Simple MM

The enzymatic reaction is assumed to be irreversible, and the product does not bind to the enzyme.

$$
E+S \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} E S \xrightarrow{k_{2}} E+P
$$

We can write down the following kinetic equations where we use the quasi-steady-state assumption for the enzyme-substrate complex and the assumption that the total enzyme concentration is constant over the timescale considered:

$$
\begin{aligned}
\frac{d[E S]}{d t} & =k_{1}[E][S]-[E S]\left(k_{-1}+k_{2}\right) \stackrel{!}{=} 0 \\
\frac{d[P]}{d t} & =k_{2}[E S] \\
{[E]_{0} } & =[E]+[E S] \stackrel{!}{=} \mathrm{const}
\end{aligned}
$$

We then express [ES] in terms of the other variables

$$
\begin{aligned}
0 & =k_{1}[S]\left([E]_{0}-[E S]\right)-[E S]\left(k_{-1}+k_{2}\right) \\
k_{1}[S][E]_{0} & =k_{1}[S][E S]+[E S]\left(k_{-1}+k_{2}\right) \\
{[S][E]_{0} } & =[S][E S]+[E S] \underbrace{\frac{\left(k_{-1}+k_{2}\right)}{k_{-1}}}_{K_{M}} \\
{[S][E]_{0} } & =\left(K_{M}+[S]\right)[E S] \\
{[E S] } & =\frac{[S][E]_{0}}{K_{M}+[S]}
\end{aligned}
$$

We can now express the (initial) reaction rate as follows

$$
\begin{aligned}
\frac{d[P]}{d t} & =v_{0}=k_{2}[E S]=\underbrace{k_{2}[E]_{0}}_{v_{\max }} \frac{[S]}{K_{M}+[S]} \\
v_{0} & =\frac{v_{\max }[S]}{K_{M}+[S]} \\
\frac{1}{v_{0}} & =\frac{K_{M}}{v_{\max }} \cdot \frac{1}{[S]}+\frac{1}{v_{\max }}
\end{aligned}
$$

MM with intermediate

For the less simple case with an intermediate we have

$$
E+S \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} E S \xrightarrow{k_{2}} E I \xrightarrow{k_{3}} E+P
$$

We can write down the following kinetic equations where we use the quasi-steady-state assumptions for both intermediate enzyme complexes and the assumption that the total enzyme concentration is constant over the timescale considered:

$$
\begin{aligned}
\frac{d[P]}{d t} & =k_{3}[E I] \\
\frac{d[E I]}{d t} & =k_{2}[E S]-k_{3}[E I] \stackrel{!}{=} 0 \\
\frac{d[E S]}{d t} & =k_{1}[E][S]-[E S]\left(k_{-1}+k_{2}\right) \stackrel{!}{=} 0 \\
{[E]_{0} } & =[E]+[E S]+[E I] \stackrel{!}{=} \text { const }
\end{aligned}
$$

Now again we express [ES] in terms of the other variables

$$
\begin{aligned}
0 & =k_{1}[S]\left([E]_{0}-[E S]-[E I]\right)-[E S]\left(k_{-1}+k_{2}\right) \\
k_{1}[S]\left([E]_{0}-[E I]\right) & =k_{1}[S][E S]+[E S]\left(k_{-1}+k_{2}\right) \\
{[S]\left([E]_{0}-[E I]\right) } & =[S][E S]+[E S] \underbrace{\frac{\left(k_{-1}+k_{2}\right)}{k_{-1}}}_{K_{M}} \\
{[S]\left([E]_{0}-[E I]\right) } & =\left(K_{M}+[S]\right)[E S] \\
{[E S] } & =\frac{[S]\left([E]_{0}-[E I]\right)}{K_{M}+[S]}
\end{aligned}
$$

This time we have another intermediate complex, for which we have to find an expression, thus we solve for [EI]:

$$
\begin{aligned}
0 & =k_{2}[E S]-k_{3}[E I] \\
0 & =k_{2} \frac{[S]\left([E]_{0}-[E I]\right)}{K_{M}+[S]}-k_{3}[E I] \\
0 & =k_{2} \frac{[S][E]_{0}}{K_{M}+[S]}-k_{2} \frac{[S][E I]}{K_{M}+[S]}-k_{3}[E I] \\
k_{2} \frac{[S][E]_{0}}{K_{M}+[S]} & =\left(k_{2} \frac{[S]}{K_{M}+[S]}+k_{3}\right)[E I] \\
{[E I] } & =k_{2} \frac{[S][E]_{0}}{\left(K_{M}+[S]\right)\left(k_{2} \frac{[S]}{K_{M}+[S]}+k_{3}\right)} \\
{[E I] } & =k_{2} \frac{[S][E]_{0}}{k_{2}[S]+k_{3}\left(K_{M}+[S]\right)}
\end{aligned}
$$

Now we can express the (initial) reaction rate as follows

$$
\begin{aligned}
\frac{d[P]}{d t} & =v_{0}=k_{3}[E I]=k_{3} k_{2} \frac{[E]_{0}[S]}{k_{3} K_{M}+[S]\left(k_{2}+k_{3}\right)} \\
\frac{d[P]}{d t} & =\underbrace{\frac{k_{3} k_{2}}{k_{2}+k_{3}}}_{k_{\text {cat }}} \cdot \underbrace{\frac{[E]_{0}[S]}{\frac{k_{3}}{k_{2}+k_{3}} K_{M}}+[S]}_{K_{M}^{\prime}} \\
v_{0} & =k_{\text {cat }} \frac{[S][E]_{0}}{K_{M}^{\prime}+[S]}
\end{aligned}
$$

MM with intermediate and backreaction

For the more general case with an intermediate and reverse reaction we have

$$
E+S \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} E S \underset{k_{-2}}{\stackrel{k_{2}}{\longleftrightarrow}} E I \xrightarrow{k_{3}} E+P
$$

We can write down the following kinetic equations where we use the quasi-steady-state assumptions for both intermediate enzyme complexes and the assumption that the total enzyme concentration is constant over the timescale considered:

$$
\begin{aligned}
\frac{d[P]}{d t} & =k_{3}[E I] \\
\frac{d[E I]}{d t} & =k_{2}[E S]-k_{-2}[E I]-k_{3}[E I] \stackrel{!}{=} 0 \\
\frac{d[E S]}{d t} & =k_{1}[E][S]+k_{-2}[E I]-[E S]\left(k_{-1}+k_{2}\right) \stackrel{!}{=} 0 \\
{[E]_{0} } & =[E]+[E S]+[E I] \stackrel{!}{=} \text { const }
\end{aligned}
$$

Now again we express [ES] in terms of the other variables

$$
\begin{aligned}
0 & =k_{1}[S]\left([E]_{0}-[E S]-[E I]\right)+k_{-2}[E I]-[E S]\left(k_{-1}+k_{2}\right) \\
k_{1}[S]\left([E]_{0}-[E I]\right)+k_{-2}[E I] & =k_{1}[S][E S]+[E S]\left(k_{-1}+k_{2}\right) \\
{[S]\left([E]_{0}-[E I]\right)+\frac{k_{-2}}{k_{1}}[E I] } & =[S][E S]+[E S] \underbrace{\frac{\left(k_{-1}+k_{2}\right)}{k_{-1}}}_{K_{M}} \\
{[S]\left([E]_{0}-[E I]\right)+\frac{k_{-2}}{k_{1}}[E I] } & =\left(K_{M}+[S]\right)[E S] \\
{[E S] } & =\frac{[S]\left([E]_{0}-[E I]\right)}{K_{M}+[S]}+\frac{k_{-2}}{k_{1}} \frac{[E I]}{K_{M}+[S]}
\end{aligned}
$$

Here we have to solve for [EI]:

$$
\begin{aligned}
0 & =k_{2}[E S]-k_{-2}[E I]-k_{3}[E I] \\
0 & =k_{2} \frac{[S][E]_{0}}{K_{M}+[S]}-k_{2} \frac{[S][E I]}{K_{M}+[S]}+k_{2} \frac{k_{-2}}{k_{1}} \frac{[E I]}{K_{M}+[S]}-k_{-2}[E I]-k_{3}[E I] \\
k_{2} \frac{[S][E]_{0}}{K_{M}+[S]} & =\left(k_{2} \frac{[S]}{K_{M}+[S]}+k_{2} \frac{k_{-2}}{k_{1}} \frac{1}{K_{M}+[S]}+k_{-2}+k_{3}\right)[E I] \\
{[E I] } & =k_{2}[S][E]_{0} \frac{1}{k_{2}[S]+k_{2} \frac{k_{-2}}{k_{1}}+K_{M}\left(k_{-2}+k_{3}\right)+[S]\left(k_{-2}+k_{3}\right)}
\end{aligned}
$$

Now we can express the (initial) reaction rate as follows

$$
\begin{aligned}
\frac{d[P]}{d t} & =v_{0}=k_{3}[E I] \\
v_{0} & =k_{3} k_{2}[E]_{0} \cdot \frac{[S]}{K_{M}\left(k_{-2}+k_{3}\right)+[S]\left(k_{2}+k_{-2}+k_{3}\right)+k_{2} \frac{k_{-2}}{k_{1}}}
\end{aligned}
$$

We can try to simplify and again get an expression that is similar to the simple MichaelisMenten equation

$$
\begin{aligned}
& v_{0}=\underbrace{\frac{k_{3} k_{2}}{k_{2}+k_{-2}+k_{3}}}_{k_{\text {cat }}}[E]_{0} \cdot \frac{[S]}{\underbrace{K_{M} \frac{k_{-2}+k_{3}}{k_{2}+k_{-2}+k_{3}}}_{K_{M}^{\prime}}+[S]+\underbrace{\frac{k_{2} k_{-2}}{k_{1}\left(k_{2}+k_{-2}+k_{3}\right)}}_{\gamma}} \\
& v_{0}=k_{\text {cat }} \frac{[E]_{0}[S]}{K_{M}^{\prime}+[S]+\gamma}
\end{aligned}
$$

License

This document is published under the GNU Free Documentation License and under the CC-by 3.0 license. The Author is Hannes Röst (or Hannes Roest) and has to be attributed whenever this work is used. The full text of the licenses can be found under http://creativecommons.org/licenses/by/3.0/ for the Creative Commons license and http://www.gnu.org/copyleft/fdl.html for the GFDL.

