
ABOUT TIME - BUILDING CREDIT SCORECARDS
WITH SURVIVAL ANALYSIS

Zhuo Jia Dai

Supervisor: Dr Feng Chen

School of Mathematics and Statistics,
The University of New South Wales.

June 2010

Submitted in partial fulfillment of the requirements of the degree of
Master of Statistics

Acknowledgments

Thanks must go to my supervisor for his guidance and support.

Zhuo Jia Dai, May 2010.

i

Preface

Credit Risk Scorecards have been one of the most successful applications of statis-
tics in banking. It is used throughout the world by institutions that lend credit
to consumers and has been vital in allowing the “phenomenal” level of growth in
consumer credit over the past four decades (see preface to [1]).

Despite its enormous utility the subject has received much less attention when com-
pared to the pricing of exotic financial derivatives. As a result, the literature on
consumer Credit Risk Scoring can arguably be described as ‘thin on the ground’.
This thesis aims to fill some of the gaps in the literature particularly in the field of
building Credit Risk Scorecards with Survival Analysis.

The end users of scorecards are the risk managers who often do not have a math-
ematics background. It is important that a “lay-person” without advanced mathe-
matical skills can understand and apply a scorecard to make credit decisions. The
current literature on survival analysis scorecards often do not address this aspect of
scorecard building. This thesis develops the techniques involved in building survival
analysis scorecards that has the same “look and feel” as the scorecards currently
in use in the industry. This is an important issue to address if survival analysis
scorecards are to be widely adopted.

Migrating from building traditional scorecards to survival analysis scorecards holds
a number of promising opportunities not readily available currently. For example,
performing profit scoring is possible with survival analysis scorecards [11] but not
with traditional scorecards; and stress testing using macroeconomic variables can
be performed using survival analysis models [3] but not with traditional scorecard
models. This thesis provides the theoretical and methodological foundations to
building those features into the scorecards in the future.

This thesis is organised as follows: Chapter 1. gives an overview of credit risk
scorecards, the data and the model being employed in this project; Chapter 2.
details an original coarse classification algorithm, Automatic Binary Binning Algo-
rithm (ABBA), designed for building credit risk scorecards; Chapter 3. discusses
in detail the modelling methodology including variable selection and model check-
ing/validation; the chapter also discusses in detail how to turn the model into a
scorecard.

ii

Contents

Chapter 1 Introduction 1
1.1 What is a Credit Risk Scorecard? 1

1.1.1 Business Presentation of Scorecards 1
1.1.2 The Traditional Model - Binary Logistic Regression 1
1.1.3 About Time - The Cox Proportional Hazard model 3

1.2 The Data . 6

Chapter 2 Coarse Classification of Variables 9
2.1 Automatic Binary Binning Algorithm (ABBA) 10

2.1.1 Some choices of focus . 13
2.1.2 Some choices of information loss 15

2.2 An Example of ABBA . 17
2.3 ABBA hill-climbing optimisation extension 20

2.3.1 The Optimisation . 22
2.4 The Great Deluge Extension of ABBA 23

Chapter 3 Modelling and Scorecard Build 25
3.1 Data . 25
3.2 Binning . 25
3.3 Binning Assessment and Selection 26
3.4 Variable Selection . 28
3.5 Fitting the model . 28

3.5.1 Ties Handling . 29
3.5.2 The Stratified Model . 29
3.5.3 Modelling Output . 30
3.5.4 Deriving the baseline survival curve 33
3.5.5 Ties Handling Comparison 35

3.6 Turning the model into Scorecards 35
3.6.1 Deriving the scaling factors 39
3.6.2 Scaling factors from a linear model 40
3.6.3 The Scorecard . 41

3.7 Model Checking . 42
3.8 Model Validation . 46
3.9 Comparison with Binary Logistic Regression 50
3.10 Application Scorecard Reject Inference 50

References 53

iii

Chapter 1

Introduction

1.1 What is a Credit Risk Scorecard?

1.1.1 Business Presentation of Scorecards

A scorecard is a simple recipe for assigning a numeric score to every account. The
assumption is that the higher the account scores the less risky it is. A scorecard is
often presented in a way that is easy for a “lay person” to understand; for example
see the mocked-up scorecard in Table 1.1. To use the scorecard to determine an
account’s score, simply determine the range in which the account’s variables lie and
add the corresponding score to the base score. Once this is performed for all three
variables then we have the final score of the account. For example, suppose account
a’s variable 1 equals to 100, variable 2 equals to 350, and variable 3 equals to 5.
Then its score is 622 + -8 + 11 + 37 = 662.

As can be seen a scorecard is meant to be extremely simple to explain and apply.
The scores from the scorecard may be used in a number of different ways. For
example the business may set a cut-off score and if an account’s scores is below it
then the associated customer will not be offered further loan products. For other
practical uses of scorecards see [1] or [5].

1.1.2 The Traditional Model - Binary Logistic Regression

Traditionally credit risk scorecards have been built using binary logistic regression
(BLR). Let A be a set of accounts, and let xa be a vector of raw and untransformed
attributes associated with the account a ∈ A at the present time. Let the default
indicator, D, be a function in the form of

D : A× N→ {0, 1}

where

D(a, t) :=

{
1 ; if the account is in default t months in the future
0 ; otherwise

Remark 1.1.1. An industry standard for the definition of “in default” is 3 pay-
ments behind or 90+ days delinquent. 2

1

Variable Attribute Score
Base Score 622
Var 1 Low-<0 -32
Var 1 0-<70 -13
Var 1 70-<275 -8
Var 1 275-<700 -1
Var 1 700-<1200 6
Var 1 1200-<2100 10
Var 1 2100-<6500 16
Var 1 6500<-High 21
Var 1 Other 0
Var 2 Low-<150 27
Var 2 150-<250 25
Var 2 250-<300 20
Var 2 300-<450 11
Var 2 450<-High 3
Var 2 Other 0
Var 3 1-<2 17
Var 3 2-<3 21
Var 3 3<-High 37
Var 3 Other 0
Table 1.1: A mocked-up scorecard

Definition 1.1.2. An account is defined as ‘bad’ if

B(a) := max
i=1,2,..,12

D(a, i)

is equal to 1; otherwise it is good. That is an accounts is bad if it goes into default
any time during the next twelve months.

The idea is to build a model that predicts E(B(a|xa)), the expected probability
that account a is going to go bad given the list of attributes associated with it at
the present time. This is often referred to as the PD (probability of default) model
in the industry.

Since B(a) is a binary outcome variable, binary logistic regression seems to be the
ideal modelling technique. The model being considered in the BLR setting is

log
pa

1− pa
= T(x)′β

where 1− pa is account a ∈ A’s probability of default , i.e. pa := P (B(a) = 0|xa).

However it can be seen that the definition of B depends on twelve months of data;
indeed it is a function of D(a, 1), D(a, 2), ..., D(a, 12). The choice of twelve can be
seen as arbitrary. The user could easily have defined B(a) using any number of

2

months of data. If time is such a vital ingredient in the definition of B, is it not
better to model the time to default instead? The same question has been asked in
a number of papers including [7].

1.1.3 About Time - The Cox Proportional Hazard model

If we aim to be able to take into account time to default (not just if) then Survival
Analysis techniques would be ideal. There are a number of popular survival analysis
models to choose from but Cox Proportional Hazard Models, pioneered in [8], is
invariably chosen to do the modelling in the current literature.

In this project we will use the Cox Proportional Hazards model exclusively. The
Cox Proportional Hazard model is chosen as it has been successfully applied in the
credit risk setting before, see [2] and [3] for example.

Let Ta be the number of months till the next default for an account a ∈ A. For
now assume that Ta is a continuous variable.

Definition 1.1.3. The hazard of Ta, h(t|xa), is defined as

h(t|xa) := lim
δ→0

P (t <= Ta < t+ δ | Ta >= t)

δ

which can be shown to be (see ([4],p12))

h(t|xa) =
f(t|xa)
S(t|xa)

where f(t) is the probability distribution function of Ta and S(t) := 1−P (Ta ≤ t).
We can easily see that

h(t|xa) =
−S ′(t|xa)
S(t|xa)

which, by d log g(t)
dt

= g′(t)
g(t)

for any differentiable g(t), can be written as

−h(t|xa) =
d logS(t|xa)

dt

integrate both sides and exponentiate to obtain

exp(

∫
−h(t|xa)dt) = S(t|xa)

Definition 1.1.4. The proportional hazard assumption proposed in the Cox Pro-
portional Hazard model expects that

h(t|xa) = h0(t) exp(T(xa)
′β)

3

where h0(t) is some unknown baseline hazard function, T is some function of xa
chosen by the user, and β is a vector of parameters.

Remark 1.1.5. The name proportional hazard comes from the fact that the ratio
of any two accounts’ hazards is constant over time. Indeed let account a have
attribute xa and account b have attribute xb then their hazard ratio is

h(t|xa)
h(t|xb)

=
h0(t) exp(T(xa)

′β)

h0(t) exp(T(xb)′β)
=

exp(T(xa)
′β)

exp(T(xb)′β)

which is clearly constant over time. 2

Remark 1.1.6. In the above derivation the function T is left unexplained. It is
not simply a transformation of x. I fact in this project T turns each component of
x into a number of factors. This is called Coarse Classification of variables. The
next chapter deals with coarse classification in detail by introducing an original au-
tomated algorithm that has been applied in this project with considerable success!
2

Normally it would be necessary to make assumptions regarding h0(t) (or equiv-
alently f(t)) before we can start modelling. However by a partial likelihood ar-
gument, which we will not detail in this thesis, Cox managed to derive a partial
likelihood function L(β) that does not depend on h0(t). Hence we can maximise
L(β) to find the maximum likelihood parameter estimates for β without knowledge
of the baseline hazard. This is one reason why the Cox Proportional Hazard model
is so popular. The details regarding the derivation of the partial likelihood can be
found in [4] or [8].

From the above Definition we have

S(t|xa) = exp(−
∫ t

0

h(t|xa)dt) = exp

(
−
∫ t

0

h0(t)dt exp(T(xa)
′β)

)
setting

S0(t) := exp

(
−
∫ t

0

h0(t)dt

)
allows us to rewrite the above as

S(t|xa) = S0(t)
exp(T(xa)′β)

Suppose we applied some maximum likelihood procedure on the partial likelihood
L(β) and obtained some estimates, β̂, of β, then the only other estimate needed to
build a model of S(t|xa) is an estimate of S0(t).

4

Censoring

One complicating factor in survival analysis models is that we do not always observe
the time to default, Ta, for every account a ∈ A. That is because some accounts
can close before they go into default or our observation period ends and the account
still hasn’t defaulted. This problem is often referred to as the censoring problem.
Instead of observing Ta we observe the censored time, T ∗a .

Definition 1.1.7. The censored time, T ∗a , is defined as

T ∗a :=

{
Ta ; if the account defaults at Ta
the time to closure or end of observation period ; otherwise

This particular type of censoring where Ta ≥ T ∗a is called right censoring. We will
only deal with right censoring in this thesis.

Estimating the survival function

The function S0(t) is the baseline survival function. In this project it can be thought
of as the survival function of an “average” account. The Kaplan-Meier estimator
[17] is a well-accepted estimator for S0(t), and it takes into account the censoring
by design.

Definition 1.1.8. Let Rx(t) ⊆ A be the set of accounts satisfying T(xa) = T(x)
and T ∗a ≤ t. This set is called the at risk set at time t. Let bt be the number of
accounts in Rx(t) ⊆ A that have gone bad at time t. The Kaplan-Meier estimator,
Ŝ0(t), of S0(t) is defined as

Ŝ0(t) =

{
1 ; if t = 0(

1− bt
|Rx(t)|

)
Ŝ0(t− 1) ; if t ≥ 1

Remark 1.1.9. In this project T(xa) is a vector of factors with varying number
of levels. Therefore we can “absorb” one level from each factor into the estimate of
S0(t) so that their associated parameters need not be estimated. Therefore S0(t) is
actually the survival function of the account with those “absorbed” levels. We refer
to such accounts as the “average” accounts. It is sensible to choose this “average”
account to have levels that appear in high frequency. This way any estimate of
S0(t) is likely to be less volatile and have a smaller confidence interval. 2

Definition 1.1.10. Another estimator is the Nelson-Aalen estimator [18] which
is defined as

S̃0(t) :=
t∏

j=1

exp

(
−bj
|Rx(j)|

)

5

Remark 1.1.11. When applied to the data in this project both estimators produced
fairly similar results. Also it will become apparent that the choice of estimator does
not actually affect the risk rank-ordering performance of a scorecard. Therefore the
choice of estimator is unimportant in the scorecard build context. 2

Utilising the above we have an estimate of S(t|xa) in the form of

Ŝ(t|xa) = Ŝ0(t)
exp(T(xa)′β̂)

where Ŝ0(t) comes from the Kaplan-Meier estimator (or the Nelson-Aalen estima-
tor) and β̂ comes from maximising the partial likelihood.

Recall that
S(t|xa) := 1− P (Ta ≤ t)

which means that we have built up some idea of the distribution of Ta, the time to
next default, through obtaining the estimator Ŝ(t|xa). Notice that if

Ŝ(t∗|x) >= Ŝ(t∗|y)

for some t∗ then

Ŝ(t|x) >= Ŝ(t|y)

for all t since

Ŝ(t∗|x)

Ŝ(t∗|y)
=

exp(T(x)′β)

exp(T(y)′β)
=
Ŝ(t|x)

Ŝ(t|y)

by definition of Ŝ(t|x). Therefore we can choose an arbitrary t and use the values
of Ŝ(t|xa) for all a ∈ A to rank-order risk in the accounts. We can suppose that
the lower the value of Ŝ(t|xa) the riskier the account. To align our survival analysis
model so that it can be compared with BLR we often set t = 12.

Remark 1.1.12. In fact we will simply use the score, T(x)′β, to rank-order risk,
hence why the choice of estimator of S0 is unimportant. However it is convenient
to have a model for S(t|x) as this allows us to perform comparison with the BLR
model (which models the probability of default which is essentially equivalent, in
concept, to 1− S(t|x)). 2

1.2 The Data

The data used in this project is two years worths of month-end snapshots from a
consumer credit leading product portfolio from an Australian bank; and there were
approximately 1,000,000 observations. The data is broken into two datasets: the
development sample - used to develop the models, and the holdout sample - used

6

Month ID In Default Closed Var 1 Var 2 . . . Var n
1 1 No No 100 -50 . . . 0.1
2 1 No No 100 1000 . . . 0.11
3 1 No No 200 500 . . . 0.1
4 1 No No 100 -50 . . . 0.1
5 1 No No 100 1000 . . . 0.11
6 1 No No 200 500 . . . 0.1
7 1 No No 200 385 . . . 0.1
8 1 No No 211 500 . . . 0.1
9 1 No No 311 -100 . . . 0.1
10 1 No No 429 -100 . . . 0.1
11 1 No No 214 560 . . . 0.1
12 1 No No 199 -597 . . . 0.1
13 1 No No 0 112 . . . 0.1
14 1 No No 50 113 . . . 0.1
15 1 No No 100 114 . . . 0.1
16 1 No No 100 115 . . . 0.1
17 1 Yes No 9 -300 . . . 0.1
1 2 No No 100 -50 . . . 0.1
2 2 No No 100 1000 . . . 0.11
3 2 No No 200 500 . . . 0.1
4 2 No No 100 -50 . . . 0.1
5 2 No Yes 100 1000 . . . 0.11
. .

Table 1.2: Example Raw Data

to validate the model. The development sample has approximately 800,000 obser-
vations.

Each observation corresponds to an account’s attributes at one point in time. Each
account has an ID variable, a Bad Outcome variable and a Time To Event variable.
The Bad Outcome variable serves as the censoring variable as well, where a Bad
Outcome of value 0 means the account is right-censored.

For each observation we compute the number of months it takes the account to go
into default, or if censored the number of months to censoring. This information is
stored in the Time To Event variable.

An example of the raw data can be found in Table 1.2. The variable Month indicates
the month from which the data was obtained, ID uniquely identifies the accounts,
In Default is equivalent to the default indicator D(a, t) where if D(a, t) = 1 then
In Default will be a Yes otherwise a NO at month t, and Var 1 to Var n are the
attributes associated with the account. The prepared data can be seen in Table 1.3.

Remark 1.2.1. The data was prepared in SAS. 2

7

Month ID In Default Closed Time To Event Var 1 Var 2 . . . Var n
1 1 No No 16 100 -50 . . . 0.1
2 1 No No 15 100 1000 . . . 0.11
3 1 No No 14 200 500 . . . 0.1
4 1 No No 13 100 -50 . . . 0.1
5 1 No No 12 100 1000 . . . 0.11
6 1 No No 11 200 500 . . . 0.1
7 1 No No 10 200 385 . . . 0.1
8 1 No No 9 211 500 . . . 0.1
9 1 No No 8 311 -100 . . . 0.1
10 1 No No 7 429 -100 . . . 0.1
11 1 No No 6 214 560 . . . 0.1
12 1 No No 5 199 -597 . . . 0.1
13 1 No No 4 0 112 . . . 0.1
14 1 No No 3 50 113 . . . 0.1
15 1 No No 2 100 114 . . . 0.1
16 1 No No 1 100 115 . . . 0.1
1 2 No No 4 100 -50 . . . 0.1
2 2 No No 3 100 1000 . . . 0.11
3 2 No No 2 200 500 . . . 0.1
4 2 No No 1 100 -50 . . . 0.1
. .

Table 1.3: Example Prepared Data

8

Chapter 2

Coarse Classification of Variables

One of the problems with fitting a regression model in general is finding appropriate
transforms of the explanatory variables. This problem is especially pronounced in
the Cox Proportional Hazard model. Consider a continuous variable x; we can try
to fit x as a linear explanatory term in the model as below

h(t|x)

h0(t)
= exp(βx)

However the linearity assumption may not be appropriate for x. So we may use a
function g to transform x and fit the following instead

h(t|x)

h0(t)
= exp(βg(x))

For example g could be the log function. But the fact that h0(t) and h(t|x) are un-
known makes choosing an appropriate transform more difficult than in least-square
linear regression. This is complicated further when we have a large number of vari-
ables to choose from, as is the case in this project.

What transform should we apply to the variables? In ([4],p88) it was suggested
that we band the each variable into 4 or 5 bands with approximately an equal
number of observations in each and create a factor with levels corresponding to
the banding. Of course here the ”4 or 5” bands can be replaced with a general n.
The original application was to investigate if linear trends exist in the covariates.
However in Credit Risk Scorecard modelling it is common to use those factors and
their parameter estimates in the final model instead of incorporating the original
continuous variable. The reasons for doing this are well justified in ([1],p132) with
the argument being that using factors allows us to make predictions; but fitting
a transformed x is better at helping us to explain the underlying drivers of risk.
A scorecard is aimed at making predictions and so using the factors approach is
appropriate.

Another reason for turning variables into bands (or bins) is that many variables
have legitimate nulls values which need to be treated as a separate bin if we were
to estimate the parameters associated with them. For example consider the vari-
able “number of credit cards associated with the customer”, for customers that do
not have credit cards this variable will be null. Therefore the variable can not be

9

fitted in the model unless it was turned into a factor with null being one of the levels.

Turning a numeric variable into n bins/groups is called coarse classification or bin-
ning as we will prefer in this thesis. There are a number of standard ways to bin the
numeric variables. The most suggested method seems to be to break the variable
into bins where each bin contains 5%, 10% or 20% etc of accounts. This is seen
in [2], [4], and [10]. The benefit of this method is that it is simple to implement.
Another strategy is introduced in [10] where a simulated annealing [6] method is
applied. This method is complex and is not easily achievable with current software;
it is likely that the modeller has to write fairly advanced code to achieve this. This
thesis proposes a simple algorithm that is more flexible than the equal size bin-
ning method, and more realistically implementable in a short time frame than the
simulated annealling method. This algorithm is called Automatic Binary Binning
Algorithm (ABBA) and it has an extension that incorporates some hill-climbing
optimisation ideas.

2.1 Automatic Binary Binning Algorithm (ABBA)

The Automatic Binary Binning Algorithm is an original and novel approach to
coarse classification. Since it is an automated algorithm it is sometimes referred
to as an adjacent pooling algorithm, see [5]. The ABBA algorithm is fast, easy to
implement, and can be used to incorporate business considerations into the binning.
The algorithm was coded in R [14] (contact the author for source code). ABBA
performs the binnings using a user designed heuristic and from the results it can be
seen that the algorithm works extremely well. Indeed, one of the scorecards pre-
sented in this thesis was built completely from the automated binnings that ABBA
created. The resultant scorecard is competitive against an industry built scorecard.

The central idea behind ABBA is to bin the numeric variables into bins with some
clear pattern to the ratio of bads/goods. For example, we may wish to see a de-
creasing trend in the ratio of bads/goods. This is sensible in the case where the
variable in question is Income. Indeed one would expect that the higher the income
of the individual the less likely his/her account will go bad hence the decreasing
trend.

Definition 2.1.1. Let v be an arbitrary numeric attribute, for example credit
card balance, and let

U := {null, u1, u2, · · · , un}

be the complete set of values of v in the data ordered to satisfy ui < uj if i < j.
Also define the two-tuple

Cui := (bui , gui)

where bui and gui is the number of bad accounts and good accounts, respectively,
in our data satisfying v = ui ∈ U . For example, if ui = 2000 then bui is the number

10

of accounts that went bad that has a credit card balance of 2000. And for V ⊆ U
define

CV :=

(∑
u∈V

bui ,
∑
u∈V

gui

)
Finally define an ordered-set

C :=
[
Cu1 , Cu2 , . . . , Cu|U|

]
, that is let C be the ordered-set of all the bins. For convenience we may use the
following representations of C

C :=
[
D1, D2, . . . , D|C|

]
and

C :=
[

(b1, g1), (b2, g2), . . . , (b|C|, g|C|)
]

In the above definition each Cu ∈ C is a bin and C is the ordered-set of all bins.
When two bins are “combined” we simply add the number of goods and bads
together and form a new bin with the new goods and bads. If the bins Cui and
Cui+1

are combined to form a new bin C{ui,ui+1} we write

C{ui,ui+1} ← Cui + Cui+1

In general if bin B is combined with bin D to form bin E we write

E ← B +D

Remark 2.1.2. The null value is always treated as a separate bin. In our mod-
elling dataset a lot of numeric variables have legitimate null values that we want to
obtain parameter estimates for. This is done in order to get a complete view of the
relative risks of all the accounts, even those with null values. 2

Definition 2.1.3. Consider an arbitrary subset V ⊆ U and suppose V :=
{null, v1, v2, v3, ..., v|V |−1} such that vi < vi+1 for all i. A binning function T us-
ing V as the cut points is defined as

T : U 7→ {0, 1}|V |+1

with

T (u) =
(
I{null}(u), I(−∞,v1](u), I(v1,v2](u), ..., I(v|V |−2,v|V |−1](u), I(v|V |−1,∞)(u)

)

11

where IS(s) is the indicator function defined as

IS(s) :=

{
1 ; if s ∈ S
0 ; otherwise

In words, T turns a numeric variable into a vector of dummy variables based on
some chosen cut points.

Remark 2.1.4. Suppose a null value is a legitimate value of v, then using T
as a “transform” allows us to fit v into the model. A continuous transform, such
as log, does not have this property as the transform of the null value is undefined. 2

Definition 2.1.5. A focus is a function f

f : {C} 7→ P({1, 2, 3, ..., |C| − 1})

where P(X) is the powerset of X, i.e. the set of all subsets of X.

Remark 2.1.6. The focus tells us which bins to concentrate our attention on.
In the ABBA algorithm only those bins that are in “focus” will be considered for
combination. 2

Definition 2.1.7. An information loss function i is a function of the form

i : C × C 7→ R

An information loss function is used to measure the “information” lost in combining
two bins together.

Definition 2.1.8. Using the representation C := {D1, D2, . . . , D|C|}. The ABBA
Algorithm is as follows

1. If |C| = 1 then terminate

2. Compute N := f(C)

3. If |N | ≥ 1 then continue, else terminate

4. Find Dj ∈ {Dn | n ∈ N} such that i(Dj, Dj+1) is minimised

5. Compute a new C by setting Dj ← Dj +Dj+1, then removing Dj+1, and then
renaming every Dj+k to Dj+k−1 for all applicable k ≥ 1

6. Repeat from Step 1 with the new C

12

In essence ABBA uses the focus function, f , to identify adjacent pairs of bins where
some expected pattern is not being met. It then decides which of those pairs of bins
to combine using the information loss function i. Once all the expected patterns
are met then the focus function f will return an empty set and the algorithm termi-
nates. ABBA is extremely simple but its flexibility comes from the focus function
f and the information loss function i. Choosing a good focus function will allow us
to create flexible coarse classifications that other algorithms can not!

2.1.1 Some choices of focus

Upward Trend Focus

Suppose you wish to see a monotonically increasing trend in the ratio of bads/goods
in the resultant bins, i.e. at the end of the algorithm the binning should satisfy

bj
gj
<
bj+1

gj+1

for all applicable j and (bj, gj) ∈ C as defined further above. We can define an
upward trend focus, fT , to be

fT (C) :=

{
j | bj

gj
≥ bj+1

gj+1

where (bj, gj) = Dj ∈ C
}

In words let fT return all the positions where the monotonically increasing trend
is not satisfied. It can bee seen that Step 5 of the algorithm would only consider
the bins where the monotonically increasing trend is broken. It is then an easy
consequence that when the algorithm terminates at Step 3 all the remaining bins
satisfy the monotonically increasing criterion for bad/good odds.

Remark 2.1.9. Clearly a downward trend focus, fF , can be defined similarly. 2

Pearson’s χ2 Focus

Suppose you wish to see that every pair of adjacent bins should be “statistically
different”. One way to achieve this is to require that the Pearson’s χ2 test statistics,
T , be greater than some chosen T ∗. We define the Pearson’s χ2 Focus, fP , as

fP (C|T ∗) = { j | (b̂j − bj)2

b̂j
+

(ĝj − gj)2

ĝj
+

(b̂j+1 − bj+1)
2

b̂j+1

+
(ĝj+1 − gj+1)

2

ĝj+1

<= T ∗}

where (bj, gj) ∈ C as defined further above and

b̂j :=
(bj + gj)(bj + bj+1)

bj + gj + bj+1 + gj+1

and

ĝj :=
(bj + gj)(gj + gj+1)

bj + gj + bj+1 + gj+1

13

and

b̂j+1 :=
(bj+1 + gj+1)(bj + bj+1)

bj + gj + bj+1 + gj+1

and

ĝj+1 :=
(bj+1 + gj+1)(gj + gj+1)

bj + gj + bj+1 + gj+1

are simply the expected number of bads and goods in the bin under the assumption
of homogeneity in the two bins. This way, by choosing a value of T ∗ we can ensure
that our bins are arbitrarily statistically significantly distinct.

Remark 2.1.10. The author usually chooses T ∗ such that P (χ2 > T ∗) = 1− εm
where εm is the negative machine epsilon, the smallest number such that 1− εm is
still being stored in the computer memory as different from 1. This ensures that the
bins are as distinct as the computer can manage. The R code to compute such a
T ∗ is Tstar = qchisq(1− .Machine$double.neg.eps, 1) which yields T ∗ ≈ 68.76325.
2

Upward Pointing Turning Point Focus

Suppose you wish to see an upward pointing turning point in the bad/good odds
i.e. at the end of the algorithm there should exist a j such that

bi
gi
<
bi+1

gi+1

and
bk
gk

>
bk+1

gk+1

for all i, k satisfying i < j < k and (bj, gj) ∈ C. We can define a upward pointing
turning point focus, fTU , as

fTU(C) =

{
∅ ; if the above condition is satisfied
{1, 2, 3, ..., |C| − 1 } ; otherwise

This way it can be seen that at Step 5 of the algorithm it will consider all bins for
combination unless a turning point is found. It is then an easy consequence that
when the algorithm terminates at Step 3 all the remaining bins would satisfy the
turning point condition. It must be noted that it is entirely possible for a turning
point to exist and for this algorithm not to find it. However the author has suc-
cessfully applied this algorithm to find turnings points in variables; for example see
Figure 2.3.

Remark 2.1.11. The Downward Pointing Turning Point Focus, fTD, can be de-
fined by simply reversing the signs in the inequality conditions. 2

14

Turning Point Focus

Suppose we wish to see a turning point but do not want to specify a direction then
we can define a general turning point focus as

fTP (C) := (fTU ∩ fTD)(C)

Remark 2.1.12. The above turning point focus has an elegant solution in R. Let
b := (b1, b2, . . . , b|C|) be the vector of bads and g := (g1, g2, . . . , g|C|) be the vector
of goods, then a turning point (upward or downwards) exists if and only if (in R
code)

sum(abs(diff(sign(diff(b/g)))) == 2) == 1

is true. 2

Minimum Population Focus

Suppose you wish to see that each bin contains a certain number of bad or a certain
number of accounts then you can define the minimum population focus, fMP to be

fMP (C|b, p) := { j | bj < b and bj + gj < p }

for some chosen b, p ∈ N.

Remark 2.1.13. This focus is particular useful in determining an appropriate
binning focus for the variables. For example the author found it useful as an initial
investigative step to bin each variable using the Minimum Population Focus using
b =

∑
Cui

bui/20, p =
∑

Cui
(bui + gui)/20, i.e. require that each bin must have at

least 5% of bads or 5% of the total population. The resulting good/bad ratio plot
usually indicates whether a trend or turning point focus is appropriate. This focus
is also particular useful as the business may require that the number of accounts in
each bin to be quite stable over time, and setting a minimum population require-
ment is a good proxy to achieving that aim. 2

Remark 2.1.14.
As can be imagined the list of focus here is by no means exhaustive. Also in practice
the above focus functions are often combined to produce more useful results. For ex-
ample you may require that each bins has some minimum population requirements
and have a linear trend. In that case one can define a new focus fN := fT ∪fMP . 2

2.1.2 Some choices of information loss

ABBA is a greedy algorithm and some heuristic is used to decide which bins to
combine. So what is a good heuristic for this purpose? For example it makes sense
to combine bins that have a similar good bad profile and it makes sense to combine
smaller bins together first as that will affect less accounts. It can be seen that
the Pearson’s χ2 statistics is well suited to this. The idea is to compute Pearson’s
statistics for all the possible combinations and then combine the bins with the low-
est test statistic. This ensures that the least statistically significantly distinct bins

15

gets combined first which is an intuitive heuristic to use.

Definition 2.1.15. The Pearson’s Information Loss, iP , is defined as

iP (Cu, Cw) :=
(b̂u − bu)2

b̂u
+

(ĝu − gu)2

ĝu
+

(b̂w − bw)2

b̂w
+

(ĝw − gw)2

ĝw

where Cu = (bu, gu) and Cw = (bw, gw) and b̂u := (bu+gu)(bu+bw)
bu+gu+bw+gw

, ĝu := (bu+gu)(gu+gw)
bu+gu+bw+gw

,

b̂w := (bw+gw)(bu+bw)
bu+gu+bw+gw

and ĝw := (bw+gw)(gu+gw)
bu+gu+bw+gw

as before.

As can be seen the definition is essentially an application of the Pearson’s χ2 statis-
tics calculation. This statistic gives a measure of how “similar” the two bins are.
The smaller the value the more similar in risk profile are the two bins. Hence bins
with the smallest test statistics will be combined first.

Definition 2.1.16. The Binary Information Loss, iB, is defined as

iB(Cu, Cw) := (bu + gu)

(
bu

bu + gu
− b

b+ g

)2

+ (bw + gw)

(
bw

bw + gw
− b

b+ g

)2

where b = bu + bw and g = gu + gw.

The logic behind the binary information loss is as follows: suppose we were to com-
bine the two bins then we will “misjudge” the probability of bad in the two bins by
bu

bu+gu
− b

b+g
and bw

bw+gw
− b

b+g
. If we square those differences and weight them by the

number of accounts in each bin then we have a measure of how much “information”
is loss by combining the two bins. If the number of accounts in both bins are small
then even if the combined bad rate is hugely different a small information loss value
will result; also if one bin is small and the other bin has a large number of accounts
then the small bin wouldn’t affect the overall bad rate as much so again a small
information loss will result. This shows that Binary Information Loss naturally
favours combining small bins with large ones, which is a desirable property; it also
tends to favour combining bins with similar bad/good ratios which also makes sense.

Remark 2.1.17. It was noted that the Pearson’s χ2 information loss and the
Binary Information loss produced similar binnings. However the Pearson’s Infor-
mation Loss was chosen to perform the binning in the model as it has a statistical
grounding. 2

Remark 2.1.18. ABBA can be extended to categorical variables. The only dif-
ference between a categorical variable and a numeric variable is the potentially
non-ordinal structure of the variable. Therefore the simplest way is to modify Step
4 of the simple algorithm to compare all possible combinations of bins instead of
adjacent ones as in the numerical variables case. However this algorithm is not
implemented. 2

16

Table 2.1: The good bad profile

Bin Bads Goods Total Ratio χ2 stat Broken < T ∗

1 243928 17946804 18190732 0.0136 204832.78
2 363264 8537493 8900757 0.0425 49127.14
3 109380 1181924 1291304 0.0925 2106.08
4 55615 467417 523032 0.1190 1691.82 **
5 17279 210749 228028 0.0820 0.00 *
6 12913 157441 170354 0.0820 100.66
7 12064 128844 140908 0.0936 48.58 **
8 8291 98221 106512 0.0844 183.73 **
9 4676 71565 76241 0.0653 1.13 **
10 3285 51550 54835 0.0637 21.50
11 2411 33273 35684 0.0725 84.17
12 1836 18858 20694 0.0974 100.23 **
13 1079 16476 17555 0.0655 15.54 **
14 4190 73499 77689 0.0570

Remark 2.1.19. Other coarse classification methods exists. One example is the
maximum likelihood monotone classifier as introduced in [1]. However these algo-
rithms can not take into account business considerations such as minimum number
of bads in each bin. Also the algorithm can only be used to discover monotonic
trends where as ABBA can find other patterns such as turning points. 2

2.2 An Example of ABBA

Consider a “Number of late payments in the last 14 months” variable with the
following good bad profile, see Table 2.1.

Remark 2.2.1. No such variable exist in our data. This is a mocked-up example.
2

It is clear from Figure 2.1 that the bad/good odds increased substantially for values
from 1 to 4. From 5 onwards the pattern is unclear. However it can be argued that
the more consecutive delay payments you have against you the more likely you are
to become bad. So we can try to bin this data using the upward trend focus.

We apply the ABBA algorithm with the upward trend focus combined with a Pear-
son’s χ2 focus (using T ∗ = 68.76325) and Pearson’s χ2 information loss. It can be
seen from Table 2.1 that the upward bad/good ratio trend is broken at 6 places and
the minimum χ2 test statistics is between bin 5 and bin 6. Therefore we should
combine bin 5-6, which yields Table 2.2.

17

Figure 2.1: Bad/Good Ratios before binning

18

final.jpg

Figure 2.2: Bad/Good Ratios follows linear trend after binning

19

Table 2.2: After combining just one bin

Bin Bads Goods Total Ratio χ2 stat Broken min χ2

1 243928 17946804 18190732 0.0136 204832.78
2 363264 8537493 8900757 0.0425 49127.14
3 109380 1181924 1291304 0.0925 2106.08
4 55615 467417 523032 0.1190 2498.28 **
5 & 6 30192 368189 398381 0.0820 139.27
7 12064 128844 140908 0.0936 48.58 **
8 8291 98221 106512 0.0844 183.73 **
9 4676 71565 76241 0.0653 1.13 ** *
10 3285 51550 54835 0.0637 21.50
11 2411 33273 35684 0.0725 84.17
12 1836 18858 20694 0.0974 100.23 **
13 1079 16476 17555 0.0655 15.54 **
14 4190 73499 77689 0.0570

Table 2.3: Upward Trend Binning

Bin Bads Goods Total Ratio χ2 stat Broken min χ2

1 243928 17946804.46 18190732 0.0136 204832.78
2 363264 8537492.763 8900757 0.0425 84086.29
3− 14 233019 2509815.183 2742834 0.0928

Based on Table 2.2 we should combine the bins 9 with 10. By continuing in this
way we will obtain Table 2.3 which has the Bad/Good ratio plot as in Figure 2.2.

It can be argued that a trend focus is not appropriate in this case. Perhaps the
people who are “chronically” late for their payments are just “lazy”; their risk
profile may not necessarily follow an increasing trend as the value of the variable
goes up. If we apply a turning point focus on the frequencies instead, then the
resultant bin’s bad/good ratio plot will be as in Figure 2.3.

2.3 ABBA hill-climbing optimisation extension

The ABBA algorithm, as described in the previous section, is a simple greedy algo-
rithm with no attempt at optimisation. It is known that there are well understood
and easy to implement generalised optimisation algorithms designed for heuristics
based algorithms such as ABBA. The simplest of these is hill-climbing.

Remark 2.3.1. Generalisation of the hill-climbing algorithms such as simulated-
annealing, introduced in [6], and the Great Deluge, introduced in [12], are also
applicable here. 2

In this context hill-climbing is simply the practice of randomly making adjustments
one at a time to the resultant bins to see if your binning could be “improved”; if
the adjustment does improve the binning then it keeps the changes and the process

20

Figure 2.3: Turning point focus

21

is repeated until no further improvement can be made. At that point the resul-
tant binning is at a “local maximum”. The steps taken to reach that point can be
thought of as climbing a hill, hence the name.

Suppose we have an ordered-set of bins, C = [D1, D2, . . . , D|C|]. The simplest
way of making a small adjustments to the binnings is to adjust the boundaries of
the bins. That is suppose for some j we have Dj = [Cuij,1 , Cuij,2 , ..., Cuij,n] and

Dj+1 = [Cuij+1,1
, Cuij+1,2

, ..., Cuij,m] for some n and m. Let q < m, then putting q
values from Dj+1 into Dj to form two new bins is the equivalent of adjusting the
boundaries. The new two bins will be

D
(1)
j = {Cuij,1 , Cuij,2 , ..., Cuij,n , Cuij+1,1

, Cuij+1,2
, ..., Cuij,q}

and

D
(1)
j+1 = {Cuij+1,q+1

, Cuij+1,q+2
, ..., Cuij,m}

We write the above operation in the following notation

[D
(1)
j , D

(1)
j] = [Dj ←q Dj+1]

and if we are putting q values from the end of Dj into Dj+1 then we write

[D
(1)
j , D

(1)
j+1] = [Dj →q Dj+1]

2.3.1 The Optimisation

The optimisation we will describe below is applied after the simple ABBA algo-
rithm has terminated. In essence it tries to randomly select bins and adjust the
boundaries. Let C∗ be the result of applying the simple ABBA on C. Let D∗ be
some adjustment of C∗, the optimisation algorithms only considers D∗ as valid if
f(D∗) = f(C∗) = ∅. This way the optimisation will not undo any of the work done
in the simple ABBA algorithm.

Let C∗ := [D1, D2, . . . , D|C∗|] be as defined above and let f be the focus function
used to derive C∗. We try to optimise C∗ by

1. Set J = some random permutation of [1, 2, ..., |C∗| − 1]
2. For each j ∈ J

• create C∗q by replacing [Dj, Dj+1] with [D
(1)
j , D

(1)
j+1] = [Dj ←q Dj+1] and

compute lq = i(D
(1)
j , D

(1)
j+1) for all possible q

• find the q such that lq is minimised subject to f(C∗q) = ∅

22

• create C∗∗s by replacing [Dj, Dj+1] with [D
(1)
j , D

(1)
j+1] = [Dj →s Dj+1] and

compute rs = i(D
(1)
j , D

(1)
j+1) for all possible s

• find the s such that rs is minimised subject to f(C∗∗s) = ∅
• if lq > i(Dj, Dj) or rs > i(Dj, Dj) then continue else go to the next j
• if lq ≥ rs then set C∗ = C∗q

• else set C∗ = C∗∗s

3. if C∗ was updated in the last step then repeat from Step 1, else terminate and
return C∗

It can be seen that when the algorithm terminates at 3 it is not possible to find a
simple adjustment of the boundaries that improves the binning or else the algorithm
would not have terminated.

2.4 The Great Deluge Extension of ABBA

The ABBA algorithm can be extended by using a more sophisticated optimisation
method. We shall use the Great Deluge [12] as an example of the possible exten-
sions. Suppose there is a measure m of how well the overall binning is, e.g. we may
use any of the measures discussed in Section 3.3.

Design a subjective penalties function p so that any binning with undesirable prop-
erties gets penalised. For example suppose there are n pairs of bins where the trend
is broken in a trend focus binning; we can assign p(C∗) = 10n as a penalty function.

Again let C∗ be the result of applying the simple ABBA on C. Choose some small
m∗ such that m(C∗)− p(C∗) > m∗ initially. Also choose a tightening parameter α
¿ 1. The proposed Great Deluge algorithm is as follows:

1. Let A be the set of all possible random adjustments that can be made to C∗;
e.g. all possible boundary adjustments

2. For each a ∈ A
• Make the adjustment a to C∗;
• Check m(C∗)− p(C∗) > m∗ is satisfied

– if YES
∗ Keep the changes
∗ Set m∗ ← αm∗

∗ Go to Step 1
– if NO then discard the changes and go to next a

3. return C∗

We can think of successive iterations of C∗ as a random walk by a blind person
on hilly terrain, while m∗ represents rising water levels from a great deluge. The
blind person would go anywhere that doesn’t get his feet wet as the water level rises.

The hill-climbing optimisation is guaranteed to find a local maximum in a neigh-
bourhood of binnings. However the local maximum binning may not be the global
maximum. The Great Deluge addresses that issue by introducing the subjective

23

parameters m∗ and α. By choosing appropriate m∗ and α the Great Deluge opti-
misation will often find more optimal solutions than just a simple hill-climb [12].

Remark 2.4.1. This particular extension was not implemented in this project. 2

24

Chapter 3

Modelling and Scorecard Build

3.1 Data

The data was taken from one of the consumer retail portfolios (e.g. credit cards,
personal loans, mortgages etc) from an Australian bank. There are a total of 24
months of data. Each observation contains the Month, ID, Bad Outcome, Time to
Event, and other attributes associated with the account. The data is organised as
in Table 3.1.

The ID variable is a unique identifier of each individual account and the Month
variable indicates the month from which the data was extracted. Month can take
values from 1 to 24 but the Time to Event variable can take values from 1 to 35.
This is due to the fact that there was actually 36 months of raw data available
for use. However the data was originally prepared for a Binary Logistic Regression
model so the target in that scenario requires 12 months of data to create. Hence the
latest 12 months of data cannot be used to build the model as the outcome variable
cannot be created. To ensure that the results presented here is comparable to that
of the BLR the author chose to restrict the survival analysis modelling dataset to
24 months of data.

3.2 Binning

Let N be the set of numeric variables in the dataset. Each attribute n ∈ N was
binned three times each time with a different focus function. All bins were created
using the Pearson’s χ2 Information Loss. The hill-climb optimisation was applied
to all binnings. The three focus functions used were

Table 3.1: Example Data

Month ID Bad Outcome Time to Event Var 1 Var 2 . . . Var n
1 1 0 10 100 -50 . . . 0.1
2 1 0 9 100 1000 . . . 0.11
3 1 0 8 200 500 . . . 0.1
. .
1 2 0 6 100 -50 . . . 0.1
2 2 0 5 100 1000 . . . 0.11
3 2 0 4 200 500 . . . 0.1
4 2 0 3 200 500 . . . 0.1
. .

25

1. The upward trend focus with the Pearson’s χ2 focus

fT ∪ fP (·|T ∗)

2. The downward trend focus with the Pearson’s χ2 focus

fF ∪ fP (·|T ∗)

3. The turning point focus with the Pearson’s χ2 focus

fTP ∪ fP (·|T ∗)

As suggested before, T ∗ = P (χ2
1 < 1 − ε) ≈ 68.76325 where ε is the negative ma-

chine epsilon on a Windows XP 32 bit machine.

Remark 3.2.1. There are some categorical attributes available in the dataset,
however the categorical attributes were not considered in this project. 2

Remark 3.2.2. The dataset described in this chapter will not be made available.
However a subset of the data with a heavily skewed distribution will be made acces-
sible through the web for research purposes only. Contact the author for details. 2

3.3 Binning Assessment and Selection

We aim to have a subjective way of selecting the right binning for each vari-
able/attribute. The methodology being employed in this model build is to compute
a number of well-established measures of the three binnings for each variable, and
select the binning with the largest number of top ranking assessment statistics. The
popular binning measures we will use are information value, Somer’s D concordance
statistics and χ2 statistics.

Consider an arbitrary numerical attribute v. Let g be the total number of goods,
and b be the total number of bads, and C = [(b1, g1), . . . , (b|C|, g|C|)] be a binning of
v. We have the following definitions

Definition 3.3.1. The information statistics, F , is defined as

F :=
∑

(bj ,gj)∈C

(
gj
g
− bj

b

)
log

(
gjb

bjg

)

Definition 3.3.2. The Somer’s D concordance statistics, D, for a binning with
upward bad/good ratio trend is defined as

D :=
∑

(bi,gi)∈C

(
(
∑

j<i bj)gi − (
∑

j<i gj)bi

bg

)

26

Table 3.2: The Expected trend for each variable

Variable Trend
Var 1 Up
Var 2 Up
Var 3 Down
Var 4 Up
Var 5 Up
Var 6 Down
Var 7 Down
Var 8 NA

Remark 3.3.3. The bins needs to be sorted in a order such that the bad/good
ratio is trending upwards before applying Somer’s D concordance statistics. 2

Definition 3.3.4. The χ2 statistics, s2, is defined as

s2 :=
∑

(bj ,gj)∈C

(gj − ĝj
ĝj

)2

+

(
bj − b̂j
b̂j

)2


where b̂j =
(gj+bj)b

g+b
and ĝj =

(gj+bj)g

g+b
.

Remark 3.3.5. A larger information statistics is better; a larger Somer’s D con-
cordance statistics is better; and a larger χ2 statistics is better, see ([1],p132-136). 2

As well as having the above 3 measures of binning, one additional ad hoc measure
was added. The measure is the AIC from the binary logistic model using bj as the
number of events and bj +gj as the number trials with the sole explanatory variable
v as a factor with the levels corresponding to the binning.

Together we have 4 measures for each of the 3 binning types. The number of top
ranking measures each binning type has is counted. The binning type with the
most number of top measures is chosen as the binning for that variable. There were
about 235 numeric variables in consideration, and all the selected binning type had
either 3 or 4 measures in which it was the top ranking binning. This suggests that
the proposed binning assessment methodology is sound.

Remark 3.3.6. The binning methods that were selected were all trend binnings.
The expected trend is shown in Table 3.2. 2

27

3.4 Variable Selection

The variable selection process begins once the binning method was selected for the
variables. The variable selection methodology being employed is rather conven-
tional. Each of the binned numeric variable is fitted, one at a time, as a factor
using the selected binning into a Cox Proportional Hazard Model. Their Bayesian
Information Criterion (BIC), introduced in [13], are recorded. The BIC for a model
is

BIC := −2 logL+ k log n

where L is the likelihood of the model, k is the number of parameters being esti-
mated, and n is the number of observations in the model.

Remark 3.4.1. It was decided that BIC should be used to rank the variables
instead of AIC := −2 logL + 2k as AIC only penalises the number of parameters
in the model, but BIC also corrects for sample size. With such a large sample size
in our modelling dataset it seems more sensible to take that into account as well. 2

It must be noted that it is difficult to employ conventional log-likelihood tests to
perform the variable selection. For example, the top two variables by BIC (which
by information not available to the reader) are quite closely related. When both
are fitted as factors the resultant −2 log likelihood is 166556.9 and fitting only the
top variable yields a −2 log likelihood of 166614.9. The difference in degrees of
freedom is 3 and the −2 log likelihood difference is 58.3 which yields a p-value of
P (χ2

3 > 58.3) = 1.356248× 10−12. This p-value would have lead many to conclude
that the second variable added significantly to the model. This effect is most likely
due to the fact that we have a large amount of data available.

In view of the above difficulties, the variables were selected using a combination
of BIC, business knowledge and common sense. Firstly we order the variable by
their BIC from low to high. A lot of the variables that came near the top of the
list were quite similar and it makes sense to only include one variable from each
type. For example one of the variable is “Number of missed payments in the last
12 months” and it must be highly correlated with “Number of missed payments in
the last 6 months”; in this case the variables with the smaller BIC is selected. We
work down our list and include variables that are not closely related to the included
variables using our business knowledge. Seven numeric variables were selected this
way. One categorical variable well-known in the business to be predictive is also
included in the model. In total 8 variables were selected to build the survival model.

3.5 Fitting the model

The model being fitted is the Cox Proportional Hazard Model with Month as the
strata variable and Bad Outcome is used as the censoring variable where Bad Out-
come = 0 implies that the account is right censored. Each of the selected variables
was fitted as a factor with the selected binnings. And the levels with the highest
frequencies were chosen as the reference for each factor.

28

3.5.1 Ties Handling

One of the assumptions of the proportional hazard model is that Ta, the survival
time, is continuous. Hence it is not possible to have tied survival times. In our data
the censored time variable can only take integer values from 1 to 35. Clearly the
number of ties in our data is enormous. To address this issue the partial-likelihood
is modified by taking into account the ties. The most popular method for ties han-
dling are Breslow [16], Efron [15], exact, and discrete.

Here Breslow is known to be the fastest, Efron is slower but produces results closer
to exact, and discrete replaces the continuous hazard with a discrete hazard function
and the underlying model is

h(t|xa)
1− h(t|xa)

=
h0(t)

1− h0(t)
exp(T(x)′β)

where h0(t) is the discrete baseline hazard and h(t|xa) is the discrete hazard.

The choice of ties handling method is only a technical issue and it does not affect
the scorecard build significantly as the parameter estimates from all 4 methods are
similar. See Table 3.10 for details.

Remark 3.5.1. Our model aims to predict the probability of default in the future
given the current month’s attributes, so it is sensible to use the Month variable as
the strata variable. If we model without using Month as the strata variable then
the AIC and BIC respectively are 1568568.6 and 1231412.0. This compares with
AIC and BIC of 1162000.4 and 1162556.4 respectively when using Month as the
strata variable. This result is highly favourable to the strata approach. 2

3.5.2 The Stratified Model

Let M be the set of possible values of the Month variable. The model being fitted
can be thought of as

hm(t|x)

h0,m(t)
= exp(T(x)′β)

over all possible stratum m ∈ M where hm is the hazard function of the stratum
m, h0,m is the hazard of the “average” account in stratum m, x is the data, T is
the binning of x, and β is the vector of parameters.

The parameter estimates, β̂, are found by maximising

L(β) =
∑
m∈M

Lm(β)

where Lm(β) is the partial likelihood of stratum m.

Remark 3.5.2. The software used was SAS 9.1.3 and proc tphreg was used to fit
the model. The actual code resembles

29

Table 3.3: Model Fit Statistics

Criterion Without Covariates With Covariates
-2 LOG L 1161870.4 1498928.8
AIC 1162000.4 1499058.8
SBC 1162556.4 1162590.2

Table 3.4: Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 69541.5137 65 <.0001
Score 111803.615 65 <.0001
Wald 82140.9906 65 <.0001

Table 3.5: Type 3 Tests

Effect DF Wald Chi-Square Pr > ChiSq
Var 1 3 6738.3246 <.0001
Var 2 10 1615.1616 <.0001
Var 3 18 4386.3066 <.0001
Var 4 10 761.1805 <.0001
Var 5 4 5948.7105 <.0001
Var 6 10 6843.7363 <.0001
Var 7 9 2356.3012 <.0001
Var 8 1 2401.7285 <.0001

/* SAS Version 9.1.3 code */

/* For SAS Version 9.2 or higher substitute tphreg with phreg */

proc tphreg data = xxx;

class var1 var2 var3 var4 var5 var6 var7 var8;

weight weight;

strata month;

model time_to_event*bad_outcome(0) = var1 var2 var3 var4

var5 var6 var7 var8;

run;

2

3.5.3 Modelling Output

The first model-fit’s outputs from SAS are shown in Table 3.3 to 3.5. The outputs
indicate that the variables included are all highly significant.

Remark 3.5.3. In Table 3.3 SBC is BIC. 2

The (all important) parameter estimates are shown in Table 3.6 to 3.7. It can be
seen that some of the parameter estimates are not significant. However, including
non-significant parameter estimates in our model does not necessarily reduce the

30

Table 3.6: Analysis of Maximum Likelihood Estimates

Variable Bin Estimate StdErr ChiSq ProbChiSq
Var 1 001.Low-1 -0.12795 0.04047 9.9948 0.0016
Var 1 002.1<-2 0.85411 0.01132 5691.1152 <.0001
Var 1 003.2<-14 0.93143 0.01473 3999.9703 <.0001
Var 2 002.0<-11 0.34012 0.02504 184.552 <.0001
Var 2 003.11<-19 0.45698 0.0286 255.2541 <.0001
Var 2 004.19<-27 0.60543 0.02816 462.2151 <.0001
Var 2 005.27<-39 0.65774 0.02938 501.1093 <.0001
Var 2 006.39<-56 0.70959 0.02916 592.272 <.0001
Var 2 007.56<-79 0.78345 0.0299 686.6614 <.0001
Var 2 008.79<-131 0.83353 0.02777 901.1737 <.0001
Var 2 009.131<-184 0.99099 0.03224 944.646 <.0001
Var 2 010.184<-252 1.14494 0.03861 879.4453 <.0001
Var 2 011.252<-332 1.38119 0.05805 566.0596 <.0001
Var 3 001.Low–174 0.6244 0.02281 749.3416 <.0001
Var 3 002.-174<–89 0.26671 0.03475 58.9069 <.0001
Var 3 003.-89<–1 0.01266 0.02745 0.2126 0.6447
Var 3 004.-1<-8 0.01551 0.03887 0.1592 0.6899
Var 3 005.8<-112 -0.00936 0.02362 0.1572 0.6918
Var 3 006.112<-299 0.01654 0.02348 0.4966 0.481
Var 3 007.299<-733 -0.0667 0.02092 10.1659 0.0014
Var 3 008.733<-858 -0.12832 0.03081 17.3449 <.0001
Var 3 009.858<-1185 -0.18829 0.02418 60.624 <.0001
Var 3 010.1185<-1613 -0.22619 0.02399 88.9133 <.0001
Var 3 011.1613<-2047 -0.22377 0.02564 76.1681 <.0001
Var 3 012.2047<-2545 -0.29583 0.02702 119.8801 <.0001
Var 3 013.2545<-3913 -0.36163 0.02355 235.7831 <.0001
Var 3 014.3913<-6693 -0.46249 0.02415 366.7359 <.0001
Var 3 015.6693<-11385 -0.56108 0.02719 425.7618 <.0001
Var 3 016.11385<-26572 -0.66266 0.02789 564.7209 <.0001
Var 3 017.26572<-306749 -0.79341 0.03216 608.6595 <.0001
Var 3 018.306749<-1858163 -1.71271 0.23412 53.5177 <.0001
Var 4 002.14<-41 -0.11094 0.0665 2.7826 0.0953
Var 4 003.41<-81 -0.12751 0.04381 8.4692 0.0036
Var 4 004.81<-282 0.0032 0.02391 0.0179 0.8936
Var 4 005.282<-514 0.15294 0.02433 39.5067 <.0001
Var 4 006.514<-689 0.22676 0.02836 63.9308 <.0001
Var 4 007.689<-746 0.38481 0.04653 68.3947 <.0001
Var 4 008.746<-965 0.51533 0.0338 232.4257 <.0001
Var 4 009.965<-1480 0.53058 0.03489 231.2347 <.0001
Var 4 010.1480<-2252 0.52211 0.0523 99.6704 <.0001
Var 4 011.2252<-7332 1.8083 0.1194 229.3762 <.0001
Var 5 000.NULL 0.28614 0.01198 570.6578 <.0001
Var 5 002.1<-2 0.46079 0.01312 1233.4272 <.0001
Var 5 003.2<-3 0.88384 0.01748 2555.7268 <.0001
Var 5 004.3<-9 1.1073 0.01635 4587.3176 <.0001

31

Table 3.7: Analysis of Maximum Likelihood Estimates cont.

Variable Bin Estimate StdErr ChiSq ProbChiSq
Var 6 000.NULL 0.65799 0.0757 75.5553 <.0001
Var 6 001.Low-6 1.10157 0.0161 4682.967 <.0001
Var 6 002.6<-23 0.85471 0.0572 223.2424 <.0001
Var 6 003.23<-30 0.58939 0.06795 75.2462 <.0001
Var 6 004.30<-39 0.44783 0.04179 114.824 <.0001
Var 6 005.39<-45 0.33285 0.04511 54.4386 <.0001
Var 6 006.45<-50 0.19693 0.04999 15.5221 <.0001
Var 6 008.143<-4147 0.02829 0.01144 6.1115 0.0134
Var 6 009.4147<-10020 -0.88086 0.24755 12.6618 0.0004
Var 6 010.10020<-1482487620 -1.81174 0.57759 9.8389 0.0017
Var 7 000.NULL 1.0057 0.03188 995.1438 <.0001
Var 7 001.Low-1 0.26021 0.01894 188.7222 <.0001
Var 7 002.1<-2 0.1559 0.01153 182.7665 <.0001
Var 7 004.3<-4 -0.25382 0.01406 325.9736 <.0001
Var 7 005.4<-5 -0.3845 0.0201 365.8605 <.0001
Var 7 006.5<-6 -0.43704 0.02992 213.3754 <.0001
Var 7 007.6<-8 -0.64587 0.03933 269.7325 <.0001
Var 7 008.8<-13 -0.78959 0.07892 100.0871 <.0001
Var 7 009.13<-14 -1.57051 0.50019 9.8584 0.0017
Var 8 S -0.61485 0.01255 2401.7257 <.0001

predictive power of a variable. The problem where the parameter estimates do not
follow the trend specified in the binning is more serious, as the business may reject
the model based on that.

It can be seen that the trend is broken at a number of places. For example in
Var 3 the levels 003.-89<–1 and 004.-1<-8 have parameter estimates that break
the expected trend, see Figure 3.1. One would expect the parameter estimate of
004.-1<-8 to be smaller than that of 003.-89<–1 in order for the trend to be satisfied.

To address the above issue for all variables, a process of fine tuning now occurs.
The process mimics ABBA in many ways and it has been coded into an automated
process. The steps in the process are as follows:

1. Perform a contrast test on each adjacent parameter estimate pair where the
expected trend is broken; that is let β1 and β2 be two adjacent parameter
estimates and we test the hypothesis H0 : β1 − β2 = 0 vs H1 : β1 − β2 6= 0.
This can be done using the contrast statement in SAS.

2. Combine the bins where the p-value is the largest

3. Refit the model with the new bins

4. Repeat from 1 until all expected trends are satisfied

32

Figure 3.1: Plot of Parameter Estimates of Var 3. Downward Trend broke at Bin 5
to 6

The above process was performed on the model above and the resultant parameters
from the final model is presented in Table 3.8 to 3.9. As can be seen the parameter
estimates all follow the expected trend. Once this model is turned into a scorecard,
it is ready to be taken to the business for approval.

Remark 3.5.4. Care has been taken here so that sensitive information regarding
the actual risk profile of the portfolio is not revealed. Hence the censored frequency
summaries are not presented. 2

3.5.4 Deriving the baseline survival curve

The function S0(t) := exp(−
∫
h0(t)dt) is referred to as the baseline survival curve.

We will produce an estimate of the baseline survival curve, Ŝ0(t), using the Kaplan-
Meier Estimator on the population with the highest frequencies levels. Those levels
were used as the reference levels in the above model so they have an implicit “pa-
rameter estimate” of 0. The highest frequency levels were chosen to ensure that the

33

Table 3.8: Fine Tuned Model - Analysis of Maximum Likelihood Estimates

Variable Bin Estimate StdErr ChiSq ProbChiSq
Var 1 001.Low-1 -0.12885 0.04047 10.136 0.0015
Var 1 002.1<-2 0.85557 0.01132 5716.9067 <.0001
Var 1 003.2<-14 0.93287 0.01466 4049.9153 <.0001
Var 2 002.0<-11 0.34087 0.02503 185.5063 <.0001
Var 2 003.11<-19 0.45366 0.0286 251.6008 <.0001
Var 2 004.19<-27 0.59778 0.02815 450.9108 <.0001
Var 2 005.27<-39 0.66095 0.02937 506.5445 <.0001
Var 2 006.39<-56 0.71567 0.02913 603.4079 <.0001
Var 2 007.56<-79 0.79674 0.02985 712.3351 <.0001
Var 2 008.79<-131 0.85436 0.02767 953.069 <.0001
Var 2 009.131<-184 1.01572 0.03216 997.7421 <.0001
Var 2 010.184<-252 1.17076 0.03855 922.4206 <.0001
Var 2 011.252<-332 1.40627 0.05802 587.5009 <.0001
Var 3 001.Low–174 0.6248 0.0228 750.9376 <.0001
Var 3 002.-174<–89 0.26405 0.03473 57.7906 <.0001
Var 3 003.-89<–1 0.01102 0.0248 0.1976 0.6567
Var 3 005.8<-112 0.0003973 0.02044 0.0004 0.9845
Var 3 007.299<-733 -0.06911 0.02091 10.9257 0.0009
Var 3 008.733<-858 -0.12988 0.0308 17.7796 <.0001
Var 3 009.858<-1185 -0.19004 0.02418 61.7869 <.0001
Var 3 010.1185<-1613 -0.22633 0.02398 89.071 <.0001
Var 3 011.1613<-2047 -0.25765 0.02198 137.3423 <.0001
Var 3 013.2545<-3913 -0.36106 0.02355 235.0606 <.0001
Var 3 014.3913<-6693 -0.4623 0.02415 366.3991 <.0001
Var 3 015.6693<-11385 -0.55889 0.02719 422.4537 <.0001
Var 3 016.11385<-26572 -0.6614 0.02789 562.5031 <.0001
Var 3 017.26572<-306749 -0.79235 0.03216 607.0252 <.0001
Var 3 018.306749<-1858163 -1.71376 0.23412 53.583 <.0001
Var 4 002.14<-41 0.05248 0.022 5.6906 0.0171
Var 4 006.514<-689 0.21893 0.02831 59.7987 <.0001
Var 4 007.689<-746 0.37299 0.04646 64.4388 <.0001
Var 4 008.746<-965 0.4999 0.03373 219.622 <.0001
Var 4 009.965<-1480 0.51264 0.03264 246.6905 <.0001
Var 4 011.2252<-7332 1.78828 0.11927 224.8193 <.0001
Var 5 000.NULL 0.28258 0.01196 557.8704 <.0001
Var 5 002.1<-2 0.46202 0.01312 1240.3264 <.0001
Var 5 003.2<-3 0.88347 0.01748 2554.36 <.0001
Var 5 004.3<-9 1.10605 0.01635 4576.6275 <.0001

34

Table 3.9: Fine Tuned Model - Analysis of Maximum Likelihood Estimates cont.

Variable Bin Estimate StdErr ChiSq ProbChiSq
Var 6 000.NULL 0.63139 0.07514 70.6075 <.0001
Var 6 001.Low-6 1.07792 0.01332 6550.4538 <.0001
Var 6 002.6<-23 0.82127 0.05653 211.0575 <.0001
Var 6 003.23<-30 0.55459 0.06739 67.7245 <.0001
Var 6 004.30<-39 0.4115 0.04096 100.9135 <.0001
Var 6 005.39<-45 0.30063 0.04434 45.9619 <.0001
Var 6 006.45<-50 0.15992 0.04929 10.5286 0.0012
Var 6 009.4147<-10020 -0.89605 0.24736 13.1218 0.0003
Var 6 010.10020<-1482487620 -1.83407 0.57751 10.086 0.0015
Var 7 000.NULL 1.00865 0.03187 1001.4854 <.0001
Var 7 001.Low-1 0.26145 0.01893 190.8178 <.0001
Var 7 002.1<-2 0.156 0.01153 183.1085 <.0001
Var 7 004.3<-4 -0.2541 0.01406 326.7309 <.0001
Var 7 005.4<-5 -0.38484 0.0201 366.5044 <.0001
Var 7 006.5<-6 -0.43865 0.02992 214.9677 <.0001
Var 7 007.6<-8 -0.64586 0.03932 269.7459 <.0001
Var 7 008.8<-13 -0.79167 0.07892 100.6204 <.0001
Var 7 009.13<-14 -1.56229 0.50016 9.7567 0.0018
Var 8 S -0.60987 0.0125 2379.0516 <.0001

survival curve has a narrow confidence interval. Plotting Ŝ0(t) as a step function
yields Figure 3.2.

3.5.5 Ties Handling Comparison

The method chosen to handle the ties is Breslow [16] as it is the fastest method.
More accurate approximations such as Efron [15] exist. However it must be noted
that discrete ties handling seems to be the most ideal as our censored time variable
is discrete. Unfortunately the weight variable used in the model build is not of
integer type, but the discrete and exact methods require the weights to be integers.
To investigate the effect of using Breslow we fitted 4 models without weight using
different ties handling methods. The results are shown in Table 3.10 to 3.11. This
indicates that all four ties handling methods produce estimates that are similar.
The author makes the recommendation that Breslow be used when investigating
the variable selection and model fit; once the final model has been decided, the
data should be refitted using either exact or discrete to produce the most accurate
estimates. The running time for these models were Breslow - 1 min 8 seconds, Efron
- 1 min 15 seconds, Exact - 2 min and 5 seconds, Discrete - 8 hours.

3.6 Turning the model into Scorecards

Credit Risk Scorecards being built in the industry at the moment all follow a similar
convention. Firstly the credit risk score is to be an integer. A linear increase in
the score represents an exponential increase in the good/bad odd. Typically a good

35

Table 3.10: Parameters estimates using all 4 ties handling methods

Variable Bin Breslow Efron Exact Discrete
Var 1 001.Low-1 -0.1774 -0.18037 -0.18054 -0.19424
Var 1 002.1<-2 0.90803 0.91006 0.91002 0.91066
Var 1 003.2<-14 0.9796 0.98376 0.98381 0.99073
Var 2 002.0<-11 0.33034 0.33206 0.33205 0.33317
Var 2 003.11<-19 0.46748 0.46939 0.46937 0.47288
Var 2 004.19<-27 0.55258 0.55508 0.55506 0.55913
Var 2 005.27<-39 0.63686 0.63957 0.63953 0.64397
Var 2 006.39<-56 0.69643 0.70014 0.70011 0.70514
Var 2 007.56<-79 0.82506 0.83105 0.83109 0.84046
Var 2 008.79<-131 0.85871 0.86443 0.86447 0.87811
Var 2 009.131<-184 1.01341 1.0202 1.02025 1.03878
Var 2 010.184<-252 1.17349 1.18274 1.183 1.21636
Var 2 011.252<-332 1.32528 1.3396 1.34013 1.37453
Var 3 001.Low–174 0.65205 0.66449 0.66498 0.69877
Var 3 002.-174<–89 0.28172 0.28608 0.28625 0.30888
Var 3 003.-89<–1 0.00776 0.01035 0.01049 0.02117
Var 3 005.8<-112 -0.01008 -0.00776 -0.00761 0.00292
Var 3 007.299<-733 -0.08236 -0.08047 -0.08032 -0.07038
Var 3 008.733<-858 -0.16086 -0.15937 -0.15921 -0.14965
Var 3 009.858<-1185 -0.21787 -0.21667 -0.21652 -0.20782
Var 3 010.1185<-1613 -0.24512 -0.24419 -0.24404 -0.23446
Var 3 011.1613<-2047 -0.28265 -0.28141 -0.28126 -0.27218
Var 3 013.2545<-3913 -0.3864 -0.38521 -0.38505 -0.37628
Var 3 014.3913<-6693 -0.49982 -0.49902 -0.49887 -0.49014
Var 3 015.6693<-11385 -0.56871 -0.56743 -0.56727 -0.55851
Var 3 016.11385<-26572 -0.68961 -0.68841 -0.68823 -0.67873
Var 3 017.26572<-306749 -0.85114 -0.84997 -0.8498 -0.84068
Var 3 018.306749<-1858163 -1.54879 -1.54958 -1.54942 -1.54246
Var 4 002.14<-41 0.09871 0.09698 0.09696 0.09605
Var 4 006.514<-689 0.29609 0.29556 0.29555 0.29905
Var 4 007.689<-746 0.41443 0.41639 0.41646 0.42061
Var 4 008.746<-965 0.54504 0.54803 0.54823 0.57072
Var 4 009.965<-1480 0.54078 0.54832 0.54873 0.562
Var 4 011.2252<-7332 1.64375 1.66571 1.66675 1.76169
Var 5 000.NULL 0.34202 0.34264 0.34259 0.34028
Var 5 002.1<-2 0.4779 0.47882 0.47882 0.48084
Var 5 003.2<-3 0.94021 0.94519 0.94529 0.9552
Var 5 004.3<-9 1.15741 1.16659 1.16681 1.18447

36

Figure 3.2: Baseline Survival Curve

bad ratio of g : 1 is set to some score s. Now let w be some fixed integer, then an
increase in score of w represents doubling of the good bad odd. So the score s+ w
has a good bad odd of 2g : 1. This convention comes from scorecards built using
Binary Logistic Regression (BLR). In BLR the model being fitted is

log(
p

1− p
) = x′β

where p is the probability of good, x is the vector of data, and β the parameter
estimates. Exponentiating both sides yields

p

1− p
= exp(x′β)

The left hand side is now the good/bad odd. The right hand side is the exponential
of the raw score. The score, s, is derived from the raw score by scaling it linearly
with two parameters a and b, i.e. s := ax′β + b, such that the convention is met.

37

Table 3.11: Parameters estimates using all 4 ties handling methods cont.

Var 6 000.NULL -0.09094 -0.10028 -0.10052 -0.10332
Var 6 001.Low-6 1.09134 1.10326 1.10357 1.12708
Var 6 002.6<-23 0.89963 0.90646 0.90647 0.92212
Var 6 003.23<-30 0.6313 0.63446 0.63445 0.64142
Var 6 004.30<-39 0.47746 0.48045 0.48048 0.48526
Var 6 005.39<-45 0.34721 0.34934 0.34937 0.35212
Var 6 006.45<-50 0.21906 0.22092 0.22095 0.22289
Var 6 009.4147<-10020 -1.14447 -1.15026 -1.1504 -1.1646
Var 6 010.10020<-1482487620 -1.5816 -1.59772 -1.59811 -1.61783
Var 7 000.NULL 0.88679 0.89658 0.89705 0.91797
Var 7 001.Low-1 0.24714 0.24943 0.24956 0.25891
Var 7 002.1<-2 0.15494 0.15642 0.15647 0.15909
Var 7 004.3<-4 -0.25201 -0.25337 -0.2534 -0.25589
Var 7 005.4<-5 -0.38551 -0.38734 -0.38738 -0.39061
Var 7 006.5<-6 -0.43851 -0.44001 -0.44004 -0.44458
Var 7 007.6<-8 -0.73365 -0.73604 -0.73608 -0.7423
Var 7 008.8<-13 -0.84883 -0.85162 -0.85167 -0.85802
Var 7 009.13<-14 -1.20085 -1.19583 -1.19588 -1.21573
Var 8 S -0.59912 -0.6012 -0.60123 -0.60707

Hence we get the property of linear increase in the score representing exponentially
increasing good/bad odds.

In Survival Analysis the model is

S(t) = S0(t)
exp(T(x)′β)

taking log(− log) we obtain

log(− logS(t)) = log(− logS0(t)) + T(x)′β

We did this to ensure that the score is the sum of linear components. The scorecard
format dictates that the scores be derived from a addition/subtraction process so
that it is easy to use and implement.

Here the survival function S(t) is an equivalent concept to p in the BLR setting.
It can be seen that the score derived in the survival setting can not be interpreted
as the same as in the BLR setting. This is because log (− log p) 6= log p

1−p . This
may cause problems in introducing survival analysis scorecards to the business. If a
score from the survival analysis model needs a different interpretation from the tra-
ditional scorecards then the business may be reluctant to adopt it. However we will
show that the BLR scores and the survival analysis scores have “approximately”
the same interpretation by the analytical argument below.

38

Consider − logS(t) = − log p. We write S(t) = p for simplicity and we have

− log p = log p−1 = log
(
1− (1− p−1)

)
= log

(
1− p− 1

p

)
Now by Taylor’s expansion we get

log

(
1− p− 1

p

)
= −

∞∑
i=1

(
p−1
p

)i
i

In credit risk p is often very close to 1 (or the banks will be losing big money!) and
so p−1

p
is small. Hence it makes sense to approximate the left hand side using only

the first term in the Taylor expansion yielding

− log p ≈ −p− 1

p
=

1− p
p

Therefore if we take the log of both sides we will get

log(− log(p)) ≈ log(
1− p
p

) = − log(
p

1− p
)

for p close to 1. As can be seen the right hand side is just the negative of the
unscaled BLR score.

Remark 3.6.1. This has significant business implications. This suggests that the
survival analysis score has the “same” interpretation as the BLR score, so there
is virtually no impact to the business if we switch to building survival analysis
scorecards instead. Since the scores have the “same” interpretation it will make the
business easier to accept such a change. 2

This indicates that for p close to 1, which is true in the credit risk setting, the
survival analysis score has an approximate linear relationship with the BLR score.
So the score as derived in the survival analysis Cox Proportional Hazard model is
approximately the same as the one from BLR. We shall aim to make the score as
comparable as possible. To achieve this we will scale the score so that the conven-
tion described at the beginning of this section is “approximately true”.

3.6.1 Deriving the scaling factors

In our model, as before, we aim to have a good bad ratio of g : 1 when the score is s
and an increase in the score of w should represent a doubling of the good bad odd.
We can approximate this relationship in the survival analysis setting by solving a set
of simultaneous equations. If we have a good bad ratio of g : 1 then p = g

g+1
since

there are g good accounts out of g + 1. In this way we have a set of simultaneous
equations

s = a log(− log
g

g + 1
) + b

39

s+ w = a log(− log
2g

2g + 1
) + b

Solve for a and b then we have our scaling parameters. Define lx := log(− log x
x+1

)
then we have

a =
−w

lg − l2g
and

b =
−sl2g + (s+ w)lg

lg − l2g

Example 3.6.2. Suppose we wish to have a score of s = 600 representing a
good/bad ratio of 30 : 1 and have w = 20 then we have to solve

600 = a log(− log
30

31
) + b

600 + 20 = a log(− log
60

61
) + b

Applying the formula above we get a = −20
l30−l60 ≈ −29.1978 and b = −600l60+620l30

l30−l60 ≈
500.2126 2

The reader may have noticed that if we introduce another equation in the form of

600 + 40 = a log(− log
120

121
) + b

then we will have an inconsistent system of equations. This highlights the fact that
although the survival analysis score is approximately linear with the BLR score
they are actually not linearly dependent.

3.6.2 Scaling factors from a linear model

In view of the above we can also derive the scaling factors from a simple linear
regression model. The proposed methodology is as follows. Compute the estimated
probability of survival 12 months from now, Ŝ(12|x), for all accounts in the sample
and compute their respective BLR scores.

Using the convention in Example 2 their BLR scores, sBLR can be computed by
first finding parameters c and d such that

600 = c log

(
30

31

/
1

31

)
+ d = c log 30 + d

620 = c log

(
60

61

/
1

61

)
+ d = c log 60 + d

40

This yields c = 20
log 2
≈ 28.8539 d = −600 log 60+620 log 30

− log 2
≈ 501.8622. The score for the

ith account, si,BLR, is then

si,BLR = c log
Ŝ(12|xi)

1− Ŝ(12|xi)
+ d

where xi is the attributes of the ith account.

Store the BLR scores in a vector y and store the raw survival scores log (− logS0(t))+
T(x)′β for every account in the a vector z. Fit a linear model

y = az + b

to find the estimates â and b̂ of a and b respectively and use them as the scaling
factors.

In our modelling dataset the scalings factors based on the above methodology are
â = −29.2238419 and b̂ = 499.9061574 which are not significantly different from the
ones derived using just a pair of simultaneous equations. The linear model being
fitted has a R2 of 0.999732.

3.6.3 The Scorecard

The model we have constructed is

Ŝ(t|x) = Ŝ0(t)
exp(T(x)′β̂)

take log(− log) of both sides and we obtain

log(− log(Ŝ(t|x))) = log(− log Ŝ0(t)) + T(x)′β̂

The right hand side is now linear and it can be interpreted as the score. However,
to conform to industry standards we scale it using the factors a and b which yields
the score s as

s := a log(− logS0(t)) + aT(x)′β̂ + b

rearrange a little we get

s := (a log(− logS0(t)) + b) + (aT(x)′β̂)

Now we have turned the score into two components as below

s := Base Score + Scoring

Remark 3.6.3. The Base Score does not depend on the account’s attributes while
the Scoring component does. Hence the split. 2

Recall that we have fitted a strata variable so each strata has its own baseline
survival function S0(t). Let Ŝ0,m(t) be the baseline survival function for the stratum

41

m. We typically choose m to be the latest month. We make this choice as it is
reasonable to assume that the more recent the data the more likely it is to be
reflective of the current time’s risk profile. Let

mmax = max
m∈M

m

So the ‘Base Score” becomes

Base Score := a log(− log(S0,mmax(t))) + b

and
Scoring := aT(x)′β̂

is the “Scoring” component.

Using the factors as derived in Example 2. We can construct a scorecard by com-
puting the base score

Base Score := a log
(
− log Ŝ0,mmax(12)

)
+ b

again we choose t = 12 so the score is more comparable to the BLR score. The
scoring component can be created by multiplying each of the parameters estimates
by a = −29.1978. The resultant scorecard for our model is shown in Table 3.12 to
3.13. See Section 1.1.1 for how to apply the scorecard.

Remark 3.6.4. This scorecard which was built from a largely automated process
is extremely competitive with a scorecard built in the industry by a more manually
intensive process. See Table 3.15 for a comparison of the GINIs. The industry built
scorecard has a GINI of 0.66 while our model has a GINI of 0.68 using t = 12. If a
reliable and automated method of variable selection can be found then we have a
completely automated process for building scorecards. 2

3.7 Model Checking

There are a number of standard ways of checking Proportional Hazard models,
however it must be noted that the ultimate measure of a scorecard is how well it
rank-orders risk, in other words how good is it at separating bad customers from
good. Therefore we shall not make assessment of model fit our primary focus, but
rather we shall only use model checking techniques to highlight some deficiencies in
our model.

We will use the Cox-Snell residuals to assess our model. The Cox-Snell residuals
for the ith account is defined as

rxi
:= − log(Ŝ(T ∗i |x̂i)

42

Table 3.12: Final Scorecard

Variable Bin Estimate Score Rounded Score
Base Score 637.54748854 638
Var 1 001.Low<-1 -0.12885 3.762 4
Var 1 002.1<-2 0.85557 -24.9807 -25
Var 1 003.2<-14 0.93287 -27.2378 -27
Var 2 001.0<-11 0.34087 -9.9526 -10
Var 2 002.11<-19 0.45366 -13.2459 -13
Var 2 003.19<-27 0.59778 -17.4537 -17
Var 2 004.27<-39 0.66095 -19.2984 -19
Var 2 005.39<-56 0.71567 -20.8961 -21
Var 2 006.56<-79 0.79674 -23.263 -23
Var 2 007.79<-131 0.85436 -24.9455 -25
Var 2 008.131<-184 1.01572 -29.6568 -30
Var 2 009.184<-252 1.17076 -34.1837 -34
Var 2 010.252<-332 1.40627 -41.0601 -41
Var 3 001.Low<–174 0.6248 -18.2428 -18
Var 3 002.-174<–89 0.26405 -7.7096 -8
Var 3 003.-89<-8 0.01102 -0.3218 0
Var 3 004.8<-299 0.0003973 -0.0116 0
Var 3 005.299<-733 -0.06911 2.0178 2
Var 3 006.733<-858 -0.12988 3.7922 4
Var 3 007.858<-1185 -0.19004 5.5486 6
Var 3 008.1185<-1613 -0.22633 6.6084 7
Var 3 009.1613<-2545 -0.25765 7.5228 8
Var 3 010.2545<-3913 -0.36106 10.5421 11
Var 3 011.3913<-6693 -0.4623 13.498 13
Var 3 012.6693<-11385 -0.55889 16.3183 16
Var 3 013.11385<-26572 -0.6614 19.3116 19
Var 3 014.26572<-306749 -0.79235 23.1349 23
Var 3 015.306749<-High -1.71376 50.038 50
Var 4 002.14<-41 0.05248 -1.5322 -2
Var 4 003.41<-689 0.21893 -6.3924 -6
Var 4 004.689<-746 0.37299 -10.8904 -11
Var 4 005.746<-965 0.4999 -14.5959 -15
Var 4 006.965<-2252 0.51264 -14.9679 -15
Var 4 007.2252<-High 1.78828 -52.2139 -52
Var 5 000.NULL 0.28258 -8.2509 -8
Var 5 001.1<-2 0.46202 -13.4901 -13
Var 5 002.2<-3 0.88347 -25.7952 -26
Var 5 003.3<-High 1.10605 -32.2944 -32

43

Table 3.13: Final Scorecard cont.

Variable Bin Estimate Score Rounded Score
Var 6 000.NULL 0.63139 -18.4351 -18
Var 6 001.Low<-6 1.07792 -31.473 -31
Var 6 002.6<-23 0.82127 -23.9794 -24
Var 6 003.23<-30 0.55459 -16.1927 -16
Var 6 004.30<-39 0.4115 -12.015 -12
Var 6 005.39<-45 0.30063 -8.7778 -9
Var 6 006.45<-50 0.15992 -4.6693 -5
Var 6 008.4147<-10020 -0.89605 26.1625 26
Var 6 009.10020<-High -1.83407 53.5508 54
Var 7 000.NULL 1.00865 -29.4503 -29
Var 7 001.Low<-1 0.26145 -7.6338 -8
Var 7 002.1<-2 0.156 -4.5547 -5
Var 7 003.3<-4 -0.2541 7.4191 7
Var 7 004.4<-5 -0.38484 11.2366 11
Var 7 005.5<-6 -0.43865 12.8076 13
Var 7 006.6<-8 -0.64586 18.8577 19
Var 7 007.8<-13 -0.79167 23.115 23
Var 7 008.13<-High -1.56229 45.6155 46
Var 8 S -0.60987 17.8068 18

where xi is the vector of attributes of the ith account and T ∗i is the censored time
for that account.

Let T be a survival time random variable, and let S(t) := P (T >= t) as usual
then Y = − log(S(T)) follows the exponential distribution with unit mean, see
([4],p112). Therefore if the fitted model is correct then the Cox-Snell residuals
will follow the unit exponential distribution too. Therefore if we plot the residuals
against T ∗i then we can examine if it follows an exponential distribution. However
this is definitely not ideal as T ∗i can only takes values between 1 to 35 which will in-
variably result in a very “cramped” looking graph considering the large sample size.

Remark 3.7.1. Of course T ∗i is the censored time not the survival time. A modi-
fied version of Cox-Snell residuals ([4],p113) has been proposed to address this issue.
However we will not consider the modified Cox-Snell residuals in this thesis. Rather
we will place greater focus on measuring the risk rank-ordering properties of our
model. 2

To address the above issue suppose we think of the residuals rxi
as coming from a

unit exponential distribution, then it has a survival function

S#(t) = e−t

44

snell vs cull hazard.JPG

Figure 3.3: Cox Snell Residuals Plot

which implies that
− log(Ŝ#(rxi

)) = t

Now treating rxi
as censored survival times if it was from a censored observation

then we can estimate S# with the Kaplan-Meier estimator Ŝ#. Now the plot of
rxi

against − log(Ŝ#(rxi
)) should be a straight line should the model be correct.

Additionally the plot will be more “spread out” due to the larger pool of possible
values of rxi

. Figure 3.3 is this plot.

It can be seen that our model seems to perform reasonably well when rxi
is relatively

small and it gets progressively “worse” as rxi
gets larger. However the lowess curve

(using default settings in R) seems to suggest that the majority of our observations
are situated in the lower end, as it does not curve towards the residual too much
but instead stays closer to the line through origin of slope 1. Finally we stress again
that if our model is rank-ordering risk well then we have achieved our purpose.
The deviation from the ideal model as indicated here does not necessarily make the
model’s risk rank-ordering power worse, it simply means that our model does not

45

Table 3.14: Mock Good Bad Profile by Ordered Score

Score Goods Bads Cum Prop Goods Cum Prop Bads Tot Good Tot Bad
450 0 1 0.00 0.02 22.91 65.04
470 0 1 0.00 0.03 22.91 65.04
476 0 1 0.00 0.05 22.91 65.04
477 0 2.75 0.00 0.09 22.91 65.04
479 0 2 0.00 0.12 22.91 65.04
481 0 3 0.00 0.17 22.91 65.04
483 0 2 0.00 0.20 22.91 65.04
484 0 1 0.00 0.21 22.91 65.04
485 0 2 0.00 0.24 22.91 65.04
486 2.44 2 0.11 0.27 22.91 65.04
487 0 3 0.11 0.32 22.91 65.04
488 2.6 2.42 0.22 0.36 22.91 65.04
489 0 4 0.22 0.42 22.91 65.04
490 4.92 3 0.43 0.46 22.91 65.04
491 2.49 0 0.54 0.46 22.91 65.04
492 0 11 0.54 0.63 22.91 65.04
493 5.04 9.42 0.76 0.78 22.91 65.04
494 2.69 9.45 0.88 0.92 22.91 65.04
495 2.73 5 1.00 1.00 22.91 65.04
. .

produce the most accurate PD estimates for all accounts.

3.8 Model Validation

The key measuring yardstick of a risk scorecard is how well it rank-orders risk. The
customers with higher scores are suppose to be of lower risk. The most popular
measures of the predictive power of a scorecard in the risk rank-ordering sense in-
clude the GINI and the KS statistics.

Suppose we scored every account in our dataset. Let si be the score of the ith
account, and let

Dt(i) :=

{
1 ; if the ith account goes bad at month t in the future
0 ; otherwise

We can produce a frequency of the good bad profile at time t in the future by score,
for example see Table 3.14. A GINI Plot can be obtained by plotting the cumulative
proportion of goods vs the cumulative proportion of bads, for example see Figure
3.4.

46

Figure 3.4: GINI Plot Using t =35
t 35.jpg

Remark 3.8.1. The number of goods and bads in Table 3.14 are not whole num-
bers as weights that are not whole numbers were applied when doing the frequencies.
2

The GINI plot of our model using t = 35 is Figure 3.4. The GINI coefficient is
defined as 2 times the area between the Cumulative Goods vs Cumulative Bad plot
and the slope 1 line through origin. Clearly the higher the GINI the better our
model. Suppose we scored the accounts randomly, then we would expect our GINI
plot to be close to that of the line of slope one, and this will yield a GINI close to
0.

Remark 3.8.2. The best possible GINI is 1. 2

We will approximate the area using trapeziums. That is let

S := {s(j) | j = 1, 2, . . . , |S|}

be the ordered set of all possible scores where s(j) < s(j+1) for all j, and let b(j) and
g(j)be the cumulative proportion of bads and goods, respectively, at score s(j).

47

Definition 3.8.3. The GINI coefficient, G, is defined as

G :=

|S|−1∑
1

(
b(j) + b(j+1) − g(j) − g(j+1)

) (
g(j+1) − g(j)

)

This yields a GINI of ≈ 0.601 from Figure 3.4.

Remark 3.8.4. The ROC curve is often used as well to assess the risk rank-
ordering. However it is similar to GINI in definition and it is more common in the
industry to look at GINI instead. 2

Remark 3.8.5. The GINI requires that the outcome be binary. In survival anal-
ysis the outcome is binary with a time element. Therefore we needed to choose a
time point t when computing the GINI. Also this is done so that our model can be
compared to BLR by GINI. 2

We scored our development and holdout sample and produced the Table 3.15 for
the GINI using t = 1, 2, . . . , 35. It can be seen that the GINI peaks at t = 3 in
both samples and drops off towards a plateau. This suggests that the scorecards
are very good at distinguishing accounts that are likely to go into default in the first
3 months, and its predictive power degrades over time. Also the GINI is higher in
the development sample from t = 4 onwards. This suggests some slight overfitting
of the model.

Remark 3.8.6. The number of defaults are low for t = 1, 2, 3. Hence the reason
why the difference in GINI is greatest for those t values. In particular for t = 1
there was only one default in the holdout sample, hence the peculiar GINI. 2

Remark 3.8.7. The model built using BLR by the business on the exact same
data has a GINI of 0.67 and 0.65 on the development and holdout sample respec-
tively. This indicates that the survival analysis scorecards perform just as well as
the BLR scorecards. 2

Definition 3.8.8. The KS statistics, another popular measure is defined as

KS := max
j

(
b(j) − g(j)

)
That is, it is the maximum difference in the cumulative proportion of bads and
goods over all possible scores.

The larger the KS the better the rank-ordering. If the scores were randomly as-
signed then one would expect that the KS statistics will be close to zero. The KS
statistics for our model using t = 12 is 0.33 which is a significant improvement over

48

Table 3.15: The GINI on the development and holdout sample using various t

t GINI Dev GINI Holdout
1 0.67017 -0.1649
2 0.81096 0.81933
3 0.8595 0.8962
4 0.81247 0.8175
5 0.77693 0.7746
6 0.75627 0.7425
7 0.73893 0.71959
8 0.72414 0.69979
9 0.71225 0.6853
10 0.70145 0.67038
11 0.69025 0.6624
12 0.68101 0.65878
13 0.66774 0.6501
14 0.6549 0.64445
15 0.64677 0.63712
16 0.6403 0.63202
17 0.63498 0.62626
18 0.63123 0.62311
19 0.62672 0.61927
20 0.62334 0.61659
21 0.61991 0.61178
22 0.6171 0.61002
23 0.61476 0.60794
24 0.61282 0.60535
25 0.6113 0.60417
26 0.60925 0.60227
27 0.60801 0.60083
28 0.60666 0.5988
29 0.60578 0.59811
30 0.60493 0.59786
31 0.60407 0.5976
32 0.60361 0.5972
33 0.60318 0.59748
34 0.6028 0.59748
35 0.60265 0.59703

49

random assignment of scores.

3.9 Comparison with Binary Logistic Regression

A BLR scorecard model was built by the business. We want to be able to perform a
comparison of the relative performance of Binary Logistic Regression (BLR) versus
Cox Proportional Hazards (CPH) models. To achieve this we fitted a CPH model
using the variables and binnings as per in the BLR model. The GINI from that
model is listed in Table 3.16. It can be seen that the two methods performed sim-
ilarly. So there is no evidence that switching to building scorecards using survival
analysis techniques will in any way jeopardise the predictive power of the score-
cards. On the other hand profit scoring [11] and stress testing with macro economic
variables [3] is possible with survival analysis models but not with the traditional
BLR models.

3.10 Application Scorecard Reject Inference

So far in this thesis we have discussed how to construct behavioural scorecards.
The scorecards we have built are based on customers that have already taken up
the loan. There is another type of scorecards that deals with new loan applications.
These are called the application scorecards.

In building an application scorecard the population that had their loan applications
accepted are not representative of the “through the door” population. This will in-
troduce a bias in our model which was termed “reject bias” in [1]. Hence some
reject inference procedure is often applied to try and reduce this bias.

Let R be the set of loan applications that were rejected and let xr be the set of
attributes associated with the customer r ∈ R at the time of application. One way
to perform reject inference is to assign a good bad outcome based on xr to each loan
application r ∈ R; and this good bad outcome can be interpreted as their good bad
outcome had they been offered the loan. This process is called imputation. Once
imputation has been performed we fit the model using all the accounts data includ-
ing the imputed data. This way the model will be more reflective of the “through
the door” population.

As mentioned in ([1],p141) reject inference is an area of “some controversy”. This
is understandable as there is no reliable way of assigning a good or bad outcome to
the rejected loan applications. In the survival analysis setting the matter is com-
plicated further by the fact that a bad outcome needs to be accompanied by a time
to default variable.

Let A be the set of applications including the rejected population R. In [9] it was
suggested a parametric survival analysis model be fitted to the population A/R and
call this Model A. From this model a formula of the (1 − α)% confidence interval
for the median survival time can be obtained. This median survival time is a func-
tion of xr. Now apply the parameters obtained in Model A to the population R

50

Table 3.16: The GINI on the development and holdout sample using various t

t GINI Dev GINI Holdout GINI BLR Dev GINI BLR Holdout
1 0.5247 0.05212
2 0.73257 0.81934
3 0.8212 0.85012
4 0.77899 0.78847
5 0.74848 0.74548
6 0.72795 0.71788
7 0.7113 0.70009
8 0.69847 0.68486
9 0.6892 0.67241
10 0.67947 0.66113
11 0.67014 0.654
12 0.66171 0.64871 0.67 0.65
13 0.64883 0.64007
14 0.63729 0.63614
15 0.63083 0.63151
16 0.62417 0.62555
17 0.61913 0.61976
18 0.61558 0.6174
19 0.61124 0.61386
20 0.60828 0.61152
21 0.60463 0.60683
22 0.60166 0.60578
23 0.59935 0.60242
24 0.5972 0.59947
25 0.59538 0.59808
26 0.59345 0.59612
27 0.59222 0.59472
28 0.59131 0.59312
29 0.5905 0.59232
30 0.58988 0.59143
31 0.5889 0.59125
32 0.58851 0.59112
33 0.58838 0.59138
34 0.58814 0.59159
35 0.588 0.59139

51

and let tr be the lower (1 − α)% confidence interval limit of the predicted median
survival time and let t be the median survival time estimate from the whole A/R
population. The paper suggests that we assign a good to the application if tr > t
and a bad otherwise. However this approach does not address how to impute the
time to event variable.

In this section we propose a new reject inference scheme using the Cox Proportion
Hazard model. The steps involved are as follows:

1. Fit a Cox Proportional Hazard model to the A/R population using the tech-
niques discussed in the previous sections and call this Model A

2. Choose an α and obtain the formula of the (1 − α)% confidence interval for
Ŝ(t|xr) and let ŜL(t|xr) be the lower limit of the confidence interval.

3. Apply Model A to the population R and obtain the ŜL(t|xr) estimates for
each account r ∈ R.

4. Let tmax be the largest t for which we have an estimate for ŜL(t|xr) and let
wt := ŜL(t|xr) − ŜL(t − 1|xr). For each account r ∈ R we create a set of
imputed data points by defining

Impute(r) := {(xr, 1, t, wt) |t = 1, 2, . . . , tmax, } ∪ {(xr, 0, t, Ŝ(tmax|xr)}

5. Refit the model by incorporating all the imputed data points and their survival
times from

I = {∪r∈R Impute(r) }

Here any (xr, o, t, wt) ∈ I is a weighted data point with attributes xr, good
bad outcome o, time to event t and a weight of wt.

Essentially we have imputed the time to event and bad outcome using the pre-
dicted probability of default as derived from the lower 1−α confidence interval limit
as weights. In this reject inference scheme the choice of α is subjective. Further
research is needed to establish good ways of choosing a value for this parameter.

52

References

[1] Thomas, Edelman, Crook; Credit Scoring and Its Applications Society for
Industrial and Applied Mathematics (1983), pp. 431–475.

[2] Stepanova, Thomas; Survival Analysis Methods for Personal Loan Data
Operations Research Vol. 50, No. 2, March-April 2002, pp. 277-289

[3] Bellotti, Crook; Credit scoring with macroeconomic variables using survival
analysis Journal of the Operational Research Society 60, 1699-1707 (Decem-
ber 2009) — doi:10.1057/jors.2008.130

[4] Collett; Modelling Survival Data in Medical Research, Chapman and
Hall/CRC, (2003)

[5] Anderson; Credit Scoring Toolkit - Theory and Practice for Retail Credit
Risk Management and Decision Automation, Oxford University Press (2007)

[6] Kirkpatrick, Gelatt, Vecchi; Optimization by Simulated Annealing . Science.
New Series 220 (4598) (1983)

[7] Banasik, Crook, Thomas; Not if but When will Borrowers Default The
Journal of the Operational Research Society, Vol. 50, No. 12 (Dec., 1999),
pp. 1185-1190

[8] Cox; Regression Models and Life Tables. Journal of the Royal Statistical
Society Series B 34 (2): 187?20. JSTOR 2985181 . MR0341758 .(1972).

[9] So Young Sohn, H.W. Shin; Reject inference in credit operations based on
survival analysis. Expert Systems with Applications 31 (1): 26-29 (2006)
0957-4174

[10] Hand, Adams; Defining attributes for scorecard construction in credit
scoring. Journal of Applied Statistics, Vol. 27, No 5, (2000) 527-540

[11] Andreeva, Galina and Ansell, Jake and Crook, Jonathan; Modelling prof-
itability using survival combination scores European Journal of Operational
Research Vol. 183, No 3, (2007) p. 1537-1549

[12] Dueck, Gunter; New Optimization Heuristics The Great Deluge Algorithm
and the Record-to-Record Travel Journal of Computational Physics, Volume

53

104, Issue 1, (1993) p. 86-92.

[13] Schwarz; Estimating the dimension of a model Annals of Statistics 6 (2):
(1978) 461

[14] R Development Core Team; R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing (2010), ISBN 3-900051-
07-0, http://www.R-project.org

[15] Efron; The Efficiency of Cox’s Likelihood Function for Censored Data
Journal of the American Statistical Association, Vol. 72, No. 359 (1977), pp.
557-565 URL: http://www.jstor.org/stable/2286217

[16] Breslow; Covariance Analysis of Censored Survival Data Biometrics, Vol. 30,
No. 1 (1974), 89-99 http://www.jstor.org/stable/2529620

[17] Kaplan, Meier; Nonparametric estimation from incomplete observations.
Journal of the American Statistical Association, 53, 457-481

[18] Aalen; Nonparametric inference for a family of counting processes, Statistical
Methods in Medical Research, 3, 227-243

54

