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In the paper it is given the proof of famous

Riemann Hypothesis.

1. Introduction
Appearing of the zeta — function and the analytical methods in Number Theory connected

with the name of L. Euler (see [18, p.54]). In his works Euler had introduced the zeta — function

{(y=)n" (1)
n=1
as a function of a real variable s. By using of identity
-1
é,(S) = H (1 - j s
p

where the product is taken over all prime numbers, he gave an analytical proof of the theorem of

1
pS

Euclid on the infiniteness of a set of prime numbers. Euler had given the relationship which is
equivalent (see [13]) to the Riemann functional equation. By using of Euler arguments in 1837
L. Dirichlet proved the generalization of Euclid theorem for arithmetic progressions considering
L — series.

Great meaning of the zeta — function in the analytical number theory was discovered in

1859 by B. Riemann. In his famous memoir [20] Riemann considered £(s) as a function of

complex variable and connected the question on the distribution of prime numbers with the

location of complex zeroes of the zeta — function. He proved the functional equation
1 | S
S(s)=2&(-s); &(s)= Es(l —8)7 F(EJC(S)

and formulated several hypotheses about the zeta — function. One of them (later RH) was fated to
stand a central problem for the all of mathematics. The Hypothesis asserts that all of complex
zeros of the zeta—function placed in the strip 0 < Res <1are located on the critical line Res=0.5.

D. Hilbert included in 1900 Paris International Congress this Hypothesis into the list of his
23 mathematical problems.

In spite of no decreasing up to nowadays attempts of many outstanding mathematicians
RH was remained open. However, they were found several equivalents ([33], [4]) of this Hypo-
thesis and it was arisen an opinion about its insolubility by the methods of mathematical analysis

(see [4)).
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To make some progress in the direction of this Hypothesis there was developed following
brunches in the Analytical Number Theory:

1. Investigation of areas free from the zeroes of the zeta — function;

2. Density estimations of zeroes in the critical strip and their applications;

3. Studying of zeroes on the critical line;

4. Studying of distribution of values of the zeta — function in the critical strip;

5. Computational questions connected with the zeroes and others.

Those directions are classical and in the literature they can be found (see [3,6,12,
16,17,19,22, 24]) historical and other aspects of these problems. We shall consider here, in
sketch, only works of direction 4, and several modern ideas in studying of questions connected
with the RH.

Studying of distribution of values of the zeta — function was founded by G. Bohr (see [24,
p.279]). In the work [2] the theorem on everywhere density of the values of {(o +it),

—o<t<w,oe(l/2,1] was proven.

The results of S.M. Voronin [25-32] connected with the universality property of the zeta —
function founded a new stage of investigations of values of the zeta — function and other
functions defined by Dirichlet series. In the works of S.M. Voronin it was studied the distribu-
tion of values of some Dirichlet series and a more general form of D. Hilbert problem on the
differential independence of the zeta — function was proven for Dirichlet L — functions. Other
generalizations and improvements were considered in the works ([1, 14-16]).

Last several years they were begun studying of some families of Dirichlet series the aim of
which was to consider the questions connected with the distribution of zeroes of the zeta and L —
functions ([4]). B. Bagchi had considered (see [15 — 16]) the family of Dirichlet series defined as
a product

-1
F(5:0) = H(l —ZP—(?)J
p p
when Re s >1. He proved that this function can be analytically continued into the strip Re s >1/2

and has not there zeroes for almost all @, where 6 takes values in the topological product of the

circles ‘zp‘ =1,z,€C,and y,(0) is a projection of & on the circle‘zp‘ =1. Here the measure is a

Haar measure. In the works [1, 14-16] they were investigated the questions connected with the
joint universality properties of some Dirichlet series. By using of Ergodic methods the special
probability measures were also constructed.

In the work [11] it was gotten the equivalent variant of mentioned above result of B.Bagchi

by considering of the function



210,

F(s;9)=]‘[(1—€ps J ,0<0,<1  (2)

in the cube Q =[0,1]x[0,1]x--- with the product of Lebesgue measures.

In the works [33 — 38] they were studied the questions on gaps between consecutive zeroes
of the zeta —function on the critical line, on the number of zeroes in the circles with relatively no
large radius in the near around of the critical line, and on the repeated zeros.

In the present work we study the distribution of special curves ({t4,}) ., (the sign {} means

nx1
a fractional part) in the subsets of zero measure of the infinite dimensional unite cube, on which
some series is divergent, and the results have not a finite analog. As an application of getting
results we prove RH.

Definition 1. Let o: N — N is any one to one mapping of the set of natural numbers. If

there exist a natural number m such that o(n) =n for every n >m, then we say that o is a finite
permutation. We call the subset A < Q to be finite — symmetrical if for any element 8 =(6,) € A
and a finite permutation o we havect) =(0,,,) € 4.

Let X denote the set of all finite permutations. It is a group which contains any group S,

of n — degree permutations as a subgroup (we shall consider every n — degree permutation of o

n=12,..., as a finite permutation in the above sense for which o(m)=m when m>n).

1
Theorem. Let 0<7”<Z is a real number. Then there exist a sequence (6,) in 2

(6, €Q,n=12,..) and a sequence (m,) of integers that for every real t

limF, (s+it,0,) = { (s +it)

uniformly in the circle|s —% <r, here

o275

Fn(s+it,¢9n):H1— — 1 ;6,=(6)),
p

pgmﬂ

where the product is taken over the prime numbers and the components of 6, are indexed by the
prime numbers.
It should be noted that the length of a product depends on «.

Corollary. The Riemann Hypothesis is true, i. e.

¢(s) #0

hen O > —.
when )



2. Supplementary statements.
The following lemma was proven by S.M. Voronin in [28] (we are formulating it in a little

changed form).
1
Lemmal. Let 0<r< Z and g(s) is an analytical function in the circle [s/ <r, continuous

and non — vanishing when s/ <r. Then for any & >0 and y > 2 there exist a finite set of prime

numbers M, containing all of the primes p <y, that the following inequality holds:

max

‘s‘ér

<ég,

3 _
£ =Cu5+3:0)
where 0 = (Hp)peM and Hp = (92 are given already numbers from the interval [0, 1) when p

<y, {M(S + %; 5) is defined by the equality

_ o270 -1 3
(M(sl;H):Hl— " §S1:S+Z-

peEM p
Proof. The proof of the lemma 1 will be conducted by the method of the work [28] of

S.M. Voronin. The series u,(s) of this work we define as

2m8, . -s-3/4
D >

u,(s) =log(l—e

By using of the expansion of the logarithmic function into power series we may write

u(s)=—e""p 7 v(s), (@)
where

v(s) = O(pp=> "),

Since r < 72 we may take such ¢, that the inequality 2e+2r-3/2 <—I would satisfied. Then
definition of u, (s) and (4) with the last inequality show that the series

D N )
differs from the series Zun (s) by an absolutely convergent series. Therefore, it is sufficient to
show, that for any ¢(s) EHY ") (0<y <1 is any) there exist a permutation of the series (5)

converging to the @(s) (the definition of the Hardy spaceH,y ") was given in [24, p.323]).

Further, we consider (5), following by [28], and note that

Sl <.
k=1

We have



7,().0() = —Re &% p, " p(s)dndt = Re[- e >** Alog p, )]

‘ s ‘ <R
where

Alx)= “‘e_x(”m)@dodt .

‘S‘SR

As it was showen in [28] A(x)can be expanded into power series

A(x) = 7R*e™* i'g—""(xR)’"
m

m=0 .

by using of expansion of the function ¢(s). Define the entire function

F(u)= i%um,

B,|<1.

Repeating the reasoning of the work [28] we show that for any 6 >0 there exist a sequence

u,,u,,...—> o satisfying the following inequality

—x;(3/4+R+206R
‘A(xj)‘>ce GO, = /R.

J J

Later we get the inequality

max

—x,|<
‘x xl‘_l

A(x)|>e

(see [24, p.244]) for every j=1,2,.... Now we take 4, =k/4 when p, > y(for k, with p, <y the
numbers 4, are any) we can separate from the series (5) sub series diverging to + o and —o

correspondingly. Then the series
2 (1.(5),9(s))
n=1
converges conditionally. So (see [24, p.339]), there exist a permutation of the series Zun (s),
Pn>Y

converging to the ¢(s)— Zun (s), in regard to the norm of the spaceHy ") From this by a

PpSy
known way (see [22, p. 345]) we get the convergence in the usual sense, uniformly in any

compact sub domain of the circle |s| < r. Taking sufficiently large partial sums of this series we

get a suitable result. Lemma 1 is proved

Note. The statement of the lemma 1 remains unchanged if we would consider not only the

circle|s—3/4| <r<1/4, but also any circle |s—c70|Sr <r; 1/2<0,<1.

Lemma 2. Let the series of analytical functions

> £9)



be given in the one — connected domain G of the complex s — plane and absolutely converges

almost everywhere in the G in Lebesgue meaning and the function

is a summable function in the domain G. Then the given series uniformly converges in any
compact sub domain of the G, particularly the sum of this series will be an analytical function in
the G.

Proof. 1t is enough to show that the theorem is true for any rectangle C in the domain G.
Let C is a rectangle in the G and C’is another rectangle lying directly in the interior of the C,
moreover the sides of them are parallel to the axis. We can suppose that on contour the series are
convergent almost everywhere in correspondence with the theorem of G.Fubini (see. [7, p.208]).
We deduce from the theorem of Lebesgue on a bounded convergence (see. [21, p.293]):
where the integrals are taken in Lebesgue meaning and @ (s) = ®,(o,?) is a sum of given series

on the points of convergence. Because on the right hand side of the equality the integrals exist in

the Riemann meaning we get (by applying Cauchy’s formula)
I ¢ D) >
@ - —07 d = N
(=5 )T = 20

where @,(&)=®,(&) almost everywhere and & is any point on or in the contour. Further, the

series in the C’ is bounded by following inequality

where J is minimal distance between sides of the C and C'. The series

converges in agree with the theorem of Lebesgue on a monotone convergence (see [21, p.290]).

Therefore the series z £, (&) converges uniformly in the C'. The lemma 2 is proved.

n=1

3. Basic auxiliary results.

Let weQ andX(w) ={ow|o €X}, and X'(w) means the closed set of all limit points of
the sequence X(w). For real f we denote {tA}=({t4,}), where A =(4,) Below we denote by u
a product of linear Lebesgue measures of m defined in the segment [0,1]: gu=mxmx---

Lemma 4. Let A < Qis a finite — symmetrical subset of zero measure and A= (A,)is a



unbounded monotonically increasing sequence of positive numbers, any subset of components of
which is linearly independent over the field of rational numbers. Let B > A is any open set with

H(B)< ¢ and
E,={0<t<1|({tA}) € ANZ'({tA}) c B}
Then we have m(E,) <6ce, where c is an absolute constant and m means the linear Lebesgue

measure.

Proof. Let ¢ is any small positive number. Since the numbers 4, are linearly independent,
then we for any finite permutation o have ({,4,})# ({,4,,,}) whent, #1,. Really, in the
other case we could have the equality {#{4 }= {¢,4,} for some sufficiently large natural m, i.e.

(t,—t,)A, =k, keZ.Further, by writing the same equality for other integer » > m we have the

relation

k kKA, -k, 0
A A, LA, ’

which contradicts the linear independence of the numbers 4, . So for any pair of different num-
bers #, and ¢, ({t4,})¢ {({tz/”tg(n)})|0'62}. We can find a family of open spheres (in the

Tichonov topology) such, that each of them do not contain any other from B,,B,,... , (the sphere

being consisted in other one may be omitted), and
AcBc|JB,,D uB,)<15e.
j=1

Now we take the permutationo € X, defined by the equalitieso(l)=n,,...,o0(k)=n,,
where the natural numbers 7, are taken by following way. At first we take N such that
H“(By)<2¢,
where the B}, is a projection of the sphere B, into the first N axes and u(B,)=¢,. We cover the
Bj, by cubes with the rib 6 and summarized measure not exceeding3¢,. Let us to write k=N

and define the numbers n,,...,n, by using of following inequalities

A, > 4 <i5/1n3, Z, <é5/1nl,...,/1nz <%5ﬂn:1,6<1. (6)

Now we take any cube with the rib & and center(«,,),,,, - Then the point ({¢4, }) would
lie in this cube if
[t4, }-a,|<5/2.

From the definition of the fractional part we may write for some integral r taking m=1.



r+a‘_5/2<t<r+al+5/2
A o A

n n

. ()

The measure of a set of such ¢ does not exceed the value 5/1;11. The number of such intervals
corresponding to the different values of r=[¢4, ]< 4, does not exceed [, ]+2<4, +2. The
total measure of those intervals is

< (4, +2)64, <(1+24)5.

Now we examine one of the intervals (6), and taking m=2 can write

s+a2—5/2<t<s+a2+5/2
A - A

"y "y

, (8)

withs =[74, 1< 4, . Since we take the conditions (6) and (8) simultaneously, we must estimate

the total measures of intervals (8) having nonempty intersections with the intervals (7) by using

of the conditions (6). The number of intervals with the length /1;21 , having nonempty intersection

with one of the intervals of the view (7) does not exceed the value
[64, A, 1+2< 62,4, +2.

Therefore, the measure of a set of such ¢, for all of which simultaneously the conditions (7) and

(8) are satisfied does not exceed
(4, +2)2+ 5/1;1%,12 )5/1;21 .

One may continue those reasoning by taking all of conditions of the form

lra=6/2  l+a+5/2 -\

5
ﬂll’l m ﬂ/11 m

Then we find the following estimation for the measure of a set of such ¢ for which the points

({z4, }) lie into the cubes with the rib of &':

<SQ+ A2+ A,) 2+ 88 4, )% <8 T[+2m™).

m=1
Therefore, by summing over all of such cubes we get the upper bound for the measure of a set of

such ¢, for which ({t4, }) € B, the value < 3c¢,, ¢>0.

Note that the sequence A =(A4,) defined above depends ond . We shall fix for every of
defined above spheres B, some sequence A, by using of conditions (6). Considering all of such
spheres we denote X, = {A, |k =1,2,...}. Since the set A4 is finite — symmetrical, then the measure
of interested us values of 7 can be estimated by using of any sequence A, , because as it was

noted above the sets X({tA}) for various values of # have empty intersection.



Further, for any point ¢ of the E, the set X({¢{A}) has a non — empty intersection only with
finite number of spheres B, . Really, if else, then some limit point (which is contained by the
open set B) of Z(A) belong say to B,. Let d is a distance from 0 to the bound of B, . Then for
infinitely many indexes 7, beginning from some £ all of spheres B, would belong into the
spheres with radius < d/2, and the center 6. So for sufficiently large & the all of such spheres
would belong into B, which is contradiction. Consequently, the set £y can be represented as a

union of subsets Ey, k=1,2,... where

E ={teE,|2(itAH B, =2}

m>k

Then,
E UkSmBk’ E,= ;;Ek; E cE, (kz1).
So we have
m(E,) <limsup,,, m(E(A)< > limsup,; m(E®(A)) <
%
<3c(g + &, +--)=3ce,
where E(A)={t € E, | ({tA}) € B} and E(A)={t e E, | {tA} € B,} . The proof of the lemma 4 is

completed.

4. Local approximation

Lemma 5. There exist a sequence of points (6) (6.€ €2 and natural numbers (my) such

. 3 3
%EI;}E{(S'Fz, ng—é,[Z'i‘SJ

in the circle fs/<r, 0<r <1/4 uniformly by s (Fy is defined above).

that 6. — 0 and

Proof. Let y > 2 is a whole positive number which will be precisely defined below. We

suppose
Yo =Ys V1= 2Y050s Y = 2Vt = 2" Yoo
From the lemma 2 it follows, that for the given ¢ there exist a whole number y > 2 and a set

M, of primes such that A, contains all the primes p <y and

avfle

moreover 02 =0 when p <y. Now we denote

max

‘S‘S)‘

-27i6
35;771(51)::l_[(l_eps1 j 8, =3/4+s;

peM,



h(s:0)= Fy (s:0) [T-¢ % po )1

PeM,

where

. 1
Fy (5000 = [TI-e 7 p ]

p<m,

0,= 6’2 , when p € M, (for other p the 6, is any) andm, =maxm. If r+o <% we have

meM,

j( ”|h1(s1;c9)|2d0'dt}d9< I} (ﬂhl(sl;e)Fde]dadts
Q\ [s|sr+s |s|sr+6 \

4r(r+ 5)2 12427425
1-4r—-46

2
do <

<z(r+96)° maxj ,

‘3‘51‘4—5
Q

D na,(0)

n>y

where the sum under the sign of integral is taken over such natural numbers, the canonical

factorizations of which contain only primes p, p ¢ M,, p <m,, and

an(e) _ eZm‘Zapgp n= Hpap ,

and (2 is a projection of (2 into subspace with that coordinate axes 6, for which p ¢ M;. Then

from the inequality gotten above follows an existence of a such point ¢/ =(6,) ., that

47[(7”"'5)2 2542512,

*dodt < ;
1-4r—45

J..”hl (5,56

‘S‘Sr+§

or

1/2
01235 | L [l | o
‘S‘Sr 272,

‘S‘Sl’+5

(see [22, p. 345]), c(0)>0 1is a constant. So taking &, = (&, 6,") , & = (02)1961‘4I we shall have
3 3 3 3 3
T§}{4(2+SJ_FM1(Z+S;91J}Snslilrx{é/(Z"'Sj_nl(Z"'sj 771(24'5‘]

Se+(A+Dc@)y;" <26 yy =y,
only if yo would taken satisfying the condition

{29

We replace now ¢ by &2. There exist a set of primes M, containing all of the prime

+

SUACE e;)|} <

()M (A+1)<e; A=max

‘S‘S)‘

numbers < 2y, = y; and satisfying by the lemma 1 the inequality

v )nlin)

max

‘S‘Sr




where

PEM,

2700\
e 7
n,(sy) = H [1 - o J

and 9;” =0, if p < y;. By like way we find €, € Q, () is a projection of Q into the subspace

of coordinate axes 6,, p & M>) such that

3 3
§(Z+SJ—FMZ(Z+S,02)
F, (%+sj—ﬂz(%+sj

Now by taking of the mean value we get

< 21+(r+5—1/4) & 02 — (91’05)

3
7, Z"’S

<ﬁ5‘{i [T (51365

MSH—&
{(%+sj—FMz(%+s;¢92]

By repeating this calculus we for every k > 1 find 6. = (6,,6,,,) € Q, 6, = (6‘1',‘ )

((%+SJ—FMM (%-{-S;@HIJ

. 1
Fy, (5:0)= H(l —e T p ) ;m,,, =maxm.

mEMkH
PEMmyy

max

‘S‘Sr

Really,

|h2 (5} ‘92l )| .

1/2
max|f (s, 63) Zdo—er < o(8)(2y,)" .

Therefore,

max

‘S‘Sr

& _ _
< 5+2§+r 1/48 < 2l+(r+5 1/4)5; 02 — (91,92!)

PEM 2 such

that 6 =0 when p <y, and

1
I+k(r+o0—
( 7

<2 g,

‘S‘Sr

where

Consequently, uniformly by s, |s| < 7 we have

) 3 3
IEIHIEFM"(Z—FS, ij:§[2+Sj.

5. Proof of the theorem.

Lemma 4 is proved.

Now we consider the integral

3 3
B, = i [ | j F, (Z +5:0,, + 9) ~F, (Z +5;0, + Hj}do-dt}de,




where k = 0, 1,..., and (for k=0 we put F,, (3/4+s, 0, +¢9)=0). By applying the Schwartz

inequality and changing the order of the integration we find as above:

3 AP 3
B,f < 4’ ”.deTJ. H (l—p_“_s _ezm‘(apwﬁ)] Hdep' Z:nsza-E <

|s|<r Q|p<2*y, p<2*! n>25 y,

1
_ 2r+20—
<e, (27, 25e, > 0.

. 1 . e .
Since 2r+20 -5 <0, then from this estimation, it follows the convergence of the series below

almost everywhere (for all 8 € ), where € is a subset of full measure, and the set 4=Q\Q,
is finite symmetrical) by 8

>l

k=1 ‘S‘Sr

dodr;s=oc+it. (9)

F, (% +5,0, + 9) —-F, (% +5,0,_, + 9)

By the theorem of Yegorov (see [7, p. 166]) the series above is converging almost uniformly in
the outside of some subsetQ), 4(Q;)=0. We can suppose the set 4UQ| to be finite

symmetrical (if else one can take all permutations of all its elements). We can find some

countable family of spheres B, with the total measure of does not exceedinge, the union of

which contains the setAUQ|. LetA=(4,),4, =(1/27)logp,, where p, denote the n — th

prime number and B"™ ={t|{t{A} e AAZ ({tA}) Ur B,n=12,... We have B" cB"".
Therefore, if we put B = UHB(”) , then m(B) <supm(B"). The set X/ ({tA}) is closed. It is clear

that if we would restrict the sequences {tA} by taking only the components {t4 } with indexes
greater than n, and denote by {tA}’ the restricted sequence, then the set X'({tA}') were also a

closed set. Now we consider the products [0,1]" x {{tA}'} for every ¢ (the exterior parentheses in
the difference from the interior ones sign a set of one element). We have

{tA} e[01]" x {{tA}' } = 4,
because, if the series (9) above is divergent for given{fA}, then it is divergent also for every
point of the set [0,1]" x {{tA}'}. So the taken open set contains the all of such points (the example
below shows, that from this fact it does not follow the equality 4 =Q . Let/ =[0,1]; U =[0;1/2];
V =[1/2;1], and

Xy=UxUx-, X, =VxUx--, X, =IxVxUx-, ..., X =" xVxUx--,....

N

It is clear that (X ) = O for the all 5. Then #(X) =0, where



As it is seen from the construction of X the equality X =[0,1]' x X is satisfied for every s).

Since the set [0,1]" x {{tA}'} is closed then there exists only finite set R of natural numbers
such, that [0,1]" x {{tA}'} < UreR B, . Consider the set of restricted points &' of the spheres B, .
Let B/ ={0'| 0 € B.}. Then the intersection of them being an open set contains the point {tA} .
So we have

[0,1]" x{{tAY y < [0,1)" %[ _ B <|J . B., (10)
for every considered ¢. The analogical relation is true if we would exchange the point {tA} by

!

any limit pointw of the sequenceZ({tA}), becausew € B,. If by B’ we denote the union of all

open sets of the view ﬂreR B’ , then we get the relation
{tA} e[01]" x {{{A}'} = A< [0]]"xB'=| ] B, ,
for each considered values of ¢, or
{o}e[0,]]"x{'}} c Ac[0]]'xB' | B,
for any limit point of @. From this it follows that #(B")<&. The set B' is an open set and

Y'({tA}) = B'. Now we can apply the lemma 4 and get the bound m(B"™) < 6¢ces . So we have
m(B) < 6ce .

Consequently, by taking n=y, k=1, 2, 3,... we find such a limit point w, € Q\|J B, of
the sequence X ({tA}) for which the series

>

=1 ‘S‘Sl‘

F, (% +5,0 + a)k] - Fy (% +5,0, , + a)kj}do-dr

is converging for all values of 7¢ B. Since the set o \( ] B, is closed then the limit point
@ = ({tA}) of the sequence (@, ) will belong into o \[ J B, , because the series (9) is uniformly

convergent in the set Q \ U B, - So the series below is convergent

Fy, (% +5, 6+ i{f/\}) —Fuy, (% +8, 0, + i{fA})}dadT

=1 ‘S‘SV
for all values of ¢ ¢ B. Consequently, this series is convergent for all values of ¢, with exception

of their set of a measure of not exceeding 6ce. Sincee is any the latest result shows the

convergence of the series (9) for the almost all # such that0<7<1. It is clear that the last



condition is not a main one and the result is true for almost the all real z. Then by the lemma 2 for

any given & < 1 the sequence
Fy, (%+s, 0k+i{tA}j, (11)

for the all such 7 converges in the circle |s| < 7dy (& < 1) uniformly to some analytical function

Az 0):

lim F, (%+s+it, ﬁk] = f(s;51) .

k—x

In spite of the getting result we cannot use ¢ as a variable because left and right sides (right
side is defined as a limit of the sequence (11)) can have different arguments. Therefore, we
cannot use the principle of analytical continuation. To complete the proof of the theorem we take
any large positive number 7. Since the set of taken values of # is everywhere dense in the

interval [7, — 71, then the union of the circles C(¢f)={cotit+s: |s|<rJ (¢} contains the rectangle
K:o,-r5; <Res, <o, +rd,,~T<Ims, <T,
in which as it was shown above, the conditions of the lemma 2 are satisfied for the series
Foy (539)+ (Fy (55%) = Fyy (5,58 )+
Therefore it defines some analytical function F(s) in this rectangle.

For applying of the principle of analytical continuation we must take an one — connected
open domain, where both of the functions log{(s) and log F'(s) are regular. Let p,,...,p, are
all possible zeroes of the zeta — function in the rectangle K, on the contour of which the zeta —
function has not any zeroes. We take the cross cuts over the segments 1/2<Res<Rep,,
Ims =Imp,,/ =1,...,L. In the open domain of the considering rectangle the functions log{(s)
and log F(s) are regular. From the lemma 4 it follows that left side of the (11) converges
absolutely and uniformly to the {'(s) when t=0. Therefore, the equality {'(s) = F(s) is satisfied

in the open domain defined above by the principle of analytical continuation. Now we get the

equality £ (s)= F'(s) in the all rectangle (without the cross cut), because both of those functions

are regular. The proof of the theorem is completed.
6. Proof of the corollary.

The deduction of the corollary comes out from the theorem of Rouch’e (see [23,p.137]. It

1s enough to show that for any 0 <r» <1/4 in the circle C={s | |s -3/4 —it| =r}, on which any

possible zero of {(s) does not exist, we have {(s)# 0. Let

m= rgicn|é’ (s)|.



By the theorem had proven above we can find such n=n(#) for which in and on the contour C the

following inequality holds

F,(s;6,)—{(5)<0.25m.

Then on the C the inequality

F,(s:0,) =) <[¢(5)
is satisfied. By the theorem of Rouch’e the functions {'(s) and F,(s;6,) have the same number

of zeroes. in the C. The proof of the corollary is completed.
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