
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Sun, 18 Jul 2010 13:13:10 UTC

Python Programming

Contents
Articles
Learning Python 1

Python Programming/Overview 1
Python Programming/Getting Python 2
Python Programming/Setting it up 4
Python Programming/Interactive mode 5
Python Programming/Self Help 7
Python Programming/Creating Python programs 8
Python Programming/Basic Math 10
Python Programming/Decision Control 12
Python Programming/Conditional Statements 16
Python Programming/Loops 23
Python Programming/Sequences 29
Python Programming/Source Documentation and Comments 35
Python Programming/Modules and how to use them 37
Python Programming/Files 39
Python Programming/Text 41
Python Programming/Errors 42
Python Programming/Namespace 44
Python Programming/Object-oriented programming 44
Python Programming/User Interaction 47
Python Programming/Databases 52
Python Programming/Internet 53
Python Programming/Networks 55
Python Programming/Tips and Tricks 55

Concepts 58

Python Programming/Basic syntax 58
Python Programming/Data types 61
Python Programming/Numbers 63
Python Programming/Strings 64
Python Programming/Lists 72
Python Programming/Tuples 77
Python Programming/Dictionaries 80

Python Programming/Sets 81
Python Programming/Operators 86
Python Programming/Flow control 89
Python Programming/Functions 93
Python Programming/Decorators 97
Python Programming/Scoping 99
Python Programming/Exceptions 100
Python Programming/Input and output 103
Python Programming/Modules 107
Python Programming/Classes 109
Python Programming/MetaClasses 122

Modules 125

Python Programming/Standard Library 125
Python Programming/Regular Expression 125
Python Programming/XML Tools 129
Python Programming/Email 131
Python Programming/Threading 133
Python Programming/Sockets 134
Python Programming/GUI Programming 137
Python Programming/WSGI web programming 140
Python Programming/Web Page Harvesting 141
Python Programming/Database Programming 141
Python Programming/Game Programming in Python 143
Python Programming/PyQt4 145
Python Programming/Dbus 150
Python Programming/pyFormex 153
Python Programming/Extending with C 153
Python Programming/Extending with C++ 157
Python Programming/Extending with Pyrex 158
Python Programming/Extending with ctypes 159

References
Article Sources and Contributors 161
Image Sources, Licenses and Contributors 163

Article Licenses
License 164

1

Learning Python

Python Programming/Overview

Index Next: Getting Python

Python is a high-level, structured, open-source programming language that can be used for a wide variety of
programming tasks. It is good for simple quick-and-dirty scripts, as well as complex and intricate applications.
It is an interpreted programming language that is automatically compiled into bytecode before execution (the
bytecode is then normally saved to disk, just as automatically, so that compilation need not happen again until and
unless the source gets changed). It is also a dynamically typed language that includes (but does not require one to
use) object oriented features and constructs.
The most unusual aspect of Python is that whitespace is significant; instead of block delimiters (braces → "{}" in the
C family of languages), indentation is used to indicate where blocks begin and end.
For example, the following Python code can be interactively typed at an interpreter prompt, to display the beginning
values in the Fibonacci series:

>>> a,b = 0,1

>>> print(b)

1

>>> while b < 100:

... a,b = b,(a+b)

... print(b, end=" ")

...

1 2 3 5 8 13 21 34 55 89 144

Another interesting aspect in Python is reflection and introspection. The dir() function returns the list of the
names of objects in the current scope. However, dir(object) will return the names of the attributes of the
specified object. The locals() routine returns a dictionary in which the names in the local namespace are the
keys and their values are the objects to which the names refer. Combined with the interactive interpreter, this
provides a useful environment for exploration and prototyping.
Python provides a powerful assortment of built-in types (e.g., lists, dictionaries and strings), a number of built-in
functions, and a few constructs, mostly statements. For example, loop constructs that can iterate over items in a
collection instead of being limited to a simple range of integer values. Python also comes with a powerful standard
library, which includes hundreds of modules to provide routines for a wide variety of services including regular
expressions and TCP/IP sessions.
Python is used and supported by a large Python Community [1] that exists on the Internet. The mailing lists and news
groups [2] like the tutor list [3] actively support and help new python programmers. While they discourage doing
homework for you, they are quite helpful and are populated by the authors of many of the Python textbooks currently
available on the market. It is named after Monty Python's Flying Circus comedy program, and created by Guido Van
Rossum.

Index Next: Getting Python

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Computer_programming/Highlevel
http://en.wikibooks.org/w/index.php?title=Computer_programming/Structured_programming
http://en.wikibooks.org/w/index.php?title=Open_Source
http://en.wikibooks.org/w/index.php?title=HSE_Counting_and_Generating_functions
http://www.python.org/community/index.html
http://www.python.org/community/lists.html
http://mail.python.org/mailman/listinfo/tutor
http://en.wikibooks.org/w/index.php?title=Monty_Python%27s_Flying_Circus
http://en.wikibooks.org/w/index.php?title=Guido_Van_Rossum
http://en.wikibooks.org/w/index.php?title=Guido_Van_Rossum
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Overview 2

References
[1] http:/ / www. python. org/ community/ index. html
[2] http:/ / www. python. org/ community/ lists. html
[3] http:/ / mail. python. org/ mailman/ listinfo/ tutor

Python Programming/Getting Python

Previous:
Overview

Index Next: Setting it up

In order to program in Python you need the Python interpreter. If it is not already installed or if the version you are
using is obsolete, you will need to obtain and install Python using the methods below:

Installing Python in Windows
Go to the Python Homepage [1] or the ActiveState website [2] and get the proper version for your platform. Download
it, read the instructions and get it installed.
In order to run Python from the command line, you will need to have the python directory in your PATH.
Alternatively, you could use an Integrated Development Environment (IDE) for Python like DrPython[3], eric[4],
PyScripter[5], or Python's own IDLE (which ships with every version of Python since 2.3).
The PATH variable can be modified from the Window's System control panel. The advanced tab will contain the
button labelled Environment Variables, where you can append the newly created folder to the search path.
If you prefer having a temporary environment, you can create a new command prompt short-cut that automatically
executes the following statement:

PATH %PATH%;c:\python26

If you downloaded a different version (such as Python 3.1), change the "26" for the version of Python you have (26
is 2.6.x, the current version of Python 2.)

Cygwin
By default, the Cygwin installer for Windows does not include Python in the downloads. However, it can be selected
from the list of packages.

Installing Python on Mac
Users on Apple Mac OS X will find that it already ships with Python 2.3 (OS X 10.4 Tiger), but if you want the
more recent version head to Python Download Page [6] follow the instruction on the page and in the installers. As a
bonus you will also install the Python IDE.

http://www.python.org/community/index.html
http://www.python.org/community/lists.html
http://mail.python.org/mailman/listinfo/tutor
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.python.org/download/
http://activestate.com
http://drpython.sourceforge.net/
http://www.die-offenbachs.de/eric/index.html
http://mmm-experts.com/Products.aspx?ProductID=4
http://en.wikipedia.org/wiki/IDLE_(Python)
http://www.python.org/download/mac

Python Programming/Getting Python 3

Installing Python on Unix environments
Python is available as a package for some Linux distributions. In some cases, the distribution CD will contain the
python package for installation, while other distributions require downloading the source code and using the
compilation scripts.

Gentoo GNU/Linux
Gentoo is an example of a distribution that installs Python by default - the package system Portage depends on
Python.

Ubuntu GNU/Linux
Users of Ubuntu 6.06 (Dapper Drake) and earlier will notice that Python comes installed by default, only it
sometimes is not the latest version. If you would like to update it, just open a terminal and type at the prompt:

$ sudo apt-get update # This will update the software repository

$ sudo apt-get install python # This one will actually install python

Arch GNU/Linux
Arch does not install python by default, but is easily available for installation through the package manager to
pacman. As root (or using sudo if you've installed and configured it), type:

$ pacman -Sy python

This will be update package databases and install python. Other versions can be built from source from the Arch
User Repository.

Source code installations
Some platforms do not have a version of Python installed, and do not have pre-compiled binaries. In these cases, you
will need to download the source code from the official site [1]. Once the download is complete, you will need to
unpack the compressed archive into a folder.
To build Python, simply run the configure script (requires the Bash shell) and compile using make.

Previous:
Overview

Index Next: Setting it up

References
[1] http:/ / www. python. org/ download/
[2] http:/ / activestate. com
[3] http:/ / drpython. sourceforge. net/
[4] http:/ / www. die-offenbachs. de/ eric/ index. html
[5] http:/ / mmm-experts. com/ Products. aspx?ProductID=4
[6] http:/ / www. python. org/ download/ mac

http://www.python.org/download/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.python.org/download/
http://activestate.com
http://drpython.sourceforge.net/
http://www.die-offenbachs.de/eric/index.html
http://mmm-experts.com/Products.aspx?ProductID=4
http://www.python.org/download/mac

Python Programming/Setting it up 4

Python Programming/Setting it up

Previous: Getting Python Index Next: Interactive mode

Installing Python PyDEV Plug-in for Eclipse IDE
You can use the Eclipse IDE as your Python IDE. The only requirement is Eclipse and the Eclipse PyDEV Plug-in.
Go to http:/ / www. eclipse. org/ downloads/ and get the proper Eclipse IDE version for your OS platform. There are
also updates on the site but, just look for the basic program, Download and install it. The install just requires you to
unpack the downloaded Eclipse install file onto your system.
You can install PyDEV Plug-in two ways:
• Suggested: Use Eclipse's update manager, found in the tool bar under "Help" -> "install new Software". add http:/

/ pydev. org/ updates/ in "work with" clik add, and select PyDEV and let Eclipse do the rest. Eclipse will now
check for any updates to PyDEV when it searches for updates.
• If you get an error stating a requirement for the plugin "org.eclipse.mylyn", expand the PyDEV tree, and

deselect the optional mylyn components.
• Or install PyDEV manually, by going to http:/ / pydev. sourceforge. net and get the latest PyDEV Plug-in version.

Download it, and install it by unpacking it into the Eclipse base folder.

Python Mode for Emacs
There is also a python mode for Emacs which provides features such as running pieces of code, and changing the tab
level for blocks. You can download the mode at https:/ / launchpad. net/ python-mode

Installing new modules
Although many applications and modules have searchable webpages, there is a central repository [1] for searching
packages for installation, known as the "Cheese Shop."

See Also
• EasyInstall [2]

Previous: Getting Python Index Next: Interactive mode

References
[1] http:/ / www. python. org/ pypi
[2] http:/ / peak. telecommunity. com/ DevCenter/ EasyInstall

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Using_Eclipse
http://www.eclipse.org/downloads/
http://pydev.org/updates/
http://pydev.org/updates/
http://pydev.sourceforge.net
http://en.wikipedia.org/wiki/emacs
https://launchpad.net/python-mode
http://www.python.org/pypi
http://peak.telecommunity.com/DevCenter/EasyInstall
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.python.org/pypi
http://peak.telecommunity.com/DevCenter/EasyInstall

Python Programming/Interactive mode 5

Python Programming/Interactive mode

Previous: Setting it up Index Next: Self Help

Python has two basic modes: The normal "mode" is the mode where the scripted and finished .py files are run in the
python interpreter. Interactive mode is a command line shell which gives immediate feedback for each statement,
while running previously fed statements in active memory. As new lines are fed into the interpreter, the fed program
is evaluated both in part and in whole.
To get into interactive mode, simply type "python" without any arguments. This is a good way to play around and try
variations on syntax. Python should print something like this:

$ python

Python 3.0b3 (r30b3:66303, Sep 8 2008, 14:01:02) [MSC v.1500 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

(If Python doesn't run, make sure your path is set correctly. See Getting Python.)
The >>> is Python's way of telling you that you are in interactive mode. In interactive mode what you type is
immediately run. Try typing 1+1 in. Python will respond with 2. Interactive mode allows you to test out and see
what Python will do. If you ever feel the need to play with new Python statements, go into interactive mode and try
them out.
A sample interactive session:

>>> 5

5

>>> print (5*7)

35

>>> "hello" * 4

'hellohellohellohello'

>>> "hello".__class__

<type 'str'>

However, you need to be careful in the interactive environment to avoid any confusion. For example, the following
is a valid Python script:

if 1:

 print("True")

print("Done")

If you try to enter this as written in the interactive environment, you might be surprised by the result:

>>> if 1:

... print("True")

... print("Done")

 File "<stdin>", line 3

 print("Done")

 ^

SyntaxError: invalid syntax

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Interactive mode 6

What the interpreter is saying is that the indentation of the second print was unexpected. What you should have
entered was a blank line to end the first (i.e., "if") statement, before you started writing the next print statement. For
example, you should have entered the statements as though they were written:

if 1:

 print("True")

print("Done")

Which would have resulted in the following:

>>> if 1:

... print("True")

...

True

>>> print("Done")

Done

>>>

Interactive mode
Instead of Python exiting when the program is finished, you can use the -i flag to start an interactive session. This
can be very useful for debugging and prototyping.

python -i hello.py

Previous: Setting it up Index Next: Self Help

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Self Help 7

Python Programming/Self Help

Previous: Interactive mode Index Next: Creating Python programs

This book is useful for learning python, but indeed there might be topics that the book does not cover. You might
want to search for modules in the standard library, or perhaps inspecting an unknown object's functions, or perhaps
you know there is a function that you have to call inside an object but you don't know its name. That's where the
interactive help() comes to play.

Navigating help
When you enter the help system through the help() call within the interactive session, you are presented with a
quick introduction to the help system. "Welcome to Python 2.6! This is the online help utility.
If this is your first time using Python, you should definitely check out the tutorial on the Internet at http:/ / docs.
python. org/ tutorial/ ".
You can access the different portions of help simply by typing in modules, keywords, or topics.
Typing in the name of one of these will print the help page associated with the item in question. To get a list of
available modules, keywords, or topics, type "modules","keywords", or "topics". Each module also comes with a
one-line summary of what it does; to list the modules whose summaries contain a given word such as "spam", type
"modules spam".
You can exit the help system by typing "quit" or by entering a blank line to return to the interpreter.

Help parameter
You can obtain information on a specific command without entering interactive help. For example, you can obtain
help on a given topic simply by adding a string in quotes, such as help("object"). You may also obtain help on
a given object as well, by passing it as a parameter to the help function.

Previous: Interactive mode Index Next: Creating Python programs

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Creating Python programs 8

Python Programming/Creating Python programs

Previous: Self
Help

Index Next: Variables and Strings

Welcome to Python! This tutorial will show you how to start writing programs.
Python programs are nothing more than text files, and they may be edited with a standard text editor program.[1]

What text editor you use will probably depend on your operating system: any text editor can create Python programs.
It is easier to use a text editor that includes Python syntax highlighting, however.

Hello, World!
The first program that every programmer writes is called the "Hello, World!" program. This program simply outputs
the phrase "Hello, World!" and then quits. Let's write "Hello, World!" in Python!
Open up your text editor and create a new file called hello.py containing just this line (you can copy-paste if you
want):

print("Hello, world!")

This program uses the print function, which simply outputs its parameters to the terminal. print ends with a newline
character, which simply moves the cursor to the next line.
Now that you've written your first program, let's run it in Python! This process differs slightly depending on your
operating system.

Windows
• Create a folder on your computer to use for your Python programs, such as C:\pythonpractice, and save your

hello.py program in that folder.
• In the Start menu, select "Run...", and type in cmd. This will cause the Windows terminal to open.
• Type cd \pythonpractice to change directory to your pythonpractice folder, and hit Enter.
• Type python hello.py to run your program!
If it didn't work, make sure your PATH contains the python directory. See Getting Python.

Mac
• Create a folder on your computer to use for your Python programs. A good suggestion would be to name it

pythonpractice and place it in your Home folder (the one that contains folders for Documents, Movies, Music,
Pictures, etc). Save your hello.py program into this folder.

• Open the Applications folder, go into the Utilities folder, and open the Terminal program.
• Type cd pythonpractice to change directory to your pythonpractice folder, and hit Enter.
• Type python hello.py to run your program!
<span class="citation wikicite" id="endnote_If you have both python version 2.6.1 and version 3.0 installed(Very
possible if you are using Ubuntu, and ran sudo apt-get python3 to have python3 installed), you should run python3
hello.py">^

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming/Variables_and_Strings
http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Syntax_highlighting

Python Programming/Creating Python programs 9

Linux
• Create a folder on your computer to use for your Python programs, such as ~/pythonpractice, and save your

hello.py program in that folder.
• Open up the terminal program. In KDE, open the main menu and select "Run Command..." to open Konsole. In

GNOME, open the main menu, open the Applications folder, open the Accessories folder, and select Terminal.
• Type cd ~/pythonpractice to change directory to your pythonpractice folder, and hit Enter.
• Type python hello.py to run your program!

Result
The program should print:

Hello, world!

Congratulations! You're well on your way to becoming a Python programmer.

Exercises
1. Modify the hello.py program to say hello to a historical political leader (or to Ada Lovelace).
2. Change the program so that after the greeting, it asks, "How did you get here?".
3. Re-write the original program to use two print statements: one for "Hello" and one for "world". The program

should still only print out on one line.
Solutions

Notes
[1] Sometimes, Python programs are distributed in compiled form. We won't have to worry about that for quite a while.

Previous: Self
Help

Index Next: Variables and Strings

http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikibooks.org/w/index.php?title=Python_Programming/Creating_Python_programs/Solutions
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming/Variables_and_Strings

Python Programming/Basic Math 10

Python Programming/Basic Math

Previous: Variables and
Strings

Index Next: Decision
Control

Now that we know how to work with numbers and strings, let's write a program that might actually be useful! Let's
say you want to find out how much you weigh in stone. A concise program can make short work of this task. Since a
stone is 14 pounds, and there are about 2.2 pounds in a kilogram, the following formula should do the trick:

So, let's turn this formula into a program!

mass_kg = int(raw_input("What is your mass in kilograms?"))

mass_stone = mass_kg * 2.2 / 14

print("You weigh", mass_stone, "stone.")

Run this program and get your weight in stone! Notice that applying the formula was as simple as putting in a few
mathematical statements:

mass_stone = mass_kg * 2.2 / 14

Mathematical Operators
Here are some commonly used mathematical operators

Syntax Math Operation Name

a+b addition

a-b subtraction

a*b multiplication

a/b division (see note below)

a//b floor division (e.g. 5/2=2) - Available in Python 2.2 and
later

a%b modulo

-a negation

abs(a) absolute value

a**b exponent

math.sqrt(a) square root

Beware that due to the limitations of floating point arithmetic, rounding errors can cause unexpected results. For
example:

 >>> print(0.6/0.2)

 3.0

 >>> print(0.6//0.2)

 2.0

For the Python 2.x series / does "floor division" for integers and longs (e.g. 5/2=2) but "true division" for floats and
complex (e.g. 5.0/2.0=2.5). For Python 3.x, / does "true division" for all types.[1] [2]

http://en.wikibooks.org/w/index.php?title=Python_Programming/Variables_and_Strings
http://en.wikibooks.org/w/index.php?title=Python_Programming/Variables_and_Strings
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Subtraction
http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Floor_function
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Negative_and_non-real_numbers
http://en.wikipedia.org/wiki/Absolute_value
http://en.wikipedia.org/wiki/exponentiation
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/floating_point

Python Programming/Basic Math 11

Order of Operations
Python uses the standard order of operations as taught in Algebra and Geometry classes at high school or secondary
school. That is, mathematical expressions are evaluated in the following order (memorized by many as PEMDAS),
which is also applied to parentheticals.
(Note that operations which share a table row are performed from left to right. That is, a division to the left of a
multiplication, with no parentheses between them, is performed before the multiplication simply because it is to the
left.)

Name Syntax Description PEMDAS
Mnemonic

Parentheses (...) Before operating on anything else, Python must evaluate all parentheticals starting at the
innermost level. (This includes functions.)

Please

Exponents ** As an exponent is simply short multiplication or division, it should be evaluated before
them.

Excuse

Multiplication and
Division

* / // % Again, multiplication is rapid addition and must, therefore, happen first. My Dear

Addition and
Subtraction

+ - Aunt Sally

Formatting output
Wouldn't it be nice if we always worked with nice round numbers while doing math? Unfortunately, the real world is
not quite so neat and tidy as we would like it to be. Sometimes, we end up with long, ugly numbers like the
following:

What is your mass in kilograms? 65

You weigh 10.2142857143 stone.

By default, Python's print statement prints numbers to 10 significant figures. But what if you only want one or two?
We can use the round() function, which rounds a number to the number of decimal points you choose. round() takes
two arguments: the number you want to round, and the number of decimal places to round it to. For example:

>>> print (round(3.14159265, 2))

3.14

Now, let's change our program to only print the result to two significant figures.

print ("You weigh", round(mass_stone, 2), "stone.")

This also demonstrates the concept of nesting functions. As you can see, you can place one function inside another
function, and everything will still work exactly the way you would expect. If you don't like this, you can always use
multiple variables, instead:

twoSigFigs = round(mass_stone, 2)

numToString = str(twoSigFigs)

print ("You weigh " + numToString + " stone.")

Python Programming/Basic Math 12

Exercises
1. Ask the user to specify the number of sides on a polygon and find the number of diagonals [3] within the polygon.
2. Take the lengths of two sides to a triangle from the user and apply the Pythagorean Theorem to find the third.

Notes
[1] What's New in Python 2.2 (http:/ / www. python. org/ doc/ 2. 2. 3/ whatsnew/ node7. html)
[2] PEP 238 -- Changing the Division Operator (http:/ / www. python. org/ dev/ peps/ pep-0238/)
[3] http:/ / www. mathopenref. com/ polygondiagonal. html

Previous: Variables and
Strings

Index Next: Decision
Control

Python Programming/Decision Control

Previous: Sequences Index Next: Conditional
Statements

Python, like many other computer programming languages, uses Boolean logic for its decision control. That is, the
Python interpreter compares one or more values in order to decide whether to execute a piece of code or not, given
the proper syntax and instructions.
Decision control is then divided into two major categories, conditional and repetition. Conditional logic simply uses
the keyword if and a Boolean expression to decide whether or not to execute a code block. Repetition builds on the
conditional constructs by giving us a simple method in which to repeat a block of code while a Boolean expression
evaluates to true.

Boolean Expressions
Here is a little example of boolean expressions (you don't have to type it in):

a = 6

b = 7

c = 42

print (1, a == 6)

print (2, a == 7)

print (3, a == 6 and b == 7)

print (4, a == 7 and b == 7)

print (5, not a == 7 and b == 7)

print (6, a == 7 or b == 7)

print (7, a == 7 or b == 6)

print (8, not (a == 7 and b == 6))

print (9, not a == 7 and b == 6)

With the output being:

1 True

2 False

3 True

4 False

http://www.mathopenref.com/polygondiagonal.html
http://en.wikipedia.org/wiki/Pythagorean_Theorem
http://www.python.org/doc/2.2.3/whatsnew/node7.html
http://www.python.org/dev/peps/pep-0238/
http://www.mathopenref.com/polygondiagonal.html
http://en.wikibooks.org/w/index.php?title=Python_Programming/Variables_and_Strings
http://en.wikibooks.org/w/index.php?title=Python_Programming/Variables_and_Strings
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Decision Control 13

5 True

6 True

7 False

8 True

9 False

What is going on? The program consists of a bunch of funny looking print statements. Each print statement
prints a number and an expression. The number is to help keep track of which statement I am dealing with. Notice
how each expression ends up being either True or False; these are built-in Python values.
The lines:

print (1, a == 6)

print (2, a == 7)

print out True and False respectively, just as expected, since the first is true and the second is false. The third print,
print (3, a == 6 and b == 7), is a little different. The operator and means if both the statement before
and the statement after are true then the whole expression is true otherwise the whole expression is false. The next
line, print (4, a == 7 and b == 7), shows how if part of an and expression is false, the whole thing is
false. The behavior of and can be summarized as follows:

expression result

true and true true

true and false false

false and true false

false and
false

false

Note that if the first expression is false Python does not check the second expression since it knows the whole
expression is false.
The next line, print (5, not a == 7 and b == 7), uses the not operator. not just gives the opposite
of the expression (The expression could be rewritten as print (5, a != 7 and b == 7)). Here's the table:

expression result

not true false

not false true

The two following lines, print (6, a == 7 or b == 7) and print (7, a == 7 or b == 6), use
the or operator. The or operator returns true if the first expression is true, or if the second expression is true or
both are true. If neither are true it returns false. Here's the table:

Python Programming/Decision Control 14

expression result

true or true true

true or false true

false or true true

false or false false

Note that if the first expression is true Python doesn't check the second expression since it knows the whole
expression is true. This works since or is true if at least one half of the expression is true. The first part is true so
the second part could be either false or true, but the whole expression is still true.
The next two lines, print (8, not (a == 7 and b == 6)) and print (9, not a == 7 and b
== 6), show that parentheses can be used to group expressions and force one part to be evaluated first. Notice that
the parentheses changed the expression from false to true. This occurred since the parentheses forced the not to
apply to the whole expression instead of just the a == 7 portion.
Here is an example of using a boolean expression:

list = ["Life","The Universe","Everything","Jack","Jill","Life","Jill"]

Make a copy of the list.

copy = list[:]

Sort the copy

copy.sort()

prev = copy[0]

del copy[0]

count = 0

Go through the list searching for a match

while count < len(copy) and copy[count] != prev:

 prev = copy[count]

 count = count + 1

If a match was not found then count can't be < len

since the while loop continues while count is < len

and no match is found

if count < len(copy):

 print ("First Match:",prev)

See the Lists chapter to explain what [:] means on the first line.
Here is the output:

First Match: Jill

This program works by continuing to check for match while count < len(copy) and copy[count].
When either count is greater than the last index of copy or a match has been found the and is no longer true so
the loop exits. The if simply checks to make sure that the while exited because a match was found.
The other 'trick' of and is used in this example. If you look at the table for and notice that the third entry is "false
and won't check". If count >= len(copy) (in other words count < len(copy) is false) then

Python Programming/Decision Control 15

copy[count] is never looked at. This is because Python knows that if the first is false then they both can't be true.
This is known as a short circuit and is useful if the second half of the and will cause an error if something is wrong.
I used the first expression (count < len(copy)) to check and see if count was a valid index for copy. (If
you don't believe me remove the matches `Jill' and `Life', check that it still works and then reverse the order of
count < len(copy) and copy[count] != prev to copy[count] != prev and count <
len(copy).)
Boolean expressions can be used when you need to check two or more different things at once.

Examples
password1.py

This programs asks a user for a name and a password.

It then checks them to make sure that the user is allowed in.

Note that this is a simple and insecure example,

real password code should never be implemented this way.

name = raw_input("What is your name? ")

password = raw_input("What is the password? ")

if name == "Josh" and password == "Friday":

 print ("Welcome Josh")

elif name == "Fred" and password == "Rock":

 print ("Welcome Fred")

else:

 print ("I don't know you.")

Sample runs

What is your name? Josh

What is the password? Friday

Welcome Josh

What is your name? Bill

What is the password? Saturday

I don't know you.

Exercises
1. Write a program that has a user guess your name, but they only get 3 chances to do so until the program quits.
Solutions

Previous: Sequences Index Next: Conditional
Statements

http://en.wikibooks.org/w/index.php?title=Python_Programming/Decision_Control/Solutions
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Conditional Statements 16

Python Programming/Conditional Statements

Previous: Decision Control Index Next: Loops

Decisions
A Decision is when a program has more than one choice of actions depending on a variable's value. Think of a
traffic light. When it is green, we continue our drive. When we see the light turn yellow, we proceed to reduce our
speed, and when it is red, we stop. These are logical decisions that depend on the value of the traffic light. Luckily,
Python has a decision statement to help us when our application needs to make such decision for the user.

If statement
Here is a warm-up exercise - a short program to compute the absolute value of a number:

n = raw_input("Integer? ")#Pick an integer. And remember, if raw_input

 is not supported by your OS, use input()

n = int(n)#Defines n as the integer you chose. (Alternatively, you can

define n yourself)

if n < 0:

 print ("The absolute value of",n,"is",-n)

else:

 print ("The absolute value of",n,"is",n)

Here is the output from the two times that I ran this program:

Integer? -34

The absolute value of -34 is 34

Integer? 1

The absolute value of 1 is 1

What does the computer do when it sees this piece of code? First it prompts the user for a number with the statement
"n = raw_input("Integer? ")". Next it reads the line "if n < 0:". If n is less than zero Python runs the
line "print "The absolute value of",n,"is",-n". Otherwise python runs the line "print "The
absolute value of",n,"is",n".
More formally, Python looks at whether the expression n < 0 is true or false. An if statement is followed by an
indented block of statements that are run when the expression is true. After the if statement is an optional else
statement and another indented block of statements. This 2nd block of statements is run if the expression is false.
Expressions can be tested several different ways. Here is a table of all of them:

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Conditional Statements 17

operator function

< less than

<= less than or equal to

> greater than

>= greater than or equal
to

== equal

!= not equal

Another feature of the if command is the elif statement. It stands for "else if," which means that if the original
if statement is false and the elif statement is true, execute the block of code following the elif statement.
Here's an example:

a = 0

while a < 10:

 a = a + 1

 if a > 5:

 print (a,">",5)

 elif a <= 7:

 print (a,"<=",7)

 else:

 print ("Neither test was true")

and the output:

1 <= 7

2 <= 7

3 <= 7

4 <= 7

5 <= 7

6 > 5

7 > 5

8 > 5

9 > 5

10 > 5

Notice how the elif a <= 7 is only tested when the if statement fails to be true. elif allows multiple tests
to be done in a single if statement.

If Examples
High_low.py

#Plays the guessing game higher or lower

(originally written by Josh Cogliati, improved by Quique)

#This should actually be something that is semi random like the

last digits of the time or something else, but that will have to

wait till a later chapter. (Extra Credit, modify it to be random

Python Programming/Conditional Statements 18

after the Modules chapter)

#This is for demonstration purposes only.

It is not written to handle invalid input like a full program would.

number = 78

guess = 0

while guess != number :

 guess = raw_input("Guess an integer: ")

 guess = int(guess)

 if guess > number :

 print ("Too high")

 elif guess < number :

 print ("Too low")

 else:

 print ("Just right")

Sample run:

Guess an integer:100

Too high

Guess an integer:50

Too low

Guess an integer:75

Too low

Guess an integer:87

Too high

Guess an integer:81

Too high

Guess an integer:78

Just right

even.py

#Asks for a number.

#Prints if it is even or odd

number = raw_input("Tell me a number: ")

number = float(number)

if number % 2 == 0:

 print (number,"is even.")

elif number % 2 == 1:

 print (number,"is odd.")

else:

 print (number,"is very strange.")

Sample runs.

Python Programming/Conditional Statements 19

Tell me a number: 3

3 is odd.

Tell me a number: 2

2 is even.

Tell me a number: 3.14159

3.14159 is very strange.

average1.py

#keeps asking for numbers until 0 is entered.

#Prints the average value.

count = 0

sum = 0.0

number = 1.0 # set this to something that will not exit

the while loop immediately.

print ("Enter 0 to exit the loop")

while number != 0:

 number = raw_input("Enter a number: ")

 number = float(number)

 if number != 0:

 count = count + 1

 sum = sum + number

print "The average was:",sum/count

Sample runs

Enter 0 to exit the loop

Enter a number:3

Enter a number:5

Enter a number:0

The average was: 4.0

Enter 0 to exit the loop

Enter a number:1

Enter a number:4

Enter a number:3

Enter a number:0

The average was: 2.66666666667

average2.py

#keeps asking for numbers until count have been entered.

#Prints the average value.

Python Programming/Conditional Statements 20

sum = 0.0

print ("This program will take several numbers, then average them.")

count = raw_input("How many numbers would you like to sum:")

count = int(count)

current_count = 0

while current_count < count:

 current_count = current_count + 1

 print ("Number",current_count)

 number = input("Enter a number: ")

 sum = sum + number

print "The average was:",sum/count

Sample runs

This program will take several numbers, then average them.

How many numbers would you like to sum:2

Number 1

Enter a number:3

Number 2

Enter a number:5

The average was: 4.0

This program will take several numbers, then average them.

How many numbers would you like to sum:3

Number 1

Enter a number:1

Number 2

Enter a number:4

Number 3

Enter a number:3

The average was: 2.66666666667

If Exercises
1. Write a password guessing program to keep track of how many times the user has entered the password wrong. If

it is more than 3 times, print You have been denied access. and terminate the program. If the password is correct,
print You have successfully logged in. and terminate the program.

2. Write a program that asks for two numbers. If the sum of the numbers is greater than 100, print That is a big
number and terminate the program.

3. Write a program that asks the user their name. If they enter your name, say "That is a nice name." If they enter
"John Cleese" or "Michael Palin", tell them how you feel about them ;), otherwise tell them "You have a nice
name."

Python Programming/Conditional Statements 21

Conditional Statements
Many languages (like Java and PHP) have the concept of a one-line conditional (called The Ternary Operator), often
used to simplify conditionally accessing a value. For instance (in Java):

int in= ; // read from program input

// a normal conditional assignment

int res;

if(in < 0)

 res = -in;

else

 res = in;

// this can be simplified to

int res2 = (in < 0) ? -in: in;

For many years Python did not have the same construct natively, however you could replicate it by constructing a
tuple of results and calling the test as the index of the tuple, like so:

in = int(raw_input("Enter a number to get its absolute value:"))

res = (-in,in)[in<0]

It is important to note that, unlike a built in conditional statement, both the true and false branches are evaluated
before returning, which can lead to unexpected results and slower executions if you're not careful. To resolve this
issue, and as a better practice, wrap whatever you put in the tuple in anonymous function calls (lambda notation) to
prevent them from being evaluated until the desired branch is called:

in = int(raw_input("Enter a number to get its absolute value:"))

res = (lambda:in,lambda:-in)[in<0]()

Since Python 2.5 however, there has been an equivalent operator to The Ternary Operator (though not called such,
and with a totally different syntax):

in = int(raw_input("Enter a number to get its absolute value:"))

res = -in if in<0 else in

Switch
A switch is a control statement present in most computer programming languages to minimize a bunch of If - elif
statements. Sadly Python doesn't officially support this statement, but with the clever use of an array or dictionary,
we can recreate this Switch statement that depends on a value.

x = 1

def hello():

 print ("Hello")

def bye():

 print ("Bye")

def hola():

 print ("Hola is Spanish for Hello")

Python Programming/Conditional Statements 22

def adios():

 print ("Adios is Spanish for Bye")

Notice that our switch statement is a regular variable, only that we

added the function's name inside

and there are no quotes

menu = [hello,bye,hola,adios]

To call our switch statement, we simply make reference to the array

with a pair of parentheses

at the end to call the function

menu[3]() # calls the adios function since is number 3 in our array.

menu[0]() # Calls the hello function being our first element in our

array.

menu[x]() # Calls the bye function as is the second element on the

array x = 1

This works because Python stores a reference of the function in the array at its particular index, and by adding a pair
of parentheses we are actually calling the function. Here the last line is equivalent to:

if x==0:

 hello()

elif x==1:

 bye()

elif x==2:

 hola()

else:

 adios()

Another way
Source [1]

Another way is to use lambdas. Code pasted here without permissions.

result = {

 'a': lambda x: x * 5,

 'b': lambda x: x + 7,

 'c': lambda x: x - 2

}[value](x)

Previous: Decision Control Index Next: Loops

http://simonwillison.net/2004/May/7/switch/
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Conditional Statements 23

References
[1] http:/ / simonwillison. net/ 2004/ May/ 7/ switch/

Python Programming/Loops

Previous: Conditional Statements Index Next:
Sequences

While loops
This is our first control structure. Ordinarily the computer starts with the first line and then goes down from there.
Control structures change the order that statements are executed or decide if a certain statement will be run. As a side
note, decision statements (e.g., if statements) also influence whether or not a certain statement will run. Here's the
source for a program that uses the while control structure:

a = 0

while a < 10 :

 a += 1

 print (a)

And here is the output:

1

2

3

4

5

6

7

8

9

10

So what does the program do? First it sees the line a = 0 and makes a zero. Then it sees while a < 10: and
so the computer checks to see if a < 10. The first time the computer sees this statement a is zero so it is less than
10. In other words while a is less than ten the computer will run the tabbed in statements.
Here is another example of the use of while:

a = 1

s = 0

print ('Enter Numbers to add to the sum.')

print ('Enter 0 to quit.')

while a != 0:

 print ('Current Sum: ', s)

 a = raw_input('Number? ')

 a = float(a)

 s += a

print ('Total Sum = ',s)

http://simonwillison.net/2004/May/7/switch/
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Loops 24

Enter Numbers to add to the sum.

Enter 0 to quit.

Current Sum: 0

Number? 200

Current Sum: 200

Number? -15.25

Current Sum: 184.75

Number? -151.85

Current Sum: 32.9

Number? 10.00

Current Sum: 42.9

Number? 0

Total Sum = 42.9

Notice how print 'Total Sum =',s is only run at the end. The while statement only affects the lines that
are tabbed in (a.k.a. indented). The != means does not equal so while a != 0 : means until a is zero run the
tabbed in statements that are afterwards.
Now that we have while loops, it is possible to have programs that run forever. An easy way to do this is to write a
program like this:

while 1 == 1:

 print ("Help, I'm stuck in a loop.")

This program will output Help, I'm stuck in a loop. until the heat death of the universe or you stop it.
The way to stop it is to hit the Control (or Ctrl) button and `c' (the letter) at the same time. This will kill the program.
(Note: sometimes you will have to hit enter after the Control C.)

Examples
Fibonacci.py

#This program calculates the Fibonacci sequence

a = 0

b = 1

count = 0

max_count = 20

while count < max_count:

 count = count + 1

 #we need to keep track of a since we change it

 old_a = a

 old_b = b

 a = old_b

 b = old_a + old_b

 #Notice that the , at the end of a print statement keeps it

 # from switching to a new line

 print (old_a,)

print()

Output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Python Programming/Loops 25

Password.py

Waits until a password has been entered. Use control-C to break out

without

the password

Note that this must not be the password so that the

while loop runs at least once.

password = "foobar"

#note that != means not equal

while password != "unicorn":

 password = raw_input("Password: ")

print ("Welcome in")

Sample run:

Password:auo

Password:y22

Password:password

Password:open sesame

Password:unicorn

Welcome in

For Loops
This is another way of using loops:

onetoten = range(1,11)

for count in onetoten:

 print (count)

The output:

1

2

3

4

5

6

7

8

9

10

The output looks very familiar, but the program code looks different. The first line uses the range function. The
range function uses two arguments like this range(start,finish). start is the first number that is
produced. finish is one larger than the last number. Note that this program could have been done in a shorter
way:

for count in range(1,11):

 print (count)

Python Programming/Loops 26

Here are some examples to show what happens with the range command:

>>> range(1,10)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(-32, -20)

[-32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21]

>>> range(5,21)

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

>>> range(21,5)

[]

Another way to use the range() function in a for loop is to supply only one argument:

for a in range(10):

 print a,

The above code acts exactly the same as:

for a in range(0, 10):

 print a,

with 0 implied as the starting point. The output is

0 1 2 3 4 5 6 7 8 9

The code would cycle through the for loop 10 times as expected, but starting with 0 instead of 1.
The next line for count in onetoten: uses the for control structure. A for control structure looks like
for variable in list:. list is gone through starting with the first element of the list and going to the last.
As for goes through each element in a list it puts each into variable. That allows variable to be used in
each successive time the for loop is run through. Here is another example to demonstrate:

demolist = ['life',42, 'the universe', 6,'and',7,'everything']

for item in demolist:

 print ("The Current item is: %s" % item)

The output is:

The Current item is: life

The Current item is: 42

The Current item is: the universe

The Current item is: 6

The Current item is: and

The Current item is: 7

The Current item is: everything

Notice how the for loop goes through and sets item to each element in the list. (Notice how if you don't want
print to go to the next line add a comma at the end of the statement (i.e. if you want to print something else on that
line).) So, what is for good for? The first use is to go through all the elements of a list and do something with each
of them. Here a quick way to add up all the elements:

list = [2,4,6,8]

sum = 0

for num in list:

 sum = sum + num

Python Programming/Loops 27

print "The sum is: %d" % sum

with the output simply being:

The sum is: 20

Or you could write a program to find out if there are any duplicates in a list like this program does:

list = [4, 5, 7, 8, 9, 1,0,7,10]

list.sort()

prev = list[0]

del list[0]

for item in list:

 if prev == item:

 print ("Duplicate of ",prev," Found")

 prev = item

and for good measure:

Duplicate of 7 Found

How does it work? Here is a special debugging version:

l = [4, 5, 7, 8, 9, 1,0,7,10]

print ("l = [4, 5, 7, 8, 9, 1,0,7,10]","\tl:",l)

l.sort()

print ("l.sort()","\tl:",l)

prev = l[0]

print ("prev = l[0]","\tprev:",prev)

del l[0]

print ("del l[0]","\tl:",l)

for item in l:

 if prev == item:

 print ("Duplicate of ",prev," Found")

 print ("if prev == item:","\tprev:",prev,"\titem:",item)

 prev = item

 print ("prev = item","\t\tprev:",prev,"\titem:",item)

with the output being:

l = [4, 5, 7, 8, 9, 1,0,7,10] l: [4, 5, 7, 8, 9, 1, 0, 7, 10]

l.sort() l: [0, 1, 4, 5, 7, 7, 8, 9, 10]

prev = l[0] prev: 0

del l[0] l: [1, 4, 5, 7, 7, 8, 9, 10]

if prev == item: prev: 0 item: 1

prev = item prev: 1 item: 1

if prev == item: prev: 1 item: 4

prev = item prev: 4 item: 4

if prev == item: prev: 4 item: 5

prev = item prev: 5 item: 5

if prev == item: prev: 5 item: 7

prev = item prev: 7 item: 7

Python Programming/Loops 28

Duplicate of 7 Found

if prev == item: prev: 7 item: 7

prev = item prev: 7 item: 7

if prev == item: prev: 7 item: 8

prev = item prev: 8 item: 8

if prev == item: prev: 8 item: 9

prev = item prev: 9 item: 9

if prev == item: prev: 9 item: 10

prev = item prev: 10 item: 10

Note: The reason there are so many print statements is because print statements can show the value of each
variable at different times, and help debug the program. First the program starts with a old list. Next the program
sorts the list. This is so that any duplicates get put next to each other. The program then initializes a prev(ious)
variable. Next the first element of the list is deleted so that the first item is not incorrectly thought to be a duplicate.
Next a for loop is gone into. Each item of the list is checked to see if it is the same as the previous. If it is a duplicate
was found. The value of prev is then changed so that the next time the for loop is run through prev is the previous
item to the current. Sure enough, the 7 is found to be a duplicate.
The other way to use for loops is to do something a certain number of times. Here is some code to print out the first 9
numbers of the Fibonacci series:

a = 1

b = 1

for c in range(1,10):

 print (a)

 n = a + b

 a = b

 b = n

print ("")

with the surprising output:

1

1

2

3

5

8

13

21

34

Everything that can be done with for loops can also be done with while loops but for loops give a easy way to
go through all the elements in a list or to do something a certain number of times.

Python Programming/Loops 29

Exercises
1. Create a program to count by prime numbers. Ask the user to input a number, then print each prime number up to

that number.
2. Instruct the user to pick an arbitrary number from 1 to 100 and proceed to guess it correctly within seven tries.

After each guess, the user must tell whether their number is higher than, lower than, or equal to your guess.
Solutions

Previous: Conditional Statements Index Next:
Sequences

Python Programming/Sequences

Previous: Basic
Math

Index Next: Source Documentation and Comments

Sequences allow you to store multiple values in an organized and efficient fashion. There are five kinds of sequences
in Python: strings, lists, tuples, dictionaries, and sets (actually there are more, but these are the most commonly used
types).

Strings
We already covered strings, but that was before you knew what a sequence is. In other languages, the elements in
arrays and sometimes the characters in strings may be accessed with the square brackets, or subscript operator. This
works in Python too:

>>> "Hello, world!"[0]

'H'

>>> "Hello, world!"[1]

'e'

>>> "Hello, world!"[2]

'l'

>>> "Hello, world!"[3]

'l'

>>> "Hello, world!"[4]

'o'

Indexes are numbered from 0 to n-1 where n is the number of items (or characters), and they are positioned between
the items:

 H e l l o , _ w o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

The item which comes immediately after an index is the one selected by that index. Negative indexes are counted
from the end of the string:

>>> "Hello, world!"[-2]

'd'

>>> "Hello, world!"[-9]

'o'

http://en.wikibooks.org/w/index.php?title=Python_Programming/Loops/Solutions
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Sequences 30

>>> "Hello, world!"[-13]

'H'

>>> "Hello, world!"[-1]

'!'

But in Python, the colon : allows the square brackets to take as many as two numbers. For any sequence which only
uses numeric indexes, this will return the portion which is between the specified indexes. This is known as "slicing,"
and the result of slicing a string is often called a "substring."

>>> "Hello, world!"[3:9]

'lo, wo'

>>> string = "Hello, world!"

>>> string[:5]

'Hello'

>>> string[-6:-1]

'world'

>>> string[-9:]

'o, world!'

>>> string[:-8]

'Hello'

>>> string[:]

'Hello, world!'

As demonstrated above, if either number is omitted it is assumed to be the beginning or end of the sequence.

Lists
A list is just what it sounds like: a list of values, organized in order. A list is created using square brackets. For
example, an empty list would be initialized like this:

spam = []

The values of the list are separated by commas. For example:

spam = ["bacon", "eggs", 42]

Lists may contain objects of varying types. It may hold both the strings "eggs" and "bacon" as well as the number 42.
Like characters in a string, items in a list can be accessed by indexes starting at 0. To access a specific item in a list,
you refer to it by the name of the list, followed by the item's number in the list inside brackets. For example:

>>> spam

['bacon', 'eggs', 42]

>>> spam[0]

'bacon'

>>> spam[1]

'eggs'

>>> spam[2]

42

You can also use negative numbers, which count backwards from the end of the list:

>>> spam[-1]

42

Python Programming/Sequences 31

>>> spam[-2]

'eggs'

>>> spam[-3]

'bacon'

The len() function also works on lists, returning the number of items in the array:

>>> len(spam)

3

Note that the len() function counts the number of item inside a list, so the last item in spam (42) has the index
(len(spam) - 1).
The items in a list can also be changed, just like the contents of an ordinary variable:

>>> spam = ["bacon", "eggs", 42]

>>> spam

['bacon', 'eggs', 42]

>>> spam[1]

'eggs'

>>> spam[1] = "ketchup"

>>> spam

['bacon', 'ketchup', 42]

(Strings, being immutable, are impossible to modify.) As with strings, lists may be sliced:

>>> spam[1:]

['eggs', 42]

>>> spam[:-1]

[42]

It is also possible to add items to a list. There are many ways to do it, the easiest way is to use the append() method
of list:

>>> spam.append(10)

>>> spam

['bacon', 'eggs', 42, 10]

Note that you cannot manually insert an element by specifying the index outside of its range. The following code
would fail:

>>> spam[4] = 10

IndexError: list assignment index out of range

Instead, you must use the append() function. If you want to insert an item inside a list at a certain index, you may use
the insert() method of list, for example:

>>> spam.insert(1, 'and')

>>> spam

['bacon', 'and', 'eggs', 42, 10]

You can also delete items from a list using the del statement:

>>> spam

['bacon', 'and', 'eggs', 42, 10]

Python Programming/Sequences 32

>>> del spam[1]

>>> spam

['bacon', 'eggs', 42, 10]

>>> spam[0]

'bacon'

>>> spam[1]

'eggs'

>>> spam[2]

42

>>> spam[3]

10

As you can see, the list re-orders itself, so there are no gaps in the numbering.
For further explanation on list, see Data Structure/Lists

Tuples
Tuples are similar to lists, except they are immutable. Once you have set a tuple, there is no way to change it
whatsoever: you cannot add, change, or remove elements of a tuple. Otherwise, tuples work identically to lists.
To declare a tuple, you use commas:

unchanging = "rocks", 0, "the universe"

It is often necessary to use parentheses to differentiate between different tuples, such as when doing multiple
assignments on the same line:

foo, bar = "rocks", 0, "the universe" # An error: 2 elements on left, 3

 on right

foo, bar = "rocks", (0, "the universe")

Unnecessary parenthesis can be used without harm, but nested parentheses denote nested tuples:

>>> var = "me", "you", "us", "them"

>>> var = ("me", "you", "us", "them")

both produce:

>>> print var

('me', 'you', 'us', 'them')

but:

>>> var = ("me", "you", ("us", "them"))

>>> print(var)

('me', 'you', ('us', 'them')) # A tuple of 3 elements, the last of

which is itself a tuple.

For further explanation on tuple, see Data Structure/Tuples

Python Programming/Sequences 33

Dictionaries
Dictionaries are also like lists, and they are mutable -- you can add, change, and remove elements from a dictionary.
However, the elements in a dictionary are not bound to numbers, the way a list is. Every element in a dictionary has
two parts: a key, and a value. Calling a key of a dictionary returns the value linked to that key. You could consider a
list to be a special kind of dictionary, in which the key of every element is a number, in numerical order.
Dictionaries are declared using curly braces, and each element is declared first by its key, then a colon, and then its
value. For example:

>>> definitions = {"guava": "a tropical fruit", "python": "a programming

language", "the answer": 42}

>>> definitions

{'python': 'a programming language', 'the answer': 42, 'guava': 'a

tropical fruit'}

>>> definitions["the answer"]

42

>>> definitions["guava"]

'a tropical fruit'

>>> len(definitions)

3

Also, adding an element to a dictionary is much simpler: simply declare it as you would a variable.

>>> definitions["new key"] = "new value"

>>> definitions

{'python': 'a programming language', 'the answer': 42, 'guava': 'a

tropical fruit', 'new key': 'new value'}

For further explanation on dictionary, see Data Structure/Dictionaries

Sets
Sets are just like list, except that it is unordered and it does not allow duplicate values. Elements of a set are neither
bound to a number (like list and tuple) nor to a key (like dictionary). The reason for using set over other data types is
that set is much faster for huge number of items than a list or tuple and sets provide fast data insertion, deletion, and
fast membership testing. Sets also support mathematical set operations such as testing for subsets and finding the
union or intersection of two sets.

>>> mind = set([42, 'a string', (23, 4)])

>>> mind

set([(23, 4), 42, 'a string'])

>>> mind = set([42, 'a string', 40, 41])

>>> mind

set([40, 41, 42, 'a string'])

>>> mind = set([42, 'a string', 40, 0])

>>> mind

set([40, 0, 42, 'a string'])

>>> mind.add('hello')

>>> mind

set([40, 0, 42, 'a string', 'hello'])

Python Programming/Sequences 34

Note that sets are unordered, items you add into sets will end up in an indeterminable position, and it may also
change from time to time.

>>> mind.add('duplicate value')

>>> mind.add('duplicate value')

>>> mind

set([0, 'a string', 40, 42, 'hello', 'duplicate value'])

Sets cannot contain a single value more than once. Unlike lists, which can contain anything, the types of data that
can be included in sets is restricted. A set can only contain hashable, immutable data types. Integers, strings, and
tuples are hashable; lists, dictionaries, and other sets (except frozensets, see below) are not.

Frozenset
The relationship between frozenset and set is like the relationship between tuple and list. Frozenset is an immutable
version of set. An example:

>>> frozen=frozenset(['life','universe','everything'])

>>> frozen

frozenset({'universe', 'life', 'everything'})

Other data types
Python also has other types of arrays, although these are less frequently used and they need to be imported from the
standard library before used. We will only brush on them here.
array

A typed-list, an array may only contain homogeneous values.
collections.defaultdict

A dictionary that, when an element is not found, returns a default value instead of error.
collections.deque

A double ended queue, allows fast manipulation on both sides of the queue.
heapq

A priority queue.
Queue

A thread-safe multi-producer, multi-consumer queue for use with multi-threaded programs. Note that a list can
also be used as queue in a single-threaded code.

For further explanation on set, see Data Structure/Sets

Python Programming/Sequences 35

3rd party data structure
Some useful data types in Python don't come in the standard library. Some of these are very specialized on their use.
We'll mention some of the more well known 3rd party types.
numpy.array

useful for heavy number crunching
sorteddict

like the name says, a sorted dictionary
more

this list isn't comprehensive

Notes

Previous: Basic
Math

Index Next: Source Documentation and Comments

Python Programming/Source Documentation and
Comments

Previous: Sequences Index Next: Modules and how to use them

Documentation is the process of leaving information about your code. The two mechanisms for doing this in Python
are comments and documentation strings.

Comments
There will always be a time in which you have to return to your code. Perhaps it is to fix a bug, or to add a new
feature. Regardless, looking at your own code after six months is almost as bad as looking at someone else's code.
What one needs is a means to leave reminders to yourself as to what you were doing.
For this purpose, you leave comments. Comments are little snippets of text embedded inside your code that are
ignored by the Python interpreter. A comment is denoted by the hash character (#) and extends to the end of the line.
For example:

#!/usr/bin/env python

commentexample.py

Display the knights that come after Scene 24

print("The Knights Who Say Ni!")

print("I will never see the light of day!")

As you can see, you can also use comments to temporarily remove segments of your code, like the second print
statement.

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Source Documentation and Comments 36

Comment Guidelines
The following guidelines are from PEP 8 [1], written by Guido van Rossum.
• General

• Comments that contradict the code are worse than no comments. Always make a priority of keeping the
comments up-to-date when the code changes!

• Comments should be complete sentences. If a comment is a phrase or sentence, its first word should be
capitalized, unless it is an identifier that begins with a lower case letter (never alter the case of identifiers!).

• If a comment is short, the period at the end can be omitted. Block comments generally consist of one or more
paragraphs built out of complete sentences, and each sentence should end in a period.

• You should use two spaces after a sentence-ending period.
• When writing English, Strunk and White applies.
• Python coders from non-English speaking countries: please write your comments in English, unless you are

120% sure that the code will never be read by people who don't speak your language.
• Inline Comments

• An inline comment is a comment on the same line as a statement. Inline comments should be separated by at
least two spaces from the statement. They should start with a # and a single space.

• Inline comments are unnecessary and in fact distracting if they state the obvious. Don't do this:

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

Documentation Strings
But what if you just want to know how to use a function, class, or method? You could add comments before the
function, but comments are inside the code, so you would have to pull up a text editor and view them that way. But
you can't pull up comments from a C extension, so that is less than ideal. You could always write a separate text file
with how to call the functions, but that would mean that you would have to remember to update that file. If only
there was a mechanism for being able to embed the documentation and get at it easily...
Fortunately, Python has such a capability. Documentation strings (or docstrings) are used to create easily-accessible
documentation. You can add a docstring to a function, class, or module by adding a string as the first indented
statement. For example:

#!/usr/bin/env python

docstringexample.py

"""Example of using documentation strings."""

class Knight:

 """

 An example class.

 Call spam to get bacon.

 """

 def spam(eggs="bacon"):

 """Prints the argument given."""

http://www.python.org/dev/peps/pep-0008/
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Strunk_and_White

Python Programming/Source Documentation and Comments 37

 print(eggs)

The convention is to use triple-quoted strings, because it makes it easier to add more documentation spanning
multiple lines.
To access the documentation, you can use the help function inside a Python shell with the object you want help on,
or you can use the pydoc command from your system's shell. If we were in the directory where docstringexample.py
lives, one could enter pydoc docstringexample to get documentation on that module.

Previous: Sequences Index Next: Modules and how to use them

References
[1] http:/ / www. python. org/ dev/ peps/ pep-0008/

Python Programming/Modules and how to use
them

Previous: Source Documentation and Comments Index Next: Files

Modules are libraries that can be called from other scripts. For example, a popular module is the time module. You
can call it using:

import time

Then, create a new python file, you can name it anything (except time.py, since it'd mess up python's module
importing, you'll see why later):

import time

def main():

 #define the variable 'current_time' as a tuple of time.localtime()

 current_time = time.localtime()

 print(current_time) # print the tuple

 # if the year is 2009 (first value in the current_time tuple)

 if current_time[0] == 2009:

 print('The year is 2009') # print the year

if __name__ == '__main__': # if the function is the main function ...

 main() # ...call it

Modules can be called in a various number of ways. For example, we could import the time module as t:

import time as t # import the time module and call it 't'

def main():

 current_time = t.localtime()

 print(current_time)

 if current_time[0] == 2009:

 print('The year is 2009')

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.python.org/dev/peps/pep-0008/
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Modules and how to use them 38

if __name__ == '__main__':

 main()

It is not necessary to import the whole module, if you only need a certain function or class. To do this, you can do a
from-import. Note that a from-import would import the name directly into the global namespace, so when invoking
the imported function, it is unnecessary (and wrong) to call the module again:

from time import localtime #1

def main():

 current_time = localtime() #2

 print(current_time)

 if current_time[0] == 2009:

 print 'The year is 2009'

if __name__ == '__main__':

 main()

it is possible to alias a name imported through from-import

from time import localtime as lt

def main():

 current_time = lt()

 print(current_time)

 if current_time[0] == 2009:

 print('The year is 2009')

if __name__ == '__main__':

 main()

Previous: Source Documentation and Comments Index Next: Files

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Files 39

Python Programming/Files

Previous: Modules and how to use them Index Next: Text

File I/O
Read entire file:

inputFileText = open("testit.txt", "r").read()

print(inputFileText)

In this case the "r" parameter means the file will be opened in read-only mode.
Read certain amount of bytes from a file:

inputFileText = open("testit.txt", "r").read(123)

print(inputFileText)

When opening a file, one starts reading at the beginning of the file, if one would want more random access to the
file, it is possible to use seek() to change the current position in a file and tell() to get to know the current position in
the file. This is illustrated in the following example:

>>> f=open("/proc/cpuinfo","r")

>>> f.tell()

0L

>>> f.read(10)

'processor\t'

>>> f.read(10)

': 0\nvendor'

>>> f.tell()

20L

>>> f.seek(10)

>>> f.tell()

10L

>>> f.read(10)

': 0\nvendor'

>>> f.close()

>>> f

<closed file '/proc/cpuinfo', mode 'r' at 0xb7d79770>

Here a file is opened, twice ten bytes are read, tell() shows that the current offset is at position 20, now seek() is used
to go back to position 10 (the same position where the second read was started) and ten bytes are read and printed
again. And when no more operations on a file are needed the close() function is used to close the file we opened.
Read one line at a time:

for line in open("testit.txt", "r"):

 print line

In this case readlines() will return an array containing the individual lines of the file as array entries. Reading a single
line can be done using the readline() function which returns the current line as a string. This example will output an
additional newline between the individual lines of the file, this is because one is read from the file and print

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Files 40

introduces another newline.
Write to a file requires the second parameter of open() to be "w", this will overwrite the existing contents of the file
if it already exists when opening the file:

outputFileText = "Here's some text to save in a file"

open("testit.txt", "w").write(outputFileText)

Append to a file requires the second parameter of open() to be "a" (from append):

outputFileText = "Here's some text to add to the existing file."

open("testit.txt", "a").write(outputFileText)

Note that this does not add a line break between the existing file content and the string to be added.

Testing Files
Determine whether path exists:

import os

os.path.exists('<path string>')

When working on systems such as Microsoft Windows(tm), the directory separators will conflict with the path
string. To get around this, do the following:

import os

os.path.exists('C:\\windows\\example\\path')

A better way however is to use "raw", or r:

import os

os.path.exists(r'C:\windows\example\path')

But there are some other convenient functions in os.path, where path.code.exists() only confirms whether or not path
exists, there are functions which let you know if the path is a file, a directory, a mount point or a symlink. There is
even a function os.path.realpath() which reveals the true destination of a symlink:

>>> import os

>>> os.path.isfile("/")

False

>>> os.path.isfile("/proc/cpuinfo")

True

>>> os.path.isdir("/")

True

>>> os.path.isdir("/proc/cpuinfo")

False

>>> os.path.ismount("/")

True

>>> os.path.islink("/")

False

>>> os.path.islink("/vmlinuz")

True

>>> os.path.realpath("/vmlinuz")

'/boot/vmlinuz-2.6.24-21-generic'

Python Programming/Files 41

Common File Operations
To copy or move a file, use the shutil library.

import shutil

shutil.move("originallocation.txt","newlocation.txt")

shutil.copy("original.txt","copy.txt")

To perform a recursive copy it is possible to use copytree(), to perform a recursive remove it is possible to use
rmtree()

import shutil

shutil.copytree("dir1","dir2")

shutil.rmtree("dir1")

To remove an individual file there exists the remove() function in the os module:

import os

os.remove("file.txt")

Previous: Modules and how to use them Index Next: Text

Python Programming/Text

Previous:
Files

Index Next:
Errors

Get the length of a string:

len("Hello Wikibooks!") -> 16

Get ASCII character code, or get a character version of it:

ord('h') -> 104

chr(65) -> 'A'

Previous:
Files

Index Next:
Errors

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Errors 42

Python Programming/Errors

Previous:
Text

Index Next:
Namespace

In python there are two types of errors; syntax errors and exceptions.

Syntax errors
Syntax errors are the most basic type of error. They arise when the Python parser is unable to understand a line of
code. Syntax errors are always fatal, i.e. there is no way to successfully execute a piece of code containing syntax
errors.

Exceptions
Exceptions arise when the python parser knows what to do with a piece of code but is unable to perform the action.
An example would be trying to access the internet with python without an internet connection; the python interpreter
knows what to do with that command but is unable to perform it.

Dealing with exceptions
Unlike syntax errors, exceptions are not always fatal. Exceptions can be handled with the use of a try statement.
Consider the following code to display the HTML of the website 'goat.com'. When the execution of the program
reaches the try statement it will attempt to perform the indented code following, if for some reason there is an error
(the computer is not connected to the internet or something) the python interpreter will jump to the indented code
below the 'except:' command.

import urllib2

url = 'http://www.goat.com'

try:

 req = urllib2.Request(url)

 response = urllib2.urlopen(req)

 the_page = response.read()

 print the_page

except:

 print "We have a problem."

Another way to handle an error is to except a specific error.

try:

 age = int(raw_input("Enter your age: "))

 print "You must be {0} years old.".format(age)

except ValueError:

 print "Your age must be numeric."

If the user enters a numeric value as his/her age, the output should look like this:

Enter your age: 5

You must be 5 years old.

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming/Errors%23Syntax_errors
http://en.wikibooks.org/w/index.php?title=Python_Programming/Errors%23Exceptions

Python Programming/Errors 43

However, if the user enters a non-numeric value as his/her age, a ValueError is thrown when trying to execute
the int() method on a non-numeric string, and the code under the except clause is executed:

Enter your age: five

Your age must be a number.

You can also use a try block with a while loop to validate input:

valid = False

while valid == False:

 try:

 age = int(raw_input("Enter your age: "))

 valid = True # This statement will only execute if the

above statement executes without error.

 print "You must be {0} years old.".format(age)

 except ValueError:

 print "Your age must be numeric."

The program will prompt you for your age until you enter a valid age:

Enter your age: five

Your age must be numeric.

Enter your age: abc10

Your age must be numeric.

Enter your age: 15

You must be 15 years old.

Previous:
Text

Index Next:
Namespace

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Namespace 44

Python Programming/Namespace

Previous: Errors Index Next: Object-oriented programming

Previous: Errors Index Next: Object-oriented programming

Python Programming/Object-oriented
programming

Previous: Namespace Index Next: User Interaction

Object Oriented Programming
OOP is a programming approach where objects are defined with methods (functions, actions or events) and
properties (values, characteristics), resulting in more readable, more reusable code.
Lets say you're writing a program where you need to keep track of multiple cars. Each car has different
characteristics like mileage, color, and top speed, but lucky for us they all can perform some common actions like
braking, accelerating, and turning.
Instead of writing code separately for each car we could create a class called 'Car' that will be the blueprint for each
particular car.

Constructing a Class
Class is the name given to a generic description of an object. In python you define a class method (an action, event,
or function) using the following structure:

class <<name>>:

 def <<method>> (self [, <<optional arguments>>]):

 <<Function codes>>

Let's take a detailed look. We define our object using the 'class' keyword, the name we want, and a colon. We define
its methods as we would a normal function: only one indent with 'self' as its first argument (we get to this later). So
our example car class may look like this:

class Car:

 def brake(self):

 print("Brakes")

 def accelerate(self):

 print("Accelerating")

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Object-oriented programming 45

But how do I use it?
Once you have created the class, you actually need to create an object for each instance of that class. In python we
create a new variable to create an instance of a class. Example:

car1 = Car() # car 1 is my instance for the first car

car2 = Car()

And use the object methods like

car1.brake()

Using the parentheses ("calling" the class) tells Python that you want to create an instance and not just copy the class
definition. You would need to create a variable for each car. However, now each car object can take advantage of the
class methods and attributes, so you don't need to write a brake and accelerate function for each car independently.

Properties
Right now all the cars look the same, but let's give them some properties to differentiate them. A property is just a
variable that is specific to a given object. To assign a property we write it like:

car1.color = "Red"

And retrieve its value like:

print(car1.color)

It is good programming practice to write functions to get (or retrieve) and set (or assign) properties that are not
'read-only'. For example:

class Car:

 ... previous methods ...

 def set_owner(self,Owners_Name): # This will set the owner property

 self._owner = Owners_Name

 def get_owner(self): # This will retrieve the owner property

 return self._owner

Notice the single underscore before the property name; this is a way of hiding variable names from users.
Beginning from Python 2.2, you may also define the above example in a way that looks like a normal variable:

class Car:

 ... previous methods ...

 owner = property(get_owner, set_owner)

When code such as mycar.owner = "John Smith" is used, the set_owner function is called transparently.

Python Programming/Object-oriented programming 46

Extending a Class
Let's say we want to add more functions to our class, but we are reluctant to change its code for fear that this might
mess up programs that depend on its current version. The solution is to 'extend' our class. When you extend a class
you inherit all the parent methods and properties and can add new ones. For example, we can add a start_car method
to our car class. To extend a class we supply the name of the parent class in parentheses after the new class name, for
example:

class New_car(Car):

 def start_car(self):

 self.on = true

This new class extends the parent class.

Special Class Methods
A Constructor is a method that gets called whenever you create a new instance of a class. In python you create a
constructor by writing a function inside the method name __init__. It can even accept arguments, e.g. to set attribute
values upon creating a new instance of the class. For instance, we could create a new car object and set its brand,
model, and year attributes on a single line, rather than expending an additional line for each attribute:

class New_car(Car):

 def __init__(self,brand, model, year):

 # Sets all the properties

 self.brand = brand

 self.model = model

 self.year = year

 def start_car(self):

 """ Start the cars engine """

 print ("vroem vroem")

if __name__ == "__main__":

 # Creates two instances of new_car, each with unique properties

 car1 = New_car("Ford","F-150",2001)

 car2 = New_car("Toyota","Corolla",2007)

 car1.start_car()

 car2.start_car()

For more information on classes go to the Class Section in this book.

Previous: Namespace Index Next: User Interaction

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/User Interaction 47

Python Programming/User Interaction

Previous: Object-oriented
programming

Index Next: Databases

Scripts don't normally take user input since they are usually designed to perform small useful tasks. However, there
are times where user input is really important. There are two ways to retrieve user input: the first is using the console
window (Command Line Interface) and the second is using the Graphical User Interface (GUI).

Console Windows (Command Line Interface)
Python has two built in functions to retrieve users input on a console; the first is input() and the second one is
raw_input(). These two functions have different purposes and both accept a string argument which is displayed on
the terminal before accepting the user input.
The input() function expects a python instruction as the user input. This means that the user response must be
python coded - strings must include quotes or double quotes. Once this function is called, the input entered by the
user will be evaluated, and return the result to the application. This can make it a security risk in some cases, unless
you're planning to be the only user of the application.
While the raw_input() function expects any type of input and returns a python string, this second function fits more
of our current needs.

Ask user for his name and stores

name = raw_input("Please enter your name:")

Display the name entered by the user.

print name

If the information entered by the user needs to be numeric to perform some calculation the return value most be
converted using the float() or int() conversion function.

Retrieve user age

age = int(raw_input("Please enter your age:"))

print age

As you may expect coding all the input for a big application and all the validation will increase the file size. To make
steps simpler we can create an object (using a Class) that handles retrieving the data and validating.

class ainput: # We can't use input as it is a existent function name,

 so we use AInput for Advance Input

 ''' This class will create a object with a simpler coding interface

to retrieve console input'''

 def __init__(self,msg=""):

 ''' This will create a instance of ainput object'''

 self.data = "" # Initialize a empty data variable

 if not msg == "":

 self.ask(msg)

 def ask(self,msg, req=0):

 ''' This will display the prompt and retrieve the user input.'''

 if req == 0:

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/User Interaction 48

 self.data = raw_input(msg) # Save the user input to a local

object variable

 else:

 self.data = raw_input(msg + " (Require)")

 # Verify that the information was entered and its not empty. This

 will accept a space character. Better Validation needed

 if req == 1 and self.data == "":

 self.ask(msg,req)

 def getString(self):

 ''' Returns the user input as String'''

 return self.data

 def getInteger(self):

 ''' Returns the user input as a Integer'''

 return int(self.data)

 def getNumber(self):

 ''' Returns the user input as a Float number'''

 return float(self.data)

With this tool at our disposal displaying, retrieving and validating user input is a breeze. The use of the code will run
like this. For this example we are using a single line to display the call and retrieve the information.

import is not imported

name = ainput("Please enter your first name:").getString()

age = ainput("Now enter your age:").getInteger()

print name, age

To test this code copy the following to a python script file (e.g. userInteraction.py)

class ainput: # We can't use input as it is a existent function name,

 so we use AInput for Advance Input

 ''' This class will create a object with a simpler coding interface

to retrieve console input'''

 def __init__(self,msg=""):

 ''' This will create a instance of ainput object'''

 self.data = "" # Initialize a empty data variable

 if not msg == "":

 self.ask(msg)

 def ask(self,msg, req=0):

 ''' This will display the prompt and retrieve the user input.'''

 if req == 0:

 self.data = raw_input(msg) # Save the user input to a local

object variable

 else:

 self.data = raw_input(msg + " (Require)")

Python Programming/User Interaction 49

 # Verify that the information was entered and its not empty. This

 will accept a space character. Better Validation needed

 if req == 1 and self.data == "":

 self.ask(msg,req)

 def getString(self):

 ''' Returns the user input as String'''

 return self.data

 def getInteger(self):

 ''' Returns the user input as a Integer'''

 return int(self.data)

 def getNumber(self):

 ''' Returns the user input as a Float number'''

 return float(self.data)

def main():

 # import is not imported

 name = ainput("Please enter your first name:").getString()

 age = ainput("Now enter your age:").getInteger()

 print name, age

if __name__ == '__main__':

 main()

Graphical User Interface(GUI)
Python has many different GUI toolkits, of which the most standard is Tkinter which comes with Python. This
section will be limited to basic Tkinter programming fundamentals, a more detailed reference can be found in GUI
Programming Modules of this wikibook.
Lets proceed by creating a classic developer Hello World example with the following code.

 import Tkinter

 # Define input retrieve function for application input

 def retrieve_text():

 print app_entry.get()

 if __name__ == "__main__":

 # Create Window Object or Window Form

 app_win = Tkinter.Tk()

 # Create label object

 app_label = Tkinter.Label(app_win,text="Hello World")

 app_label.pack()

Python Programming/User Interaction 50

 # Create User Input Object

 app_entry = Tkinter.Entry(app_win)

 app_entry.pack()

 # Create Button Object

 app_button = Tkinter.Button(app_win,text="Print

Value",command=retrieve_text)

 app_button.pack()

 # Initialize Graphical Loop

 app_win.mainloop()

On the first line we actually import the Tkinter library in use by using import Tkinter. Next a function is created to
retrieve the value from the input object use in the GUI. For the moment the value will be print to the console.
Next we create a windows object where all the gui components (or widgets as the Tkinter toolkit calls them) are
place. Think of it like a painting canvas where we draw our application interface.
Having define the windows we proceed to create a Label widget. Notice the first argument on Label object call is the
variable holding the window object this is for binding purpose, the next argument is the label text. The next line
binds the Label object to the Window object by using the pack method.
Next stop is the User Input Object, the Tkinter library provides the Entry Object (same as Textbox in other
programming languages). Notice that again we need the Window object as first argument. The next lines bind the
entry object with the window.
Next is the creation of the Button Object for the application. Like all the other Objects the Window object its the first
argument. The Button Text value is fill much like the same as we did with the label and the buttons action is fill
using the command argument. Notice that the command argument doesn't have quote as its not a string text but a
reference to the function. The next line proceeds to bind the Button to the window.
On the last line a call to app_win.mainloop() allow the Tkinter application to run.

Advance OOP GUI
So far it seems tedious to create a GUI using Python, especially with so much code to write for such a simple
program. But when you bring OOP concepts into the mix it is different. For a moment think of an application that
requires a couple of inputs with labels to identify them. The OOP methodolgy has the advantage of letting us create a
new object that presents the label and entry object at the same time, is reusable and can be called with one line of
code.
The code below does just that, it wraps a label and a entry object inside a Tkinter Frame Object. The object require
windows object as first argument and the label text as the second, while the text function returns a string value for
the user input. A more advanced text box can include validation and data retrieval.

Import Tkinter Library

import Tkinter

Define our Textbox Object

class textbox(Tkinter.Frame):

 # Object Initialize

 def __init__(self,parent, msg):

Python Programming/User Interaction 51

 # Initialize the Frame properties by explicit calling its Init

method

 Tkinter.Frame.__init__(self,parent)

 # Create the Textbox Label on the Left side

 self.g_label = Tkinter.Label(self,text=msg)

 self.g_label.pack(side=Tkinter.LEFT,expand=False)

 # Create the Textbox Entry on the Right side

 self.g_entry = Tkinter.Entry(self)

 self.g_entry.pack(side=Tkinter.LEFT, fill=Tkinter.X,

expand=True)

 # Proceed to pack the frame

 self.pack(fill=Tkinter.X, anchor=Tkinter.NW, expand=True)

 def text(self):

 # Textbox text value retrieval

 return self.gui['entry'].get()

Now on our multi-input application we can use this new object with one simple line for each instance:

name = textbox(win,"Name:")

Notice that we don't need to call the pack method as the text box object packs itself on the last line of the __init__.
This is not practical on complex layout application since the object controls this function, but works wonders for
small script GUI.

Previous: Object-oriented
programming

Index Next: Databases

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Databases 52

Python Programming/Databases

Previous: User
Interaction

Index Next: Internet

Python has some support for working with databases. Modules included with Python include modules for SQLite
and Berkeley DB. Modules for MySQL and PostgreSQL and others are available as third-party modules. The latter
have to be downloaded and installed before use.

MySQL
An Example with MySQL would look like this:

1 import MySQLdb

2 db = MySQLdb.connect("host machine", "dbuser", "password", "dbname")

3 cursor = db.cursor()

4 query = """SELECT * FROM sampletable"""

5 lines = cursor.execute(query)

6 data = cursor.fetchall()

7 db.close()

On the first line, the Module MySQLdb is imported. Then a connection to the database is set up and on line 4, we
save the actual SQL statement to be executed in the variable query. On line 5 we execute the query and on line 6
we fetch all the data. After the execution of this piece of code, lines contains the number of lines fetched (e.g. the
number of rows in the table sampletable). The variable data contains all the actual data, e.g. the content of
sampletable. In the end, the connection to the database would be closed again. If the number of lines are large, it
is better to use row = cursor.fetchone() and process the rows individually:

 #first 5 lines are the same as above

 while True:

 row = cursor.fetchone()

 if row == None: break

 #do something with this row of data

 db.close()

Obviously, some kind of data processing has to be used on row, otherwise the data will not be stored. The result of
the fetchone() command is a Tuple.
In order to make the initialization of the connection easier, a configuration file can be used:

import MySQLdb

db = MySQLdb.connect(read_default_file="~/.my.cnf")

...

Here, the file .my.cnf in the home directory contains the necessary configuration information for MySQL.

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/Berkeley_DB
http://en.wikibooks.org/w/index.php?title=MySQL
http://en.wikipedia.org/wiki/PostgreSQL

Python Programming/Databases 53

External links
• SQLite documentation [1]

• Psycopg2 (PostgreSQL module - newer) [2]

• PyGreSQL (PostgreSQL module - older) [3]

• MySQL module [4]

Previous: User
Interaction

Index Next: Internet

References
[1] http:/ / docs. python. org/ library/ sqlite3. html
[2] http:/ / initd. org/
[3] http:/ / www. pygresql. org/
[4] http:/ / sourceforge. net/ projects/ mysql-python/

Python Programming/Internet

Previous: Databases Index Next: Networks

The urllib module which is bundled with python can be used for web interaction. This module provides a file-like
interface for web urls.

Getting page text as a string
An example of reading the contents of a webpage

import urllib

pageText = urllib.urlopen("http://www.spam.org/eggs.html").read()

print pageText

Get and post methods can be used, too.

import urllib

params = urllib.urlencode({"plato":1, "socrates":10, "sophokles":4,

"arkhimedes":11})

Using GET method

pageText =

urllib.urlopen("http://international-philosophy.com/greece?%s" %

params).read()

print pageText

Using POST method

pageText = urllib.urlopen("http://international-philosophy.com/greece",

 params).read()

print pageText

http://docs.python.org/library/sqlite3.html
http://initd.org/
http://www.pygresql.org/
http://sourceforge.net/projects/mysql-python/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/library/sqlite3.html
http://initd.org/
http://www.pygresql.org/
http://sourceforge.net/projects/mysql-python/
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Internet 54

Downloading files
To save the content of a page on the internet directly to a file, you can read() it and save it as a string to a file object,
or you can use the urlretrieve function:

import urllib

urllib.urlretrieve("http://upload.wikimedia.org/wikibooks/en/9/91/Python_Programming.pdf",

 "pythonbook.pdf")

This will download the file from here [1] and save it to a file "pythonbook.pdf" on your hard drive.

Other functions
The urllib module includes other functions that may be helpful when writing programs that use the internet:

>>> plain_text = "This isn't suitable for putting in a URL"

>>> print urllib.quote(plain_text)

This%20isn%27t%20suitable%20for%20putting%20in%20a%20URL

>>> print urllib.quote_plus(plain_text)

This+isn%27t+suitable+for+putting+in+a+URL

The urlencode function, described above converts a dictionary of key-value pairs into a query string to pass to a
URL, the quote and quote_plus functions encode normal strings. The quote_plus function uses plus signs for spaces,
for use in submitting data for form fields. The unquote and unquote_plus functions do the reverse, converting
urlencoded text to plain text.

Previous: Databases Index Next: Networks

References
[1] http:/ / upload. wikimedia. org/ wikibooks/ en/ 9/ 91/ Python_Programming. pdf

http://upload.wikimedia.org/wikibooks/en/9/91/Python_Programming.pdf
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://upload.wikimedia.org/wikibooks/en/9/91/Python_Programming.pdf

Python Programming/Networks 55

Python Programming/Networks

Previous:
Internet

Index Next: Tips and Tricks

Previous:
Internet

Index Next: Tips and Tricks

Python Programming/Tips and Tricks

Previous: Networks Index Next: Basic syntax

There are many tips and tricks you can learn in Python:

Strings
• Triple quotes are an easy way to define a string with both single and double quotes.
• String concatenation is expensive. Use percent formatting and str.join() for concatenation:
(but don't worry about this unless your resulting string is more then 500-1000 characters long) [1]

print "Spam" + " eggs" + " and" + " spam" # DON'T DO THIS

print " ".join(["Spam","eggs","and","spam"]) # Much

faster/more

 # common Python

 idiom

print "%s %s %s %s" % ("Spam", "eggs", "and", "spam") # Also a

pythonic way of

 # doing it -

very fast

Module choice
• cPickle is a faster, C written module for pickle. cPickle is used to serialize python program. Other modules have

C implementations as well, cStringIO for the StringIO module, and cProfile for the profile module.

import cPickle # You may want to import it as P for convenience.

List comprehension and generators
• List comprehension and generator expressions are very useful for working with small, compact loops.

Additionally, it is faster than a normal for-loop.

directory = os.listdir(os.getcwd()) # Gets a list of files in the

 # directory the program runs

from

filesInDir = [item for item in directory] # Normal For Loop rules

apply, you

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Tips and Tricks 56

 # can add "if condition" to

make a

 # more narrow search.

• List comprehension and generator expression can be used to work with two (or more) lists with zip or
itertools.izip

[a - b for (a,b) in zip((1,2,3), (1,2,3))] # will return [0, 0, 0]

Data type choice
Choosing the correct data type can be critical to the performance of an application. For example, say you have 2
lists:

list1 = [{'a': 1, 'b': 2}, {'c': 3, 'd': 4}, {'e': 5, 'f': 6}]

list2 = [{'e': 5, 'f': 6}, {'g': 7, 'h': 8}, {'i': 9, 'j': 10}]

and you want to find the entries common to both lists. You could iterate over one list, checking for common items in
the other:

common = []

for entry in list1:

 if entry in list2:

 common.append(entry)

For such small lists, this will work fine, but for larger lists, for example if each contains thousands of entries, the
following will be more efficient, and produces the same result:

set1 = set([tuple(entry.items()) for entry in list1])

set2 = set([tuple(entry.items()) for entry in list2])

common = set1.intersection(set2)

common = [dict(entry) for entry in common]

Sets are optimized for speed in such functions. Dictionaries themselves cannot be used as members of a set as they
are mutable, but tuples can. If one needs to do set operations on a list of dictionaries, one can convert the items to
tuples and the list to a set, perform the operation, then convert back. This is often much faster than trying to replicate
set operations using string functions.

Other
• Decorators can be used for handling common concerns like logging, db access, etc.
• While Python has no built-in function to flatten a list you can use a recursive function to do the job quickly.

def flatten(seq, a = None):

 """flatten(seq, a = None) -> list

 Return a flat version of the iterator `seq` appended to `a`

 """

 if a == None:

 a = []

 try: # Can `seq` be iterated over?

 for item in seq: # If so then iterate over `seq`

 flatten(item, a) # and make the same check on each

Python Programming/Tips and Tricks 57

item.

 except TypeError: # If seq isn't iterable

 a.append(seq) # append it to the new list.

 return a

• To stop a Python script from closing right after you launch one independently, add this code:

print 'Hit Enter to exit'

raw_input()

• Python already has a GUI interface built in: Tkinter
Not complete. Add more, please [2].

References
[1] "'concat vs join - followup' on 'Python Rocks! and other rants 27.8.2004 Weblog of Kent S Johnson'" (http:/ / www. pycs. net/ users/

0000323/ weblog/ 2004/ 08/ 27. html). August 27, 2004. . Retrieved 2008-08-29.
[2] http:/ / en. wikibooks. org/ w/ index. php?title=Python_Programming/ Tips_and_Tricks& action=edit

Previous: Networks Index Next: Basic syntax

http://en.wikibooks.org/w/index.php?title=Python_Programming/Tips_and_Tricks&action=edit
http://www.pycs.net/users/0000323/weblog/2004/08/27.html
http://www.pycs.net/users/0000323/weblog/2004/08/27.html
http://en.wikibooks.org/w/index.php?title=Python_Programming/Tips_and_Tricks&action=edit
http://en.wikibooks.org/w/index.php?title=Python_Programming

58

Concepts

Python Programming/Basic syntax

Previous: Tips and
Tricks

Index Next: Data
types

There are five fundamental concepts in Python.

Case Sensitivity
All variables are case-sensitive. Python treats 'number' and 'Number' as separate, unrelated entities.

Spaces and tabs don't mix
Because whitespace is significant, remember that spaces and tabs don't mix, so use only one or the other when
indenting your programs. A common error is to mix them. While they may look the same in editor, the interpreter
will read them differently and it will result in either an error or unexpected behavior. Most decent text editors can be
configured to let tab key emit spaces instead.
Python's Style Guideline described that the preferred way is using 4 spaces.

 Tips: If you invoked python from the command-line, you can give -t or -tt argument to python to make python
issue a warning or error on inconsistent tab usage.

pythonprogrammer@wikibook:~$ python -tt myscript.py

this will issue an error if you mixed spaces and tabs.

Objects
In Python, like all object oriented languages, there are aggregations of code and data called Objects, which typically
represent the pieces in a conceptual model of a system.
Objects in Python are created (i.e., instantiated) from templates called Classes (which are covered later, as much of
the language can be used without understanding classes). They have "attributes", which represent the various pieces
of code and data which comprise the object. To access attributes, one writes the name of the object followed by a
period (henceforth called a dot), followed by the name of the attribute.
An example is the 'upper' attribute of strings, which refers to the code that returns a copy of the string in which all
the letters are uppercase. To get to this, it is necessary to have a way to refer to the object (in the following example,
the way is the literal string that constructs the object).

'bob'.upper

Code attributes are called "methods". So in this example, upper is a method of 'bob' (as it is of all strings). To
execute the code in a method, use a matched pair of parentheses surrounding a comma separated list of whatever
arguments the method accepts (upper doesn't accept any arguments). So to find an uppercase version of the string
'bob', one could use the following:

'bob'.upper()

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_action_bookmark.png

Python Programming/Basic syntax 59

Scope
In a large system, it is important that one piece of code does not affect another in difficult to predict ways. One of the
simplest ways to further this goal is to prevent one programmer's choice of names from preventing another from
choosing that name. Because of this, the concept of scope was invented. A scope is a "region" of code in which a
name can be used and outside of which the name cannot be easily accessed. There are two ways of delimiting
regions in Python: with functions or with modules. They each have different ways of accessing the useful data that
was produced within the scope from outside the scope. With functions, that way is to return the data. The way to
access names from other modules lead us to another concept.

Namespaces
It would be possible to teach Python without the concept of namespaces because they are so similar to attributes,
which we have already mentioned, but the concept of namespaces is one that transcends any particular programming
language, and so it is important to teach. To begin with, there is a built-in function dir() that can be used to help
one understand the concept of namespaces. When you first start the Python interpreter (i.e., in interactive mode), you
can list the objects in the current (or default) namespace using this function.

Python 2.3.4 (#53, Oct 18 2004, 20:35:07) [MSC v.1200 32 bit (Intel)]

on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> dir()

['__builtins__', '__doc__', '__name__']

This function can also be used to show the names available within a module namespace. To demonstrate this, first
we can use the type() function to show what __builtins__ is:

>>> type(__builtins__)

<type 'module'>

Since it is a module, we can list the names within the __builtins__ namespace, again using the dir() function
(note the complete list of names has been abbreviated):

>>> dir(__builtins__)

['ArithmeticError', ... 'copyright', 'credits', ... 'help', ...

'license', ... 'zip']

>>>

Namespaces are a simple concept. A namespace is a place in which a name resides. Each name within a namespace
is distinct from names outside of the namespace. This layering of namespaces is called scope. A name is placed
within a namespace when that name is given a value. For example:

>>> dir()

['__builtins__', '__doc__', '__name__']

>>> name = "Bob"

>>> import math

>>> dir()

['__builtins__', '__doc__', '__name__', 'math', 'name']

Note that I was able to add the "name" variable to the namespace using a simple assignment statement. The import
statement was used to add the "math" name to the current namespace. To see what math is, we can simply:

Python Programming/Basic syntax 60

>>> math

<module 'math' (built-in)>

Since it is a module, it also has a namespace. To display the names within this namespace, we:

>>> dir(math)

['__doc__', '__name__', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos',

 'cosh', 'degrees', 'e',

'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',

'log10', 'modf', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

>>>

If you look closely, you will notice that both the default namespace, and the math module namespace have a
'__name__' object. The fact that each layer can contain an object with the same name is what scope is all about. To
access objects inside a namespace, simply use the name of the module, followed by a dot, followed by the name of
the object. This allow us to differentiate between the __name__ object within the current namespace, and that of
the object with the same name within the math module. For example:

>>> print __name__

__main__

>>> print math.__name__

math

>>> print math.__doc__

This module is always available. It provides access to the

mathematical functions defined by the C standard.

>>> math.pi

3.1415926535897931

Previous: Tips and
Tricks

Index Next: Data
types

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Data types 61

Python Programming/Data types

Previous: Basic
syntax

Index Next:
Numbers

Data types determine whether an object can do something, or whether it just would not make sense. Other
programming languages often determine whether an operation makes sense for an object by making sure the object
can never be stored somewhere where the operation will be performed on the object (this type system is called static
typing). Python does not do that. Instead it stores the type of an object with the object, and checks when the
operation is performed whether that operation makes sense for that object (this is called dynamic typing).
Python's basic datatypes are:
• Integers, equivalent to C longs
• Floating-Point numbers, equivalent to C doubles
• Long integers of non-limited length
• Complex Numbers.
• Strings
• Some others, such as type and function
Python's composite datatypes are:
• lists
• tuples
• dictionaries, also called dicts, hashmaps, or associative arrays
Literal integers can be entered as in C:
• decimal numbers can be entered directly
• octal numbers can be entered by prepending a 0 (0732 is octal 732, for example)
• hexadecimal numbers can be entered by prepending a 0x (0xff is hex FF, or 255 in decimal)
Floating point numbers can be entered directly.
Long integers are entered either directly (1234567891011121314151617181920 is a long integer) or by appending
an L (0L is a long integer). Computations involving short integers that overflow are automatically turned into long
integers.
Complex numbers are entered by adding a real number and an imaginary one, which is entered by appending a j (i.e.
10+5j is a complex number. So is 10j). Note that j by itself does not constitute a number. If this is desired, use 1j.
Strings can be either single or triple quoted strings. The difference is in the starting and ending delimiters, and in that
single quoted strings cannot span more than one line. Single quoted strings are entered by entering either a single
quote (') or a double quote (") followed by its match. So therefore

'foo' works, and

"moo" works as well,

 but

'bar" does not work, and

"baz' does not work either.

"quux'' is right out.

Triple quoted strings are like single quoted strings, but can span more than one line. Their starting and ending
delimiters must also match. They are entered with three consecutive single or double quotes, so

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/Type_system#Type_checking

Python Programming/Data types 62

'''foo''' works, and

"""moo""" works as well,

 but

'"'bar'"' does not work, and

"""baz''' does not work either.

'"'quux"'" is right out.

Tuples are entered in parenthesis, with commas between the entries:

(10, 'Mary had a little lamb')

Also, the parenthesis can be left out when it's not ambiguous to do so:

10, 'whose fleece was as white as snow'

Note that one-element tuples can be entered by surrounding the entry with parentheses and adding a comma like so:

('this is a stupid tuple',)

Lists are similar, but with brackets:

['abc', 1,2,3]

Dicts are created by surrounding with curly braces a list of key,value pairs separated from each other by a colon and
from the other entries with commas:

{ 'hello': 'world', 'weight': 'African or European?' }

Any of these composite types can contain any other, to any depth:

((((((((('bob',),['Mary', 'had', 'a', 'little', 'lamb']), { 'hello' :

'world' }),),),),),),)

Previous: Basic
syntax

Index Next:
Numbers

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Numbers 63

Python Programming/Numbers

Previous: Data types Index Next:
Strings

Python supports 4 types of Numbers, the int, the long, the float and the complex. You don’t have to specify what type
of variable you want; Python does that automatically.
• Int: This is the basic integer type in python, it is equivalent to the hardware 'c long' for the platform you are using.
• Long: This is a integer number that's length is non-limited. In python 2.2 and later, Ints are automatically turned

into long ints when they overflow.
• Float: This is a binary floating point number. Longs and Ints are automatically converted to floats when a float is

used in an expression, and with the true-division // operator.
• Complex: This is a complex number consisting of two floats. Complex literals are written as a + bj where a and b

are floating-point numbers denoting the real and imaginary parts respectively.
In general, the number types are automatically 'up cast' in this order:
Int → Long → Float → Complex. The farther to the right you go, the higher the precedence.

>>> x = 5

>>> type(x)

<type 'int'>

>>> x = 187687654564658970978909869576453

>>> type(x)

<type 'long'>

>>> x = 1.34763

>>> type(x)

<type 'float'>

>>> x = 5 + 2j

>>> type(x)

<type 'complex'>

However, some expressions may be confusing since in the current version of python, using the / operator on two
integers will return another integer, using floor division. For example, 5/2 will give you 2. You have to specify one
of the operands as a float to get true division, e.g. 5/2. or 5./2 (the dot specifies you want to work with float) to
have 2.5. This behavior is deprecated and will disappear in a future python release as shown from the from
__future__ import.

>>> 5/2

2

>>>5/2.

2.5

>>>5./2

2.5

>>> from __future__ import division

>>> 5/2

2.5

>>> 5//2

2

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Numbers 64

Previous: Data types Index Next:
Strings

Python Programming/Strings

Previous: Numbers Index Next: Lists

String manipulation

String operations

Equality

Two strings are equal if and only if they have exactly the same contents, meaning that they are both the same length
and each character has a one-to-one positional correspondence. Many other languages test strings only for identity;
that is, they only test whether two strings occupy the same space in memory. This latter operation is possible in
Python using the operator is.
Example:

>>> a = 'hello'; b = 'hello' # Assign 'hello' to a and b.

>>> print a == b # True

True

>>> print a == 'hello' #

True

>>> print a == "hello" # (choice of delimiter is unimportant)

True

>>> print a == 'hello ' # (extra space)

False

>>> print a == 'Hello' # (wrong case)

False

Numerical

There are two quasi-numerical operations which can be done on strings -- addition and multiplication. String
addition is just another name for concatenation. String multiplication is repetitive addition, or concatenation. So:

>>> c = 'a'

>>> c + 'b'

'ab'

>>> c * 5

'aaaaa'

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Strings 65

Containment

There is a simple operator 'in' that returns True if the first operand is contained in the second. This also works on
substrings

>>> x = 'hello'

>>> y = 'll'

>>> x in y

False

>>> y in x

True

Note that 'print x in y' would have also returned the same value.

Indexing and Slicing

Much like arrays in other languages, the individual characters in a string can be accessed by an integer representing
its position in the string. The first character in string s would be s[0] and the nth character would be at s[n-1].

>>> s = "Xanadu"

>>> s[1]

'a'

Unlike arrays in other languages, Python also indexes the arrays backwards, using negative numbers. The last
character has index -1, the second to last character has index -2, and so on.

>>> s[-4]

'n'

We can also use "slices" to access a substring of s. s[a:b] will give us a string starting with s[a] and ending with
s[b-1].

>>> s[1:4]

'ana'

Neither of these is assignable.

>>> print s

>>> s[0] = 'J'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

>>> s[1:3] = "up"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support slice assignment

>>> print s

Outputs (assuming the errors were suppressed):

Xanadu

Xanadu

Another feature of slices is that if the beginning or end is left empty, it will default to the first or last index,
depending on context:

Python Programming/Strings 66

>>> s[2:]

'nadu'

>>> s[:3]

'Xan'

>>> s[:]

'Xanadu'

You can also use negative numbers in slices:

>>> print s[-2:]

'du'

To understand slices, it's easiest not to count the elements themselves. It is a bit like counting not on your fingers, but
in the spaces between them. The list is indexed like this:

Element: 1 2 3 4

Index: 0 1 2 3 4

 -4 -3 -2 -1

So, when we ask for the [1:3] slice, that means we start at index 1, and end at index 3, and take everything in
between them. If you are used to indexes in C or Java, this can be a bit disconcerting until you get used to it.

String constants
String constants can be found in the standard string module. Either single or double quotes may be used to delimit
string constants.

String methods
There are a number of methods of built-in string functions:
• capitalize
• center
• count
• decode
• encode
• endswith
• expandtabs
• find
• index
• isalnum
• isalpha
• isdigit
• islower
• isspace
• istitle
• isupper
• join
• ljust
• lower
• lstrip
• replace

Python Programming/Strings 67

• rfind
• rindex
• rjust
• rstrip
• split
• splitlines
• startswith
• strip
• swapcase
• title
• translate
• upper
• zfill
Only emphasized items will be covered.

is*

isalnum(), isalpha(), isdigit(), islower(), isupper(), isspace(), and istitle() fit into this category.
The length of the string object being compared must be at least 1, or the is* methods will return False. In other
words, a string object of len(string) == 0, is considered "empty", or False.
• isalnum returns True if the string is entirely composed of alphabetic and/or numeric characters (i.e. no

punctuation).
• isalpha and isdigit work similarly for alphabetic characters or numeric characters only.
• isspace returns True if the string is composed entirely of whitespace.
• islower, isupper, and istitle return True if the string is in lowercase, uppercase, or titlecase respectively. Uncased

characters are "allowed", such as digits, but there must be at least one cased character in the string object in order
to return True. Titlecase means the first cased character of each word is uppercase, and any immediately
following cased characters are lowercase. Curiously, 'Y2K'.istitle() returns True. That is because uppercase
characters can only follow uncased characters. Likewise, lowercase characters can only follow uppercase or
lowercase characters. Hint: whitespace is uncased.

Example:

>>> '2YK'.istitle()

False

>>> '2Yk'.istitle()

True

>>> '2Y K'.istitle()

True

title, upper, lower, swapcase, capitalize

Returns the string converted to title case, upper case, lower case, inverts case, or capitalizes, respectively.
The title method capitalizes the first letter of each word in the string (and makes the rest lower case). Words are
identified as substrings of alphabetic characters that are separated by non-alphabetic characters, such as digits, or
whitespace. This can lead to some unexpected behavior. For example, the string "x1x" will be converted to "X1X"
instead of "X1x".
The swapcase method makes all uppercase letters lowercase and vice versa.

Python Programming/Strings 68

The capitalize method is like title except that it considers the entire string to be a word. (i.e. it makes the first
character upper case and the rest lower case)
Example:

>>> s = 'Hello, wOrLD'

>>> s

'Hello, wOrLD'

>>> s.title()

'Hello, World'

>>> s.swapcase()

'hELLO, WoRld'

>>> s.upper()

'HELLO, WORLD'

>>> s.lower()

'hello, world'

>>> s.capitalize()

'Hello, world'

count

Returns the number of the specified substrings in the string. i.e.

>>> s = 'Hello, world'

>>> s.count('l') # print the number of 'l's in 'Hello, World' (3)

3

strip, rstrip, lstrip

Returns a copy of the string with the leading (lstrip) and trailing (rstrip) whitespace removed. strip removes both.

>>> s = '\t Hello, world\n\t '

>>> print s

 Hello, world

>>> print s.strip()

Hello, world

>>> print s.lstrip()

Hello, world

 # ends here

>>> print s.rstrip()

 Hello, world

Note the leading and trailing tabs and newlines.
Strip methods can also be used to remove other types of characters.

import string

s = 'www.wikibooks.org'

print s

print s.strip('w') # Removes all w's from outside

print s.strip(string.lowercase) # Removes all lowercase letters from

 outside

print s.strip(string.printable) # Removes all printable characters

Python Programming/Strings 69

Outputs:

www.wikibooks.org

.wikibooks.org

.wikibooks.

Note that string.lowercase and string.printable require an import string statement

ljust, rjust, center

left, right or center justifies a string into a given field size (the rest is padded with spaces).

>>> s = 'foo'

>>> s

'foo'

>>> s.ljust(7)

'foo '

>>> s.rjust(7)

' foo'

>>> s.center(7)

' foo '

join

Joins together the given sequence with the string as separator:

>>> seq = ['1', '2', '3', '4', '5']

>>> ' '.join(seq)

'1 2 3 4 5'

>>> '+'.join(seq)

'1+2+3+4+5'

map may be helpful here: (it converts numbers in seq into strings)

>>> seq = [1,2,3,4,5]

>>> ' '.join(map(str, seq))

'1 2 3 4 5'

now arbitrary objects may be in seq instead of just strings.

find, index, rfind, rindex

The find and index methods returns the index of the first found occurrence of the given subsequence. If it is not
found, find returns -1 but index raises a ValueError. rfind and rindex are the same as find and index except that they
search through the string from right to left (i.e. they find the last occurrence)

>>> s = 'Hello, world'

>>> s.find('l')

2

>>> s[s.index('l'):]

'llo, world'

>>> s.rfind('l')

10

>>> s[:s.rindex('l')]

Python Programming/Strings 70

'Hello, wor'

>>> s[s.index('l'):s.rindex('l')]

'llo, wor'

Because Python strings accept negative subscripts, index is probably better used in situations like the one shown
because using find instead would yield an unintended value.

replace

Replace works just like it sounds. It returns a copy of the string with all occurrences of the first parameter replaced
with the second parameter.

>>> 'Hello, world'.replace('o', 'X')

'HellX, wXrld'

Or, using variable assignment:

string = 'Hello, world'

newString = string.replace('o', 'X')

print string

print newString

Outputs:

'Hello, world'

'HellX, wXrld'

Notice, the original variable (string) remains unchanged after the call to replace.

expandtabs

Replaces tabs with the appropriate number of spaces (default number of spaces per tab = 8; this can be changed by
passing the tab size as an argument).

s = 'abcdefg\tabc\ta'

print s

print len(s)

t = s.expandtabs()

print t

print len(t)

Outputs:

abcdefg abc a

13

abcdefg abc a

17

Notice how (although these both look the same) the second string (t) has a different length because each tab is
represented by spaces not tab characters.
To use a tab size of 4 instead of 8:

v = s.expandtabs(4)

print v

print len(v)

Python Programming/Strings 71

Outputs:

abcdefg abc a

13

Please note each tab is not always counted as eight spaces. Rather a tab "pushes" the count to the next multiple of
eight. For example:

s = '\t\t'

print s.expandtabs().replace(' ', '*')

print len(s.expandtabs())

Output:

 16

s = 'abc\tabc\tabc'

print s.expandtabs().replace(' ', '*')

print len(s.expandtabs())

Outputs:

 abc*****abc*****abc

 19

split, splitlines

The split method returns a list of the words in the string. It can take a separator argument to use instead of
whitespace.

>>> s = 'Hello, world'

>>> s.split()

['Hello,', 'world']

>>> s.split('l')

['He', '', 'o, wor', 'd']

Note that in neither case is the separator included in the split strings, but empty strings are allowed.
The splitlines method breaks a multiline string into many single line strings. It is analogous to split('\n') (but accepts
'\r' and '\r\n' as delimiters as well) except that if the string ends in a newline character, splitlines ignores that final
character (see example).

>>> s = """

... One line

... Two lines

... Red lines

... Blue lines

... Green lines

... """

>>> s.split('\n')

['', 'One line', 'Two lines', 'Red lines', 'Blue lines', 'Green lines',

 '']

>>> s.splitlines()

['', 'One line', 'Two lines', 'Red lines', 'Blue lines', 'Green lines']

Python Programming/Strings 72

Previous: Numbers Index Next: Lists

Python Programming/Lists

Previous: Strings Index Next: Tuples

About lists in Python
A list in Python is an ordered group of items (or elements). It is a very general structure, and list elements don't have
to be of the same type. For instance, you could put numbers, letters, strings and donkeys all on the same list.
If you are using a modern version of Python (and you should be), there is a class called 'list'. If you wish, you can
make your own subclass of it, and determine list behaviour which is different than the default standard. But first, you
should be familiar with the current behaviour of lists.

List notation
There are two different ways to make a list in python. The first is through assignment ("statically"), the second is
using list comprehensions("actively").
To make a static list of items, write them between square brackets. For example:

[1,2,3,"This is a list",'c',Donkey("kong")]

A couple of things to look at.
1. There are different data types here. Lists in python may contain more than one data type.
2. Objects can be created 'on the fly' and added to lists. The last item is a new kind of Donkey.
Writing lists this way is very quick (and obvious). However, it does not take into account the current state of
anything else. The other way to make a list is to form it using list comprehension. That means you actually describe
the process. To do that, the list is broken into two pieces. The first is a picture of what each element will look like,
and the second is what you do to get it.
For instance, lets say we have a list of words:

listOfWords = ["this","is","a","list","of","words"]

We will take the first letter of each word and make a list out of it.

>>> listOfWords = ["this","is","a","list","of","words"]

>>> items = [word[0] for word in listOfWords]

>>> print items

['t', 'i', 'a', 'l', 'o', 'w']

List comprehension allows you to use more than one for statement. It will evaluate the items in all of the objects
sequentially and will loop over the shorter objects if one object is longer than the rest.

>>> item = [x+y for x in 'flower' for y in 'pot']

>>> print item

['fp', 'fo', 'ft', 'lp', 'lo', 'lt', 'op', 'oo', 'ot', 'wp', 'wo',

'wt', 'ep', 'eo', 'et', 'rp', 'ro', 'rt']

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Lists 73

Python's list comprehension does not define a scope. Any variables that are bound in an evaluation remain bound to
whatever they were last bound to when the evaluation was completed:

>>> print x, y

r t

This is exactly the same as if the comprehension had been expanded into an explicitly-nested group of one or more
'for' statements and 0 or more 'if' statements.

List creation shortcuts

Python provides a shortcut to initialize a list to a particular size and with an initial value for each element:

>>> zeros=[0]*5

>>> print zeros

[0, 0, 0, 0, 0]

This works for any data type:

>>> foos=['foo']*8

>>> print foos

['foo', 'foo', 'foo', 'foo', 'foo', 'foo', 'foo', 'foo']

with a caveat. When building a new list by multiplying, Python copies each item by reference. This poses a problem
for mutable items, for instance in a multidimensional array where each element is itself a list. You'd guess that the
easy way to generate a two dimensional array would be:

listoflists=[[0]*4] *5

and this works, but probably doesn't do what you expect:

>>> listoflists=[[0]*4] *5

>>> print listoflists

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

>>> listoflists[0][2]=1

>>> print listoflists

[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]]

What's happening here is that Python is using the same reference to the inner list as the elements of the outer list.
Another way of looking at this issue is to examine how Python sees the above definition:

>>> innerlist=[0]*4

>>> listoflists=[innerlist]*5

>>> print listoflists

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

>>> innerlist[2]=1

>>> print listoflists

[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]]

Assuming the above effect is not what you intend, one way around this issue is to use list comprehensions:

>>> listoflists=[[0]*4 for i in range(5)]

>>> print listoflists

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

>>> listoflists[0][2]=1

Python Programming/Lists 74

>>> print listoflists

[[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Operations on lists

List Attributes

To find the length of a list use the built in len() method.

>>> len([1,2,3])

3

>>> a = [1,2,3,4]

>>> len(a)

4

Combining lists

Lists can be combined in several ways. The easiest is just to 'add' them. For instance:

>>> [1,2] + [3,4]

[1, 2, 3, 4]

Another way to combine lists is with extend. If you need to combine lists inside of a lambda, extend is the way to
go.

>>> a = [1,2,3]

>>> b = [4,5,6]

>>> a.extend(b)

>>> print a

[1, 2, 3, 4, 5, 6]

The other way to append a value to a list is to use append. For example:

>>> p=[1,2]

>>> p.append([3,4])

>>> p

[1, 2, [3, 4]]

>>> # or

>>> print p

[1, 2, [3, 4]]

However, [3,4] is an element of the list, and not part of the list. append always adds one element only to the end of a
list. So if the intention was to concatenate two lists, always use extend.

Getting pieces of lists (slices)

Continuous slices

Like strings, lists can be indexed and sliced.

>>> list = [2, 4, "usurp", 9.0,"n"]

>>> list[2]

'usurp'

>>> list[3:]

[9.0, 'n']

Python Programming/Lists 75

Much like the slice of a string is a substring, the slice of a list is a list. However, lists differ from strings in that we
can assign new values to the items in a list.

>>> list[1] = 17

>>> list

[2, 17, 'usurp', 9.0,'n']

We can even assign new values to slices of the lists, which don't even have to be the same length

>>> list[1:4] = ["opportunistic", "elk"]

>>> list

[2, 'opportunistic', 'elk', 'n']

It's even possible to append things onto the end of lists by assigning to an empty slice:

>>> list[:0] = [3.14,2.71]

>>> list

[3.14, 2.71, 2, 'opportunistic', 'elk', 'n']

You can also completely change contents of a list:

>>> list[:] = ['new', 'list', 'contents']

>>> list

['new', 'list', 'contents']

On the right site of assign statement can be any iterable type:

>>> list[:2] = ('element',('t',),[])

>>> list

['element', ('t',), [], 'contents']

With slicing you can create copy of list because slice returns a new list:

>>> original = [1, 'element', []]

>>> list_copy = original[:]

>>> list_copy

[1, 'element', []]

>>> list_copy.append('new element')

>>> list_copy

[1, 'element', [], 'new element']

>>> original

[1, 'element', []]

but this is shallow copy and contains references to elements from original list, so be careful with mutable types:

>>> list_copy[2].append('something')

>>> original

[1, 'element', ['something']]

Python Programming/Lists 76

Non-Continuous slices

It is also possible to get non-continuous parts of an array. If one wanted to get every n-th occurrence of a list, one
would use the :: operator. The syntax is a:b:n where a and b are the start and end of the slice to be operated upon.

>>> list = [i for i in range(10)]

>>> list[::2]

[0, 2, 4, 6, 8]

>>> list[1:7:2]

[1, 3, 5]

Comparing lists

Lists can be compared for equality.

>>> [1,2] == [1,2]

True

>>> [1,2] == [3,4]

False

Sorting lists

Sorting lists is easy with a sort method.

>>> list = [2, 3, 1, 'a', 'b']

>>> list.sort()

>>> list

[1, 2, 3, 'a', 'b']

Note that the list is sorted in place, and the sort() method returns None to emphasize this side effect.
If you use Python 2.4 or higher there are some more sort parameters:
sort(cmp,key,reverse)
cmp : method to be used for sorting
key : function to be executed with key element. List is sorted by return-value of the function
reverse : sort ascending y/n

List methods

append(x)
Add item x onto the end of the list.

>>> list = [1, 2, 3]

>>> list.append(4)

>>> list

[1, 2, 3, 4]

See pop(i)

Python Programming/Lists 77

pop(i)
Remove the item in the list at the index i and return it. If i is not given, remove the the last item in the list and return
it.

>>> list = [1, 2, 3, 4]

>>> a = list.pop(0)

>>> list

[2, 3, 4]

>>> a

1

>>> b = list.pop()

>>>list

[2, 3]

>>> b

4

Previous: Strings Index Next: Tuples

Python Programming/Tuples

Previous:
Lists

Index Next: Dictionaries

About tuples in Python
A tuple in Python is much like a list except that it is immutable (unchangeable) once created. They are generally
used for data which should not be edited.

Tuple notation
Tuples may be created directly or converted from lists. Generally, tuples are enclosed in parenthesis.

>>> l = [1, 'a', [6, 3.14]]

>>> t = (1, 'a', [6, 3.14])

>>> t

(1, 'a', [6, 3.1400000000000001])

>>> tuple(l)

(1, 'a', [6, 3.1400000000000001])

>>> t == tuple(l)

True

>>> t == l

False

A one item tuple is created by a item in parens followed by a comma:

>>> t = ('A single item tuple',)

>>> t

('A single item tuple',)

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Tuples 78

Also, tuples will be created from items separated by commas.

>>> t = 'A', 'tuple', 'needs', 'no', 'parens'

>>> t

('A', 'tuple', 'needs', 'no', 'parens')

Packing and Unpacking
You can also perform multiple assignment using tuples.

>>> article, noun, verb, adjective, direct_object = t

>>> noun

'tuple'

Note that either, or both sides of an assignment operator can consist of tuples.

>>> a, b = 1, 2

>>> b

2

Assigning a tuple to a several different variables is called "tuple unpacking," while assigning multiple values to a
tuple in one variable is called "tuple packing." When unpacking a tuple, or performing multiple assignment, you
must have the same number of variables being assigned to as values being assigned.

Operations on tuples
These are the same as for lists except that we may not assign to indices or slices, and there is no "append" operator.

>>> a = (1, 2)

>>> b = (3, 4)

>>> a + b

(1, 2, 3, 4)

>>> a

(1, 2)

>>> b

(3, 4)

>>> print a.append(3)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

AttributeError: 'tuple' object has no attribute 'append'

>>> a

(1, 2)

>>> a[0] = 0

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

>>> a

(1, 2)

For lists we would have had:

>>> a = [1, 2]

>>> b = [3, 4]

Python Programming/Tuples 79

>>> a + b

[1, 2, 3, 4]

>>> a

[1, 2]

>>> b

[3, 4]

>>> a.append(3)

>>> a

[1, 2, 3]

>>> a[0] = 0

>>> a

[0, 2, 3]

Tuple Attributes

Length: Finding the length of a tuple is the same as with lists; use the built in len() method.

>>> len((1, 2, 3))

3

>>> a = (1, 2, 3, 4)

>>> len(a)

4

Conversions

Convert list to tuples using the built in tuple() method.

>>> l = [4, 5, 6]

>>> tuple(l)

(4, 5, 6)

Converting a tuple into a list using the built in list() method to cast as a list:

>>> t = (4, 5, 6)

>>> list(t)

[4, 5, 6]

Dictionaries can also be converted to tuples of tuples using the items method of dictionaries:

>>> d = {'a': 1, 'b': 2}

>>> tuple(d.items())

(('a', 1), ('b', 2))

Uses of Tuples
Tuples can be used like lists and are appropriate when a list may be used but the size is known and small. One very
useful situation is returning multiple values from a function. To return multiple values in many other languages
requires creating an object or container of some type, but in Python it is easy:

def func(x,y):

 # code to compute a and b

 return (a,b)

This can be combined with the unpacking technique above in later code to retrieve both return values:

Python Programming/Tuples 80

(a,b) = func(1,2)

Previous:
Lists

Index Next: Dictionaries

Python Programming/Dictionaries

Previous: Tuples Index Next: Sets

About dictionaries in Python
A dictionary in python is a collection of unordered values which are accessed by key.

Dictionary notation
Dictionaries may be created directly or converted from sequences. Dictionaries are enclosed in curly braces, {}

>>> d = {'city':'Paris', 'age':38, (102,1650,1601):'A matrix coordinate'}

>>> seq = [('city','Paris'), ('age', 38), ((102,1650,1601),'A matrix

coordinate')]

>>> d

{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}

>>> dict(seq)

{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}

>>> d == dict(seq)

True

Also, dictionaries can be easily created by zipping two sequences.

>>> seq1 = ('a','b','c','d')

>>> seq2 = [1,2,3,4]

>>> d = dict(zip(seq1,seq2))

>>> d

{'a': 1, 'c': 3, 'b': 2, 'd': 4}

Operations on Dictionaries
The operations on dictionaries are somewhat unique. Slicing is not supported, since the items have no intrinsic order.

>>> d = {'a':1,'b':2, 'cat':'Fluffers'}

>>> d.keys()

['a', 'b', 'cat']

>>> d.values()

[1, 2, 'Fluffers']

>>> d['a']

1

>>> d['cat'] = 'Mr. Whiskers'

>>> d['cat']

'Mr. Whiskers'

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Dictionaries 81

>>> 'cat' in d

True

>>> 'dog' in d

False

Combining two Dictionaries
You can combine two dictionaries by using the update method of the primary dictionary. Note that the update
method will merge existing elements if they conflict.

>>> d = {'apples': 1, 'oranges': 3, 'pears': 2}

>>> ud = {'pears': 4, 'grapes': 5, 'lemons': 6}

>>> d.update(ud)

>>> d

{'grapes': 5, 'pears': 4, 'lemons': 6, 'apples': 1, 'oranges': 3}

>>>

Deleting from dictionary
del dictionaryName[membername]

Previous: Tuples Index Next: Sets

Python Programming/Sets

Previous: Dictionaries Index Next:
Operators

Python also has an implementation of the mathematical set. Unlike sequence objects such as lists and tuples, in
which each element is indexed, a set is an unordered collection of objects. Sets also cannot have duplicate members -
a given object appears in a set 0 or 1 times. For more information on sets, see the Set Theory wikibook. Sets also
require that all members of the set be hashable. Any object that can be used as a dictionary key can be a set member.
Integers, floating point numbers, tuples, and strings are hashable; dictionaries, lists, and other sets (except frozensets)
are not.

Constructing Sets
One way to construct sets is by passing any sequential object to the "set" constructor.

>>> set([0, 1, 2, 3])

set([0, 1, 2, 3])

>>> set("obtuse")

set(['b', 'e', 'o', 's', 'u', 't'])

We can also add elements to sets one by one, using the "add" function.

>>> s = set([12, 26, 54])

>>> s.add(32)

>>> s

set([32, 26, 12, 54])

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/set
http://en.wikibooks.org/w/index.php?title=Set_Theory

Python Programming/Sets 82

Note that since a set does not contain duplicate elements, if we add one of the members of s to s again, the add
function will have no effect. This same behavior occurs in the "update" function, which adds a group of elements to a
set.

>>> s.update([26, 12, 9, 14])

>>> s

set([32, 9, 12, 14, 54, 26])

Note that you can give any type of sequential structure, or even another set, to the update function, regardless of
what structure was used to initialize the set.
The set function also provides a copy constructor. However, remember that the copy constructor will copy the set,
but not the individual elements.

>>> s2 = s.copy()

>>> s2

set([32, 9, 12, 14, 54, 26])

Membership Testing
We can check if an object is in the set using the same "in" operator as with sequential data types.

>>> 32 in s

True

>>> 6 in s

False

>>> 6 not in s

True

We can also test the membership of entire sets. Given two sets and , we check if is a subset or a superset
of .

>>> s.issubset(set([32, 8, 9, 12, 14, -4, 54, 26, 19]))

True

>>> s.issuperset(set([9, 12]))

True

Note that "issubset" and "issuperset" can also accept sequential data types as arguments

>>> s.issuperset([32, 9])

True

Note that the <= and >= operators also express the issubset and issuperset functions respectively.

>>> set([4, 5, 7]) <= set([4, 5, 7, 9])

True

>>> set([9, 12, 15]) >= set([9, 12])

True

Like lists, tuples, and string, we can use the "len" function to find the number of items in a set.

http://en.wikipedia.org/wiki/Subset

Python Programming/Sets 83

Removing Items
There are three functions which remove individual items from a set, called pop, remove, and discard. The first, pop,
simply removes an item from the set. Note that there is no defined behavior as to which element it chooses to
remove.

>>> s = set([1,2,3,4,5,6])

>>> s.pop()

1

>>> s

set([2,3,4,5,6])

We also have the "remove" function to remove a specified element.

>>> s.remove(3)

>>> s

set([2,4,5,6])

However, removing a item which isn't in the set causes an error.

>>> s.remove(9)

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

KeyError: 9

If you wish to avoid this error, use "discard." It has the same functionality as remove, but will simply do nothing if
the element isn't in the set
We also have another operation for removing elements from a set, clear, which simply removes all elements from the
set.

>>> s.clear()

>>> s

set([])

Iteration Over Sets
We can also have a loop move over each of the items in a set. However, since sets are unordered, it is undefined
which order the iteration will follow.

>>> s = set("blerg")

>>> for n in s:

... print n,

...

r b e l g

Set Operations
Python allows us to perform all the standard mathematical set operations, using members of set. Note that each of
these set operations has several forms. One of these forms, s1.function(s2) will return another set which is created by
"function" applied to and . The other form, s1.function_update(s2), will change to be the set created by
"function" of and . Finally, some functions have equivalent special operators. For example, s1 & s2 is
equivalent to s1.intersection(s2)

Python Programming/Sets 84

Union

The union is the merger of two sets. Any element in or will appear in their union.

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.union(s2)

set([1, 4, 6, 8, 9])

>>> s1 | s2

set([1, 4, 6, 8, 9])

Note that union's update function is simply "update" above.

Intersection

Any element which is in both and will appear in their intersection.

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.intersection(s2)

set([6])

>>> s1 & s2

set([6])

>>> s1.intersection_update(s2)

>>> s1

set([6])

Symmetric Difference

The symmetric difference of two sets is the set of elements which are in one of either set, but not in both.

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.symmetric_difference(s2)

set([8, 1, 4, 9])

>>> s1 ^ s2

set([8, 1, 4, 9])

>>> s1.symmetric_difference_update(s2)

>>> s1

set([8, 1, 4, 9])

Set Difference

Python can also find the set difference of and , which is the elements that are in but not in .

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.difference(s2)

set([9, 4])

>>> s1 - s2

set([9, 4])

>>> s1.difference_update(s2)

>>> s1

set([9, 4])

http://en.wikipedia.org/wiki/union_(set_theory)
http://en.wikipedia.org/wiki/intersection_(set_theory)
http://en.wikipedia.org/wiki/symmetric_difference
http://en.wikipedia.org/wiki/Complement_(set_theory)#Relative_Complement

Python Programming/Sets 85

frozenset
A frozenset is basically the same as a set, except that it is immutable - once it is created, its members cannot be
changed. Since they are immutable, they are also hashable, which means that frozensets can be used as members in
other sets and as dictionary keys. frozensets have the same functions as normal sets, except none of the functions that
change the contents (update, remove, pop, etc.) are available.

>>> fs = frozenset([2, 3, 4])

>>> s1 = set([fs, 4, 5, 6])

>>> s1

set([4, frozenset([2, 3, 4]), 6, 5])

>>> fs.intersection(s1)

frozenset([4])

>>> fs.add(6)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'frozenset' object has no attribute 'add'

Reference
Python Library Reference on Set Types [1]

Previous: Dictionaries Index Next:
Operators

References
[1] http:/ / python. org/ doc/ 2. 5. 2/ lib/ types-set. html

http://python.org/doc/2.5.2/lib/types-set.html
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://python.org/doc/2.5.2/lib/types-set.html

Python Programming/Operators 86

Python Programming/Operators

Previous: Sets Index Next: Flow
control

Basics
Python math works like you would expect.

>>> x = 2

>>> y = 3

>>> z = 5

>>> x * y

6

>>> x + y

5

>>> x * y + z

11

>>> (x + y) * z

25

Note that Python adheres to the PEMDAS order of operations.

Powers
There is a built in exponentiation operator **, which can take either integers, floating point or complex numbers.
This occupies its proper place in the order of operations.

>>> 2**8

256

Division and Type Conversion
For Python 2.x, dividing two integers or longs uses integer division, also known as "floor division" (applying the
floor function after division. So, for example, 5 / 2 is 2. Using "/" to do division this way is deprecated; if you want
floor division, use "//" (available in Python 2.2 and later).
"/" does "true division" for floats and complex numbers; for example, 5.0/2.0 is 2.5.
For Python 3.x, "/" does "true division" for all types.[1] [2]

Dividing by or into a floating point number (there are no fractional types in Python) will cause Python to use true
division. To coerce an integer to become a float, 'float()' with the integer as a parameter

>>> x = 5

>>> float(x)

5.0

This can be generalized for other numeric types: int(), complex(), long().
Beware that due to the limitations of floating point arithmetic, rounding errors can cause unexpected results. For
example:

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Floor_function
http://en.wikipedia.org/wiki/floating_point

Python Programming/Operators 87

>>> print 0.6/0.2

3.0

>>> print 0.6//0.2

2.0

Modulo
The modulus (remainder of the division of the two operands, rather than the quotient) can be found using the %
operator, or by the divmod builtin function. The divmod function returns a tuple containing the quotient and
remainder.

>>> 10%7

3

Negation
Unlike some other languages, variables can be negated directly:

>>> x = 5

>>> -x

-5

Augmented Assignment
There is shorthand for assigning the output of an operation to one of the inputs:

>>> x = 2

>>> x # 2

2

>>> x *= 3

>>> x # 2 * 3

6

>>> x += 4

>>> x # 2 * 3 + 4

10

>>> x /= 5

>>> x # (2 * 3 + 4) / 5

2

>>> x **= 2

>>> x # ((2 * 3 + 4) / 5) ** 2

4

>>> x %= 3

>>> x # ((2 * 3 + 4) / 5) ** 2 % 3

1

>>> x = 'repeat this '

>>> x # repeat this

repeat this

>>> x *= 3 # fill with x repeated three times

>>> x

Python Programming/Operators 88

repeat this repeat this repeat this

Boolean
or:

if a or b:

 do_this

else:

 do_this

and:

if a and b:

 do_this

else:

 do_this

not:

if not a:

 do_this

else:

 do_this

Previous: Sets Index Next: Flow
control

References
[1] [http://www.python.org/doc/2.2.3/whatsnew/node7.html What's New in Python 2.2
[2] PEP 238 -- Changing the Division Operator (http:/ / www. python. org/ dev/ peps/ pep-0238/)

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.python.org/dev/peps/pep-0238/

Python Programming/Flow control 89

Python Programming/Flow control

Previous:
Operators

Index Next: Functions

As with most imperative languages, there are three main categories of program flow control:
• loops
• branches
• function calls
Function calls are covered in the next section.
Generators and list comprehensions are advanced forms of program flow control, but they are not covered here.

Loops
In Python, there are two kinds of loops, 'for' loops and 'while' loops.

For loops

A for loop iterates over elements of a sequence (tuple or list). A variable is created to represent the object in the
sequence. For example,

l = [100,200,300,400]

for i in l:

 print i

This will output

100

200

300

400

The for loop loops over each of the elements of a list or iterator, assigning the current element to the variable name
given. In the first example above, each of the elements in l is assigned to i.
A builtin function called range exists to make creating sequential lists such as the one above easier. The loop above
is equivalent to:

l = range(100, 401,100)

for i in l:

 print i

The next example uses a negative step (the third argument for the built-in range function):

for i in range(10, 0, -1):

 print i

This will output

10

9

8

7

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Flow control 90

6

5

4

3

2

1

or

for i in range(10, 0, -2):

 print i

This will output

10

8

6

4

2

for loops can have names for each element of a tuple, if it loops over a sequence of tuples. For instance

l = [(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

for x, xsquared in l:

 print x, ':', xsquared

will output

1 : 1

2 : 4

3 : 9

4 : 16

5 : 25

While loops

A while loop repeats a sequence of statements until some condition becomes false. For example:

x = 5

while x > 0:

 print x

 x = x - 1

Will output:

5

4

3

2

1

Python's while loops can also have an 'else' clause, which is a block of statements that is executed (once) when the
while statement evaluates to false. The break statement inside the while loop will not direct the program flow to the
else clause. For example:

Python Programming/Flow control 91

x = 5

y = x

while y > 0:

 print y

 y = y - 1

else:

 print x

This will output:

5

4

3

2

1

5

Unlike some languages, there is no post-condition loop.

Breaking, continuing and the else clause of loops

Python includes statements to exit a loop (either a for loop or a while loop) prematurely. To exit a loop, use the break
statement

x = 5

while x > 0:

 print x

 break

 x -= 1

 print x

this will output

5

The statement to begin the next iteration of the loop without waiting for the end of the current loop is 'continue'.

l = [5,6,7]

for x in l:

 continue

 print x

This will not produce any output.
The else clause of loops will be executed if no break statements are met in the loop.

l = range(1,100)

for x in l:

 if x == 100:

 print x

 break

 else:

 print x," is not 100"

else:

Python Programming/Flow control 92

 print "100 not found in range"

Another example of a while loop using the break statement and the else statement:

expected_str = "melon"

received_str = "apple"

basket = ["banana", "grapes", "strawberry", "melon", "orange"]

x = 0

step = int(raw_input("Input iteration step: "))

while(received_str != expected_str):

 if(x >= len(basket)): print "No more fruits left on the basket.";

break

 received_str = basket[x]

 x += step # Change this to 3 to make the while statement

 # evaluate to false, avoiding the break statement, using

the else clause.

 if(received_str==basket[2]): print "I hate",basket[2],"!"; break

 if(received_str != expected_str): print "I am waiting for my

",expected_str,"."

else:

 print "Finally got what I wanted! my precious ",expected_str,"!"

print "Going back home now !"

This will output:

Input iteration step: 2

I am waiting for my melon .

I hate strawberry !

Going back home now !

Branches
There is basically only one kind of branch in Python, the 'if' statement. The simplest form of the if statement simple
executes a block of code only if a given predicate is true, and skips over it if the predicate is false
For instance,

>>> x = 10

>>> if x > 0:

... print "Positive"

...

Positive

>>> if x < 0:

... print "Negative"

...

You can also add "elif" (short for "else if") branches onto the if statement. If the predicate on the first “if” is false, it
will test the predicate on the first elif, and run that branch if it’s true. If the first elif is false, it tries the second one,
and so on. Note, however, that it will stop checking branches as soon as it finds a true predicate, and skip the rest of
the if statement. You can also end your if statements with an "else" branch. If none of the other branches are
executed, then python will run this branch.

Python Programming/Flow control 93

>>> x = -6

>>> if x > 0:

... print "Positive"

... elif x == 0:

... print "Zero"

... else:

... print "Negative"

...

'Negative'

Conclusion
Any of these loops, branches, and function calls can be nested in any way desired. A loop can loop over a loop, a
branch can branch again, and a function can call other functions, or even call itself.

Previous:
Operators

Index Next: Functions

Python Programming/Functions

Previous: Flow control Index Next: Decorators

Function calls
A callable object is an object that can accept some arguments (also called parameters) and possibly return an object
(often a tuple containing multiple objects).
A function is the simplest callable object in Python, but there are others, such as classes or certain class instances.

Defining functions

A function is defined in Python by the following format:

def functionname(arg1, arg2, ...):

 statement1

 statement2

 ...

>>> def functionname(arg1,arg2):

... return arg1+arg2

...

>>> t = functionname(24,24) # Result: 48

If a function takes no arguments, it must still include the parentheses, but without anything in them:

def functionname():

 statement1

 statement2

 ...

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Functions 94

The arguments in the function definition bind the arguments passed at function invocation (i.e. when the function is
called), which are called actual parameters, to the names given when the function is defined, which are called formal
parameters. The interior of the function has no knowledge of the names given to the actual parameters; the names of
the actual parameters may not even be accessible (they could be inside another function).
A function can 'return' a value, like so

def square(x):

 return x*x

A function can define variables within the function body, which are considered 'local' to the function. The locals
together with the arguments comprise all the variables within the scope of the function. Any names within the
function are unbound when the function returns or reaches the end of the function body.

Declaring Arguments

Default Argument Values

If any of the formal parameters in the function definition are declared with the format "arg = value," then you will
have the option of not specifying a value for those arguments when calling the function. If you do not specify a
value, then that parameter will have the default value given when the function executes.

>>> def display_message(message, truncate_after = 4):

... print message[:truncate_after]

...

>>> display_message("message")

mess

>>> display_message("message", 6)

messag

Variable-Length Argument Lists

Python allows you to declare two special arguments which allow you to create arbitrary-length argument lists. This
means that each time you call the function, you can specify any number of arguments above a certain number.

def function(first,second,*remaining):

 statement1

 statement2

 ...

When calling the above function, you must provide value for each of the first two arguments. However, since the
third parameter is marked with an asterisk, any actual parameters after the first two will be packed into a tuple and
bound to "remaining."

>>> def print_tail(first,*tail):

... print tail

...

>>> print_tail(1, 5, 2, "omega")

(5, 2, 'omega')

If we declare a formal parameter prefixed with two asterisks, then it will be bound to a dictionary containing any
keyword arguments in the actual parameters which do not correspond to any formal parameters. For example,
consider the function:

Python Programming/Functions 95

def make_dictionary(max_length = 10, **entries):

 return dict([(key, entries[key]) for i, key in

enumerate(entries.keys()) if i < max_length])

If we call this function with any keyword arguments other than max_length, they will be placed in the dictionary
"entries." If we include the keyword argument of max_length, it will be bound to the formal parameter max_length,
as usual.

>>> make_dictionary(max_length = 2, key1 = 5, key2 = 7, key3 = 9)

{'key3': 9, 'key2': 7}

Calling functions

A function can be called by appending the arguments in parentheses to the function name, or an empty matched set
of parentheses if the function takes no arguments.

foo()

square(3)

bar(5, x)

A function's return value can be used by assigning it to a variable, like so:

x = foo()

y = bar(5,x)

As shown above, when calling a function you can specify the parameters by name and you can do so in any order

def display_message(message, start=0, end=4):

 print message[start:end]

display_message("message", end=3)

This above is valid and start will be the default value of 0. A restriction placed on this is after the first named
argument then all arguments after it must also be named. The following is not valid

display_message(end=5, start=1, "my message")

because the third argument ("my message") is an unnamed argument.

Closure
Closure, also known as nested function definition, is a function defined inside another function. Perhaps best
described with an example:

>>> def outer(outer_argument):

... def inner(inner_argument):

... return outer_argument + inner_argument

... return inner

...

>>> f = outer(5)

>>> f(3)

8

>>> f(4)

9

Python Programming/Functions 96

Closure is possible in python because function is a first-class object, that means a function is merely an object of
type function. Being an object means it is possible to pass function object (an uncalled function) around as argument
or as return value or to assign another name to the function object. A unique feature that makes closure useful is that
the enclosed function may use the names defined in the parent function's scope.

lambda

lambda is an anonymous (unnamed) function, it is used primarily to write very short functions that is a hassle to
define in the normal way. A function like this:

>>> def add(a, b):

... return a + b

...

>>> add(4, 3)

7

may also be defined using lambda

>>> print (lambda a, b: a + b)(4, 3)

7

Lambda is often used as an argument to other functions that expects a function object, such as sorted()'s 'key'
argument.

>>> sorted([[3, 4], [3, 5], [1, 2], [7, 3]], key=lambda x: x[1])

[[1, 2], [7, 3], [3, 4], [3, 5]]

The lambda form is often useful to be used as closure, such as illustrated in the following example:

>>> def attribution(name):

... return lambda x: x + ' -- ' + name

...

>>> pp = attribution('John')

>>> pp('Dinner is in the fridge')

'Dinner is in the fridge -- John'

note that the lambda function can use the values of variables from the scope in which it was created (like pre and
post). This is the essence of closure.

Previous: Flow control Index Next: Decorators

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Decorators 97

Python Programming/Decorators

Previous:
Functions

Index Next: Scoping

Decorator in Python is a syntax sugar for high-level function.
Minimal Example of property decorator:

>>> class Foo(object):

... @property

... def bar(self):

... return 'baz'

...

>>> F = Foo()

>>> print F.bar

baz

The above example is really just a syntax sugar for codes like this:

>>> class Foo(object):

... def bar(self):

... return 'baz'

... bar = property(bar)

...

>>> F = Foo()

>>> print F.bar

baz

Minimal Example of generic decorator:

>>> def decorator(f):

... def called(*args, **kargs):

... print 'A function is called somewhere'

... return f(*args, **kargs)

... return called

...

>>> class Foo(object):

... @decorator

... def bar(self):

... return 'baz'

...

>>> F = Foo()

>>> print F.bar()

A function is called somewhere

baz

A good use for the decorators is to allow you to refactor your code so that common features can be moved into
decorators. Consider for example, that you would like to trace all calls to some functions and print out the values of
all the parameters of the functions for each invocation. Now you can implement this in a decorator as follows

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Decorators 98

#define the Trace class that will be

#invoked using decorators

class Trace(object):

 def __init__(self, f):

 self.f =f

 def __call__(self, *args, **kwds):

 print "entering function " + self.f.__name__

 i=0

 for arg in args:

 print "arg {0}: {1}".format(i, arg)

 i =i+1

 return self.f(*args, **kwds)

Then you can use the decorator on any function that you defined by

@Trace

def sum(a, b):

 print "inside sum"

 return a + b

On running this code you would see output like

>>> sum(3,2)

entering function sum

arg 0: 3

arg 1: 2

inside sum

Alternately instead of creating the decorator as a class you could have use a function as well.

def Trace(f):

 def my_f(*args, **kwds):

 print "entering " + f.__name__

 result= f(*args, **kwds)

 print "exiting " + f.__name__

 return result

 my_f.__name = f.__name__

 my_f.__doc__ = f.__doc__

 return my_f

#An example of the trace decorator

@Trace

def sum(a, b):

 print "inside sum"

 return a + b

if you run this you should see

>>> sum(3,2)

Python Programming/Decorators 99

entering sum

inside sum

exiting sum

10: 5

remember it is good practice to return the function or a sensible decorated replacement for the function. So that
decorators can be chained.

Previous:
Functions

Index Next: Scoping

Python Programming/Scoping

Previous:
Decorators

Index Next: Exceptions

Variables
Variables in Python are automatically declared by assignment. Variables are always references to objects, and are
never typed. Variables exist only in the current scope or global scope. When they go out of scope, the variables are
destroyed, but the objects to which they refer are not (unless the number of references to the object drops to zero).
Scope is delineated by function and class blocks. Both functions and their scopes can be nested. So therefore

def foo():

 def bar():

 x = 5 # x is now in scope

 return x + y # y is defined in the enclosing scope later

 y = 10

 return bar() # now that y is defined, bar's scope includes y

Now when this code is tested,

>>> foo()

15

>>> bar()

Traceback (most recent call last):

 File "<pyshell#26>", line 1, in -toplevel-

 bar()

NameError: name 'bar' is not defined

The name 'bar' is not found because a higher scope does not have access to the names lower in the hierarchy.
It is a common pitfall to fail to lookup an attribute (such as a method) of an object (such as a container) referenced
by a variable before the variable is assigned the object. In its most common form:

>>> for x in range(10):

 y.append(x) # append is an attribute of lists

Traceback (most recent call last):

 File "<pyshell#46>", line 2, in -toplevel-

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Scoping 100

 y.append(x)

NameError: name 'y' is not defined

Here, to correct this problem, one must add y = [] before the for loop.

Previous:
Decorators

Index Next: Exceptions

Python Programming/Exceptions

Previous: Scoping Index Next: Input and
output

Python handles all errors with exceptions.
An exception is a signal that an error or other unusual condition has occurred. There are a number of built-in
exceptions, which indicate conditions like reading past the end of a file, or dividing by zero. You can also define
your own exceptions.

Raising exceptions
Whenever your program attempts to do something erroneous or meaningless, Python raises exception to such
conduct:

 >>> 1 / 0

 Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 ZeroDivisionError: integer division or modulo by zero

This traceback indicates that the ZeroDivisionError exception is being raised. This is a built-in exception -- see
below for a list of all the other ones.

Catching exceptions
In order to handle errors, you can set up exception handling blocks in your code. The keywords try and except are
used to catch exceptions. When an error occurs within the try block, Python looks for a matching except block to
handle it. If there is one, execution jumps there.
If you execute this code:

 try:

 print 1/0

 except ZeroDivisionError:

 print "You can't divide by zero, you silly."

Then Python will print this:

You can't divide by zero, you silly.

If you don't specify an exception type on the except line, it will cheerfully catch all exceptions. This is generally a
bad idea in production code, since it means your program will blissfully ignore unexpected errors as well as ones
which the except block is actually prepared to handle.
Exceptions can propagate up the call stack:

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Exceptions 101

 def f(x):

 return g(x) + 1

 def g(x):

 if x < 0: raise ValueError, "I can't cope with a negative number here."

 else: return 5

 try:

 print f(-6)

 except ValueError:

 print "That value was invalid."

In this code, the print statement calls the function f. That function calls the function g, which will raise an exception
of type ValueError. Neither f nor g has a try/except block to handle ValueError. So the exception raised propagates
out to the main code, where there is an exception-handling block waiting for it. This code prints:

That value was invalid.

Sometimes it is useful to find out exactly what went wrong, or to print the python error text yourself. For example:

 try:

 the_file = open("the_parrot")

 except IOError, (ErrorNumber, ErrorMessage):

 if ErrorNumber == 2: # file not found

 print "Sorry, 'the_parrot' has apparently joined the choir

invisible."

 else:

 print "Congratulation! you have managed to trip a #%d error" %

ErrorNumber # String concatenation is slow, use % formatting whenever

possible

 print ErrorMessage

Which of course will print:

Sorry, 'the_parrot' has apparently joined the choir invisible.

Custom Exceptions

Code similar to that seen above can be used to create custom exceptions and pass information along with them. This
can be extremely useful when trying to debug complicated projects. Here is how that code would look; first creating
the custom exception class:

 class CustomException(Exception):

 def __init__(self, value):

 self.parameter = value

 def __str__(self):

 return repr(self.parameter)

And then using that exception:

try:

 raise CustomException("My Useful Error Message")

except CustomException, (instance):

Python Programming/Exceptions 102

 print "Caught: " + instance.parameter

Recovering and continuing with finally
Exceptions could lead to a situation where, after raising an exception, the code block where the exception occurred
might not be revisited. In some cases this might leave external resources used by the program in an unknown state.
finally clause allows programmers to close such resources in case of an exception. Between 2.4 and 2.5 version of
python there is change of syntax for finally clause.
• Python 2.4

try:

 result = None

 try:

 result = x/y

 except ZeroDivisionError:

 print "division by zero!"

 print "result is ", result

finally:

 print "executing finally clause"

• Python 2.5

try:

 result = x / y

except ZeroDivisionError:

 print "division by zero!"

else:

 print "result is", result

finally:

 print "executing finally clause"

Built-in exception classes
All built-in Python exceptions [1]

Exotic uses of exceptions
Exceptions are good for more than just error handling. If you have a complicated piece of code to choose which of
several courses of action to take, it can be useful to use exceptions to jump out of the code as soon as the decision
can be made. The Python-based mailing list software Mailman does this in deciding how a message should be
handled. Using exceptions like this may seem like it's a sort of GOTO -- and indeed it is, but a limited one called an
escape continuation. Continuations are a powerful functional-programming tool and it can be useful to learn them.
Just as a simple example of how exceptions make programming easier, say you want to add items to a list but you
don't want to use "if" statements to initialize the list we could replace this:

if hasattr(self, 'items'):

 self.items.extend(new_items)

else:

 self.items = list(new_items)

http://docs.python.org/library/exceptions.html

Python Programming/Exceptions 103

Using exceptions, we can emphasize the normal program flow—that usually we just extend the list—rather than
emphasizing the unusual case:

try:

 self.items.extend(new_items)

except AttributeError:

 self.items = list(new_items)

Previous: Scoping Index Next: Input and
output

References
[1] http:/ / docs. python. org/ library/ exceptions. html

Python Programming/Input and output

Previous: Exceptions Index Next: Modules

Input
Python has two functions designed for accepting data directly from the user:
• input()
• raw_input()
There are also very simple ways of reading a file and, for stricter control over input, reading from stdin if necessary.

raw_input()
raw_input() asks the user for a string of data (ended with a newline), and simply returns the string. It can also take an
argument, which is displayed as a prompt before the user enters the data. E.g.

print raw_input('What is your name? ')

prints out

What is your name? <user input data here>

Note: in 3.x "...raw_input() was renamed to input(). That is, the new input() function reads a line from sys.stdin and
returns it with the trailing newline stripped. It raises EOFError if the input is terminated prematurely. To get the old
behavior of input(), use eval(input())."

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/library/exceptions.html
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Input and output 104

input()
input() uses raw_input to read a string of data, and then attempts to evaluate it as if it were a Python program, and
then returns the value that results. So entering

[1,2,3]

would return a list containing those numbers, just as if it were assigned directly in the Python script.
More complicated expressions are possible. For example, if a script says:

x = input('What are the first 10 perfect squares? ')

it is possible for a user to input:

map(lambda x: x*x, range(10))

which yields the correct answer in list form. Note that no inputted statement can span more than one line.
input() should not be used for anything but the most trivial program. Turning the strings returned from raw_input()
into python types using an idiom such as:

x = None

while not x:

 try:

 x = int(raw_input())

 except ValueError:

 print 'Invalid Number'

is preferable, as input() uses eval() to turn a literal into a python type. This will allow a malicious person to run
arbitrary code from inside your program trivially.

File Input

File Objects

Python includes a built-in file type. Files can be opened by using the file type's constructor:

f = file('test.txt', 'r')

This means f is open for reading. The first argument is the filename and the second parameter is the mode, which can
be 'r', 'w', or 'rw', among some others.
The most common way to read from a file is simply to iterate over the lines of the file:

f = open('test.txt', 'r')

for line in f:

 print line[0]

f.close()

This will print the first character of each line. Note that a newline is attached to the end of each line read this way.
Because files are automatically closed when the file object goes out of scope, there is no real need to close them
explicitly. So, the loop in the previous code can also be written as:

for line in open('test.txt', 'r'):

 print line[0]

It is also possible to read limited numbers of characters at a time, like so:

Python Programming/Input and output 105

c = f.read(1)

while len(c) > 0:

 if len(c.strip()) > 0: print c,

 c = f.read(1)

This will read the characters from f one at a time, and then print them if they're not whitespace.
A file object implicitly contains a marker to represent the current position. If the file marker should be moved back
to the beginning, one can either close the file object and reopen it or just move the marker back to the beginning
with:

f.seek(0)

Standard File Objects

Like many other languages, there are built-in file objects representing standard input, output, and error. These are in
the sys module and are called stdin, stdout, and stderr. There are also immutable copies of these in __stdin__,
__stdout__, and __stderr__. This is for IDLE and other tools in which the standard files have been changed.
You must import the sys module to use the special stdin, stdout, stderr I/O handles.

import sys

For finer control over input, use sys.stdin.read(). In order to implement the UNIX 'cat' program in Python, you could
do something like this:

import sys

for line in sys.stdin:

 print line,

Also important is the sys.argv array. sys.argv is an array that contains the command-line arguments passed to the
program.

python program.py hello there programmer!

This array can be indexed,and the arguments evaluated. In the above example, sys.argv[2] would contain the string
"there", because the name of the program ("program.py") is stored in argv[0]. For more complicated command-line
argument processing, see also(getopt module)

Output
The basic way to do output is the print statement.

print 'Hello, world'

This code ought to be obvious.
In order to print multiple things on the same line, use commas between them, like so:

print 'Hello,', 'World'

This will print out the following:

Hello, World

Note that although neither string contained a space, a space was added by the print statement because of the comma
between the two objects. Arbitrary data types can be printed this way:

print 1,2,0xff,0777,(10+5j),-0.999,map,sys

Python Programming/Input and output 106

This will print out:

1 2 255 511 (10+5j) -0.999 <built-in function map> <module 'sys' (built-in)>

Objects can be printed on the same line without needing to be on the same line if one puts a comma at the end of a
print statement:

for i in range(10):

 print i,

will output:

0 1 2 3 4 5 6 7 8 9

In order to end this line, it may be necessary to add a print statement without any objects.

for i in range(10):

 print i,

print

for i in range(10,20):

 print i,

will output:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

If the bare print statement were not present, the above output would look like:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

printing without commas or newlines
If it is not desirable to add spaces between objects, but you want to run them all together on one line, there are
several techniques for doing that.
concatenation

Concatenate the string representations of each object, then later print the whole thing at once.

print

str(1)+str(2)+str(0xff)+str(0777)+str(10+5j)+str(-0.999)+str(map)+str(sys)

will output:

12255511(10+5j)-0.999<built-in function map><module 'sys' (built-in)>

write

you can make a shorthand for sys.stdout.write and use that for output.

import sys

write = sys.stdout.write

write('20')

write('05\n')

will output:

2005

Python Programming/Input and output 107

You may need sys.stdout.flush() to get that text on the screen quickly.
It is also possible to use similar syntax when writing to a file, instead of to standard output, like so:

print >> f, 'Hello, world'

This will print to any object that implements write(), which includes file objects.

Previous: Exceptions Index Next: Modules

Python Programming/Modules

Previous: Input and output Index Next: Classes

Modules are a simple way to structure a program. Mostly, there are modules in the standard library and there are
other Python files, or directories containing Python files, in the current directory (each of which constitute a
module). You can also instruct Python to search other directories for modules by placing their paths in the
PYTHONPATH environment variable.

Importing a Module
Modules in Python are used by importing them. For example,

import math

This imports the math standard module. All of the functions in that module are namespaced by the module name, i.e.

import math

print math.sqrt(10)

This is often a nuisance, so other syntaxes are available to simplify this,

from string import whitespace

from math import *

from math import sin as SIN

from math import cos as COS

from ftplib import FTP as ftp_connection

print sqrt(10)

The first statement means whitespace is added to the current scope (but nothing else is). The second statement means
that all the elements in the math namespace is added to the current scope.
Modules can be three different kinds of things:
• Python files
• Shared Objects (under Unix and Linux) with the .so suffix
• DLL's (under Windows) with the .pyd suffix
• directories
Modules are loaded in the order they're found, which is controlled by sys.path. The current directory is always on the
path.
Directories should include a file in them called __init__.py, which should probably include the other files in the
directory.

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Modules 108

Creating a DLL that interfaces with Python is covered in another section.

Creating a Module

From a File
The easiest way to create a module by having a file called mymod.py either in a directory recognized by the
PYTHONPATH variable or (even easier) in the same directory where you are working. If you have the following
file mymod.py

class Object1:

 def __init__(self):

 self.name = 'object 1'

you can already import this "module" and create instances of the object Object1.

import mymod

myobject = mymod.Object1()

from mymod import *

myobject = Object1()

From a Directory
It is not feasible for larger projects to keep all classes in a single file. It is often easier to store all files in directories
and load all files with one command. Each directory needs to have a __init__.py file which contains python
commands that are executed upon loading the directory.
Suppose we have two more objects called Object2 and Object3 and we want to load all three objects with one
command. We then create a directory called mymod and we store three files called Object1.py, Object2.py and
Object3.py in it. These files would then contain one object per file but this not required (although it adds clarity). We
would then write the following __init__.py file:

from Object1 import *

from Object2 import *

from Object3 import *

__all__ = ["Object1", "Object2", "Object3"]

The first three commands tell python what to do when somebody loads the module. The last statement defining
__all__ tells python what to do when somebody executes from mymod import *. Usually we want to use parts of a
module in other parts of a module, e.g. we want to use Object1 in Object2. We can do this easily with an from .
import * command as the following file Object2.py shows:

from . import *

class Object2:

 def __init__(self):

 self.name = 'object 2'

 self.otherObject = Object1()

We can now start python and import mymod as we have in the previous section.

Python Programming/Modules 109

External links
• Python Documentation [1]

Previous: Input and output Index Next: Classes

References
[1] http:/ / docs. python. org/ tutorial/ modules. html

Python Programming/Classes

Previous:
Modules

Index Next: MetaClasses

Classes are a way of aggregating similar data and functions. A class is basically a scope inside which various code
(especially function definitions) is executed, and the locals to this scope become attributes of the class, and of any
objects constructed by this class. An object constructed by a class is called an instance of that class.

Defining a Class
To define a class, use the following format:

class ClassName:

 ...

 ...

The capitalization in this class definition is the convention, but is not required by the language.

Instance Construction
The class is a callable object that constructs an instance of the class when called. To construct an instance of a class,
"call" the class object:

f = Foo()

This constructs an instance of class Foo and creates a reference to it in f.

Class Members
In order to access the member of an instance of a class, use the syntax <class instance>.<member>. It is also possible
to access the members of the class definition with <class name>.<member>.

Methods

A method is a function within a class. The first argument (methods must always take at least one argument) is always
the instance of the class on which the function is invoked. For example

>>> class Foo:

... def setx(self, x):

... self.x = x

... def bar(self):

... print self.x

http://docs.python.org/tutorial/modules.html
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/tutorial/modules.html
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Classes 110

If this code were executed, nothing would happen, at least until an instance of Foo were constructed, and then bar
were called on that instance.

Invoking Methods

Calling a method is much like calling a function, but instead of passing the instance as the first parameter like the list
of formal parameters suggests, use the function as an attribute of the instance.

>>> f.setx(5)

>>> f.bar()

This will output

5

It is possible to call the method on an arbitrary object, by using it as an attribute of the defining class instead of an
instance of that class, like so:

>>> Foo.setx(f,5)

>>> Foo.bar(f)

This will have the same output.

Dynamic Class Structure

As shown by the method setx above, the members of a Python class can change during runtime, not just their values,
unlike classes in languages like C or Java. We can even delete f.x after running the code above.

>>> del f.x

>>> f.bar()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 File "<stdin>", line 5, in bar

AttributeError: Foo instance has no attribute 'x'

Another effect of this is that we can change the definition of the Foo class during program execution. In the code
below, we create a member of the Foo class definition named y. If we then create a new instance of Foo, it will now
have this new member.

>>> Foo.y = 10

>>> g = Foo()

>>> g.y

10

Viewing Class Dictionaries

At the heart of all this is a dictionary that can be accessed by "vars(ClassName)"

>>> vars(g)

{}

At first, this output makes no sense. We just saw that g had the member y, so why isn't it in the member dictionary?
If you remember, though, we put y in the class definition, Foo, not g.

>>> vars(Foo)

{'y': 10, 'bar': <function bar at 0x4d6a3c>, '__module__': '__main__',

Python Programming/Classes 111

 'setx': <function setx at 0x4d6a04>, '__doc__': None}

And there we have all the members of the Foo class definition. When Python checks for g.member, it first checks g's
vars dictionary for "member," then Foo. If we create a new member of g, it will be added to g's dictionary, but not
Foo's.

>>> g.setx(5)

>>> vars(g)

{'x': 5}

Note that if we now assign a value to g.y, we are not assigning that value to Foo.y. Foo.y will still be 10, but g.y will
now override Foo.y

>>> g.y = 9

>>> vars(g)

{'y': 9, 'x': 5}

>>> vars(Foo)

{'y': 10, 'bar': <function bar at 0x4d6a3c>, '__module__': '__main__',

 'setx': <function setx at 0x4d6a04>, '__doc__': None}

Sure enough, if we check the values:

>>> g.y

9

>>> Foo.y

10

Note that f.y will also be 10, as Python won't find 'y' in vars(f), so it will get the value of 'y' from vars(Foo).
Some may have also noticed that the methods in Foo appear in the class dictionary along with the x and y. If you
remember from the section on lambda forms, we can treat functions just like variables. This means that we can
assign methods to a class during runtime in the same way we assigned variables. If you do this, though, remember
that if we call a method of a class instance, the first parameter passed to the method will always be the class instance
itself.

Changing Class Dictionaries

We can also access the members dictionary of a class using the __dict__ member of the class.

>>> g.__dict__

{'y': 9, 'x': 5}

If we add, remove, or change key-value pairs from g.__dict__, this has the same effect as if we had made those
changes to the members of g.

>>> g.__dict__['z'] = -4

>>> g.z

-4

http://en.wikibooks.org/w/index.php?title=Python_Programming/Functions%23Lambda_Forms

Python Programming/Classes 112

New Style Classes
New style classes were introduced in python 2.2. A new-style class is a class that has a built-in as its base, most
commonly object. At a low level, a major difference between old and new classes is their type. Old class instances
were all of type instance. New style class instances will return the same thing as x.__class__ for their type. This puts
user defined classes on a level playing field with built-ins. Old/Classic classes are slated to disappear in Python
3000. With this in mind all development should use new style classes. New Style classes also add constructs like
properties and static methods familiar to Java programmers.
Old/Classic Class

>>> class ClassicFoo:

... def __init__(self):

... pass

New Style Class

>>> class NewStyleFoo(object):

... def __init__(self):

... pass

Properties

Properties are attributes with getter and setter methods.

>>> class SpamWithProperties(object):

... def __init__(self):

... self.__egg = "MyEgg"

... def getEgg(self):

... return self.__egg

... def setEgg(self,egg):

... self.__egg = egg

... egg = property(getEgg,setEgg)

>>> sp = SpamWithProperties()

>>> sp.egg

'MyEgg'

>>> sp.egg = "Eggs With Spam"

>>> sp.egg

'Eggs With Spam'

>>>

Static Methods

Static methods in Python are just like their counterparts in C++ or Java. Static methods have no "self" argument and
don't require you to instantiate the class before using them. They can be defined using staticmethod()

>>> class StaticSpam(object):

... def StaticNoSpam():

... print "You can't have have the spam, spam, eggs and spam

without any spam... that's disgusting"

... NoSpam = staticmethod(StaticNoSpam)

>>> StaticSpam.NoSpam()

Python Programming/Classes 113

'You can't have have the spam, spam, eggs and spam without any spam...

that's disgusting'

They can also be defined using the function decorator @staticmethod.

>>> class StaticSpam(object):

... @staticmethod

... def StaticNoSpam():

... print "You can't have have the spam, spam, eggs and spam

without any spam... that's disgusting"

Inheritance
Like all object oriented languages, Python provides for inheritance. Inheritance is a simple concept by which a class
can extend the facilities of another class, or in Python's case, multiple other classes. Use the following format for
this:

class ClassName(superclass1,superclass2,superclass3,...):

 ...

The subclass will then have all the members of its superclasses. If a method is defined in the subclass and in the
superclass, the member in the subclass will override the one in the superclass. In order to use the method defined in
the superclass, it is necessary to call the method as an attribute on the defining class, as in Foo.setx(f,5) above:

>>> class Foo:

... def bar(self):

... print "I'm doing Foo.bar()"

... x = 10

...

>>> class Bar(Foo):

... def bar(self):

... print "I'm doing Bar.bar()"

... Foo.bar(self)

... y = 9

...

>>> g = Bar()

>>> Bar.bar(g)

I'm doing Bar.bar()

I'm doing Foo.bar()

>>> g.y

9

>>> g.x

10

Once again, we can see what's going on under the hood by looking at the class dictionaries.

>>> vars(g)

{}

>>> vars(Bar)

{'y': 9, '__module__': '__main__', 'bar': <function bar at 0x4d6a04>,

 '__doc__': None}

>>> vars(Foo)

Python Programming/Classes 114

{'x': 10, '__module__': '__main__', 'bar': <function bar at 0x4d6994>,

 '__doc__': None}

When we call g.x, it first looks in the vars(g) dictionary, as usual. Also as above, it checks vars(Bar) next, since g is
an instance of Bar. However, thanks to inheritance, Python will check vars(Foo) if it doesn't find x in vars(Bar).

Special Methods
There are a number of methods which have reserved names which are used for special purposes like mimicking
numerical or container operations, among other things. All of these names begin and end with two underscores. It is
convention that methods beginning with a single underscore are 'private' to the scope they are introduced within.

Initialization and Deletion

__init__

One of these purposes is constructing an instance, and the special name for this is '__init__'. __init__() is called
before an instance is returned (it is not necessary to return the instance manually). As an example,

class A:

 def __init__(self):

 print 'A.__init__()'

a = A()

outputs

A.__init__()

__init__() can take arguments, in which case it is necessary to pass arguments to the class in order to create an
instance. For example,

class Foo:

 def __init__ (self, printme):

 print printme

foo = Foo('Hi!')

outputs

Hi!

Here is an example showing the difference between using __init__() and not using __init__():

class Foo:

 def __init__ (self, x):

 print x

foo = Foo('Hi!')

class Foo2:

 def setx(self, x):

 print x

f = Foo2()

Foo2.setx(f,'Hi!')

outputs

Python Programming/Classes 115

Hi!

Hi!

__del__

Similarly, '__del__' is called when an instance is destroyed; e.g. when it is no longer referenced.

Representation

__str__

Converting an object to a string, as with the print statement or with the str() conversion function, can be overridden
by overriding __str__. Usually, __str__ returns a formatted version of the objects content. This will NOT usually be
something that can be executed.

For example:

class Bar:
 def __init__ (self, iamthis):
 self.iamthis = iamthis
 def __str__ (self):
 return self.iamthis
bar = Bar('apple')
print bar

outputs

apple

Function Operator

__str__ str(A)

__repr__ repr(A)

__unicode__ unicode(x)
(2.x only)

__repr__

This function is much like __str__(). If __str__ is not present but this one is, this function's output is used instead for
printing. __repr__ is used to return a representation of the object in string form. In general, it can be executed to get
back the original object.

For example:

class Bar:
 def __init__ (self, iamthis):
 self.iamthis = iamthis
 def __repr__(self):
 return "Bar('%s')" % self.iamthis
bar = Bar('apple')
bar

outputs (note the difference: now is not necessary to put it inside a print)

Bar('apple')

Python Programming/Classes 116

Attributes

__setattr__

This is the function which is in charge of setting attributes of a class. It is provided with the name and value of
the variables being assigned. Each class, of course, comes with a default __setattr__ which simply sets the
value of the variable, but we can override it.

>>> class Unchangable:
... def __setattr__(self, name, value):
... print "Nice try"
...
>>> u = Unchangable()
>>> u.x = 9
Nice try
>>> u.x

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

AttributeError: Unchangable instance has no attribute 'x'

__getattr___

Similar to __setattr__, except this function is called when we try to access a class member, and the default
simply returns the value.

>>> class HiddenMembers:
... def __getattr__(self, name):
... return "You don't get to see " + name
...
>>> h = HiddenMembers()
>>> h.anything
"You don't get to see anything"

Function Indirect
form

Direct
Form

__getattr__ getattr(A,
B)

A.B

__setattr__ setattr(A,
B, C)

A.B =
C

__delattr__ delattr(A,
B)

del
A.B

__delattr__

This function is called to delete an attribute.

>>> class Permanent:
... def __delattr__(self, name):
... print name, "cannot be deleted"
...
>>> p = Permanent()
>>> p.x = 9
>>> del p.x
x cannot be deleted
>>> p.x
9

Python Programming/Classes 117

Operator Overloading

Operator overloading allows us to use the built-in Python syntax and operators to call functions which we define.

Binary Operators

If a class has the __add__ function, we can use the '+' operator to add instances of the class. This will call __add__
with the two instances of the class passed as parameters, and the return value will be the result of the addition.

>>> class FakeNumber:
... n = 5
... def __add__(A,B):
... return A.n + B.n
...
>>> c = FakeNumber()
>>> d = FakeNumber()
>>> d.n = 7
>>> c + d
12

To override the augmented assignment operators, merely add 'i' in front of the normal binary operator, i.e. for '+=' use
'__iadd__' instead of '__add__'. The function will be given one argument, which will be the object on the right side of
the augmented assignment operator. The returned value of the function will then be assigned to the object on the left of
the operator.

>>> c.__imul__ = lambda B: B.n - 6
>>> c *= d
>>> c
1

It is important to note that the augmented assignment operators will also use the normal operator functions if the
augmented operator function hasn't been set directly. This will work as expected, with "__add__" being called for "+="
and so on.

>>> c = FakeNumber()
>>> c += d
>>> c
12

Function Operator

__add__ A + B

__sub__ A - B

__mul__ A * B

__div__ A / B

__floordiv__ A // B

__mod__ A % B

__pow__ A ** B

__and__ A & B

__or__ A | B

__xor__ A ^ B

__eq__ A == B

__ne__ A != B

__gt__ A > B

__lt__ A < B

__ge__ A >= B

__le__ A <= B

__lshift__ A << B

__rshift__ A >> B

__contains__ A in B
A not in

B

Unary Operators

Unary operators will be passed simply the instance of the class that they are called on.

>>> FakeNumber.__neg__ = lambda A : A.n + 6
>>> -d
13

Function Operator

__pos__ +A

__neg__ -A

__inv__ ~A

__abs__ abs(A)

__len__ len(A)

http://en.wikibooks.org/w/index.php?title=Python_Programming/Operators%23Augmented_Assignment
http://en.wikibooks.org/w/index.php?title=Python_Programming/Operators%23Augmented_Assignment

Python Programming/Classes 118

Item Operators

It is also possible in Python to override the indexing and slicing operators. This allows us to use the class[i] and
class[a:b] syntax on our own objects.

The simplest form of item operator is __getitem__. This takes as a parameter the instance of the class, then the value of
the index.

>>> class FakeList:
... def __getitem__(self,index):
... return index * 2
...
>>> f = FakeList()
>>> f['a']
'aa'

We can also define a function for the syntax associated with assigning a value to an item. The parameters for this
function include the value being assigned, in addition to the parameters from __getitem__

>>> class FakeList:
... def __setitem__(self,index,value):
... self.string = index + " is now " + value
...
>>> f = FakeList()
>>> f['a'] = 'gone'
>>> f.string
'a is now gone'

We can do the same thing with slices. Once again, each syntax has a different parameter list associated with it.

Function Operator

__getitem__ C[i]

__setitem__ C[i] = v

__delitem__ del C[i]

__getslice__ C[s:e]

__setslice__ C[s:e] = v

__delslice__ del C[s:e]

>>> class FakeList:
... def __getslice___(self,start,end):
... return str(start) + " to " + str(end)
...
>>> f = FakeList()
>>> f[1:4]
'1 to 4'

Keep in mind that one or both of the start and end parameters can be blank in slice syntax. Here, Python has default
value for both the start and the end, as show below.

>> f[:]
'0 to 2147483647'

Note that the default value for the end of the slice shown here is simply the largest possible signed integer on a 32-bit
system, and may vary depending on your system and C compiler.

• __setslice__ has the parameters (self,start,end,value)

We also have operators for deleting items and slices.

• __delitem__ has the parameters (self,index)
• __delslice__ has the parameters (self,start,end)

Note that these are the same as __getitem__ and __getslice__.

http://en.wikibooks.org/w/index.php?title=Python_Programming/Strings%23Indexing_and_Slicing

Python Programming/Classes 119

Other Overrides

Function Operator

__cmp__ cmp(x, y)

__hash__ hash(x)

__nonzero__ bool(x)

__call__ f(x)

__iter__ iter(x)

__reversed__ reversed(x) (2.6+)

__divmod__ divmod(x, y)

__int__ int(x)

__long__ long(x)

__float__ float(x)

__complex__ complex(x)

__hex__ hex(x)

__oct__ oct(x)

__index__

__copy__ copy.copy(x)

__deepcopy__ copy.deepcopy(x)

__sizeof__ sys.getsizeof(x)
(2.6+)

__trunc__ math.trunc(x) (2.6+)

__format__ format(x, ...) (2.6+)

Programming Practices
The flexibility of python classes means that classes can adopt a varied set of behaviors. For the sake of
understandability, however, it's best to use many of Python's tools sparingly. Try to declare all methods in the class
definition, and always use the <class>.<member> syntax instead of __dict__ whenever possible. Look at classes in
C++ and Java to see what most programmers will expect from a class.

Encapsulation

Since all python members of a python class are accessible by functions/methods outside the class, there is no way to
enforce encapsulation short of overriding __getattr__, __setattr__ and __delattr__. General practice, however, is for
the creator of a class or module to simply trust that users will use only the intended interface and avoid limiting
access to the workings of the module for the sake of users who do need to access it. When using parts of a class or
module other than the intended interface, keep in mind that the those parts may change in later versions of the
module, and you may even cause errors or undefined behaviors in the module.

http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Structures_and_Classes
http://en.wikipedia.org/wiki/Class_(computer_science)#Java
http://en.wikipedia.org/wiki/Information_Hiding

Python Programming/Classes 120

Doc Strings

When defining a class, it is convention to document the class using a string literal at the start of the class definition.
This string will then be placed in the __doc__ attribute of the class definition.

>>> class Documented:

... """This is a docstring"""

... def explode(self):

... """

... This method is documented, too! The coder is really serious

 about

... making this class usable by others who don't know the code

as well

... as he does.

...

... """

... print "boom"

>>> d = Documented()

>>> d.__doc__

'This is a docstring'

Docstrings are a very useful way to document your code. Even if you never write a single piece of separate
documentation (and let's admit it, doing so is the lowest priority for many coders), including informative docstrings
in your classes will go a long way toward making them usable.
Several tools exist for turning the docstrings in Python code into readable API documentation, e.g., EpyDoc [1].
Don't just stop at documenting the class definition, either. Each method in the class should have its own docstring as
well. Note that the docstring for the method explode in the example class Documented above has a fairly lengthy
docstring that spans several lines. Its formatting is in accordance with the style suggestions of Python's creator,
Guido van Rossum.

Adding methods at runtime

To a class

It is fairly easy to add methods to a class at runtime. Lets assume that we have a class called Spam and a function
cook. We want to be able to use the function cook on all instances of the class Spam:

class Spam:

 def __init__(self):

 self.myeggs = 5

def cook(self):

 print "cooking %s eggs" % self.myeggs

Spam.cook = cook #add the function to the class Spam

eggs = Spam() #NOW create a new instance of Spam

eggs.cook() #and we are ready to cook!

This will output

cooking 5 eggs

http://epydoc.sourceforge.net/using.html

Python Programming/Classes 121

To an instance of a class

It is a bit more tricky to add methods to an instance of a class that has already been created. Lets assume again that
we have a class called Spam and we have already created eggs. But then we notice that we wanted to cook those
eggs, but we do not want to create a new instance but rather use the already created one:

class Spam:

 def __init__(self):

 self.myeggs = 5

eggs = Spam()

def cook(self):

 print "cooking %s eggs" % self.myeggs

import types

f = types.MethodType(cook, eggs, Spam)

eggs.cook = f

eggs.cook()

Now we can cook our eggs and the last statement will output:

cooking 5 eggs

Using a function

We can also write a function that will make the process of adding methods to an instance of a class easier.

def attach_method(fxn, instance, myclass):

 f = types.MethodType(fxn, instance, myclass)

 setattr(instance, fxn.__name__, f)

All we now need to do is call the attach_method with the arguments of the function we want to attach, the instance
we want to attach it to and the class the instance is derived from. Thus our function call might look like this:

attach_method(cook, eggs, Spam)

Note that in the function add_method we cannot write instance.fxn = f since this would add a function
called fxn to the instance.

Previous:
Modules

Index Next: MetaClasses

References
[1] http:/ / epydoc. sourceforge. net/ using. html

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://epydoc.sourceforge.net/using.html

Python Programming/MetaClasses 122

Python Programming/MetaClasses

Previous:
Classes

Index Next: Standard Library

In python, classes are themselves objects. Just as other objects are instances of a particular class, classes themselves
are instances of a metaclass.

Class Factories
The simplest use of python metaclasses is a class factory. This concept makes use of the fact that class definitions in
python are first-class objects. Such a function can create or modify a class definition, using the same syntax one
would normally use in declaring a class definition. Once again, it is useful to use the model of classes as dictionaries.
First, let's look at a basic class factory:

>>> def StringContainer():

... # define a class

... class String:

... content_string = ""

... def len(self):

... return len(self.content_string)

... # return the class definition

... return String

...

>>> # create the class definition

... container_class = StringContainer()

>>>

>>> # create an instance of the class

... wrapped_string = container_class()

>>>

>>> # take it for a test drive

... wrapped_string.content_string = 'emu emissary'

>>> wrapped_string.len()

12

Of course, just like any other data in python, class definitions can also be modified. Any modifications to attributes
in a class definition will be seen in any instances of that definition, so long as that instance hasn't overridden the
attribute that you're modifying.

>>> def DeAbbreviate(sequence_container):

... setattr(sequence_container, 'length', sequence_container.len)

... delattr(sequence_container, 'len')

...

>>> DeAbbreviate(container_class)

>>> wrapped_string.length()

12

>>> wrapped_string.len()

 Traceback (most recent call last):

 File "<stdin>", line 1, in ?

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/First-class_(object)
http://en.wikibooks.org/w/index.php?title=Python_Programming/Classes%23Defining_a_Class
http://en.wikibooks.org/w/index.php?title=Python_Programming/Classes%23Viewing_Class_Dictionaries

Python Programming/MetaClasses 123

 AttributeError: String instance has no attribute 'len'

You can also delete class definitions, but that will not affect instances of the class.

>>> del container_class

>>> wrapped_string2 = container_class()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

NameError: name 'container_class' is not defined

>>> wrapped_string.length()

12

The type Metaclass
The metaclass for all standard python types is the "type" object.

>>> type(object)

<type 'type'>

>>> type(int)

<type 'type'>

>>> type(list)

<type 'type'>

Just like list, int and object, "type" is itself a normal python object, and is itself an instance of a class. In this case, it
is in fact an instance of itself.

>>> type(type)

<type 'type'>

It can be instantiated to create new class objects similarly to the class factory example above by passing the name of
the new class, the base classes to inherit from, and a dictionary defining the namespace to use.
For instance, the code:

>>> class MyClass(BaseClass):

... attribute = 42

Could also be written as:

>>> MyClass = type("MyClass", (BaseClass,), {'attribute' : 42})

Metaclasses
It is possible to create a class with a different metaclass than type by setting its __metaclass__ attribute when
defining. When this is done, the class, and its subclass will be created using your custom metaclass. For example

class CustomMetaclass(type):

 def __init__(cls, name, bases, dct):

 print "Creating class %s using CustomMetaclass" % name

 super(CustomMetaclass, cls).__init__(name, bases, dct)

class BaseClass(object):

 __metaclass__ = CustomMetaclass

class Subclass1(BaseClass):

Python Programming/MetaClasses 124

 pass

This will print

Creating class BaseClass using CustomMetaclass

Creating class Subclass1 using CustomMetaclass

By creating a custom metaclass in this way, it is possible to change how the class is constructed. This allows you to
add or remove attributes and methods, register creation of classes and subclasses creation and various other
manipulations when the class is created.

More resources
• Wikipedia article on Aspect Oriented Programming
• Unifying types and classes in Python 2.2 [1]

• O'Reilly Article on Python Metaclasses [2]

[Incomplete] (see Putting Metaclasses to Work, Ira R. Forman, Scott H. Danforth?)

Previous:
Classes

Index Next: Standard Library

References
[1] http:/ / www. python. org/ 2. 2/ descrintro. html
[2] http:/ / www. onlamp. com/ pub/ a/ python/ 2003/ 04/ 17/ metaclasses. html

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://www.python.org/2.2/descrintro.html
http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.python.org/2.2/descrintro.html
http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html

125

Modules

Python Programming/Standard Library

Previous:
MetaClasses

Index Next: Regular Expression

The Python Standard Library is a collection of script modules accessible to a Python program to simplify the
programming process and removing the need to rewrite commonly used commands. They can be used by 'calling'
them at the beginning of a script.

Previous:
MetaClasses

Index Next: Regular Expression

Python Programming/Regular Expression

Previous: Standard Library Index Next: XML Tools

Python includes a module for working with regular expressions on strings. For more information about writing
regular expressions and syntax not specific to Python, see the regular expressions wikibook. Python's regular
expression syntax is similar to Perl's
To start using regular expressions in your Python scripts, just import the "re" module:

import re

Pattern objects
If you're going to be using the same regexp more than once in a program, or if you just want to keep the regexps
separated somehow, you should create a pattern object, and refer to it later when searching/replacing.
To create a pattern object, use the compile function.

import re

foo = re.compile(r'foo(.{,5})bar', re.I+re.S)

The first argument is the pattern, which matches the string "foo", followed by up to 5 of any character, then the string
"bar", storing the middle characters to a group, which will be discussed later. The second, optional, argument is the
flag or flags to modify the regexp's behavior. The flags themselves are simply variables referring to an integer used
by the regular expression engine. In other languages, these would be constants, but Python does not have constants.
Some of the regular expression functions do not support adding flags as a parameter when defining the pattern
directly in the function, if you need any of the flags, it is best to use the compile function to create a pattern object.
The r preceding the expression string indicates that it should be treated as a raw string. This should normally be used
when writing regexps, so that backslashes are interpreted literally rather than having to be escaped.
The different flags are:

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Regular_expressions
http://en.wikibooks.org/w/index.php?title=Perl_Programming/Regular_Expressions_Reference

Python Programming/Regular Expression 126

Abbreviation Full name Description

re.I re.IGNORECASE Makes the regexp case-insensitive

re.L re.LOCALE Makes the behavior of some special sequences (\w, \W, \b, \B, \s, \S) dependant on the current locale

re.M re.MULTILINE Makes the ^ and $ characters match at the beginning and end of each line, rather than just the beginning and end
of the string

re.S re.DOTALL Makes the . character match every character including newlines.

re.U re.UNICODE Makes \w, \W, \b, \B, \d, \D, \s, \S dependent on Unicode character properties

re.X re.VERBOSE Ignores whitespace except when in a character class or preceded by an non-escaped backslash, and ignores #
(except when in a character class or preceded by an non-escaped backslash) and everything after it to the end of
a line, so it can be used as a comment. This allows for cleaner-looking regexps.

Matching and searching
One of the most common uses for regular expressions is extracting a part of a string or testing for the existence of a
pattern in a string. Python offers several functions to do this.
The match and search functions do mostly the same thing, except that the match function will only return a result if
the pattern matches at the beginning of the string being searched, while search will find a match anywhere in the
string.

>>> import re

>>> foo = re.compile(r'foo(.{,5})bar', re.I+re.S)

>>> st1 = 'Foo, Bar, Baz'

>>> st2 = '2. foo is bar'

>>> search1 = foo.search(st1)

>>> search2 = foo.search(st2)

>>> match1 = foo.match(st1)

>>> match2 = foo.match(st2)

In this example, match2 will be None, because the string st2 does not start with the given pattern. The other 3 results
will be Match objects (see below).
You can also match and search without compiling a regexp:

>>> search3 = re.search('oo.*ba', st1, re.I)

Here we use the search function of the re module, rather than of the pattern object. For most cases, its best to compile
the expression first. Not all of the re module functions support the flags argument and if the expression is used more
than once, compiling first is more efficient and leads to cleaner looking code.
The compiled pattern object functions also have parameters for starting and ending the search, to search in a
substring of the given string. In the first example in this section, match2 returns no result because the pattern does
not start at the beginning of the string, but if we do:

>>> match3 = foo.match(st2, 3)

it works, because we tell it to start searching at character number 3 in the string.
What if we want to search for multiple instances of the pattern? Then we have two options. We can use the start and
end position parameters of the search and match function in a loop, getting the position to start at from the previous
match object (see below) or we can use the findall and finditer functions. The findall function returns a list of
matching strings, useful for simple searching. For anything slightly complex, the finditer function should be used.

http://en.wikipedia.org/wiki/case_sensitivity
http://en.wikipedia.org/wiki/locale

Python Programming/Regular Expression 127

This returns an iterator object, that when used in a loop, yields Match objects. For example:

>>> str3 = 'foo, Bar Foo. BAR FoO: bar'

>>> foo.findall(str3)

[', ', '. ', ': ']

>>> for match in foo.finditer(str3):

... match.group(1)

...

', '

'. '

': '

If you're going to be iterating over the results of the search, using the finditer function is almost always a better
choice.

Match objects
Match objects are returned by the search and match functions, and include information about the pattern match.
The group function returns a string corresponding to a capture group (part of a regexp wrapped in ()) of the
expression, or if no group number is given, the entire match. Using the search1 variable we defined above:

>>> search1.group()

'Foo, Bar'

>>> search1.group(1)

', '

Capture groups can also be given string names using a special syntax and referred to by matchobj.group('name'). For simple expressions this
is unnecessary, but for more complex expressions it can be very useful.

You can also get the position of a match or a group in a string, using the start and end functions:

>>> search1.start()

0

>>> search1.end()

8

>>> search1.start(1)

3

>>> search1.end(1)

5

This returns the start and end locations of the entire match, and the start and end of the first (and in this case only)
capture group, respectively.

http://en.wikibooks.org/w/index.php?title=File:Information_icon.svg

Python Programming/Regular Expression 128

Replacing
Another use for regular expressions is replacing text in a string. To do this in Python, use the sub function.
sub takes up to 3 arguments: The text to replace with, the text to replace in, and, optionally, the maximum number of
substitutions to make. Unlike the matching and searching functions, sub returns a string, consisting of the given text
with the substitution(s) made.

>>> import re

>>> mystring = 'This string has a q in it'

>>> pattern = re.compile(r'(a[n]?)(\w) ')

>>> newstring = pattern.sub(r"\1'\2' ", mystring)

>>> newstring

"This string has a 'q' in it"

This takes any single alphanumeric character (\w in regular expression syntax) preceded by "a" or "an" and wraps in
in single quotes. The \1 and \2 in the replacement string are backreferences to the 2 capture groups in the expression;
these would be group(1) and group(2) on a Match object from a search.
The subn function is similar to sub, except it returns a tuple, consisting of the result string and the number of
replacements made. Using the string and expression from before:

>>> subresult = pattern.subn(r"\1'\2' ", mystring)

>>> subresult

("This string has a 'q' in it", 1)

Other functions
The re module has a few other functions in addition to those discussed above.
The split function splits a string based on a given regular expression:

>>> import re

>>> mystring = '1. First part 2. Second part 3. Third part'

>>> re.split(r'\d\.', mystring)

['', ' First part ', ' Second part ', ' Third part']

The escape function escapes all non-alphanumeric characters in a string. This is useful if you need to take an
unknown string that may contain regexp metacharacters like (and . and create a regular expression from it.

>>> re.escape(r'This text (and this) must be escaped with a "\" to use in

a regexp.')

'This\\ text\\ \\(and\\ this\\)\\ must\\ be\\ escaped\\ with\\ a\\

\\"\\\\\\"\\ to\\ use\\ in\\ a\\ regexp\\.'

Python Programming/Regular Expression 129

External links
• Python re documentation [1] - Full documentation for the re module, including pattern objects and match objects

Previous: Standard Library Index Next: XML Tools

References
[1] http:/ / docs. python. org/ library/ re. html

Python Programming/XML Tools

Previous: Regular
Expression

Index Next:
Email

Introduction
Python includes several modules for manipulating xml.

xml.sax.handler
Python Doc [1]

import xml.sax.handler as saxhandler

import xml.sax as saxparser

class MyReport:

 def __init__(self):

 self.Y = 1

class MyCH(saxhandler.ContentHandler):

 def __init__(self, report):

 self.X = 1

 self.report = report

 def startDocument(self):

 print 'startDocument'

 def startElement(self, name, attrs):

 print 'Element:', name

report = MyReport() #for future use

ch = MyCH(report)

xml = """\

<collection>

 <comic title=\"Sandman\" number='62'>

http://docs.python.org/library/re.html
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/library/re.html
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/lib/module-xml.sax.handler.html

Python Programming/XML Tools 130

 <writer>Neil Gaiman</writer>

 <penciller pages='1-9,18-24'>Glyn Dillon</penciller>

 <penciller pages="10-17">Charles Vess</penciller>

 </comic>

</collection>

"""

print xml

saxparser.parseString(xml, ch)

xml.dom.minidom
An example of doing RSS feed parsing with DOM

from xml.dom import minidom as dom

import urllib2

def fetchPage(url):

 a = urllib2.urlopen(url)

 return ''.join(a.readlines())

def extract(page):

 a = dom.parseString(page)

 item = a.getElementsByTagName('item')

 for i in item:

 if i.hasChildNodes() == True:

 t = i.getElementsByTagName('title')[0].firstChild.wholeText

 l = i.getElementsByTagName('link')[0].firstChild.wholeText

 d =

i.getElementsByTagName('description')[0].firstChild.wholeText

 print t, l, d

if __name__=='__main__':

 page = fetchPage("http://rss.slashdot.org/Slashdot/slashdot")

 extract(page)

XML document provided by pyxml documentation [2].

Previous: Regular
Expression

Index Next:
Email

http://pyxml.sourceforge.net/topics/howto/node12.html
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/XML Tools 131

References
[1] http:/ / docs. python. org/ lib/ module-xml. sax. handler. html
[2] http:/ / pyxml. sourceforge. net/ topics/ howto/ node12. html

Python Programming/Email

Previous: XML
Tools

Index Next: Threading

Python includes several modules in the standard library for working with emails and email servers.

Sending mail
Sending mail is done with Python's smtplib using an SMTP (Simple Mail Transfer Protocol) server. Actual usage
varies depending on complexity of the email and settings of the email server, the instructions here are based on
sending email through Google's Gmail.
The first step is to create an SMTP object, each object is used for connection with one server.

import smtplib

server = smtplib.SMTP('smtp.gmail.com', 587)

The first argument is the server's hostname, the second is the port. The port used varies depending on the server.
Next, we need to do a few steps to set up the proper connection for sending mail.

server.ehlo()

server.starttls()

server.ehlo()

These steps may not be necessary depending on the server you connect to. ehlo() is used for ESMTP servers, for
non-ESMTP servers, use helo() instead. See Wikipedia's article about the SMTP protocol for more information about
this. The starttls() function starts Transport Layer Security mode, which is required by Gmail. Other mail systems
may not use this, or it may not be available.
Next, log in to the server:

server.login("youremailusername", "password")

Then, send the mail:

msg = "\nHello!" # The /n separates the message from the headers (which

 we ignore for this example)

server.sendmail("you@gmail.com", "target@example.com", msg)

Note that this is a rather crude example, it doesn't include a subject, or any other headers. For that, one should use the
email package.

http://docs.python.org/lib/module-xml.sax.handler.html
http://pyxml.sourceforge.net/topics/howto/node12.html
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/ESMTP
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/Transport_Layer_Security

Python Programming/Email 132

The email package
Python's email package contains many classes and functions for composing and parsing email messages, this section
only covers a small subset useful for sending emails.
We start by only importing only the classes we need, this also saves us from having to use the full module name
later.

from email.MIMEMultipart import MIMEMultipart

from email.MIMEText import MIMEText

Then we compose some of the basic message headers:

fromaddr = "you@gmail.com"

toaddr = "target@example.com"

msg = MIMEMultipart()

msg['From'] = fromaddr

msg['To'] = toaddr

msg['Subject'] = "Python email"

Next, we attach the body of the email to the MIME message:

body = "Python test mail"

msg.attach(MIMEText(body, 'plain'))

For sending the mail, we have to convert the object to a string, and then use the same prodecure as above to send
using the SMTP server..

import smtplib

server = smtplib.SMTP('smtp.gmail.com', 587)

server.ehlo()

server.starttls()

server.ehlo()

server.login("youremailusername", "password")

text = msg.as_string()

server.sendmail(fromaddr, toaddr, text)

If we look at the text, we can see it has added all the necessary headers and structure necessary for a MIME
formatted email. See MIME for more details on the standard:

The full text of our example message

>>> print text
Content-Type: multipart/mixed; boundary="===============1893313573=="
MIME-Version: 1.0
From: you@gmail.com
To: target@example.com
Subject: Python email

--===============1893313573==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

Python test mail
--===============1893313573==--

http://en.wikipedia.org/wiki/MIME

Python Programming/Email 133

Previous: XML
Tools

Index Next: Threading

Python Programming/Threading

Previous: Email Index Next:
Sockets

Threading in python is used to run multiple threads (tasks, function calls) at the same time. Note that this does not
mean, that they are executed on different CPUs. Python threads will NOT make your program faster if it already uses
100 % CPU time, probably you then want to look into parallel programming. If you are interested in parallel
progamming with python, please see here [1].
Python threads are used in cases where the execution of a task involves some waiting. One example would be
interaction with a service hosted on another computer, such as a webserver. Threading allows python to execute
other code while waiting; this is easily simulated with the sleep function.

Examples

A Minimal Example with Function Call
Make a thread that prints numbers from 1-10, waits for 1 sec between:

import thread, time

def loop1_10():

 for i in range(1,10):

 time.sleep(1)

 print i

thread.start_new_thread(loop1_10, ())

A Minimal Example with Object
#!/usr/bin/env python

import threading

import time

class MyThread(threading.Thread):

 def run(self):

 print "%s started!" % self.getName()

 time.sleep(1)

 print "%s finished!" % self.getName()

if __name__ == '__main__':

 for x in range(4):

 mythread = MyThread(name = "Thread-%d" % (x + 1))

 mythread.start()

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://wiki.python.org/moin/ParallelProcessing

Python Programming/Threading 134

 time.sleep(.2)

This should output:

Thread-1 started!

Thread-2 started!

Thread-3 started!

Thread-4 started!

Thread-1 finished!

Thread-2 finished!

Thread-3 finished!

Thread-4 finished!

Note: this example appears to crash IDLE in Windows XP (seems to work in IDLE 1.2.4 in Windows XP though)
There seems to be a problem with this, if you replace Sleep(1) with (2) ,and change range (4) to range(10). Thread -2
finished is the first line before its even started. in WING IDE, Netbeans, eclipse is fine.

Previous: Email Index Next:
Sockets

References
[1] http:/ / wiki. python. org/ moin/ ParallelProcessing

Python Programming/Sockets

Previous:
Threading

Index Next: GUI Programming

HTTP Client
Make a very simple HTTP client

import socket

s = socket.socket()

s.connect(('localhost', 80))

s.send('GET / HTTP/1.1\nHost:localhost\n\n')

s.recv(40000) # receive 40000 bytes

NTP/Sockets
Connecting to and reading an NTP time server, returning the time as follows

ntpps picoseconds portion of time

ntps seconds portion of time

ntpms milliseconds portion of time

ntpt 64-bit ntp time, seconds in upper 32-bits, picoseconds in lower 32-bits

import socket

import sys

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://wiki.python.org/moin/ParallelProcessing
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Sockets 135

import time

BLOCKING = 1 # 0 = non blocking, 1 = blocking

NONBLOCKING = 0 # 0 = non blocking, 1 = blocking

TIME1970 = 2208988800L # Thanks to F.Lundh

NTPPORT = 123

MAXLEN = 1024

NTPSERVER = ('time.apple.com')

SKTRDRETRYCOUNT = 2

SKTRDRETRYDLY = 0.01

#***

opensocket(servername, port, blocking) \n

opens a socket at ip address "servername"

\arg servername = ip address to open a socket to

\arg port = port number to use

ntp uses dgram sockets instead of stream

def opensocket(ipaddr, port, mode):

 # create the socket

 skt = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 # open the socket

 try:

 skt.connect((ipaddr, port))

 except socket.error, e:

 print "Failed to connect to server %s %d %d" % (ipaddr, port,

mode)

 print "Error %s" % (e.args[0])

 print "Goodbye..."

 sys.exit()

 # set the blocking mode (0=nonblocking, 1=blocking)

 try:

 skt.setblocking(mode)

 except socket.error, e:

 print "Failed to set socket blocking mode for %s %d %d"

%(ipaddr, port, mode)

 print "Error %s" % (e.args[0])

 print "Goodbye..."

 sys.exit()

 return(skt)

#***

##

we should get 12 long words back in network order \n

the 10th word is the transmit time (seconds since UT 1900-Jan-01 \n

Python Programming/Sockets 136

I = unsigned long integer \n

! = network (big endian) ordering

\arg \c \b ntpsocket, the socket handle to connect to

\arg \c \b msg, the message to send to the ntp server

def getntptime(ntpsocket, msg, servername):

 ntpsocket.send(msg)

 rtrycnt = 0

 data = 0

 while (data == 0) & (rtrycnt < SKTRDRETRYCOUNT):

 try:

 data = ntpsocket.recv(MAXLEN)

 except socket.error, e:

 rtrycnt += 1

 print "Error reading non-blocking socket, retries = %s,

server = %s" %(rtrycnt, servername)

 time.sleep(SKTRDRETRYDLY) # don't retry too often

 # check and see if we got valid data back

 if data:

 ntps = unpack('!12I', data)[10]

 ntpps = unpack('!12I', data)[11]

 if ntps == 0:

 print "Error: NTP, invalid response, goodbye..."

 sys.exit()

 else:

 print "Error: NTP, no data returned, goodbye..."

 sys.exit()

 ntpms = ntpps/5000000L # 1ms/200ps, we want ms

 ntpt = (ntps << 32) + ntpps

 return (ntpsocket, ntps, ntpps, ntpms, ntpt)

Previous:
Threading

Index Next: GUI Programming

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/GUI Programming 137

Python Programming/GUI Programming

Previous: Sockets Index Next: WSGI web programming

There are various GUI toolkits to start with.

Tkinter
Tkinter, a Python wrapper for Tcl/Tk, comes bundled with Python (at least on Win32 platform though it can be
installed on Unix/Linux and Mac machines) and provides a cross-platform GUI. It is a relatively simple to learn yet
powerful toolkit that provides what appears to be a modest set of widgets. However, because the Tkinter widgets are
extensible, many compound widgets can be created rather easily (i.e. combo-box, scrolled panes). Because of its
maturity and extensive documentation Tkinter has been designated as the de facto GUI for Python.
To create a very simple Tkinter window frame one only needs the following lines of code:

import Tkinter

root = Tkinter.Tk()

root.mainloop()

From an object-oriented perspective one can do the following:

import Tkinter

class App:

 def __init__(self, master):

 button = Tkinter.Button(master, text="I'm a Button.")

 button.pack()

if __name__ == '__main__':

 root = Tkinter.Tk()

 app = App(root)

 root.mainloop()

To learn more about Tkinter visit the following links:
• http:/ / www. astro. washington. edu/ owen/ TkinterSummary. html <- A summary
• http:/ / infohost. nmt. edu/ tcc/ help/ lang/ python/ tkinter. html <- A tutorial
• http:/ / www. pythonware. com/ library/ tkinter/ introduction/ <- A reference

PyGTK
See also book PyGTK For GUI Programming

PyGTK [1] provides a convenient wrapper for the GTK+ [2] library for use in Python programs, taking care of many
of the boring details such as managing memory and type casting. The bare GTK+ toolkit runs on Linux, Windows,
and Mac OS X (port in progress), but the more extensive features — when combined with PyORBit and
gnome-python — require a GNOME [3] install, and can be used to write full featured GNOME applications.
Home Page [1]

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Programming:Tcl
http://www.astro.washington.edu/owen/TkinterSummary.html
http://infohost.nmt.edu/tcc/help/lang/python/tkinter.html
http://www.pythonware.com/library/tkinter/introduction/
http://en.wikibooks.org/w/index.php?title=PyGTK_For_GUI_Programming
http://www.pygtk.org/
http://www.gtk.org
http://www.gnome.org
http://www.pygtk.org/

Python Programming/GUI Programming 138

PyQt
PyQt is a wrapper around the cross-platform Qt C++ toolkit [4]. It has many widgets and support classes [5]

supporting SQL, OpenGL, SVG, XML, and advanced graphics capabilities. A PyQt hello world example:

from PyQt4.QtCore import *

from PyQt4.QtGui import *

class App(QApplication):

 def __init__(self, argv):

 super(App, self).__init__(argv)

 self.msg = QLabel("Hello, World!")

 self.msg.show()

if __name__ == "__main__":

 import sys

 app = App(sys.argv)

 sys.exit(app.exec_)

PyQt [6] is a set of bindings for the cross-platform Qt application framework. PyQt v4 supports Qt4 and PyQt v3
supports Qt3 and earlier.

wxPython
Bindings for the cross platform toolkit wxWidgets [7]. WxWidgets is available on Windows, Macintosh, and
Unix/Linux.

import wx

class test(wx.App):

 def __init__(self):

 wx.App.__init__(self, redirect=False)

 def OnInit(self):

 frame = wx.Frame(None, -1,

 "Test",

 pos=(50,50), size=(100,40),

 style=wx.DEFAULT_FRAME_STYLE)

 button = wx.Button(frame, -1, "Hello World!", (20, 20))

 self.frame = frame

 self.frame.Show()

 return True

if __name__ == '__main__':

 app = test()

 app.MainLoop()

• wxPython [8]

http://www.trolltech.com/products/qt
http://www.riverbankcomputing.com/Docs/PyQt4/html/classes.html
http://www.riverbankcomputing.co.uk/pyqt/
http://en.wikibooks.org/w/index.php?title=Qt
http://www.wxwidgets.org/
http://wxpython.org/

Python Programming/GUI Programming 139

Dabo
Dabo is a full 3-tier application framework. Its UI layer wraps wxPython, and greatly simplifies the syntax.

import dabo

dabo.ui.loadUI("wx")

class TestForm(dabo.ui.dForm):

 def afterInit(self):

 self.Caption = "Test"

 self.Position = (50, 50)

 self.Size = (100, 40)

 self.btn = dabo.ui.dButton(self, Caption="Hello World",

 OnHit=self.onButtonClick)

 self.Sizer.append(self.btn, halign="center", border=20)

 def onButtonClick(self, evt):

 dabo.ui.info("Hello World!")

if __name__ == '__main__':

 app = dabo.ui.dApp()

 app.MainFormClass = TestForm

 app.start()

• Dabo [9]

pyFltk
pyFltk [10] is a Python wrapper for the FLTK [11], a lightweight cross-platform GUI toolkit. It is very simple to learn
and allows for compact user interfaces.
The "Hello World" example in pyFltk looks like:

from fltk import *

window = Fl_Window(100, 100, 200, 90)

button = Fl_Button(9,20,180,50)

button.label("Hello World")

window.end()

window.show()

Fl.run()

http://dabodev.com/
http://pyfltk.sourceforge.net/
http://www.fltk.org/

Python Programming/GUI Programming 140

Other Toolkits
• PyKDE [12] - Part of the kdebindings package, it provides a python wrapper for the KDE libraries.
• PyXPCOM [13] provides a wrapper around the Mozilla XPCOM [14] component architecture, thereby enabling the

use of standalone XUL [15] applications in Python. The XUL toolkit has traditionally been wrapped up in various
other parts of XPCOM, but with the advent of libxul and XULRunner [16] this should become more feasible.

Previous: Sockets Index Next: WSGI web programming

References
[1] http:/ / www. pygtk. org/
[2] http:/ / www. gtk. org
[3] http:/ / www. gnome. org
[4] http:/ / www. trolltech. com/ products/ qt
[5] http:/ / www. riverbankcomputing. com/ Docs/ PyQt4/ html/ classes. html
[6] http:/ / www. riverbankcomputing. co. uk/ pyqt/
[7] http:/ / www. wxwidgets. org/
[8] http:/ / wxpython. org/
[9] http:/ / dabodev. com/
[10] http:/ / pyfltk. sourceforge. net/
[11] http:/ / www. fltk. org/
[12] http:/ / www. riverbankcomputing. co. uk/ pykde/ index. php
[13] http:/ / developer. mozilla. org/ en/ docs/ PyXPCOM
[14] http:/ / developer. mozilla. org/ en/ docs/ XPCOM
[15] http:/ / developer. mozilla. org/ en/ docs/ XUL
[16] http:/ / developer. mozilla. org/ en/ docs/ XULRunner

Python Programming/WSGI web programming

Previous: GUI Programming Index Next: Web Page Harvesting

WSGI Web Programming

External Resources
http:/ / docs. python. org/ library/ wsgiref. html

Previous: GUI Programming Index Next: Web Page Harvesting

http://www.riverbankcomputing.co.uk/pykde/index.php
http://developer.mozilla.org/en/docs/PyXPCOM
http://developer.mozilla.org/en/docs/XPCOM
http://developer.mozilla.org/en/docs/XUL
http://developer.mozilla.org/en/docs/XULRunner
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.pygtk.org/
http://www.gtk.org
http://www.gnome.org
http://www.trolltech.com/products/qt
http://www.riverbankcomputing.com/Docs/PyQt4/html/classes.html
http://www.riverbankcomputing.co.uk/pyqt/
http://www.wxwidgets.org/
http://wxpython.org/
http://dabodev.com/
http://pyfltk.sourceforge.net/
http://www.fltk.org/
http://www.riverbankcomputing.co.uk/pykde/index.php
http://developer.mozilla.org/en/docs/PyXPCOM
http://developer.mozilla.org/en/docs/XPCOM
http://developer.mozilla.org/en/docs/XUL
http://developer.mozilla.org/en/docs/XULRunner
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/library/wsgiref.html
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Web Page Harvesting 141

Python Programming/Web Page Harvesting

Previous: WSGI web programming Index Next: Database Programming

Previous: WSGI web programming Index Next: Database Programming

Python Programming/Database Programming

Previous: Web Page
Harvesting

Index Next: Game Programming in Python

Generic Database Connectivity using ODBC
The Open Database Connectivity (ODBC) API standard allows transparent connections with any database that
supports the interface. This includes most popular databases, such as PostgreSQL or Microsoft Access. The strengths
of using this interface is that a Python script or module can be used on different databases by only modifying the
connection string.
There are three ODBC modules for Python:
1. PythonWin ODBC Module: provided by Mark Hammond with the PythonWin [1] package for Microsoft

Windows (only). This is a minimal implementation of ODBC, and conforms to Version 1.0 of the Python
Database API. Although it is stable, it will likely not be developed any further.[2]

2. mxODBC: a commercial Python package (http:/ / www. egenix. com/ products/ python/ mxODBC/), which
features handling of DateTime objects and prepared statements (using parameters).

3. pyodbc: an open-source Python package (http:/ / code. google. com/ p/ pyodbc), which uses only native Python
data-types and uses prepared statements for increased performance. The present version supports the Python
Database API Specification v2.0.[3]

pyodbc
An example using the pyodbc Python package with a Microsoft Access file (although this database connection could
just as easily be a MySQL database):

import pyodbc

DBfile = '/data/MSAccess/Music_Library.mdb'

conn = pyodbc.connect('DRIVER={Microsoft Access Driver

(*.mdb)};DBQ='+DBfile)

cursor = conn.cursor()

SQL = 'SELECT Artist, AlbumName FROM RecordCollection ORDER BY Year;'

for row in cursor.execute(SQL): # cursors are iterable

 print row.Artist, row.AlbumName

cursor.close()

conn.close()

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/Microsoft_Access
http://starship.python.net/crew/mhammond/win32/
http://www.egenix.com/products/python/mxODBC/),
http://code.google.com/p/pyodbc),

Python Programming/Database Programming 142

Many more features and examples are provided on the pyodbc website.

Postgres connection in Python
import psycopg2

conn = psycopg2.connect("dbname=test")

cursor = conn.cursor()

cursor.execute("select * from test");

for i in cursor.next():

 print i

conn.close()

SQLAlchemy in Action
SQLAlchemy has become the favorite choice for many large Python projects that use databases. A long, updated list
of such projects is listed on the SQLAlchemy site. Additionally, a pretty good tutorial can be found there, as well.
Along with a thin database wrapper, Elixir, it behaves very similarly to the ORM in Rails, ActiveRecord.

External links
• SQLAlchemy [4]

• SQLObject [5]

• PEP 249 [6] - Python Database API Specification v2.0
• Database Topic Guide [7] on python.org

Previous: Web Page
Harvesting

Index Next: Game Programming in Python

References
[1] http:/ / starship. python. net/ crew/ mhammond/ win32/
[2] Hammond, M.;; Robinson, A. (2000). Python Programming on Win32. O'Reilly. ISBN 1-56592-621-8.
[3] Lemburg, M.-A. (2007). "Python Database API Specification v2.0" (http:/ / www. python. org/ dev/ peps/ pep-0249/). Python. .
[4] http:/ / www. sqlalchemy. org/
[5] http:/ / www. sqlobject. org/
[6] http:/ / www. python. org/ dev/ peps/ pep-0249/
[7] http:/ / www. python. org/ doc/ topics/ database/

http://www.sqlalchemy.org/
http://www.sqlobject.org/
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/doc/topics/database/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://starship.python.net/crew/mhammond/win32/
http://www.python.org/dev/peps/pep-0249/
http://www.sqlalchemy.org/
http://www.sqlobject.org/
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/doc/topics/database/

Python Programming/Game Programming in Python 143

Python Programming/Game Programming in
Python

Previous: Database Programming Index Next:
PyQt4

3D Game Programming

3D Game Engine with a Python binding
• Irrlicht Engine[1] (Python binding website: [2])
• Ogre Engine [3] (Python binding website: [4])
Both are very good free open source C++ 3D game Engine with a Python binding.
• CrystalSpace [5] is a free cross-platform software development kit for realtime 3D graphics, with particular focus

on games. Crystal Space is accessible from Python in two ways: (1) as a Crystal Space plugin module in which
C++ code can call upon Python code, and in which Python code can call upon Crystal Space; (2) as a pure Python
module named ‘cspace’ which one can ‘import’ from within Python programs. To use the first option, load the
‘cspython’ plugin as you would load any other Crystal Space plugin, and interact with it via the SCF ‘iScript’
interface .The second approach allows you to write Crystal Space applications entirely in Python, without any
C++ coding. CS Wiki [6]

3D Game Engines written for Python
Engines designed for Python from scratch.
• Blender [7] is an impressive 3D tool with a fully integrated 3D graphics creation suite allowing modeling,

animation, rendering, post-production, realtime interactive 3D and game creation and playback with
cross-platform compatibility. The 3D game engine uses an embedded python interpreter to make 3D games.

• Soya [8] is a 3D game engine with an easy to understand design. It's written in the Pyrex programming language
and uses Cal3d for animation and ODE for physics. Soya is available under the GNU GPL license.

• PySoy [9] primaly branched from Soya 3D, later rewritten.
• Panda3D [10] is a 3D game engine. It's a library written in C++ with Python bindings. Panda3D is designed in

order to support a short learning curve and rapid development. This software is available for free download with
source code under the BSD License. The development was started by [Disney]. Now there are many projects
made with Panda3D, such as Disney's Pirate's of the Caribbean Online [11], ToonTown [12], Building Virtual
World [13], Schell Games [14] and many others. Panda3D supports several features: Procedural Geometry,
Animated Texture, Render to texture, Track motion, fog, particle system, and many others.

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://irrlicht.sourceforge.net/
http://pypi.python.org/pypi/pyirrlicht
http://www.ogre3d.org/
http://www.python-ogre.org/
http://www.crystalspace3d.org
http://en.wikipedia.org/wiki/Crystal_Space
http://www.blender.org/
http://www.soya3d.org/
http://en.wikipedia.org/wiki/Pyrex_programming_language
http://en.wikipedia.org/wiki/Open_Dynamics_Engine
http://en.wikipedia.org/wiki/GNU_GPL
http://www.pysoy.org/
http://www.panda3d.org/
http://disney.go.com/pirates/online/
http://www.toontown.com/
http://www.etc.cmu.edu/bvw
http://www.schellgames.com

Python Programming/Game Programming in Python 144

2D Game Programming
• Pygame is a cross platform Python library which wraps SDL. It provides many features like Sprite groups and

sound/image loading and easy changing of an objects position. It also provides the programmer access to key and
mouse events.

• Phil's Pygame Utilities (PGU) [15] is a collection of tools and libraries that enhance Pygame. Tools include a tile
editor and a level editor (tile, isometric, hexagonal). GUI enhancements include full featured gui, html rendering,
document layout, and text rendering. The libraries include a sprite and tile engine (tile, isometric, hexagonal), a
state engine, a timer, and a high score system. (Beta with last update March, 2007. APIs to be deprecated and
isometric and hexagonal support is currently Alpha and subject to change.) [Update 27/02/08 Author indicates he
is not currently actively developing this library and anyone that is willing to develop their own scrolling isometric
library offering can use the existing code in PGU to get them started.]

• Pyglet [16] is a cross-platform windowing and multimedia library for Python with no external dependencies or
installation requirements. Pyglet provides an object-oriented programming interface for developing games and
other visually-rich applications for Windows, Mac OS X and Linux. Pyglet allows programs to open multiple
windows on multiple screens, draw in those windows with OpenGL, and play back audio and video in most
formats. Unlike similar libraries available, pyglet has no external dependencies (such as SDL) and is written
entirely in Python. Pyglet is avaible under a BSD-Style license.

• Rabbyt [17] A fast Sprite library for Python with game development in mind. With Rabbyt Anims, even old
graphics cards can produce very fast animations of 2,400 or more sprites handling position, rotation, scaling, and
color simultaneously.

See Also
• 10 Lessons Learned [18]- How To Build a Game In A Week From Scratch With No Budget

Previous: Database Programming Index Next:
PyQt4

References
[1] http:/ / irrlicht. sourceforge. net/
[2] http:/ / pypi. python. org/ pypi/ pyirrlicht
[3] http:/ / www. ogre3d. org/
[4] http:/ / www. python-ogre. org/
[5] http:/ / www. crystalspace3d. org
[6] http:/ / en. wikipedia. org/ wiki/ Crystal_Space
[7] http:/ / www. blender. org/
[8] http:/ / www. soya3d. org/
[9] http:/ / www. pysoy. org/
[10] http:/ / www. panda3d. org/
[11] http:/ / disney. go. com/ pirates/ online/
[12] http:/ / www. toontown. com/
[13] http:/ / www. etc. cmu. edu/ bvw
[14] http:/ / www. schellgames. com
[15] http:/ / www. imitationpickles. org/ pgu/ wiki/ index
[16] http:/ / www. pyglet. org/
[17] http:/ / matthewmarshall. org/ projects/ rabbyt/
[18] http:/ / www. gamedev. net/ reference/ articles/ article2259. asp

http://en.wikipedia.org/wiki/Pygame
http://en.wikipedia.org/wiki/SDL
http://www.imitationpickles.org/pgu/wiki/index
http://en.wikipedia.org/wiki/Level_editor
http://en.wikipedia.org/wiki/Tile_engine
http://www.pyglet.org/
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/BSD_licenses
http://matthewmarshall.org/projects/rabbyt/
http://en.wikipedia.org/wiki/Sprite_(computer_graphics)
http://www.gamedev.net/reference/articles/article2259.asp
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://irrlicht.sourceforge.net/
http://pypi.python.org/pypi/pyirrlicht
http://www.ogre3d.org/
http://www.python-ogre.org/
http://www.crystalspace3d.org
http://en.wikipedia.org/wiki/Crystal_Space
http://www.blender.org/
http://www.soya3d.org/
http://www.pysoy.org/
http://www.panda3d.org/
http://disney.go.com/pirates/online/
http://www.toontown.com/
http://www.etc.cmu.edu/bvw
http://www.schellgames.com
http://www.imitationpickles.org/pgu/wiki/index
http://www.pyglet.org/
http://matthewmarshall.org/projects/rabbyt/
http://www.gamedev.net/reference/articles/article2259.asp

Python Programming/PyQt4 145

Python Programming/PyQt4

Previous: Game Programming in
Python

Index Next:
Dbus

WARNING: The examples on this page are a mixture of PyQt3 and PyQt4 - use with caution!

This tutorial aims to provide a hands-on guide to learn the basics of building a small Qt4 application in python.
To follow this tutorial, you should have basic python knowledge, knowledge of Qt4, however, is not necessary. I'm
using Linux in these examples and am assuming you already have a working installation of python and pyqt4. To
test that, open a python shell by simply typing python in a console to start the interactive interpreter and type
>>> import PyQt4
If this doesn't yield an error message, you should be ready to roll. The examples in this tutorial are kept as easy as
possible, showing useful ways to write and structure your program. It is important that you read the source code of
the example files, most of the stuff that is done is explained in the code. Use the examples and try to change things,
play around with them. This is the best way to get comfortable with it.

Hello, world!
Let's start easy. Popping up a window and displaying something. The following small program will popup a window
showing "Hello world!", obviously.

 #!/usr/bin/env python

 import sys

 from PyQt4 import Qt

 # We instantiate a QApplication passing the arguments of the script to

 it:

 a = Qt.QApplication(sys.argv)

 # Add a basic widget to this application:

 # The first argument is the text we want this QWidget to show, the

second

 # one is the parent widget. Since Our "hello" is the only thing we use

 (the

 # so-called "MainWidget", it does not have a parent.

 hello = Qt.QLabel("Hello, World")

 # ... and that it should be shown.

 hello.show()

 # Now we can start it.

 a.exec_()

About 7 lines of code, and that's about as easy as it can get.

http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/PyQt4 146

A button
Let's add some interaction! We'll replace the label saying "Hello, World!" with a button and assign an action to it.
This assignment is done by connecting a signal, an event which is sent out when the button is pushed to a slot, which
is an action, normally a function that is run in the case of that event.

#!/usr/bin/env python

import sys

from PyQt4 import Qt

a = Qt.QApplication(sys.argv)

Our function to call when the button is clicked

def sayHello():

 print "Hello, World!"

Instantiate the button

hellobutton = Qt.QPushButton("Say 'Hello world!'",None)

And connect the action "sayHello" to the event "button has been

clicked"

a.connect(hellobutton, Qt.SIGNAL("clicked()"), sayHello)

The rest is known already...

#a.setMainWidget(hellobutton)

hellobutton.show()

a.exec_()

Urgh, that looks like a crappy approach You can imagine that coding this way is not scalable nor the way you'll want
to continue working. So let's make that stuff pythonic, adding structure and actually using object-orientation in it.
We create our own application class, derived from a QApplication and put the customization of the application into
its methods: One method to build up the widgets and a slot which contains the code that's executed when a signal is
received.

#!/usr/bin/env python

import sys

from PyQt4 import Qt

class HelloApplication(Qt.QApplication):

 def __init__(self, args):

 """ In the constructor we're doing everything to get our

application

 started, which is basically constructing a basic

QApplication by

 its __init__ method, then adding our widgets and finally

starting

Python Programming/PyQt4 147

 the exec_loop."""

 Qt.QApplication.__init__(self, args)

 self.addWidgets()

 self.exec_()

 def addWidgets(self):

 """ In this method, we're adding widgets and connecting signals

 from

 these widgets to methods of our class, the so-called

"slots"

 """

 self.hellobutton = Qt.QPushButton("Say 'Hello world!'",None)

 self.connect(self.hellobutton, Qt.SIGNAL("clicked()"),

self.slotSayHello)

 self.hellobutton.show()

 def slotSayHello(self):

 """ This is an example slot, a method that gets called when a

signal is

 emitted """

 print "Hello, World!"

Only actually do something if this script is run standalone, so we

can test our

application, but we're also able to import this program without

actually running

any code.

if __name__ == "__main__":

 app = HelloApplication(sys.argv)

gui coding sucks
... so we want to use Qt3 Designer for creating our GUI. In the picture, you can see a simple GUI, with in green
letters the names of the widgets. What we are going to do is We compile the .ui file from Qt designer into a python
class We subclass that class and use it as our mainWidget This way, we're able to change the user interface
afterwards from Qt designer, without having it messing around in the code we added.

pyuic testapp_ui.ui -o testapp_ui.py

makes a python file from it which we can work with.
The way our program works can be described like this: We fill in the lineedit Clicking the add button will be
connected to a method that reads the text from the lineedit, makes a listviewitem out of it and adds that to our
listview. Clicking the deletebutton will delete the currently selected item from the listview. Here's the heavily
commented code (only works in PyQt 3:

#!/usr/bin/env python

from testapp_ui import TestAppUI

from qt import *

Python Programming/PyQt4 148

import sys

class HelloApplication(QApplication):

 def __init__(self, args):

 """ In the constructor we're doing everything to get our

application

 started, which is basically constructing a basic

QApplication by

 its __init__ method, then adding our widgets and finally

starting

 the exec_loop."""

 QApplication.__init__(self,args)

 # We pass None since it's the top-level widget, we could in

fact leave

 # that one out, but this way it's easier to add more dialogs or

 widgets.

 self.maindialog = TestApp(None)

 self.setMainWidget(self.maindialog)

 self.maindialog.show()

 self.exec_loop()

class TestApp(TestAppUI):

 def __init__(self,parent):

 # Run the parent constructor and connect the slots to methods.

 TestAppUI.__init__(self,parent)

 self._connectSlots()

 # The listview is initially empty, so the deletebutton will

have no effect,

 # we grey it out.

 self.deletebutton.setEnabled(False)

 def _connectSlots(self):

 # Connect our two methods to SIGNALS the GUI emits.

self.connect(self.addbutton,SIGNAL("clicked()"),self._slotAddClicked)

self.connect(self.deletebutton,SIGNAL("clicked()"),self._slotDeleteClicked)

 def _slotAddClicked(self):

 # Read the text from the lineedit,

 text = self.lineedit.text()

 # if the lineedit is not empty,

Python Programming/PyQt4 149

 if len(text):

 # insert a new listviewitem ...

 lvi = QListViewItem(self.listview)

 # with the text from the lineedit and ...

 lvi.setText(0,text)

 # clear the lineedit.

 self.lineedit.clear()

 # The deletebutton might be disabled, since we're sure that

 there's now

 # at least one item in it, we enable it.

 self.deletebutton.setEnabled(True)

 def _slotDeleteClicked(self):

 # Remove the currently selected item from the listview.

 self.listview.takeItem(self.listview.currentItem())

 # Check if the list is empty - if yes, disable the

deletebutton.

 if self.listview.childCount() == 0:

 self.deletebutton.setEnabled(False)

if __name__ == "__main__":

 app = HelloApplication(sys.argv)

useful to know
Creating the GUI in Qt designer does not only make it easier creating the GUI, but it's a great learning tool, too. You
can test how a widget looks like, see what's available in Qt and have a look at properties you might want to use.
The C++ API documentation is also a very useful (read: necessary) tool when working with PyQt. The API is
translated pretty straightforward, so after having trained a little, you'll find the developers API docs one of the tools
you really need. When working from KDE, konqueror's default shortcut is qt:[widgetname], so [alt]+[F2],
"qt:qbutton directly takes you to the right API documentation page. Trolltech's doc section has much more
documentation which you might want to have a look at.
The first 3 examples in this tutorial have been created using PyQt4, the last one uses syntax that only works with
PyQt3.
Note: The previous version of this page (aplicable to pyqt3) is/was available at http:/ / vizzzion. org/ ?id=pyqt
This document is published under the GNU Free Documentation License.
--84.88.50.161 10:40, 30 November 2006 (UTC) by Saša Tomić, http:/ / galeb. etf. bg. ac. yu/ ~gospodar

Previous: Game Programming in
Python

Index Next:
Dbus

http://vizzzion.org/?id=pyqt
http://en.wikibooks.org/w/index.php?title=GNU_Free_Documentation_License
http://en.wikibooks.org/w/index.php?title=User:84.88.50.161
http://galeb.etf.bg.ac.yu/~gospodar
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Dbus 150

Python Programming/Dbus

Previous: PyQt4 Index Next:
pyFormex

Dbus is a way for processes to communicate with each other. For example, programs like Pidgin [1] instant
messenger allow other programs to find out or change the user's status (Available, Away, etc). Another example is
the network-manager [2] service that publishes which internet connection is active. Programs that sometimes connect
to the internet can then pick the best time to download updates to the system.

Buses
Messages are sent along buses. Services attach themselves to these buses, and allow clients to pass messages to and
from them.
There are two main buses, the system bus and session bus. Services on the system bus affect the whole system, such
as providing information about the network or disk drives. Services on the session bus provide access to programs
running on the desktop, like Pidgin.

import dbus

sys_bus = dbus.SystemBus()

Objects and interfaces
Services attached to a bus can be contacted using their well known name. While this could be any string, the format
is normally that of a reverse domain name: an example for a spreadsheet program called "CalcProgram" from "My
Corp Inc." could be "com.mycorp.CalcProgram".
Services publish objects using slash-seperated paths (this is similar to webpages). Someone on dbus can request an
object if they know this path.
The object passed back is not a full object: it just refers to the service's copy of the object. It is called a proxy object.

proxy_for_cell_a2 = sys_bus.get_object('com.mycorp.CalcProgram',

'/spreadsheet1/cells/a2')

Before the proxy object can be used, we need to specify what type of object it is. We do this by creating an interface
object.

cell_a2 = dbus.Interface(proxy_for_cell_a2,

'com.mycorp.CalcProgram.SpreadsheetCell')

Whatever methods are set up for this type of object can be called:

cell_a2.getContents()

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/Pidgin_%28software%29
http://en.wikipedia.org/wiki/NetworkManager

Python Programming/Dbus 151

Name Example Description

service well known name com.mycorp.CalcProgram Identifies the application

path of an object /spreadsheet1/cells/a2 Identifies an object published by a service

interface com.mycorp.CalcProgram.SpreadsheetCell Identifies what type of object we expect

Some examples
These examples have been tested with dbus-python 0.83.0. Older library versions may not have the same interface.

Calling an interface's methods / Listing HAL Devices
import dbus

bus = dbus.SystemBus()

hal_manager_object = bus.get_object('org.freedesktop.Hal',

'/org/freedesktop/Hal/Manager')

hal_manager_interface = dbus.Interface(hal_manager_object,

'org.freedesktop.Hal.Manager')

calling method upon interface

print hal_manager_interface.GetAllDevices()

accessing a method through 'get_dbus_method' through proxy object by

specifying interface

method = hal_manager_object.get_dbus_method('GetAllDevices',

'org.freedesktop.Hal.Manager')

print method()

calling method upon proxy object by specifying the interface to use

print

hal_manager_object.GetAllDevices(dbus_interface='org.freedesktop.Hal.Manager')

Introspecting an object
import dbus

bus = dbus.SystemBus()

hal_manager_object = bus.get_object(

 'org.freedesktop.Hal', # service

 '/org/freedesktop/Hal/Manager' # published object

)

introspection_interface = dbus.Interface(

 hal_manager_object,

 dbus.INTROSPECTABLE_IFACE,

)

Python Programming/Dbus 152

Introspectable interfaces define a property 'Introspect' that

will return an XML string that describes the object's interface

interface = introspection_interface.Introspect()

print interface

Avahi
import dbus

sys_bus = dbus.SystemBus()

get an object called / in org.freedesktop.Avahi to talk to

raw_server = sys_bus.get_object('org.freedesktop.Avahi', '/')

objects support interfaces. get the org.freedesktop.Avahi.Server

interface to our org.freedesktop.Avahi object.

server = dbus.Interface(raw_server, 'org.freedesktop.Avahi.Server')

The so-called documentation is at

/usr/share/avahi/introspection/Server.introspect

print server

print server.GetVersionString()

print server.GetHostName()

References
• http:/ / www. amk. ca/ diary/ 2007/ 04/ rough_notes_python_and_dbus. html
• http:/ / dbus. freedesktop. org/ doc/ dbus-tutorial. html
• http:/ / developer. pidgin. im/ wiki/ DbusHowto
• http:/ / paste. lisp. org/ display/ 45824

Previous: PyQt4 Index Next:
pyFormex

References
[1] http:/ / en. wikipedia. org/ wiki/ Pidgin_%28software%29
[2] http:/ / en. wikipedia. org/ wiki/ NetworkManager

http://www.amk.ca/diary/2007/04/rough_notes_python_and_dbus.html
http://dbus.freedesktop.org/doc/dbus-tutorial.html
http://developer.pidgin.im/wiki/DbusHowto
http://paste.lisp.org/display/45824
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikipedia.org/wiki/Pidgin_%28software%29
http://en.wikipedia.org/wiki/NetworkManager

Python Programming/pyFormex 153

Python Programming/pyFormex

Previous: Dbus Index Next: Extending with
C

pyFormex [1] is a module for Python, which allows the generation, manipulation, and operation of 3D geometric
models using mathematical operations. Its uses include automated 3D design and finite-element preprocessing.

Previous: Dbus Index Next: Extending with
C

References
[1] http:/ / pyformex. berlios. de/

Python Programming/Extending with C

Previous: pyFormex Index Next: Extending with
C++

This gives a minimal Example on how to Extend Python with C. Linux is used for building (feel free to extend it for
other Platforms). If you have any problems, please report them (e.g. on the dicussion page), I will check back in a
while and try to sort them out.

Using the Python/C API
• http:/ / docs. python. org/ ext/ ext. html
• http:/ / docs. python. org/ api/ api. html

A minimal example
The minimal example we will create now is very similar in behaviour to the following python snippet:

 def say_hello(name):

 "Greet somebody."

 print "Hello %s!" % name

The C source code (hellomodule.c)

#include <Python.h>

static PyObject* say_hello(PyObject* self, PyObject* args)

{

 const char* name;

 if (!PyArg_ParseTuple(args, "s", &name))

 return NULL;

 printf("Hello %s!\n", name);

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://pyformex.berlios.de/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://pyformex.berlios.de/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://docs.python.org/ext/ext.html
http://docs.python.org/api/api.html

Python Programming/Extending with C 154

 Py_RETURN_NONE;

}

static PyMethodDef HelloMethods[] =

{

 {"say_hello", say_hello, METH_VARARGS, "Greet somebody."},

 {NULL, NULL, 0, NULL}

};

PyMODINIT_FUNC

inithello(void)

{

 (void) Py_InitModule("hello", HelloMethods);

}

Building the extension module with GCC for Linux

To build our extension module we create the file setup.py like:

from distutils.core import setup, Extension

module1 = Extension('hello', sources = ['hellomodule.c'])

setup (name = 'PackageName',

 version = '1.0',

 description = 'This is a demo package',

 ext_modules = [module1])

Now we can build our module with

python setup.py build

The module hello.so will end up in build/lib.linux-i686-x.y.

Building the extension module with GCC for Microsoft Windows

Microsoft Windows users can use MinGW to compile this from cmd.exe using a similar method to Linux user, as
shown above. Assuming gcc is in the PATH environment variable, type:

python setup.py build -c mingw32

The module hello.pyd will end up in build\lib.win32-x.y, which is a Python Dynamic Module (similar
to a DLL).
An alternate way of building the module in Windows is to build a DLL. (This method does not need an extension
module file). From cmd.exe, type:

gcc -c hellomodule.c -I/PythonXY/include

gcc -shared hellomodule.o -L/PythonXY/libs -lpythonXY -o hello.dll

where XY represents the version of Python, such as "24" for version 2.4.

http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/cmd.exe

Python Programming/Extending with C 155

Building the extension module using Microsoft Visual C++

With VC8 distutils is broken. We will use cl.exe from a command prompt instead:

cl /LD hellomodule.c /Ic:\Python24\include c:\Python24\libs\python24.lib /link/out:hello.dll

Using the extension module

Change to the subdirectory where the file `hello.so` resides. In an interactive python session you can use the module
as follows.

>>> import hello

>>> hello.say_hello("World")

Hello World!

A module for calculating fibonacci numbers

The C source code (fibmodule.c)

#include <Python.h>

int _fib(int n)

{

 if (n < 2)

 return n;

 else

 return _fib(n-1) + _fib(n-2);

}

static PyObject* fib(PyObject* self, PyObject* args)

{

 const char *command;

 int n;

 if (!PyArg_ParseTuple(args, "i", &n))

 return NULL;

 return Py_BuildValue("i", _fib(n));

}

static PyMethodDef FibMethods[] = {

 {"fib", fib, METH_VARARGS, "Calculate the Fibonacci numbers."},

 {NULL, NULL, 0, NULL}

};

PyMODINIT_FUNC

initfib(void)

{

 (void) Py_InitModule("fib", FibMethods);

}

Python Programming/Extending with C 156

The build script (setup.py)

from distutils.core import setup, Extension

module1 = Extension('fib', sources = ['fibmodule.c'])

setup (name = 'PackageName',

 version = '1.0',

 description = 'This is a demo package',

 ext_modules = [module1])

How to use it?

>>> import fib

>>> fib.fib(10)

55

Using SWIG
Creating the previous example using SWIG is much more straight forward. To follow this path you need to get
SWIG [1] up and running first. After that create two files.

/*hellomodule.c*/

#include <stdio.h>

void say_hello(const char* name) {

 printf("Hello %s!\n", name);

}

/*hello.i*/

%module hello

extern void say_hello(const char* name);

Now comes the more difficult part, gluing it all together.
First we need to let SWIG do its work.

swig -python hello.i

This gives us the files `hello.py` and `hello_wrap.c`.
The next step is compiling (substitute /usr/include/python2.4/ with the correct path for your setup!).

gcc -fpic -c hellomodule.c hello_wrap.c -I/usr/include/python2.4/

Now linking and we are done!

gcc -shared hellomodule.o hello_wrap.o -o _hello.so

The module is used in the following way.

>>> import hello

>>> hello.say_hello("World")

Hello World!

http://www.swig.org/

Python Programming/Extending with C 157

Previous: pyFormex Index Next: Extending with
C++

References
[1] http:/ / www. swig. org/

Python Programming/Extending with C++

Previous: Extending with
C

Index Next: Extending with Pyrex

Boost.Python [1] is the de facto standard for writing C++ extension modules. Boost.Python comes bundled with the
Boost C++ Libraries [2].

The C++ source code (hellomodule.cpp)
#include <iostream>

using namespace std;

void say_hello(const char* name) {

 cout << "Hello " << name << "!\n";

}

#include <boost/python/module.hpp>

#include <boost/python/def.hpp>

using namespace boost::python;

BOOST_PYTHON_MODULE(hello)

{

 def("say_hello", say_hello);

}

setup.py
#!/usr/bin/env python

from distutils.core import setup

from distutils.extension import Extension

setup(name="blah",

 ext_modules=[

 Extension("hello", ["hellomodule.cpp"],

 libraries = ["boost_python"])

])

Now we can build our module with

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.swig.org/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.boost.org/libs/python/doc/
http://en.wikibooks.org/w/index.php?title=C%2B%2B
http://www.boost.org/

Python Programming/Extending with C++ 158

python setup.py build

The module `hello.so` will end up in e.g `build/lib.linux-i686-2.4`.

Using the extension module
Change to the subdirectory where the file `hello.so` resides. In an interactive python session you can use the module
as follows.

>>> import hello

>>> hello.say_hello("World")

Hello World!

Previous: Extending with
C

Index Next: Extending with Pyrex

References
[1] http:/ / www. boost. org/ libs/ python/ doc/
[2] http:/ / www. boost. org/

Python Programming/Extending with Pyrex

Previous: Extending with
C++

Index Next: Extending with ctypes

Previous: Extending with
C++

Index Next: Extending with ctypes

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.boost.org/libs/python/doc/
http://www.boost.org/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://en.wikibooks.org/w/index.php?title=Python_Programming

Python Programming/Extending with ctypes 159

Python Programming/Extending with ctypes

Previous: Extending with Pyrex Index

ctypes[1] is a foreign function interface module for Python (included with Python 2.5 and above), which allows you
to load in dynamic libraries and call C functions. This is not technically extending Python, but it serves one of the
primary reasons for extending Python: to interface with external C code.

Basics
A library is loaded using the ctypes.CDLL function. After you load the library, the functions inside the library are
already usable as regular Python calls. For example, if we wanted to forego the standard Python print statement and
use the standard C library function, printf, you would use this:

from ctypes import *

libName = 'libc.so' # If you're on a UNIX-based system

libName = 'msvcrt.dll' # If you're on Windows

libc = CDLL(libName)

libc.printf("Hello, World!\n")

Of course, you must use the libName line that matches your operating system, and delete the other. If all goes well,
you should see the infamous Hello World string at your console.

Getting Return Values
ctypes assumes, by default, that any given function's return type is a signed integer of native size. Sometimes you
don't want the function to return anything, and other times, you want the function to return other types. Every ctypes
function has an attribute called restype. When you assign a ctypes class to restype, it automatically casts the
function's return value to that type.

Common Types

ctypes name C type Python type Notes

None void None the None object

c_bool C99 _Bool bool

c_byte signed char int

c_char signed char str length of one

c_char_p char * str

c_double double float

c_float float float

c_int signed int int

c_long signed long long

c_longlong signed long long long

c_short signed short long

c_ubyte unsigned char int

c_uint unsigned int int

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://python.net/crew/theller/ctypes/
http://en.wikipedia.org/wiki/Foreign_function_interface

Python Programming/Extending with ctypes 160

c_ulong unsigned long long

c_ulonglong unsigned long long long

c_ushort unsigned short int

c_void_p void * int

c_wchar wchar_t unicode length of one

c_wchar_p wchar_t * unicode

Previous: Extending with Pyrex Index

References
[1] http:/ / python. net/ crew/ theller/ ctypes/

http://en.wikibooks.org/w/index.php?title=Python_Programming
http://python.net/crew/theller/ctypes/

Article Sources and Contributors 161

Article Sources and Contributors
Python Programming/Overview Source: http://en.wikibooks.org/w/index.php?oldid=1738642 Contributors: Artevelde, BobGibson, CWii, Cspurrier, Darklama, DavidRoss, Flarelocke, IO,
Jguk, Leopold augustsson, Remi0o, Remote, Sigma 7, Withinfocus, Yath, 13 anonymous edits

Python Programming/Getting Python Source: http://en.wikibooks.org/w/index.php?oldid=1786943 Contributors: Artevelde, CWii, Darklama, Dragonecc, Greyweather, Jguk, Leopold
augustsson, Mr.Z-man, Mshonle, Panic2k4, Sigma 7, Tecky2, The djinn, Thunderbolt16, Withinfocus, Yath, 40 anonymous edits

Python Programming/Setting it up Source: http://en.wikibooks.org/w/index.php?oldid=1753061 Contributors: BoomShaka, Leopold augustsson, Mr.Z-man, MyOwnLittlWorld,
Rabidgoldfish, The djinn, 9 anonymous edits

Python Programming/Interactive mode Source: http://en.wikibooks.org/w/index.php?oldid=1738665 Contributors: Artevelde, BobGibson, Darklama, IO, Jguk, Leopold augustsson,
Mr.Z-man, Sigma 7, The djinn, Withinfocus, Yath, 4 anonymous edits

Python Programming/Self Help Source: http://en.wikibooks.org/w/index.php?oldid=1721616 Contributors: Mr.Z-man, Sigma 7, The Kid, 3 anonymous edits

Python Programming/Creating Python programs Source: http://en.wikibooks.org/w/index.php?oldid=1647561 Contributors: Adeelq, Artevelde, BobGibson, CWii, Chesemonkyloma,
Darklama, DavidRoss, Deep shobhit, Dragonecc, JackPotte, Jguk, Legoktm, MMJ, ManuelGR, Mattzazami, Mr.Z-man, Nikai, QuiteUnusual, Richard001, Sigma 7, Singingwolfboy,
Thunderbolt16, Wenhaosparty, Withinfocus, Yath, 15 anonymous edits

Python Programming/Basic Math Source: http://en.wikibooks.org/w/index.php?oldid=1893189 Contributors: AdriMartin, Beland, CWii, Cat1205123, Fishpi, Jesdisciple, Jomegat, Monobi,
Rancid, Sigma 7, Singingwolfboy, Wesley Gray, 10 anonymous edits

Python Programming/Decision Control Source: http://en.wikibooks.org/w/index.php?oldid=1796615 Contributors: Beland, Capi, Darklama, DavidRoss, ElieDeBrauwer, GeorgePatterson,
Jesdisciple, Jguk, Mediocretes, Niflhiem, Sigma 7, Webaware, 17 anonymous edits

Python Programming/Conditional Statements Source: http://en.wikibooks.org/w/index.php?oldid=1875314 Contributors: CWii, DavidRoss, Dobau, Dragonecc, ElieDeBrauwer,
Gabrielmagno, Gzorg, Mithrill2002, Monobi, Moralist, Mr.Z-man, NithinBekal, Piperrob, Sigma 7, Svenstaro, Webaware, 35 anonymous edits

Python Programming/Loops Source: http://en.wikibooks.org/w/index.php?oldid=1796630 Contributors: Amrik, Bluecanary, CWii, Chenhsi, DavidRoss, ElieDeBrauwer, Gvdraconatur,
Hrandiac, Hypergeek14, Jesdisciple, Jguk, Mithrill2002, Monobi, Mr.Z-man, Richard001, Sigma 7, Webaware, 11 anonymous edits

Python Programming/Sequences Source: http://en.wikibooks.org/w/index.php?oldid=1796653 Contributors: Beland, CWii, ElieDeBrauwer, Fef, Jesdisciple, Jonnymbarnes, Mr.Z-man, Sigma
7, Silroquen, Singingwolfboy, The Kid, 9 anonymous edits

Python Programming/Source Documentation and Comments Source: http://en.wikibooks.org/w/index.php?oldid=1891782 Contributors: CWii, Hypergeek14, Jesdisciple, Mr.Z-man,
Quartz25, Sigma 7, Webaware, 2 anonymous edits

Python Programming/Modules and how to use them Source: http://en.wikibooks.org/w/index.php?oldid=1430705 Contributors: CWii, DavidRoss, Dlrohrer2003, Hypergeek14, Monobi,
Mr.Z-man, Pjerrot, Sigma 7, 5 anonymous edits

Python Programming/Files Source: http://en.wikibooks.org/w/index.php?oldid=1799118 Contributors: CWii, Darklama, Dbolton, ElieDeBrauwer, Jguk, LDiracDelta, Monobi, Mr.Z-man,
Webaware, Withinfocus, 11 anonymous edits

Python Programming/Text Source: http://en.wikibooks.org/w/index.php?oldid=1893212 Contributors: I-20, Mr.Z-man, 1 anonymous edits

Python Programming/Errors Source: http://en.wikibooks.org/w/index.php?oldid=1758135 Contributors: Albmont, Beland, Gvdraconatur, Icewedge, Mr.Z-man, 2 anonymous edits

Python Programming/Namespace Source: http://en.wikibooks.org/w/index.php?oldid=1410921 Contributors: Hypergeek14, Mr.Z-man, 1 anonymous edits

Python Programming/Object-oriented programming Source: http://en.wikibooks.org/w/index.php?oldid=1811180 Contributors: Alexforcefive, CWii, Capi, Dragonecc, ElieDeBrauwer,
Hypergeek14, Keplerspeed, Marjoe, Mr.Z-man, Piperrob, Sigma 7, 9 anonymous edits

Python Programming/User Interaction Source: http://en.wikibooks.org/w/index.php?oldid=1886374 Contributors: Dragonecc, Horaceabenga, Hypergeek14, Mr.Z-man, Pereirai, Piperrob,
Sigma 7, 10 anonymous edits

Python Programming/Databases Source: http://en.wikibooks.org/w/index.php?oldid=1808711 Contributors: Hannes Röst, Hypergeek14, Mr.Z-man, 3 anonymous edits

Python Programming/Internet Source: http://en.wikibooks.org/w/index.php?oldid=1428307 Contributors: Kuzux, Monobi, Mr.Z-man, Webaware, 4 anonymous edits

Python Programming/Networks Source: http://en.wikibooks.org/w/index.php?oldid=1410932 Contributors: Hypergeek14, Mr.Z-man, 3 anonymous edits

Python Programming/Tips and Tricks Source: http://en.wikibooks.org/w/index.php?oldid=1741352 Contributors: Chelseafan528, Darklama, Hakusa, Hawk-McKain, Hypergeek14, Jguk,
Member, Microdot, Mr.Z-man, Pazabo, Ponstic, Quartz25, The Kid, The djinn, Webaware, 8 anonymous edits

Python Programming/Basic syntax Source: http://en.wikibooks.org/w/index.php?oldid=1867990 Contributors: Artevelde, BobGibson, Darklama, Flarelocke, Hypergeek14, Jguk, Mr.Z-man,
Nikai, Rdnk, Richard001, The Kid, Thunderbolt16, Webaware, Withinfocus, 9 anonymous edits

Python Programming/Data types Source: http://en.wikibooks.org/w/index.php?oldid=1410936 Contributors: Adriatikus, Artevelde, Darklama, Flarelocke, Jguk, Mr.Z-man, Thunderbolt16,
Webaware, Withinfocus, Yath, 9 anonymous edits

Python Programming/Numbers Source: http://en.wikibooks.org/w/index.php?oldid=1511185 Contributors: Artevelde, Brian McErlean, Darklama, Irvin.sha, Jguk, Thunderbolt16, Webaware,
Withinfocus, 7 anonymous edits

Python Programming/Strings Source: http://en.wikibooks.org/w/index.php?oldid=1810270 Contributors: Artevelde, Chuckhoffmann, Daemonax, Darklama, Flarelocke, IO, Irvin.sha, Jguk,
Mithrill2002, Remote, Webaware, Withinfocus, 88 anonymous edits

Python Programming/Lists Source: http://en.wikibooks.org/w/index.php?oldid=1872500 Contributors: Artevelde, Hannes Röst, Jguk, LDiracDelta, Offpath, Rdnk, Remote, Richard001,
Robm351, Thunderbolt16, Webaware, Withinfocus, 27 anonymous edits

Python Programming/Tuples Source: http://en.wikibooks.org/w/index.php?oldid=1639579 Contributors: Adamnelson, Alexdong, Artevelde, Jguk, LDiracDelta, Mr.Z-man, Remote,
Thunderbolt16, Webaware, Withinfocus, 8 anonymous edits

Python Programming/Dictionaries Source: http://en.wikibooks.org/w/index.php?oldid=1667221 Contributors: Artevelde, Fry-kun, Jguk, Remote, Thunderbolt16, Webaware, Withinfocus, 13
anonymous edits

Python Programming/Sets Source: http://en.wikibooks.org/w/index.php?oldid=1402487 Contributors: ArrowStomper, Artevelde, FerranJorba, Jguk, Mr.Z-man, Webaware, Withinfocus, 2
anonymous edits

Python Programming/Operators Source: http://en.wikibooks.org/w/index.php?oldid=1841460 Contributors: Artevelde, Beland, Benrolfe, Dbolton, Flarelocke, Hannes Röst, Irvin.sha, Jguk,
Remote, Thunderbolt16, Webaware, Withinfocus, 10 anonymous edits

Python Programming/Flow control Source: http://en.wikibooks.org/w/index.php?oldid=1679989 Contributors: Alexander256, Artevelde, Flarelocke, Gasto5, Hannes Röst, Jguk,
MarceloAraujo, Remote, Thunderbolt16, Webaware, Withinfocus, 30 anonymous edits

Article Sources and Contributors 162

Python Programming/Functions Source: http://en.wikibooks.org/w/index.php?oldid=1759216 Contributors: Albmont, Artevelde, Cburnett, Darklama, Flarelocke, JackPotte, Jerf, Jguk,
Jonathan Webley, MarceloAraujo, Mr.Z-man, The Kid, Webaware, Withinfocus, 4 anonymous edits

Python Programming/Decorators Source: http://en.wikibooks.org/w/index.php?oldid=1752675 Contributors: Codesmith111, Mr.Z-man, The Kid, 2 anonymous edits

Python Programming/Scoping Source: http://en.wikibooks.org/w/index.php?oldid=1410942 Contributors: Artevelde, Flarelocke, Jguk, Mr.Z-man, Qwertyus, The Kid, Webaware,
Withinfocus, 3 anonymous edits

Python Programming/Exceptions Source: http://en.wikibooks.org/w/index.php?oldid=1618744 Contributors: Artevelde, Behnam, Betalpha, Flarelocke, Jguk, Microdot, Nikai, The djinn,
Thunderbolt16, Tobych, Webaware, Withinfocus, 18 anonymous edits

Python Programming/Input and output Source: http://en.wikibooks.org/w/index.php?oldid=1804360 Contributors: Artevelde, Az1568, Betalpha, DavidCary, Flarelocke, Jguk, LDiracDelta,
Pavlix, Qwertyus, Tedzzz1, Webaware, Withinfocus, 20 anonymous edits

Python Programming/Modules Source: http://en.wikibooks.org/w/index.php?oldid=1661792 Contributors: Artevelde, Eric Silva, Flarelocke, Hannes Röst, Jguk, MarceloAraujo, Webaware,
Withinfocus, 6 anonymous edits

Python Programming/Classes Source: http://en.wikibooks.org/w/index.php?oldid=1873695 Contributors: Adrignola, Albmont, Apeigne, Artevelde, Darklama, Flarelocke, Hannes Röst, Jerf,
Jguk, Microdot, Perey, Webaware, Withinfocus, 39 anonymous edits

Python Programming/MetaClasses Source: http://en.wikibooks.org/w/index.php?oldid=1410945 Contributors: Artevelde, Convex, Darklama, Hypergeek14, Jguk, Mr.Z-man, Quartz25,
Webaware, Withinfocus, 7 anonymous edits

Python Programming/Standard Library Source: http://en.wikibooks.org/w/index.php?oldid=1758086 Contributors: Albmont, Darklama, Jguk, Mr.Z-man, 2 anonymous edits

Python Programming/Regular Expression Source: http://en.wikibooks.org/w/index.php?oldid=1484385 Contributors: Beland, Darklama, Jguk, Mr.Z-man, Mwtoews, Withinfocus, 5
anonymous edits

Python Programming/XML Tools Source: http://en.wikibooks.org/w/index.php?oldid=1420988 Contributors: CWii, Hypergeek14, Monobi, Mr.Z-man, The djinn, Webaware, Wilsondavidc

Python Programming/Email Source: http://en.wikibooks.org/w/index.php?oldid=1420990 Contributors: Mr.Z-man

Python Programming/Threading Source: http://en.wikibooks.org/w/index.php?oldid=1854836 Contributors: Hannes Röst, Howipepper, Hypergeek14, Jguk, Mr.Z-man, Quartz25, Webaware,
Withinfocus, 11 anonymous edits

Python Programming/Sockets Source: http://en.wikibooks.org/w/index.php?oldid=1810615 Contributors: Ahornedal, CWii, Darklama, Hagindaz, Howipepper, Hypergeek14, Jguk, Mr.Z-man,
Webaware, WikiNazi, Wilbur.harvey, Withinfocus, 2 anonymous edits

Python Programming/GUI Programming Source: http://en.wikibooks.org/w/index.php?oldid=1681118 Contributors: Albmont, Auk, Baijum81, CWii, Darklama, Edleafe, Guanaco,
Gutworth, Jguk, Mr.Z-man, N313t3, NithinBekal, Pingveno, Suchenwi, The djinn, Withinfocus, 28 anonymous edits

Python Programming/WSGI web programming Source: http://en.wikibooks.org/w/index.php?oldid=1559332 Contributors: CaffeinatedPonderer, Dragonecc, Hypergeek14, Mr.Z-man

Python Programming/Web Page Harvesting Source: http://en.wikibooks.org/w/index.php?oldid=1410956 Contributors: Hypergeek14, Mr.Z-man

Python Programming/Database Programming Source: http://en.wikibooks.org/w/index.php?oldid=1800239 Contributors: Darklama, Hypergeek14, Jguk, Mr.Z-man, Mwtoews, Sol, The
djinn, Webaware, Withinfocus, 3 anonymous edits

Python Programming/Game Programming in Python Source: http://en.wikibooks.org/w/index.php?oldid=1853171 Contributors: CWii, Darklama, Derbeth, Driscoll, Hypergeek14, Jguk,
Kernigh, Maxim kolosov, Mr.Z-man, N313t3, Pdilley, Webaware, Withinfocus, 40 anonymous edits

Python Programming/PyQt4 Source: http://en.wikibooks.org/w/index.php?oldid=1691989 Contributors: Danh, Herbythyme, Mr.Z-man, Sasa.tomic, 15 anonymous edits

Python Programming/Dbus Source: http://en.wikibooks.org/w/index.php?oldid=1800134 Contributors: Dangets, H2g2bob, Mr.Z-man, 5 anonymous edits

Python Programming/pyFormex Source: http://en.wikibooks.org/w/index.php?oldid=1410963 Contributors: CaffeinatedPonderer, Mr.Z-man

Python Programming/Extending with C Source: http://en.wikibooks.org/w/index.php?oldid=1629564 Contributors: Adrignola, CWii, Darklama, Hagindaz, Jguk, Mr.Z-man, Mwtoews,
Myururdurmaz, Webaware, Withinfocus, 30 anonymous edits

Python Programming/Extending with C++ Source: http://en.wikibooks.org/w/index.php?oldid=1410967 Contributors: CWii, Darklama, Jguk, Mr.Z-man, Panic2k4, Webaware, Withinfocus,
2 anonymous edits

Python Programming/Extending with Pyrex Source: http://en.wikibooks.org/w/index.php?oldid=1410968 Contributors: CWii, Mr.Z-man

Python Programming/Extending with ctypes Source: http://en.wikibooks.org/w/index.php?oldid=1410971 Contributors: CaffeinatedPonderer, Hypergeek14, Mr.Z-man, Quartz25, Webaware

Image Sources, Licenses and Contributors 163

Image Sources, Licenses and Contributors
Image:Crystal_Clear_action_bookmark.png Source: http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_action_bookmark.png License: unknown Contributors: Abu badali,
Actam, Airon90, Anime Addict AA, CyberSkull, EDUCA33E, It Is Me Here, Juiced lemon, Rocket000, Tiptoety, 2 anonymous edits
Image:Information icon.svg Source: http://en.wikibooks.org/w/index.php?title=File:Information_icon.svg License: unknown Contributors: El T

License 164

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

