If a function takes no arguments, it must still include the parentheses, but without anything in them:

def functionname():
statement1
statement2
...

The arguments in the function definition bind the arguments passed at function invocation (i.e. when
the function is called), which are called actual parameters, to the names given when the function is
defined, which are called formal parameters. The interior of the function has no knowledge of the
names given to the actual parameters; the names of the actual parameters may not even be accessible
(they could be inside another function).

A function can 'return' a value, for example:

def square(x):
return x*x

A function can define variables within the function body, which are considered 'local' to the function.
The locals together with the arguments comprise all the variables within the scope of the function. Any

1 Chapter 19 on page 79

59

Functions

names within the function are unbound when the function returns or reaches the end of the function
body.

Declaring Arguments

Default Argument Values

If any of the formal parameters in the function definition are declared with the format "arg = value,"
then you will have the option of not specifying a value for those arguments when calling the function.
If you do not specify a value, then that parameter will have the default value given when the function
executes.

>>> def display_message(message, truncate_after=4):
... print message[:truncate_after]
...
>>> display_message("message")
mess
>>> display_message("message", 6)
messag

Variable-Length Argument Lists

Python allows you to declare two special arguments which allow you to create arbitrary-length argu-
ment lists. This means that each time you call the function, you can specify any number of arguments
above a certain number.

def function(first,second,*remaining):
statement1
statement2
...

When calling the above function, youmust provide value for each of the first two arguments. However,
since the third parameter is marked with an asterisk, any actual parameters after the first two will be
packed into a tuple and bound to "remaining."

>>> def print_tail(first,*tail):
... print tail
...
>>> print_tail(1, 5, 2, "omega")
(5, 2, 'omega')

If we declare a formal parameter prefixed with two asterisks, then it will be bound to a dictionary
containing any keyword arguments in the actual parameters which do not correspond to any formal
parameters. For example, consider the function:

def make_dictionary(max_length=10, **entries):
return dict([(key, entries[key]) for i, key in enumerate(entries.keys()) if i

< max_length])

If we call this function with any keyword arguments other than max_length, they will be placed in the
dictionary "entries." If we include the keyword argument of max_length, it will be bound to the formal
parameter max_length, as usual.

60

References

>>> make_dictionary(max_length=2, key1=5, key2=7, key3=9)
{'key3': 9, 'key2': 7}

Calling functions

A function can be called by appending the arguments in parentheses to the function name, or an empty
matched set of parentheses if the function takes no arguments.

foo()
square(3)
bar(5, x)

A function's return value can be used by assigning it to a variable, like so:

x = foo()
y = bar(5,x)

As shown above, when calling a function you can specify the parameters by name and you can do so
in any order

def display_message(message, start=0, end=4):
print message[start:end]

display_message("message", end=3)

This above is valid and start will be the default value of 0. A restriction placed on this is after the first
named argument then all arguments after it must also be named. The following is not valid

display_message(end=5, start=1, "my message")

because the third argument ("my message") is an unnamed argument.

14.0.5 Closure

A closure, also known as nested function definition, is a function defined inside another function.
Perhaps best described with an example:

>>> def outer(outer_argument):
... def inner(inner_argument):
... return outer_argument + inner_argument
... return inner
...
>>> f = outer(5)
>>> f(3)
8
>>> f(4)
9

Closures are possible in Python because functions are first-class objects. A function is merely an object
of type function. Being an object means it is possible to pass a function object (an uncalled function)
around as argument or as return value or to assign another name to the function object. A unique
feature that makes closure useful is that the enclosed function may use the names defined in the parent
function's scope.

61

Functions

lambda

lambda is an anonymous (unnamed) function. It is used primarily to write very short functions that are
a hassle to define in the normal way. A function like this:

>>> def add(a, b):
... return a + b
...
>>> add(4, 3)
7

may also be defined using lambda

>>> print (lambda a, b: a + b)(4, 3)
7

Lambda is often used as an argument to other functions that expects a function object, such as sorted()'s
'key' argument.

>>> sorted([[3, 4], [3, 5], [1, 2], [7, 3]], key=lambda x: x[1])
[[1, 2], [7, 3], [3, 4], [3, 5]]

The lambda form is often useful as a closure, such as illustrated in the following example:

>>> def attribution(name):
... return lambda x: x + ' -- ' + name
...
>>> pp = attribution('John')
>>> pp('Dinner is in the fridge')
'Dinner is in the fridge -- John'

note that the lambda function can use the values of variables from the scope2 in which it was created
(like pre and post). This is the essence of closure.

de:Python-Programmierung:_Funktionen3 es:Inmersión en Python/Su primer programa en
Python/Declaraciónde funciones4 fr:Programmation_Python/Fonction5 pt:Python/Conceitos
básicos/Funções6

2 Chapter 15 on page 63
3 http://de.wikibooks.org/wiki/Python-Programmierung%3A_Funktionen
4 http://es.wikibooks.org/wiki/Inmersi%F3n%20en%20Python%2FSu%20primer%20programa%20en%

20Python%2FDeclaraci%F3n%20de%20funciones
5 http://fr.wikibooks.org/wiki/Programmation_Python%2FFonction
6 http://pt.wikibooks.org/wiki/Python%2FConceitos%20b%E1sicos%2FFun%E7%F5es

62

http://de.wikibooks.org/wiki/Python-Programmierung%3A_Funktionen
http://es.wikibooks.org/wiki/Inmersi%F3n%20en%20Python%2FSu%20primer%20programa%20en%20Python%2FDeclaraci%F3n%20de%20funciones
http://es.wikibooks.org/wiki/Inmersi%F3n%20en%20Python%2FSu%20primer%20programa%20en%20Python%2FDeclaraci%F3n%20de%20funciones
http://fr.wikibooks.org/wiki/Programmation_Python%2FFonction
http://pt.wikibooks.org/wiki/Python%2FConceitos%20b%E1sicos%2FFun%E7%F5es

15 Scoping

15.0.6 Variables

Variables in Python are automatically declared by assignment. Variables are always references to
objects, and are never typed. Variables exist only in the current scope or global scope. When they go
out of scope, the variables are destroyed, but the objects to which they refer are not (unless the number
of references to the object drops to zero).

Scope is delineated by function and class blocks. Both functions and their scopes can be nested. So
therefore

def foo():
def bar():

x = 5 # x is now in scope
return x + y # y is defined in the enclosing scope later

y = 10
return bar() # now that y is defined, bar's scope includes y

Now when this code is tested,

>>> foo()
15
>>> bar()
Traceback (most recent call last):
File "<pyshell#26>", line 1, in -toplevel-

bar()
NameError: name 'bar' is not defined

The name 'bar' is not found because a higher scope does not have access to the names lower in the
hierarchy.

It is a common pitfall to fail to lookup an attribute (such as a method) of an object (such as a container)
referenced by a variable before the variable is assigned the object. In its most common form:

>>> for x in range(10):
y.append(x) # append is an attribute of lists

Traceback (most recent call last):
File "<pyshell#46>", line 2, in -toplevel-

y.append(x)
NameError: name 'y' is not defined

Here, to correct this problem, one must add y = [] before the for loop.

63

Scoping

64

16 Exceptions

Python handles all errors with exceptions.

An exception is a signal that an error or other unusual condition has occurred. There are a number of
built-in exceptions, which indicate conditions like reading past the end of a file, or dividing by zero.
You can also define your own exceptions.

16.0.7 Raising exceptions

Whenever your program attempts to do something erroneous or meaningless, Python raises exception
to such conduct:

>>> 1 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

This traceback indicates that the ZeroDivisionError exception is being raised. This is a built-in excep-
tion -- see below for a list of all the other ones.

16.0.8 Catching exceptions

In order to handle errors, you can set up exception handling blocks in your code. The keywords try
and except are used to catch exceptions. When an error occurs within the try block, Python looks for
a matching except block to handle it. If there is one, execution jumps there.

If you execute this code:

try:
print 1/0

except ZeroDivisionError:
print "You can't divide by zero, you're silly."

Then Python will print this:

You can't divide by zero, you're silly.

If you don't specify an exception type on the except line, it will cheerfully catch all exceptions. This is
generally a bad idea in production code, since it means your program will blissfully ignore unexpected
errors as well as ones which the except block is actually prepared to handle.

Exceptions can propagate up the call stack:

65

Exceptions

def f(x):
return g(x) + 1

def g(x):
if x < 0: raise ValueError, "I can't cope with a negative number here."
else: return 5

try:
print f(-6)

except ValueError:
print "That value was invalid."

In this code, the print statement calls the function f. That function calls the function g, which will raise
an exception of type ValueError. Neither f nor g has a try/except block to handle ValueError. So the
exception raised propagates out to the main code, where there is an exception-handling block waiting
for it. This code prints:

That value was invalid.

Sometimes it is useful to find out exactly what went wrong, or to print the python error text yourself.
For example:

try:
the_file = open("the_parrot")

except IOError, (ErrorNumber, ErrorMessage):
if ErrorNumber == 2: # file not found

print "Sorry, 'the_parrot' has apparently joined the choir invisible."
else:

print "Congratulation! you have managed to trip a #%d error" %
ErrorNumber

print ErrorMessage

Which of course will print:

Sorry, 'the_parrot' has apparently joined the choir invisible.

Custom Exceptions

Code similar to that seen above can be used to create custom exceptions and pass information along
with them. This can be extremely useful when trying to debug complicated projects. Here is how that
code would look; first creating the custom exception class:

class CustomException(Exception):
def __init__(self, value):

self.parameter = value
def __str__(self):

return repr(self.parameter)

And then using that exception:

try:
raise CustomException("My Useful Error Message")

except CustomException, (instance):
print "Caught: " + instance.parameter

66

References

Trying over and over again

16.0.9 Recovering and continuing with finally

Exceptions could lead to a situation where, after raising an exception, the code block where the ex-
ception occurred might not be revisited. In some cases this might leave external resources used by the
program in an unknown state.

finally clause allows programmers to close such resources in case of an exception. Between 2.4 and
2.5 version of python there is change of syntax for finally clause.

• Python 2.4

try:
result = None
try:

result = x/y
except ZeroDivisionError:

print "division by zero!"
print "result is ", result

finally:
print "executing finally clause"

• Python 2.5

try:
result = x / y

except ZeroDivisionError:
print "division by zero!"

else:
print "result is", result

finally:
print "executing finally clause"

16.0.10 Built-in exception classes

All built-in Python exceptions1

16.0.11 Exotic uses of exceptions

Exceptions are good for more than just error handling. If you have a complicated piece of code to
choose which of several courses of action to take, it can be useful to use exceptions to jump out of
the code as soon as the decision can be made. The Python-based mailing list software Mailman does
this in deciding how a message should be handled. Using exceptions like this may seem like it's a
sort of GOTO -- and indeed it is, but a limited one called an escape continuation. Continuations are a
powerful functional-programming tool and it can be useful to learn them.

Just as a simple example of how exceptions make programming easier, say you want to add items to a
list but you don't want to use "if" statements to initialize the list we could replace this:

1 http://docs.python.org/library/exceptions.html

67

http://docs.python.org/library/exceptions.html

Exceptions

if hasattr(self, 'items'):
self.items.extend(new_items)

else:
self.items = list(new_items)

Using exceptions, we can emphasize the normal program flow—that usuallywe just extend the list—rather
than emphasizing the unusual case:

try:
self.items.extend(new_items)

except AttributeError:
self.items = list(new_items)

68

17 Input and output

17.1 Input

Python has two functions designed for accepting data directly from the user:

• input()
• raw_input()

There are also very simple ways of reading a file and, for stricter control over input, reading from stdin
if necessary.

17.1.1 raw_input()

raw_input() asks the user for a string of data (ended with a newline), and simply returns the string. It
can also take an argument, which is displayed as a prompt before the user enters the data. E.g.

print raw_input('What is your name? ')

prints out

What is your name? <user input data here>

Example: in order to assign the user's name, i.e. string data, to a variable "x" you would type

x = raw_input('What is your name?')

Once the user inputs his name, e.g. Simon, you can call it as x

print ('Your name is ' + x)

prints out

Your name is Simon

Note:
in 3.x "...raw_input() was renamed to input(). That is, the new input() function reads a line from
sys.stdin and returns it with the trailing newline stripped. It raises EOFError if the input is termi-
nated prematurely. To get the old behavior of input(), use eval(input())."

69

Input and output

17.1.2 input()

input() uses raw_input to read a string of data, and then attempts to evaluate it as if it were a Python
program, and then returns the value that results. So entering

[1,2,3]

would return a list containing those numbers, just as if it were assigned directly in the Python script.

More complicated expressions are possible. For example, if a script says:

x = input('What are the first 10 perfect squares? ')

it is possible for a user to input:

map(lambda x: x*x, range(10))

which yields the correct answer in list form. Note that no inputted statement can span more than one
line.

input() should not be used for anything but the most trivial program. Turning the strings returned from
raw_input() into python types using an idiom such as:

x = None
while not x:

try:
x = int(raw_input())

except ValueError:
print 'Invalid Number'

is preferable, as input() uses eval() to turn a literal into a python type. This will allow a malicious
person to run arbitrary code from inside your program trivially.

17.1.3 File Input

File Objects

Python includes a built-in file type. Files can be opened by using the file type's constructor:

f = file('test.txt', 'r')

This means f is open for reading. The first argument is the filename and the second parameter is the
mode, which can be 'r', 'w', or 'rw', among some others.

The most common way to read from a file is simply to iterate over the lines of the file:

f = open('test.txt', 'r')
for line in f:

print line[0]
f.close()

This will print the first character of each line. Note that a newline is attached to the end of each line
read this way.

70

Input

Because files are automatically closed when the file object goes out of scope, there is no real need to
close them explicitly. So, the loop in the previous code can also be written as:

for line in open('test.txt', 'r'):
print line[0]

It is also possible to read limited numbers of characters at a time, like so:

c = f.read(1)
while len(c) > 0:

if len(c.strip()) > 0: print c,
c = f.read(1)

This will read the characters from f one at a time, and then print them if they're not whitespace.

A file object implicitly contains a marker to represent the current position. If the file marker should be
moved back to the beginning, one can either close the file object and reopen it or just move the marker
back to the beginning with:

f.seek(0)

Standard File Objects

Like many other languages, there are built-in file objects representing standard input, output, and error.
These are in the sys module and are called stdin, stdout, and stderr. There are also immutable copies of
these in __stdin__, __stdout__, and __stderr__. This is for IDLE and other tools in which the standard
files have been changed.

You must import the sys module to use the special stdin, stdout, stderr I/O handles.

import sys

For finer control over input, use sys.stdin.read(). In order to implement the UNIX 'cat' program in
Python, you could do something like this:

import sys
for line in sys.stdin:

print line,

Note that sys.stdin.read() will read from standard input till EOF. (which is usually Ctrl+D.)

Also important is the sys.argv array. sys.argv is an array that contains the command-line arguments
passed to the program.

python program.py hello there programmer!

This array can be indexed,and the arguments evaluated. In the above example, sys.argv[2] would
contain the string "there", because the name of the program ("program.py") is stored in argv[0]. For
more complicated command-line argument processing, see the "argparse" module.

71

Input and output

17.2 Output

The basic way to do output is the print statement.

print('Hello, world')

This code ought to be obvious.

In order to print multiple things on the same line, use commas between them, like so:

print('Hello,', 'World')

This will print out the following:

Hello, World

Note that although neither string contained a space, a space was added by the print statement because
of the comma between the two objects. Arbitrary data types can be printed this way:

print 1,2,0xff,0777,(10+5j),-0.999,map,sys

This will print out:

1 2 255 511 (10+5j) -0.999 <built-in function map> <module 'sys' (built-in)>

Objects can be printed on the same line without needing to be on the same line if one puts a comma at
the end of a print statement:

for i in range(10):
print i,

will output:

0 1 2 3 4 5 6 7 8 9

In order to end this line, it may be necessary to add a print statement without any objects.

for i in range(10):
print i,

print
for i in range(10,20):

print i,

will output:

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

If the bare print statement were not present, the above output would look like:

72

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

17.2.1 Printing without commas or newlines

If it is not desirable to add spaces between objects, but you want to run them all together on one line,
there are several techniques for doing that.

concatenation

Concatenate the string representations of each object, then later print the whole thing at once.

print str(1)+str(2)+str(0xff)+str(0777)+str(10+5j)+str(-0.999)+str(map)+str(sys)

will output:

12255511(10+5j)-0.999<built-in function map><module 'sys' (built-in)>

write

you can make a shorthand for sys.stdout.write and use that for output.

import sys
write = sys.stdout.write
write('20')
write('05\n')

will output:

2005

You may need sys.stdout.flush() to get that text on the screen quickly.

It is also possible to use similar syntax when writing to a file, instead of to standard output, like so:

print >> f, 'Hello, world'

This will print to any object that implements write(), which includes file objects.

73

Input and output

74

18 Modules

Modules are a simple way to structure a program. Mostly, there are modules in the standard library
and there are other Python files, or directories containing Python files, in the current directory (each
of which constitute a module). You can also instruct Python to search other directories for modules by
placing their paths in the PYTHONPATH environment variable.

18.1 Importing a Module

Modules in Python are used by importing them. For example,

import math

This imports the math standard module. All of the functions in that module are namespaced by the
module name, i.e.

import math
print math.sqrt(10)

This is often a nuisance, so other syntaxes are available to simplify this,

from string import whitespace
from math import *
from math import sin as SIN
from math import cos as COS
from ftplib import FTP as ftp_connection
print sqrt(10)

The first statement means whitespace is added to the current scope (but nothing else is). The second
statement means that all the elements in the math namespace is added to the current scope.

Modules can be three different kinds of things:

• Python files
• Shared Objects (under Unix and Linux) with the .so suffix
• DLL's (under Windows) with the .pyd suffix
• directories

Modules are loaded in the order they're found, which is controlled by sys.path. The current directory
is always on the path.

Directories should include a file in them called __init__.py, which should probably include the other
files in the directory.

Creating a DLL that interfaces with Python is covered in another section.

75

Modules

18.2 Creating a Module

18.2.1 From a File

The easiest way to create a module by having a file called mymod.py either in a directory recognized
by the PYTHONPATH variable or (even easier) in the same directory where you are working. If you
have the following file mymod.py

class Object1:
def __init__(self):

self.name = 'object 1'

you can already import this "module" and create instances of the object Object1.

import mymod
myobject = mymod.Object1()
from mymod import *
myobject = Object1()

18.2.2 From a Directory

It is not feasible for larger projects to keep all classes in a single file. It is often easier to store all files
in directories and load all files with one command. Each directory needs to have a __init__.py file
which contains python commands that are executed upon loading the directory.

Suppose we have two more objects called Object2 and Object3 and we want to load all three ob-
jects with one command. We then create a directory called mymod and we store three files called
Object1.py, Object2.py and Object3.py in it. These files would then contain one object per file
but this not required (although it adds clarity). We would then write the following __init__.py file:

from Object1 import *
from Object2 import *
from Object3 import *

__all__ = ["Object1", "Object2", "Object3"]

The first three commands tell python what to do when somebody loads the module. The last statement
defining __all__tells python what to do when somebody executes from mymod import *. Usually we
want to use parts of a module in other parts of a module, e.g. we want to use Object1 in Object2. We
can do this easily with an from . import * command as the following file Object2.py shows:

from . import *

class Object2:
def __init__(self):

self.name = 'object 2'
self.otherObject = Object1()

We can now start python and import mymod as we have in the previous section.

76

External links

18.3 External links

• Python Documentation1

1 http://docs.python.org/tutorial/modules.html

77

http://docs.python.org/tutorial/modules.html

Modules

78

19 Classes

Classes are a way of aggregating similar data and functions. A class is basically a scope inside which
various code (especially function definitions) is executed, and the locals to this scope become attributes
of the class, and of any objects constructed by this class. An object constructed by a class is called an
instance of that class.

19.0.1 Defining a Class

To define a class, use the following format:

class ClassName:
...
...

The capitalization in this class definition is the convention, but is not required by the language.

19.0.2 Instance Construction

The class is a callable object that constructs an instance of the class when called. To construct an
instance of the class, Foo, "call" the class object:

f = Foo()

This constructs an instance of class Foo and creates a reference to it in f.

19.0.3 Class Members

In order to access the member of an instance of a class, use the syntax <class instance>.<member>. It
is also possible to access the members of the class definition with <class name>.<member>.

Methods

A method is a function within a class. The first argument (methods must always take at least one
argument) is always the instance of the class on which the function is invoked. For example

>>> class Foo:
... def setx(self, x):
... self.x = x
... def bar(self):
... print self.x

79

Classes

If this code were executed, nothing would happen, at least until an instance of Foo were constructed,
and then bar were called on that instance.

Invoking Methods

Calling a method is much like calling a function, but instead of passing the instance as the first param-
eter like the list of formal parameters suggests, use the function as an attribute of the instance.

>>> f.setx(5)
>>> f.bar()

This will output

5

It is possible to call the method on an arbitrary object, by using it as an attribute of the defining class
instead of an instance of that class, like so:

>>> Foo.setx(f,5)
>>> Foo.bar(f)

This will have the same output.

Dynamic Class Structure

As shown by the method setx above, the members of a Python class can change during runtime, not
just their values, unlike classes in languages like C or Java. We can even delete f.x after running the
code above.

>>> del f.x
>>> f.bar()

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 5, in bar

AttributeError: Foo instance has no attribute 'x'

Another effect of this is that we can change the definition of the Foo class during program execution.
In the code below, we create a member of the Foo class definition named y. If we then create a new
instance of Foo, it will now have this new member.

>>> Foo.y = 10
>>> g = Foo()
>>> g.y
10

Viewing Class Dictionaries

80

External links

At the heart of all this is a dictionary1 that can be accessed by "vars(ClassName)"

>>> vars(g)
{}

At first, this output makes no sense. We just saw that g had the member y, so why isn't it in the member
dictionary? If you remember, though, we put y in the class definition, Foo, not g.

>>> vars(Foo)
{'y': 10, 'bar': <function bar at 0x4d6a3c>, '__module__': '__main__',
'setx': <function setx at 0x4d6a04>, '__doc__': None}

And there we have all the members of the Foo class definition. When Python checks for g.member,
it first checks g's vars dictionary for "member," then Foo. If we create a new member of g, it will be
added to g's dictionary, but not Foo's.

>>> g.setx(5)
>>> vars(g)
{'x': 5}

Note that if we now assign a value to g.y, we are not assigning that value to Foo.y. Foo.y will still be
10, but g.y will now override Foo.y

>>> g.y = 9
>>> vars(g)
{'y': 9, 'x': 5}
>>> vars(Foo)
{'y': 10, 'bar': <function bar at 0x4d6a3c>, '__module__': '__main__',
'setx': <function setx at 0x4d6a04>, '__doc__': None}

Sure enough, if we check the values:

>>> g.y
9
>>> Foo.y
10

Note that f.y will also be 10, as Python won't find 'y' in vars(f), so it will get the value of 'y' from
vars(Foo).

Some may have also noticed that the methods in Foo appear in the class dictionary along with the x and
y. If you remember from the section on lambda forms2, we can treat functions just like variables. This
means that we can assign methods to a class during runtime in the same way we assigned variables. If
you do this, though, remember that if we call a method of a class instance, the first parameter passed
to the method will always be the class instance itself.

Changing Class Dictionaries

We can also access the members dictionary of a class using the __dict__member of the class.

1 Chapter 10 on page 41
2 Chapter 14.0.5 on page 62

81

Classes

>>> g.__dict__
{'y': 9, 'x': 5}

If we add, remove, or change key-value pairs from g.__dict__, this has the same effect as if we had
made those changes to the members of g.

>>> g.__dict__['z'] = -4
>>> g.z
-4

19.0.4 New Style Classes

New style classes were introduced in python 2.2. A new-style class is a class that has a built-in as its
base, most commonly object. At a low level, a major difference between old and new classes is their
type. Old class instances were all of type instance. New style class instances will return the same
thing as x.__class__for their type. This puts user defined classes on a level playing field with built-ins.
Old/Classic classes are slated to disappear in Python 3. With this in mind all development should use
new style classes. New Style classes also add constructs like properties and static methods familiar to
Java programmers.

Old/Classic Class

>>> class ClassicFoo:
... def __init__(self):
... pass

New Style Class

>>> class NewStyleFoo(object):
... def __init__(self):
... pass

Properties

Properties are attributes with getter and setter methods.

>>> class SpamWithProperties(object):
... def __init__(self):
... self.__egg = "MyEgg"
... def get_egg(self):
... return self.__egg
... def set_egg(self, egg):
... self.__egg = egg
... egg = property(get_egg, set_egg)

>>> sp = SpamWithProperties()
>>> sp.egg
'MyEgg'
>>> sp.egg = "Eggs With Spam"
>>> sp.egg
'Eggs With Spam'
>>>

and since Python 2.6, with @property decorator

82

External links

>>> class SpamWithProperties(object):
... def __init__(self):
... self.__egg = "MyEgg"
... @property
... def egg(self):
... return self.__egg
... @egg.setter
... def egg(self, egg):
... self.__egg = egg

Static Methods

Static methods in Python are just like their counterparts in C++ or Java. Static methods have no "self"
argument and don't require you to instantiate the class before using them. They can be defined using
staticmethod()

>>> class StaticSpam(object):
... def StaticNoSpam():
... print "You can't have have the spam, spam, eggs and spam without any
spam... that's disgusting"
... NoSpam = staticmethod(StaticNoSpam)

>>> StaticSpam.NoSpam()
'You can\'t have have the spam, spam, eggs and spam without any spam... that\'s
disgusting'

They can also be defined using the function decorator @staticmethod.

>>> class StaticSpam(object):
... @staticmethod
... def StaticNoSpam():
... print "You can't have have the spam, spam, eggs and spam without any
spam... that's disgusting"

19.0.5 Inheritance

Like all object oriented languages, Python provides for inheritance. Inheritance is a simple concept by
which a class can extend the facilities of another class, or in Python's case, multiple other classes. Use
the following format for this:

class ClassName(superclass1,superclass2,superclass3,...):
...

The subclass will then have all the members of its superclasses. If a method is defined in the subclass
and in the superclass, the member in the subclass will override the one in the superclass. In order to use
the method defined in the superclass, it is necessary to call the method as an attribute on the defining
class, as in Foo.setx(f,5) above:

>>> class Foo:
... def bar(self):
... print "I'm doing Foo.bar()"
... x = 10
...
>>> class Bar(Foo):
... def bar(self):

83

Classes

... print "I'm doing Bar.bar()"

... Foo.bar(self)

... y = 9

...
>>> g = Bar()
>>> Bar.bar(g)
I'm doing Bar.bar()
I'm doing Foo.bar()
>>> g.y
9
>>> g.x
10

Once again, we can see what's going on under the hood by looking at the class dictionaries.

>>> vars(g)
{}
>>> vars(Bar)
{'y': 9, '__module__': '__main__', 'bar': <function bar at 0x4d6a04>,
'__doc__': None}
>>> vars(Foo)
{'x': 10, '__module__': '__main__', 'bar': <function bar at 0x4d6994>,
'__doc__': None}

When we call g.x, it first looks in the vars(g) dictionary, as usual. Also as above, it checks vars(Bar)
next, since g is an instance of Bar. However, thanks to inheritance, Python will check vars(Foo) if it
doesn't find x in vars(Bar).

19.0.6 Special Methods

There are a number of methods which have reserved names which are used for special purposes like
mimicking numerical or container operations, among other things. All of these names begin and end
with two underscores. It is convention that methods beginning with a single underscore are 'private' to
the scope they are introduced within.

Initialization and Deletion

__init__
One of these purposes is constructing an instance, and the special name for this is '__init__'. __init_-
_() is called before an instance is returned (it is not necessary to return the instance manually). As an
example,

class A:
def __init__(self):

print 'A.__init__()'
a = A()

outputs

A.__init__()

__init__() can take arguments, in which case it is necessary to pass arguments to the class in order to
create an instance. For example,

84

External links

class Foo:
def __init__ (self, printme):

print printme
foo = Foo('Hi!')

outputs

Hi!

Here is an example showing the difference between using __init__() and not using __init__():

class Foo:
def __init__ (self, x):

print x
foo = Foo('Hi!')
class Foo2:

def setx(self, x):
print x

f = Foo2()
Foo2.setx(f,'Hi!')

outputs

Hi!
Hi!

__del__
Similarly, '__del__' is called when an instance is destroyed; e.g. when it is no longer referenced.

Representation

85

Classes

__str__
Converting an object to a string, as with the
print statement or with the str() conversion
function, can be overridden by overriding _-
_str__. Usually, __str__returns a formatted
version of the objects content. This will NOT
usually be something that can be executed.
For example:

class Bar:
def __init__ (self, iamthis):

self.iamthis = iamthis
def __str__ (self):

return self.iamthis
bar = Bar('apple')
print bar

outputs apple

__repr__
This function is much like __str__(). If __-
str__is not present but this one is, this func-
tion's output is used instead for printing. _-
_repr__is used to return a representation of
the object in string form. In general, it can be
executed to get back the original object.
For example:

class Bar:
def __init__ (self, iamthis):

self.iamthis = iamthis
def __repr__(self):

return "Bar('%s')" % self.iamthis
bar = Bar('apple')
bar

outputs (note the difference: now is not nec-
essary to put it inside a print) Bar('apple')

String Representation Override Func-
tions
Function Operator
__str__ str(A)
__repr__ repr(A)
__unicode__ unicode(x) (2.x

only)

Attributes

86

External links

__setattr__
This is the function which is in charge of set-
ting attributes of a class. It is provided with
the name and value of the variables being as-
signed. Each class, of course, comes with a
default __setattr__which simply sets the value
of the variable, but we can override it.

>>> class Unchangable:
... def __setattr__(self, name, value):
... print "Nice try"
...
>>> u = Unchangable()
>>> u.x = 9
Nice try
>>> u.x

Traceback (most recent call last): File
"<stdin>", line 1, in ? AttributeError: Un-
changable instance has no attribute 'x'

__getattr___
Similar to __setattr__, except this function is
called when we try to access a class member,
and the default simply returns the value.

>>> class HiddenMembers:
... def __getattr__(self, name):
... return "You don't get to see " + name
...
>>> h = HiddenMembers()
>>> h.anything
"You don't get to see anything"

__delattr__
This function is called to delete an attribute.

>>> class Permanent:
... def __delattr__(self, name):
... print name, "cannot be deleted"
...
>>> p = Permanent()
>>> p.x = 9
>>> del p.x
x cannot be deleted
>>> p.x
9

Attribute Override Functions
Function Indirect

form
Direct
Form

__getattr__ getattr(A, B) A.B
__setattr__ setattr(A, B,

C)
A.B = C

__delattr__ delattr(A, B) del A.B

Operator Overloading

Operator overloading allows us to use the built-in Python syntax and operators to call functions which
we define.

87

Classes

Binary Operators

If a class has the __add__function, we can
use the '+' operator to add instances of the
class. This will call __add__with the two in-
stances of the class passed as parameters, and
the return value will be the result of the addi-
tion.

>>> class FakeNumber:
... n = 5
... def __add__(A,B):
... return A.n + B.n
...
>>> c = FakeNumber()
>>> d = FakeNumber()
>>> d.n = 7
>>> c + d
12

To override the augmented assignment3
operators, merely add 'i' in front of the normal
binary operator, i.e. for '+=' use '__iadd__-
' instead of '__add__'. The function will be
given one argument, which will be the object
on the right side of the augmented assignment
operator. The returned value of the function
will then be assigned to the object on the left
of the operator.

>>> c.__imul__ = lambda B: B.n - 6
>>> c *= d
>>> c
1

It is important to note that the augmented
assignment4 operators will also use the nor-
mal operator functions if the augmented op-
erator function hasn't been set directly. This
will work as expected, with "__add__" being
called for "+=" and so on.

>>> c = FakeNumber()
>>> c += d
>>> c
12

Binary Operator Override Functions
Function Operator
__add__ A + B
__sub__ A - B
__mul__ A * B
__truediv__ A / B
__floordiv__ A // B
__mod__ A % B
__pow__ A ** B
__and__ A & B
__or__ A | B
__xor__ A ˆ B
__eq__ A == B
__ne__ A != B
__gt__ A > B
__lt__ A < B
__ge__ A >= B
__le__ A <= B
__lshift__ A << B
__rshift__ A >> B
__contains__ A in B

A not in B

Unary Operators

3 Chapter 12.6 on page 50
4 Chapter 12.6 on page 50

88

External links

Unary operators will be passed simply the
instance of the class that they are called on.

>>> FakeNumber.__neg__ = lambda A : A.n + 6
>>> -d
13

Unary Operator Override Functions
Function Operator
__pos__ +A
__neg__ -A
__inv__ ˜A
__abs__ abs(A)
__len__ len(A)

Item Operators

89

Classes

It is also possible in Python to override the
indexing and slicing5 operators. This al-
lows us to use the class[i] and class[a:b] syn-
tax on our own objects.
The simplest form of item operator is __-
getitem__. This takes as a parameter the in-
stance of the class, then the value of the in-
dex.

>>> class FakeList:
... def __getitem__(self,index):
... return index * 2
...
>>> f = FakeList()
>>> f['a']
'aa'

We can also define a function for the syntax
associated with assigning a value to an item.
The parameters for this function include the
value being assigned, in addition to the pa-
rameters from __getitem__

>>> class FakeList:
... def __setitem__(self,index,value):
... self.string = index + " is now " + value
...
>>> f = FakeList()
>>> f['a'] = 'gone'
>>> f.string
'a is now gone'

We can do the same thing with slices. Once
again, each syntax has a different parameter
list associated with it.

>>> class FakeList:
... def __getslice___(self,start,end):
... return str(start) + " to " + str(end)
...
>>> f = FakeList()
>>> f[1:4]
'1 to 4'

Keep in mind that one or both of the start and
end parameters can be blank in slice syntax.
Here, Python has default value for both the
start and the end, as show below.

>> f[:]
'0 to 2147483647'

Note that the default value for the end of the
slice shown here is simply the largest pos-
sible signed integer on a 32-bit system, and
may vary depending on your system and C
compiler.
• __setslice__has the parameters
(self,start,end,value)

We also have operators for deleting items and
slices.
• __delitem__has the parameters (self,index)
• __delslice__has the parameters
(self,start,end)

Note that these are the same as __getitem__-
and __getslice__.

Item Operator Override Functions
Function Operator
__getitem__ C[i]
__setitem__ C[i] = v
__delitem__ del C[i]
__getslice__ C[s:e]
__setslice__ C[s:e] = v
__delslice__ del C[s:e]

5 Chapter 8.1.1 on page 24

90

External links

Other Overrides

Other Override Functions
Function Operator
__cmp__ cmp(x, y)
__hash__ hash(x)
__nonzero__ bool(x)
__call__ f(x)
__iter__ iter(x)
__reversed__ reversed(x) (2.6+)
__divmod__ divmod(x, y)
__int__ int(x)
__long__ long(x)
__float__ float(x)
__complex__ complex(x)
__hex__ hex(x)
__oct__ oct(x)
__index__
__copy__ copy.copy(x)
__deepcopy__ copy.deepcopy(x)
__sizeof__ sys.getsizeof(x)

(2.6+)
__trunc__ math.trunc(x) (2.6+)
__format__ format(x, ...) (2.6+)

19.0.7 Programming Practices

The flexibility of python classes means that classes can adopt a varied set of behaviors. For the sake
of understandability, however, it's best to use many of Python's tools sparingly. Try to declare all
methods in the class definition, and always use the <class>.<member> syntax instead of __dict__-
whenever possible. Look at classes in C++6 and Java7 to see what most programmers will expect
from a class.

Encapsulation

Since all python members of a python class are accessible by functions/methods outside the class,
there is no way to enforce encapsulation8 short of overriding __getattr__, __setattr__and __delattr_-
_. General practice, however, is for the creator of a class or module to simply trust that users will use
only the intended interface and avoid limiting access to the workings of the module for the sake of users
who do need to access it. When using parts of a class or module other than the intended interface, keep

6 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses
7 http://en.wikipedia.org/wiki/Class%20%28computer%20science%29%23Java
8 http://en.wikipedia.org/wiki/Information%20Hiding

91

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses
http://en.wikipedia.org/wiki/Class%20%28computer%20science%29%23Java
http://en.wikipedia.org/wiki/Information%20Hiding

Classes

in mind that the those parts may change in later versions of the module, and you may even cause errors
or undefined behaviors in the module.

Doc Strings

When defining a class, it is convention to document the class using a string literal at the start of the
class definition. This string will then be placed in the __doc__attribute of the class definition.

>>> class Documented:
... """This is a docstring"""
... def explode(self):
... """
... This method is documented, too! The coder is really serious about
... making this class usable by others who don't know the code as well
... as he does.
...
... """
... print "boom"
>>> d = Documented()
>>> d.__doc__
'This is a docstring'

Docstrings are a very useful way to document your code. Even if you never write a single piece of
separate documentation (and let's admit it, doing so is the lowest priority for many coders), including
informative docstrings in your classes will go a long way toward making them usable.

Several tools exist for turning the docstrings in Python code into readable API documentation, e.g.,
EpyDoc9.

Don't just stop at documenting the class definition, either. Each method in the class should have its own
docstring as well. Note that the docstring for the method explode in the example class Documented
above has a fairly lengthy docstring that spans several lines. Its formatting is in accordance with the
style suggestions of Python's creator, Guido van Rossum.

Adding methods at runtime

To a class

It is fairly easy to add methods to a class at runtime. Lets assume that we have a class called Spam and
a function cook. We want to be able to use the function cook on all instances of the class Spam:

class Spam:
def __init__(self):

self.myeggs = 5

def cook(self):
print "cooking %s eggs" % self.myeggs

Spam.cook = cook #add the function to the class Spam
eggs = Spam() #NOW create a new instance of Spam
eggs.cook() #and we are ready to cook!

9 http://epydoc.sourceforge.net/using.html

92

http://epydoc.sourceforge.net/using.html

External links

This will output

cooking 5 eggs

To an instance of a class

It is a bit more tricky to add methods to an instance of a class that has already been created. Lets
assume again that we have a class called Spam and we have already created eggs. But then we notice
that we wanted to cook those eggs, but we do not want to create a new instance but rather use the
already created one:

class Spam:
def __init__(self):

self.myeggs = 5

eggs = Spam()

def cook(self):
print "cooking %s eggs" % self.myeggs

import types
f = types.MethodType(cook, eggs, Spam)
eggs.cook = f

eggs.cook()

Now we can cook our eggs and the last statement will output:

cooking 5 eggs

Using a function

We can also write a function that will make the process of adding methods to an instance of a class
easier.

def attach_method(fxn, instance, myclass):
f = types.MethodType(fxn, instance, myclass)
setattr(instance, fxn.__name__, f)

All we now need to do is call the attach_method with the arguments of the function we want to attach,
the instance we want to attach it to and the class the instance is derived from. Thus our function call
might look like this:

attach_method(cook, eggs, Spam)

Note that in the function add_method we cannot write instance.fxn = f since this would add a
function called fxn to the instance.

93

Classes

fr:Programmation Python/Programmation orienté objet10 pt:Python/Conceitos básicos/-
Classes11

10 http://fr.wikibooks.org/wiki/Programmation%20Python%2FProgrammation%20orient%E9%20objet
11 http://pt.wikibooks.org/wiki/Python%2FConceitos%20b%E1sicos%2FClasses

94

http://fr.wikibooks.org/wiki/Programmation%20Python%2FProgrammation%20orient%E9%20objet
http://pt.wikibooks.org/wiki/Python%2FConceitos%20b%E1sicos%2FClasses

20 MetaClasses

In python, classes are themselves objects. Just as other objects are instances of a particular class,
classes themselves are instances of a metaclass.

20.0.8 Class Factories

The simplest use of python metaclasses is a class factory. This concept makes use of the fact that class
definitions in python are first-class objects1. Such a function can create or modify a class definition,
using the same syntax2 one would normally use in declaring a class definition. Once again, it is useful
to use the model of classes as dictionaries3. First, let's look at a basic class factory:

>>> def StringContainer():
... # define a class
... class String:
... content_string = ""
... def len(self):
... return len(self.content_string)
... # return the class definition
... return String
...
>>> # create the class definition
... container_class = StringContainer()
>>>
>>> # create an instance of the class
... wrapped_string = container_class()
>>>
>>> # take it for a test drive
... wrapped_string.content_string = 'emu emissary'
>>> wrapped_string.len()
12

Of course, just like any other data in python, class definitions can also be modified. Any modifications
to attributes in a class definition will be seen in any instances of that definition, so long as that instance
hasn't overridden the attribute that you're modifying.

>>> def DeAbbreviate(sequence_container):
... sequence_container.length = sequence_container.len
... del sequence_container.len
...
>>> DeAbbreviate(container_class)
>>> wrapped_string.length()
12
>>> wrapped_string.len()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: String instance has no attribute 'len'

1 http://en.wikipedia.org/wiki/First-class%20%28object%29
2 Chapter 19.0.1 on page 79
3 Chapter 19.0.3 on page 80

95

http://en.wikipedia.org/wiki/First-class%20%28object%29

MetaClasses

You can also delete class definitions, but that will not affect instances of the class.

>>> del container_class
>>> wrapped_string2 = container_class()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name 'container_class' is not defined
>>> wrapped_string.length()
12

20.0.9 The type Metaclass

The metaclass for all standard python types is the "type" object.

>>> type(object)
<type 'type'>
>>> type(int)
<type 'type'>
>>> type(list)
<type 'type'>

Just like list, int and object, "type" is itself a normal python object, and is itself an instance of a class.
In this case, it is in fact an instance of itself.

>>> type(type)
<type 'type'>

It can be instantiated to create new class objects similarly to the class factory example above by passing
the name of the new class, the base classes to inherit from, and a dictionary defining the namespace to
use.

For instance, the code:

>>> class MyClass(BaseClass):
... attribute = 42

Could also be written as:

>>> MyClass = type("MyClass", (BaseClass,), {'attribute' : 42})

20.0.10 Metaclasses

It is possible to create a class with a different metaclass than type by setting its __metaclass__attribute
when defining. When this is done, the class, and its subclass will be created using your custom meta-
class. For example

class CustomMetaclass(type):
def __init__(cls, name, bases, dct):

print "Creating class %s using CustomMetaclass" % name
super(CustomMetaclass, cls).__init__(name, bases, dct)

class BaseClass(object):
__metaclass__ = CustomMetaclass

96

External links

class Subclass1(BaseClass):
pass

This will print

Creating class BaseClass using CustomMetaclass
Creating class Subclass1 using CustomMetaclass

By creating a custom metaclass in this way, it is possible to change how the class is constructed. This
allows you to add or remove attributes and methods, register creation of classes and subclasses creation
and various other manipulations when the class is created.

20.0.11 More resources

• Wikipedia article on Aspect Oriented Programming4

• Unifying types and classes in Python 2.25
• O'Reilly Article on Python Metaclasses6

4 http://en.wikipedia.org/wiki/Aspect-oriented_programming
5 http://www.python.org/2.2/descrintro.html
6 http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html

97

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://www.python.org/2.2/descrintro.html
http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html

MetaClasses

98

21 Regular Expression

Python includes a module for working with regular expressions on strings. For more information
about writing regular expressions and syntax not specific to Python, see the regular expressions1
wikibook. Python's regular expression syntax is similar to Perl's2

To start using regular expressions in your Python scripts, just import the "re" module:
import re

21.1 Pattern objects

If you're going to be using the same regexp more than once in a program, or if you just want to keep
the regexps separated somehow, you should create a pattern object, and refer to it later when search-
ing/replacing.

To create a pattern object, use the compile function.

import re
foo = re.compile(r'foo(.{,5})bar', re.I+re.S)

The first argument is the pattern, which matches the string "foo", followed by up to 5 of any character,
then the string "bar", storing the middle characters to a group, which will be discussed later. The
second, optional, argument is the flag or flags to modify the regexp's behavior. The flags themselves
are simply variables referring to an integer used by the regular expression engine. In other languages,
these would be constants, but Python does not have constants. Some of the regular expression functions
do not support adding flags as a parameter when defining the pattern directly in the function, if you
need any of the flags, it is best to use the compile function to create a pattern object.

The r preceding the expression string indicates that it should be treated as a raw string. This should
normally be used when writing regexps, so that backslashes are interpreted literally rather than having
to be escaped.

The different flags are:

Abbreviation Full name Description
re.I re.IGNORECASE Makes the regexp case-

insensitive3

1 http://en.wikibooks.org/wiki/regular%20expressions
2 http://en.wikibooks.org/wiki/Perl%20Programming%2FRegular%20Expressions%20Reference
3 http://en.wikipedia.org/wiki/case%20sensitivity

99

http://en.wikibooks.org/wiki/regular%20expressions
http://en.wikibooks.org/wiki/Perl%20Programming%2FRegular%20Expressions%20Reference
http://en.wikipedia.org/wiki/case%20sensitivity

Regular Expression

Abbreviation Full name Description
re.L re.LOCALE Makes the behavior of some

special sequences (\w, \W,
\b, \B, \s, \S) depen-
dent on the current locale4

re.M re.MULTILINE Makes the ˆ and $ charac-
ters match at the beginning
and end of each line, rather
than just the beginning and
end of the string

re.S re.DOTALL Makes the . character
match every character in-
cluding newlines.

re.U re.UNICODE Makes \w, \W, \b, \B,
\d, \D, \s, \S depen-
dent on Unicode character
properties

re.X re.VERBOSE Ignores whitespace except
when in a character class or
preceded by an non-escaped
backslash, and ignores #
(except when in a charac-
ter class or preceded by an
non-escaped backslash) and
everything after it to the end
of a line, so it can be used as
a comment. This allows for
cleaner-looking regexps.

21.2 Matching and searching

One of the most common uses for regular expressions is extracting a part of a string or testing for the
existence of a pattern in a string. Python offers several functions to do this.

The match and search functions do mostly the same thing, except that the match function will only
return a result if the pattern matches at the beginning of the string being searched, while search will
find a match anywhere in the string.

>>> import re
>>> foo = re.compile(r'foo(.{,5})bar', re.I+re.S)
>>> st1 = 'Foo, Bar, Baz'
>>> st2 = '2. foo is bar'
>>> search1 = foo.search(st1)
>>> search2 = foo.search(st2)
>>> match1 = foo.match(st1)
>>> match2 = foo.match(st2)

4 http://en.wikipedia.org/wiki/locale

100

http://en.wikipedia.org/wiki/locale

Matching and searching

In this example, match2 will be None, because the string st2 does not start with the given pattern. The
other 3 results will be Match objects (see below).

You can also match and search without compiling a regexp:

>>> search3 = re.search('oo.*ba', st1, re.I)

Here we use the search function of the re module, rather than of the pattern object. For most cases, its
best to compile the expression first. Not all of the re module functions support the flags argument and
if the expression is used more than once, compiling first is more efficient and leads to cleaner looking
code.

The compiled pattern object functions also have parameters for starting and ending the search, to search
in a substring of the given string. In the first example in this section, match2 returns no result because
the pattern does not start at the beginning of the string, but if we do:

>>> match3 = foo.match(st2, 3)

it works, because we tell it to start searching at character number 3 in the string.

What if we want to search for multiple instances of the pattern? Then we have two options. We can use
the start and end position parameters of the search and match function in a loop, getting the position to
start at from the previous match object (see below) or we can use the findall and finditer functions. The
findall function returns a list of matching strings, useful for simple searching. For anything slightly
complex, the finditer function should be used. This returns an iterator object, that when used in a loop,
yields Match objects. For example:

>>> str3 = 'foo, Bar Foo. BAR FoO: bar'
>>> foo.findall(str3)
[', ', '. ', ': ']
>>> for match in foo.finditer(str3):
... match.group(1)
...
', '
'. '
': '

If you're going to be iterating over the results of the search, using the finditer function is almost always
a better choice.

21.2.1 Match objects

Match objects are returned by the search andmatch functions, and include information about the pattern
match.

The group function returns a string corresponding to a capture group (part of a regexp wrapped in ())
of the expression, or if no group number is given, the entire match. Using the search1 variable we
defined above:

>>> search1.group()
'Foo, Bar'
>>> search1.group(1)
', '

101

Regular Expression

Capture groups can also be given string names using a special syntax and referred to by
matchobj.group('name'). For simple expressions this is unnecessary, but for more complex
expressions it can be very useful.

You can also get the position of a match or a group in a string, using the start and end functions:

>>> search1.start()
0
>>> search1.end()
8
>>> search1.start(1)
3
>>> search1.end(1)
5

This returns the start and end locations of the entire match, and the start and end of the first (and in this
case only) capture group, respectively.

21.3 Replacing

Another use for regular expressions is replacing text in a string. To do this in Python, use the sub
function.

sub takes up to 3 arguments: The text to replace with, the text to replace in, and, optionally, the
maximum number of substitutions to make. Unlike the matching and searching functions, sub returns
a string, consisting of the given text with the substitution(s) made.

>>> import re
>>> mystring = 'This string has a q in it'
>>> pattern = re.compile(r'(a[n]?)(\w) ')
>>> newstring = pattern.sub(r"\1'\2' ", mystring)
>>> newstring
"This string has a 'q' in it"

This takes any single alphanumeric character (\w in regular expression syntax) preceded by "a" or "an"
and wraps in in single quotes. The \1 and \2 in the replacement string are backreferences to the 2
capture groups in the expression; these would be group(1) and group(2) on a Match object from a
search.

The subn function is similar to sub, except it returns a tuple, consisting of the result string and the
number of replacements made. Using the string and expression from before:

>>> subresult = pattern.subn(r"\1'\2' ", mystring)
>>> subresult
("This string has a 'q' in it", 1)

21.4 Other functions

The re module has a few other functions in addition to those discussed above.

102

External links

The split function splits a string based on a given regular expression:

>>> import re
>>> mystring = '1. First part 2. Second part 3. Third part'
>>> re.split(r'\d\.', mystring)
['', ' First part ', ' Second part ', ' Third part']

The escape function escapes all non-alphanumeric characters in a string. This is useful if you need
to take an unknown string that may contain regexp metacharacters like (and . and create a regular
expression from it.

>>> re.escape(r'This text (and this) must be escaped with a "\" to use in a
regexp.')
'This\\ text\\ \\(and\\ this\\)\\ must\\ be\\ escaped\\ with\\ a\\ \\"\\\\\\"\\
to\\ use\\ in\\ a\\ regexp\\.'

21.5 External links

• Python re documentation5 - Full documentation for the re module, including pattern objects and
match objects

fr:Programmation Python/Regex6

5 http://docs.python.org/library/re.html
6 http://fr.wikibooks.org/wiki/Programmation%20Python%2FRegex

103

http://docs.python.org/library/re.html
http://fr.wikibooks.org/wiki/Programmation%20Python%2FRegex

Regular Expression

104

22 GUI Programming

There are various GUI toolkits to start with.

22.1 Tkinter

Tkinter, a Python wrapper for Tcl/Tk1, comes bundled with Python (at least on Win32 platform
though it can be installed on Unix/Linux and Mac machines) and provides a cross-platform GUI. It is a
relatively simple to learn yet powerful toolkit that provides what appears to be a modest set of widgets.
However, because the Tkinter widgets are extensible, many compound widgets can be created rather
easily (e.g. combo-box, scrolled panes). Because of its maturity and extensive documentation Tkinter
has been designated as the de facto GUI for Python.

To create a very simple Tkinter window frame one only needs the following lines of code:

import Tkinter

root = Tkinter.Tk()
root.mainloop()

From an object-oriented perspective one can do the following:

import Tkinter

class App:
def __init__(self, master):

button = Tkinter.Button(master, text="I'm a Button.")
button.pack()

if __name__ == '__main__':
root = Tkinter.Tk()
app = App(root)
root.mainloop()

To learn more about Tkinter visit the following links:

• http://www.astro.washington.edu/users/rowen/TkinterSummary.html2 <- A summary

http://infohost.nmt.edu/tcc/help/lang/python/tkinter.html3 <- A tutorial

• http://www.pythonware.com/library/tkinter/introduction/4 <- A reference

1 http://en.wikibooks.org/wiki/Programming%3ATcl%20
2 http://www.astro.washington.edu/users/rowen/TkinterSummary.html
3 http://infohost.nmt.edu/tcc/help/lang/python/tkinter.html
4 http://www.pythonware.com/library/tkinter/introduction/

105

http://en.wikibooks.org/wiki/Programming%3ATcl%20
http://www.astro.washington.edu/users/rowen/TkinterSummary.html
http://infohost.nmt.edu/tcc/help/lang/python/tkinter.html
http://www.pythonware.com/library/tkinter/introduction/

GUI Programming

22.2 PyGTK

See also book PyGTK For GUI Programming5

PyGTK6 provides a convenient wrapper for the GTK+7 library for use in Python programs, taking
care of many of the boring details such as managing memory and type casting. The bare GTK+ toolkit
runs on Linux, Windows, and Mac OS X (port in progress), but the more extensive features --- when
combined with PyORBit and gnome-python --- require a GNOME8 install, and can be used to write
full featured GNOME applications.

Home Page9

22.3 PyQt

PyQt is a wrapper around the cross-platform Qt C++ toolkit10. It has many widgets and support
classes11 supporting SQL, OpenGL, SVG, XML, and advanced graphics capabilities. A PyQt hello
world example:

from PyQt4.QtCore import *
from PyQt4.QtGui import *

class App(QApplication):
def __init__(self, argv):

super(App, self).__init__(argv)
self.msg = QLabel("Hello, World!")
self.msg.show()

if __name__ == "__main__":
import sys
app = App(sys.argv)
sys.exit(app.exec_)

PyQt12 is a set of bindings for the cross-platform Qt13 application framework. PyQt v4 supports Qt4
and PyQt v3 supports Qt3 and earlier.

22.4 wxPython

Bindings for the cross platform toolkit wxWidgets14. WxWidgets is available on Windows, Macin-
tosh, and Unix/Linux.

5 http://en.wikibooks.org/wiki/PyGTK%20For%20GUI%20Programming
6 http://www.pygtk.org/
7 http://www.gtk.org
8 http://www.gnome.org
9 http://www.pygtk.org/
10 http://www.trolltech.com/products/qt
11 http://www.riverbankcomputing.com/Docs/PyQt4/html/classes.html
12 http://www.riverbankcomputing.co.uk/pyqt/
13 http://en.wikibooks.org/wiki/Qt
14 http://www.wxwidgets.org/

106

http://en.wikibooks.org/wiki/PyGTK%20For%20GUI%20Programming
http://www.pygtk.org/
http://www.gtk.org
http://www.gnome.org
http://www.pygtk.org/
http://www.trolltech.com/products/qt
http://www.riverbankcomputing.com/Docs/PyQt4/html/classes.html
http://www.riverbankcomputing.co.uk/pyqt/
http://en.wikibooks.org/wiki/Qt
http://www.wxwidgets.org/

Dabo

import wx

class test(wx.App):
def __init__(self):

wx.App.__init__(self, redirect=False)

def OnInit(self):
frame = wx.Frame(None, -1,

"Test",
pos=(50,50), size=(100,40),
style=wx.DEFAULT_FRAME_STYLE)

button = wx.Button(frame, -1, "Hello World!", (20, 20))
self.frame = frame
self.frame.Show()
return True

if __name__ == '__main__':
app = test()
app.MainLoop()

• wxPython15

22.5 Dabo

Dabo is a full 3-tier application framework. Its UI layer wraps wxPython, and greatly simplifies the
syntax.

import dabo
dabo.ui.loadUI("wx")

class TestForm(dabo.ui.dForm):
def afterInit(self):

self.Caption = "Test"
self.Position = (50, 50)
self.Size = (100, 40)
self.btn = dabo.ui.dButton(self, Caption="Hello World",

OnHit=self.onButtonClick)
self.Sizer.append(self.btn, halign="center", border=20)

def onButtonClick(self, evt):
dabo.ui.info("Hello World!")

if __name__ == '__main__':
app = dabo.ui.dApp()
app.MainFormClass = TestForm
app.start()

• Dabo16

15 http://wxpython.org/
16 http://dabodev.com/

107

http://wxpython.org/
http://dabodev.com/

GUI Programming

22.6 pyFltk

pyFltk17 is a Python wrapper for the FLTK18, a lightweight cross-platform GUI toolkit. It is very
simple to learn and allows for compact user interfaces.

The "Hello World" example in pyFltk looks like:

from fltk import *

window = Fl_Window(100, 100, 200, 90)
button = Fl_Button(9,20,180,50)
button.label("Hello World")
window.end()
window.show()
Fl.run()

22.7 Other Toolkits

• PyKDE19 - Part of the kdebindings package, it provides a python wrapper for the KDE libraries.
• PyXPCOM20 provides a wrapper around the Mozilla XPCOM21 component architecture, thereby
enabling the use of standalone XUL22 applications in Python. The XUL toolkit has traditionally been
wrapped up in various other parts of XPCOM, but with the advent of libxul and XULRunner23
this should become more feasible.

pt:Python/Programação com GUI24

17 http://pyfltk.sourceforge.net/
18 http://www.fltk.org/
19 http://www.riverbankcomputing.co.uk/pykde/index.php
20 http://developer.mozilla.org/en/docs/PyXPCOM
21 http://developer.mozilla.org/en/docs/XPCOM
22 http://developer.mozilla.org/en/docs/XUL
23 http://developer.mozilla.org/en/docs/XULRunner
24 http://pt.wikibooks.org/wiki/Python%2FPrograma%E7%E3o%20com%20GUI

108

http://pyfltk.sourceforge.net/
http://www.fltk.org/
http://www.riverbankcomputing.co.uk/pykde/index.php
http://developer.mozilla.org/en/docs/PyXPCOM
http://developer.mozilla.org/en/docs/XPCOM
http://developer.mozilla.org/en/docs/XUL
http://developer.mozilla.org/en/docs/XULRunner
http://pt.wikibooks.org/wiki/Python%2FPrograma%E7%E3o%20com%20GUI

23 Game Programming in Python

23.1 3D Game Programming

23.1.1 3D Game Engine with a Python binding

• Irrlicht Enginehttp://irrlicht.sourceforge.net/1 (Python bindingwebsite: http://pypi.python.org/pypi/pyirrlicht2
)

• Ogre Enginehttp://www.ogre3d.org/3 (Python bindingwebsite: http://www.python-ogre.org/4
)

Both are very good free open source C++ 3D game Engine with a Python binding.

• CrystalSpace5 is a free cross-platform software development kit for real-time 3D graphics, with
particular focus on games. Crystal Space is accessible from Python in two ways: (1) as a Crystal
Space plugin module in which C++ code can call upon Python code, and in which Python code can
call upon Crystal Space; (2) as a pure Python module named ‘cspace’ which one can ‘import’ from
within Python programs. To use the first option, load the ‘cspython’ plugin as you would load any
other Crystal Space plugin, and interact with it via the SCF ‘iScript’ interface .The second approach
allows you to write Crystal Space applications entirely in Python, without any C++ coding. CS
Wiki6

23.1.2 3D Game Engines written for Python

Engines designed for Python from scratch.

• Blender7 is an impressive 3D tool with a fully integrated 3D graphics creation suite allowing mod-
eling, animation, rendering, post-production, real-time interactive 3D and game creation and play-
back with cross-platform compatibility. The 3D game engine uses an embedded python interpreter
to make 3D games.

• PySoy8 is a 3d cloud game engine for Python 3. It was designed for rapid development with an
intuitive API that gets new game developers started quickly. The cloud gaming9 design allows
PySoy games to be played on a server without downloading them, greatly reducing the complexity

1 http://irrlicht.sourceforge.net/
2 http://pypi.python.org/pypi/pyirrlicht
3 http://www.ogre3d.org/
4 http://www.python-ogre.org/
5 http://www.crystalspace3d.org
6 http://en.wikipedia.org/wiki/Crystal_Space
7 http://www.blender.org/
8 http://www.pysoy.org/
9 http://en.wikipedia.org/wiki/Cloud_gaming

109

http://irrlicht.sourceforge.net/
http://pypi.python.org/pypi/pyirrlicht
http://www.ogre3d.org/
http://www.python-ogre.org/
http://www.crystalspace3d.org
http://en.wikipedia.org/wiki/Crystal_Space
http://www.blender.org/
http://www.pysoy.org/
http://en.wikipedia.org/wiki/Cloud_gaming

Game Programming in Python

of game distribution. XMPP10 accounts (such as Jabber or GMail) can be used for online gaming
identities, chat, and initiating connections to game servers. PySoy is released under the GNU AGPL
license11.

• Soya12 is a 3D game engine with an easy to understand design. Its written in the Pyrex13 program-
ming language and uses Cal3d for animation and ODE14 for physics. Soya is available under the
GNU GPL license15.

• Panda3D16 is a 3D game engine. It's a library written in C++ with Python bindings. Panda3D is
designed in order to support a short learning curve and rapid development. This software is avail-
able for free download with source code under the BSD License. The development was started by
[Disney]. Now there are many projects made with Panda3D, such as Disney's Pirate's of the
Caribbean Online17, ToonTown18, Building Virtual World19, Schell Games20 and many
others. Panda3D supports several features: Procedural Geometry, Animated Texture, Render to tex-
ture, Track motion, fog, particle system, and many others.

• CrystalSpace21 Is a 3D game engine, with a Python bindings, named * PyCrystal22, viewWikipedia
page of * CrystalSpace23.

23.2 2D Game Programming

• Pygame24 is a cross platform Python library which wraps SDL25. It provides many features like
Sprite groups and sound/image loading and easy changing of an objects position. It also provides
the programmer access to key and mouse events.

• Phil's Pygame Utilities (PGU)26 is a collection of tools and libraries that enhance Pygame. Tools
include a tile editor and a level editor27 (tile, isometric, hexagonal). GUI enhancements include
full featured GUI, HTML rendering, document layout, and text rendering. The libraries include a
sprite and tile engine28 (tile, isometric, hexagonal), a state engine, a timer, and a high score system.
(Beta with last update March, 2007. APIs to be deprecated and isometric and hexagonal support
is currently Alpha and subject to change.) [Update 27/02/08 Author indicates he is not currently
actively developing this library and anyone that is willing to develop their own scrolling isometric
library offering can use the existing code in PGU to get them started.]

10 http://en.wikipedia.org/wiki/XMPP
11 http://en.wikipedia.org/wiki/GNU_AGPL
12 http://www.soya3d.org/
13 http://en.wikipedia.org/wiki/Pyrex%20programming%20language
14 http://en.wikipedia.org/wiki/Open%20Dynamics%20Engine
15 http://en.wikipedia.org/wiki/GNU_GPL
16 http://www.panda3d.org/
17 http://disney.go.com/pirates/online/
18 http://www.toontown.com/
19 http://www.etc.cmu.edu/bvw
20 http://www.schellgames.com
21 http://www.crystalspace3d.org/
22 http://www.crystalspace3d.org/main/PyCrystal
23 http://en.wikipedia.org/wiki/Crystalspace
24 http://en.wikipedia.org/wiki/Pygame
25 http://en.wikipedia.org/wiki/SDL
26 http://www.imitationpickles.org/pgu/wiki/index
27 http://en.wikipedia.org/wiki/Level_editor
28 http://en.wikipedia.org/wiki/Tile_engine

110

http://en.wikipedia.org/wiki/XMPP
http://en.wikipedia.org/wiki/GNU_AGPL
http://www.soya3d.org/
http://en.wikipedia.org/wiki/Pyrex%20programming%20language
http://en.wikipedia.org/wiki/Open%20Dynamics%20Engine
http://en.wikipedia.org/wiki/GNU_GPL
http://www.panda3d.org/
http://disney.go.com/pirates/online/
http://www.toontown.com/
http://www.etc.cmu.edu/bvw
http://www.schellgames.com
http://www.crystalspace3d.org/
http://www.crystalspace3d.org/main/PyCrystal
http://en.wikipedia.org/wiki/Crystalspace
http://en.wikipedia.org/wiki/Pygame
http://en.wikipedia.org/wiki/SDL
http://www.imitationpickles.org/pgu/wiki/index
http://en.wikipedia.org/wiki/Level_editor
http://en.wikipedia.org/wiki/Tile_engine

See Also

• Pyglet29 is a cross-platform windowing and multimedia library for Python with no external depen-
dencies or installation requirements. Pyglet provides an object-oriented programming interface for
developing games and other visually-rich applications for Windows30, Mac OS X31 and Linux32.
Pyglet allows programs to open multiple windows on multiple screens, draw in those windows with
OpenGL, and play back audio and video in most formats. Unlike similar libraries available, pyglet
has no external dependencies (such as SDL) and is written entirely in Python. Pyglet is available
under a BSD-Style license33.

• Kivy34 Kivy is a library for developing multi-touch applications. It is completely cross-platform
(Linux/OSX/Win &Android with OpenGL ES2). It comes with native support for manymulti-touch
input devices, a growing library of multi-touch aware widgets and hardware accelerated OpenGL
drawing. Kivy is designed to let you focus on building custom and highly interactive applications
as quickly and easily as possible.

• Rabbyt35 A fast Sprite36 library for Python with game development in mind. With Rabbyt Anims,
even old graphics cards can produce very fast animations of 2,400 or more sprites handling position,
rotation, scaling, and color simultaneously.

23.3 See Also

• 10 Lessons Learned 37- How To Build a Game In A Week From Scratch With No Budget

29 http://www.pyglet.org/
30 http://en.wikipedia.org/wiki/Windows
31 http://en.wikipedia.org/wiki/Mac_OS_X
32 http://en.wikipedia.org/wiki/Linux
33 http://en.wikipedia.org/wiki/BSD_licenses
34 http://kivy.org/
35 http://arcticpaint.com/projects/rabbyt/
36 http://en.wikipedia.org/wiki/Sprite_%28computer_graphics%29
37 http://www.gamedev.net/reference/articles/article2259.asp

111

http://www.pyglet.org/
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/BSD_licenses
http://kivy.org/
http://arcticpaint.com/projects/rabbyt/
http://en.wikipedia.org/wiki/Sprite_%28computer_graphics%29
http://www.gamedev.net/reference/articles/article2259.asp

Game Programming in Python

112

24 Sockets

24.1 HTTP Client

Make a very simple HTTP client

import socket
s = socket.socket()
s.connect(('localhost', 80))
s.send('GET / HTTP/1.1\nHost:localhost\n\n')
s.recv(40000) # receive 40000 bytes

24.2 NTP/Sockets

Connecting to and reading an NTP time server, returning the time as follows

ntpps picoseconds portion of time
ntps seconds portion of time
ntpms milliseconds portion of time
ntpt 64-bit ntp time, seconds in upper 32-bits, picoseconds in lower
32-bits

113

Sockets

114

25 Files

25.1 File I/O

Read entire file:

inputFileText = open("testit.txt", "r").read()
print(inputFileText)

In this case the "r" parameter means the file will be opened in read-only mode.

Read certain amount of bytes from a file:

inputFileText = open("testit.txt", "r").read(123)
print(inputFileText)

When opening a file, one starts reading at the beginning of the file, if one would want more random
access to the file, it is possible to use seek() to change the current position in a file and tell() to
get to know the current position in the file. This is illustrated in the following example:

>>> f=open("/proc/cpuinfo","r")
>>> f.tell()
0L
>>> f.read(10)
'processor\t'
>>> f.read(10)
': 0\nvendor'
>>> f.tell()
20L
>>> f.seek(10)
>>> f.tell()
10L
>>> f.read(10)
': 0\nvendor'
>>> f.close()
>>> f
<closed file '/proc/cpuinfo', mode 'r' at 0xb7d79770>

Here a file is opened, twice ten bytes are read, tell() shows that the current offset is at position 20,
now seek() is used to go back to position 10 (the same position where the second read was started) and
ten bytes are read and printed again. And when no more operations on a file are needed the close()
function is used to close the file we opened.

Read one line at a time:

for line in open("testit.txt", "r"):
print line

In this case readlines() will return an array containing the individual lines of the file as array entries.
Reading a single line can be done using the readline() function which returns the current line as a

115

Files

string. This example will output an additional newline between the individual lines of the file, this is
because one is read from the file and print introduces another newline.

Write to a file requires the second parameter of open() to be "w", this will overwrite the existing
contents of the file if it already exists when opening the file:

outputFileText = "Here's some text to save in a file"
open("testit.txt", "w").write(outputFileText)

Append to a file requires the second parameter of open() to be "a" (from append):

outputFileText = "Here's some text to add to the existing file."
open("testit.txt", "a").write(outputFileText)

Note that this does not add a line break between the existing file content and the string to be added.

As another important example, if you want to read a list of numbers in a file(both in different lines, and
same lines), and put the numbers in one line near each other, separate the numbers in different lines,
in a list, one fast way would be:

f = open("C:\Documents and Settings\Pardis Rayan\Desktop\SCC\SCC.txt","r")
g = [[int(i) for i in line.split()] for line in f]

25.2 Testing Files

Determine whether path exists:

import os
os.path.exists('<path string>')

When working on systems such as Microsoft Windows™, the directory separators will conflict with the
path string. To get around this, do the following:

import os
os.path.exists('C:\\windows\\example\\path')

A better way however is to use "raw", or r:

import os
os.path.exists(r'C:\windows\example\path')

But there are some other convenient functions in os.path, where path.code.exists() only con-
firms whether or not path exists, there are functions which let you know if the path is a file, a directory,
a mount point or a symlink. There is even a function os.path.realpath() which reveals the true
destination of a symlink:

>>> import os
>>> os.path.isfile("/")
False
>>> os.path.isfile("/proc/cpuinfo")
True
>>> os.path.isdir("/")
True
>>> os.path.isdir("/proc/cpuinfo")
False

116

Common File Operations

>>> os.path.ismount("/")
True
>>> os.path.islink("/")
False
>>> os.path.islink("/vmlinuz")
True
>>> os.path.realpath("/vmlinuz")
'/boot/vmlinuz-2.6.24-21-generic'

25.3 Common File Operations

To copy or move a file, use the shutil library.

import shutil
shutil.move("originallocation.txt","newlocation.txt")
shutil.copy("original.txt","copy.txt")

To perform a recursive copy it is possible to use copytree(), to perform a recursive remove it is
possible to use rmtree()

import shutil
shutil.copytree("dir1","dir2")
shutil.rmtree("dir1")

To remove an individual file there exists the remove() function in the os module:

import os
os.remove("file.txt")

117

Files

118

26 Database Programming

26.1 Generic Database Connectivity using ODBC

The Open Database Connectivity1 (ODBC) API standard allows transparent connections with any
database that supports the interface. This includes most popular databases, such as PostgreSQL2 or
Microsoft Access3. The strengths of using this interface is that a Python script or module can be used
on different databases by only modifying the connection string.

There are three ODBC modules for Python:

1. PythonWin ODBC Module: provided by Mark Hammond with the PythonWin4 package
for Microsoft Windows (only). This is a minimal implementation of ODBC, and conforms to
Version 1.0 of the Python Database API. Although it is stable, it will likely not be developed
any further.5

2. mxODBC: a commercial Python package (http://www.egenix.com/products/python/mxODBC/),6
which features handling of DateTime objects and prepared statements (using parameters).

3. pyodbc: an open-source Python package (http://code.google.com/p/pyodbc),7 which uses
only native Python data-types and uses prepared statements for increased performance. The
present version supports the Python Database API Specification v2.0.8

26.1.1 pyodbc

An example using the pyodbc Python package with a Microsoft Access file (although this database
connection could just as easily be a MySQL database):

import pyodbc

DBfile = '/data/MSAccess/Music_Library.mdb'
conn = pyodbc.connect('DRIVER={Microsoft Access Driver (*.mdb)};DBQ='+DBfile)
cursor = conn.cursor()

SQL = 'SELECT Artist, AlbumName FROM RecordCollection ORDER BY Year;'
for row in cursor.execute(SQL): # cursors are iterable

print row.Artist, row.AlbumName

1 http://en.wikipedia.org/wiki/Open%20Database%20Connectivity
2 http://en.wikipedia.org/wiki/PostgreSQL
3 http://en.wikipedia.org/wiki/Microsoft%20Access
4 http://starship.python.net/crew/mhammond/win32/
5 Hammond, M. Python Programming on Win32 . O'Reilly , , 2000
6 http://www.egenix.com/products/python/mxODBC/),
7 http://code.google.com/p/pyodbc),
8 Python Database API Specification v2.0 9. Python . Retrieved

119

http://en.wikipedia.org/wiki/Open%20Database%20Connectivity
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/Microsoft%20Access
http://starship.python.net/crew/mhammond/win32/
http://www.egenix.com/products/python/mxODBC/),
http://code.google.com/p/pyodbc),

Database Programming

cursor.close()
conn.close()

Many more features and examples are provided on the pyodbc website.

26.2 Postgres connection in Python

-> see Python Programming/Databases10

26.3 MySQL connection in Python

-> see Python Programming/Databases11

26.4 SQLAlchemy in Action

SQLAlchemy has become the favorite choice for many large Python projects that use databases. A
long, updated list of such projects is listed on the SQLAlchemy site. Additionally, a pretty good tutorial
can be found there, as well. Along with a thin database wrapper, Elixir, it behaves very similarly to
the ORM in Rails, ActiveRecord.

26.5 See also

• Python Programming/Databases12

26.6 References

26.7 External links

• SQLAlchemy13
• SQLObject14
• PEP 24915 - Python Database API Specification v2.0
• Database Topic Guide16 on python.org

10 http://en.wikibooks.org/wiki/Python%20Programming%2FDatabases
11 http://en.wikibooks.org/wiki/Python%20Programming%2FDatabases
12 http://en.wikibooks.org/wiki/Python%20Programming%2FDatabases
13 http://www.sqlalchemy.org/
14 http://www.sqlobject.org/
15 http://www.python.org/dev/peps/pep-0249/
16 http://www.python.org/doc/topics/database/

120

http://en.wikibooks.org/wiki/Python%20Programming%2FDatabases
http://en.wikibooks.org/wiki/Python%20Programming%2FDatabases
http://en.wikibooks.org/wiki/Python%20Programming%2FDatabases
http://www.sqlalchemy.org/
http://www.sqlobject.org/
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/doc/topics/database/

27 Web Page Harvesting

121

Web Page Harvesting

122

28 Threading

Threading in python is used to run multiple threads (tasks, function calls) at the same time. Note
that this does not mean, that they are executed on different CPUs. Python threads will NOT make
your program faster if it already uses 100 % CPU time, probably you then want to look into parallel
programming. If you are interested in parallel progamming with python, please see here1.

Python threads are used in cases where the execution of a task involves some waiting. One example
would be interaction with a service hosted on another computer, such as a webserver. Threading allows
python to execute other code while waiting; this is easily simulated with the sleep function.

28.1 Examples

28.1.1 A Minimal Example with Function Call

Make a thread that prints numbers from 1-10, waits for 1 sec between:

import thread
import time

def loop1_10():
for i in range(1, 11):

time.sleep(1)
print(i)

thread.start_new_thread(loop1_10, ())

28.1.2 A Minimal Example with Object

#!/usr/bin/env python
import threading
import time
from __future__ import print_function

class MyThread(threading.Thread):
def run(self):

print("{} started!".format(self.getName())) # "Thread-x
started!"

time.sleep(1) # Pretend to work for
a second

print("{} finished!".format(self.getName())) # "Thread-x
finishsed!"

if __name__ == '__main__':
for x in range(4): # Four times...

1 http://wiki.python.org/moin/ParallelProcessing

123

http://wiki.python.org/moin/ParallelProcessing

Threading

mythread = MyThread(name = "Thread-{}".format(x + 1)) # ...Instantiate a
thread and pass a unique ID to it

mythread.start() # ...Start the thread
time.sleep(.9) # ...Wait 0.9 seconds

before starting another

This should output:

Thread-1 started!
Thread-2 started!
Thread-1 finished!
Thread-3 started!
Thread-2 finished!
Thread-4 started!
Thread-3 finished!
Thread-4 finished!

Note: this example appears to crash IDLE in Windows XP (seems to work in IDLE 1.2.4 in Windows
XP though)

There seems to be a problem with this, if you replace Sleep(1) with (2) ,and change range (4) to
range(10). Thread -2 finished is the first line before its even started. in WING IDE, Netbeans, eclipse
is fine.

124

29 Extending with C

This gives a minimal Example on how to Extend Python with C. Linux is used for building (feel free
to extend it for other Platforms). If you have any problems, please report them (e.g. on the dicussion
page), I will check back in a while and try to sort them out.

29.1 Using the Python/C API

On an Ubuntu system, you might need to run

$ sudo apt-get install python-dev

• http://docs.python.org/ext/ext.html
• http://docs.python.org/api/api.html

29.1.1 A minimal example

The minimal example we will create now is very similar in behaviour to the following python snippet:

def say_hello(name):
"Greet somebody."
print "Hello %s!" % name

The C source code (hellomodule.c)

#include <Python.h>

static PyObject* say_hello(PyObject* self, PyObject* args)
{

const char* name;

if (!PyArg_ParseTuple(args, "s", &name))
return NULL;

printf("Hello %s!\n", name);

Py_RETURN_NONE;
}

static PyMethodDef HelloMethods[] =
{

{"say_hello", say_hello, METH_VARARGS, "Greet somebody."},
{NULL, NULL, 0, NULL}

};

125

Extending with C

PyMODINIT_FUNC

inithello(void)
{

(void) Py_InitModule("hello", HelloMethods);
}

Building the extension module with GCC for Linux

To build our extension module we create the file setup.py like:

from distutils.core import setup, Extension

module1 = Extension('hello', sources = ['hellomodule.c'])

setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
ext_modules = [module1])

Now we can build our module with

python setup.py build

The module hello.so will end up in build/lib.linux-i686-x.y.

Building the extension module with GCC for Microsoft Windows

Microsoft Windows users can useMinGW1 to compile this from cmd.exe2 using a similar method to
Linux user, as shown above. Assuming gcc is in the PATH environment variable, type:

python setup.py build -cmingw32

The module hello.pyd will end up in build\lib.win32-x.y, which is a Python Dynamic Module
(similar to a DLL).

An alternate way of building the module in Windows is to build a DLL. (This method does not need
an extension module file). From cmd.exe, type:

gcc -c hellomodule.c -I/PythonXY/include
gcc -shared hellomodule.o -L/PythonXY/libs -lpythonXY -o hello.dll

where XY represents the version of Python, such as "24" for version 2.4.

1 http://en.wikipedia.org/wiki/MinGW
2 http://en.wikipedia.org/wiki/cmd.exe

126

http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/cmd.exe

Using the Python/C API

Building the extension module using Microsoft Visual C++

With VC8 distutils is broken. We will use cl.exe from a command prompt instead:

cl /LD hellomodule.c /Ic:\Python24\include c:\Python24\libs\python24.lib
/link/out:hello.dll

Using the extension module

Change to the subdirectory where the file `hello.so` resides. In an interactive python session you can
use the module as follows.

>>> import hello
>>> hello.say_hello("World")
Hello World!

29.1.2 A module for calculating fibonacci numbers

The C source code (fibmodule.c)

#include <Python.h>

int _fib(int n)
{

if (n < 2)
return n;

else
return _fib(n-1) + _fib(n-2);

}

static PyObject* fib(PyObject* self, PyObject* args)
{

int n;

if (!PyArg_ParseTuple(args, "i", &n))
return NULL;

return Py_BuildValue("i", _fib(n));
}

static PyMethodDef FibMethods[] = {
{"fib", fib, METH_VARARGS, "Calculate the Fibonacci numbers."},
{NULL, NULL, 0, NULL}

};

PyMODINIT_FUNC
initfib(void)
{

(void) Py_InitModule("fib", FibMethods);
}

127

Extending with C

The build script (setup.py)

from distutils.core import setup, Extension

module1 = Extension('fib', sources = ['fibmodule.c'])

setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
ext_modules = [module1])

How to use it?

>>> import fib
>>> fib.fib(10)
55

29.2 Using SWIG

Creating the previous example using SWIG is much more straight forward. To follow this path you
need to get SWIG3 up and running first. To install it on an Ubuntu system, you might need to run the
following commands

$ sudo apt-get install libboost-python-dev
$ sudo apt-get install python-dev

After that create two files.

/*hellomodule.c*/

#include <stdio.h>

void say_hello(const char* name) {
printf("Hello %s!\n", name);

}

/*hello.i*/

%module hello
extern void say_hello(const char* name);

Now comes the more difficult part, gluing it all together.

First we need to let SWIG do its work.

swig -python hello.i

This gives us the files `hello.py` and `hello_wrap.c`.

3 http://www.swig.org/

128

http://www.swig.org/

Using SWIG

The next step is compiling (substitute /usr/include/python2.4/ with the correct path for your setup!).

gcc -fpic -c hellomodule.c hello_wrap.c -I/usr/include/python2.4/

Now linking and we are done!

gcc -shared hellomodule.o hello_wrap.o -o _hello.so

The module is used in the following way.

>>> import hello
>>> hello.say_hello("World")
Hello World!

129

Extending with C

130

30 Extending with C++

Boost.Python1 is the de facto standard for writing C++2 extension modules. Boost.Python comes
bundled with the Boost C++ Libraries3. To install it on an Ubuntu system, you might need to run
the following commands

$ sudo apt-get install libboost-python-dev
$ sudo apt-get install python-dev

30.1 A Hello World Example

30.1.1 The C++ source code (hellomodule.cpp)

#include <iostream>

using namespace std;

void say_hello(const char* name) {
cout << "Hello " << name << "!\n";

}

#include <boost/python/module.hpp>
#include <boost/python/def.hpp>
using namespace boost::python;

BOOST_PYTHON_MODULE(hello)
{

def("say_hello", say_hello);
}

30.1.2 setup.py

#!/usr/bin/env python

from distutils.core import setup
from distutils.extension import Extension

setup(name="PackageName",
ext_modules=[

Extension("hello", ["hellomodule.cpp"],
libraries = ["boost_python"])

])

1 http://www.boost.org/libs/python/doc/
2 http://en.wikibooks.org/wiki/C%2B%2B
3 http://www.boost.org/

131

http://www.boost.org/libs/python/doc/
http://en.wikibooks.org/wiki/C%2B%2B
http://www.boost.org/

Extending with C++

Now we can build our module with

python setup.py build

The module `hello.so` will end up in e.g `build/lib.linux-i686-2.4`.

30.1.3 Using the extension module

Change to the subdirectory where the file `hello.so` resides. In an interactive python session you can
use the module as follows.

>>> import hello
>>> hello.say_hello("World")
Hello World!

30.2 An example with CGAL

Some, but not all, functions of the CGAL library have already Python bindings. Here an example is
provided for a case without such a binding and how it might be implemented. The example is taken
from the CGAL Documentation4.

// test.cpp
using namespace std;

/* PYTHON */
#include <boost/python.hpp>
#include <boost/python/module.hpp>
#include <boost/python/def.hpp>
namespace python = boost::python;

/* CGAL */
#include <CGAL/Cartesian.h>
#include <CGAL/Range_segment_tree_traits.h>
#include <CGAL/Range_tree_k.h>

typedef CGAL::Cartesian<double> K;
typedef CGAL::Range_tree_map_traits_2<K, char> Traits;
typedef CGAL::Range_tree_2<Traits> Range_tree_2_type;

typedef Traits::Key Key;
typedef Traits::Interval Interval;

Range_tree_2_type *Range_tree_2 = new Range_tree_2_type;

void create_tree() {

typedef Traits::Key Key;
typedef Traits::Interval Interval;

std::vector<Key> InputList, OutputList;

4 http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/SearchStructures/Chapter_main.html#
Subsection_46.5.1

132

http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/SearchStructures/Chapter_main.html#Subsection_46.5.1
http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/SearchStructures/Chapter_main.html#Subsection_46.5.1

Handling Python objects and errors

InputList.push_back(Key(K::Point_2(8,5.1), 'a'));
InputList.push_back(Key(K::Point_2(1.0,1.1), 'b'));
InputList.push_back(Key(K::Point_2(3,2.1), 'c'));

Range_tree_2->make_tree(InputList.begin(),InputList.end());
Interval win(Interval(K::Point_2(1,2.1),K::Point_2(8.1,8.2)));
std::cout << "\n Window Query:\n";
Range_tree_2->window_query(win, std::back_inserter(OutputList));
std::vector<Key>::iterator current=OutputList.begin();
while(current!=OutputList.end()){

std::cout << " " << (*current).first.x() << "," << (*current).first.y()
<< ":" << (*current).second << std::endl;

current++;
}

std::cout << "\n Done\n";
}

void initcreate_tree() {;}

using namespace boost::python;
BOOST_PYTHON_MODULE(test)
{

def("create_tree", create_tree, "");
}

// setup.py
#!/usr/bin/env python

from distutils.core import setup
from distutils.extension import Extension

setup(name="PackageName",
ext_modules=[

Extension("test", ["test.cpp"],
libraries = ["boost_python"])

])

We then compile and run the module as follows:

$ python setup.py build
$ cd build/lib*
$ python
>>> import test
>>> test.create_tree()
Window Query:
3,2.1:c
8,5.1:a
Done
>>>

30.3 Handling Python objects and errors

One can also handle more complex data, e.g. Python objects like lists. The attributes are accessed
with the extract function executed on the objects "attr" function output. We can also throw errors by
telling the library that an error has occurred and returning. In the following case, we have written a
C++ function called "afunction" which we want to call. The function takes an integer N and a vector of
length N as input, we have to convert the python list to a vector of strings before calling the function.

#include <vector>

133

Extending with C++

using namespace std;

void _afunction_wrapper(int N, boost::python::list mapping) {

int mapping_length = boost::python::extract<int>(mapping.attr("__len__")());
//Do Error checking, the mapping needs to be at least as long as N
if (mapping_length < N) {

PyErr_SetString(PyExc_ValueError,
"The string mapping must be at least of length N");

boost::python::throw_error_already_set();
return;

}

vector<string> mystrings(mapping_length);
for (int i=0; i<mapping_length; i++) {

mystrings[i] = boost::python::extract<char const *>(mapping[i]);
}

//now call our C++ function
_afunction(N, mystrings);

}

using namespace boost::python;
BOOST_PYTHON_MODULE(c_afunction)
{

def("afunction", _afunction_wrapper);
}

134

31 WSGI web programming

135

WSGI web programming

136

32 WSGI Web Programming

32.1 External Resources

http://docs.python.org/library/wsgiref.html

137

WSGI Web Programming

138

33 References

33.1 Language reference

The latest documentation for the standard python libraries and modules can always be found at The
Python.org documents section1

33.2 External links

• Python books available for free download2

• Non-programmers python tutorial3 donated to this project. Wiki version4

• Dive into Python5

• How to think Like a Computer Scientist: Learning with Python6

• A Byte of Python7

• ActiveState Python Cookbook8

• Text Processing in Python9

• Dev Shed's Python Tutorials10
• MakeBot11 - Simple Python IDE designed for teaching game programming to kids.
• SPE - Stani's Python Editor12

1 http://www.python.org/doc/
2 http://www.techbooksforfree.com/perlpython.shtml
3 http://www.honors.montana.edu/~jjc/easytut/easytut/
4 http://en.wikibooks.org/wiki/User%3AJrincayc%2FContents
5 http://www.diveintopython.org/
6 http://www.ibiblio.org/obp/thinkCSpy/
7 http://www.byteofpython.info/
8 http://aspn.activestate.com/ASPN/Python/Cookbook/
9 http://gnosis.cx/TPiP/
10 http://www.devshed.com/c/b/Python/
11 http://stratolab.com/misc/makebot
12 http://pythonide.stani.be

139

http://www.python.org/doc/
http://www.techbooksforfree.com/perlpython.shtml
http://www.honors.montana.edu/~jjc/easytut/easytut/
http://en.wikibooks.org/wiki/User%3AJrincayc%2FContents
http://www.diveintopython.org/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.byteofpython.info/
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://gnosis.cx/TPiP/
http://www.devshed.com/c/b/Python/
http://stratolab.com/misc/makebot
http://pythonide.stani.be

References

140

34 Authors

34.1 Authors of Python textbook

• Quartz251
• Jesdisciple2
• Hannes Röst3

1 http://en.wikibooks.org/wiki/User%3AQuartz25
2 http://en.wikibooks.org/wiki/User%3AJesdisciple
3 http://en.wikibooks.org/wiki/User%3AHannes%20R%F6st

141

http://en.wikibooks.org/wiki/User%3AQuartz25
http://en.wikibooks.org/wiki/User%3AJesdisciple
http://en.wikibooks.org/wiki/User%3AHannes%20R%F6st

Authors

142

35 Contributors

Edits User
1 Adeelq1

3 Adriatikus2
3 Adrignola3

1 Ahornedal4
4 Albmont5
2 Alexander2566
1 Apeigne7
1 ArrowStomper8

50 Artevelde9
2 Auk10

1 Avicennasis11
1 Az156812
1 Baijum8113
1 Beary60514
1 Behnam15

2 Beland16

1 Benrolfe17
2 Betalpha18

3 Bittner19
20 BobGibson20

1 Boyombo21

1 http://en.wikibooks.org/w/index.php?title=User:Adeelq
2 http://en.wikibooks.org/w/index.php?title=User:Adriatikus
3 http://en.wikibooks.org/w/index.php?title=User:Adrignola
4 http://en.wikibooks.org/w/index.php?title=User:Ahornedal
5 http://en.wikibooks.org/w/index.php?title=User:Albmont
6 http://en.wikibooks.org/w/index.php?title=User:Alexander256
7 http://en.wikibooks.org/w/index.php?title=User:Apeigne
8 http://en.wikibooks.org/w/index.php?title=User:ArrowStomper
9 http://en.wikibooks.org/w/index.php?title=User:Artevelde
10 http://en.wikibooks.org/w/index.php?title=User:Auk
11 http://en.wikibooks.org/w/index.php?title=User:Avicennasis
12 http://en.wikibooks.org/w/index.php?title=User:Az1568
13 http://en.wikibooks.org/w/index.php?title=User:Baijum81
14 http://en.wikibooks.org/w/index.php?title=User:Beary605
15 http://en.wikibooks.org/w/index.php?title=User:Behnam
16 http://en.wikibooks.org/w/index.php?title=User:Beland
17 http://en.wikibooks.org/w/index.php?title=User:Benrolfe
18 http://en.wikibooks.org/w/index.php?title=User:Betalpha
19 http://en.wikibooks.org/w/index.php?title=User:Bittner
20 http://en.wikibooks.org/w/index.php?title=User:BobGibson
21 http://en.wikibooks.org/w/index.php?title=User:Boyombo

143

http://en.wikibooks.org/w/index.php?title=User:Adeelq
http://en.wikibooks.org/w/index.php?title=User:Adriatikus
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Ahornedal
http://en.wikibooks.org/w/index.php?title=User:Albmont
http://en.wikibooks.org/w/index.php?title=User:Alexander256
http://en.wikibooks.org/w/index.php?title=User:Apeigne
http://en.wikibooks.org/w/index.php?title=User:ArrowStomper
http://en.wikibooks.org/w/index.php?title=User:Artevelde
http://en.wikibooks.org/w/index.php?title=User:Auk
http://en.wikibooks.org/w/index.php?title=User:Avicennasis
http://en.wikibooks.org/w/index.php?title=User:Az1568
http://en.wikibooks.org/w/index.php?title=User:Baijum81
http://en.wikibooks.org/w/index.php?title=User:Beary605
http://en.wikibooks.org/w/index.php?title=User:Behnam
http://en.wikibooks.org/w/index.php?title=User:Beland
http://en.wikibooks.org/w/index.php?title=User:Benrolfe
http://en.wikibooks.org/w/index.php?title=User:Betalpha
http://en.wikibooks.org/w/index.php?title=User:Bittner
http://en.wikibooks.org/w/index.php?title=User:BobGibson
http://en.wikibooks.org/w/index.php?title=User:Boyombo

Contributors

1 Brian McErlean22

13 CWii23
1 CaffeinatedPonderer24
1 Cburnett25
1 Chesemonkyloma26

6 Chuckhoffmann27

1 Clorox28

2 Convex29

2 Cribe30
1 Cspurrier31
2 DaKrazyJak32

1 Daemonax33

1 Danielkhashabi34
43 Darklama35

1 DavidCary36
11 DavidRoss37
2 Dbolton38

2 Deep shobhit39
4 Derbeth40

1 Dirk Hünniger41
4 Dragonecc42
6 Driscoll43
1 Edleafe44
1 EdoDodo45

3 ElieDeBrauwer46

22 http://en.wikibooks.org/w/index.php?title=User:Brian_McErlean
23 http://en.wikibooks.org/w/index.php?title=User:CWii
24 http://en.wikibooks.org/w/index.php?title=User:CaffeinatedPonderer
25 http://en.wikibooks.org/w/index.php?title=User:Cburnett
26 http://en.wikibooks.org/w/index.php?title=User:Chesemonkyloma
27 http://en.wikibooks.org/w/index.php?title=User:Chuckhoffmann
28 http://en.wikibooks.org/w/index.php?title=User:Clorox
29 http://en.wikibooks.org/w/index.php?title=User:Convex
30 http://en.wikibooks.org/w/index.php?title=User:Cribe
31 http://en.wikibooks.org/w/index.php?title=User:Cspurrier
32 http://en.wikibooks.org/w/index.php?title=User:DaKrazyJak
33 http://en.wikibooks.org/w/index.php?title=User:Daemonax
34 http://en.wikibooks.org/w/index.php?title=User:Danielkhashabi
35 http://en.wikibooks.org/w/index.php?title=User:Darklama
36 http://en.wikibooks.org/w/index.php?title=User:DavidCary
37 http://en.wikibooks.org/w/index.php?title=User:DavidRoss
38 http://en.wikibooks.org/w/index.php?title=User:Dbolton
39 http://en.wikibooks.org/w/index.php?title=User:Deep_shobhit
40 http://en.wikibooks.org/w/index.php?title=User:Derbeth
41 http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
42 http://en.wikibooks.org/w/index.php?title=User:Dragonecc
43 http://en.wikibooks.org/w/index.php?title=User:Driscoll
44 http://en.wikibooks.org/w/index.php?title=User:Edleafe
45 http://en.wikibooks.org/w/index.php?title=User:EdoDodo
46 http://en.wikibooks.org/w/index.php?title=User:ElieDeBrauwer

144

http://en.wikibooks.org/w/index.php?title=User:Brian_McErlean
http://en.wikibooks.org/w/index.php?title=User:CWii
http://en.wikibooks.org/w/index.php?title=User:CaffeinatedPonderer
http://en.wikibooks.org/w/index.php?title=User:Cburnett
http://en.wikibooks.org/w/index.php?title=User:Chesemonkyloma
http://en.wikibooks.org/w/index.php?title=User:Chuckhoffmann
http://en.wikibooks.org/w/index.php?title=User:Clorox
http://en.wikibooks.org/w/index.php?title=User:Convex
http://en.wikibooks.org/w/index.php?title=User:Cribe
http://en.wikibooks.org/w/index.php?title=User:Cspurrier
http://en.wikibooks.org/w/index.php?title=User:DaKrazyJak
http://en.wikibooks.org/w/index.php?title=User:Daemonax
http://en.wikibooks.org/w/index.php?title=User:Danielkhashabi
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:DavidRoss
http://en.wikibooks.org/w/index.php?title=User:Dbolton
http://en.wikibooks.org/w/index.php?title=User:Deep_shobhit
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dragonecc
http://en.wikibooks.org/w/index.php?title=User:Driscoll
http://en.wikibooks.org/w/index.php?title=User:Edleafe
http://en.wikibooks.org/w/index.php?title=User:EdoDodo
http://en.wikibooks.org/w/index.php?title=User:ElieDeBrauwer

Authors of Python textbook

1 Eric Silva47

1 FerranJorba48

8 Fishpi49
21 Flarelocke50
1 Foxj51
1 Fry-kun52

2 Gasto553
1 Greyweather54
1 Guanabot55
1 Guanaco56

4 Gutworth57

4 Hagindaz58
25 Hannes Röst59
2 Howipepper60

15 Hypergeek1461
3 IO62

2 Imapiekindaguy63
1 Intgr64
3 Irvin.sha65

4 JackPotte66
2 Jerf67
1 Jesdisciple68

32 Jguk69

1 Jonathan Webley70
1 Jonbryan71

47 http://en.wikibooks.org/w/index.php?title=User:Eric_Silva
48 http://en.wikibooks.org/w/index.php?title=User:FerranJorba
49 http://en.wikibooks.org/w/index.php?title=User:Fishpi
50 http://en.wikibooks.org/w/index.php?title=User:Flarelocke
51 http://en.wikibooks.org/w/index.php?title=User:Foxj
52 http://en.wikibooks.org/w/index.php?title=User:Fry-kun
53 http://en.wikibooks.org/w/index.php?title=User:Gasto5
54 http://en.wikibooks.org/w/index.php?title=User:Greyweather
55 http://en.wikibooks.org/w/index.php?title=User:Guanabot
56 http://en.wikibooks.org/w/index.php?title=User:Guanaco
57 http://en.wikibooks.org/w/index.php?title=User:Gutworth
58 http://en.wikibooks.org/w/index.php?title=User:Hagindaz
59 http://en.wikibooks.org/w/index.php?title=User:Hannes_R%C3%B6st
60 http://en.wikibooks.org/w/index.php?title=User:Howipepper
61 http://en.wikibooks.org/w/index.php?title=User:Hypergeek14
62 http://en.wikibooks.org/w/index.php?title=User:IO
63 http://en.wikibooks.org/w/index.php?title=User:Imapiekindaguy
64 http://en.wikibooks.org/w/index.php?title=User:Intgr
65 http://en.wikibooks.org/w/index.php?title=User:Irvin.sha
66 http://en.wikibooks.org/w/index.php?title=User:JackPotte
67 http://en.wikibooks.org/w/index.php?title=User:Jerf
68 http://en.wikibooks.org/w/index.php?title=User:Jesdisciple
69 http://en.wikibooks.org/w/index.php?title=User:Jguk
70 http://en.wikibooks.org/w/index.php?title=User:Jonathan_Webley
71 http://en.wikibooks.org/w/index.php?title=User:Jonbryan

145

http://en.wikibooks.org/w/index.php?title=User:Eric_Silva
http://en.wikibooks.org/w/index.php?title=User:FerranJorba
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Flarelocke
http://en.wikibooks.org/w/index.php?title=User:Foxj
http://en.wikibooks.org/w/index.php?title=User:Fry-kun
http://en.wikibooks.org/w/index.php?title=User:Gasto5
http://en.wikibooks.org/w/index.php?title=User:Greyweather
http://en.wikibooks.org/w/index.php?title=User:Guanabot
http://en.wikibooks.org/w/index.php?title=User:Guanaco
http://en.wikibooks.org/w/index.php?title=User:Gutworth
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Hannes_R%C3%B6st
http://en.wikibooks.org/w/index.php?title=User:Howipepper
http://en.wikibooks.org/w/index.php?title=User:Hypergeek14
http://en.wikibooks.org/w/index.php?title=User:IO
http://en.wikibooks.org/w/index.php?title=User:Imapiekindaguy
http://en.wikibooks.org/w/index.php?title=User:Intgr
http://en.wikibooks.org/w/index.php?title=User:Irvin.sha
http://en.wikibooks.org/w/index.php?title=User:JackPotte
http://en.wikibooks.org/w/index.php?title=User:Jerf
http://en.wikibooks.org/w/index.php?title=User:Jesdisciple
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jonathan_Webley
http://en.wikibooks.org/w/index.php?title=User:Jonbryan

Contributors

1 Kayau72

1 Kernigh73

11 LDiracDelta74

1 Legoktm75

1 Lena228976
4 Leopold augustsson77

3 Logictheo78

1 MMJ79
1 ManuelGR80

5 MarceloAraujo81

1 Mattzazami82
1 Maxim kolosov83

4 Microdot84
1 Mithrill200285
1 Monobi86

32 Mr.Z-man87

2 Mshonle88
17 Mwtoews89
3 Myururdurmaz90
2 N313t391
3 Nikai92
1 Nikhil38993
1 NithinBekal94
1 Offpath95

6 Panic2k496

72 http://en.wikibooks.org/w/index.php?title=User:Kayau
73 http://en.wikibooks.org/w/index.php?title=User:Kernigh
74 http://en.wikibooks.org/w/index.php?title=User:LDiracDelta
75 http://en.wikibooks.org/w/index.php?title=User:Legoktm
76 http://en.wikibooks.org/w/index.php?title=User:Lena2289
77 http://en.wikibooks.org/w/index.php?title=User:Leopold_augustsson
78 http://en.wikibooks.org/w/index.php?title=User:Logictheo
79 http://en.wikibooks.org/w/index.php?title=User:MMJ
80 http://en.wikibooks.org/w/index.php?title=User:ManuelGR
81 http://en.wikibooks.org/w/index.php?title=User:MarceloAraujo
82 http://en.wikibooks.org/w/index.php?title=User:Mattzazami
83 http://en.wikibooks.org/w/index.php?title=User:Maxim_kolosov
84 http://en.wikibooks.org/w/index.php?title=User:Microdot
85 http://en.wikibooks.org/w/index.php?title=User:Mithrill2002
86 http://en.wikibooks.org/w/index.php?title=User:Monobi
87 http://en.wikibooks.org/w/index.php?title=User:Mr.Z-man
88 http://en.wikibooks.org/w/index.php?title=User:Mshonle
89 http://en.wikibooks.org/w/index.php?title=User:Mwtoews
90 http://en.wikibooks.org/w/index.php?title=User:Myururdurmaz
91 http://en.wikibooks.org/w/index.php?title=User:N313t3
92 http://en.wikibooks.org/w/index.php?title=User:Nikai
93 http://en.wikibooks.org/w/index.php?title=User:Nikhil389
94 http://en.wikibooks.org/w/index.php?title=User:NithinBekal
95 http://en.wikibooks.org/w/index.php?title=User:Offpath
96 http://en.wikibooks.org/w/index.php?title=User:Panic2k4

146

http://en.wikibooks.org/w/index.php?title=User:Kayau
http://en.wikibooks.org/w/index.php?title=User:Kernigh
http://en.wikibooks.org/w/index.php?title=User:LDiracDelta
http://en.wikibooks.org/w/index.php?title=User:Legoktm
http://en.wikibooks.org/w/index.php?title=User:Lena2289
http://en.wikibooks.org/w/index.php?title=User:Leopold_augustsson
http://en.wikibooks.org/w/index.php?title=User:Logictheo
http://en.wikibooks.org/w/index.php?title=User:MMJ
http://en.wikibooks.org/w/index.php?title=User:ManuelGR
http://en.wikibooks.org/w/index.php?title=User:MarceloAraujo
http://en.wikibooks.org/w/index.php?title=User:Mattzazami
http://en.wikibooks.org/w/index.php?title=User:Maxim_kolosov
http://en.wikibooks.org/w/index.php?title=User:Microdot
http://en.wikibooks.org/w/index.php?title=User:Mithrill2002
http://en.wikibooks.org/w/index.php?title=User:Monobi
http://en.wikibooks.org/w/index.php?title=User:Mr.Z-man
http://en.wikibooks.org/w/index.php?title=User:Mshonle
http://en.wikibooks.org/w/index.php?title=User:Mwtoews
http://en.wikibooks.org/w/index.php?title=User:Myururdurmaz
http://en.wikibooks.org/w/index.php?title=User:N313t3
http://en.wikibooks.org/w/index.php?title=User:Nikai
http://en.wikibooks.org/w/index.php?title=User:Nikhil389
http://en.wikibooks.org/w/index.php?title=User:NithinBekal
http://en.wikibooks.org/w/index.php?title=User:Offpath
http://en.wikibooks.org/w/index.php?title=User:Panic2k4

Authors of Python textbook

1 Pavlix97

22 Pdilley98
1 Perey99
1 Peteparke100
1 Pingveno101

4 Quartz25102
4 QuiteUnusual103
3 Qwertyus104
2 Rdnk105

1 Recent Runes106
1 Remi0o107

31 Remote108
3 Richard001109
3 Robm351110
1 RyanPenner111

14 Sigma 7112
4 Singingwolfboy113
1 Smalls123456114
1 Sol115
1 StephenFerg116

2 Suchenwi117
6 Szeeshanalinaqvi118
1 Tecky2119
1 Tedzzz1120
3 The Kid121

97 http://en.wikibooks.org/w/index.php?title=User:Pavlix
98 http://en.wikibooks.org/w/index.php?title=User:Pdilley
99 http://en.wikibooks.org/w/index.php?title=User:Perey
100 http://en.wikibooks.org/w/index.php?title=User:Peteparke
101 http://en.wikibooks.org/w/index.php?title=User:Pingveno
102 http://en.wikibooks.org/w/index.php?title=User:Quartz25
103 http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
104 http://en.wikibooks.org/w/index.php?title=User:Qwertyus
105 http://en.wikibooks.org/w/index.php?title=User:Rdnk
106 http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
107 http://en.wikibooks.org/w/index.php?title=User:Remi0o
108 http://en.wikibooks.org/w/index.php?title=User:Remote
109 http://en.wikibooks.org/w/index.php?title=User:Richard001
110 http://en.wikibooks.org/w/index.php?title=User:Robm351
111 http://en.wikibooks.org/w/index.php?title=User:RyanPenner
112 http://en.wikibooks.org/w/index.php?title=User:Sigma_7
113 http://en.wikibooks.org/w/index.php?title=User:Singingwolfboy
114 http://en.wikibooks.org/w/index.php?title=User:Smalls123456
115 http://en.wikibooks.org/w/index.php?title=User:Sol
116 http://en.wikibooks.org/w/index.php?title=User:StephenFerg
117 http://en.wikibooks.org/w/index.php?title=User:Suchenwi
118 http://en.wikibooks.org/w/index.php?title=User:Szeeshanalinaqvi
119 http://en.wikibooks.org/w/index.php?title=User:Tecky2
120 http://en.wikibooks.org/w/index.php?title=User:Tedzzz1
121 http://en.wikibooks.org/w/index.php?title=User:The_Kid

147

http://en.wikibooks.org/w/index.php?title=User:Pavlix
http://en.wikibooks.org/w/index.php?title=User:Pdilley
http://en.wikibooks.org/w/index.php?title=User:Perey
http://en.wikibooks.org/w/index.php?title=User:Peteparke
http://en.wikibooks.org/w/index.php?title=User:Pingveno
http://en.wikibooks.org/w/index.php?title=User:Quartz25
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Qwertyus
http://en.wikibooks.org/w/index.php?title=User:Rdnk
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Remi0o
http://en.wikibooks.org/w/index.php?title=User:Remote
http://en.wikibooks.org/w/index.php?title=User:Richard001
http://en.wikibooks.org/w/index.php?title=User:Robm351
http://en.wikibooks.org/w/index.php?title=User:RyanPenner
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Singingwolfboy
http://en.wikibooks.org/w/index.php?title=User:Smalls123456
http://en.wikibooks.org/w/index.php?title=User:Sol
http://en.wikibooks.org/w/index.php?title=User:StephenFerg
http://en.wikibooks.org/w/index.php?title=User:Suchenwi
http://en.wikibooks.org/w/index.php?title=User:Szeeshanalinaqvi
http://en.wikibooks.org/w/index.php?title=User:Tecky2
http://en.wikibooks.org/w/index.php?title=User:Tedzzz1
http://en.wikibooks.org/w/index.php?title=User:The_Kid

Contributors

9 The djinn122

18 Thunderbolt16123
2 Tobych124

2 Tom Morris125
1 Treilly126
2 Unionhawk127

23 Webaware128
1 Wenhaosparty129
1 Whym130

1 WikiNazi131
1 Wilbur.harvey132

59 Withinfocus133
1 Wolf104134

20 Yath135

1 Σ136

122 http://en.wikibooks.org/w/index.php?title=User:The_djinn
123 http://en.wikibooks.org/w/index.php?title=User:Thunderbolt16
124 http://en.wikibooks.org/w/index.php?title=User:Tobych
125 http://en.wikibooks.org/w/index.php?title=User:Tom_Morris
126 http://en.wikibooks.org/w/index.php?title=User:Treilly
127 http://en.wikibooks.org/w/index.php?title=User:Unionhawk
128 http://en.wikibooks.org/w/index.php?title=User:Webaware
129 http://en.wikibooks.org/w/index.php?title=User:Wenhaosparty
130 http://en.wikibooks.org/w/index.php?title=User:Whym
131 http://en.wikibooks.org/w/index.php?title=User:WikiNazi
132 http://en.wikibooks.org/w/index.php?title=User:Wilbur.harvey
133 http://en.wikibooks.org/w/index.php?title=User:Withinfocus
134 http://en.wikibooks.org/w/index.php?title=User:Wolf104
135 http://en.wikibooks.org/w/index.php?title=User:Yath
136 http://en.wikibooks.org/w/index.php?title=User:%CE%A3

148

http://en.wikibooks.org/w/index.php?title=User:The_djinn
http://en.wikibooks.org/w/index.php?title=User:Thunderbolt16
http://en.wikibooks.org/w/index.php?title=User:Tobych
http://en.wikibooks.org/w/index.php?title=User:Tom_Morris
http://en.wikibooks.org/w/index.php?title=User:Treilly
http://en.wikibooks.org/w/index.php?title=User:Unionhawk
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Wenhaosparty
http://en.wikibooks.org/w/index.php?title=User:Whym
http://en.wikibooks.org/w/index.php?title=User:WikiNazi
http://en.wikibooks.org/w/index.php?title=User:Wilbur.harvey
http://en.wikibooks.org/w/index.php?title=User:Withinfocus
http://en.wikibooks.org/w/index.php?title=User:Wolf104
http://en.wikibooks.org/w/index.php?title=User:Yath
http://en.wikibooks.org/w/index.php?title=User:%CE%A3

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative CommonsAttribution ShareAlike 3.0 License. http://creativecommons.
org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative CommonsAttribution ShareAlike 2.5 License. http://creativecommons.
org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative CommonsAttribution ShareAlike 2.0 License. http://creativecommons.
org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative CommonsAttribution ShareAlike 1.0 License. http://creativecommons.
org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/
licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/
licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.org/
licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.org/
licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that
the copyright holder is properly attributed. Redistribution, derivative work, commercial use,
and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the
common face of the euro coins belongs to the European Commission. Authorised is reproduction
in a format without relief (drawings, paintings, films) provided they are not detrimental to the
image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php

149

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses137. Please note that
images in the public domain do not require attribution. You may click on the image numbers in the
following table to open the webpage of the images in your webbrower.

137 Chapter 36 on page 153

150

List of Figures

151

List of Figures

152

36 Licenses

36.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed. Preamble

The GNU General Public License is a free, copyleft license for software and
other kinds of works.

The licenses for most software and other practical works are designed to take
away your freedom to share and change the works. By contrast, the GNUGen-
eral Public License is intended to guarantee your freedom to share and change
all versions of a program--to make sure it remains free software for all its users.
We, the Free Software Foundation, use the GNU General Public License for
most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the soft-
ware or use pieces of it in new free programs, and that you know you can do
these things.

To protect your rights, we need to prevent others from denying you these rights
or asking you to surrender the rights. Therefore, you have certain responsibili-
ties if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must pass on to the recipients the same freedoms that you received.
You must make sure that they, too, receive or can get the source code. And
you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) as-
sert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there
is no warranty for this free software. For both users' and authors' sake, the GPL
requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified ver-
sions of the software inside them, although the manufacturer can do so. This
is fundamentally incompatible with the aim of protecting users' freedom to
change the software. The systematic pattern of such abuse occurs in the area of
products for individuals to use, which is precisely where it is most unaccept-
able. Therefore, we have designed this version of the GPL to prohibit the prac-
tice for those products. If such problems arise substantially in other domains,
we stand ready to extend this provision to those domains in future versions of
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on general-
purpose computers, but in those that do, we wish to avoid the special danger
that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program
non-free.

The precise terms and conditions for copying, distribution and modification
follow. TERMS AND CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works,
such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License.
Each licensee is addressed as “you”. “Licensees” and “recipients” may be in-
dividuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in
a fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a “modified version” of the earlier work or
a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on
the Program.

To “propagate” a work means to do anything with it that, without permission,
would make you directly or secondarily liable for infringement under applica-
ble copyright law, except executing it on a computer or modifying a private
copy. Propagation includes copying, distribution (with or without modifica-
tion), making available to the public, and in some countries other activities as
well.

To “convey” a work means any kind of propagation that enables other parties
to make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent
that it includes a convenient and prominently visible feature that (1) displays
an appropriate copyright notice, and (2) tells the user that there is no warranty
for the work (except to the extent that warranties are provided), that licensees
may convey the work under this License, and how to view a copy of this Li-
cense. If the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred form of the work for making
modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard de-
fined by a recognized standards body, or, in the case of interfaces specified for
a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the
work as a whole, that (a) is included in the normal form of packaging a Major
Component, but which is not part of that Major Component, and (b) serves only
to enable use of the work with that Major Component, or to implement a Stan-
dard Interface for which an implementation is available to the public in source
code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating sys-
tem (if any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run the
object code and to modify the work, including scripts to control those activ-
ities. However, it does not include the work's System Libraries, or general-
purpose tools or generally available free programs which are used unmodified

in performing those activities but which are not part of the work. For exam-
ple, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such
as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on
the Program, and are irrevocable provided the stated conditions are met. This
License explicitly affirms your unlimited permission to run the unmodified Pro-
gram. The output from running a covered work is covered by this License only
if the output, given its content, constitutes a covered work. This License ac-
knowledges your rights of fair use or other equivalent, as provided by copyright
law.

Youmaymake, run and propagate covered works that you do not convey, with-
out conditions so long as your license otherwise remains in force. You may
convey covered works to others for the sole purpose of having themmakemod-
ifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying
all material for which you do not control copyright. Those thus making or run-
ning the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them frommaking any copies
of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the condi-
tions stated below. Sublicensing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circum-
vention of technological measures to the extent such circumvention is effected
by exercising rights under this License with respect to the covered work, and
you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work's users, your or third parties' legal rights
to forbid circumvention of technological measures. 4. Conveying Verbatim
Copies.

You may convey verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7
apply to the code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you
may offer support or warranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or the modifications to pro-
duce it from the Program, in the form of source code under the terms of section
4, provided that you also meet all of these conditions:

* a) The work must carry prominent notices stating that you modified it, and
giving a relevant date. * b) The work must carry prominent notices stating
that it is released under this License and any conditions added under section 7.
This requirement modifies the requirement in section 4 to “keep intact all no-
tices”. * c) You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will therefore ap-
ply, along with any applicable section 7 additional terms, to the whole of the
work, and all its parts, regardless of how they are packaged. This License gives
no permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it. * d) If the work has inter-
active user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works,
which are not by their nature extensions of the covered work, and which are not
combined with it such as to form a larger program, in or on a volume of a stor-
age or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compi-
lation's users beyond what the individual works permit. Inclusion of a covered
work in an aggregate does not cause this License to apply to the other parts of
the aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sec-
tions 4 and 5, provided that you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one of these ways:

* a) Convey the object code in, or embodied in, a physical product (including
a physical distribution medium), accompanied by the Corresponding Source
fixed on a durable physical medium customarily used for software interchange.
* b) Convey the object code in, or embodied in, a physical product (including a
physical distributionmedium), accompanied by awritten offer, valid for at least
three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the product that is cov-
ered by this License, on a durable physical medium customarily used for soft-
ware interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge. * c) Convey individual copies of
the object code with a copy of the written offer to provide the Corresponding
Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with sub-
section 6b. * d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the Corresponding
Source in the same way through the same place at no further charge. You need
not require recipients to copy the Corresponding Source along with the object
code. If the place to copy the object code is a network server, the Correspond-
ing Source may be on a different server (operated by you or a third party) that
supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain obligated
to ensure that it is available for as long as needed to satisfy these requirements.
* e) Convey the object code using peer-to-peer transmission, provided you in-
form other peers where the object code and Corresponding Source of the work
are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying
the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangi-
ble personal property which is normally used for personal, family, or household
purposes, or (2) anything designed or sold for incorporation into a dwelling. In

determining whether a product is a consumer product, doubtful cases shall be
resolved in favor of coverage. For a particular product received by a particular
user, “normally used” refers to a typical or common use of that class of prod-
uct, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substan-
tial commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures,
authorization keys, or other information required to install and execute modi-
fied versions of a covered work in that User Product from a modified version
of its Corresponding Source. The information must suffice to ensure that the
continued functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically
for use in, a User Product, and the conveying occurs as part of a transaction in
which the right of possession and use of the User Product is transferred to the
recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must
be accompanied by the Installation Information. But this requirement does not
apply if neither you nor any third party retains the ability to install modified
object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a require-
ment to continue to provide support service, warranty, or updates for a work
that has been modified or installed by the recipient, or for the User Product in
which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of
the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in ac-
cord with this section must be in a format that is publicly documented (and
with an implementation available to the public in source code form), and must
require no special password or key for unpacking, reading or copying. 7. Ad-
ditional Terms.

“Additional permissions” are terms that supplement the terms of this License
by making exceptions from one or more of its conditions. Additional permis-
sions that are applicable to the entire Program shall be treated as though they
were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may
be used separately under those permissions, but the entire Program remains
governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove
any additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when
you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate
copyright permission.

Notwithstanding any other provision of this License, for material you add to a
covered work, you may (if authorized by the copyright holders of that material)
supplement the terms of this License with terms:

* a) Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in that material or in the Appro-
priate Legal Notices displayed by works containing it; or * c) Prohibiting mis-
representation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original
version; or * d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or * e) Declining to grant rights under trademark
law for use of some trade names, trademarks, or service marks; or * f) Requir-
ing indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions”
within the meaning of section 10. If the Program as you received it, or any part
of it, contains a notice stating that it is governed by this License along with a
term that is a further restriction, you may remove that term. If a license docu-
ment contains a further restriction but permits relicensing or conveying under
this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place,
in the relevant source files, a statement of the additional terms that apply to
those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of
a separately written license, or stated as exceptions; the above requirements
apply either way. 8. Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void,
and will automatically terminate your rights under this License (including any
patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-
nently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, you do not qualify
to receive new licenses for the same material under section 10. 9. Acceptance
Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy
of the Program. Ancillary propagation of a covered work occurring solely as
a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions in-
fringe copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to
do so. 10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,

subject to this License. You are not responsible for enforcing compliance by
third parties with this License.

An “entity transaction” is a transaction transferring control of an organization,
or substantially all assets of one, or subdividing an organization, or merging
organizations. If propagation of a covered work results from an entity transac-
tion, each party to that transactionwho receives a copy of thework also receives
whatever licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the Correspond-
ing Source of the work from the predecessor in interest, if the predecessor has
it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose
a license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or coun-
terclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of
the Program or a work on which the Program is based. The work thus licensed
is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or con-
trolled by the contributor, whether already acquired or hereafter acquired, that
would be infringed by some manner, permitted by this License, of making, us-
ing, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor ver-
sion. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent li-
cense under the contributor's essential patent claims, to make, use, sell, offer
for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any express agreement
or commitment, however denominated, not to enforce a patent (such as an ex-
press permission to practice a patent or covenant not to sue for patent infringe-
ment). To “grant” such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free of
charge and under the terms of this License, through a publicly available net-
work server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself
of the benefit of the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in
a country, or your recipient's use of the covered work in a country, would in-
fringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you
convey, or propagate by procuring conveyance of, a covered work, and grant
a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of
the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of
its coverage, prohibits the exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with
a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of con-
veying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license
(a) in connection with copies of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into
that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied
license or other defenses to infringement that may otherwise be available to
you under applicable patent law. 12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or oth-
erwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot convey a covered work so
as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for fur-
ther conveying from those to whom you convey the Program, the only way
you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program. 13. Use with the GNU Affero General Public
License.

Notwithstanding any other provision of this License, you have permission to
link or combine any covered work with a work licensed under version 3 of the
GNU Affero General Public License into a single combined work, and to con-
vey the resulting work. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNUAffero
General Public License, section 13, concerning interaction through a network
will apply to the combination as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the
GNU General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies that a certain numbered version of the GNU General Public License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version
number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the
GNU General Public License can be used, that proxy's public statement of ac-
ceptance of a version permanently authorizes you to choose that version for the
Program.

Later license versions may give you additional or different permissions. How-
ever, no additional obligations are imposed on any author or copyright holder
as a result of your choosing to follow a later version. 15. Disclaimer of War-
ranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

153

Licenses

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. 17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot
be given local legal effect according to their terms, reviewing courts shall apply
local law that most closely approximates an absolute waiver of all civil liabil-
ity in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively state the exclusion of war-
ranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copy-
right (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this
when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author> This program comes with
ABSOLUTELY NO WARRANTY; for details type `show w'. This is free
software, and you are welcome to redistribute it under certain conditions; type
`show c' for details.

The hypothetical commands `show w' and `show c' should show the appropri-
ate parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser
General Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

36.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, ei-
ther commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this Li-
cense is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference. 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copy-
right law.

A "Modified Version" of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transpar-
ent if used for any substantial amount of text. A copy that is not "Transparent"
is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance
of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Doc-
ument to the public.

A section "Entitled XYZ" means a named subunit of the Document whose ti-
tle either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License. 2. VER-
BATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document's li-
cense notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus acces-
sible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, youmust do these things
in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission. * B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the Modified Ver-
sion, together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you from
this requirement. * C. State on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve all the copyright notices of
the Document. * E. Add an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F. Include, immediately after
the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the
Addendum below. * G. Preserve in that license notice the full lists of Invari-
ant Sections and required Cover Texts given in the Document's license notice.
* H. Include an unaltered copy of this License. * I. Preserve the section Enti-
tled "History", Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Ti-
tle Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the
previous sentence. * J. Preserve the network location, if any, given in the Doc-
ument for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it was based
on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission. *
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve
the Title of the section, and preserve in the section all the substance and tone

of each of the contributor acknowledgements and/or dedications given therein.
* L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles. * M. Delete any section Entitled "Endorsements". Such a
section may not be included in the Modified Version. * N. Do not retitle any
existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section. * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section
titles.

You may add a section Entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement
of any Modified Version. 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their War-
ranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the
various original documents, forming one section Entitled "History"; likewise
combine any sections Entitled "Acknowledgements", and any sections Enti-
tled "Dedications". You must delete all sections Entitled "Endorsements". 6.
COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it in-
dividually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document. 7. AGGREGATION WITH INDEPEN-
DENT WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation's users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications",
or "History", the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title. 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-
nently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy
of some or all of the same material does not give you any rights to use it. 10.
FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any
later version" applies to it, you have the option of following the terms and con-
ditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can
be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document. 11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World
Wide Web server that publishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A public wiki that anybody can
edit is an example of such a server. A "Massive Multiauthor Collaboration"
(or "MMC") contained in the site means any set of copyrightable works thus
published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 li-
cense published by Creative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site un-
der CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing. ADDENDUM: How to use this License
for your documents

To use this License in a document you have written, include a copy of the Li-
cense in the document and put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the "with … Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

36.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented
by the additional permissions listed below. 0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General
Public License, and the “GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by this License, other than an
Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Li-
brary, but which is not otherwise based on the Library. Defining a subclass of
a class defined by the Library is deemed a mode of using an interface provided
by the Library.

A “Combined Work” is a work produced by combining or linking an Appli-
cation with the Library. The particular version of the Library with which the
Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corre-
sponding Source for the Combined Work, excluding any source code for por-
tions of the Combined Work that, considered in isolation, are based on the
Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the ob-
ject code and/or source code for the Application, including any data and utility
programs needed for reproducing the Combined Work from the Application,
but excluding the System Libraries of the Combined Work. 1. Exception to
Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without
being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers
to a function or data to be supplied by anApplication that uses the facility (other
than as an argument passed when the facility is invoked), then you may convey
a copy of the modified version:

* a) under this License, provided that you make a good faith effort to ensure
that, in the event anApplication does not supply the function or data, the facility
still operates, and performs whatever part of its purpose remains meaningful,
or * b) under the GNU GPL, with none of the additional permissions of this
License applicable to that copy.

154

GNU Lesser General Public License

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header
file that is part of the Library. Youmay convey such object code under terms of
your choice, provided that, if the incorporated material is not limited to numer-
ical parameters, data structure layouts and accessors, or small macros, inline
functions and templates (ten or fewer lines in length), you do both of the fol-
lowing:

* a) Give prominent notice with each copy of the object code that the Library
is used in it and that the Library and its use are covered by this License. *
b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken to-
gether, effectively do not restrict modification of the portions of the Library
contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

* a) Give prominent notice with each copy of the Combined Work that the Li-
brary is used in it and that the Library and its use are covered by this License.
* b) Accompany the Combined Work with a copy of the GNU GPL and this
license document. * c) For a Combined Work that displays copyright notices
during execution, include the copyright notice for the Library among these no-
tices, as well as a reference directing the user to the copies of the GNUGPL and
this license document. * d) Do one of the following: o 0) Convey the Minimal
Corresponding Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of the Linked Ver-
sion to produce a modified CombinedWork, in the manner specified by section
6 of the GNU GPL for conveying Corresponding Source. o 1) Use a suitable
shared library mechanism for linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Library already present on the
user's computer system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked Version. * e) Pro-
vide Installation Information, but only if you would otherwise be required to
provide such information under section 6 of the GNU GPL, and only to the ex-
tent that such information is necessary to install and execute a modified version
of the Combined Work produced by recombining or relinking the Application
with a modified version of the Linked Version. (If you use option 4d0, the

Installation Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide
the Installation Information in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by
side in a single library together with other library facilities that are not Applica-
tions and are not covered by this License, and convey such a combined library
under terms of your choice, if you do both of the following:

* a) Accompany the combined library with a copy of the same work based on
the Library, uncombined with any other library facilities, conveyed under the
terms of this License. * b) Give prominent notice with the combined library
that part of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the
GNU Lesser General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Library as you
received it specifies that a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that published version or of any
later version published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser General Pub-
lic License, you may choose any version of the GNU Lesser General Public
License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future
versions of the GNU Lesser General Public License shall apply, that proxy's
public statement of acceptance of any version is permanent authorization for
you to choose that version for the Library.

155

	1 Overview
	2 Getting Python
	2.1 Python 2 vs Python 3
	2.2 Installing Python in Windows
	2.3 Installing Python on Mac
	2.4 Installing Python on Unix environments
	2.5 Keeping Up to Date

	3 Interactive mode
	4 Creating Python programs
	4.1 Hello, World!
	4.2 Exercises
	4.3 Notes

	5 Basic syntax
	6 Data types
	7 Numbers
	8 Strings
	8.1 String manipulation

	9 Lists
	9.1 About lists in Python
	9.2 List methods
	9.3 operators

	10 Dictionaries
	10.1 About dictionaries in Python

	11 Sets
	12 Operators
	12.1 Basics
	12.2 Powers
	12.3 Division and Type Conversion
	12.4 Modulo
	12.5 Negation
	12.6 Augmented Assignment
	12.7 Boolean
	12.8 References

	13 Flow control
	14 Functions
	15 Scoping
	16 Exceptions
	17 Input and output
	17.1 Input
	17.2 Output

	18 Modules
	18.1 Importing a Module
	18.2 Creating a Module
	18.3 External links

	19 Classes
	20 MetaClasses
	21 Regular Expression
	21.1 Pattern objects
	21.2 Matching and searching
	21.3 Replacing
	21.4 Other functions
	21.5 External links

	22 GUI Programming
	22.1 Tkinter
	22.2 PyGTK
	22.3 PyQt
	22.4 wxPython
	22.5 Dabo
	22.6 pyFltk
	22.7 Other Toolkits

	23 Game Programming in Python
	23.1 3D Game Programming
	23.2 2D Game Programming
	23.3 See Also

	24 Sockets
	24.1 HTTP Client
	24.2 NTP/Sockets

	25 Files
	25.1 File I/O
	25.2 Testing Files
	25.3 Common File Operations

	26 Database Programming
	26.1 Generic Database Connectivity using ODBC
	26.2 Postgres connection in Python
	26.3 MySQL connection in Python
	26.4 SQLAlchemy in Action
	26.5 See also
	26.6 References
	26.7 External links

	27 Web Page Harvesting
	28 Threading
	28.1 Examples

	29 Extending with C
	29.1 Using the Python/C API
	29.2 Using SWIG

	30 Extending with C++
	30.1 A Hello World Example
	30.2 An example with CGAL
	30.3 Handling Python objects and errors

	31 WSGI web programming
	32 WSGI Web Programming
	32.1 External Resources

	33 References
	33.1 Language reference
	33.2 External links

	34 Authors
	34.1 Authors of Python textbook

	35 Contributors
	List of Figures
	36 Licenses
	36.1 GNU GENERAL PUBLIC LICENSE
	36.2 GNU Free Documentation License
	36.3 GNU Lesser General Public License

