
C Programming

Wikibooks.org

June 9, 2012

This PDF was generated by a program written by Dirk Hünniger, which is freely available under an open source
license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf. The list of con-
tributors is included in chapter Contributors on page 239. The licenses GPL, LGPL and GFDL are included in
chapter Licenses on page 257, since this book and/or parts of it may or may not be licensed under one or more
of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 253. On the 28th of April 2012 the contents of the English as well as German Wikibooks and
Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An
URI to this license is given in the list of figures on page 253. If this document is a derived work from the con-
tents of one of these projects and the content was still licensed by the project under this license at the time of
derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section
4b of the license.

http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Why learn C? 3

2 History 5

3 What you need before you can learn 7
3.1 Getting Started . 7
3.2 Footnotes . 11

4 Using a Compiler 13

5 A taste of C 17

6 Intro exercise 19
6.1 Introductory Exercises . 19

7 Beginning C 21

8 Preliminaries 23
8.1 Basic Concepts . 23
8.2 Block Structure, Statements, Whitespace, and Scope 23
8.3 Basics of Using Functions . 24
8.4 The Standard Library . 24
8.5 Comments and Coding Style . 25

9 Compiling 27
9.1 Preprocessor . 27
9.2 Syntax Checking . 28
9.3 Object Code . 28
9.4 Linking . 28
9.5 Automation . 28

10 Structure and style 31
10.1 C Structure and Style . 31
10.2 Introduction . 31
10.3 Line Breaks and Indentation . 32
10.4 Comments . 34
10.5 Links . 37

11 Error handling 39
11.1 Preventing divide by zero errors . 40
11.2 Signals . 40

III

Contents

11.3 setjmp . 41

12 Variables 43
12.1 Declaring, Initializing, and Assigning Variables 43
12.2 Literals . 45
12.3 The Four Basic Data Types . 45
12.4 sizeof . 47
12.5 Data type modifiers . 47
12.6 const qualifier . 48
12.7 Magic numbers . 48
12.8 Scope . 49
12.9 Other Modifiers . 50

13 Simple Input and Output 55
13.1 Output using printf() . 55
13.2 Other output methods . 57
13.3 fputs() . 58
13.4 Input using scanf() . 58
13.5 Links . 59

14 Simple math 61
14.1 Operators and Assignments . 61

15 Further math 67
15.1 Trigonometric functions . 67
15.2 Hyperbolic functions . 68
15.3 Exponential and logarithmic functions . 69
15.4 Power functions . 71
15.5 Nearest integer, absolute value, and remainder functions 72
15.6 Error and gamma functions . 74
15.7 Further reading . 75

16 Control 77
16.1 Conditionals . 77
16.2 Loops . 84
16.3 One last thing: goto . 87
16.4 Examples . 89
16.5 Further reading . 89

17 Procedures and functions 91
17.1 More on functions . 92
17.2 Writing functions in C . 92
17.3 Using C functions . 94
17.4 Functions from the C Standard Library . 95
17.5 Variable-length argument lists . 99

18 Preprocessor 103
18.1 Directives . 103
18.2 Useful Preprocessor Macros for Debugging . 111

IV

Contents

19 Libraries 117
19.1 Further reading . 119

20 Standard libraries 121
20.1 History . 121
20.2 Design . 122
20.3 ANSI Standard . 122
20.4 Common support libraries . 125
20.5 Compiler built-in functions . 125
20.6 POSIX standard library . 125

21 File IO 127
21.1 Introduction . 127
21.2 Streams . 127
21.3 Standard Streams . 128
21.4 FILE pointers . 128
21.5 Opening and Closing Files . 129
21.6 Other file access functions . 130
21.7 Functions that Modify the File Position Indicator 131
21.8 Error Handling Functions . 133
21.9 Other Operations on Files . 133
21.10 Reading from Files . 135
21.11 Writing to Files . 142
21.12 References . 149

22 Beginning exercises 151
22.1 Variables . 151
22.2 Simple I/O . 153
22.3 Program Flow . 156
22.4 Functions . 156
22.5 Math . 156

23 In-depth C ideas 159

24 Arrays 161
24.1 Arrays . 161
24.2 Strings . 163

25 Pointers and arrays 165
25.1 Declaring pointers . 166
25.2 Assigning values to pointers . 166
25.3 Pointer dereferencing . 168
25.4 Pointers and Arrays . 169
25.5 Pointers in Function Arguments . 171
25.6 Pointers and Text Strings . 171
25.7 Pointers to Functions . 172
25.8 Practical use of function pointer in C . 173
25.9 Examples of pointer constructs . 175
25.10 sizeof . 176

V

Contents

25.11 External Links . 178

26 Memory management 179
26.1 Malloc . 179
26.2 The calloc function . 181
26.3 The realloc function . 181
26.4 The free function . 181
26.5 References . 182

27 Strings 183
27.1 Syntax . 183
27.2 The <string.h> Standard Header . 184
27.3 Examples . 197
27.4 Further reading . 197

28 Complex types 199
28.1 Data structures . 199
28.2 Type modifiers . 201

29 Networking in UNIX 203
29.1 A simple client . 203
29.2 A simple server . 205
29.3 Useful network functions . 206
29.4 FAQs . 206

30 Common practices 207
30.1 Dynamic multidimensional arrays . 207
30.2 Constructors and destructors . 208
30.3 Nulling freed pointers . 209
30.4 Macro conventions . 210
30.5 Further reading . 211

31 C and beyond 213

32 Language extensions 215
32.1 External links . 215

33 Mixing languages 217
33.1 Assembler . 217
33.2 Cg . 217
33.3 Java . 217
33.4 Perl . 218
33.5 Python . 218
33.6 For further reading . 218
33.7 References . 218

34 Code library 219

35 Computer Programming 221

VI

Contents

36 Statements 223

37 C Reference Tables 225

38 Reference Tables 227
38.1 List of Keywords . 227
38.2 List of Standard Headers . 227
38.3 Table of Operators . 229
38.4 Table of Data Types . 231

39 Compilers 237
39.1 Free (or with a free version) . 237
39.2 Commercial . 238

40 Contributors 239

List of Figures 253

41 Licenses 257
41.1 GNU GENERAL PUBLIC LICENSE . 257
41.2 GNU Free Documentation License . 258
41.3 GNU Lesser General Public License . 258

1

Contents

2

1 Why learn C?

C1 is themost commonly used programming language2 for writing operating systems3. Unix4 was
the first operating system written in C. Later Microsoft Windows5, Mac OS X6, and GNU/Linux7

were all written in C. Not only is C the language of operating systems, it is the precursor and inspiration
for almost all of the most popular high-level languages available today. In fact, Perl8, PHP9, and
Python10 are all written in C.

By way of analogy, let's say that you were going to be learning Spanish, Italian, French, or Portuguese.
Do you think knowing Latin would be helpful? Just as Latin was the basis of all of those languages,
knowing C will enable you to understand and appreciate an entire family of programming languages
built upon the traditions of C. Knowledge of C enables freedom.

1.0.1 Why C, and not assembly language?

While assembly language can provide speed and maximum control of the program, C provides porta-
bility.

Different processors are programmed using different Assembly languages and having to choose and
learn only one of them is too arbitrary. In fact, one of the main strengths of C is that it combines
universality and portability across various computer architectures while retaining most of the control
of the hardware provided by assembly language.

For example, C programs can be compiled and run on the HP 50g calculator (ARM processor), the
TI-89 calculator (68000 processor), Palm OS Cobalt smartphones (ARM processor), the original iMac
(PowerPC), the Arduino (Atmel AVR), and the Intel iMac (Intel Core 2 Duo). Each of these devices
has its own assembly language that is completely incompatible with the assembly language of any
other.

Assembly11, while extremely powerful, is simply too difficult to program large applications and hard to
read or interpret in a logical way. C is a compiled language, which creates fast and efficient executable
files. It is also a small "what you see is all you get" language: a C statement corresponds to at most a
handful of assembly statements, everything else is provided by library functions.

1 http://en.wikipedia.org/wiki/C%20%28programming%20language%29
2 http://en.wikipedia.org/wiki/programming%20language
3 http://en.wikipedia.org/wiki/operating%20systems
4 http://en.wikipedia.org/wiki/Unix
5 http://en.wikipedia.org/wiki/Microsoft%20Windows
6 http://en.wikipedia.org/wiki/Mac%20OS%20X
7 http://en.wikipedia.org/wiki/Linux
8 http://en.wikipedia.org/wiki/Perl
9 http://en.wikipedia.org/wiki/PHP
10 http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
11 http://en.wikipedia.org/wiki/Assembly%20language

3

http://en.wikipedia.org/wiki/C%20%28programming%20language%29
http://en.wikipedia.org/wiki/programming%20language
http://en.wikipedia.org/wiki/operating%20systems
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Assembly%20language

Why learn C?

So is it any wonder that C is such a popular language?

Like toppling dominoes, the next generation of programs follows the trend of its ancestors. Operating
systems designed in C always have system libraries designed in C. Those system libraries are in turn
used to create higher-level libraries (like OpenGL12, or GTK13), and the designers of those libraries
often decide to use the language the system libraries used. Application developers use the higher-level
libraries to design word processors, games, media players and the like. Many of them will choose to
program in the language that higher-level library uses. And the pattern continues on and on and on......

1.0.2 Why C, and not another high-level language?

The primary design of C is to produce portable code while maintaining performance and minimizing
footprint, as is the case for operating systems or other programs where a "high-level" interface would
affect performance. It is a stable and mature language whose features are unlikely to disappear for a
long time and has been ported to most, if not all, platforms.

For example, C programs can be compiled and run on the HP 50g calculator (ARM processor), the
TI-89 calculator (68000 processor), Palm OS Cobalt smartphones (ARM processor), the original iMac
(PowerPC), the Arduino (Atmel AVR), and the Intel iMac (Intel Core 2 Duo). While nearly all popular
programming languages will run on at least one of these devices, C may be the only programming
language that runs on more than 3 of these devices.

One powerful reason ismemory allocation. Unlikemost computer languages, C allows the programmer
to write directly to memory. Key constructs in C such as structs, pointers and arrays are designed to
structure, and manipulate memory in an efficient, machine-independent fashion. In particular, C gives
control over the memory layout of data structures. Moreover dynamic memory allocation is under
the control of the programmer, which inevitably means that memory deallocation is the burden of
the programmer. Languages like Java14 and Perl shield the programmer from having to worry about
memory allocation and pointers. This is usually a good thing, since dealing with memory allocation
when building a high-level program is a highly error-prone process. However, when dealing with low
level code such as the part of the OS that controls a device, C provides a uniform, clean interface.
These capabilities just do not exist in other languages such as Java.

While Perl, PHP, Python and Rubymay be powerful and support many features not provided by default
in C, they are not normally implemented in their own language. Rather, most such languages initially
relied on being written in C (or another high-performance programming language), and would require
their implementation be ported to a new platform before they can be used.

As with all programming languages, whether you want to choose C over another high-level language
is a matter of opinion and both technical and business requirements.

12 http://en.wikipedia.org/wiki/OpenGL
13 http://en.wikipedia.org/wiki/GTK
14 http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

4

http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/GTK
http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

2 History

The field of computing as we know it today started in 1947 with three scientists at Bell Telephone
Laboratories—William Shockley1, Walter Brattain2, and John Bardeen3—and their ground-
breaking invention: the transistor4. In 1956, the first fully transistor-based computer, the TX-05,
was completed at MIT. The first integrated circuit6 was created in 1958 by Jack Kilby7 at Texas
Instruments, but the first high-level programming language existed even before then.

"The Fortran8 project" was originally developed in 1954 by IBM.Named for "The IBMMathematical
Formula Translating System", the project had the purpose of creating and fostering development of a
procedural, imperative programming language that was especially suited to numeric computation and
scientific computing. It was a breakthrough in terms of productivity and programming ease (compared
to assembler languages) and speed (Fortran programs ran nearly as fast as, and in some cases, just as
fast as, programs written in assembler). Furthermore, Fortran was written at a high-enough level (and
thus was machine independent enough) to be the first widely adopted programming language. The
Algorithmic Language (Algol 589) was derived in 1958 from Fortran and evolved into Algol 60 in
1960. The Combined Programming Language (CPL)10 was then created out of Algol 6011 in 1963.
In 1967, it evolved into Basic CPL12, which was itself, the base for B13 in 1969. Finally, and in turn,
B was the root of C, which was created in 1971.

B was the first language in C's direct lineage. B was created by Ken Thompson14 at Bell Labs and was
an interpreted language15 used in early internal versions of the UNIX operating system. Thompson
and Dennis Ritchie16, also working at Bell Labs, improved B and called the result NB. Further ex-
tensions to NB created its logical successor, C, a compiled language17. Most of UNIX was rewritten
in NB, and then C, which resulted in a more portable operating system.

The portability of UNIX was the main reason for the initial popularity of both UNIX and C. Rather
than creating a new operating system for each new machine, system programmers could simply write

1 http://en.wikipedia.org/wiki/William%20Shockley
2 http://en.wikipedia.org/wiki/Walter%20Brattain
3 http://en.wikipedia.org/wiki/John%20Bardeen
4 http://en.wikipedia.org/wiki/transistor
5 http://en.wikipedia.org/wiki/TX-0
6 http://en.wikipedia.org/wiki/integrated%20circuit
7 http://en.wikipedia.org/wiki/Jack%20Kilby
8 http://en.wikipedia.org/wiki/Fortran
9 http://en.wikipedia.org/wiki/ALGOL%2058
10 http://en.wikipedia.org/wiki/Combined%20Programming%20Language
11 http://en.wikipedia.org/wiki/ALGOL%2060
12 http://en.wikipedia.org/wiki/BCPL
13 http://en.wikipedia.org/wiki/B%20%28programming%20language%29
14 http://en.wikipedia.org/wiki/Ken%20Thompson
15 http://en.wikipedia.org/wiki/interpreted%20language
16 http://en.wikipedia.org/wiki/Dennis%20Ritchie
17 http://en.wikipedia.org/wiki/compiled%20language

5

http://en.wikipedia.org/wiki/William%20Shockley
http://en.wikipedia.org/wiki/Walter%20Brattain
http://en.wikipedia.org/wiki/John%20Bardeen
http://en.wikipedia.org/wiki/transistor
http://en.wikipedia.org/wiki/TX-0
http://en.wikipedia.org/wiki/integrated%20circuit
http://en.wikipedia.org/wiki/Jack%20Kilby
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/ALGOL%2058
http://en.wikipedia.org/wiki/Combined%20Programming%20Language
http://en.wikipedia.org/wiki/ALGOL%2060
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/B%20%28programming%20language%29
http://en.wikipedia.org/wiki/Ken%20Thompson
http://en.wikipedia.org/wiki/interpreted%20language
http://en.wikipedia.org/wiki/Dennis%20Ritchie
http://en.wikipedia.org/wiki/compiled%20language

History

the few system-dependent parts required for the machine, and then write a C compiler for the new
system. Since most of the system utilities were thus written in C, it simply made sense to also write
new utilities in C.

The American National Standards Institute began work on standardizing the C language in 1983,
and completed the standard in 1989. The standard, ANSI X3.159-1989 "Programming Language C",
served as the basis for all implementations of C compilers. The standards were later updated in 1990
and 1999, allowing for features that were either in common use, or were appearing in C++.

6

3 What you need before you can learn

3.1 Getting Started

The goal of this book is to introduce you to the C programming language. Basic computer literacy is
assumed, but no special knowledge is needed.

The minimum software requirements to program in C is a text editor1, as opposed to a word pro-
cessor2. There are many text editors (see List of Text Editors3), the most popular being vi4, its
clones (such as Vim5), and Emacs6. A text editor with syntax highlighting7 is recommended, as
it can make code easier to read at a glance. Highlighting can also make it easy to spot syntax errors.
Most programmers' text editors on Windows and Unix systems can do this.

If you choose to use a text editor, you will be required to have a C compiler. A compiler is a program
that converts C code into executable machine code8.9

Popular C compilers Include:

Platform License Extra
C/C++ inter-
preter Ch10

softintegra-
tion11

Windows,
Linux, Mac
OSX, FreeBSD,
Solaris, AIX,
QNX, HP-UX

Ch Standard
Edition is free
for commercial
use

user friendly for
the beginners

OpenWat-
com12

openwat-
com13

DOS, Windows,
Netware, OS/2

Open source

Borland C
Compiler

cppbuilder14 Windows Freeware

1 http://en.wikipedia.org/wiki/text%20editor
2 http://en.wikipedia.org/wiki/word%20processor
3 http://en.wikipedia.org/wiki/List%20of%20text%20editors
4 http://en.wikipedia.org/wiki/vi
5 http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
6 http://en.wikipedia.org/wiki/Emacs
7 http://en.wikipedia.org/wiki/syntax%20highlighting
8 http://en.wikipedia.org/wiki/machine%20code
9 Actually, GCC's(GNU C Compiler) cc (C Compiler) translates the input .c file to the target cpu's assembly, output is

written to an .s file. Then as (assembler) generates a machine code file from the .s file. Pre-processing is done by
another sub-program cpp (C PreProcessor).

10 http://en.wikipedia.org/wiki/Ch%20interpreter
11 http://www.softintegration.com
12 http://en.wikipedia.org/wiki/Openwatcom
13 http://openwatcom.org
14 http://www.codegear.com/downloads/free/cppbuilder

7

http://en.wikipedia.org/wiki/text%20editor
http://en.wikipedia.org/wiki/word%20processor
http://en.wikipedia.org/wiki/List%20of%20text%20editors
http://en.wikipedia.org/wiki/vi
http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/syntax%20highlighting
http://en.wikipedia.org/wiki/machine%20code
http://en.wikipedia.org/wiki/Ch%20interpreter
http://www.softintegration.com
http://en.wikipedia.org/wiki/Openwatcom
http://openwatcom.org
http://www.codegear.com/downloads/free/cppbuilder

What you need before you can learn

Platform License Extra
Microsoft
Visual Studio
Express15

vstudio16 Windows Freeware light-weight,
powerful, and
student-friendly
version of an in-
dustry standard
compiler

Tiny C Com-
piler (TCC)17

tinycc18 GNU/Linux,
Windows

LGPL19 Small, fast,
newcomer-
friendly com-
piler.

GNU C Com-
piler20

gcc21 DOS22, Cyg-
win (w32)23,
MinGW
(w32)24,
OS/225, Mac
OS X, Unix,

GPL26 De facto stan-
dard. Ships
with most Unix
systems.

Though not absolutely needed, many programmers prefer and recommend using an Integrated de-
velopment environment27 (IDE) instead of a text editor and compiler. An IDE is a suite of programs
that developers need, combined into one convenient package, usually with a graphical user interface.
These programs include a compiler, linker, and text editor. They typically include a debugger, a tool
that will preserve your C source code after compilation and enable you to do such things as step through
it manually, or alter data as an aid to finding and correcting programming errors.

Popular IDEs Include:

Platform License Extra
CDT cdt28 Windows,

Mac OS X,
Unix

Open
source

A C/C++
plug-in for
Eclipse29,
a popular
open source
IDE.

15 http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
16 http://www.msdn.microsoft.com/vstudio/express/beginner
17 http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
18 http://www.tinycc.org
19 http://en.wikipedia.org/wiki/GNU%20Lesser%20General%20Public%20License
20 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
21 http://gcc.gnu.org
22 http://delorie.com/djgpp/
23 http://cygwin.com/
24 http://mingw.org/
25 http://www.edm2.com/0101/emx.html
26 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
27 http://en.wikipedia.org/wiki/Integrated%20development%20environment
28 http://eclipse.org/cdt
29 http://en.wikipedia.org/wiki/Eclipse%20%28computing%29

8

http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
http://www.msdn.microsoft.com/vstudio/express/beginner
http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
http://www.tinycc.org
http://en.wikipedia.org/wiki/GNU%20Lesser%20General%20Public%20License
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://gcc.gnu.org
http://delorie.com/djgpp/
http://cygwin.com/
http://mingw.org/
http://www.edm2.com/0101/emx.html
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://eclipse.org/cdt
http://en.wikipedia.org/wiki/Eclipse%20%28computing%29

Getting Started

Platform License Extra
Anjuta30 Anjuta31 Unix GPL32 A GTK+2

IDE for the
GNOME33

desktop en-
vironment

Geany34 geany35 Cross-
platform

GPL36 A
lightweight
cross-
platform
GTK+ IDE
based on
Scintilla

Little C
Compiler
(LCC)37

lcc38 Windows Free
for non-
commercial
use.

Xcode39 xcode40 Mac OS X Free Available
as down-
load when
registered
(paid) at
Apple De-
veloper
Connec-
tion41 or to
those with-
out Apple
Developer
Connection
subscrip-
tions at
Mac App
Store42.

30 http://en.wikipedia.org/wiki/Anjuta
31 http://anjuta.org
32 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
33 http://en.wikipedia.org/wiki/GNOME
34 http://en.wikipedia.org/wiki/Geany
35 http://www.geany.org/
36 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
37 http://en.wikipedia.org/wiki/LCC%20%28compiler%29
38 http://www.cs.virginia.edu/~lcc-win32
39 http://en.wikipedia.org/wiki/Xcode
40 http://developer.apple.com/tools/xcode
41 http://developer.apple.com/
42 http://itunes.apple.com/us/app/xcode/id448457090/

9

http://en.wikipedia.org/wiki/Anjuta
http://anjuta.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/GNOME
http://en.wikipedia.org/wiki/Geany
http://www.geany.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/LCC%20%28compiler%29
http://www.cs.virginia.edu/~lcc-win32
http://en.wikipedia.org/wiki/Xcode
http://developer.apple.com/tools/xcode
http://developer.apple.com/
http://itunes.apple.com/us/app/xcode/id448457090/

What you need before you can learn

Platform License Extra
Pelles C43 Pelles C44 Windows,

Pocket PC
"free"

Dev C++45 Dev C++46 Windows,
Linux (al-
pha version
only)

GPL47

Microsoft
Visual
Studio
Express48

Visual
Studio
Express49

Windows Free light
weight,
powerful,
student
friendly
version of
an indus-
try standard
compiler

Code::Blocks50Code::Blocks51Windows,
Linux, Mac
OS X

GPL52 3.0 Built to
meet users'
most de-
manding
needs. Very
extensi-
ble and
fully con-
figurable.

On GNU/LINUX, GCC is almost always included automatically.

On Microsoft Windows, Dev-C++ is recommended for beginners because it is easy to use, free, and
simple to install. However, the official release of Dev-C++ hasn't been updated since 22 February
2005.53 An unofficial version of Dev-C++ is being actively developed however.54 An alternate op-
tion, Microsoft Visual Studio Express, may also be helpful for beginners but requires setting up a
compilation project before making an executable file.

OnMacOSX, the Xcode IDE provides the compilers needed to compile various source files. Installing
Xcode installs both the command-line compilers as well as the graphical IDE.

43 http://en.wikipedia.org/wiki/Pelles%20C
44 http://smorgasbordet.com/pellesc/
45 http://en.wikipedia.org/wiki/Dev%20C%2B%2B%20
46 http://www.bloodshed.net/devcpp.html
47 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
48 http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
49 http://www.msdn.microsoft.com/vstudio/express/beginner
50 http://en.wikipedia.org/wiki/Code%3A%3ABlocks
51 http://www.codeblocks.org/
52 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
53 http://sourceforge.net/news/?group_id=10639
54 http://orwellengine.blogspot.com/

10

http://en.wikipedia.org/wiki/Pelles%20C
http://smorgasbordet.com/pellesc/
http://en.wikipedia.org/wiki/Dev%20C%2B%2B%20
http://www.bloodshed.net/devcpp.html
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
http://www.msdn.microsoft.com/vstudio/express/beginner
http://en.wikipedia.org/wiki/Code%3A%3ABlocks
http://www.codeblocks.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://sourceforge.net/news/?group_id=10639
http://orwellengine.blogspot.com/

Footnotes

3.2 Footnotes

pl:C/Czego potrzebujesz55

55 http://pl.wikibooks.org/wiki/C%2FCzego%20potrzebujesz

11

http://pl.wikibooks.org/wiki/C%2FCzego%20potrzebujesz

What you need before you can learn

12

4 Using a Compiler

4.0.1 Dev-C++

Dev C++1 is an Integrated Development Environment(IDE) for the C++ programming language, avail-
able from Bloodshed Software2.

C++ is a programming language which contains within itself, most of the C language, plus extensions.
Most C++ compilers will compile C programs, sometimes with a few adjustments (like invoking them
with a different name or command line switch). Therefore, you can use Dev C++ for C development.

However, Dev C++ is not the compiler. It is designed to use the MinGW3 or Cygwin4 versions of
GCC5 - both of which can be obtained as part of the Dev C++ package, although they are completely
different projects.

Dev C++ simply provides an editor, syntax highlighting, some facilities for the visualisation of code
(like class and package browsing) and a graphical interface to the chosen compiler. Because Dev C++
analyses the error messages produced by the compiler and attempts to distinguish the line numbers
from the errors themselves, the use of other compiler software is discouraged since the format of their
error messages is likely to be different.

The latest version of Dev-C++ is a beta6 for version 5. However, it still has a significant number of
bugs. All the features are there, and it is quite usable. It is considered one of the best free software C
IDEs available for Windows.

A version of Dev C++ for Linux is in the pipeline. It is not quite usable yet, however. Linux users
already have a wealth of IDEs available. (e.g. KDevelop7 and Anjuta8.) Most of the graphical text
editors, and other common editors such as emacs and vi(m), support syntax highlighting9.

1 http://en.wikipedia.org/wiki/Dev-C%20Plus%20Plus
2 http://www.bloodshed.net/
3 http://en.wikipedia.org/wiki/MinGW
4 http://en.wikipedia.org/wiki/Cygwin
5 http://en.wikipedia.org/wiki/GCC
6 http://en.wikipedia.org/wiki/beta%20version
7 http://en.wikipedia.org/wiki/KDevelop
8 http://en.wikipedia.org/wiki/Anjuta
9 http://en.wikipedia.org/wiki/syntax%20highlighting

13

http://en.wikipedia.org/wiki/Dev-C%20Plus%20Plus
http://www.bloodshed.net/
http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/GCC
http://en.wikipedia.org/wiki/beta%20version
http://en.wikipedia.org/wiki/KDevelop
http://en.wikipedia.org/wiki/Anjuta
http://en.wikipedia.org/wiki/syntax%20highlighting

Using a Compiler

4.0.2 GCC

The GNU Compiler Collection10 (GCC) is a free11 set of compilers developed by the Free Soft-
ware Foundation12.

Steps for Obtaining the GCC Compiler if You're on GNU/Linux

On GNU/Linux, Installing the GNU C Compiler can vary in method from distribution13 to distri-
bution.

• For Redhat14, get a GCC RPM15, e.g. using Rpmfind and then install (as root) using rpm -ivh
gcc-version-release.arch.rpm

• For Fedora Core16, install the GCC compiler (as root) by using yum17 install gcc.
• For Mandrake18, install the GCC compiler (as root) by using urpmi19 gcc
• For Debian20, install the GCC compiler (as root) by using apt-get21 install gcc.
• ForUbuntu22, install theGCC compiler (alongwith other necessary tools) by using sudo apt-get23

install build-essential, or by using Synaptic. You do not need Universe enabled.
• For Slackware24, the package is available on their website25 - simply download, and type installpkg
gcc-xxxxx.tgz

• For Gentoo26, you should already have GCC installed as it will have been used when you first
installed. To update it run (as root) emerge -uav gcc.

• For Arch Linux27, install the GCC compiler (as root) by using pacman -S gcc.
• If you cannot become root, get the GCC tarball from ftp://ftp.gnu.org/ and follow the instructions in
it to compile and install in your home directory. Be warned though, you need a C compiler to do
that - yes, GCC itself is written in C.

• You can use some commercial C compiler/IDE.

Steps for Obtaining the GCC Compiler if You're on BSD Family Systems

10 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
11 http://en.wikipedia.org/wiki/free%20software
12 http://en.wikipedia.org/wiki/Free%20Software%20Foundation
13 http://en.wikipedia.org/wiki/Linux%20distribution
14 http://en.wikipedia.org/wiki/Redhat
15 http://en.wikipedia.org/wiki/RPM%20Package%20Manager
16 http://en.wikipedia.org/wiki/Fedora%20Core
17 http://en.wikipedia.org/wiki/yum
18 http://en.wikipedia.org/wiki/Mandrake
19 http://en.wikipedia.org/wiki/urpmi
20 http://en.wikipedia.org/wiki/Debian
21 http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
22 http://en.wikipedia.org/wiki/Ubuntu
23 http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
24 http://en.wikipedia.org/wiki/Slackware
25 http://www.slackware.com/pb/
26 http://en.wikipedia.org/wiki/Gentoo
27 http://en.wikipedia.org/wiki/Arch%20Linux

14

http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/free%20software
http://en.wikipedia.org/wiki/Free%20Software%20Foundation
http://en.wikipedia.org/wiki/Linux%20distribution
http://en.wikipedia.org/wiki/Redhat
http://en.wikipedia.org/wiki/RPM%20Package%20Manager
http://en.wikipedia.org/wiki/Fedora%20Core
http://en.wikipedia.org/wiki/yum
http://en.wikipedia.org/wiki/Mandrake
http://en.wikipedia.org/wiki/urpmi
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/Ubuntu
http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/Slackware
http://www.slackware.com/pb/
http://en.wikipedia.org/wiki/Gentoo
http://en.wikipedia.org/wiki/Arch%20Linux

Footnotes

• For Mac OS X28, FreeBSD29, NetBSD30, OpenBSD31, DragonFly BSD32, Darwin33 the port of
GNU gcc is available in the base system, or it could be obtained using the ports collection or
pkgsrc34.

Steps for Obtaining the GCC Compiler if You're on Windows

There are two ways to use GCC on Windows: Cygwin and MinGW. Applications compiled with
Cygwinwill not run on any computer without Cygwin, soMinGW is recommended. MinGW is simpler
to install, and takes less disk space.

To get MinGW, do this:

1. Go to http://sourceforge.net/projects/mingw/35 download and save this to your hard drive.
2. Once the download is finished, open it and follow the instructions. You can also choose to install

additional compilers, or the tool Make, but these aren't necessary.
3. Now you need to set your PATH. Right-click on "My computer" and click "Properties". Go to

the "Advanced" tab and click on "Environment variables". Go to the "System variables" section
and scroll down until you see "Path". Click on it, then click "edit". Add ";C:\mingw\bin\"
(without the quotes) to the end.

4. To test if GCC works, open a command prompt and type "gcc". You should get the message
"gcc: no input files". If you get this message, GCC is installed correctly.

To get Cygwin, do this:

1. Go to http://www.cygwin.com36 and click on the "Install Cygwin Now" button in the upper
right corner of the page.

2. Click "run" in the window that pops up, and click "next" several times, accepting all the default
settings.

3. Choose any of the Download sites ("ftp.easynet.be", etc.) when that window comes up; press
"next" and the Cygwin installer should start downloading.

4. When the "Select Packages" window appears, scroll down to the heading "Devel" and click on
the "+" by it. In the list of packages that now displays, scroll down and find the "gcc-core"
package; this is the compiler. Click once on the word "Skip", and it should change to some
number like "3.4" etc. (the version number), and an "X" will appear next to "gcc-core" and
several other related packages that will now be downloaded.

5. Click "next" and the compiler as well as the Cygwin tools should start downloading; this could
take a while. While you're waiting for the installation to finish, download any text-editor de-
signed for programming. While Cygwin does include some, you may prefer doing a web search
to find other alternatives. While using a stock text editor is possible, it is not ideal.

6. Once the Cygwin downloads are finished and you have clicked "next", etc. to finish the instal-
lation, double-click the Cygwin icon on your desktop to begin the Cygwin "command prompt".
Your home directory will automatically be set up in the Cygwin folder, which now should be

28 http://en.wikipedia.org/wiki/Mac%20OS%20X
29 http://en.wikipedia.org/wiki/FreeBSD
30 http://en.wikipedia.org/wiki/NetBSD
31 http://en.wikipedia.org/wiki/OpenBSD
32 http://en.wikipedia.org/wiki/DragonFly%20BSD
33 http://en.wikipedia.org/wiki/Darwin
34 http://en.wikipedia.org/wiki/pkgsrc
35 http://sourceforge.net/projects/mingw/
36 http://www.cygwin.com

15

http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/OpenBSD
http://en.wikipedia.org/wiki/DragonFly%20BSD
http://en.wikipedia.org/wiki/Darwin
http://en.wikipedia.org/wiki/pkgsrc
http://sourceforge.net/projects/mingw/
http://www.cygwin.com

Using a Compiler

at "C:\cygwin" (the Cygwin folder is in some ways like a small unix/linux computer on your
Windows machine -- not technically of course, but it may be helpful to think of it that way).

7. Type "gcc" at the Cygwin prompt and press "enter"; if "gcc: no input files" or something like it
appears you have succeeded and now have the gcc compiler on your computer (and congratula-
tions -- you have also just received your first error message!).

The current stable (usable) version of GCC is 5.1.6 published on 2009-10-02, which supports several
platforms. In fact, GCC is not only a C compiler, but a family of compilers for several languages, such
as C++, Ada37, Java38, and Fortran39.

4.0.3 Embedded systems

• Most CPUs are microcontrollers in embedded systems, often programmed in C, but most of the
compilers mentioned above (except GCC) do not support such CPUs. For specialized compilers that
do support embedded systems, see Embedded Systems/C Programming40.

pl:C/Używanie kompilatora41

37 http://en.wikibooks.org/wiki/Ada%20Programming
38 http://en.wikibooks.org/wiki/Java
39 http://en.wikibooks.org/wiki/Fortran
40 http://en.wikibooks.org/wiki/Embedded%20Systems%2FC%20Programming
41 http://pl.wikibooks.org/wiki/C%2FU%01%7Cywanie%20kompilatora

16

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Java
http://en.wikibooks.org/wiki/Fortran
http://en.wikibooks.org/wiki/Embedded%20Systems%2FC%20Programming
http://pl.wikibooks.org/wiki/C%2FU%01%7Cywanie%20kompilatora

5 A taste of C

As with nearly every other programming language learning book, we use the Hello world1 program
to introduce you to C.

#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return 0;

}

This program prints "Hello, world!" and then exits.

Enter this code into your text editor or IDE, and save it as "hello.c".

Then, presuming you are using GCC, type gcc -o hello hello.c. This tells gcc to compile your
hello.c program into a form the machine can execute. The '-o hello' tells it to call the compiled program
'hello'.

If you have entered this correctly, you should now see a file called hello. This file is the binary version
of your program, and when run should display "Hello, world!"

Here is an example of how compiling and running looks when using a terminal on a unix system. ls
is a common unix command that will list the files in the current directory, which in this case is the di-
rectory progs inside the home directory (represented with the special tilde, ˜, symbol). After running
the gcc command, ls will list a new file, hello in green. Green is the standard color coding of ls
for executable files.

˜/progs$ ls
hello.c
˜/progs$ gcc -o hello hello.c
˜/progs$ ls
hello hello.c
˜/progs$./hello
Hello, world!
˜/progs$

5.0.4 Part-by-part explanation

#include <stdio.h> tells the C compiler to find the standard header called <stdio.h>2 and add it to
this program. In C, you often have to pull in extra optional components when you need them. <stdio.h>

1 http://en.wikipedia.org/wiki/Hello%20world%20program
2 http://en.wikipedia.org/wiki/stdio.h

17

http://en.wikipedia.org/wiki/Hello%20world%20program
http://en.wikipedia.org/wiki/stdio.h

A taste of C

contains descriptions of standard input/output functions which you can use to send messages to a user,
or to read input from a user.

int main(void) is something you'll find in every C program. Every program has a main function.
Generally, the main function is where a program begins. However, one C program can be scattered
across multiple files, so you won't always find a main function in every file. The int at the beginning
means that main will return an integer to the operating system when it is finished.

printf("Hello, world!\n"); is the statement that actually puts the message to the screen. printf
is the formatted printing function that is declared in the file stdio.h - which is why you had to #include
that at the start of the program. \n is an escape sequence which adds a new line at the end of the printed
text.

return 0;will return zero (which is the integer3 referred to on line 3) to the operating system. When
a program runs successfully its return value is zero (GCC4 complains if it doesn't when compiling). A
non-zero value is returned to indicate a warning or error.

The empty line is there because it is (at least on UNIX) considered good practice to end a file with a
new line. In gcc using the -Wall -pedantic -ansi options, if the file does not end with a new
line this message is displayed: "warning: no newline at end of file". (The newline isn't shown on the
example because MediaWiki automatically removes it)

3 http://en.wikipedia.org/wiki/Integer%20%28computer%20science%29

18

http://en.wikipedia.org/wiki/Integer%20%28computer%20science%29

6 Intro exercise

6.1 Introductory Exercises

6.1.1 On GCC

If you are using a Unix(-like) system, such as GNU/Linux1,Mac OS X2, or Solaris3, it will probably
have GCC installed. Type the hello world program into a file called first.c and then compile it with
gcc. Just type:

gcc first.c

Then run the program by typing:

./a.out

or, If you are using Cygwin.

a.exe

You should now see your very first C program

There are a lot of options you can use with the gcc compiler. For example, if you want the output to
have a name other than a.out, you can use the -o option. The following shows a few examples:

-c

indicates that the compiler is supposed to generate an object file, which can be later linked to other
files to form a final program.

-o

indicates that the next parameter is the name of the resulting program (or library). If this option is not
specified, the compiled program will, for historic reasons, end up in a file called "a.out" or "a.exe"
(for cygwin users).

-g3

indicates that debugging information should be added to the results of compilation.

1 http://en.wikipedia.org/wiki/GNU%2FLinux
2 http://en.wikipedia.org/wiki/Mac%20OS%20X
3 http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment

19

http://en.wikipedia.org/wiki/GNU%2FLinux
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment

Intro exercise

-O2 -ffast-math

indicates that the compilation should be optimized.

-W -Wall -fno-common -Wcast-align -Wredundant-decls -Wbad-function-cast -Wwrite-strings
-Waggregate-return -Wstrict-prototypes -Wmissing-prototypes

indicates that gcc should warn about many types of suspicious code that are likely to be incorrect.

-E

indicates that gcc should only preprocess the code; this is useful when you are having trouble under-
standing what gcc is doing with #include and #define, among other things.

All the options are well documented in the manual page4 for GCC.

6.1.2 On IDEs

If you are using a commercial IDE you may have to select console project, and to compile you just
select build from the menu or the toolbar. The executable will appear inside the project folder, but you
should have a menu button so you can just run the executable from the IDE.

4 http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Debugging-Options.html

20

http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Debugging-Options.html

7 Beginning C

21

Beginning C

22

8 Preliminaries

8.1 Basic Concepts

Before one gets too deep into learning C syntax and programming constructs, it is beneficial to learn
the meaning of a few key terms that are central to a thorough understanding of C.

8.2 Block Structure, Statements, Whitespace, and Scope

Nowwe discuss the basic structure of a C program. If you're familiar with PASCAL1, you may have
heard it referred to as a block-structured language. C does not have complete block structure (and
you'll find out why when you go over functions in detail) but it is still very important to understand
what blocks are and how to use them.

So what is in a block? Generally, a block consists of executable statements, or the text the compiler
will attempt to turn into executable instructions, and the whitespace that surrounds them.

In C, blocks begin with an opening brace "{" and end with a closing brace "}". Blocks can contain
other blocks which can contain their own blocks, and so on. Statements always end with a semicolon
(;) character. Since C is a free-format language, several statements can share a single line in the source
file. There are several kinds of statements, including assignment, conditional and flow-control. A
substantial portion of this book deals with statement construction.

Whitespace refers to the tab, space and newline/EOL (End Of Line) characters that separate the text
characters that make up source code lines. Like many things in life, it's hard to appreciate whitespace
until it's gone. To a C compiler, the source code

printf("Hello world"); return 0;

is the same as

printf("Hello world");
return 0;

which is the same as

1 http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

23

http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

Preliminaries

printf (
"Hello world") ;

return 0;

The compiler simply skips over whitespace. However, it is common practice to use spaces (and tabs)
to organize source code for human readability. You can use blocks without a conditional, loop, or
other statement to organize your code.

In C, most of the time we do not want other functions or other programmer's routines2 accessing data
that we are currently manipulating. This is why it is important to understand the concept of scope.

Scope describes the level at which a piece of data or a function is visible. There are two kinds of scope
in C, local and global. When we speak of something being global, we speak of something that can
be seen or manipulated from anywhere in the program. When we speak of something being local, we
speak of something that can be seen or manipulated only within the block it was declared.

8.3 Basics of Using Functions

Functions are a big part of programming. A function is a special kind of block that performs a well-
defined task. If a function is well-designed, it can enable a programmer to perform a task without
knowing anything about how the function works. The act of requesting a function to perform its task
is called a function call. Many functions require a caller to hand it certain pieces of data needed to
perform its task; these are called arguments. Many functions also return a value to the caller when
they're finished; this is called a return value (the return value in the above program is 0).

The things you need to know before calling a function are:

• What the function does
• The data type (discussed later) of the arguments and what they mean
• The data type of the return value and what it means

All code other than global data definitions and declarations needs to be a part of a function.

Every executable program needs to have one, and only one,main function, which is where the program
begins executing.

We will discuss functions in more detail in a later chapter, C Programming/Procedures and func-
tions3.

8.4 The Standard Library

In 1983, when C was in the process of becoming standardized, the American National Standards
Institute4 (ANSI) formed a committee to establish a standard specification of C known as "ANSI
C". That standard specification created a basic set of functions common to each implementation of C,

2 http://en.wikipedia.org/wiki/Subroutine
3 Chapter 17 on page 91
4 http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute

24

http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute

Comments and Coding Style

which is referred to as the Standard Library5. The Standard Library provides functions for tasks
such as input/output, string manipulation, mathematics, files, and memory allocation. The Standard
Library does not provide functions that are dependent on specific hardware or operating systems, like
graphics, sound, or networking. In the "Hello, World", program, a Standard Library function is used
printf which outputs lines of text to the standard output6 stream.

8.5 Comments and Coding Style

Comments are text inserted into the source code of a program that serve no purpose other than docu-
menting the code. So, it is not necessary to use comments to your program but it will help you figure
out things while you are scanning through a huge program source code that you/someone have/has
written earlier.

Types of comments C has two types of comments : 1. Multi-line comment : A comment may begin
with /* and end with */. This type of comment may span part of a line or may span many lines. 2.
Single line comment : For a one line comment statement, you can use the token "//" at the beginning
of the statement. The compiler ignores all text from a "//" until the end of a line.

Good commenting is considered essential to software development, not just because others may need to
read your code, but because youmay need to revise your code after writing it and will want to quickly
understand how it works. In general, it is a good idea to comment anything that is not immediately
obvious to a competent programmer (such as the purpose of a function, variable or code). However,
you should avoid overdoing comments, since over-commenting may actually make your code more
difficult to read and waste space.

Good coding style habits are important to adopt for the simple reason that code should be intuitive
and readable, which is, after all, the purpose of a high-level programming language like C. In general,
provide ample white space, indent so that the opening brace of a block and the closing brace of a block
are vertically aligned, and provide evocative names for your functions and variables. Throughout this
text we will be providing more style and coding style tips for you. Do try and follow these tips: they
will make your code easier for you and others to read and understand.

pl:C/Podstawy7

5 http://en.wikipedia.org/wiki/C%20standard%20library
6 http://en.wikipedia.org/wiki/standard%20output
7 http://pl.wikibooks.org/wiki/C%2FPodstawy

25

http://en.wikipedia.org/wiki/C%20standard%20library
http://en.wikipedia.org/wiki/standard%20output
http://pl.wikibooks.org/wiki/C%2FPodstawy

Preliminaries

26

9 Compiling

Having covered the basic concepts of C programming, we can now briefly discuss the process of
compilation.

Like any programming language, C by itself is completely incomprehensible to a microprocessor1.
Its purpose is to provide an intuitive way for humans to provide instructions that can be easily converted
into machine code that is comprehensible to a microprocessor. The compiler is what takes this code,
and translates it into the machine code.

To those new to programming, this seems fairly simple. A naive compiler might read in every source
file, translate everything into machine code, and write out an executable. This could work, but has two
serious problems. First, for a large project, the computer may not have enough memory to read all of
the source code at once. Second, if you make a change to a single source file, you would rather not
have to recompile the entire application.

To deal with these problems, compilers break their job down into steps; for each source file (each
.c file), the compiler reads the file, reads the files it references with #include, and translates it to
machine code. The result of this is an "object file" (.o). Once every object file is made, a "linker"
collects all of the object files and writes the actual program. This way, if you change one source file,
only that file needs to be recompiled and then the application needs to be re-linked.

Without going into the painful details, it can be beneficial to have a superficial understanding of the
compilation process. In brief, here it is:

9.1 Preprocessor

The preprocessor provides the ability for the inclusion of header files, macro expansions, conditional
compilation, and line control. Many times you will need to give special instructions to your compiler.
This is done by inserting preprocessor directives2 into your code. When you begin compiling your
code, a special program called the preprocessor scans the source code and performs simple substitution
of tokenized strings for others according to predefined rules. The preprocessor is not a part of the C
language.

In C language, all preprocessor directives begin with the pound character (#). You can see one prepro-
cessor directive in the Hello world program3 introduced in A taste of C4:

Example:

1 http://en.wikipedia.org/wiki/microprocessor
2 http://en.wikipedia.org/wiki/Preprocessor%20directives
3 http://en.wikibooks.org/wiki/Hello%20world%20program
4 Chapter 5 on page 17

27

http://en.wikipedia.org/wiki/microprocessor
http://en.wikipedia.org/wiki/Preprocessor%20directives
http://en.wikibooks.org/wiki/Hello%20world%20program

Compiling

#include <stdio.h>

This directive causes the header to be included into your program. Other directives such as #pragma
control compiler settings and macros. The result of the preprocessing stage is a text string. You can
think of the preprocessor as a non-interactive text editor that prepares your code for the compilation
step. The language of preprocessor directives is agnostic to the grammar of C, so the C preprocessor
can also be used independently to process other kinds of text files.

9.2 Syntax Checking

This step ensures that the code is valid and will sequence into an executable program. Under most
compilers, you may get messages or warnings indicating potential issues with your program (such as
a statement always being true or false, etc.)

When an error is detected in the program, the compiler will normally report the file name and line that
is preventing compilation.

9.3 Object Code

The compiler produces a machine code equivalent of the source code that can then be linked into the
final program. The code itself can't be executed yet, as it has to complete the linking stage.

It's important to note after discussing the basics that compilation is a "one way street". That is, com-
piling a C source file into machine code is easy, but "decompiling" (turning machine code into the C
source that creates it) is not. Decompilers for C do exist, but they rarely create useful code.

9.4 Linking

Linking combines the separate object codes into one complete program by integrating libraries and the
code and producing either an executable program5 or a library6. Linking is performed by a linker,
which is often part of a compiler.

Common errors during this stage are either missing functions, or duplicate functions.

9.5 Automation

For large C projects, many programmers choose to automate compilation, both in order to reduce user
interaction requirements and to speed up the process by only recompiling modified files.

5 http://en.wikipedia.org/wiki/Executable
6 http://en.wikipedia.org/wiki/Library%20%28computing%29

28

http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Library%20%28computing%29

Automation

Most integrated development environments have some kind of project management, which makes such
automation very easy. On UNIX-like systems, make7 and Makefiles are often used to accomplish the
same.

de:C-Programmierung: Kompilierung8 es:Programación_en_C/Compilar_un_programa9 et:Programmeerimiskeel
C/Kompileerimine10 fr:ProgrammationC-C%2B%2B/Modularité et compilation11 it:C/Compilatore
e precompilatore/Compilatore12 pt:Programar em C/Utilizando um compilador13

7 http://en.wikibooks.org/wiki/make
8 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kompilierung
9 http://es.wikibooks.org/wiki/Programaci%F3n_en_C%2FCompilar_un_programa
10 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKompileerimine
11 http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%E9%20et%

20compilation
12 http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FCompilatore
13 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FUtilizando%20um%20compilador

29

http://en.wikibooks.org/wiki/make
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kompilierung
http://es.wikibooks.org/wiki/Programaci%F3n_en_C%2FCompilar_un_programa
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKompileerimine
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%E9%20et%20compilation
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%E9%20et%20compilation
http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FCompilatore
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FUtilizando%20um%20compilador

Compiling

30

10 Structure and style

10.1 C Structure and Style

This is a basic introduction to good code style in the C Programming Language. It is designed to
provide information on how to effectively use indentation, comments, and other elements that will
make your C code more readable. It is not a tutorial on actually programming in C.

As a beginning programmer, the point of creating structure in the programs' code might not be clear, as
the compiler doesn't care about the difference. However, as programs become complex, chances are
that writing the program has become a joint effort. (Or others might want to see how it was accom-
plished.) Therefore, the code is no longer designed purely for a compiler to read.

In the following sections, we will attempt to explain good programming practices that will in turn make
your programs clearer and more effective.

10.2 Introduction

In C, programs are composed of statements. These statements are terminated with a semi-colon, and
are collected in sections known as functions. By convention, a statement should be kept on its own
line, as shown in the example below:

#include <stdio.h>

int main(void)
{

printf("Hello, World!\n");
return 0;

}

The following block of code is essentially the same: while it contains exactly the same code, and will
compile and execute with the same result, the removal of spacing causes an essential difference making
it harder to read:

#include <stdio.h>
int main(void) {printf("Hello, World!\n");return 0;}

The simple use of indents and line breaks can greatly improve the readability of the code; without
making any impact whatsoever on how the code performs. By having readable code, it is much easier
to see where functions and procedures end, and which lines are part of which loops and procedures.

This book is going to focus on the above piece of code, and how to improve it. Please note that during
the course of the tutorial, there will be many (apparently) redundant pieces of code added. These are
only added to provide examples of techniques that we will be explaining, without breaking the overall
flow of code that the program achieves.

31

Structure and style

10.3 Line Breaks and Indentation

The addition of white space inside your code is arguably the most important part of good code structure.
Effective use of white space can create a visual scale of how your code flows, which can be very
important when returning to your code when you want to maintain it.

10.3.1 Line Breaks

B Warning
Note that we have used line numbers here; they are not a part of the actual code. They are only
there for reference in this book.

With minimal line breaks, code is barely readable by humans, and may be hard to debug or understand:

#include <stdio.h>
int main(void){ int i=0; printf("Hello, World!"); for (i=0; i<1; i++){
printf("\n"); break; } return 0; }

Rather than putting everything on one line, it is much more readable to break up long lines so that each
statement and declaration goes on its own line. After inserting line breaks, the code will look like this:

#include <stdio.h>
int main(void)
{
int i=0;
printf("Hello, World!");
for (i=0; i<1; i++)
{
printf("\n"); break;
}
return 0;
}

10.3.2 Blank Lines

Blank lines should be used to offset the main components of your code. Use them

• After precompiler declarations.
• After new variables are declared.

Based on these two rules, there should now be two line breaks added.

• After line 1, because line 1 has a preprocessor directive
• After line 5, because line 5 contains a variable declaration

This will make the code much more readable than it was before:

The following lines of code have line breaks between functions, but without indentation.

#include <stdio.h>

int main(void)
{

32

Line Breaks and Indentation

int i=0;

printf("Hello, World!");
for (i=0; i<1; i++)
{
printf("\n");
break;
}
return 0;
}

But this still isn't as readable as it can be.

10.3.3 Indentation

Note:
Many text editors automatically indent appropriately when you hit the enter/return key.

Although adding simple line breaks between key blocks of code can make code easier to read, it pro-
vides no information about the block structure of the program. Using the tab key can be very helpful
now: indentation visually separates paths of execution by moving their starting points to a new column
in the line. This simple practice will make it much easier to read and understand code. Indentation
follows a fairly simple rule:

• All code inside a new block should be indented by one tab1

2 more than the code in the previous path.

Based on the code from the previous section, there are two blocks requiring indentation:

• Lines 5 to 13
• Lines 10 and 11

#include <stdio.h>

int main(void)
{

int i=0;

printf("Hello, World!");
for (i=0; i<1; i++)
{

printf("\n");
break;

}
return 0;

1
2

Several programmers recommend "use spaces for indentation. Do not use tabs in your code. You should set your
editor to emit spaces when you hit the tab key." http://google-styleguide.googlecode.com/svn/trunk/
cppguide.xml http://www.jwz.org/doc/tabs-vs-spaces.html
Other programmers disagree. http://diagrammes-modernes.blogspot.com/2006/04/
tab-versus-spaces.html http://www.derkarl.org/why_to_tabs.html
Regardless of whether you prefer spaces or tabs, make sure you keep it consistent with projects you are working on,
because mixing tabs and spaces can cause code to become unreadable.

33

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.jwz.org/doc/tabs-vs-spaces.html
http://diagrammes-modernes.blogspot.com/2006/04/tab-versus-spaces.html
http://diagrammes-modernes.blogspot.com/2006/04/tab-versus-spaces.html
http://www.derkarl.org/why_to_tabs.html

Structure and style

}

It is now fairly obvious as to which parts of the program fit inside which blocks. You can tell which
parts of the program the coder has intended to loop, and which ones he has not. Although it might not
be immediately noticeable, once many nested loops and paths get added to the structure of the program,
the use of indentation can be very important. This indentation makes the structure of your program
clear.

Indentation was originally one tab character, or the equivalent of 8 spaces. Research since the original
indent size has shown that indents between 2 to 4 characters are easier to read3, resulting in such tab
sizes being used as default in modern IDEs. However, an indent of 8 characters may still be in use for
some systems4.

10.4 Comments

Comments in code can be useful for a variety of purposes. They provide the easiest way to set off
specific parts of code (and their purpose); as well as providing a visual "split" between various parts of
your code. Having good comments throughout your code will make it much easier to remember what
specific parts of your code do.

Comments in modern flavors of C (and many other languages) can come in two forms:
//Single Line Comments (added by C99 standard, famously known as c++ style of
comments)

and

/*Multi-Line
Comments*/ (only form of comments supported by C89 standard)

Note that Single line comments are a fairly recent addition to C, so some compilers may not support
them. A recent version of GCC5 will have no problems supporting them.

This section is going to focus on the various uses of each form of commentary.

10.4.1 Single-line Comments

Single-line comments are most useful for simple 'side' notes that explain what certain parts of the code
do. The best places to put these comments are next to variable declarations, and next to pieces of code
that may need explanation.

Based on our previous program, there are two good places to place comments

• Line 5, to explain what 'int i' is going to do
• Line 11, to explain why there is a 'break' keyword.

This will make our program look something like

3 http://www.oualline.com/vim-cook.html#drawing
4 [http://lxr.linux.no/#linux+v2.6.31/Documentation/CodingStyle Linux Kernel coding standard
5 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

34

http://www.oualline.com/vim-cook.html#drawing
http://lxr.linux.no/#linux+v2.6.31/Documentation/CodingStyle
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

Comments

#include <stdio.h>

int main(void)
{

int i=0; // loop variable.

printf("Hello, World!");

for (i=0; i<1; i++) {
printf("\n");
break; //Exits 'for' loop.

}

return 0;
}

10.4.2 Multi-line Comments

Note:
Single-line comments are a new feature, so many C programmers only use multi-line comments.

Multi-line comments are most useful for long explanations of code. They can be used as copyright/li-
censing notices, and they can also be used to explain the purpose of a block of code. This can be useful
for two reasons: They make your functions easier to understand, and they make it easier to spot errors
in code. If you know what a block is supposed to do, then it is much easier to find the piece of code
that is responsible if an error occurs.

As an example, suppose we had a program that was designed to print "Hello, World! " a certain number
of lines, a specified number of times. There would bemany for loops in this program. For this example,
we shall call the number of lines i, and the number of strings per line as j.

A good example of a multi-line comment that describes 'for' loop is purpose would be:

/* For Loop (int i)
Loops the following procedure i times (for number of lines). Performs 'for'

loop j on each loop,
and prints a new line at end of each loop.

*/

This provides a good explanation of what is purpose is, whilst not going into detail of what jdoes.
By going into detail over what the specific path does (and not ones inside it), it will be easier to
troubleshoot the path.
Similarly, you should always include a multi-line comment before each function, to explain the role,
preconditions and postconditions of each function. Always leave the technical details to the individual
blocks inside your program - this makes it easier to troubleshoot.

A function descriptor should look something like:

/* Function : int hworld (int i,int j)
Input : int i (Number of lines), int j (Number of instances per line)
Output : 0 (on success)
Procedure: Prints "Hello, World!" j times, and a new line to standard output

over i lines.
*/

35

Structure and style

This system allows for an at-a-glance explanation of what the function should do. You can then go
into detail over how each aspect of the program is achieved later on in the program.

Finally, if you like to have aesthetically-pleasing source code, the multi-line comment system allows
for the easy addition comment boxes. These make the comments stand out much more than they would
without otherwise. They look like this.

/***************************************
* This is a multi line comment
* That is nearly surrounded by a
* Cool, starry border!
***************************************/

Applied to our original program, we can now include a much more descriptive and readable source
code:

#include <stdio.h>

int main(void)
{

/***

* Function: int main(void)
* Input : none
* Output : Returns 0 on success
* Procedure: Prints "Hello, World!" and a new line to standard output then

exits.

**/
int i=0; //Temporary variable used for 'for' loop.

printf("Hello, World!");

/* FOR LOOP (int i)
Prints a new line to standard output, and exits */

for (i=0; i<1; i++)
{

printf("\n");
break; //Exits 'for' loop.

}

return 0;
}

This will allow any outside users of the program an easy way to comprehend what the code functions
are, and how it operates. It also inhibits uncertainty with other like-named functions.

A few programmers add a column of stars on the right side of a block comment:

/***************************************
* This is a multi line comment *
* that is completely surrounded by a *
* cool, starry border! *
***************************************/

But most programmers don't put any stars on the right side of a block comment. They feel that aligning
the right side is a waste of time.

36

Links

Comments written in source files can be used for documenting source code automatically by using
popular tools like Doxygen677

10.5 Links

• Aladdin's C coding guidelines8 - A more definitive C coding guideline.
• C/C++ Programming Styles9 GNU Coding styles & Linux Kernel Coding style
• C Programming Tutorial10 C Programming Tutorial

et:Programmeerimiskeel C/Stiil11

6 "Coding Conventions for C++ and Java" ˆ{http://www.macadamian.com/index.php?option=com_
content&task=view&id=34&Itemid=37} "all the block comments illustrated in this document have no pretty
stars on the right side of the block comment. This deliberate choice was made because aligning those pretty stars is a
large waste of time and discourages the maintenance of in-line comments.",

7 wiki:BigBlocksOfAsterisks ˆ{http://en.wikibooks.org/wiki/wiki%3ABigBlocksOfAsterisks}
, "Code craft" ˆ{http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=
programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=
NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=
8&ct=result} by Pete Goodliffe page 82, Falvotech "C Programming Style Guide" ˆ{http:
//www.falvotech.com/content/publications/conventions/c/} , Fedora Directory Server Cod-
ing Style ˆ{http://directory.fedoraproject.org/wiki/Coding_Style}

8 http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm
9 http://www.mycplus.com/c.asp?ID=12
10 http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
11 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FStiil

37

http://www.macadamian.com/index.php?option=com_content&task=view&id=34&Itemid=37
http://www.macadamian.com/index.php?option=com_content&task=view&id=34&Itemid=37
http://en.wikibooks.org/wiki/wiki%3ABigBlocksOfAsterisks
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://www.falvotech.com/content/publications/conventions/c/
http://www.falvotech.com/content/publications/conventions/c/
http://directory.fedoraproject.org/wiki/Coding_Style
http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm
http://www.mycplus.com/c.asp?ID=12
http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FStiil

Structure and style

38

11 Error handling

C does not provide direct support for error handling (also known as exception handling). By conven-
tion, the programmer is expected to prevent errors from occurring in the first place, and test return
values from functions. For example, -1 and NULL are used in several functions such as socket() (Unix
socket programming) or malloc() respectively to indicate problems that the programmer should be
aware about. In a worst case scenario where there is an unavoidable error and no way to recover from
it, a C programmer usually tries to log the error and "gracefully" terminate the program.

There is an external variable called "errno", accessible by the programs after including <errno.h> - that
file comes from the definition of the possible errors that can occur in some Operating Systems (e.g.
Linux - in this case, the definition is in include/asm-generic/errno.h) when programs ask for resources.
Such variable indexes error descriptions accessible by the function 'strerror(errno)'.

The following code tests the return value from the library function malloc to see if dynamic memory
allocation completed properly:

#include <stdio.h> /* fprintf */
#include <errno.h> /* errno */
#include <stdlib.h> /* malloc, free, exit */
#include <string.h> /* strerror */

extern int errno;

int main(void)
{

/* pointer to char, requesting dynamic allocation of 2,000,000,000
* storage elements (declared as an integer constant of type
* unsigned long int). (If your system has less than 2GB of memory
* available, then this call to malloc will fail)
*/
char *ptr = malloc(2000000000UL);

if (ptr == NULL){
puts("malloc failed");
puts(strerror(errno));

}
else
{

/* the rest of the code hereafter can assume that 2,000,000,000
* chars were successfully allocated...
*/
free(ptr);

}

exit(EXIT_SUCCESS); /* exiting program */
}

The code snippet above shows the use of the return value of the library function malloc to check for
errors. Many library functions have return values that flag errors, and thus should be checked by
the astute programmer. In the snippet above, a NULL pointer returned from malloc signals an error

39

Error handling

in allocation, so the program exits. In more complicated implementations, the program might try to
handle the error and try to recover from the failed memory allocation.

11.1 Preventing divide by zero errors

A common pitfall made by C programmers is not checking if a divisor is zero before a division com-
mand. The following code will produce a runtime error and in most cases, exit.

int dividend = 50;
int divisor = 0;
int quotient;

quotient = (dividend/divisor); /* This will produce a runtime error! */

For reasons beyond the scope of this document, you must check or make sure that a divisor is never
zero. Alternatively, for *nix processes, you can stop the OS from terminating your process by blocking
the SIGFPE signal.

The code below fixes this by checking if the divisor is zero before dividing.

#include <stdio.h> /* for fprintf and stderr */
#include <stdlib.h> /* for exit */
int main(void)
{

int dividend = 50;
int divisor = 0;
int quotient;

if (divisor == 0) {
/* Example handling of this error. Writing a message to stderr, and
* exiting with failure.
*/
fprintf(stderr, "Division by zero! Aborting...\n");
exit(EXIT_FAILURE); /* indicate failure.*/

}

quotient = dividend / divisor;
exit(EXIT_SUCCESS); /* indicate success.*/

}

11.2 Signals

In some cases, the environment may respond to a programming error in C by raising a signal. Signals
are events raised by the host environment or operating system to indicate that a specific error or critical
event has occurred (e.g. a division by zero, interrupt, and so on.) However, these signals are not meant
to be used as a means of error catching; they usually indicate a critical event that will interfere with
normal program flow.

To handle signals, a program needs to use the signal.h header file. A signal handler will need to be
defined, and the signal() function is then called to allow the given signal to be handled. Some signals
that are raised to an exception within your code (e.g. a division by zero) are unlikely to allow your
program to recover. These signal handlers will be required to instead ensure that some resources are
properly cleaned up before the program terminates.

40

setjmp

11.3 setjmp

The setjmp1 function can be used to emulate the exception handling feature of other programming
languages. The first call to setjmp provides a reference point to returning to a given function, and is
valid as long as the function containing setjmp() doesn't return or exit. A call to longjmp causes the
execution to return to the point of the associated setjmp call.

#include <stdio.h>
#include <setjmp.h>

jmp_buf test1;

void tryjump()
{

longjmp(test1, 3);
}

int main (void)
{

if (setjmp(test1)==0) {
printf ("setjmp() returned 0.");
tryjump();

} else {
printf ("setjmp returned from a longjmp function call.");

}
}

The values of non-volatile variables may be corrupted when setjmp returns from a longjmp call.

While setjmp() and longjmp() may be used for error handling, it is generally preferred to use the return
value of a function to indicate an error, if possible.

1 http://en.wikibooks.org/wiki/C%20Programming%2FCoroutines%23setjmp

41

http://en.wikibooks.org/wiki/C%20Programming%2FCoroutines%23setjmp

Error handling

42

12 Variables

Like most programming languages, C is able to use and process named variables and their contents.
Variables are simply names used to refer to some location in memory – a location that holds a value
with which we are working.

It may help to think of variables as a placeholder for a value. You can think of a variable as being
equivalent to its assigned value. So, if you have a variable i that is initialized (set equal) to 4, then it
follows that i+1 will equal 5.

Since C is a relatively low-level programming language, before a C program can utilize memory to
store a variable it must claim the memory needed to store the values for a variable. This is done
by declaring variables. Declaring variables is the way in which a C program shows the number of
variables it needs, what they are going to be named, and how much memory they will need.

Within the C programming language, when managing and working with variables, it is important to
know the type of variables and the size of these types. Since C is a fairly low-level programming
language, these aspects of its working can be hardware specific – that is, how the language is made to
work on one type of machine can be different from how it is made to work on another.

All variables in C are typed. That is, every variable declared must be assigned as a certain type of
variable.

12.1 Declaring, Initializing, and Assigning Variables

Here is an example of declaring an integer, which we've called some_number. (Note the semicolon at
the end of the line; that is how your compiler separates one program statement from another.)

int some_number;

This statement means we're declaring some space for a variable called some_number, which will be
used to store integer data. Note that we must specify the type of data that a variable will store. There
are specific keywords to do this – we'll look at them in the next section.

Multiple variables can be declared with one statement, like this:

int anumber, anothernumber, yetanothernumber;

We can also declare and assign some content to a variable at the same time.

int some_number=3;

This is called initialization.

43

Variables

In early versions of C, variables must be declared at the beginning of a block. In C99 it is allowed to
mix declarations and statements arbitrarily – but doing so is not usual, because it is rarely necessary,
some compilers still don’t support C99 (portability), and it may, because it is uncommon yet, irritate
fellow programmers (maintainability).

After declaring variables, you can assign a value to a variable later on using a statement like this:

some_number=3;

You can also assign a variable the value of another variable, like so:

anumber = anothernumber;

Or assign multiple variables the same value with one statement:

anumber = anothernumber = yetanothernumber = 3;

This is because the assignment x = y returns the value of the assignment. x = y = z is really
shorthand for x = (y = z).

12.1.1 Naming Variables

Variable names in C are made up of letters (upper and lower case) and digits. The underscore character
("_") is also permitted. Names must not begin with a digit. Unlike some languages (such as Perl1 and
some BASIC2 dialects), C does not use any special prefix characters on variable names.

Some examples of valid (but not very descriptive) C variable names:

foo
Bar
BAZ
foo_bar
_foo42
_
QuUx

Some examples of invalid C variable names:

2foo (must not begin with a digit)
my foo (spaces not allowed in names)
$foo ($ not allowed -- only letters, digits, and _)
while (language keywords cannot be used as names)

As the last example suggests, certain words are reserved as keywords in the language, and these cannot
be used as variable names.

In addition there are certain sets of names that, while not language keywords, are reserved for one
reason or another. For example, a C compiler might use certain names "behind the scenes", and this
might cause problems for a program that attempts to use them. Also, some names are reserved for
possible future use in the C standard library. The rules for determining exactly what names are reserved
(and in what contexts they are reserved) are too complicated to describe here, and as a beginner you

1 http://en.wikipedia.org/wiki/Perl
2 http://en.wikipedia.org/wiki/BASIC%20programming%20language

44

http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/BASIC%20programming%20language

Literals

don't need to worry about them much anyway. For now, just avoid using names that begin with an
underscore character.

The naming rules for C variables also apply to naming other language constructs such as function
names, struct tags, and macros, all of which will be covered later.

12.2 Literals

Anytime within a program in which you specify a value explicitly instead of referring to a variable or
some other form of data, that value is referred to as a literal. In the initialization example above, 3
is a literal. Literals can either take a form defined by their type (more on that soon), or one can use
hexadecimal (hex) notation to directly insert data into a variable regardless of its type. Hex numbers
are always preceded with 0x. For now, though, you probably shouldn't be too concerned with hex.

12.3 The Four Basic Data Types

In Standard C there are four basic data types. They are int, char, float, and double.

We will briefly describe them here, then go into more detail in C Programming/Types3.

12.3.1 The int type

The int type stores integers in the form of "whole numbers". An integer is typically the size of one
machine word, which on most modern home PCs is 32 bits (4 octets). Examples of literals are whole
numbers (integers) such as 1,2,3, 10, 100... When int is 32 bits (4 octets), it can store any whole
number (integer) between -2147483648 and 2147483647. A 32 bit word (number) has the possibility
of representing any one number out of 4294967296 possibilities (2 to the power of 32).

If you want to declare a new int variable, use the int keyword. For example:

int numberOfStudents, i, j=5;

In this declaration we declare 3 variables, numberOfStudents, i and j, j here is assigned the literal 5.

12.3.2 The char type

The char type is capable of holding any member of the execution character set. It stores the same kind
of data as an int (i.e. integers), but typically has a size of one byte. The size of a byte is specified by
the macro CHAR_BIT which specifies the number of bits in a char (byte). In standard C it never can
be less than 8 bits. A variable of type char is most often used to store character data, hence its name.
Most implementations use the ASCII4 character set as the execution character set, but it's best not to
know or care about that unless the actual values are important.

3 http://en.wikibooks.org/wiki/C%20Programming%2FTypes
4 http://en.wikipedia.org/wiki/ASCII

45

http://en.wikibooks.org/wiki/C%20Programming%2FTypes
http://en.wikipedia.org/wiki/ASCII

Variables

Examples of character literals are 'a', 'b', '1', etc., as well as some special characters such as '\0' (the
null character) and '\n' (newline, recall "Hello, World"). Note that the char value must be enclosed
within single quotations.

When we initialize a character variable, we can do it two ways. One is preferred, the other way is bad
programming practice.

The first way is to write

char letter1 = 'a';

This is good programming practice in that it allows a person reading your code to understand that
letter1 is being initialized with the letter 'a' to start off with.

The second way, which should not be used when you are coding letter characters, is to write

char letter2 = 97; /* in ASCII, 97 = 'a' */

This is considered by some to be extremely bad practice, if we are using it to store a character, not a
small number, in that if someone reads your code, most readers are forced to look up what character
corresponds with the number 97 in the encoding scheme. In the end, letter1 and letter2 store
both the same thing – the letter 'a', but the first method is clearer, easier to debug, and much more
straightforward.

One important thing to mention is that characters for numerals are represented differently from their
corresponding number, i.e. '1' is not equal to 1. In short, any single entry that is enclosed within 'single
quotes'.

There is one more kind of literal that needs to be explained in connection with chars: the string literal.
A string is a series of characters, usually intended to be displayed. They are surrounded by double
quotations (" ", not ' '). An example of a string literal is the "Hello, World!\n" in the "Hello, World"
example.

12.3.3 The float type

float is short for floating point. It stores real numbers also, but is only one machine word in size.
Therefore, it is used when less precision than a double provides is required. float literals must be
suffixed with F or f, otherwise they will be interpreted as doubles. Examples are: 3.1415926f, 4.0f,
6.022e+23f. float variables can be declared using the float keyword.

12.3.4 The double type

The double and float types are very similar. The float type allows you to store single-precision
floating point numbers, while the double keyword allows you to store double-precision floating point
numbers – real numbers, in other words, both integer and non-integer values. Its size is typically two
machine words, or 8 bytes on most machines. Examples of double literals are 3.1415926535897932,
4.0, 6.022e+23 (scientific notation5). If you use 4 instead of 4.0, the 4 will be interpreted as an
int.

5 http://en.wikipedia.org/wiki/Scientific%20notation

46

http://en.wikipedia.org/wiki/Scientific%20notation

sizeof

The distinction between floats and doubles was made because of the differing sizes of the two types.
When C was first used, space was at a minimum and so the judicious use of a float instead of a double
saved some memory. Nowadays, with memory more freely available, you do not really need to con-
serve memory like this – it may be better to use doubles consistently. Indeed, some C implementations
use doubles instead of floats when you declare a float variable.

If you want to use a double variable, use the double keyword.

12.4 sizeof

If you have any doubts as to the amount of memory actually used by any variable (and this goes for
types we'll discuss later, also), you can use the sizeof operator to find out for sure. (For completeness,
it is important to mention that sizeof is a unary operator6, not a function.) Its syntax is:

sizeof object
sizeof(type)

The two expressions above return the size of the object and type specified, in bytes. The return type is
size_t (defined in the header <stddef.h>) which is an unsigned value. Here's an example usage:

size_t size;
int i;
size = sizeof(i);

size will be set to 4, assuming CHAR_BIT is defined as 8, and an integer is 32 bits wide. The value
of sizeof's result is the number of bytes.

Note that when sizeof is applied to a char, the result is 1; that is:

sizeof(char)

always returns 1.

12.5 Data type modifiers

One can alter the data storage of any data type by preceding it with certain modifiers.

long and short are modifiers that make it possible for a data type to use either more or less memory.
The int keyword need not follow the short and long keywords. This is most commonly the case. A
short can be used where the values fall within a lesser range than that of an int, typically -32768 to
32767. A long can be used to contain an extended range of values. It is not guaranteed that a short
uses less memory than an int, nor is it guaranteed that a long takes up more memory than an int. It
is only guaranteed that sizeof(short) <= sizeof(int) <= sizeof(long). Typically a short is 2 bytes, an
int is 4 bytes, and a long either 4 or 8 bytes. Modern C compilers also provide long long which is
typically an 8 byte integer.

6 http://en.wikipedia.org/wiki/Unary%20operation

47

http://en.wikipedia.org/wiki/Unary%20operation

Variables

In all of the types described above, one bit is used to indicate the sign (positive or negative) of a value.
If you decide that a variable will never hold a negative value, you may use the unsigned modifier to
use that one bit for storing other data, effectively doubling the range of values while mandating that
those values be positive. The unsigned specifier also may be used without a trailing int, in which
case the size defaults to that of an int. There is also a signed modifier which is the opposite, but it
is not necessary, except for certain uses of char, and seldom used since all types (except char) are
signed by default.

To use a modifier, just declare a variable with the data type and relevant modifiers:

unsigned short int usi; /* fully qualified -- unsigned short int */
short si; /* short int */
unsigned long uli; /* unsigned long int */

12.6 const qualifier

When the const qualifier is used, the declared variable must be initialized at declaration. It is then
not allowed to be changed.

While the idea of a variable that never changes may not seem useful, there are good reasons to use
const. For one thing, many compilers can perform some small optimizations on data when it knows
that data will never change. For example, if you need the value of π in your calculations, you can
declare a const variable of pi, so a program or another function written by someone else cannot change
the value of pi.

Note that a Standard conforming compiler must issue a warning if an attempt is made to change a
const variable - but after doing so the compiler is free to ignore the const qualifier.

12.7 Magic numbers

When you write C programs, you may be tempted to write code that will depend on certain numbers.
For example, you may be writing a program for a grocery store. This complex program has thousands
upon thousands of lines of code. The programmer decides to represent the cost of a can of corn,
currently 99 cents, as a literal throughout the code. Now, assume the cost of a can of corn changes to
89 cents. The programmer must now go in and manually change each entry of 99 cents to 89. While
this is not that big of a problem, considering the "global find-replace" function of many text editors,
consider another problem: the cost of a can of green beans is also initially 99 cents. To reliably change
the price, you have to look at every occurrence of the number 99.

C possesses certain functionality to avoid this. This functionality is approximately equivalent, though
one method can be useful in one circumstance, over another.

12.7.1 Using the const keyword

The const keyword helps eradicate magic numbers. By declaring a variable const corn at the
beginning of a block, a programmer can simply change that const and not have to worry about setting
the value elsewhere.

48

Scope

There is also another method for avoiding magic numbers. It is much more flexible than const,
and also much more problematic in many ways. It also involves the preprocessor, as opposed to the
compiler. Behold...

12.7.2 #define

When you write programs, you can create what is known as a macro, so when the computer is reading
your code, it will replace all instances of a word with the specified expression.

Here's an example. If you write

#define PRICE_OF_CORN 0.99

when you want to, for example, print the price of corn, you use the word PRICE_OF_CORN instead
of the number 0.99 – the preprocessor will replace all instances of PRICE_OF_CORN with 0.99, which
the compiler will interpret as the literal double 0.99. The preprocessor performs substitution, that is,
PRICE_OF_CORN is replaced by 0.99 so this means there is no need for a semicolon.

It is important to note that #define has basically the same functionality as the "find-and-replace"
function in a lot of text editors/word processors.

For some purposes, #define can be harmfully used, and it is usually preferable to use const if
#define is unnecessary. It is possible, for instance, to #define, say, a macro DOG as the number
3, but if you try to print the macro, thinking that DOG represents a string that you can show on the
screen, the program will have an error. #define also has no regard for type. It disregards the struc-
ture of your program, replacing the text everywhere (in effect, disregarding scope), which could be
advantageous in some circumstances, but can be the source of problematic bugs.

You will see further instances of the #define directive later in the text. It is good convention to write
#defined words in all capitals, so a programmer will know that this is not a variable that you have
declared but a #defined macro. If we put semicolon after preprocessor statement then it is perfectly
valid no compile time error. i.e #include<stdio.h>; is valid

12.8 Scope

In the Basic Concepts section, the concept of scope was introduced. It is important to revisit the
distinction between local types and global types, and how to declare variables of each. To declare a
local variable, you place the declaration at the beginning (i.e. before any non-declarative statements)
of the block to which the variable is intended to be local. To declare a global variable, declare the
variable outside of any block. If a variable is global, it can be read, and written, from anywhere in your
program.

Global variables are not considered good programming practice, and should be avoided whenever pos-
sible. They inhibit code readability, create naming conflicts, waste memory, and can create difficult-
to-trace bugs. Excessive usage of globals is usually a sign of laziness and/or poor design. However,
if there is a situation where local variables may create more obtuse and unreadable code, there's no
shame in using globals.

49

Variables

12.9 Other Modifiers

Included here, for completeness, are more of the modifiers that standard C provides. For the beginning
programmer, static and extern may be useful. volatile is more of interest to advanced programmers.
register and auto are largely deprecated and are generally not of interest to either beginning or advanced
programmers.

12.9.1 static

static is sometimes a useful keyword. It is a common misbelief that the only purpose is to make a
variable stay in memory.

When you declare a function or global variable as static it will become internal. You cannot access
the function or variable through the extern (see below) keyword from other files in your project.

When you declare a local variable as static, it is created just like any other variable. However, when
the variable goes out of scope (i.e. the block it was local to is finished) the variable stays in memory,
retaining its value. The variable stays in memory until the program ends. While this behaviour resem-
bles that of global variables, static variables still obey scope rules and therefore cannot be accessed
outside of their scope.

Variables declared static are initialized to zero (or for pointers, NULL) by default.

You can use static in (at least) two different ways. Consider this code, and imagine it is in a file called
jfile.c:

#include <stdio.h>

static int j = 0;

void up(void)
{

/* k is set to 0 when the program starts. The line is then "ignored"
* for the rest of the program (i.e. k is not set to 0 every time up()
* is called)
*/
static int k = 0;
j++;
k++;
printf("up() called. k= %2d, j= %2d\n", k , j);

}

void down(void)
{

static int k = 0;
j--;
k--;
printf("down() called. k= %2d, j= %2d\n", k , j);

}

int main(void)
{

int i;

50

Other Modifiers

/* call the up function 3 times, then the down function 2 times */
for (i= 0; i < 3; i++)

up();
for (i= 0; i < 2; i++)

down();

return 0;
}

The j var is accessible by both up and down and retains its value. The k vars also retain their value, but
they are two different variables, one in each of their scopes. Static vars are a good way to implement
encapsulation, a term from the object-oriented way of thinking that effectively means not allowing
changes to be made to a variable except through function calls.

Running the program above will produce the following output:

up() called. k= 1, j= 1
up() called. k= 2, j= 2
up() called. k= 3, j= 3
down() called. k= -1, j= 2
down() called. k= -2, j= 1

Features of static variables :

1. Keyword used - static
2. Storage - Memory
3. Default value - Zero
4. Scope - Local to the block in which it is declared
5. Lifetime - Value persists between different function calls
6. Keyword optionality - Mandatory to use the keyword

12.9.2 extern

extern is used when a file needs to access a variable in another file that it may not have #included
directly. Therefore, extern does not actually carve out space for a new variable, it just provides the
compiler with sufficient information to access the remote variable.

Features of external variable :

1. Keyword used - extern
2. Storage - Memory
3. Default value - Zero
4. Scope - Global (all over the program)
5. Lifetime - Value persists till the program's execution comes

to an end
6. Keyword optionality - Optional if declared outside all the functions

12.9.3 volatile

volatile is a special type modifier which informs the compiler that the value of the variable may
be changed by external entities other than the program itself. This is necessary for certain programs
compiled with optimizations – if a variable were not defined volatile then the compiler may assume
that certain operations involving the variable are safe to optimize away when in fact they aren't. volatile

51

Variables

is particularly relevant whenworkingwith embedded systems (where a programmay not have complete
control of a variable) and multi-threaded applications.

12.9.4 auto

auto is a modifier which specifies an "automatic" variable that is automatically created when in scope
and destroyed when out of scope. If you think this sounds like pretty much what you've been doing
all along when you declare a variable, you're right: all declared items within a block are implicitly
"automatic". For this reason, the auto keyword is more like the answer to a trivia question than a
useful modifier, and there are lots of very competent programmers that are unaware of its existence.

Features of automatic variables :

1. Keyword used - auto
2. Storage - Memory
3. Default value - Garbage value (random value)
4. Scope - Local to the block in which it is defined
5. Lifetime - Value persists till the control remains within the

block
6. Keyword optionality - Optional

12.9.5 register

register is a hint to the compiler to attempt to optimize the storage of the given variable by storing
it in a register of the computer's CPU when the program is run. Most optimizing compilers do this
anyway, so use of this keyword is often unnecessary. In fact, ANSI C states that a compiler can ignore
this keyword if it so desires – and many do. Microsoft Visual C++ is an example of an implementation
that completely ignores the register keyword.

Features of register variables :

1. Keyword used - register
2. Storage - CPU registers (values can be retrieved faster than

from memory)
3. Default value - Garbage value
4. Scope - Local to the block in which it is defined
5. Lifetime - Value persists till the control remains within the

block
6. Keyword optionality - Mandatory to use the keyword

12.9.6 Concepts

• Variables7
• Types8
• Data Structures9

7 http://en.wikibooks.org/wiki/Computer%20Programming%2FVariables
8 http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes
9 http://en.wikibooks.org/wiki/Data%20Structures

52

http://en.wikibooks.org/wiki/Computer%20Programming%2FVariables
http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes
http://en.wikibooks.org/wiki/Data%20Structures

Other Modifiers

• Arrays10

12.9.7 In this section

• C variables11
• C types12
• C arrays13

et:Programmeerimiskeel C/Muutujad14 it:C/Variabili, operatori e costanti/Variabili15 pl:C/Zmienne16
fi:C/Muuttujat17

10 http://en.wikibooks.org/wiki/Data%20Structures%2FArrays
11 Chapter 12 on page 43
12 http://en.wikibooks.org/wiki/C%20Programming%2FTypes
13 Chapter 24 on page 161
14 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMuutujad
15 http://it.wikibooks.org/wiki/C%2FVariabili%2C%20operatori%20e%20costanti%2FVariabili
16 http://pl.wikibooks.org/wiki/C%2FZmienne
17 http://fi.wikibooks.org/wiki/C%2FMuuttujat

53

http://en.wikibooks.org/wiki/Data%20Structures%2FArrays
http://en.wikibooks.org/wiki/C%20Programming%2FTypes
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMuutujad
http://it.wikibooks.org/wiki/C%2FVariabili%2C%20operatori%20e%20costanti%2FVariabili
http://pl.wikibooks.org/wiki/C%2FZmienne
http://fi.wikibooks.org/wiki/C%2FMuuttujat

Variables

54

13 Simple Input and Output

When you take time to consider it, a computer would be pretty useless without some way to talk to the
people who use it. Just like we need information in order to accomplish tasks, so do computers. And
just as we supply information to others so that they can do tasks, so do computers.

These supplies and returns of information to a computer are called input and output. 'Input' is infor-
mation supplied to a computer or program. 'Output' is information provided by a computer or program.
Frequently, computer programmers will lump the discussion in the more general term input/output or
simply, I/O.

In C, there are many different ways for a program to communicate with the user. Amazingly, the
most simple methods usually taught to beginning programmers may also be the most powerful. In the
"Hello, World" example1 at the beginning of this text, we were introduced to a Standard Library file
stdio.h, and one of its functions, printf(). Here we discuss more of the functions that stdio.h gives us.

13.1 Output using printf()

Recall from the beginning of this text the demonstration program duplicated below:

#include <stdio.h>

int main(void)
{

printf("Hello, world!\n");
return 0;

}

If you compile and run this program, you will see the sentence below show up on your screen:

Hello, world!

This amazing accomplishment was achieved by using the function printf(). A function is like a
"black box" that does something for you without exposing the internals inside. We can write functions
ourselves in C, but we will cover that later.

You have seen that to use printf() one puts text, surrounded by quotes, in between the parentheses.
We call the text surrounded by quotes a literal string (or just a string), and we call that string an
argument to printf.

As a note of explanation, it is sometimes convenient to include the open and closing parentheses after
a function name to remind us that it is, indeed, a function. However usually when the name of the
function we are talking about is understood, it is not necessary.

1 http://en.wikibooks.org/wiki/Programming%3AC%23A%20taste%20of%20C

55

http://en.wikibooks.org/wiki/Programming%3AC%23A%20taste%20of%20C

Simple Input and Output

As you can see in the example above, using printf() can be as simple as typing in some text, sur-
rounded by double quotes (note that these are double quotes and not two single quotes). So, for exam-
ple, you can print any string by placing it as an argument to the printf() function:

printf("This sentence will print out exactly as you see it...");

And once it is contained in a proper main() function, it will show:

This sentence will print out exactly as you see it...

13.1.1 Printing numbers and escape sequences

Placeholder codes

The printf function is a powerful function, and is probably the most-used function in C programs.

For example, let us look at a problem. Say we don't know what 19 + 31 is. Let's use C to get the
answer.

We start writing

#include <stdio.h> // this is important, since printf
// can't be used without this line

int main(void)
{

printf("19+31 is");

but here we are stuck! printf only prints strings! Thankfully, printf has methods for printing num-
bers. What we do is put a placeholder format code in the string. We write:

printf("19+31 is %d", 19+31);

The placeholder %d literally "holds the place" for the actual number that is the result of adding 19 to
31.

These placeholders are called format specifiers. Many other format specifiers work with printf. If
we have a floating-point number, we can use %f to print out a floating-point number, decimal point
and all. Other format specifiers are:

• %d - int (same as %i)
• %ld - long int (same as %li)
• %f - float
• %lf - double
• %c - char
• %s - string
• %x - hexadecimal

56

Other output methods

Tabs and newlines

What if, we want to achieve some output that will look like:

1905
312 +

printf will not put line breaks in at the end of each statement: we must do this ourselves. But how?

What we can do is use the newline escape character. An escape character is a special character that
we can write but will do something special onscreen, such as make a beep, write a tab, and so on. To
write a newline we write \n. All escape characters start with a backslash.

So to achieve the output above, we write

printf(" 1905\n312 +\n-----\n");

or to be a bit more clear, we can break this long printf statement over several lines. So our program
will be

#include <stdio.h>

int main(void)
{

printf(" 1905\n");
printf("312 +\n");
printf("-----\n");
printf("%d", 1905+312);
return 0;

}

There are other escape characters we can use. Another common one is to use \t to write a tab. You
can use \a to ring the computer's bell, but you should not use this very much in your programs, as
excessive use of sound is not very friendly to the user.

13.2 Other output methods

13.2.1 puts()

The puts() function is a very simple way to send a string to the screen when you have no placeholders
to be concerned about. It works very much like the printf() function we saw in the "Hello, World!" ex-
ample:

puts("Print this string.");

will print to the screen:

57

Simple Input and Output

Print this string.

followed by the newline character (as discussed above). (The puts function appends a newline char-
acter to its output.)

13.3 fputs()

The fputs function is similar:

fputs("Print this string via fputs", stdout);

will print to the stdout file (usually the screen):

Print this string via fputs

without a newline tacked on to the end.

Since puts() and fputs() does not allow the placeholders and the associated formatting that printf()
allows, for most programmers learning printf() is sufficient for their needs.

13.4 Input using scanf()

The scanf() function is the input method equivalent to the printf() output function - simple yet powerful.
In its simplest invocation, the scanf format string holds a single placeholder representing the type of
value that will be entered by the user. These placeholders are exactly the same as the printf() function
- %d for ints, %f for floats, and %lf for doubles.

There is, however, one variation to scanf() as compared to printf(). The scanf() function requires the
memory address of the variable to which you want to save the input value. While pointers are possible
here, this is a concept that won't be approached until later in the text. Instead, the simple technique is
to use the address-of operator, &. For now it may be best to consider this "magic" before we discuss
pointers.

A typical application might be like this:

#include "stdio.h"

int main(void)
{

int a;

printf("Please input an integer value: ");
scanf("%d", &a);
printf("You entered: %d\n", a);

return 0;
}

58

Links

If you were to describe the effect of the scanf() function call above, it might read as: "Read in an integer
from the user and store it at the address of variable a ".

If you are trying to input a string using scanf, you should not include the & operator. The code below
will not compile.

scanf("%s", &a);

The correct usage would be:

scanf("%s", a);

This is because, whenever you use a format specifier for a string (%s), the variable that you use to
store the value will be an array and, the array names (in this case - a) themselves point out to their base
address and hence, the address of operator is not required.

(Although, this is vulnerable to Buffer overflow2. fgets() is preferred to scanf()).

Note on inputs: When data is typed at a keyboard, the information does not go straight to the program
that is running. It is first stored in what is known as a buffer - a small amount of memory reserved
for the input source. Sometimes there will be data left in the buffer when the program wants to read
from the input source, and the scanf() function will read this data instead of waiting for the user to
type something. Some may suggest you use the function fflush(stdin), which may work as desired on
some computers, but isn't considered good practice, as you will see later. Doing this has the downfall
that if you take your code to a different computer with a different compiler, your code may not work
properly.

13.5 Links

Back to contents: Beginning C3

et:Programmeerimiskeel C/IO4 pl:C/Podstawowe procedury wejścia i wyjścia5 pt:Programar
em C/Entrada e saída simples6 7

2 http://en.wikipedia.org/wiki/Buffer%20overflow
3 http://en.wikibooks.org/wiki/C%20Programming%23Beginning%20C
4 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FIO
5 http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%01%5Bcia%20i%20wyj%01%

5Bcia
6 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FEntrada%20e%20sa%EDda%20simples
7 http://en.wikibooks.org/wiki/Category%3AC%20Programming

59

http://en.wikipedia.org/wiki/Buffer%20overflow
http://en.wikibooks.org/wiki/C%20Programming%23Beginning%20C
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FIO
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%01%5Bcia%20i%20wyj%01%5Bcia
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%01%5Bcia%20i%20wyj%01%5Bcia
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FEntrada%20e%20sa%EDda%20simples
http://en.wikibooks.org/wiki/Category%3AC%20Programming

Simple Input and Output

60

14 Simple math

14.1 Operators and Assignments

C has a wide range of operators that make simple math easy to handle. The list of operators grouped
into precedence levels is as follows:

14.1.1 Primary expressions

An identifier is a primary expression, provided that it has been declared as designating an object (in
which case it is an lvalue [a value that can be used as the left side of an assignment expression]) or a
function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value.

A string literal is a primary expression.

A parenthesized expression is a primary expression. Its type and value are those of the unparenthesized
expression.

14.1.2 Postfix operators

First, a primary expression is also a postfix expression. The following expressions are also postfix
expressions:

A postfix expression followed by a left square bracket ([), an expression, and a right square bracket
(]) constitutes an invocation of the array subscript operator. One of the expressions shall have type
"pointer to object type" and the other shall have an integer type; the result type is type. Successive
array subscript operators designate an element of a multidimensional array.

A postfix expression followed by parentheses or an optional parenthesized argument list indicates an
invocation of the function call operator.

A postfix expression followed by a dot (.) followed by an identifier selects a member from a structure
or union; a postfix expression followed by an arrow (->) followed by an identifier selects a member
from a structure or union who is pointed to by the pointer on the left-hand side of the expression.

A postfix expression followed by the increment or decrement operators (++ or --) indicates that the
variable is to be incremented or decremented as a side effect. The value of the expression is the value
of the postfix expression before the increment or decrement.

61

Simple math

14.1.3 Unary expressions

First, a unary expression is a postfix expression. The following expressions are all postfix expressions:

The increment or decrement operators followed by a unary expression is a unary expression. The value
of the expression is the value of the unary expression after the increment or decrement.

The following operators followed by a cast expression are unary expressions:

Operator Meaning
======== =======

& Address-of; value is the location of the operand
* Contents-of; value is what is stored at the location
- Negation
+ Value-of operator
! Logical negation ((!E) is equivalent to (0==E))
˜ Bit-wise complement

The keyword sizeof followed by a unary expression is a unary expression. The value is the size of
the type of the expression in bytes. The expression is not evaluated.

The keyword sizeof followed by a parenthesized type name is a unary expression. The value is the
size of the type in bytes.

14.1.4 Cast operators

A cast expression is a unary expression.

A parenthesized type name followed by a cast expression is a cast expression. The parenthesized
type name has the effect of forcing the cast expression into the type specified by the type name in
parentheses. For arithmetic types, this either does not change the value of the expression, or truncates
the value of the expression if the expression is an integer and the new type is smaller than the previous
type.

An example of casting a float as an int:

float pi = 3.141592;
int truncated_pi = (int)pi; // truncated_pi == 3

An example of casting a char as an int:

char my_char = 'A';
int my_int = (int)my_char; // my_int == 65, which is the ASCII value of 'A'

14.1.5 Multiplicative and additive operators

In C, simple math is very easy to handle. The following operators exist: + (addition), - (subtraction),
* (multiplication), / (division), and % (modulus); You likely know all of them from your math classes
- except, perhaps, modulus. It returns the remainder of a division (e.g. 5 % 2 = 1).

Care must be taken with the modulus, because it's not the equivalent of the mathematical modulus: (-5)
% 2 is not 1, but -1. Division of integers will return an integer, and the division of a negative integer

62

Operators and Assignments

by a positive integer will round towards zero instead of rounding down (e.g. (-5) / 3 = -1 instead of
-2).

There is no inline operator to do the power (e.g. 5 ˆ 2 is not 25, and 5 ** 2 is an error), but there is a
power function1.

The mathematical order of operations does apply. For example (2 + 3) * 2 = 10 while 2 + 3 * 2 = 8.
Multiplicative operators have precedence over additive operators.

#include <stdio.h>

int main()
{
int i = 0, j = 0;

/* while i is less than 5 AND j is less than 5, loop */
while((i < 5) && (j < 5))
{

/* postfix increment, i++
* the value of i is read and then incremented
*/
printf("i: %d\t", i++);

/*
* prefix increment, ++j
* the value of j is incremented and then read
*/
printf("j: %d\n", ++j);

}

printf("At the end they have both equal values:\ni: %d\tj: %d\n", i, j);

return 0;
}

will display the following:

i: 0 j: 1
i: 1 j: 2
i: 2 j: 3
i: 3 j: 4
i: 4 j: 5
At the end they have both equal values:
i: 5 j: 5

14.1.6 shift and rotate

Shift functions are often used in low-level I/O hardware interfacing. Shift and rotate functions are
heavily used in cryptography and software floating point emulation. Other than that, shifts can be used
in place of division or multiplication by a power of two. Many processors have dedicated function
blocks to make these operations fast -- seeMicroprocessor Design/Shift and Rotate Blocks2. On
processors which have such blocks, most C compilers compile shift and rotate operators to a single
assembly-language instruction -- see X86 Assembly/Shift and Rotate3.

1 Chapter 15.4 on page 71
2 http://en.wikibooks.org/wiki/Microprocessor%20Design%2FShift%20and%20Rotate%20Blocks
3 http://en.wikibooks.org/wiki/X86%20Assembly%2FShift%20and%20Rotate

63

http://en.wikibooks.org/wiki/Microprocessor%20Design%2FShift%20and%20Rotate%20Blocks
http://en.wikibooks.org/wiki/X86%20Assembly%2FShift%20and%20Rotate

Simple math

shift left

The << operator shifts the binary representation to the left, dropping the most significant bits and
appending it with zero bits. The result is equivalent to multiplying the integer by a power of two.

unsigned shift right

The unsigned shift right operator, also sometimes called the logical right shift operator. It shifts the
binary representation to the right, dropping the least significant bits and prepending it with zeros. The
>> operator is equivalent to division by a power of two for unsigned integers.

signed shift right

The signed shift right operator, also sometimes called the arithmetic right shift operator. It shifts the
binary representation to the right, dropping the least significant bit, but prepending it with copies of
the original sign bit. The >> operator is not equivalent to division for signed integers.

In C, the behavior of the >> operator depends on the data type it acts on. Therefore, a signed and an
unsigned right shift looks exactly the same, but produces a different result in some cases.

rotate right

Contrary to popular belief, it is possible to write C code that compiles down to the "rotate" assembly
language instruction (on CPUs that have such an instruction).

Most compilers recognize this idiom:

unsigned int x;
unsigned int y;
/* ... */
y = (x >> shift) | (x << (32 - shift));

and compile it to a single 32 bit rotate instruction. 4 5

On some systems, this may be "#define"ed as a macro or defined as an inline function called something
like "rightrotate32" or "rotr32" or "ror32" in a standard header file like "bitops.h". 6

rotate left

Most compilers recognize this idiom:

4 GCC: "Optimize common rotate constructs" ˆ{http://gcc.gnu.org/ml/gcc-patches/2007-11/
msg01112.html}

5 "Cleanups in ROTL/ROTR DAG combiner code" ˆ{http://www.mail-archive.com/llvm-commits@cs.
uiuc.edu/msg17216.html} mentions that this code supports the "rotate" instruction in the CellSPU

6 "replace private copy of bit rotation routines" ˆ{http://kerneltrap.org/mailarchive/
linux-kernel/2008/4/15/1440064} -- recommends includeing "bitops.h" and using its rol32 and ror32
rather than copy-and-paste into a new program.

64

http://gcc.gnu.org/ml/gcc-patches/2007-11/msg01112.html
http://gcc.gnu.org/ml/gcc-patches/2007-11/msg01112.html
http://www.mail-archive.com/llvm-commits@cs.uiuc.edu/msg17216.html
http://www.mail-archive.com/llvm-commits@cs.uiuc.edu/msg17216.html
http://kerneltrap.org/mailarchive/linux-kernel/2008/4/15/1440064
http://kerneltrap.org/mailarchive/linux-kernel/2008/4/15/1440064

Operators and Assignments

unsigned int x;
unsigned int y;
/* ... */
y = (x << shift) | (x >> (32 - shift));

and compile it to a single 32 bit rotate instruction.

On some systems, this may be "#define"ed as a macro or defined as an inline function called something
like "leftrotate32" or "rotl32" in a header file like "bitops.h".

14.1.7 Relational and equality operators

The relational binary operators< (less than),> (greater than),<= (less than or equal), and>= (greater
than or equal) operators return a value of 1 if the result of the operation is true, 0 if false.

The equality binary operators == (equals) and != (not equals) operators are similar to the relational
operators except that their precedence is lower.

14.1.8 Bitwise operators

The bitwise operators are & (and), ˆ (exclusive or) and | (inclusive or). The & operator has higher
precedence than ˆ, which has higher precedence than |.

14.1.9 Logical operators

The logical operators are && (and), and || (or). Both of these operators produce 1 if the relationship
is true and 0 for false. Both of these operators short-circuit; if the result of the expression can be
determined from the first operand, the second is ignored.

14.1.10 Conditional operators

The ternary ?: operator is the conditional operator. The expression (x ? y : z) has the value of
y if x is nonzero, z otherwise.

14.1.11 Assignment operators

The assignment operators are =, *=, /=, %=, +=, -=, <<=, >>=, &=, ˆ=, and |= . The = operator
stores the value of the right operand into the location determined by the left operand, which must be
an lvalue7

For the others, x op= y is shorthand for x = x op (y) . Hence, the following expressions are the
same :

7 http://en.wikibooks.org/wiki/lvalue

65

http://en.wikibooks.org/wiki/lvalue

Simple math

1. x += y - x = x+y
2. x -= y - x = x-y
3. x *= y - x = x*y
4. x /= y - x = x/y
5. x %= y - x = x%y

14.1.12 Comma operator

The operator with the least precedence is the comma operator. The value of the expression x, y is the
value of y, but x is evaluated.

pl:C/Operatory8

8 http://pl.wikibooks.org/wiki/C%2FOperatory

66

http://pl.wikibooks.org/wiki/C%2FOperatory

15 Further math

w:math.h1

The <math.h> header contains prototypes for several functions that deal with mathematics. In the
1990 version of the ISO standard, only the double versions of the functions were specified; the 1999
version added the float and long double versions. To use these math functions, you must link your
program with the math library. For some compilers (including GCC), you must specify the additional
parameter -lm.

The functions can be grouped into the following categories:

15.1 Trigonometric functions

15.1.1 The acos and asin functions

The acos functions return the arccosine of their arguments in radians, and the asin functions return
the arcsine of their arguments in radians. All functions expect the argument in the range [-1,+1]. The
arccosine returns a value in the range [0,π]; the arcsine returns a value in the range [-π/2,+π/2].

#include <math.h>
float asinf(float x); /* C99 */
float acosf(float x); /* C99 */
double asin(double x);
double acos(double x);
long double asinl(long double x); /* C99 */
long double acosl(long double x); /* C99 */

15.1.2 The atan and atan2 functions

The atan functions return the arctangent of their arguments in radians, and the atan2 function return
the arctangent of y/x in radians. The atan functions return a value in the range [-π/2,+π/2] (the
reason why ±π/2 are included in the range is because the floating-point value may represent infinity,
and atan(±∞) = ±π/2); the atan2 functions return a value in the range [-π/2,+π/2]. For atan2, a
domain error may occur if both arguments are zero.

#include <math.h>
float atanf(float x); /* C99 */
float atan2f(float y, float x); /* C99 */
double atan(double x);
double atan2(double y, double x);

1 http://en.wikipedia.org/wiki/math.h

67

http://en.wikipedia.org/wiki/math.h

Further math

long double atanl(long double x); /* C99 */
long double atan2l(long double y, long double x); /* C99 */

15.1.3 The cos, sin, and tan functions

The cos, sin, and tan functions return the cosine, sine, and tangent of the argument, expressed in
radians.

#include <math.h>
float cosf(float x); /* C99 */
float sinf(float x); /* C99 */
float tanf(float x); /* C99 */
double cos(double x);
double sin(double x);
double tan(double x);
long double cosl(long double x); /* C99 */
long double sinl(long double x); /* C99 */
long double tanl(long double x); /* C99 */

15.2 Hyperbolic functions

The cosh, sinh and tanh functions compute the hyperbolic cosine, the hyperbolic sine, and the hy-
perbolic tangent of the argument respectively. For the hyperbolic sine and cosine functions, a range
error occurs if the magnitude of the argument is too large.

The acosh functions compute the inverse hyperbolic cosine of the argument. A domain error occurs
for arguments less than 1.

The asinh functions compute the inverse hyperbolic sine of the argument.

The atanh functions compute the inverse hyperbolic tangent of the argument. A domain error occurs
if the argument is not in the interval [-1, +1]. A range error may occur if the argument equals -1 or +1.

#include <math.h>
float coshf(float x); /* C99 */
float sinhf(float x); /* C99 */
float tanhf(float x); /* C99 */
double cosh(double x);
double sinh(double x);
double tanh(double x);
long double coshl(long double x); /* C99 */
long double sinhl(long double x); /* C99 */
long double tanhl(long double x); /* C99 */
float acoshf(float x); /* C99 */
float asinhf(float x); /* C99 */
float atanhf(float x); /* C99 */
double acosh(double x); /* C99 */
double asinh(double x); /* C99 */
double atanh(double x); /* C99 */
long double acoshl(long double x); /* C99 */
long double asinhl(long double x); /* C99 */
long double atanhl(long double x); /* C99 */

68

Exponential and logarithmic functions

15.3 Exponential and logarithmic functions

15.3.1 The exp, exp2, and expm1 functions

The exp functions compute the base-e exponential function of x (ex). A range error occurs if the
magnitude of x is too large.

The exp2 functions compute the base-2 exponential function of x (2x). A range error occurs if the
magnitude of x is too large.

The expm1 functions compute the base-e exponential function of the argument, minus 1. A range error
occurs in the magnitude of x is too large.

#include <math.h>
float expf(float x); /* C99 */
double exp(double x);
long double expl(long double x); /* C99 */
float exp2f(float x); /* C99 */
double exp2(double x); /* C99 */
long double exp2l(long double x); /* C99 */
float expm1f(float x); /* C99 */
double expm1(double x); /* C99 */
long double expm1l(long double x); /* C99 */

15.3.2 The frexp, ldexp, modf, scalbn, and scalbln functions

These functions are heavily used in software floating-point emulators, but are otherwise rarely directly
called.

Inside the computer, each floating point number is represented by two parts:

• The significand is either in the range [1/2, 1), or it equals zero.
• The exponent is an integer.

The value of a floating point number v is v = signi f icand ∗2exponent .

The frexp functions break the argument floating point number value into those two parts, the ex-
ponent and significand. After breaking it apart, it stores the exponent in the int object pointed to by
ex, and returns the significand. In other words, the value returned is a copy of the given floating point
number but with an exponent replaced by 0. If value is zero, both parts of the result are zero.

The ldexp functions multiply a floating-point number by a integral power of 2 and return the result.
In other words, it returns copy of the given floating point number with the exponent increased by ex.
A range error may occur.

The modf functions break the argument value into integer and fraction parts, each of which has the
same sign as the argument. They store the integer part in the object pointed to by *iptr and return the
fraction part. The *iptr is a floating-point type, rather than an "int" type, because it might be used to
store an integer like 1 000 000 000 000 000 000 000 which is too big to fit in an int.

The scalbn and scalbln compute x × FLT_RADIXn. FLT_RADIX is the base of the floating-point
system; if it is 2, the functions are equivalent to ldexp.

#include <math.h>

69

Further math

float frexpf(float value, int *ex); /* C99 */
double frexp(double value, int *ex);
long double frexpl(long double value, int *ex); /* C99 */
float ldexpf(float x, int ex); /* C99 */
double ldexp(double x, int ex);
long double ldexpl(long double x, int ex); /* C99 */
float modff(float value, float *iptr); /* C99 */
double modf(double value, double *iptr);
long double modfl(long double value, long double *iptr); /* C99 */
float scalbnf(float x, int ex); /* C99 */
double scalbn(double x, int ex); /* C99 */
long double scalbnl(long double x, int ex); /* C99 */
float scalblnf(float x, long int ex); /* C99 */
double scalbln(double x, long int ex); /* C99 */
long double scalblnl(long double x, long int ex); /* C99 */

Most C floating point libraries also implement the IEEE754-recommended nextafter(), nextUp(), and
nextDown() functions. http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html2

15.3.3 The log, log2, log1p, and log10 functions

The log functions compute the base-e natural (not common) logarithm of the argument and return the
result. A domain error occurs if the argument is negative. A range error may occur if the argument is
zero.

The log1p functions compute the base-e natural (not common) logarithm of one plus the argument
and return the result. A domain error occurs if the argument is less than -1. A range error may occur
if the argument is -1.

The log10 functions compute the common (base-10) logarithm of the argument and return the result.
A domain error occurs if the argument is negative. A range error may occur if the argument is zero.

The log2 functions compute the base-2 logarithm of the argument and return the result. A domain
error occurs if the argument is negative. A range error may occur if the argument is zero.

#include <math.h>
float logf(float x); /* C99 */
double log(double x);
long double logl(long double x); /* C99 */
float log1pf(float x); /* C99 */
double log1p(double x); /* C99 */
long double log1pl(long double x); /* C99 */
float log10f(float x); /* C99 */
double log10(double x);
long double log10l(long double x); /* C99 */
float log2f(float x); /* C99 */
double log2(double x); /* C99 */
long double log2l(long double x); /* C99 */

15.3.4 The ilogb and logb functions

The ilogb functions extract the exponent of x as a signed int value. If x is zero, they return the value
FP_ILOGB0; if x is infinite, they return the value INT_MAX; if x is not-a-number they return the value
FP_ILOGBNAN; otherwise, they are equivalent to calling the corresponding logb function and casting

2 http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html

70

http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html

Power functions

the returned value to type int. A range error may occur if x is zero. FP_ILOGB0 and FP_ILOGBNAN
are macros defined in math.h; INT_MAX is a macro defined in limits.h.

The logb functions extract the exponent of x as a signed integer value in floating-point format. If x is
subnormal, it is treated as if it were normalized; thus, for positive finite x, 1 ≤ x × FLT_RADIX-logb(x)
< FLT_RADIX . FLT_RADIX is the radix for floating-point numbers, defined in the float.h header.

#include <math.h>
int ilogbf(float x); /* C99 */
int ilogb(double x); /* C99 */
int double ilogbl(long double x); /* C99 */
float logbf(float x); /* C99 */
double logb(double x); /* C99 */
long double logbl(long double x); /* C99 */

15.4 Power functions

15.4.1 The pow functions

The pow functions compute x raised to the power y and return the result. A domain error occurs if x is
negative and y is not an integral value. A domain error occurs if the result cannot be represented when
x is zero and y is less than or equal to zero. A range error may occur.

#include <math.h>
float powf(float x, float y); /* C99 */
double pow(double x, double y);
long double powl(long double x, long double y); /* C99 */

15.4.2 The sqrt functions

The sqrt functions compute the positive square root of x and return the result. A domain error occurs
if the argument is negative.

#include <math.h>
float sqrtf(float x); /* C99 */
double sqrt(double x);
long double sqrtl(long double x); /* C99 */

15.4.3 The cbrt functions

The cbrt functions compute the cube root of x and return the result.

#include <math.h>
float cbrtf(float x); /* C99 */
double cbrt(double x); /* C99 */
long double cbrtl(long double x); /* C99 */

71

Further math

15.4.4 The hypot functions

The hypot functions compute the square root of the sums of the squares of x and y, without overflow
or underflow, and return the result.

#include <math.h>
float hypotf(float x, float y); /* C99 */
double hypot(double x, double y); /* C99 */
long double hypotl(long double x, long double y); /* C99 */

15.5 Nearest integer, absolute value, and remainder functions

15.5.1 The ceil and floor functions

The ceil functions compute the smallest integral value not less than x and return the result; the floor
functions compute the largest integral value not greater than x and return the result.

#include <math.h>
float ceilf(float x); /* C99 */
double ceil(double x);
long double ceill(long double x); /* C99 */
float floorf(float x); /* C99 */
double floor(double x);
long double floorl(long double x); /* C99 */

15.5.2 The fabs functions

The fabs functions compute the absolute value of a floating-point number x and return the result.

#include <math.h>
float fabsf(float x); /* C99 */
double fabs(double x);
long double fabsl(long double x); /* C99 */

15.5.3 The fmod functions

The fmod functions compute the floating-point remainder of x/y and return the value x - i * y, for
some integer i such that, if y is nonzero, the result has the same sign as x and magnitude less than
the magnitude of y. If y is zero, whether a domain error occurs or the fmod functions return zero is
implementation-defined.

#include <math.h>
float fmodf(float x, float y); /* C99 */
double fmod(double x, double y);
long double fmodl(long double x, long double y); /* C99 */

72

Nearest integer, absolute value, and remainder functions

15.5.4 The nearbyint, rint, lrint, and llrint functions

The nearbyint functions round their argument to an integer value in floating-point format, using the
current rounding direction and without raising the "inexact" floating-point exception.

The rint functions are similar to the nearbyint functions except that they can raise the "inexact"
floating-point exception if the result differs in value from the argument.

The lrint and llrint functions round their arguments to the nearest integer value according to the
current rounding direction. If the result is outside the range of values of the return type, the numeric
result is undefined and a range error may occur if the magnitude of the argument is too large.

#include <math.h>
float nearbyintf(float x); /* C99 */
double nearbyint(double x); /* C99 */
long double nearbyintl(long double x); /* C99 */
float rintf(float x); /* C99 */
double rint(double x); /* C99 */
long double rintl(long double x); /* C99 */
long int lrintf(float x); /* C99 */
long int lrint(double x); /* C99 */
long int lrintl(long double x); /* C99 */
long long int llrintf(float x); /* C99 */
long long int llrint(double x); /* C99 */
long long int llrintl(long double x); /* C99 */

15.5.5 The round, lround, and llround functions

The round functions round the argument to the nearest integer value in floating-point format, rounding
halfway cases away from zero, regardless of the current rounding direction.

The lround and llround functions round the argument to the nearest integer value, rounding halfway
cases away from zero, regardless of the current rounding direction. If the result is outside the range of
values of the return type, the numeric result is undefined and a range error may occur if the magnitude
of the argument is too large.

#include <math.h>
float roundf(float x); /* C99 */
double round(double x); /* C99 */
long double roundl(long double x); /* C99 */
long int lroundf(float x); /* C99 */
long int lround(double x); /* C99 */
long int lroundl(long double x); /* C99 */
long long int llroundf(float x); /* C99 */
long long int llround(double x); /* C99 */
long long int llroundl(long double x); /* C99 */

15.5.6 The trunc functions

The trunc functions round their argument to the integer value in floating-point format that is nearest
but no larger in magnitude than the argument.

#include <math.h>
float truncf(float x); /* C99 */

73

Further math

double trunc(double x); /* C99 */
long double truncl(long double x); /* C99 */

15.5.7 The remainder functions

The remainder functions compute the remainder x REM y as defined by IEC 60559. The definition
reads, "When y ≠ 0, the remainder r = x REM y is defined regardless of the rounding mode by the
mathematical reduction r = x - ny, where n is the integer nearest the exact value of x/y; whenever |n -
x/y| = ½, then n is even. Thus, the remainder is always exact. If r = 0, its sign shall be that of x." This
definition is applicable for all implementations.

#include <math.h>
float remainderf(float x, float y); /* C99 */
double remainder(double x, double y); /* C99 */
long double remainderl(long double x, long double y); /* C99 */

15.5.8 The remquo functions

The remquo functions return the same remainder as the remainder functions. In the object pointed to
by quo, they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n
to the magnitude of the integral quotient of x/y, where n is an implementation-defined integer greater
than or equal to 3.

#include <math.h>
float remquof(float x, float y, int *quo); /* C99 */
double remquo(double x, double y, int *quo); /* C99 */
long double remquol(long double x, long double y, int *quo); /* C99 */

15.6 Error and gamma functions

The erf functions compute the error function of the argument (2/(π½) ∫0x e-t2 dt); the erfc functions
compute the complimentary error function of the argument (that is, 1 - erf x). For the erfc functions,
a range error may occur if the argument is too large.

The lgamma functions compute the natural logarithm of the absolute value of the gamma of the argu-
ment (that is, loge|Γ(x)|). A range error may occur if the argument is a negative integer or zero.

The tgamma functions compute the gamma of the argument (that is, Γ(x)). A domain error occurs if
the argument is a negative integer or if the result cannot be represented when the argument is zero. A
range error may occur.

#include <math.h>
float erff(float x); /* C99 */
double erf(double x); /* C99 */
long double erfl(long double x); /* C99 */
float erfcf(float x); /* C99 */
double erfc(double x); /* C99 */
long double erfcl(long double x); /* C99 */
float lgammaf(float x); /* C99 */
double lgamma(double x); /* C99 */
long double lgammal(long double x); /* C99 */

74

Further reading

float tgammaf(float x); /* C99 */
double tgamma(double x); /* C99 */
long double tgammal(long double x); /* C99 */

15.7 Further reading

w:circular shift3

pl:C/Zaawansowane operacje matematyczne4

3 http://en.wikipedia.org/wiki/circular%20shift
4 http://pl.wikibooks.org/wiki/C%2FZaawansowane%20operacje%20matematyczne

75

http://en.wikipedia.org/wiki/circular%20shift
http://pl.wikibooks.org/wiki/C%2FZaawansowane%20operacje%20matematyczne

Further math

76

16 Control

Very few programs follow exactly one control path and have each instruction stated explicitly. In order
to program effectively, it is necessary to understand how one can alter the steps taken by a program
due to user input or other conditions, how some steps can be executed many times with few lines of
code, and how programs can appear to demonstrate a rudimentary grasp of logic. C constructs known
as conditionals and loops grant this power.

From this point forward, it is necessary to understand what is usually meant by the word block. A
block is a group of code statements that are associated and intended to be executed as a unit. In C, the
beginning of a block of code is denoted with { (left curly), and the end of a block is denoted with }. It
is not necessary to place a semicolon after the end of a block. Blocks can be empty, as in {}. Blocks
can also be nested; i.e. there can be blocks of code within larger blocks.

16.1 Conditionals

There is likely nomeaningful programwritten inwhich a computer does not demonstrate basic decision-
making skills. It can actually be argued that there is no meaningful human activity in which some sort
of decision-making, instinctual or otherwise, does not take place. For example, when driving a car
and approaching a traffic light, one does not think, "I will continue driving through the intersection."
Rather, one thinks, "I will stop if the light is red, go if the light is green, and if yellow go only if I am
traveling at a certain speed a certain distance from the intersection." These kinds of processes can be
simulated in C using conditionals.

A conditional is a statement that instructs the computer to execute a certain block of code or alter certain
data only if a specific condition has been met. The most common conditional is the If-Else statement,
with conditional expressions and Switch-Case statements typically used as more shorthanded methods.

Before one can understand conditional statements, it is first necessary to understand how C expresses
logical relations. C treats logic as being arithmetic. The value 0 (zero) represents false, and all other
values represent true. If you chose some particular value to represent true and then compare values
against it, sooner or later your code will fail when your assumed value (often 1) turns out to be incorrect.
Code written by people uncomfortable with the C language can often be identified by the usage of
#define to make a "TRUE" value. 1

Because logic is arithmetic in C, arithmetic operators and logical operators are one and the same.
Nevertheless, there are a number of operators that are typically associated with logic:

1 C FAQ ˆ{http://www.c-faq.com/bool/bool2.html}

77

http://www.c-faq.com/bool/bool2.html

Control

16.1.1 Relational and Equivalence Expressions:

a < b

1 if a is less than b, 0 otherwise.

a > b

1 if a is greater than b, 0 otherwise.

a <= b

1 if a is less than or equal to b, 0 otherwise.

a >= b

1 if a is greater than or equal to b, 0 otherwise.

a == b

1 if a is equal to b, 0 otherwise.

a != b

1 if a is not equal to b, 0 otherwise

New programmers should take special note of the fact that the "equal to" operator is ==, not =. This
is the cause of numerous coding mistakes and is often a difficult-to-find bug, as the expression (a =
b) sets a equal to b and subsequently evaluates to b; but the expression (a == b), which is usually
intended, checks if a is equal to b. It needs to be pointed out that, if you confuse = with ==, your
mistake will often not be brought to your attention by the compiler. A statement such as if (c =
20) {} is considered perfectly valid by the language, but will always assign 20 to c and evaluate as
true. A simple technique to avoid this kind of bug (in many, not all cases) is to put the constant first.
This will cause the compiler to issue an error, if == got misspelled with =.

Note that C does not have a dedicated boolean type as many other languages do. 0 means false and
anything else true. So the following are equivalent:

if (foo()) {
//do something

}

and

if (foo() != 0) {
//do something

}

Often #define TRUE 1 and #define FALSE 0 are used to work around the lack of a boolean type.
This is bad practice, since it makes assumptions that do not hold. It is a better idea to indicate what you
are actually expecting as a result from a function call, as there are many different ways of indicating
error conditions, depending on the situation.

if (strstr("foo", bar) >= 0) {
//bar contains "foo"

}

78

Conditionals

Here, strstr returns the index where the substring foo is found and -1 if it was not found. Note
that this would fail with the TRUE definition mentioned in the previous paragraph. It would also not
produce the expected results if we omitted the >= 0.

One other thing to note is that the relational expressions do not evaluate as they would in mathematical
texts. That is, an expression myMin < value < myMax does not evaluate as you probably think
it might. Mathematically, this would test whether or not value is between myMin and myMax. But in
C, what happens is that value is first compared with myMin. This produces either a 0 or a 1. It is this
value that is compared against myMax. Example:

int value = 20;
/* ... */
if (0 < value < 10) { // don't do this! it always evaluates to "true"!

/* do some stuff */
}

Because value is greater than 0, the first comparison produces a value of 1. Now 1 is compared to
be less than 10, which is true, so the statements in the if are executed. This probably is not what the
programmer expected. The appropriate code would be

int value = 20;
/* ... */
if (0 < value && value < 10) { // the && means "and"
/* do some stuff */
}

16.1.2 Logical Expressions

a || b

when EITHER a or b is true (or both), the result is 1, otherwise the result is 0.

a && b

when BOTH a and b are true, the result is 1, otherwise the result is 0.

!a

when a is true, the result is 0, when a is 0, the result is 1.

Here's an example of a larger logical expression. In the statement:

e = ((a && b) || (c > d));

e is set equal to 1 if a and b are non-zero, or if c is greater than d. In all other cases, e is set to 0.

C uses short circuit evaluation of logical expressions. That is to say, once it is able to determine the
truth of a logical expression, it does no further evaluation. This is often useful as in the following:

int myArray[12];
....
if (i < 12 && myArray[i] > 3) {
....

79

Control

In the snippet of code, the comparison of i with 12 is done first. If it evaluates to 0 (false), i would be
out of bounds as an index tomyArray. In this case, the program never attempts to accessmyArray[i]
since the truth of the expression is known to be false. Hence we need not worry here about trying to
access an out-of-bounds array element if it is already known that i is greater than or equal to zero. A
similar thing happens with expressions involving the or || operator.

while(doThis() || doThat()) ...

doThat() is never called if doThis() returns a non-zero (true) value.

16.1.3 Bitwise Boolean Expressions

The bitwise operators work bit by bit on the operands. The operands must be of integral type (one of the
types used for integers). The six bitwise operators are & (AND), | (OR), ˆ (exclusive OR, commonly
called XOR), ˜ (NOT, which changes 1 to 0 and 0 to 1), << (shift left), and >> (shift right). The negation
operator is a unary operator which precedes the operand. The others are binary operators which lie
between the two operands. The precedence of these operators is lower than that of the relational and
equivalence operators; it is often required to parenthesize expressions involving bitwise operators.

For this section, recall that a number starting with 0x is hexadecimal, or hex for short. Unlike the
normal decimal system using powers of 10 and digits 0123456789, hex uses powers of 16 and digits
0123456789abcdef. Hexadecimal is commonly used in C programs because a programmer can quickly
convert it to or from binary (powers of 2 and digits 01). C does not directly support binary notation,
which would be really verbose anyway.

a & b

bitwise boolean and of a and b

0xc & 0xa produces the value 0x8 (in binary, 1100 & 1010 produces 1000)

a | b

bitwise boolean or of a and b

0xc | 0xa produces the value 0xe (in binary, 1100 | 1010 produces 1110)

a ˆ b

bitwise xor of a and b

0xc ˆ 0xa produces the value 0x6 (in binary, 1100 ˆ 1010 produces 0110)

˜a

bitwise complement of a.

˜0xc produces the value -1-0xc (in binary, ˜1100 produces ...11110011 where "..." may be many more
1 bits)

a << b

shift a left by b (multiply a by 2b)

80

Conditionals

0xc << 1 produces the value 0x18 (in binary, 1100 << 1 produces the value 11000)

a >> b

shift a right by b (divide a by 2b)

0xc >> 1 produces the value 0x6 (in binary, 1100 >> 1 produces the value 110)

16.1.4 The If-Else statement

If-Else provides a way to instruct the computer to execute a block of code only if certain conditions
have been met. The syntax of an If-Else construct is:

if (/* condition goes here */) {
/* if the condition is non-zero (true), this code will execute */

} else {
/* if the condition is 0 (false), this code will execute */

}

The first block of code executes if the condition in parentheses directly after the if evaluates to non-zero
(true); otherwise, the second block executes.

The else and following block of code are completely optional. If there is no need to execute code if a
condition is not true, leave it out.

Also, keep in mind that an if can directly follow an else statement. While this can occasionally be
useful, chaining more than two or three if-elses in this fashion is considered bad programming practice.
We can get around this with the Switch-Case construct described later.

Two other general syntax notes need to be made that you will also see in other control constructs: First,
note that there is no semicolon after if or else. There could be, but the block (code enclosed in { and })
takes the place of that. Second, if you only intend to execute one statement as a result of an if or else,
curly braces are not needed. However, many programmers believe that inserting curly braces anyway
in this case is good coding practice.

The following code sets a variable c equal to the greater of two variables a and b, or 0 if a and b are
equal.

if(a > b) {
c = a;

} else if(b > a) {
c = b;

} else {
c = 0;

}

Consider this question: why can't you just forget about else and write the code like:

if(a > b) {
c = a;

}

if(a < b) {
c = b;

}

if(a == b) {

81

Control

c = 0;
}

There are several answers to this. Most importantly, if your conditionals are not mutually exclusive,
two cases could execute instead of only one. If the code was different and the value of a or b changes
somehow (e.g.: you reset the lesser of a and b to 0 after the comparison) during one of the blocks? You
could end up with multiple if statements being invoked, which is not your intent. Also, evaluating if
conditionals takes processor time. If you use else to handle these situations, in the case above assuming
(a > b) is non-zero (true), the program is spared the expense of evaluating additional if statements. The
bottom line is that it is usually best to insert an else clause for all cases in which a conditional will not
evaluate to non-zero (true).

The conditional expression

A conditional expression is a way to set values conditionally in a more shorthand fashion than If-Else.
The syntax is:

(/* logical expression goes here */) ? (/* if non-zero (true) */) : (/* if 0
(false) */)

The logical expression is evaluated. If it is non-zero (true), the overall conditional expression evalu-
ates to the expression placed between the ? and :, otherwise, it evaluates to the expression after the :.
Therefore, the above example (changing its function slightly such that c is set to b when a and b are
equal) becomes:

c = (a > b) ? a : b;

Conditional expressions can sometimes clarify the intent of the code. Nesting the conditional operator
should usually be avoided. It's best to use conditional expressions only when the expressions for a and
b are simple. Also, contrary to a common beginner belief, conditional expressions do not make for
faster code. As tempting as it is to assume that fewer lines of code result in faster execution times,
there is no such correlation.

16.1.5 The Switch-Case statement

Say youwrite a programwhere the user inputs a number 1-5 (corresponding to student grades, A(represented
as 1)-D(4) and F(5)), stores it in a variable grade and the program responds by printing to the screen
the associated letter grade. If you implemented this using If-Else, your code would look something
like this:

if(grade == 1) {
printf("A\n");

} else if(grade == 2) {
printf("B\n");

} else if /* etc. etc. */

Having a long chain of if-else-if-else-if-else can be a pain, both for the programmer and anyone reading
the code. Fortunately, there's a solution: the Switch-Case construct, of which the basic syntax is:

82

Conditionals

switch(/* integer or enum goes here */) {
case /* potential value of the aforementioned int or enum */:

/* code */
case /* a different potential value */:

/* different code */
/* insert additional cases as needed */
default:

/* more code */
}

The Switch-Case construct takes a variable, usually an int or an enum, placed after switch, and com-
pares it to the value following the case keyword. If the variable is equal to the value specified after case,
the construct "activates", or begins executing the code after the case statement. Once the construct has
"activated", there will be no further evaluation of cases.

Switch-Case is syntactically "weird" in that no braces are required for code associated with a case.

Very important: Typically, the last statement for each case is a break statement. This causes program
execution to jump to the statement following the closing bracket of the switch statement, which is what
one would normally want to happen. However if the break statement is omitted, program execution
continues with the first line of the next case, if any. This is called a fall-through. When a programmer
desires this action, a comment should be placed at the end of the block of statements indicating the
desire to fall through. Otherwise another programmermaintaining the code could consider the omission
of the 'break' to be an error, and inadvertently 'correct' the problem. Here's an example:

switch (someVariable) {
case 1:

printf("This code handles case 1\n");
break;

case 2:
printf("This prints when someVariable is 2, along with...\n");
/* FALL THROUGH */

case 3:
printf("This prints when someVariable is either 2 or 3.\n");
break;

}

If a default case is specified, the associated statements are executed if none of the other cases match.
A default case is optional. Here's a switch statement that corresponds to the sequence of if - else if
statements above.

Back to our example above. Here's what it would look like as Switch-Case:

switch (grade) {
case 1:

printf("A\n");
break;

case 2:
printf("B\n");
break;

case 3:
printf("C\n");
break;

case 4:
printf("D\n");
break;

default:
printf("F\n");
break;

}

83

Control

A set of statements to execute can be grouped with more than one value of the variable as in the
following example. (the fall-through comment is not necessary here because the intended behavior is
obvious)

switch (something) {
case 2:
case 3:
case 4:

/* some statements to execute for 2, 3 or 4 */
break;

case 1:
default:

/* some statements to execute for 1 or other than 2,3,and 4 */
break;

}

Switch-Case constructs are particularly useful when used in conjunction with user defined enum data
types. Some compilers are capable of warning about an unhandled enum value, which may be helpful
for avoiding bugs.

16.2 Loops

Often in computer programming, it is necessary to perform a certain action a certain number of times
or until a certain condition is met. It is impractical and tedious to simply type a certain statement or
group of statements a large number of times, not to mention that this approach is too inflexible and
unintuitive to be counted on to stop when a certain event has happened. As a real-world analogy,
someone asks a dishwasher at a restaurant what he did all night. He will respond, "I washed dishes
all night long." He is not likely to respond, "I washed a dish, then washed a dish, then washed a dish,
then...". The constructs that enable computers to perform certain repetitive tasks are called loops.

16.2.1 While loops

A while loop is the most basic type of loop. It will run as long as the condition is non-zero (true). For
example, if you try the following, the program will appear to lock up and you will have to manually
close the program down. A situation where the conditions for exiting the loop will never become true
is called an infinite loop.

int a=1;
while(42) {

a = a*2;
}

Here is another example of a while loop. It prints out all the powers of two less than 100.

int a=1;
while(a<100) {

printf("a is %d \n",a);
a = a*2;

}

84

Loops

The flow of all loops can also be controlled by break and continue statements. A break statement will
immediately exit the enclosing loop. A continue statement will skip the remainder of the block and
start at the controlling conditional statement again. For example:

int a=1;
while (42) { // loops until the break statement in the loop is executed

printf("a is %d ",a);
a = a*2;
if(a>100) {

break;
} else if(a==64) {

continue; // Immediately restarts at while, skips next step
}
printf("a is not 64\n");

}

In this example, the computer prints the value of a as usual, and prints a notice that a is not 64 (unless
it was skipped by the continue statement).

Similar to If above, braces for the block of code associated with a While loop can be omitted if the
code consists of only one statement, for example:

int a=1;
while(a < 100) a = a*2;

This will merely increase a until a is not less than 100.

When the computer reaches the end of the while loop, it always goes back to the while statement at
the top of the loop, where it re-evaluates the controlling condition. If that condition is "true" at that
instant -- even if it was temporarily 0 for a few statements inside the loop -- then the computer begins
executing the statements inside the loop again; otherwise the computer exits the loop. The computer
does not "continuously check" the controlling condition of a while loop during the execution of that
loop. It only "peeks" at the controlling condition each time it reaches the while at the top of the loop.

It is very important to note, once the controlling condition of a While loop becomes 0 (false), the loop
will not terminate until the block of code is finished and it is time to reevaluate the conditional. If you
need to terminate a While loop immediately upon reaching a certain condition, consider using break.

A common idiom is to write:

int i = 5;
while(i--) {

printf("java and c# can't do this\n");
}

This executes the code in the while loop 5 times, with i having values that range from 4 down to 0
(inside the loop). Conveniently, these are the values needed to access every item of an array containing
5 elements.

16.2.2 For loops

For loops generally look something like this:

85

Control

for(initialization; test; increment) {
/* code */

}

The initialization statement is executed exactly once - before the first evaluation of the test condition.
Typically, it is used to assign an initial value to some variable, although this is not strictly necessary.
The initialization statement can also be used to declare and initialize variables used in the loop.

The test expression is evaluated each time before the code in the for loop executes. If this expression
evaluates as 0 (false) when it is checked (i.e. if the expression is not true), the loop is not (re)entered
and execution continues normally at the code immediately following the FOR-loop. If the expression
is non-zero (true), the code within the braces of the loop is executed.

After each iteration of the loop, the increment statement is executed. This often is used to increment
the loop index for the loop, the variable initialized in the initialization expression and tested in the test
expression. Following this statement execution, control returns to the top of the loop, where the test
action occurs. If a continue statement is executed within the for loop, the increment statement would
be the next one executed.

Each of these parts of the for statement is optional and may be omitted. Because of the free-form
nature of the for statement, some fairly fancy things can be done with it. Often a for loop is used to
loop through items in an array, processing each item at a time.

int myArray[12];
int ix;
for (ix = 0; ix<12; ix++) {

myArray[ix] = 5 * ix + 3;
}

The above for loop initializes each of the 12 elements of myArray. The loop index can start from any
value. In the following case it starts from 1.

for(ix = 1; ix <= 10; ix++) {
printf("%d ", ix);

}

which will print

1 2 3 4 5 6 7 8 9 10

You will most often use loop indexes that start from 0, since arrays are indexed at zero, but you will
sometimes use other values to initialize a loop index as well.

The increment action can do other things, such as decrement. So this kind of loop is common:

for (i = 5; i > 0; i--) {
printf("%d ",i);

}

which yields

86

One last thing: goto

5 4 3 2 1

Here's an example where the test condition is simply a variable. If the variable has a value of 0 or
NULL, the loop exits, otherwise the statements in the body of the loop are executed.

for (t = list_head; t; t = NextItem(t)) {
/*body of loop */

}

A WHILE loop can be used to do the same thing as a FOR loop, however a FOR loop is a more
condensed way to perform a set number of repetitions since all of the necessary information is in a one
line statement.

A FOR loop can also be given no conditions, for example:

for(;;) {
/* block of statements */

}

This is called an infinite loop since it will loop forever unless there is a break statement within the
statements of the for loop. The empty test condition effectively evaluates as true.

It is also common to use the comma operator in for loops to execute multiple statements.

int i, j, n = 10;
for(i = 0, j = 0; i <= n; i++,j+=2) {

printf("i = %d , j = %d \n",i,j);
}

16.2.3 Do-While loops

A DO-WHILE loop is a post-check while loop, which means that it checks the condition after each
run. As a result, even if the condition is zero (false), it will run at least once. It follows the form of:

do {
/* do stuff */

} while (condition);

Note the terminating semicolon. This is required for correct syntax. Since this is also a type of while
loop, break and continue statements within the loop function accordingly. A continue statement
causes a jump to the test of the condition and a break statement exits the loop.

It is worth noting that Do-While andWhile are functionally almost identical, with one important differ-
ence: Do-While loops are always guaranteed to execute at least once, but While loops will not execute
at all if their condition is 0 (false) on the first evaluation.

16.3 One last thing: goto

goto is a very simple and traditional control mechanism. It is a statement used to immediately and
unconditionally jump to another line of code. To use goto, you must place a label at a point in your
program. A label consists of a name followed by a colon (:) on a line by itself. Then, you can type

87

Control

"goto label;" at the desired point in your program. The code will then continue executing beginning
with label. This looks like:

MyLabel:
/* some code */

goto MyLabel;

The ability to transfer the flow of control enabled by gotos is so powerful that, in addition to the simple
if, all other control constructs can be written using gotos instead. Here, we can let "S" and "T" be any
arbitrary statements:

if (''cond'') {
S;

} else {
T;

}
/* ... */

The same statement could be accomplished using two gotos and two labels:

if (''cond'') goto Label1;
T;
goto Label2;

Label1:
S;

Label2:
/* ... */

Here, the first goto is conditional on the value of "cond". The second goto is unconditional. We can
perform the same translation on a loop:

while (''cond1'') {
S;
if (''cond2'') break;
T;

}
/* ... */

Which can be written as:

Start:
if (!''cond1'') goto End;
S;
if (''cond2'') goto End;
T;
goto Start;

End:
/* ... */

As these cases demonstrate, often the structure of what your program is doing can usually be ex-
pressed without using gotos. Undisciplined use of gotos can create unreadable, unmaintainable code
when more idiomatic alternatives (such as if-elses, or for loops) can better express your structure. The-
oretically, the goto construct does not ever have to be used, but there are cases when it can increase
readability, avoid code duplication, or make control variables unnecessary. You should consider first
mastering the idiomatic solutions, and use goto only when necessary. Keep in mind that many, if
not most, C style guidelines strictly forbid use of goto, with the only common exceptions being the
following examples.

88

Examples

One use of goto is to break out of a deeply nested loop. Since break will not work (it can only escape
one loop), goto can be used to jump completely outside the loop. Breaking outside of deeply nested
loops without the use of the goto is always possible, but often involves the creation and testing of extra
variables that may make the resulting code far less readable than it would be with goto. The use of
gotomakes it easy to undo actions in an orderly fashion, typically to avoid failing to free memory that
had been allocated.

Another accepted use is the creation of a state machine. This is a fairly advanced topic though, and not
commonly needed.

16.4 Examples

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int years;

printf("Enter your age in years : ");
fflush(stdout);
errno = 0;
if(scanf("%d", &years) != 1 || errno)

return EXIT_FAILURE;
printf("Your age in days is %d\n", years * 365);
return 0;

}

16.5 Further reading

de:C-Programmierung: Kontrollstrukturen2 et:Programmeerimiskeel C/Keelestruktuurid3

pl:C/Instrukcje sterujące4 pt:Programar em C/Controle de fluxo5 fi:C/Ohjausrakenteet6

2 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kontrollstrukturen
3 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKeelestruktuurid
4 http://pl.wikibooks.org/wiki/C%2FInstrukcje%20steruj%01%05ce
5 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FControle%20de%20fluxo
6 http://fi.wikibooks.org/wiki/C%2FOhjausrakenteet

89

http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kontrollstrukturen
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKeelestruktuurid
http://pl.wikibooks.org/wiki/C%2FInstrukcje%20steruj%01%05ce
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FControle%20de%20fluxo
http://fi.wikibooks.org/wiki/C%2FOhjausrakenteet

Control

90

17 Procedures and functions

In C programming, all executable code resides within a function. A function is a named block of code
that performs a task and then returns control to a caller. Note that other programming languages may
distinguish between a "function", "subroutine", "subprogram", "procedure", or "method" -- in C, these
are all functions.

A function is often executed (called) several times, from several different places, during a single exe-
cution of the program. After finishing a subroutine, the program will branch back (return) to the point
after the call.

Functions are a powerful programming tool.

As a basic example, suppose you are writing code to print out the first 5 squares of numbers, do some
intermediate processing, then print the first 5 squares again. We could write it like this:

#include <stdio.h>

int main(void)
{
int i;
for(i=1; i <= 5; i++)
{

printf("%d ", i*i);
}
for(i=1; i <= 5; i++)
{

printf("%d ", i*i);
}
return 0;

}

We have to write the same loop twice. We may want to somehow put this code in a separate place and
simply jump to this code when we want to use it. This would look like:

#include <stdio.h>

void Print_Squares(void)
{
int i;
for(i=1; i <=5; i++)
{

printf("%d ", i*i);
}

}

int main(void)
{
Print_Squares();
Print_Squares();
return 0;

}

This is precisely what functions are for.

91

Procedures and functions

17.1 More on functions

A function is like a black box. It takes in input, does something with it, then spits out an answer.

Note that a function may not take any inputs at all, or it may not return anything at all. In the above
example, if wewere tomake a function of that loop, wemay not need any inputs, andwe aren't returning
anything at all (Text output doesn't count - when we speak of returning we mean to say meaningful
data that the program can use).

We have some terminology to refer to functions:

• A function, call it f, that uses another function g, is said to call g. For example, f calls g to print the
squares of ten numbers.

• A function's inputs are known as its arguments
• A function g that gives some kind of answer back to f is said to return that answer. For example, g
returns the sum of its arguments.

17.2 Writing functions in C

It's always good to learn by example. Let's write a function that will return the square of a number.

int square(int x)
{

int square_of_x;
square_of_x = x * x;
return square_of_x;

}

To understand how to write such a function like this, it may help to look at what this function does as
a whole. It takes in an int, x, and squares it, storing it in the variable square_of_x. Now this value is
returned.

The first int at the beginning of the function declaration is the type of data that the function returns.
In this case when we square an integer we get an integer, and we are returning this integer, and so we
write int as the return type.

Next is the name of the function. It is good practice to use meaningful and descriptive names for
functions you may write. It may help to name the function after what it is written to do. In this case
we name the function "square", because that's what it does - it squares a number.

Next is the function's first and only argument, an int, which will be referred to in the function as x.
This is the function's input.

In between the braces is the actual guts of the function. It declares an integer variable called square_-
of_x that will be used to hold the value of the square of x. Note that the variable square_of_x can only
be used within this function, and not outside. We'll learn more about this sort of thing later, and we
will see that this property is very useful.

We then assign x multiplied by x, or x squared, to the variable square_of_x, which is what this function
is all about. Following this is a return statement. We want to return the value of the square of x, so
we must say that this function returns the contents of the variable square_of_x.

92

Writing functions in C

Our brace to close, and we have finished the declaration.

Written in a more concise manner, this code performs exactly the same function as the above:

int square(int x)
{

return x * x;
}

Note this should look familiar - you have been writing functions already, in fact - main is a function
that is always written.

17.2.1 In general

In general, if we want to declare a function, we write

type name(type1 arg1, type2 arg2, ...)
{
/* code */

}

We've previously said that a function can take no arguments, or can return nothing, or both. What do
we write if we want the function to return nothing? We use C's void keyword. void basically means
"nothing" - so if we want to write a function that returns nothing, for example, we write

void sayhello(int number_of_times)
{
int i;
for(i=1; i <= number_of_times; i++) {

printf("Hello!\n");
}

}

Notice that there is no return statement in the function above. Since there's none, we write void as
the return type.

What about a function that takes no arguments? If we want to do this, we can write for example

float calculate_number(void)
{
float to_return=1;
int i;
for(i=0; i < 100; i++) {

to_return += 1;
to_return = 1/to_return;

}
return to_return;

}

Notice this function doesn't take any inputs, but merely returns a number calculated by this function.

Naturally, you can combine both void return and void in arguments together to get a valid function,
also.

93

Procedures and functions

17.2.2 Recursion

Here's a simple function that does an infinite loop. It prints a line and calls itself, which again prints
a line and calls itself again, and this continues until the stack overflows and the program crashes. A
function calling itself is called recursion, and normally you will have a conditional that would stop the
recursion after a small, finite number of steps.

// don't run this!
void infinite_recursion()
{

printf("Infinite loop!\n");
infinite_recursion();

}

A simple check can be done like this. Note that ++depth is used so the increment will take place before
the value is passed into the function. Alternatively you can increment on a separate line before the
recursion call. If you say print_me(3,0); the function will print the line Recursion 3 times.

void print_me(int j, int depth)
{

if(depth < j) {
printf("Recursion! depth = %d j = %d\n",depth,j); //j keeps its value
print_me(j, ++depth);

}
}

Recursion is most often used for jobs such as directory tree scans, seeking for the end of a linked list,
parsing a tree structure in a database and factorising numbers (and finding primes) among other things.

17.2.3 Static Functions

If a function is to be called only from within the file in which it is declared, it is appropriate to declare
it as a static function. When a function is declared static, the compiler will now compile to an object
file in a way that prevents the function from being called from code in other files. Example:

static int compare(int a, int b)
{

return (a+4 < b)? a : b;
}

17.3 Using C functions

We can now write functions, but how do we use them? When we write main, we place the function
outside the braces that encompass main.

When we want to use that function, say, using our calculate_number function above, we can write
something like

float f;
f = calculate_number();

If a function takes in arguments, we can write something like

94

Functions from the C Standard Library

int square_of_10;
square_of_10 = square(10);

If a function doesn't return anything, we can just say

say_hello();

since we don't need a variable to catch its return value.

17.4 Functions from the C Standard Library

While the C language doesn't itself contain functions, it is usually linked with the C Standard Library.
To use this library, you need to add an #include directive at the top of the C file, which may be one of
the following:

•
<assert.h>1

• <ctype.h>2

• <errno.h>3

• <float.h>4

•
<limits.h>5

•
<locale.h>6

• <math.h>7

•
<setjmp.h>8

•
<signal.h>9

•
<stdarg.h>10

•
<stddef.h>11

•
<stdio.h>12

•
<stdlib.h>13

•
<string.h>14

• <time.h>15

•
<complex.h>16

The functions available are:

<assert.h> <limits.h> <signal.h> <stdlib.h>

1 http://en.wikipedia.org/wiki/Assert.h
2 http://en.wikipedia.org/wiki/Ctype.h
3 http://en.wikipedia.org/wiki/Errno.h
4 http://en.wikipedia.org/wiki/Float.h
5 http://en.wikipedia.org/wiki/Limits.h
6 http://en.wikipedia.org/wiki/Locale.h
7 http://en.wikipedia.org/wiki/Math.h
8 http://en.wikipedia.org/wiki/Setjmp.h
9 http://en.wikipedia.org/wiki/Signal.h
10 http://en.wikipedia.org/wiki/Stdarg.h
11 http://en.wikipedia.org/wiki/Stddef.h
12 http://en.wikipedia.org/wiki/Stdio.h
13 http://en.wikipedia.org/wiki/Stdlib.h
14 http://en.wikipedia.org/wiki/String.h
15 http://en.wikipedia.org/wiki/Time.h
16 http://en.wikipedia.org/wiki/Complex.h

95

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Complex.h

Procedures and functions

<assert.h> <limits.h> <signal.h> <stdlib.h>

• assert(int) • (constants only) • int raise(int sig).
This

• void* sig-
nal(int sig, void
(*func)(int))

• atof(char*),
atoi(char*),
atol(char*)

• strtod(char * str,
char ** endptr),
strtol(char *str,
char **endptr),
strtoul(char *str,
char **endptr)

• rand(), srand()
• malloc(size_t),
calloc (size_t el-
ements, size_t
elementSize), re-
alloc(void*, int)

• free (void*)
• exit(int), abort()
• atexit(void
(*func)())

• getenv
• system
• qsort(void *,
size_t number,
size_t size, int
(*sortfunc)(void*,
void*))

• abs, labs
• div, ldiv

<ctype.h> <locale.h> <stdarg.h> <string.h>

96

Functions from the C Standard Library

<assert.h> <limits.h> <signal.h> <stdlib.h>

• isalnum, isalpha,
isblank

• iscntrl, isdigit,
isgraph

• islower, isprint,
ispunct

• isspace, isupper,
isxdigit

• tolower, toupper

• struct lconv* lo-
caleconv(void);

• char* setlo-
cale(int, const
char*);

• va_start (va_list,
ap)

• va_arg (ap, (type))
• va_end (ap)
• va_copy (va_list,
va_list)

• memcpy, mem-
move

• memchr, mem-
cmp, memset

• strcat, strncat,
strchr, strrchr

• strcmp, strncmp,
strccoll

• strcpy, strncpy
• strerror
• strlen
• strspn, strcspn
• strpbrk
• strstr
• strtok
• strxfrm

errno.h math.h stddef.h time.h

97

Procedures and functions

<assert.h> <limits.h> <signal.h> <stdlib.h>

• (errno) • sin, cos, tan
• asin, acos, atan,
atan2

• sinh, cosh, tanh
• ceil
• exp
• fabs
• floor
• fmod
• frexp
• ldexp
• log, log10
• modf
• pow
• sqrt

• offsetof macro • asctime (struct
tm* tmptr)

• clock_t clock()
• char* ctime(const
time_t* timer)

• double
difftime(time_-
t timer2, time_t
timer1)

• struct tm* gm-
time(const time_t*
timer)

• struct tm*
gmtime_r(const
time_t* timer,
struct tm* result)

• struct tm* local-
time(const time_t*
timer)

• time_t mk-
time(struct tm*
ptm)

• time_t time(time_-
t* timer)

• char * strp-
time(const char*
buf, const char*
format, struct tm*
tptr)

• time_-
t timegm(struct
tm *brokentime)

float.h setjmp.h stdio.h

98

Variable-length argument lists

<assert.h> <limits.h> <signal.h> <stdlib.h>

• (constants • int setjmp(jmp_-
buf env)

• void
longjmp(jmp_-
buf env, int value)

• fclose
• fopen, freopen
• remove
• rename
• rewind
• tmpfile
• clearerr
• feof, ferror
• fflush
• fgetpos, fsetpos
• fgetc, fputc
• fgets, fputs
• ftell, fseek

• fread, fwrite
• getc, putc
• getchar, putchar,
fputchar

• gets, puts
• printf, vprintf
• fprintf, vfprintf
• sprintf, snprintf,
vsprintf, vsnprintf

• perror
• scanf, vscanf
• fscanf, vfscanf
• sscanf, vsscanf
• setbuf, setvbuf
• tmpnam
• ungetc

• /printf/17
• full list18

17.5 Variable-length argument lists

Functions with variable-length argument lists are functions that can take a varying number of argu-
ments. An example in the C standard library is the printf function, which can take any number of
arguments depending on how the programmer wants to use it.

C programmers rarely find the need to write new functions with variable-length arguments. If they
want to pass a bunch of things to a function, they typically define a structure to hold all those things --
perhaps a linked list, or an array -- and call that function with the data in the arguments.

However, you may occasionally find the need to write a new function that supports a variable-length
argument list. To create a function that can accept a variable-length argument list, you must first
include the standard library header stdarg.h. Next, declare the function as you would normally.
Next, add as the last argument an ellipsis ("..."). This indicates to the compiler that a variable list of
arguments is to follow. For example, the following function declaration is for a function that returns
the average of a list of numbers:

float average (int n_args, ...);

Note that because of the way variable-length arguments work, we must somehow, in the arguments,
specify the number of elements in the variable-length part of the arguments. In the average function

17 http://en.wikibooks.org/wiki/%2Fprintf%2F
18 http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ctype.h

99

http://en.wikibooks.org/wiki/%2Fprintf%2F
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ctype.h

Procedures and functions

here, it's done through an argument called n_args. In the printf function, it's done with the format
codes that you specify in that first string in the arguments you provide.

Now that the function has been declared as using variable-length arguments, we must next write the
code that does the actual work in the function. To access the numbers stored in the variable-length
argument list for our average function, we must first declare a variable for the list itself:

va_list myList;

The va_list type is a type declared in the stdarg.h header that basically allows you to keep track
of your list. To start actually using myList, however, we must first assign it a value. After all, simply
declaring it by itself wouldn't do anything. To do this, we must call va_start, which is actually a
macro defined in stdarg.h. In the arguments to va_start, you must provide the va_list variable
you plan on using, as well as the name of the last variable appearing before the ellipsis in your function
declaration:

#include <stdarg.h>
float average (int n_args, ...)
{

va_list myList;
va_start (myList, n_args);

}

Now that myList has been prepped for usage, we can finally start accessing the variables stored in
it. To do so, use the va_arg macro, which pops off the next argument on the list. In the arguments
to va_arg, provide the va_list variable you're using, as well as the primitive data type (e.g. int,
char) that the variable you're accessing should be:

#include <stdarg.h>
float average (int n_args, ...)
{

va_list myList;
va_start (myList, n_args);

int myNumber = va_arg (myList, int);
}

By popping n_args integers off of the variable-length argument list, we canmanage to find the average
of the numbers:

#include <stdarg.h>
float average (int n_args, ...)
{

va_list myList;
va_start (myList, n_args);

int numbersAdded = 0;
int sum = 0;

while (numbersAdded < n_args) {
int number = va_arg (myList, int); // Get next number from list
sum += number;
numbersAdded += 1;

}

float avg = (float)(sum) / (float)(numbersAdded); // Find the average
return avg;

}

100

Variable-length argument lists

By calling average (2, 10, 20), we get the average of 10 and 20, which is 15.

it:C/Blocchi e funzioni/Funzioni19 pl:C/Funkcje20

19 http://it.wikibooks.org/wiki/C%2FBlocchi%20e%20funzioni%2FFunzioni
20 http://pl.wikibooks.org/wiki/C%2FFunkcje

101

http://it.wikibooks.org/wiki/C%2FBlocchi%20e%20funzioni%2FFunzioni
http://pl.wikibooks.org/wiki/C%2FFunkcje

Procedures and functions

102

18 Preprocessor

Preprocessors are a way of making text processing with your C program before they are actually com-
piled. Before the actual compilation of every C program it is passed through a Preprocessor. The
Preprocessor looks through the program trying to find out specific instructions called Preprocessor
directives that it can understand. All Preprocessor directives begin with the # (hash) symbol.

The preprocessor1 is a part of the compiler which performs preliminary operations (conditionally
compiling code, including files etc...) to your code before the compiler sees it. These transformations
are lexical, meaning that the output of the preprocessor is still text.

NOTE: Technically the output of the preprocessing phase for C consists of a sequence of to-
kens, rather than source text, but it is simple to output source text which is equivalent to the
given token sequence, and that is commonly supported by compilers via a -E or /E option --
although command line options to C compilers aren't completely standard, many follow similar
rules.

18.1 Directives

Directives are special instructions directed to the preprocessor (preprocessor directive) or to the com-
piler2 (compiler directive) on how it should process part or all of your source code or set some flags
on the final object and are used to make writing source code easier (more portable for instance) and
to make the source code more understandable. Directives are handled by the preprocessor, which is
either a separate program invoked by the compiler or part of the compiler itself.

18.1.1 #include

C has some features as part of the language and some others as part of a standard library, which
is a repository of code that is available alongside every standard-conformant C compiler. When the
C compiler compiles your program it usually also links it with the standard C library. For example,
on encountering a #include <stdio.h> directive, it replaces the directive with the contents of the
stdio.h header file.

When you use features from the library, C requires you to declare what you would be using. The first
line in the program is a preprocessing directive which should look like this:

1 http://en.wikipedia.org/wiki/Preprocessor
2 http://en.wikipedia.org/wiki/compiler

103

http://en.wikipedia.org/wiki/Preprocessor
http://en.wikipedia.org/wiki/compiler

Preprocessor

#include <stdio.h>

The above line causes the C declarations which are in the stdio.h header3 to be included for use
in your program. Usually this is implemented by just inserting into your program the contents of a
header file called stdio.h, located in a system-dependent location. The location of such files may
be described in your compiler's documentation. A list of standard C header files is listed below in the
Headers table.

The stdio.h header contains various declarations for input/output (I/O) using an abstraction of I/O
mechanisms called streams. For example there is an output stream object called stdout which is
used to output text to the standard output, which usually displays the text on the computer screen.

If using angle brackets like the example above, the preprocessor is instructed to search for the include
file along the development environment path for the standard includes.

#include "other.h"

If you use quotation marks (" "), the preprocessor is expected to search in some additional, usually
user-defined, locations for the header file, and to fall back to the standard include paths only if it is
not found in those additional locations. It is common for this form to include searching in the same
directory as the file containing the #include directive.

NOTE: You should check the documentation of the development environment you are using for
any vendor specific implementations of the #include directive.

Headers

The C90 standard headers list:

3 http://en.wikipedia.org/wiki/Header%20file

104

http://en.wikipedia.org/wiki/Header%20file

Directives

• <assert.h>4

• <ctype.h>5

• <errno.h>6

• <float.h>7

• <limits.h>8

• <locale.h>9

• <math.h>10

• <setjmp.h>11

• <signal.h>12

• <stdarg.h>13

• <stddef.h>14

• <stdio.h>15

• <stdlib.h>16

• <string.h>17

• <time.h>18

Headers added since C90:

• <complex.h>19

• <fenv.h>20

• <inttypes.h>21

• <iso646.h>22

• <stdbool.h>23

• <stdint.h>24

• <tgmath.h>25

• <wchar.h>26

• <wctype.h>27

18.1.2 #pragma

The pragma (pragmatic information) directive is part of the standard, but the meaning of any pragma
depends on the software implementation of the standard that is used. The #pragma directive provides
a way to request special behavior from the compiler. This directive is most useful for programs that
are unusually large or that need to take advantage of the capabilities of a particular compiler.

Pragmas are used within the source program.

4 http://en.wikipedia.org/wiki/Assert.h
5 http://en.wikipedia.org/wiki/Ctype.h
6 http://en.wikipedia.org/wiki/Errno.h
7 http://en.wikipedia.org/wiki/Float.h
8 http://en.wikipedia.org/wiki/Limits.h
9 http://en.wikipedia.org/wiki/Locale.h
10 http://en.wikipedia.org/wiki/Math.h
11 http://en.wikipedia.org/wiki/Setjmp.h
12 http://en.wikipedia.org/wiki/Signal.h
13 http://en.wikipedia.org/wiki/Stdarg.h
14 http://en.wikipedia.org/wiki/Stddef.h
15 http://en.wikipedia.org/wiki/Stdio.h
16 http://en.wikipedia.org/wiki/Stdlib.h
17 http://en.wikipedia.org/wiki/String.h
18 http://en.wikipedia.org/wiki/Time.h
19 http://en.wikipedia.org/wiki/Complex.h
20 http://en.wikipedia.org/wiki/Fenv.h
21 http://en.wikipedia.org/wiki/Inttypes.h
22 http://en.wikipedia.org/wiki/Iso646.h
23 http://en.wikipedia.org/wiki/Stdbool.h
24 http://en.wikipedia.org/wiki/Stdint.h
25 http://en.wikipedia.org/wiki/Tgmath.h
26 http://en.wikipedia.org/wiki/Wchar.h
27 http://en.wikipedia.org/wiki/Wctype.h

105

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Tgmath.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h

Preprocessor

#pragma token(s)

1. pragma is usually followed by a single token, which represents a command for the compiler
to obey. You should check the software implementation of the C standard you intend on us-
ing for a list of the supported tokens. Not surprisingly, the set of commands that can apear in
#pragma directives is different for each compiler; you'll have to consult the documentation for
your compiler to see which commands it allows and what those commands do.

For instance one of the most implemented preprocessor directives, #pragma once when placed at the
beginning of a header file, indicates that the file where it resides will be skipped if included several
times by the preprocessor.

NOTE: Other methods exist to do this action that is commonly referred as using include
guards.

18.1.3 #define

WARNING: Preprocessor macros, although tempting, can produce quite unexpected results if
not done right. Always keep in mind that macros are textual substitutions done to your source
code before anything is compiled. The compiler does not know anything about the macros and
never gets to see them. This can produce obscure errors, amongst other negative effects. Prefer
to use language features, if there are equivalent (In example use const int or enum instead of
#defined constants).
That said, there are cases, where macros are very useful (see the debug macro below for an ex-
ample).

The #define directive is used to define values or macros that are used by the preprocessor to manip-
ulate the program source code before it is compiled. Because preprocessor definitions are substituted
before the compiler acts on the source code, any errors that are introduced by #define are difficult to
trace.

By convention, values defined using #define are named in uppercase. Although doing so is not a
requirement, it is considered very bad practice to do otherwise. This allows the values to be easily
identified when reading the source code.

Today, #define is primarily used to handle compiler and platform differences. E.g., a define might
hold a constant which is the appropriate error code for a system call. The use of #define should thus
be limited unless absolutely necessary; typedef statements and constant variables can often perform
the same functions more safely.

Another feature of the #define command is that it can take arguments, making it rather useful as a
pseudo-function creator. Consider the following code:

106

Directives

#define ABSOLUTE_VALUE(x) (((x) < 0) ? -(x) : (x))
...
int x = -1;
while(ABSOLUTE_VALUE(x)) {
...
}

It's generally a good idea to use extra parentheses when using complex macros. Notice that in the above
example, the variable "x" is always within its own set of parentheses. This way, it will be evaluated
in whole, before being compared to 0 or multiplied by -1. Also, the entire macro is surrounded by
parentheses, to prevent it from being contaminated by other code. If you're not careful, you run the
risk of having the compiler misinterpret your code.

Because of side-effects it is considered a very bad idea to use macro functions as described above.

int x = -10;
int y = ABSOLUTE_VALUE(x++);

If ABSOLUTE_VALUE() were a real function 'x' would now have the value of '-9', but because it was
an argument in a macro it was expanded twice and thus has a value of -8.

Example:
To illustrate the dangers of macros, consider this naive macro #define MAX(a,b) a>b?a:b and
the code i = MAX(2,3)+5; j = MAX(3,2)+5; Take a look at this and consider what the value
after execution might be. The statements are turned into int i = 2>3?2:3+5; int j = 3>2?3:2+5;
Thus, after execution i=8 and j=3 instead of the expected result of i=j=8! This is why you
were cautioned to use an extra set of parenthesis above, but even with these, the road is fraught
with dangers. The alert reader might quickly realize that if a or b contains expressions, the def-
inition must parenthesize every use of a,b in the macro definition, like this: #define MAX(a,b)
((a)>(b)?(a):(b)) This works, provided a,b have no side effects. Indeed, i = 2; j = 3; k =
MAX(i++, j++); would result in k=4, i=3 and j=5. This would be highly surprising to anyone
expecting MAX() to behave like a function.
So what is the correct solution? The solution is not to use macro at all. A global, inline function,
like this
inline int max(int a, int b) { return a>b?a:b }
has none of the pitfalls above, but will not work with all types.
NOTE: The explicit inline declaration is not really necessary unless the definition is in
a header file, since your compiler can inline functions for you (with gcc this can be done
with -finline-functions or -O3). The compiler is often better than the programmer at
predicting which functions are worth inlining. Also, function calls are not really expensive
(they used to be).
The compiler is actually free to ignore the inline keyword. It is only a hint (except that
inline is necessary in order to allow a function to be defined in a header file without gen-
erating an error message due to the function being defined in more than one translation unit).

(#, ##)

107

Preprocessor

The # and ## operators are used with the #define macro. Using # causes the first argument after the
to be returned as a string in quotes. For example, the command

#define as_string(s) # s

will make the compiler turn this command

puts(as_string(Hello World!)) ;

into

puts("Hello World!");

Using ## concatenates what's before the ## with what's after it. For example, the command

#define concatenate(x, y) x ## y
...
int xy = 10;
...

will make the compiler turn

printf("%d", concatenate(x, y));

into

printf("%d", xy);

which will, of course, display 10 to standard output.

It is possible to concatenate a macro argument with a constant prefix or suffix to obtain a valid identi-
fier as in

#define make_function(name) int my_ ## name (int foo) {}
make_function(bar)

which will define a function called my_bar(). But it isn't possible to integrate a macro argument into
a constant string using the concatenation operator. In order to obtain such an effect, one can use the
ANSI C property that two or more consecutive string constants are considered equivalent to a single
string constant when encountered. Using this property, one can write

#define eat(what) puts("I'm eating " #what " today.")
eat(fruit)

108

Directives

which the macro-processor will turn into

puts("I'm eating " "fruit" " today.")

which in turn will be interpreted by the C parser as a single string constant.

The following trick can be used to turn a numeric constants into string literals

#define num2str(x) str(x)
#define str(x) #x
#define CONST 23

puts(num2str(CONST));

This is a bit tricky, since it is expanded in 2 steps. First num2str(CONST) is replaced with str(23),
which in turn is replaced with "23". This can be useful in the following example:

#ifdef DEBUG
#define debug(msg) fputs(__FILE__ ":" num2str(__LINE__) " - " msg, stderr)
#else
#define debug(msg)
#endif

This will give you a nice debug message including the file and the line where the message was issued.
If DEBUG is not defined however the debugging message will completely vanish from your code. Be
careful not to use this sort of construct with anything that has side effects, since this can lead to bugs,
that appear and disappear depending on the compilation parameters.

18.1.4 macros

Macros aren't type-checked and so they do not evaluate arguments. Also, they do not obey scope
properly, but simply take the string passed to them and replace each occurrence of the macro argument
in the text of the macro with the actual string for that parameter (the code is literally copied into the
location it was called from).

An example on how to use a macro:

#include <stdio.h>

#define SLICES 8
#define ADD(x) ((x) / SLICES)

int main()
{

int a = 0, b = 10, c = 6;

a = ADD(b + c);
printf("%d\n", a);
return 0;

}

-- the result of "a" should be "2" (b + c = 16 -> passed to ADD -> 16 / SLICES -> result is "2")

109

Preprocessor

NOTE:
It is usually bad practice to define macros in headers.
A macro should be defined only when it is not possible to achieve the same result with a func-
tion or some other mechanism. Some compilers are able to optimize code to where calls to small
functions are replaced with inline code, negating any possible speed advantage. Using typedefs,
enums, and inline (in C99) is often a better option.

18.1.5 #error

The #error directive halts compilation. When one is encountered the standard specifies that the com-
piler should emit a diagnostic containing the remaining tokens in the directive. This is mostly used for
debugging purposes.

#error message

18.1.6 #undef

The #undef directive undefines a macro. The identifier need not have been previously defined.

18.1.7 #if,#else,#elif,#endif (conditionals)

The #if command checks whether a controlling conditional expression evaluates to zero or nonzero,
and excludes or includes a block of code respectively. For example:

#if 1
/* This block will be included */
#endif
#if 0
/* This block will not be included */
#endif

The conditional expression could contain any C operator except for the assignment operators, the in-
crement and decrement operators, the address-of operator, and the sizeof operator.

One unique operator used in preprocessing and nowhere else is the defined operator. It returns 1 if the
macro name, optionally enclosed in parentheses, is currently defined; 0 if not.

The #endif command ends a block started by #if, #ifdef, or #ifndef.

The #elif command is similar to #if, except that it is used to extract one from a series of blocks of
code. E.g.:

#if /* some expression */
:
:
:

#elif /* another expression */
:

/* imagine many more #elifs here ... */

110

Useful Preprocessor Macros for Debugging

:
#else
/* The optional #else block is selected if none of the previous #if or

#elif blocks are selected */
:
:

#endif /* The end of the #if block */

18.1.8 #ifdef,#ifndef

The #ifdef command is similar to #if, except that the code block following it is selected if a macro
name is defined. In this respect,

#ifdef NAME

is equivalent to

#if defined NAME

The #ifndef command is similar to #ifdef, except that the test is reversed:

#ifndef NAME

is equivalent to

#if !defined NAME

18.2 Useful Preprocessor Macros for Debugging

ANSI C defines some useful preprocessor macros and variables,282929 also called "magic constants",
include:

__FILE__=> The name of the current file, as a string literal

__LINE__=> Current line of the source file, as a numeric literal

__DATE__=> Current system date, as a string

28 HP C Compiler Reference Manual ˆ{http://docs.hp.com/en/B3901-90003/ch07s04.html}
29 C++ reference: Predefined preprocessor variables ˆ{http://www.cppreference.com/wiki/

preprocessor/preprocessor_vars}

111

http://docs.hp.com/en/B3901-90003/ch07s04.html
http://www.cppreference.com/wiki/preprocessor/preprocessor_vars
http://www.cppreference.com/wiki/preprocessor/preprocessor_vars

Preprocessor

__TIME__=> Current system time, as a string

__TIMESTAMP__=> Date and time (non-standard)

__cplusplus => undefined when your C code is being compiled by a C compiler; 199711L when your
C code is being compiled by a C++ compiler compliant with 1998 C++ standard.

__func__=> Current function name of the source file, as a string (part of C99)

__PRETTY_FUNCTION__=> "decorated" Current function name of the source file, as a string (in
GCC; non-standard)

Compile-time assertions

Some people30 define a preprocessor macro to allow compile-time assertions, something like:

#define COMPILE_TIME_ASSERT(pred) switch(0){case 0:case pred:;}

COMPILE_TIME_ASSERT(BOOLEAN CONDITION);

The static_assert.hpp Boost library31 defines a similar macro. Some compilers define a
static_assert keyword used in the same way.32

Such compile-time assertions can help you debug faster than using only run-time assert() statements,
because the compile-time assertions are all tested at compile time, while it is possible that a test run of
a program may fail to exercise some run-time assert() statements.

X-Macros

One little-known usage pattern of the C preprocessor is known as "X-Macros".3334343636 An X-Macro
is a header file37. Commonly these use the extension ".def" instead of the traditional ".h". This file
contains a list of similar macro calls, which can be referred to as "component macros". The include
file is then referenced repeatedly in the following pattern. Here, the include file is "xmacro.def" and it
contains a list of component macros of the style "foo(x, y, z)".

30 "Compile Time Assertions in C" ˆ{http://www.jaggersoft.com/pubs/CVu11_3.html} by Jon Jagger 1999
31 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost%20
32 Wikipedia: C++0x#Static assertions ˆ{http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%

20assertions}
33 Wirzenius, Lars. C Preprocessor Trick For Implementing Similar Data Types ˆ{http://liw.iki.fi/liw/

texts/cpp-trick.html} Retrieved January 9, 2011.
34 . The New C: X Macros The New C: X Macros 35. Dr. Dobb's Journal , May 2001

36 . . ,
37 http://en.wikibooks.org/wiki/header%20file

112

http://www.jaggersoft.com/pubs/CVu11_3.html
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost%20
http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%20assertions
http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%20assertions
http://liw.iki.fi/liw/texts/cpp-trick.html
http://liw.iki.fi/liw/texts/cpp-trick.html
http://en.wikibooks.org/wiki/header%20file

Useful Preprocessor Macros for Debugging

#define foo(x, y, z) doSomethingWith(x, y, z);
#include "xmacro.def"
#undef foo

#define foo(x, y, z) doSomethingElseWith(x, y, z);
#include "xmacro.def"
#undef foo

(etc...)

The most common usage of X-Macros is to establish a list of C objects and then automatically generate
code for each of them. Some implementations also perform any #undefs they need inside the X-
Macro, as opposed to expecting the caller to undefine them.

Common sets of objects are a set of global configuration settings, a set of members of a struct38, a
list of possible XML39 tags for converting an XML file to a quickly-traversable tree, or the body of an
enum40 declaration; other lists are possible.

Once the X-Macro has been processed to create the list of objects, the component macros can be
redefined to generate, for instance, accessor and/or mutator41 functions. Structure serializing
and deserializing42 are also commonly done.

Here is an example of an X-Macro that establishes a struct and automatically creates serialize/deseri-
alize functions. For simplicity, this example doesn't account for endianness or buffer overflows.

File star.def:

EXPAND_EXPAND_STAR_MEMBER(x, int)
EXPAND_EXPAND_STAR_MEMBER(y, int)
EXPAND_EXPAND_STAR_MEMBER(z, int)
EXPAND_EXPAND_STAR_MEMBER(radius, double)
#undef EXPAND_EXPAND_STAR_MEMBER

File star_table.c:

typedef struct {
#define EXPAND_EXPAND_STAR_MEMBER(member, type) type member;
#include "star.def"
} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

memcpy(buffer, &(star->member), sizeof(star->member)); \
buffer += sizeof(star->member);

#include "star.def"
}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

memcpy(&(star->member), buffer, sizeof(star->member)); \
buffer += sizeof(star->member);

#include "star.def"
}

38 http://en.wikibooks.org/wiki/struct%20%28C%20programming%20language%29
39 http://en.wikibooks.org/wiki/XML
40 http://en.wikibooks.org/wiki/enumerated%20type
41 http://en.wikibooks.org/wiki/mutator%20method
42 http://en.wikibooks.org/wiki/serialization

113

http://en.wikibooks.org/wiki/struct%20%28C%20programming%20language%29
http://en.wikibooks.org/wiki/XML
http://en.wikibooks.org/wiki/enumerated%20type
http://en.wikibooks.org/wiki/mutator%20method
http://en.wikibooks.org/wiki/serialization

Preprocessor

Handlers for individual data types may be created and accessed using token concatenation ("##") and
quoting ("#") operators. For example, the following might be added to the above code:

#define print_int(val) printf("%d", val)
#define print_double(val) printf("%g", val)

void print_star(const starStruct *const star) {
/* print_##type will be replaced with print_int or print_double */
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

printf("%s: ", #member); \
print_##type(star->member); \
printf("\n");

#include "star.def"
}

Note that in this example you can also avoid the creation of separate handler functions for each datatype
in this example by defining the print format for each supported type, with the additional benefit of
reducing the expansion code produced by this header file:

#define FORMAT_(type) FORMAT_##type
#define FORMAT_int "%d"
#define FORMAT_double "%g"

void print_star(const starStruct *const star) {
/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */
#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

printf("%s: " FORMAT_(type) "\n", #member, star->member);
#include "star.def"
}

The creation of a separate header file can be avoided by creating a single macro containing what would
be the contents of the file. For instance, the above file "star.def" could be replaced with this macro at
the beginning of:

File star_table.c:

#define EXPAND_STAR \
EXPAND_STAR_MEMBER(x, int) \
EXPAND_STAR_MEMBER(y, int) \
EXPAND_STAR_MEMBER(z, int) \
EXPAND_STAR_MEMBER(radius, double)

and then all calls to #include "star.def" could be replacedwith a simple EXPAND_STAR statement.
The rest of the above file would become:

typedef struct {
#define EXPAND_STAR_MEMBER(member, type) type member;
EXPAND_STAR
#undef EXPAND_STAR_MEMBER
} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {
#define EXPAND_STAR_MEMBER(member, type) \

memcpy(buffer, &(star->member), sizeof(star->member)); \
buffer += sizeof(star->member);

EXPAND_STAR
#undef EXPAND_STAR_MEMBER
}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {
#define EXPAND_STAR_MEMBER(member, type) \

memcpy(&(star->member), buffer, sizeof(star->member)); \

114

Useful Preprocessor Macros for Debugging

buffer += sizeof(star->member);
EXPAND_STAR
#undef EXPAND_STAR_MEMBER
}

and the print handler could be added as well as:

#define print_int(val) printf("%d", val)
#define print_double(val) printf("%g", val)

void print_star(const starStruct *const star) {
/* print_##type will be replaced with print_int or print_double */
#define EXPAND_STAR_MEMBER(member, type) \

printf("%s: ", #member); \
print_##type(star->member); \
printf("\n");

EXPAND_STAR
#undef EXPAND_STAR_MEMBER

}

or as:

#define FORMAT_(type) FORMAT_##type
#define FORMAT_int "%d"
#define FORMAT_double "%g"

void print_star(const starStruct *const star) {
/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */
#define EXPAND_STAR_MEMBER(member, type) \

printf("%s: " FORMAT_(type) "\n", #member, star->member);
EXPAND_STAR
#undef EXPAND_STAR_MEMBER
}

A variant which avoids needing to know the members of any expanded sub-macros is to accept the
operators as an argument to the list macro:

File star_table.c:

/*
Generic
*/
#define STRUCT_MEMBER(member, type, dummy) type member;

#define SERIALIZE_MEMBER(member, type, obj, buffer) \
memcpy(buffer, &(obj->member), sizeof(obj->member)); \
buffer += sizeof(obj->member);

#define DESERIALIZE_MEMBER(member, type, obj, buffer) \
memcpy(&(obj->member), buffer, sizeof(obj->member)); \
buffer += sizeof(obj->member);

#define FORMAT_(type) FORMAT_##type
#define FORMAT_int "%d"
#define FORMAT_double "%g"

/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */
#define PRINT_MEMBER(member, type, obj) \
printf("%s: " FORMAT_(type) "\n", #member, obj->member);

/*
starStruct
*/

#define EXPAND_STAR(_, ...) \

115

Preprocessor

_(x, int, __VA_ARGS__) \
_(y, int, __VA_ARGS__) \
_(z, int, __VA_ARGS__) \
_(radius, double, __VA_ARGS__)

typedef struct {
EXPAND_STAR(STRUCT_MEMBER,)
} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {
EXPAND_STAR(SERIALIZE_MEMBER, star, buffer)
}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {
EXPAND_STAR(DESERIALIZE_MEMBER, star, buffer)
}

void print_star(const starStruct *const star) {
EXPAND_STAR(PRINT_MEMBER, star)
}

This approach can be dangerous in that the entire macro set is always interpreted as if it was on a
single source line, which could encounter compiler limits with complex component macros and/or
long member lists.

This technique was reported by Lars Wirzenius43 in a web page dated January 17, 2000, in which he
gives credit to Kenneth Oksanen for "refining and developing" the technique prior to 1997. The other
references describe it as a method from at least a decade before the turn of the century.

w:C preprocessor44

de:C-Programmierung: Präprozessor45 fr:ProgrammationC/Préprocesseur46 it:C/Compilatore
e precompilatore/Direttive47 pl:C/Preprocesor48

43 Wirzenius, Lars. C Preprocessor Trick For Implementing Similar Data Types ˆ{http://liw.iki.fi/liw/
texts/cpp-trick.html} Retrieved January 9, 2011.

44 http://en.wikipedia.org/wiki/C%20preprocessor
45 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Pr%E4prozessor
46 http://fr.wikibooks.org/wiki/Programmation%20C%2FPr%E9processeur
47 http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FDirettive
48 http://pl.wikibooks.org/wiki/C%2FPreprocesor

116

http://liw.iki.fi/liw/texts/cpp-trick.html
http://liw.iki.fi/liw/texts/cpp-trick.html
http://en.wikipedia.org/wiki/C%20preprocessor
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Pr%E4prozessor
http://fr.wikibooks.org/wiki/Programmation%20C%2FPr%E9processeur
http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FDirettive
http://pl.wikibooks.org/wiki/C%2FPreprocesor

19 Libraries

A library in C is a group of functions and declarations, exposed for use by other programs. The library
therefore consists of an interface expressed in a .h file (named the "header") and an implementation
expressed in a .c file. This .c file might be precompiled or otherwise inaccessible, or it might be
available to the programmer. (Note: Libraries may call functions in other libraries such as the Standard
C or math libraries to do various tasks.)

The format of a library varies with the operating system and compiler one is using. For example, in
the Unix and Linux operating systems, a library consists of one or more object files, which consist of
object code that is usually the output of a compiler (if the source language is C or something similar)
or an assembler (if the source language is assembly language). These object files are then turned into
a library in the form of an archive by the ar archiver (a program that takes files and stores them in a
bigger file without regard to compression). The filename for the library usually starts with "lib" and
ends with ".a"; e.g. the libc.a file contains the Standard C library and the "libm.a" the mathematics
routines, which the linker would then link in. Other operating systems such as Microsoft Windows use
a ".lib" extension for libraries and an ".obj" extension for object files.

We're going to use as an example a function to parse1 arguments from the command line. Arguments
on the command line could be by themselves:

-i

have an optional argument that is concatenated2 to the letter:

-ioptarg

or have the argument in a separate argv-element:

-i optarg

In order to parse all these types of arguments, we have written the following "getopt.c" file:

#include <stdio.h> /* for fprintf() and EOF */
#include <string.h> /* for strchr() */
#include "getopt.h" /* consistency check */

/* variables */
int opterr = 1; /* getopt prints errors if this is on */
int optind = 1; /* token pointer */

1 http://en.wikipedia.org/wiki/Parsing
2 http://en.wikipedia.org/wiki/Concatenate

117

http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Concatenate

Libraries

int optopt; /* option character passed back to user */
char *optarg; /* flag argument (or value) */

/* function */
/* return option character, EOF if no more or ? if problem.

The arguments to the function:
argc, argv - the arguments to the main() function. An argument of "--"
stops the processing.
opts - a string containing the valid option characters.
an option character followed by a colon (:) indicates that
the option has a required argument.

*/
int
getopt (int argc, char **argv, char *opts)
{

static int sp = 1; /* character index into current token */
register char *cp; /* pointer into current token */

if (sp == 1)
{

/* check for more flag-like tokens */
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')

return EOF;
else if (strcmp (argv[optind], "--") == 0)
{

optind++;
return EOF;

}
}

optopt = argv[optind][sp];

if (optopt == ':' || (cp = strchr (opts, optopt)) == NULL)
{

if (opterr)
fprintf (stderr, "%s: invalid option -- '%c'\n", argv[0], optopt);

/* if no characters left in this token, move to next token */
if (argv[optind][++sp] == '\0')
{

optind++;
sp = 1;

}

return '?';
}

if (*++cp == ':')
{

/* if a value is expected, get it */
if (argv[optind][sp + 1] != '\0')

/* flag value is rest of current token */
optarg = argv[optind++] + (sp + 1);

else if (++optind >= argc)
{

if (opterr)
fprintf (stderr, "%s: option requires an argument -- '%c'\n",

argv[0], optopt);
sp = 1;
return '?';

}
else
/* flag value is next token */
optarg = argv[optind++];
sp = 1;

}
else
{

118

Further reading

/* set up to look at next char in token, next time */
if (argv[optind][++sp] == '\0')
{

/* no more in current token, so setup next token */
sp = 1;
optind++;

}
optarg = 0;

}
return optopt;

}
/* END OF FILE */

The interface would be the following "getopt.h" file:

#ifndef GETOPT_H
#define GETOPT_H

/* exported variables */
extern int opterr, optind, optopt;
extern char *optarg;

/* exported function */
int getopt(int, char **, char *);

#endif

/* END OF FILE */

At a minimum, a programmer has the interface file to figure out how to use a library, although, in gen-
eral, the library programmer also wrote documentation on how to use the library. In the above case,
the documentation should say that the provided arguments **argv and *opts both shouldn't be null
pointers (or why would you be using the getopt function anyway?). Specifically, it typically states
what each parameter is for and what return values can be expected in which conditions. Program-
mers that use a library, are normally not interested in the implementation of the library -- unless the
implementation has a bug, in which case he would want to complain somehow.

Both the implementation of the getopts library, and programs that use the library should state #include
"getopt.h", in order to refer to the corresponding interface. Now the library is "linked" to the pro-
gram -- the one that contains the main() function. The program may refer to dozens of interfaces.

In some cases, just placing #include "getopt.h"may appear correct but will still fail to link prop-
erly. This indicates that the library is not installed correctly, or there may be some additional configu-
ration required. You will have to check either the compiler's documentation or library's documentation
on how to resolve this issue.

19.1 Further reading

• C FAQ: "I'm wondering what to put in .c files and what to put in .h files. (What does ".h"
mean, anyway?)"3

• PIClist thread: "Global variables in projects with many C files."4

3 http://c-faq.com/cpp/hfiles.html
4 http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\char"005C\relax{}2007\

char"005C\relax{}10\char"005C\relax{}25\char"005C\relax{}073430a&tgt=post

119

http://c-faq.com/cpp/hfiles.html
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\char "005C\relax {}2007\char "005C\relax {}10\char "005C\relax {}25\char "005C\relax {}073430a&tgt=post
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\char "005C\relax {}2007\char "005C\relax {}10\char "005C\relax {}25\char "005C\relax {}073430a&tgt=post

Libraries

pl:C/Biblioteki5

5 http://pl.wikibooks.org/wiki/C%2FBiblioteki

120

http://pl.wikibooks.org/wiki/C%2FBiblioteki

20 Standard libraries

The C standard library is a standardized collection of header files and library routines used to imple-
ment common operations, such as input/output and character string handling. Unlike other languages
(such as COBOL, Fortran, and PL/I) C does not include builtin keywords for these tasks, so nearly all
C programs rely on the standard library to function.

20.1 History

The C programming language previously did not provide any elementary functionalities, such as I/O
operations. Over time, user communities of C shared ideas and implementations to provide that func-
tionality. These ideas became common, and were eventually incorporated into the definition of the
standardized C programming language. These are now called the C standard libraries.

Both Unix and C were created at AT&T's Bell Laboratories in the late 1960s and early 1970s. Dur-
ing the 1970s the C programming language became increasingly popular, with many universities and
organizations beginning to create their own variations of the language for their own projects. By the
start of the 1980s compatibility problems between the various C implementations became apparent.
In 1983 the American National Standards Institute (ANSI) formed a committee to establish a standard
specification of C known as "ANSI C". This work culminated in the creation of the so-calledC89 stan-
dard in 1989. Part of the resulting standard was a set of software libraries called theANSI C standard
library.

Later revisions of the C standard have added several new required header files to the library. Support
for these new extensions varies between implementations.

The headers <iso646.h>, <wchar.h>, and <wctype.h> were added with Normative Addendum 1
(hereafter abbreviated as NA1), an addition to the C Standard ratified in 1995.

The headers <complex.h>, <fenv.h>, <inttypes.h>, <stdbool.h>, <stdint.h>, and <tgmath.h>
were added with C99, a revision to the C Standard published in 1999.

Note:
The C++a programming language includes the functionality of the ANSI C 89 standard library,
but has made several modifications, such as placing all identifiers into the std namespace and
changing the names of the header files from <xxx.h> to <cxxx> (however, the C-style names are
still available, although deprecated).

a http://en.wikibooks.org/wiki/C%2B%2B

121

http://en.wikibooks.org/wiki/C%2B%2B

Standard libraries

20.2 Design

The declaration of each function is kept in a header file, while the actual implementation of functions
are separated into a library file. The naming and scope of headers have become common but the
organization of libraries still remains diverse. The standard library is usually shipped along with a
compiler. Since C compilers often provide extra functionalities that are not specified in ANSI C,
a standard library with a particular compiler is mostly incompatible with standard libraries of other
compilers.

Much of the C standard library has been shown to have been well-designed. A few parts, with the
benefit of hindsight, are regarded as mistakes. The string input functions gets() (and the use of
scanf() to read string input) are the source of many buffer overflows, and most programming guides
recommend avoiding this usage. Another oddity is strtok(), a function that is designed as a primitive
lexical analyser1 but is highly "fragile" and difficult to use.

20.3 ANSI Standard

The ANSI C standard library consists of 24 C header files which can be included into a programmer's
project with a single directive. Each header file contains one or more function declarations, data type
definitions and macros. The contents of these header files follows.

In comparison to some other languages (for example Java) the standard library is minuscule. The
library provides a basic set of mathematical functions, string manipulation, type conversions, and file
and console-based I/O. It does not include a standard set of "container types" like the C++ Standard
Template Library, let alone the complete graphical user interface (GUI) toolkits, networking tools,
and profusion of other functionality that Java provides as standard. The main advantage of the small
standard library is that providing a working ANSI C environment is much easier than it is with other
languages, and consequently porting C to a new platform is relatively easy.

Many other libraries have been developed to supply equivalent functionality to that provided by other
languages in their standard library. For instance, the GNOME desktop environment project has devel-
oped the GTK+ graphics toolkit and GLib, a library of container data structures, and there are many
other well-known examples. The variety of libraries available has meant that some superior toolkits
have proven themselves through history. The considerable downside is that they often do not work par-
ticularly well together, programmers are often familiar with different sets of libraries, and a different
set of them may be available on any particular platform.

20.3.1 ANSI C library header files

<assert.h>2 Contains the assert macro, used to assist with
detecting logical errors and other types of bug
in debugging versions of a program.

1 http://en.wikipedia.org/wiki/lexical%20analysis
2 http://en.wikipedia.org/wiki/Assert.h

122

http://en.wikipedia.org/wiki/lexical%20analysis
http://en.wikipedia.org/wiki/Assert.h

ANSI Standard

<complex.h>3 A set of functions for manipulating complex
numbers. (New with C99)

<ctype.h>4 This header file contains functions used to
classify characters by their types or to convert
between upper and lower case in a way that
is independent of the used character set (typi-
cally ASCII or one of its extensions, although
implementations utilizing EBCDIC are also
known).

<errno.h>5 For testing error codes reported by library
functions.

<fenv.h>6 For controlling floating-point environment.
(New with C99)

<float.h>7 Contains defined constants specifying the
implementation-specific properties of the
floating-point library, such as the minimum
difference between two different floating-
point numbers (_EPSILON), the maximum
number of digits of accuracy (_DIG) and the
range of numbers which can be represented
(_MIN, _MAX).

<inttypes.h>8 For precise conversion between integer
types. (New with C99)

<iso646.h>9 For programming in ISO 646 variant charac-
ter sets. (New with NA1)

<limits.h>10 Contains defined constants specifying the
implementation-specific properties of the
integer types, such as the range of numbers
which can be represented (_MIN, _MAX).

<locale.h>11 For setlocale() and related constants. This is
used to choose an appropriate locale.

3 http://en.wikipedia.org/wiki/Complex.h
4 http://en.wikipedia.org/wiki/Ctype.h
5 http://en.wikipedia.org/wiki/Errno.h
6 http://en.wikipedia.org/wiki/Fenv.h
7 http://en.wikipedia.org/wiki/Float.h
8 http://en.wikipedia.org/wiki/Inttypes.h
9 http://en.wikipedia.org/wiki/Iso646.h
10 http://en.wikipedia.org/wiki/Limits.h
11 http://en.wikipedia.org/wiki/Locale.h

123

http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h

Standard libraries

<math.h>12 For computing common mathematical func-
tions -- see ../Further math/13 or C++ Pro-
gramming/Code/Standard C Library/-
Math14 for details.

<setjmp.h>15 setjmp and longjmp, which are used for non-
local exits

<signal.h>16 For controlling various exceptional condi-
tions

<stdarg.h>17 For accessing a varying number of arguments
passed to functions.

<stdbool.h>18 For a boolean data type. (New with C99)
<stdint.h>19 For defining various integer types. (New

with C99)
<stddef.h>20 For defining several useful types and macros.
<stdio.h>21 Provides the core input and output capabili-

ties of the C language. This file includes the
venerable printf function.

<stdlib.h>22 For performing a variety of operations, in-
cluding conversion, pseudo-random numbers,
memory allocation, process control, environ-
ment, signalling, searching, and sorting.

<string.h>23 For manipulating several kinds of strings.
<tgmath.h>24 For type-generic mathematical functions.

(New with C99)
<time.h>25 For converting between various time and

date formats.
<wchar.h>26 For manipulating wide streams and several

kinds of strings using wide characters - key to
supporting a range of languages. (New with
NA1)

12 http://en.wikipedia.org/wiki/Math.h
13 Chapter 15 on page 67
14 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%

2FMath
15 http://en.wikipedia.org/wiki/Setjmp.h
16 http://en.wikipedia.org/wiki/Signal.h
17 http://en.wikipedia.org/wiki/Stdarg.h
18 http://en.wikipedia.org/wiki/Stdbool.h
19 http://en.wikipedia.org/wiki/Stdint.h
20 http://en.wikipedia.org/wiki/Stddef.h
21 http://en.wikipedia.org/wiki/Stdio.h
22 http://en.wikipedia.org/wiki/Stdlib.h
23 http://en.wikipedia.org/wiki/String.h
24 http://en.wikipedia.org/wiki/Tgmath.h
25 http://en.wikipedia.org/wiki/Time.h
26 http://en.wikipedia.org/wiki/Wchar.h

124

http://en.wikipedia.org/wiki/Math.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMath
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Tgmath.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Wchar.h

Common support libraries

<wctype.h>27 For classifying wide characters. (New with
NA1)

20.4 Common support libraries

While not standardized, C programsmay depend on a runtime library of routineswhich contain code the
compiler uses at runtime. The code that initializes the process for the operating system, for example,
before calling main(), is implemented in the C Run-Time Library for a given vendor's compiler.
The Run-Time Library code might help with other language feature implementations, like handling
uncaught exceptions or implementing floating point code.

The C standard library only documents that the specific routines mentioned in this article are avail-
able, and how they behave. Because the compiler implementation might depend on these additional
implementation-level functions to be available, it is likely the vendor-specific routines are packaged
with the C Standard Library in the same module, because they're both likely to be needed by any pro-
gram built with their toolset.

Though often confused with the C Standard Library because of this packaging, the C Runtime Library
is not a standardized part of the language and is vendor-specific.

20.5 Compiler built-in functions

Some compilers (for example, GCC28) provide built-in versions of many of the functions in the C
standard library; that is, the implementations of the functions are written into the compiled object file,
and the program calls the built-in versions instead of the functions in the C library shared object file.
This reduces function call overhead, especially if function calls are replaced with inline variants, and
allows other forms of optimization (as the compiler knows the control-flow characteristics of the built-
in variants), but may cause confusion when debugging (for example, the built-in versions cannot be
replaced with instrumented variants).

20.6 POSIX standard library

POSIX, (along with the Single Unix Specification), specifies a number of routines that should be avail-
able over and above those in the C standard library proper; these are often implemented alongside the
C standard library functionality, with varying degrees of closeness. For example, glibc implements
functions such as fork within libc.so, but before NPTL was merged into glibc it constituted a separate
library with its own linker flag. Often, this POSIX-specified functionality will be regarded as part of
the library; the C library proper may be identified as the ANSI or ISO C library.

pl:C/Biblioteka standardowa29

27 http://en.wikipedia.org/wiki/Wctype.h
28 http://en.wikipedia.org/wiki/GCC
29 http://pl.wikibooks.org/wiki/C%2FBiblioteka%20standardowa

125

http://en.wikipedia.org/wiki/Wctype.h
http://en.wikipedia.org/wiki/GCC
http://pl.wikibooks.org/wiki/C%2FBiblioteka%20standardowa

Standard libraries

126

21 File IO

21.1 Introduction

The stdio.h header declares a broad assortment of functions that perform input and output to files and
devices such as the console. It was one of the earliest headers to appear in the C library. It declares more
functions than any other standard header and also requires more explanation because of the complex
machinery that underlies the functions.

The device-independent model of input and output has seen dramatic improvement over the years and
has received little recognition for its success. FORTRAN II was touted as a machine-independent
language in the 1960s, yet it was essentially impossible to move a FORTRAN program between ar-
chitectures without some change. In FORTRAN II, you named the device you were talking to right in
the FORTRAN statement in the middle of your FORTRAN code. So, you said READ INPUT TAPE 5
on a tape-oriented IBM 7090 but READ CARD to read a card image on other machines. FORTRAN IV
had more generic READ and WRITE statements, specifying a logical unit number (LUN) instead of the
device name. The era of device-independent I/O had dawned.

Peripheral devices such as printers still had fairly strong notions about what they were asked to do.
And then, peripheral interchange utilities were invented to handle bizarre devices. When cathode-ray
tubes came onto the scene, each manufacturer of consoles solved problems such as console cursor
movement in an independent manner, causing further headaches.

It was into this atmosphere that Unix was born. Ken Thompson and Dennis Ritchie, the developers of
Unix, deserve credit for packing any number of bright ideas into the operating system. Their approach
to device independence was one of the brightest.

The ANSI C <stdio.h> library is based on the original Unix file I/O primitives but casts a wider net
to accommodate the least-common denominator across varied systems.

21.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or whether to or
from files supported on structured storage devices, are mapped into logical data streams, whose prop-
erties are more uniform than their various inputs and outputs. Two forms of mapping are supported:
text streams and binary streams.

A text stream consists of one or more lines. A line in a text stream consists of zero or more characters
plus a terminating new-line character. (The only exception is that in some implementations the last line
of a file does not require a terminating new-line character.) Unix adopted a standard internal format
for all text streams. Each line of text is terminated by a new-line character. That's what any program
expects when it reads text, and that's what any program produces when it writes text. (This is the

127

File IO

most basic convention, and if it doesn't meet the needs of a text-oriented peripheral attached to a Unix
machine, then the fix-up occurs out at the edges of the system. Nothing in between needs to change.)
The string of characters that go into, or come out of a text stream may have to be modified to conform
to specific conventions. This results in a possible difference between the data that go into a text stream
and the data that come out. For instance, in some implementations when a space-character precedes a
new-line character in the input, the space character gets removed out of the output. In general, when
the data only consist of printable characters and the control characters horizontal tab and new-line, the
input and output of a text stream are equal.

Compared to a text stream, a binary stream is pretty straight forward. A binary stream is an ordered
sequence of characters that can transparently record internal data. Data written to a binary stream shall
always equal the data that gets read out under the same implementation. Binary streams, however, may
have an implementation-defined number of null characters appended to the end of the stream. There
are no further conventions which need to be considered.

Nothing in Unix prevents the program from writing arbitrary 8-bit binary codes to any open file, or
reading them back unchanged from an adequate repository. Thus, Unix obliterated the long-standing
distinction between text streams and binary streams.

21.3 Standard Streams

When a C program starts its execution the program automatically opens three standard streams named
stdin, stdout, and stderr. These are attached for every C program.

The first standard stream is used for input buffering and the other two are used for output. These
streams are sequences of bytes.

Consider the following program:

/* A example program. */
int main()
{

int var;
scanf ("%d", &var); /* use stdin for scanning an integer from keyboard. */
printf ("%d", var); /* use stdout for printing a character. */
return 0;

}
/* end program. */

By default stdin points to the keyboard and stdout and stderr point to the screen. It is possible
under Unix and may be possible under other operating systems to redirect input from or output to a file
or both.

21.4 FILE pointers

The <stdio.h> header contains a definition for a type FILE (usually via a typedef) which is capable
of processing all the information needed to exercise control over a stream, including its file position
indicator, a pointer to the associated buffer (if any), an error indicator that records whether a read/write
error has occurred, and an end-of-file indicator that records whether the end of the file has been reached.

128

Opening and Closing Files

It is considered badmanners to access the contents of FILE directly unless the programmer is writing an
implementation of <stdio.h> and its contents. Better access to the contents of FILE is provided via
the functions in <stdio.h>. It can be said that the FILE type is an early example of object-oriented
programming1.

21.5 Opening and Closing Files

To open and close files, the <stdio.h> library has three functions: fopen, freopen, and fclose.

21.5.1 Opening Files

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *mode, FILE *stream);

fopen and freopen opens the file whose name is in the string pointed to by filename and associates
a stream with it. Both return a pointer to the object controlling the stream, or if the open operation fails
a null pointer. The error and end-of-file indicators are cleared, and if the open operation fails error is
set. freopen differs from fopen in that the file pointed to by stream is closed first when already
open and any close errors are ignored.

mode for both functions points to a string consisting of one of the following sequences:

r open a text file for reading
w truncate to zero length or create a text file for writing
a append; open or create text file for writing at end-of-file
rb open binary file for reading
wb truncate to zero length or create a binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create a text file for update
a+ append; open or create text file for update
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create a binary file for update
a+b or ab+ append; open or create binary file for update

Opening a file with read mode ('r' as the first character in the mode argument) fails if the file does not
exist or cannot be read.

Opening a file with append mode ('a' as the first character in the mode argument) causes all subsequent
writes to the file to be forced to the then-current end-of-file, regardless of intervening calls to the fseek
function. In some implementations, opening a binary file with append mode ('b' as the second or third
character in the above list of mode arguments) may initially position the file position indicator for the
stream beyond the last data written, because of null character padding.

When a file is opened with update mode ('+' as the second or third character in the above list of mode
argument values), both input and output may be performed on the associated stream. However, output
may not be directly followed by input without an intervening call to the fflush function or to a file

1 http://en.wikipedia.org/wiki/Object-oriented%20programming

129

http://en.wikipedia.org/wiki/Object-oriented%20programming

File IO

positioning function (fseek, fsetpos, or rewind), and input may not be directly followed by output
without an intervening call to a file positioning function, unless the input operation encounters end-of-
file. Opening (or creating) a text file with update mode may instead open (or create) a binary stream
in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an interactive
device.

21.5.2 Closing Files

#include <stdio.h>
int fclose(FILE *stream);

The fclose function causes the stream pointed to by stream to be flushed and the associated file
to be closed. Any unwritten buffered data for the stream are delivered to the host environment to be
written to the file; any unread buffered data are discarded. The stream is disassociated from the file.
If the associated buffer was automatically allocated, it is deallocated. The function returns zero if the
stream was successfully closed or EOF if any errors were detected.

21.6 Other file access functions

21.6.1 The fflush function

#include <stdio.h>
int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation was
not input, the fflush function causes any unwritten data for that stream to be deferred to the host
environment to be written to the file. The behavior of fflush is undefined for input stream.

If stream is a null pointer, the fflush function performs this flushing action on all streams for which
the behavior is defined above.

The fflush functions returns EOF if a write error occurs, otherwise zero.

The reason for having a fflush function is because streams in C can have buffered input/output; that
is, functions that write to a file actually write to a buffer inside the FILE structure. If the buffer is filled
to capacity, the write functions will call fflush to actually "write" the data that is in the buffer to the
file. Because fflush is only called every once in a while, calls to the operating system to do a raw
write are minimized.

21.6.2 The setbuf function

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

130

Functions that Modify the File Position Indicator

Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked
with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer) with the value
_IONBF for mode.

21.6.3 The setvbuf function

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The setvbuf function may be used only after the stream pointed to by stream has been associated
with an open file and before any other operation is performed on the stream. The argument mode de-
termines how the stream will be buffered, as follows: _IOFBF causes input/output to be fully buffered;
_IOLBF causes input/output to be line buffered; _IONBF causes input/output to be unbuffered. If buf
is not a null pointer, the array it points to may be used instead of a buffer associated by the setvbuf
function. (The buffer must have a lifetime at least as great as the open stream, so the stream should
be closed before a buffer that has automatic storage duration is deallocated upon block exit.) The
argument size specifies the size of the array. The contents of the array at any time are indeterminate.

The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or if
the request cannot be honored.

21.7 Functions that Modify the File Position Indicator

The stdio.h library has five functions that affect the file position indicator besides those that do
reading or writing: fgetpos, fseek, fsetpos, ftell, and rewind.

The fseek and ftell functions are older than fgetpos and fsetpos.

21.7.1 The fgetpos and fsetpos functions

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, const fpos_t *pos);

The fgetpos function stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified information usable by
the fsetpos function for repositioning the stream to its position at the time of the call to the fgetpos
function.

If successful, the fgetpos function returns zero; on failure, the fgetpos function returns nonzero
and stores an implementation-defined positive value in errno.

The fsetpos function sets the file position indicator for the stream pointed to by stream according
to the value of the object pointed to by pos, which shall be a value obtained from an earlier call to the
fgetpos function on the same stream.

131

File IO

A successful call to the fsetpos function clears the end-of-file indicator for the stream and undoes
any effects of the ungetc function on the same stream. After an fsetpos call, the next operation on
an update stream may be either input or output.

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns nonzero
and stores an implementation-defined positive value in errno.

21.7.2 The fseek and ftell functions

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);
long int ftell(FILE *stream);

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the file, is obtained
by adding offset to the position specified by whence. Three macros in stdio.h called SEEK_SET,
SEEK_CUR, and SEEK_END expand to unique values. If the position specified by whence is SEEK_-
SET, the specified position is the beginning of the file; if whence is SEEK_END, the specified position
is the end of the file; and if whence is SEEK_CUR, the specified position is the current file position. A
binary stream need not meaningfully support fseek calls with a whence value of SEEK_END.

For a text stream, either offset shall be zero, or offset shall be a value returned by an earlier call
to the ftell function on the same stream and whence shall be SEEK_SET.

The fseek function returns nonzero only for a request that cannot be satisfied.

The ftell function obtains the current value of the file position indicator for the stream pointed to by
stream. For a binary stream, the value is the number of characters from the beginning of the file; for a
text stream, its file position indicator contains unspecified information, usable by the fseek function
for returning the file position indicator for the stream to its position at the time of the ftell call; the
difference between two such return values is not necessarily a meaningful measure of the number of
characters written or read.

If successful, the ftell function returns the current value of the file position indicator for the stream.
On failure, the ftell function returns -1L and stores an implementation-defined positive value in
errno.

21.7.3 The rewind function

#include <stdio.h>
void rewind(FILE *stream);

The rewind function sets the file position indicator for the stream pointed to by stream to the begin-
ning of the file. It is equivalent to

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

132

Error Handling Functions

21.8 Error Handling Functions

21.8.1 The clearerr function

#include <stdio.h>
void clearerr(FILE *stream);

The clearerr function clears the end-of-file and error indicators for the stream pointed to by stream.

21.8.2 The feof function

#include <stdio.h>
int feof(FILE *stream);

The feof function tests the end-of-file indicator for the stream pointed to by stream and returns
nonzero if and only if the end-of-file indicator is set for stream, otherwise it returns zero.

21.8.3 The ferror function

#include <stdio.h>
int ferror(FILE *stream);

The ferror function tests the error indicator for the stream pointed to by stream and returns nonzero
if and only if the error indicator is set for stream, otherwise it returns zero.

21.8.4 The perror function

#include <stdio.h>
void perror(const char *s);

The perror function maps the error number in the integer expression errno to an error message. It
writes a sequence of characters to the standard error stream thus: first, if s is not a null pointer and the
character pointed to by s is not the null character, the string pointed to by s followed by a colon (:) and
a space; then an appropriate error message string followed by a new-line character. The contents of
the error message are the same as those returned by the strerror function with the argument errno,
which are implementation-defined.

21.9 Other Operations on Files

The stdio.h library has a variety of functions that do some operation on files besides reading and
writing.

133

File IO

21.9.1 The remove function

#include <stdio.h>
int remove(const char *filename);

The remove function causes the file whose name is the string pointed to by filename to be no longer
accessible by that name. A subsequent attempt to open that file using that name will fail, unless it is
created anew. If the file is open, the behavior of the remove function is implementation-defined.

The remove function returns zero if the operation succeeds, nonzero if it fails.

21.9.2 The rename function

#include <stdio.h>
int rename(const char *old_filename, const char *new_filename);

The rename function causes the file whose name is the string pointed to by old_filename to be
henceforth known by the name given by the string pointed to by new_filename. The file named
old_filename is no longer accessible by that name. If a file named by the string pointed to by new_-
filename exists prior to the call to the rename function, the behavior is implementation-defined.

The rename function returns zero if the operation succeeds, nonzero if it fails, in which case if the file
existed previously it is still known by its original name.

21.9.3 The tmpfile function

#include <stdio.h>
FILE *tmpfile(void);

The tmpfile function creates a temporary binary file that will automatically be removed when it is
closed or at program termination. If the program terminates abnormally, whether an open temporary
file is removed is implementation-defined. The file is opened for update with "wb+" mode.

The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be
created, the tmpfile function returns a null pointer.

21.9.4 The tmpnam function

#include <stdio.h>
char *tmpnam(char *s);

The tmpnam function generates a string that is a valid file name and that is not the name of an existing
file.

The tmpnam function generates a different string each time it is called, up to TMP_MAX times. (TMP_MAX
is amacro defined in stdio.h.) If it is calledmore than TMP_MAX times, the behavior is implementation-
defined.

The implementation shall behave as if no library function calls the tmpnam function.

134

Reading from Files

If the argument is a null pointer, the tmpnam function leaves its result in an internal static object and
returns a pointer to that object. Subsequent calls to the tmpnam function may modify the same object.
If the argument is not a null pointer, it is assumed to point to an array of at least L_tmpnam characters
(L_tmpnam is another macro in stdio.h); the tmpnam function writes its result in that array and
returns the argument as its value.

The value of the macro TMP_MAX must be at least 25.

21.10 Reading from Files

21.10.1 Character Input Functions

The fgetc function

#include <stdio.h>
int fgetc(FILE *stream);

The fgetc function obtains the next character (if present) as an unsigned char converted to an int,
from the input stream pointed to by stream, and advances the associated file position indicator for the
stream (if defined).

The fgetc function returns the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc returns EOF (EOF is a
negative value defined in <stdio.h>, usually (-1)). If a read error occurs, the error indicator for the
stream is set and fgetc returns EOF.

The fgets function

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

The fgets function reads at most one less than the number of characters specified by n from the stream
pointed to by stream into the array pointed to by s. No additional characters are read after a new-line
character (which is retained) or after end-of-file. A null character is written immediately after the last
character read into the array.

The fgets function returns s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer is returned. If a read
error occurs during the operation, the array contents are indeterminate and a null pointer is returned.

Warning: Different operating systems may use different character sequences to represent the end-of-
line sequence. For example, some filesystems use the terminator \r\n in text files; fgets may read
those lines, removing the \n but keeping the \r as the last character of s. This expurious character
should be removed in the string s before the string is used for anything (unless the programmer doesn't
care about it). Unixes typically use \n as its end-of-line sequence, MS-DOS and Windows uses \r\n,
and Mac OSes used \r before OS X.

/* A example program that reads from stdin and writes to stdout */

135

File IO

#include <stdio.h>

#define BUFFER_SIZE 100

int main(void)
{

char buffer[BUFFER_SIZE]; /* a read buffer */
while(fgets (buffer, BUFFER_SIZE, stdin) != NULL)
{

printf("%s",buffer);
}
return 0;

}
/* end program. */

The getc function

#include <stdio.h>
int getc(FILE *stream);

The getc function is equivalent to fgetc, except that it may be implemented as a macro. If it is
implemented as a macro, the stream argument may be evaluated more than once, so the argument
should never be an expression with side effects (i.e. have an assignment, increment, or decrement
operators, or be a function call).

The getc function returns the next character from the input stream pointed to by stream. If the stream
is at end-of-file, the end-of-file indicator for the stream is set and getc returns EOF (EOF is a negative
value defined in <stdio.h>, usually (-1)). If a read error occurs, the error indicator for the stream
is set and getc returns EOF.

The getchar function

#include <stdio.h>
int getchar(void);

The getchar function is equivalent to getc with the argument stdin.

The getchar function returns the next character from the input stream pointed to by stdin. If stdin
is at end-of-file, the end-of-file indicator for stdin is set and getchar returns EOF (EOF is a negative
value defined in <stdio.h>, usually (-1)). If a read error occurs, the error indicator for stdin is set
and getchar returns EOF.

The gets function

#include <stdio.h>
char *gets(char *s);

The gets function reads characters from the input stream pointed to by stdin into the array pointed
to by s until an end-of-file is encountered or a new-line character is read. Any new-line character is
discarded, and a null character is written immediately after the last character read into the array.

136

Reading from Files

The gets function returns s if successful. If the end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer is returned. If a read
error occurs during the operation, the array contents are indeterminate and a null pointer is returned.

This function and description is only included here for completeness. Most C programmers nowa-
days shy away from using gets, as there is no way for the function to know how big the buffer is
that the programmer wants to read into. Commandment #5 of Henry Spencer2's The Ten Command-
ments for C Programmers (Annotated Edition) reads, "Thou shalt check the array bounds of all strings
(indeed, all arrays), for surely where thou typest foo someone someday shall type supercalifragilis-
ticexpialidocious." It mentions gets in the annotation: "As demonstrated by the deeds of the Great
Worm, a consequence of this commandment is that robust production software should never make
use of gets(), for it is truly a tool of the Devil. Thy interfaces should always inform thy servants
of the bounds of thy arrays, and servants who spurn such advice or quietly fail to follow it should be
dispatched forthwith to the Land Of Rm, where they can do no further harm to thee."

The ungetc function

#include <stdio.h>
int ungetc(int c, FILE *stream);

The ungetc function pushes the character specified by c (converted to an unsigned char) back onto
the input stream pointed to by stream. The pushed-back characters will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file-positioning function (fseek, fsetpos, or rewind) discards any
pushed-back characters for the stream. The external storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times on the same
stream without an intervening read or file positioning operation on that stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream is unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The value of
the file position indicator for the stream after reading or discarding all pushed-back characters shall
be the same as it was before the characters were pushed back. For a text stream, the value of its file-
position indicator after a successful call to the ungetc function is unspecified until all pushed-back
characters are read or discarded. For a binary stream, its file position indicator is decremented by each
successful call to the ungetc function; if its value was zero before a call, it is indeterminate after the
call.

The ungetc function returns the character pushed back after conversion, or EOF if the operation fails.

21.10.2 EOF pitfall

A mistake when using fgetc, getc, or getchar is to assign the result to a variable of type char
before comparing it to EOF. The following code fragments exhibit this mistake, and then show the
correct approach (using type int):

2 http://en.wikipedia.org/wiki/Henry%20Spencer%20

137

http://en.wikipedia.org/wiki/Henry%20Spencer%20

File IO

Mistake Correction

char c;
while ((c = getchar()) != EOF)

putchar(c);

int c;
while ((c = getchar()) != EOF)

putchar(c);

Consider a system in which the type char is 8 bits wide, representing 256 different values. getchar
may return any of the 256 possible characters, and it also may return EOF to indicate end-of-file3, for
a total of 257 different possible return values.

When getchar's result is assigned to a char, which can represent only 256 different values, there is
necessarily some loss of information—when packing 257 items into 256 slots, there must be a col-
lision4. The EOF value, when converted to char, becomes indistinguishable from whichever one of
the 256 characters shares its numerical value. If that character is found in the file, the above example
may mistake it for an end-of-file indicator; or, just as bad, if type char is unsigned, then because EOF
is negative, it can never be equal to any unsigned char, so the above example will not terminate at
end-of-file. It will loop forever, repeatedly printing the character which results from converting EOF
to char.

However, this looping failure mode does not occur if the char definition is signed (C makes the signed-
ness of the default char type implementation-dependent),5 assuming the commonly used EOF value
of -16. However, the fundamental issue remains that if the EOF value is defined outside of the range
of the char type, when assigned to a char that value is sliced and will no longer match the full EOF
value necessary to exit the loop. On the other hand, if EOF is within range of char, this guarantees a
collision between EOF and a char value. Thus, regardless of how system types are defined, never use
char types when testing against EOF.

On systems where int and char are the same size (i.e., systems incompatible with minimally the
POSIX and C99 standards), even the "good" example will suffer from the indistinguishability of EOF
and some character's value. The proper way to handle this situation is to check feof7 and ferror8

after getchar returns EOF. If feof indicates that end-of-file has not been reached, and ferror in-
dicates that no errors have occurred, then the EOF returned by getchar can be assumed to represent
an actual character. These extra checks are rarely done, because most programmers assume that their
code will never need to run on one of these "big char" systems. Another way is to use a compile-time
assertion to make sure that UINT_MAX > UCHAR_MAX, which at least prevents a program with such an
assumption from compiling in such a system.

21.10.3 Direct input function: the fread function

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

3 http://en.wikibooks.org/wiki/end-of-file
4 http://en.wikibooks.org/wiki/Pigeonhole%20principle
5 C99 §6.2.5/15
6 http://en.wikibooks.org/wiki/End-of-file
7 http://en.wikibooks.org/wiki/feof
8 http://en.wikibooks.org/wiki/ferror

138

http://en.wikibooks.org/wiki/end-of-file
http://en.wikibooks.org/wiki/Pigeonhole%20principle
http://en.wikibooks.org/wiki/End-of-file
http://en.wikibooks.org/wiki/feof
http://en.wikibooks.org/wiki/ferror

Reading from Files

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is
specified by size, from the stream pointed to by stream. The file position indicator for the stream
(if defined) is advanced by the number of characters successfully read. If an error occurs, the resulting
value of the file position indicator for the stream is indeterminate. If a partial element is read, its value
is indeterminate.

The fread function returns the number of elements successfully read, which may be less than nmemb
if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.

21.10.4 Formatted input functions: the scanf family of functions

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);
int scanf(const char *format, ...);
int sscanf(const char *s, const char *format, ...);

The fscanf function reads input from the stream pointed to by stream, under control of the string
pointed to by format that specifies the admissible sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the objects to receive converted input. If there
are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial shift state. The
format is composed of zero or more directives: one or more white-space characters; an ordinary multi-
byte character (neither % or a white-space character); or a conversion specification. Each conversion
specification is introduced by the character %. After the %, the following appear in sequence:

• An optional assignment-suppressing character *.
• An optional nonzero decimal integer that specifies the maximum field width.
• An optional h, l (ell) or L indicating the size of the receiving object. The conversion specifiers d, i,
and n shall be preceded by h if the corresponding argument is a pointer to short int rather than a
pointer to int, or by l if it is a pointer to long int. Similarly, the conversion specifiers o, u, and x
shall be preceded by h if the corresponding argument is a pointer to unsigned short int rather
than unsigned int, or by l if it is a pointer to unsigned long int. Finally, the conversion
specifiers e, f, and g shall be preceded by l if the corresponding argument is a pointer to double
rather than a pointer to float, or by L if it is a pointer to long double. If an h, l, or L appears
with any other format specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied. The valid conversion specifiers are
described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as detailed
below, the fscanf function returns. Failures are described as input failures (due to the unavailability
of input characters) or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-
white-space character (which remains unread) or until no more characters remain unread.

A directive that is an ordinary multibyte character is executed by reading the next characters of the
stream. If one of the characters differs from one comprising the directive, the directive fails, and the
differing and subsequent characters remain unread.

139

File IO

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the specifica-
tion includes a [, c, or n specifier. (The white-space characters are not counted against the specified
field width.)

An input item is read from the stream, unless the specification includes an n specifier. An input item
is defined as the longest matching sequences of input characters, unless that exceeds a specified field
width, in which case it is the initial subsequence of that length in the sequence. The first character, if
any, after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure, unless an error prevented input from the stream, in
which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails; this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the object pointed
to by the first argument following the format argument that has not already received a conversion
result. If this object does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d

Matches an optionally signed decimal integer, whose format is the same as expected for the sub-
ject sequence of the strtol function with the value 10 for the base argument. The corresponding
argument shall be a pointer to integer.

i

Matches an optionally signed integer, whose format is the same as expected for the subject sequence
of the strtol function with the value 0 for the base argument. The corresponding argument shall
be a pointer to integer.

o

Matches an optionally signed octal integer, whose format is the same as expected for the subject se-
quence of the strtoul functionwith the value 8 for the base argument. The corresponding argument
shall be a pointer to unsigned integer.

u

Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 10 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

x

Matches an optionally signed hexadecimal integer, whose format is the same as expected for the sub-
ject sequence of the strtoul function with the value 16 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

e, f, g

140

Reading from Files

Matches an optionally signed floating-point number, whose format is the same as expected for the
subject string of the strtod function. The corresponding argument will be a pointer to floating.

s

Matches a sequence of non-white-space characters. (No special provisions are made for multibyte
characters.) The corresponding argument shall be a pointer to the initial character of an array large
enough to accept the sequence and a terminating null character, which will be added automatically.

[

Matches a nonempty sequence of characters (no special provisions are made for multibyte characters)
from a set of expected characters (the scanset). The corresponding argument shall be a pointer to the
initial character of an array large enough to accept the sequence and a terminating null character,
which will be added automatically. The conversion specifier includes all subsequent characters in
the format string, up to and including the matching right bracket (]). The characters between the
brackets (the scanlist) comprise the scanset, unless the character after the left bracket is a circumflex
(ˆ), in which case the scanset contains all the characters that do not appear in the scanlist between the
circumflex and the right bracket. If the conversion specifier begins with [] or [ˆ], the right-bracket
character is in the scanlist and the next right bracket character is the matching right bracket that ends
the specification; otherwise, the first right bracket character is the one that ends the specification. If
a - character is in the scanlist and is not the first, nor the second where the first character is a ˆ, nor
the last character, the behavior is implementation-defined.

c

Matches a sequence of characters (no special provisions are made for multibyte characters) of the
number specified by the field width (1 if no field width is present in the directive). The corresponding
argument shall be a pointer to the initial character of an array large enough to accept the sequence.
No null character is added.

p

Matches an implementation-defined set of sequences, which should be the same as the set of se-
quences that may be produced by the %p conversion of the fprintf function. The corresponding
argument shall be a pointer to void. The interpretation of the input then is implementation-defined.
If the input item is a value converted earlier during the same program execution, the pointer that
results shall compare equal to that value; otherwise the behavior of the %p conversion is undefined.

n

No input is consumed. The corresponding argument shall be a pointer to integer into which is to be
written the number of characters read from the input stream so far by this call to the fscanf function.
Execution of a %n directive does not increment the assignment count returned at the completion of
execution of the fscanf function.

%

Matches a single %; no conversion or assignment occurs. The complete conversion specification shall
be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e, g, and x.

141

File IO

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any
characters matching the current directive have been read (other than leading white space, where per-
mitted), execution of the current directive terminates with an input failure; otherwise, unless execution
of the current directive is terminated with a matching failure, execution of the following directive (if
any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left unread
in the input stream. Trailing white space (including new-line characters) is left unread unless matched
by a directive. The success of literal matches and suppressed assignments is not directly determinable
other than via the %n directive.

The fscanf function returns the value of the macro EOF if an input failure occurs before any conver-
sion. Otherwise, the fscanf function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

The scanf function is equivalent to fscanfwith the argument stdin interposed before the arguments
to scanf. Its return value is similar to that of fscanf.

The sscanf function is equivalent to fscanf, except that the argument s specifies a string fromwhich
the input is to be obtained, rather than from a stream. Reaching the end of the string is equivalent to
encountering the end-of-file for the fscanf function. If copying takes place between objects that
overlap, the behavior is undefined.

21.11 Writing to Files

21.11.1 Character Output Functions

The fputc function

#include <stdio.h>
int fputc(int c, FILE *stream);

The fputc function writes the character specified by c (converted to an unsigned char) to the stream
pointed to by stream at the position indicated by the associated file position indicator (if defined), and
advances the indicator appropriately. If the file cannot support positioning requests, or if the stream
is opened with append mode, the character is appended to the output stream. The function returns the
character written, unless a write error occurs, in which case the error indicator for the stream is set and
fputc returns EOF.

The fputs function

#include <stdio.h>
int fputs(const char *s, FILE *stream);

The fputs function writes the string pointed to by s to the stream pointed to by stream. The ter-
minating null character is not written. The function returns EOF if a write error occurs, otherwise it
returns a nonnegative value.

142

Writing to Files

The putc function

#include <stdio.h>
int putc(int c, FILE *stream);

The putc function is equivalent to fputc, except that if it is implemented as a macro, it may evaluate
streammore than once, so the argument should never be an expression with side effects. The function
returns the character written, unless a write error occurs, in which case the error indicator for the stream
is set and the function returns EOF.

The putchar function

#include <stdio.h>
int putchar(int c);

The putchar function is equivalent to putcwith the second argument stdout. It returns the character
written, unless a write error occurs, in which case the error indicator for stdout is set and the function
returns EOF.

The puts function

#include <stdio.h>
int puts(const char *s);

The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends
a new-line character to the output. The terminating null character is not written. The function returns
EOF if a write error occurs; otherwise, it returns a nonnegative value.

21.11.2 Direct output function: the fwrite function

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size is
specified by size to the stream pointed to by stream. The file position indicator for the stream (if
defined) is advanced by the number of characters successfully written. If an error occurs, the resulting
value of the file position indicator for the stream is indeterminate. The function returns the number of
elements successfully written, which will be less than nmemb only if a write error is encountered.

21.11.3 Formatted output functions: the printf family of functions

#include <stdarg.h>
#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);
int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);

143

File IO

int vfprintf(FILE *stream, const char *format, va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);

Note: Some length specifiers and format specifiers are new in C99. These may not be available in
older compilers and versions of the stdio library, which adhere to the C89/C90 standard. Wherever
possible, the new ones will be marked with (C99).

The fprintf function writes output to the stream pointed to by stream under control of the string
pointed to by format that specifies how subsequent arguments are converted for output. If there
are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored. The
fprintf function returns when the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift state. The
format is composed of zero or more directives: ordinary multibyte characters (not %), which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching zero or
more subsequent arguments, converting them, if applicable, according to the corresponding conversion
specifier, and then writing the result to the output stream.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specification.
• An optional minimum field width. If the converted value has fewer characters than the field width,
it is padded with spaces (by default) on the left (or right, if the left adjustment flag, described later,
has been given) to the field width. The field width takes the form of an asterisk * (described later)
or a decimal integer. (Note that 0 is taken as a flag, not as the beginning of a field width.)

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and
X conversions, the number of digits to appear after the decimal-point character for a, A, e, E, f,
and F conversions, the maximum number of significant digits for the g and G conversions, or the
maximum number of characters to be written from a string in s conversions. The precision takes
the form of a period (.) followed either by an asterisk * (described later) or by an optional decimal
integer; if only the period is specified, the precision is taken as zero. If a precision appears with any
other conversion specifier, the behavior is undefined. Floating-point numbers are rounded to fit the
precision; i.e. printf("%1.1f\n", 1.19); produces 1.2.

• An optional length modifier that specifies the size of the argument.
• A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an
int argument supplies the field width or precision. The arguments specifying field width, or precision,
or both, shall appear (in that order) before the argument (if any) to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. A negative precision argument is taken
as if the precision were omitted.

The flag characters and their meanings are:

-

The result of the conversion is left-justified within the field. (It is right-justified if this flag is not
specified.)

144

Writing to Files

+

The result of a signed conversion always begins with a plus or minus sign. (It begins with a sign only
when a negative value is converted if this flag is not specified. The results of all floating conversions
of a negative zero, and of negative values that round to zero, include a minus sign.)

space
If the first character of a signed conversion is not a sign, or if a signed conversion results in no
characters, a space is prefixed to the result. If the space and + flags both appear, the space flag is
ignored.

#

The result is converted to an "alternative form". For o conversion, it increases the precision, if and
only if necessary, to force the first digit of the result to be a zero (if the value and precision are both
0, a single 0 is printed). For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to it. For
a, A, e, E, f, F, g, and G conversions, the result always contains a decimal-point character, even if no
digits follow it. (Normally, a decimal-point character appears in the result of these conversions only
if a digit follows it.) For g and G conversions, trailing zeros are not removed from the result. For
other conversions, the behavior is undefined.

0

For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width; no space padding is performed. If the 0 and - flags
both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the
0 flag is ignored. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or
unsigned char argument (the argument will have been promoted according to the integer promo-
tions, but its value shall be converted to signed char or unsigned char before printing); or that
a following n conversion specifier applies to a pointer to a signed char argument.

h

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int or unsigned
short int argument (the argument will have been promoted according to the integer promotions,
but its value shall be converted to short int or unsigned short int before printing); or that a
following n conversion specifier applies to a pointer to a short int argument.

l (ell)

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or unsigned
long int argument; that a following n conversion specifier applies to a pointer to a long int
argument; (C99) that a following c conversion specifier applies to a wint_t argument; (C99) that a
following s conversion specifier applies to a pointer to a wchar_t argument; or has no effect on a
following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)

145

File IO

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long int
or unsigned long long int argument; or that a following n conversion specifier applies to a
pointer to a long long int argument.

j

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or
uintmax_t argument; or that a following n conversion specifier applies to a pointer to an intmax_t
argument.

z

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier applies to a
pointer to a signed integer type corresponding to size_t argument.

t

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned integer type argument; or that a following n conversion specifier applies
to a pointer to a ptrdiff_t argument.

L

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double
argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

The conversion specifiers and their meanings are:

d, i

The int argument is converted to signed decimal in the style [−]dddd. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a zero value
with a precision of zero is no characters.

o, u, x, X

The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for x conversion and the
letters ABCDEF for X conversion. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it is expanded with leading zeros. The
default precision is 1. The result of converting a zero value with a precision of zero is no characters.

f, F

A double argument representing a (finite) floating-point number is converted to decimal notation in
the style [−]ddd.ddd, where the number of digits after the decimal-point character is equal to the pre-
cision specification. If the precision is missing, it is taken as 6; if the precision is zero and the # flag
is not specified, no decimal-point character appears. If a decimal-point character appears, at least one
digit appears before it. The value is rounded to the appropriate number of digits.
(C99)A double argument representing an infinity is converted in one of the styles [-]inf or [-]infinity
--- which style is implementation-defined. A double argument representing a NaN is converted in one

146

Writing to Files

of the styles [-]nan or [-]nan(n-char-sequence) --- which style, and the meaning of any n-char-
sequence, is implementation-defined. The F conversion specifier produces INF, INFINITY, or NAN
instead of inf, infinity, or nan, respectively. (When applied to infinite and NaN values, the -, +,
and space flags have their usual meaning; the # and 0 flags have no effect.)

e, E

A double argument representing a (finite) floating-point number is converted in the style [−]d.ddde±dd,
where there is one digit (which is nonzero if the argument is nonzero) before the decimal-point char-
acter and the number of digits after it is equal to the precision; if the precision is missing, it is taken
as 6; if the precision is zero and the # flag is not specified, no decimal-point character appears. The
value is rounded to the appropriate number of digits. The E conversion specifier produces a number
with E instead of e introducing the exponent. The exponent always contains at least two digits, and
only as many more digits as necessary to represent the exponent. If the value is zero, the exponent is
zero.
(C99) A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

g, G

A double argument representing a (finite) floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), with the precision specifying the number
of significant digits. If the precision is zero, it is taken as 1. The style used depends on the value
converted; style e (or E) is used only if the exponent resulting from such a conversion is less than−4
or greater than or equal to the precision. Trailing zeros are removed from the fractional portion of
the result unless the # flag is specified; a decimal-point character appears only if it is followed by a
digit.
(C99) A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

a, A

(C99) A double argument representing a (finite) floating-point number is converted in the style
[−]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the argument is a nor-
malized floating-point number and is otherwise unspecified) before the decimal-point character (Bi-
nary implementations can choose the hexadecimal digit to the left of the decimal-point character so
that subsequent digits align to nibble [4-bit] boundaries.) and the number of hexadecimal digits af-
ter it is equal to the precision; if the precision is missing and FLT_RADIX is a power of 2, then the
precision is sufficient for an exact representation of the value; if the precision is missing and FLT_-
RADIX is not a power of 2, then the precision is sufficient to distinguish (The precision p is sufficient
to distinguish values of the source type if 16p−1 > bn where b is FLT_RADIX and n is the number of
base-b digits in the significand of the source type. A smaller p might suffice depending on the im-
plementation's scheme for determining the digit to the left of the decimal-point character.) values of
type double, except that trailing zeros may be omitted; if the precision is zero and the # flag is not
specified, no decimal-point character appears. The letters abcdef are used for a conversion and the
letters ABCDEF for A conversion. The A conversion specifier produces a number with X and P instead
of x and p. The exponent always contains at least one digit, and only as many more digits as neces-
sary to represent the decimal exponent of 2. If the value is zero, the exponent is zero.
A double argument representing an infinity or NaN is converted in the style of an f or F conversion
specifier.

147

File IO

c

If no l length modifier is present, the int argument is converted to an unsigned char, and the re-
sulting character is written.
(C99) If an l length modifier is present, the wint_t argument is converted as if by an ls conversion
specification with no precision and an argument that points to the initial element of a two-element ar-
ray of wchar_t, the first element containing the wint_t argument to the lc conversion specification
and the second a null wide character.

s

If no l length modifier is present, the argument shall be a pointer to the initial element of an array of
character type. (No special provisions are made for multibyte characters.) Characters from the array
are written up to (but not including) the terminating null character. If the precision is specified, no
more than that many characters are written. If the precision is not specified or is greater than the size
of the array, the array shall contain a null character.
(C99) If an l length modifier is present, the argument shall be a pointer to the initial element of an
array of wchar_t type. Wide characters from the array are converted to multibyte characters (each
as if by a call to the wcrtomb function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide character is converted) up to and including a terminating null
wide character. The resulting multibyte characters are written up to (but not including) the terminat-
ing null character (byte). If no precision is specified, the array shall contain a null wide character.
If a precision is specified, no more than that many characters (bytes) are written (including shift se-
quences, if any), and the array shall contain a null wide character if, to equal the multibyte character
sequence length given by the precision, the function would need to access a wide character one past
the end of the array. In no case is a partial multibyte character written. (Redundant shift sequences
may result if multibyte characters have a state-dependent encoding.)

p

The argument shall be a pointer to void. The value of the pointer is converted to a sequence of
printable characters, in an implementation-defined manner.

n

The argument shall be a pointer to signed integer into which is written the number of characters written
to the output stream so far by this call to fprintf. No argument is converted, but one is consumed. If
the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

%

A % character is written. No argument is converted. The complete conversion specification shall be
%%.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the correct
type for the corresponding coversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is expanded to contain the conversion result.

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

148

References

It is recommended practice that if FLT_RADIX is not a power of 2, the result should be one of the two
adjacent numbers in hexadecimal floating style with the given precision, with the extra stipulation that
the error should have a correct sign for the current rounding direction.

It is recommended practice that for e, E, f, F, g, and G conversions, if the number of significant decimal
digits is at most DECIMAL_DIG, then the result should be correctly rounded. (For binary-to-decimal
conversion, the result format's values are the numbers representable with the given format specifier.
The number of significant digits is determined by the format specifier, and in the case of fixed-point
conversion by the source value as well.) If the number of significant decimal digits is more than
DECIMAL_DIG but the source value is exactly representable with DECIMAL_DIG digits, then the result
should be an exact representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings L < U, both having DECIMAL_DIG significant digits; the value of the resultant
decimal string D should satisfy L ≤ D ≤ U, with the extra stipulation that the error should have a
correct sign for the current rounding direction.

The fprintf function returns the number of characters transmitted, or a negative value if an output
or encoding error occurred.

The printf function is equivalent to fprintf with the argument stdout interposed before the ar-
guments to printf. It returns the number of characters transmitted, or a negative value if an output
error occurred.

The sprintf function is equivalent to fprintf, except that the argument s specifies an array into
which the generated input is to be written, rather than to a stream. A null character is written at the end
of the characters written; it is not counted as part of the returned sum. If copying takes place between
objects that overlap, the behavior is undefined. The function returns the number of characters written
in the array, not counting the terminating null character.

The vfprintf function is equivalent to fprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_startmacro (and possibly subsequent va_arg calls). The
vfprintf function does not invoke the va_endmacro. The function returns the number of characters
transmitted, or a negative value if an output error occurred.

The vprintf function is equivalent to printf, with the variable argument list replaced by arg, which
shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The
vprintf function does not invoke the va_end macro. The function returns the number of characters
transmitted, or a negative value if an output error occurred.

The vsprintf function is equivalent to sprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsprintf function does not invoke the va_end macro. If copying takes place between objects
that overlap, the behavior is undefined. The function returns the number of characters written into the
array, not counting the terminating null character.

21.12 References

pl:C/Czytanie i pisanie do plików9

9 http://pl.wikibooks.org/wiki/C%2FCzytanie%20i%20pisanie%20do%20plik%F3w

149

http://pl.wikibooks.org/wiki/C%2FCzytanie%20i%20pisanie%20do%20plik%F3w

File IO

150

22 Beginning exercises

22.1 Variables

22.1.1 Naming

1. Can a variable name start with a number?
2. Can a variable name start with a typographical symbol (e.g. #, *, _)?
3. Give an example of a C variable name that would not work. Why doesn't it work?

UNKNOWN TEMPLATE Solution

1. No, the name of a variable must begin with a letter (lowercase or uppercase), or an underscore.
2. Only the underscore can be used.
3. for example, #nm*rt is not allowed because # and * are not the valid characters for the name of

a variable.

#include<stdio.h>
main()
{

int a,b,c,max;
clrscr();
printf("\nenter three numbers ");
scanf("%d %d %d",&a,&b,&c);
max=a;
if(max<b)

max=b;
if(max<c)

max=c;
printf("\nlargest=%d \n",max);
getch();

}

Solution

22.1.2 Data Types

1. List at least three data types in C
a) On your computer, how much memory does each require?
b) Which ones can be used in place of another? Why?

i. Are there any limitations on these uses?
ii. If so, what are they?
iii. Is it necessary to do anything special to use the alternative?

2. Can the name we use for a data type (e.g. 'int', 'float') be used as a variable?

UNKNOWN TEMPLATE Solution

151

Beginning exercises

• 3 data types : long int, short int,float.
• On my computer :
• long int : 4 byte
• short int : 2 bytes
• float : 4 bytes

• we can not use 'int' or 'float' as a variable's name.

Solution

22.1.3 Assignment

1. How would you assign the value 3.14 to a variable called pi?
2. Is it possible to assign an int to a double?

a) Is the reverse possible?

UNKNOWN TEMPLATE Solution
•

double pi;
pi=3.14;

• Extra credit for the following answer

const float pi = 3.14;

Since pi is a constant, good programming convention dictates to make it unchangeable during run-
time.

• Yes, for example :

int a=67;
double b;
b=a;

• Yes, but a cast is necessary and the double is truncated:

double a=89;
int b;
b=(int) a;

Solution

22.1.4 Referencing

1. A common mistake for new students is reversing the assignment statement. Suppose you want
to assign the value stored in the variable "pi" to another variable, say "pi2":

a) What is the correct statement?
b) What is the reverse? Is this a valid C statement (even if it gives incorrect results)?
c) What if you wanted to assign a constant value (like 3.1415) to "pi2":

a. What would the correct statement look like?
b. Would the reverse be a valid or invalid C statement?

UNKNOWN TEMPLATE Solution

152

Simple I/O

1. pi2 = pi;
2. The reverse, pi = pi2; is a valid C statement if pi is not a constant.
3. a. pi2 = 3.1415;

b. The reverse: 3.1415 = pi2; is not valid since it is impossible to assign a value to a literal.

Solution

22.2 Simple I/O

22.2.1 Input

1. scanf() is a very powerful function. Describe some features that make it so versatile.
2. Write the scanf() function call that will read into the variable "var":

a) a float
b) an int
c) a double

UNKNOWN TEMPLATE Solution

scanf("%f",&var); //read float into var
scanf("%d",&var); //read int into var
scanf("%lf", &var); //read double into var

Solution

22.2.2 String manipulation

1. Write a program that prompts the user for a string, and prints its reverse.

UNKNOWN TEMPLATE Solution

One possible solution could be:

#include <stdio.h>
#include <string.h>

int main(void)
{

char s[81]; // A string of upto 80 chars + '\0'
int i;

puts("Please write a string: ");
fgets(s, 81, stdin);

puts("Your sentence in reverse: ");
for (i= strlen(s)-1; i >= 0; i--)
{

if (s[i] == '\n')
continue; // don't write newline

else
putchar(s[i]);

}
putchar('\n');
return 0;

}

153

Beginning exercises

Solution

2. Write a program that prompts the user for a sentence, and prints each word on its own line.

UNKNOWN TEMPLATE Solution

One possible solution could be:

#include <stdio.h>

int main(void)
{

char s[81], word[81];
int n= 0, idx= 0;

puts("Please write a sentence:");
fgets(s, 81, stdin);

/* %s matches a sequence of non-whitespace character, which is a
* fair definition of "word" in this context.
* %n matches nothing, but stores the number of characters that have
* been processed. i.e. if s is "Hello, World!", then word and n
* will be "Hello," and 6 respectively in the first iteration. In
* the second iteration they will be "World!" and 7 (6 chars +
* the space in front of the word).
*/

while (sscanf(&s[idx], "%s%n", word, &n) > 0)
{

idx += n;
puts(word);

}
return 0;

}

Solution

22.2.3 Loops

1. Write a function that outputs a right isosceles triangle of height and width n, so n = 6 would look
like

*
**

UNKNOWN TEMPLATE Solution

One possible solution:

void isosceles(int n)
{

int x,y;
for (y= 0; y < n; y++)
{

for (x= 0; x <= y; x++)
putchar('*');

putchar('\n');

154

Simple I/O

}
}

Solution

2. Write a function that outputs a sideways triangle of height 2n-1 and width n, so the output for n =
4 would be:

*
**

**
*

UNKNOWN TEMPLATE Solution

One possible solution:

void sideways(int n)
{

int x,y;
for (y= 0; y < n; y++)
{

for (x= 0; x <= y; x++)
putchar('*');

putchar('\n');
}
for (y= n-1; y > 0; y--)
{

for (x= 0; x < y; x++)
putchar('*');

putchar('\n');
}

}

Solution

3. Write a function that outputs a right-side-up triangle of height n and width 2n-1; the output for n =
6 would be:

*

UNKNOWN TEMPLATE Solution

One possible solution:

void right_side_up(int n)
{

int x,y;
for (y= 1; y <= n; y++)
{

for (x= 0; x < n-y; x++)
putchar(' ');

for (x= (n-y); x < (n-y)+(2*y-1); x++)

155

Beginning exercises

putchar('*');
putchar('\n');

}
}

Solution

22.3 Program Flow

1. Build a program where control passes from main to four different functions with 4 calls.

2. Now make a while loop in main with the function calls inside it. Ask for input at the beginning of
the loop. End the while loop if the user hits Q

3. Next add conditionals to call the functions when the user enters numbers, so 1 goes to function1, 2
goes to function 2, etc.

4. Have function 1 call function a, which calls function b, which calls function c

5. Draw out a diagram of program flow, with arrows to indicate where control goes

22.4 Functions

1. Write a function to check if an integer is negative; the declaration should look like bool is_-
positive(int i);

2. Write a function to raise a floating point number to an integer power, so for example to when you
use it

float a = raise_to_power(2, 3); //a gets 8

float b = raise_to_power(9, 2); //b gets 81

float raise_to_power(float f, int power); //make this your declaration

22.5 Math

1. Write a function to calculate if a number is prime. Return 1 if it is prime and 0 if it is not a prime.

UNKNOWN TEMPLATE Solution

One possible solution using a naïve primality test1:

// to compile: gcc -Wall prime.c -lm -o prime

#include <math.h> // for the square root function sqrt()
#include <stdio.h>

int is_prime(int n);

1 http://en.wikipedia.org/wiki/primality%20test

156

http://en.wikipedia.org/wiki/primality%20test

Math

int main()
{
printf("Write an integer: ");
int var;
scanf("%d", &var);
if (is_prime(var)==1) {

printf("A prime\n");
} else {

printf("Not a prime\n");
}
return 1;

}

int is_prime(int n)
{
int x;
int sq= sqrt(n)+1;

// Checking the trivial cases first
if (n < 2)

return 0;
if (n == 2 || n == 3)

return 1;

// Checking if n is divisible by 2 or odd numbers between 3 and the
// square root of n.
if (n % 2 == 0)

return 0;
for (x= 3; x <= sq; x += 2)

{
if (n % x == 0)

return 0;
}

return 1;
}

Solution

2. Write a function to determine the number of prime numbers below n.

3. Write a function to find the square root by using Newton's method.

4. Write functions to evaluate the trigonometric functions:

5. Try to write a random number generator.

6. Write a function to determine the prime number between 2 and 100:

et:Programmeerimiskeel C/Harjutused2 pl:C/Ćwiczenia dla początkujących3

2 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FHarjutused
3 http://pl.wikibooks.org/wiki/C%2F%01%06wiczenia%20dla%20pocz%01%05tkuj%01%05cych

157

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FHarjutused
http://pl.wikibooks.org/wiki/C%2F%01%06wiczenia%20dla%20pocz%01%05tkuj%01%05cych

Beginning exercises

158

23 In-depth C ideas

159

In-depth C ideas

160

24 Arrays

Arrays in C act to store related data under a single variable name with an index, also known as a
subscript. It is easiest to think of an array as simply a list or ordered grouping for variables of the same
type. As such, arrays often help a programmer organize collections of data efficiently and intuitively.

Later we will consider the concept of a pointer, fundamental to C, which extends the nature of the array
(array can be termed as a constant pointer). For now, we will consider just their declaration and their
use.

24.1 Arrays

If we want an array of six integers (or numbers), we write in C:

int numbers[6];

For a SIX character array called letters,

char letters[6];

and so on.

If we wish to initialize as we declare, we write:

int point[6]={0,0,1,0,0,0};

Though when the array is initialized as in this case, the array dimension may be omitted, and the array
will be automatically sized to hold the initial data:

int point[]={0,0,1,0,0,0};

This is very useful in that the size of the array can be controlled by simply adding or removing initializer
elements from the definition without the need to adjust the dimension.

If the dimension is specified, but not all elements in the array are initialized, the remaining elements
will contain a value of 0. This is very useful, especially when we have very large arrays.

int numbers[2000]={245};

The above example sets the first value of the array to 245, and the rest to 0.

If we want to access a variable stored in an array, for example with the above declaration, the following
code will store a 1 in the variable x

int x;
x = point[2];

161

Arrays

Arrays in C are indexed starting at 0, as opposed to starting at 1. The first element of the array above is
point[0]. The index to the last value in the array is the array size minus one. In the example above
the subscripts run from 0 through 5. C does not guarantee bounds checking on array accesses. The
compiler may not complain about the following (though the best compilers do):

char y;
int z = 9;
char point[6] = { 1, 2, 3, 4, 5, 6 };
//examples of accessing outside the array. A compile error is not always raised
y = point[15];
y = point[-4];
y = point[z];

During program execution, an out of bounds array access does not always cause a run time error. Your
program may happily continue after retrieving a value from point[-1]. To alleviate indexing problems,
the sizeof() expression is commonly used when coding loops that process arrays.

int ix;
short anArray[]= { 3, 6, 9, 12, 15 };

for (ix=0; ix< (sizeof(anArray)/sizeof(short)); ++ix) {
DoSomethingWith("%d", anArray[ix]);

}

Notice in the above example, the size of the array was not explicitly specified. The compiler knows to
size it at 5 because of the five values in the initializer list. Adding an additional value to the list will
cause it to be sized to six, and because of the sizeof expression in the for loop, the code automatically
adjusts to this change. Good programming practice is declare a variable size and store the size of the
array.

size = sizeof(anArray)/sizeof(short)

C also supports multi dimensional arrays (or, rather, arrays of arrays). The simplest type is a two di-
mensional array. This creates a rectangular array - each row has the same number of columns. To get
a char array with 3 rows and 5 columns we write in C

char two_d[3][5];

To access/modify a value in this array we need two subscripts:

char ch;
ch = two_d[2][4];

or

two_d[0][0] = 'x';

Similarly, a multi-dimensional array can be initialized like this:

int two_d[2][3] = {{ 5, 2, 1 },
{ 6, 7, 8 }};

The amount of columns must be explicitly stated; however, the compiler will find the appropriate
amount of rows based on the initializer list.

162

Strings

There are also weird notations possible:

int a[100];
int i = 0;
if (a[i]==i[a])
{
printf("Hello world!\n");

}

a[i] and i[a] refer to the same location. (This is explained later in the next Chapter.)

24.2 Strings

Figure 1 String "Merkkijono" stored in memory

C has no string handling facilities built in; consequently, strings are defined as arrays of characters. C
allows a character array to be represented by a character string rather than a list of characters, with the
null terminating character automatically added to the end. For example, to store the string "Merkki-
jono", we would write

char string[] = "Merkkijono";

or

char string[] = {'M', 'e', 'r', 'k', 'k', 'i', 'j', 'o', 'n', 'o', '\0'};

In the first example, the string will have a null character automatically appended to the end by the
compiler; by convention, library functions expect strings to be terminated by a null character. The
latter declaration indicates individual elements, and as such the null terminator needs to be added
manually.

Strings do not always have to be linked to an explicit variable. As you have seen already, a string
of characters can be created directly as an unnamed string that is used directly (as with the printf
functions.)

To create an extra long string, you will have to split the string into multiple sections, by closing the
first section with a quote, and recommencing the string on the next line (also starting and ending in a
quote):

char string[] = "This is a very, very long "
"string that requires two lines.";

While strings may also span multiple lines by putting the backslash character at the end of the line, this
method is deprecated.

There is a useful library of string handling routines which you can use by including another header file.

163

Arrays

#include <string.h> //new header file

This standard string library will allow various tasks to be performed on strings, and is discussed in the
Strings1 chapter.

et:Programmeerimiskeel C/Massiivid2 it:C/Vettori e puntatori/Vettori3 pl:C/Tablice4 fi:C/Taulukot5

1 Chapter 27 on page 183
2 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMassiivid
3 http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FVettori
4 http://pl.wikibooks.org/wiki/C%2FTablice
5 http://fi.wikibooks.org/wiki/C%2FTaulukot

164

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMassiivid
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FVettori
http://pl.wikibooks.org/wiki/C%2FTablice
http://fi.wikibooks.org/wiki/C%2FTaulukot

25 Pointers and arrays

Figure 2 Pointer a pointing variable b.
Note that b stores number, whereas a stores
address of b in memory (1462)

A pointer1 is a value that designates the address (i.e., the location in memory), of some value. There
are four fundamental things you need to know about pointers:

• How to declare them
• How to assign to them
• How to reference the value to which the pointer points (known as dereferencing) and
• How they relate to arrays

We'll also discuss the relationship of pointers with text strings and the more advanced concept of
function pointers.

Pointers are variables that hold a memory location. One can access the value of the variable pointed
to using the dereferencing operator '*'.

Pointers can reference any data type, even functions.

1 http://en.wikipedia.org/wiki/Pointer%20%28computing%29

165

http://en.wikipedia.org/wiki/Pointer%20%28computing%29

Pointers and arrays

The vast majority of arrays in C are simple lists, also called "1 dimensional arrays". We will briefly
cover multi-dimensional arrays in a later chapter2.

25.1 Declaring pointers

Consider the following snippet of code which declares two pointers:

struct MyStruct {
int m_aNumber;
float num2;

};

int * pJ2;
struct MyStruct * pAnItem;

Lines 1-4 define a structure3. Line 6 declares a variable which points to an int, and line 7 declares
a variable which points to something with structure MyStruct. So to declare a variable as something
which points to some type, rather than contains some type, the asterisk (*) is placed before the variable
name.

In the following, line 1 declares var1 as a pointer to a long and var2 as a long and not a pointer to a
long. In line 2, p3 is declared as a pointer to a pointer to an int.

long * var1, var2;
int ** p3;

Pointer types are often used as parameters to function calls. The following shows how to declare a
function which uses a pointer as an argument. Since C passes function arguments by value, in order
to allow a function to modify a value from the calling routine, a pointer to the value must be passed.
Pointers to structures are also used as function arguments even when nothing in the struct will be mod-
ified in the function. This is done to avoid copying the complete contents of the structure onto the
stack. More about pointers as function arguments later.

int MyFunction(struct MyStruct *pStruct);

25.2 Assigning values to pointers

So far we've discussed how to declare pointers. The process of assigning values to pointers is next. To
assign a pointer the address of a variable, the & or 'address of' operator is used.

int myInt;

2 Chapter 30.1 on page 207
3 Chapter 28.1.2 on page 200

166

Assigning values to pointers

int *pPointer;
struct MyStruct dvorak;
struct MyStruct *pKeyboard;

pPointer = &myInt;
pKeyboard = &dvorak;

Here, pPointer will now reference myInt and pKeyboard will reference dvorak.

Pointers can also be assigned to reference dynamically allocated memory. The malloc() and calloc()
functions are often what are used to do this.

#include <stdlib.h>
/* ... */
struct MyStruct *pKeyboard;
/* ... */
pKeyboard = malloc(sizeof *pKeyboard);

The malloc function returns a pointer to dynamically allocated memory (or NULL if unsuccessful).
The size of this memory will be appropriately sized to contain the MyStruct structure.

The following is an example showing one pointer being assigned to another and of a pointer being
assigned a return value from a function.

static struct MyStruct val1, val2, val3, val4;

struct MyStruct *ASillyFunction(int b)
{

struct MyStruct *myReturn;

if (b == 1) myReturn = &val1;
else if (b==2) myReturn = &val2;
else if (b==3) myReturn = &val3;
else myReturn = &val4;

return myReturn;
}

struct MyStruct *strPointer;
int *c, *d;
int j;

c = &j; /* pointer assigned using & operator */
d = c; /* assign one pointer to another */
strPointer = ASillyFunction(3); /* pointer returned from a function. */

When returning a pointer from a function, do not return a pointer that points to a value that is local
to the function or that is a pointer to a function argument. Pointers to local variables become invalid
when the function exits. In the above function, the value returned points to a static variable. Returning
a pointer to dynamically allocated memory is also valid.

167

Pointers and arrays

25.3 Pointer dereferencing

Figure 3 The pointer p points to the variable a.

To access a value to which a pointer points, the * operator is used. Another operator, the -> operator
is used in conjunction with pointers to structures. Here's a short example.

int c, d;
int *pj;
struct MyStruct astruct;
struct MyStruct *bb;

c = 10;
pj = &c; /* pj points to c */
d = *pj; /* d is assigned the value to which pj points, 10 */
pj = &d; /* now points to d */
pj = 12; / d is now 12 */

bb = &astruct;
(*bb).m_aNumber = 3; /* assigns 3 to the m_aNumber member of astruct */
bb->num2 = 44.3; /* assigns 44.3 to the num2 member of astruct */
pj = bb->m_aNumber; / eqivalent to d = astruct.m_aNumber; */

The expression bb->m_aNumber is entirely equivalent to (*bb).m_aNumber. They both access the
m_aNumber element of the structure pointed to by bb. There is one more way of dereferencing a
pointer, which will be discussed in the following section.

When dereferencing a pointer that points to an invalid memory location, an error often occurs which
results in the program terminating. The error is often reported as a segmentation error. A common
cause of this is failure to initialize a pointer before trying to dereference it.

C is known for giving you just enough rope to hang yourself, and pointer dereferencing is a prime
example. You are quite free to write code that accesses memory outside that which you have explicitly
requested from the system. And many times, that memory may appear as available to your program
due to the vagaries of system memory allocation. However, even if 99 executions allow your program
to run without fault, that 100th execution may be the time when your "memory pilfering" is caught by
the system and the program fails. Be careful to ensure that your pointer offsets are within the bounds
of allocated memory!

The declaration void *somePointer; is used to declare a pointer of some nonspecified type. You
can assign a value to a void pointer, but you must cast the variable to point to some specified type
before you can dereference it. Pointer arithmetic is also not valid with void * pointers.

168

Pointers and Arrays

25.4 Pointers and Arrays

Up to now, we've carefully been avoiding discussing arrays in the context of pointers. The interaction
of pointers and arrays can be confusing but here are two fundamental statements about it:

• A variable declared as an array of some type acts as a pointer to that type. When used by itself, it
points to the first element of the array.

• A pointer can be indexed like an array name.

The first case often is seen to occur when an array is passed as an argument to a function. The function
declares the parameter as a pointer, but the actual argument may be the name of an array. The second
case often occurs when accessing dynamically allocated memory. Let's look at examples of each. In
the following code, the call to calloc() effectively allocates an array of struct MyStruct items.

float KrazyFunction(struct MyStruct *parm1, int p1size, int bb)
{

int ix; //declaring an integer variable//
for (ix=0; ix<p1size; ix++) {

if (parm1[ix].m_aNumber == bb)
return parm1[ix].num2;

}
return 0.0f;

}

/* ... */
struct MyStruct myArray[4];
#define MY_ARRAY_SIZE (sizeof(myArray)/sizeof(*myArray))
float v3;
struct MyStruct *secondArray;
int someSize;
int ix;
/* initialization of myArray ... */
v3 = KrazyFunction(myArray, MY_ARRAY_SIZE, 4);
/* ... */
secondArray = calloc(someSize, sizeof(myArray));
for (ix=0; ix<someSize; ix++) {

secondArray[ix].m_aNumber = ix *2;
secondArray[ix].num2 = .304 * ix * ix;

}

Pointers and array names can pretty much be used interchangeably. There are exceptions. You cannot
assign a new pointer value to an array name. The array name will always point to the first element of
the array. In the function KrazyFunction above, you could however assign a new value to parm1, as
it is just a pointer to the first element of myArray. It is also valid for a function to return a pointer to
one of the array elements from an array passed as an argument to a function. A function should never
return a pointer to a local variable, even though the compiler will probably not complain.

When declaring parameters to functions, declaring an array variable without a size is equivalent to
declaring a pointer. Often this is done to emphasize the fact that the pointer variable will be used in a
manner equivalent to an array.

/* two equivalent function definitions */
int LittleFunction(int *paramN);
int LittleFunction(int paramN[]);

Now we're ready to discuss pointer arithmetic. You can add and subtract integer values to/from point-
ers. If myArray is declared to be some type of array, the expression *(myArray+j), where j is an

169

Pointers and arrays

integer, is equivalent to myArray[j]. So for instance in the above example where we had the expres-
sion secondArray[i].num2, we could have written that as *(secondArray+i).num2 or more simply
(secondArray+i)->num2.

Note that for addition and subtraction of integers and pointers, the value of the pointer is not adjusted
by the integer amount, but is adjusted by the amount multiplied by the size (in bytes) of the type to
which the pointer refers. One pointer may also be subtracted from another, provided they point to
elements of the same array (or the position just beyond the end of the array). If you have a pointer that
points to an element of an array, the index of the element is the result when the array name is subtracted
from the pointer. Here's an example.

struct MyStruct someArray[20];
struct MyStruct *p2;
int idx;

.
/* array initialization .. */
.
for (p2 = someArray; p2 < someArray+20; ++p2) {

if (p2->num2 > testValue) break;
}
idx = p2 - someArray;

You may be wondering how pointers and multidimensional arrays interact. Lets look at this a bit in
detail. Suppose A is declared as a two dimensional array of floats (float A[D1][D2];) and that pf is
declared a pointer to a float. If pf is initialized to point to A[0][0], then *(pf+1) is equivalent to A[0][1]
and *(pf+D2) is equivalent to A[1][0]. The elements of the array are stored in row-major order.

float A[6][8];
float *pf;
pf = &A[0][0];
(pf+1) = 1.3; / assigns 1.3 to A[0][1] */
(pf+8) = 2.3; / assigns 2.3 to A[1][0] */

Let's look at a slightly different problem. We want to have a two dimensional array, but we don't need
to have all the rows the same length. What we do is declare an array of pointers. The second line below
declares A as an array of pointers. Each pointer points to a float. Here's some applicable code:

float linearA[30];
float *A[6];

A[0] = linearA; /* 5 - 0 = 5 elements in row */
A[1] = linearA + 5; /* 11 - 5 = 6 elements in row */
A[2] = linearA + 11; /* 15 - 11 = 4 elements in row */
A[3] = linearA + 15; /* 21 - 15 = 6 elements */
A[4] = linearA + 21; /* 25 - 21 = 4 elements */
A[5] = linearA + 25; /* 30 - 25 = 5 elements */

A[3][2] = 3.66; /* assigns 3.66 to linearA[17]; */
A[3][-3] = 1.44; /* refers to linearA[12];

negative indices are sometimes useful. But avoid
using them as much as possible. */

We also note here something curious about array indexing. Suppose myArray is an array and idx is
an integer value. The expression myArray[idx] is equivalent to idx[myArray]. The first is equivalent
to *(myArray+idx), and the second is equivalent to *(idx+myArray). These turn out to be the same,
since the addition is commutative.

170

Pointers in Function Arguments

Pointers can be used with preincrement or post decrement, which is sometimes done within a loop,
as in the following example. The increment and decrement applies to the pointer, not to the object to
which the pointer refers. In other words, *pArray++ is equivalent to *(pArray++).

long myArray[20];
long *pArray;
int i;

/* Assign values to the entries of myArray */
pArray = myArray;
for (i=0; i<10; ++i) {

*pArray++ = 5 + 3*i + 12*i*i;
*pArray++ = 6 + 2*i + 7*i*i;

}

25.5 Pointers in Function Arguments

Often we need to invoke a function with an argument that is itself a pointer. In many instances, the
variable is itself a parameter for the current function and may be a pointer to some type of structure.
The ampersand character is not needed in this circumstance to obtain a pointer value, as the variable
is itself a pointer. In the example below, the variable pStruct, a pointer, is a parameter to function
FunctTwo, and is passed as an argument to FunctOne. The second parameter to FunctOne is an
int. Since in function FunctTwo, mValue is a pointer to an int, the pointer must first be dereferenced
using the * operator, hence the second argument in the call is *mValue. The third parameter to function
FunctOne is a pointer to a long. Since pAA is itself a pointer to a long, no ampersand is needed when
it is used as the third argument to the function.

int FunctOne(struct SomeStruct *pValue, int iValue, long *lValue)
{

/* do some stuff ... */
return 0;

}
int FunctTwo(struct someStruct *pStruct, int *mValue)
{

int j;
long AnArray[25];
long *pAA;

pAA = &AnArray[13];
j = FunctOne(pStruct, *mValue, pAA);
return j;

}

25.6 Pointers and Text Strings

Historically, text strings in C have been implemented as arrays of characters, with the last byte in the
string being a zero, or the null character '\0'. Most C implementations come with a standard library of
functions for manipulating strings. Many of the more commonly used functions expect the strings to
be null terminated strings of characters. To use these functions requires the inclusion of the standard
C header file "string.h".

A statically declared, initialized string would look similar to the following:

171

Pointers and arrays

static const char *myFormat = "Total Amount Due: %d";

The variable myFormat can be viewed as an array of 21 characters. There is an implied null character
('\0') tacked on to the end of the string after the 'd' as the 21st item in the array. You can also initialize
the individual characters of the array as follows:

static const char myFlower[] = { 'P', 'e', 't', 'u', 'n', 'i', 'a', '\0' };

An initialized array of strings would typically be done as follows:

static const char *myColors[] = {
"Red", "Orange", "Yellow", "Green", "Blue", "Violet" };

The initilization of an especially long string can be split across lines of source code as follows.

static char *longString = "Hello. My name is Rudolph and I work as a reindeer "
"around Christmas time up at the North Pole. My boss is a really swell guy."
" He likes to give everybody gifts.";

The library functions that are used with strings are discussed in a later chapter.

25.7 Pointers to Functions

C also allows you to create pointers to functions. Pointers to functions can get rathermessy. Declaring a
typedef to a function pointer generally clarifies the code. Here's an example that uses a function pointer,
and a void * pointer to implement what's known as a callback. The DoSomethingNice function
invokes a caller supplied function TalkJive with caller data. Note that DoSomethingNice really
doesn't know anything about what dataPointerrefers to.

typedef int (*MyFunctionType)(int, void *); /* a typedef for a function
pointer */

#define THE_BIGGEST 100

int DoSomethingNice(int aVariable, MyFunctionType aFunction, void *dataPointer
)
{

int rv = 0;
if (aVariable < THE_BIGGEST) {

/* invoke function through function pointer (old style) */
rv = (*aFunction)(aVariable, dataPointer);

} else {
/* invoke function through function pointer (new style) */

rv = aFunction(aVariable, dataPointer);
};
return rv;

}

typedef struct {
int colorSpec;
char *phrase;

172

Practical use of function pointer in C

} DataINeed;

int TalkJive(int myNumber, void *someStuff)
{

/* recast void * to pointer type specifically needed for this function */
DataINeed *myData = someStuff;
/* talk jive. */
return 5;

}

static DataINeed sillyStuff = { BLUE, "Whatcha talkin 'bout Willis?" };

/* ... */
DoSomethingNice(41, &TalkJive, &sillyStuff);

Some versions of Cmay not require an ampersand preceding the TalkJive argument in the DoSomethingNice
call. Some implementations may require specifically casting the argument to the MyFunctionType
type, even though the function signature exacly matches that of the typedef.

Function pointers can be useful for implementing a form of polymorphism in C. First one declares
a structure having as elements function pointers for the various operations to that can be specified
polymorphically. A second base object structure containing a pointer to the previous structure is also
declared. A class is defined by extending the second structure with the data specific for the class,
and static variable of the type of the first structure, containing the addresses of the functions that are
associated with the class. This type of polymorphism is used in the standard library when file I/O
functions are called.

A similar mechanism can also be used for implementing a state machine in C. A structure is defined
which contains function pointers for handling events that may occur within state, and for functions
to be invoked upon entry to and exit from the state. An instance of this structure corresponds to a
state. Each state is initialized with pointers to functions appropriate for the state. The current state
of the state machine is in effect a pointer to one of these states. Changing the value of the current
state pointer effectively changes the current state. When some event occurs, the appropriate function
is called through a function pointer in the current state.

25.8 Practical use of function pointer in C

Function pointers are mainly used to reduce the complexity of switch statement. Example with switch
statement:

#include <stdio.h>
int add(int a, int b);
int sub(int a, int b);
int mul(int a, int b);
int div(int a, int b);
int main()
{

int i, result;
int a=10;
int b=5;
printf("Enter the value between 0 and 3 : ");
scanf("%d",&i);
switch(i)
{

case 0: result = add(a,b); break;
case 1: result = sub(a,b); break;
case 2: result = mul(a,b); break;

173

Pointers and arrays

case 3: result = div(a,b); break;
}

}
int add(int i, int j)
{

return (i+j);
}
int sub(int i, int j)
{

return (i-j);
}
int mul(int i, int j)
{

return (i*j);
}
int div(int i, int j)
{

return (i/j);
}

Without using a switch statement:

#include <stdio.h>
int add(int a, int b);
int sub(int a, int b);
int mul(int a, int b);
int div(int a, int b);
int (*oper[4])(int a, int b) = {add, sub, mul, div};
int main()
{

int i,result;
int a=10;
int b=5;
printf("Enter the value between 0 and 3 : ");
scanf("%d",&i);
result = oper[i](a,b);

}
int add(int i, int j)
{

return (i+j);
}
int sub(int i, int j)
{

return (i-j);
}
int mul(int i, int j)
{

return (i*j);
}
int div(int i, int j)
{

return (i/j);
}

Function pointers may be used to create a struct member function:

typedef struct
{

int (*open)(void);
void (*close)(void);
int (*register)(void);

} device;

int my_device_open(void)
{

/* ... */

174

Examples of pointer constructs

}

void my_device_close(void)
{

/* ... */
}

void register_device(void)
{

/* ... */
}

device create(void)
{

device my_device;
my_device.open = my_device_open;
my_device.close = my_device_close;
my_device.register = register_device;
my_device.register();
return my_device;

}

Use to implement this pointer (following code must be placed in library).

static struct device_data
{

/* ... here goes data of structure ... */
};

static struct device_data obj;

typedef struct
{

int (*open)(void);
void (*close)(void);
int (*register)(void);

} device;

static struct device_data create_device_data(void)
{

struct device_data my_device_data;
/* ... here goes constructor ... */
return my_device_data;

}

/* here I omit the my_device_open, my_device_close and register_device functions
*/

device create_device(void)
{

device my_device;
my_device.open = my_device_open;
my_device.close = my_device_close;
my_device.register = register_device;
my_device.register();
return my_device;

}

25.9 Examples of pointer constructs

Below are some example constructs which may aid in creating your pointer.

175

Pointers and arrays

int i; // integer variable 'i'
int *p; // pointer 'p' to an integer
int a[]; // array 'a' of integers
int f(); // function 'f' with return value of type integer
int **pp; // pointer 'pp' to a pointer to an integer
int (*pa)[]; // pointer 'pa' to an array of integer
int (*pf)(); // pointer 'pf' to a function with returnvalue integer
int *ap[]; // array 'ap' of pointers to an integer
int *fp(); // function 'fp' which returns a pointer to an integer
int ***ppp; // pointer 'ppp' to a pointer to a pointer to an integer
int (**ppa)[]; // pointer 'ppa' to a pointer to an array of integers
int (**ppf)(); // pointer 'ppf' to a pointer to a function with return value of
type integer
int *(*pap)[]; // pointer 'pap' to an array of pointers to an integer
int *(*pfp)(); // pointer 'pfp' to function with return value of type pointer to
an integer
int **app[]; // array of pointers 'app' that point to pointers to integer
values
int (*apa[])[];// array of pointers 'apa' to arrays of integers
int (*apf[])();// array of pointers 'apf' to functions with return values of
type integer
int ***fpp(); // function 'fpp' which returns a pointer to a pointer to a
pointer to an int
int (*fpa())[];// function 'fpa' with return value of a pointer to array of
integers
int (*fpf())();// function 'fpf' with return value of a pointer to function
which returns an integer

25.10 sizeof

The sizeof operator is often used to refer to the size of a static array declared earlier in the same function.

To find the end of an array (example from wikipedia:Buffer overflow4):

/* better.c - demonstrates one method of fixing the problem */

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char buffer[10];
if (argc < 2)
{

fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}
strncpy(buffer, argv[1], sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
return 0;

}

To iterate over every element of an array, use

#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

for(i = 0; i < NUM_ELEM(array); i++)

4 http://en.wikipedia.org/wiki/Buffer%20overflow

176

http://en.wikipedia.org/wiki/Buffer%20overflow

sizeof

{
/* do something with array[i] */
;

}

Note that the sizeof operator only works on things defined earlier in the same function. The compiler
replaces it with some fixed constant number. In this case, the buffer was declared as an array of 10
char's earlier in the same function, and the compiler replaces sizeof(buffer) with the number 10
at compile time (equivalent to us hard-coding 10 into the code in place of sizeof(buffer)). The
information about the length of buffer is not actually stored anywhere in memory (unless we keep
track of it separately) and cannot be programmatically obtained at run time from the array/pointer itself.

Often a function needs to know the size of an array it was given -- an array defined in some other
function. For example,

/* broken.c - demonstrates a flaw */

#include <stdio.h>
#include <string.h>
#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

int sum(int input_array[]){
int sum_so_far = 0;
int i;
for(i = 0; i < NUM_ELEM(input_array); i++) // WON'T WORK -- input_array
wasn't defined in this function.
{

sum_so_far += input_array[i];
};
return(sum_so_far);

}

int main(int argc, char *argv[])
{
int left_array[] = { 1, 2, 3 };
int right_array[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int the_sum = sum(left_array);
printf("the sum of left_array is: %d", the_sum);
the_sum = sum(right_array);
printf("the sum of right_array is: %d", the_sum);

return 0;
}

Unfortunately, (in C and C++) the length of the array cannot be obtained from an array passed in at run
time, because (as mentioned above) the size of an array is not stored anywhere. The compiler always
replaces sizeof with a constant. This sum() routine needs to handle more than just one constant length
of an array.

There are some common ways to work around this fact:

• Write the function to require, for each array parameter, a "length" parameter (which has type "size_-
t"). (Typically we use sizeof at the point where this function is called).

• Use of a convention, such as a null-terminated string5 to mark the end of the array.
• Instead of passing raw arrays, pass a structure that includes the length of the array (such as ".length")
as well as the array (or a pointer to the first element); similar to the string or vector classes in
C++.

5 http://en.wikipedia.org/wiki/null-terminated%20string

177

http://en.wikipedia.org/wiki/null-terminated%20string

Pointers and arrays

/* fixed.c - demonstrates one work-around */

#include <stdio.h>
#include <string.h>
#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

int sum(int input_array[], size_t length){
int sum_so_far = 0;
int i;
for(i = 0; i < length; i++)
{

sum_so_far += input_array[i];
};
return(sum_so_far);

}

int main(int argc, char *argv[])
{
int left_array[] = { 1, 2, 3, 4 };
int right_array[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int the_sum = sum(left_array, NUM_ELEM(left_array)); // works here, because
left_array is defined in this function
printf("the sum of left_array is: %d", the_sum);
the_sum = sum(right_array, NUM_ELEM(right_array)); // works here, because
right_array is defined in this function
printf("the sum of right_array is: %d", the_sum);

return 0;
}

It's worth mentioning that sizeof operator has two variations: sizeof (type) (for instance: sizeof
(int) or sizeof (struct some_structure)) and sizeof expression (for instance: sizeof
some_variable.some_field or sizeof 1).

25.11 External Links

• C Reference Card (ANSI)6
• "Common Pointer Pitfalls"7 by Dave Marshall
• "Further insights into size_t"8 by Dan Saks 2007
• "Pointer Fun with Binky"9

de:C-Programmierung: Zeiger10 it:C/Vettori e puntatori/Interscambiabilità tra puntatori
e vettori11 pl:C/Wskaźniki12

6 http://www.digilife.be/quickreferences/QRC/C%20Reference%20Card%20(ANSI)%202.2.pdf
7 http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTION001080000000000000000
8 http://www.embedded.com/columns/programmingpointers/201803576
9 http://en.wikibooks.org/wiki/%3AFile%3APointer%20Fun%20with%20Binky%20%28C%29.ogg
10 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Zeiger
11 http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%E0%20tra%

20puntatori%20e%20vettori
12 http://pl.wikibooks.org/wiki/C%2FWska%01%7Aniki

178

http://www.digilife.be/quickreferences/QRC/C%20Reference%20Card%20(ANSI)%202.2.pdf
http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTION001080000000000000000
http://www.embedded.com/columns/programmingpointers/201803576
http://en.wikibooks.org/wiki/%3AFile%3APointer%20Fun%20with%20Binky%20%28C%29.ogg
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Zeiger
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%E0%20tra%20puntatori%20e%20vettori
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%E0%20tra%20puntatori%20e%20vettori
http://pl.wikibooks.org/wiki/C%2FWska%01%7Aniki

26 Memory management

In C, you have already considered creating variables for use in the program. You have created some
arrays for use, but you may have already noticed some limitations:

• the size of the array must be known beforehand
• the size of the array cannot be changed in the duration of your program

Dynamic memory allocation in C is a way of circumventing these problems.

26.1 Malloc

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);
void free(void *ptr);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);

The C function malloc is the means of implementing dynamic memory allocation. It is defined in
stdlib.h or malloc.h, depending on what operating system you may be using. Malloc.h contains only
the definitions for the memory allocation functions and not the rest of the other functions defined in
stdlib.h. Usually you will not need to be so specific in your program, and if both are supported, you
should use <stdlib.h>, since that is ANSI C, and what we will use here.

The corresponding call to release allocated memory back to the operating system is free.

When dynamically allocated memory is no longer needed, free should be called to release it back to
the memory pool. Overwriting a pointer that points to dynamically allocated memory can result in that
data becoming inaccessible. If this happens frequently, eventually the operating system will no longer
be able to allocate more memory for the process. Once the process exits, the operating system is able
to free all dynamically allocated memory associated with the process.

Let's look at how dynamic memory allocation can be used for arrays.

Normally when we wish to create an array we use a declaration such as

int array[10];

Recall array can be considered a pointer which we use as an array. We specify the length of this array
is 10 ints. After array[0], nine other integers have space to be stored consecutively.

Sometimes it is not known at the time the program is written how much memory will be needed for
some data. In this case we would want to dynamically allocate required memory after the program has
started executing. To do this we only need to declare a pointer, and invoke malloc when we wish to
make space for the elements in our array, or, we can tell malloc to make space when we first initialize
the array. Either way is acceptable and useful.

179

Memory management

We also need to know how much an int takes up in memory in order to make room for it; fortunately
this is not difficult, we can use C's builtin sizeof operator. For example, if sizeof(int) yields 4,
then one int takes up 4 bytes. Naturally, 2*sizeof(int) is how much memory we need for 2 ints,
and so on.

So how do we malloc an array of ten ints like before? If we wish to declare and make room in one
hit, we can simply say

int *array = malloc(10*sizeof(int));

We only need to declare the pointer; malloc gives us some space to store the 10 ints, and returns the
pointer to the first element, which is assigned to that pointer.

Important note! malloc does not initialize the array; this means that the array may contain random
or unexpected values! Like creating arrays without dynamic allocation, the programmer must initialize
the array with sensible values before using it. Make sure you do so, too. (See later the function memset
for a simple method.)

It is not necessary to immediately call malloc after declaring a pointer for the allocated memory.
Often a number of statements exist between the declaration and the call to malloc, as follows:

int *array = NULL;
printf("Hello World!!!");
/* more statements */
array = malloc(10*sizeof(int)); /* delayed allocation */
/* use the array */

26.1.1 Error checking

When we want to use malloc, we have to be mindful that the pool of memory available to the pro-
grammer is finite. As such, we can conceivably run out of memory! In this case, malloc will return
NULL. In order to stop the program crashing from having no more memory to use, one should always
check that malloc has not returned NULL before attempting to use the memory; we can do this by

int *pt = malloc(3 * sizeof(int));
if(pt == NULL)
{

fprintf(stderr, "Out of memory, exiting\n");
exit(1);

}

Of course, suddenly quitting as in the above example is not always appropriate, and depends on the
problem you are trying to solve and the architecture you are programming for. For example if program
is a small, non critical application that's running on a desktop quitting may be appropriate. However if
the program is some type of editor running on a desktop, you may want to give the operator the option
of saving his tediously entered information instead of just exiting the program. A memory allocation
failure in an embedded processor, such as might be in a washing machine, could cause an automatic
reset of the machine. For this reason, many embedded systems designers avoid dynamic memory
allocation altogether.

180

The calloc function

26.2 The calloc function

The calloc function allocates space for an array of items and initilizes the memory to zeros. The call
mArray = calloc(count, sizeof(struct V)) allocates count objects, each of whose size
is sufficient to contain an instance of the structure struct V. The space is initialized to all bits zero.
The function returns either a pointer to the allocated memory or, if the allocation fails, NULL.

26.3 The realloc function

void * realloc (void * ptr, size_t size);

The realloc function changes the size of the object pointed to by ptr to the size specified by size.
The contents of the object shall be unchanged up to the lesser of the new and old sizes. If the new
size is larger, the value of the newly allocated portion of the object is indeterminate. If ptr is a null
pointer, the realloc function behaves like the malloc function for the specified size. Otherwise, if
ptr does not match a pointer earlier returned by the calloc, malloc, or realloc function, or if the
space has been deallocated by a call to the free or realloc function, the behavior is undefined. If
the space cannot be allocated, the object pointed to by ptr is unchanged. If size is zero and ptr is
not a null pointer, the object pointed to is freed. The realloc function returns either a null pointer or
a pointer to the possibly moved allocated object.

26.4 The free function

Memory that has been allocated using malloc, realloc, or callocmust be released back to the sys-
tem memory pool once it is no longer needed. This is done to avoid perpetually allocating more and
more memory, which could result in an eventual memory allocation failure. Memory that is not re-
leased with free is however released when the current program terminates on most operating systems.
Calls to free are as in the following example.

int *myStuff = malloc(20 * sizeof(int));
if (myStuff != NULL)
{

/* more statements here */
/* time to release myStuff */
free(myStuff);

}

26.4.1 free with recursive data structures

It should be noted that free is neither intelligent nor recursive. The following code that depends on
the recursive application of free to the internal variables of a struct1 does not work.

typedef struct BSTNode
{

int value;

1 Chapter 28 on page 199

181

Memory management

struct BSTNode* left;
struct BSTNode* right;

} BSTNode;

// Later: ...

BSTNode* temp = (BSTNode*) calloc(1, sizeof(BSTNode));
temp->left = (BSTNode*) calloc(1, sizeof(BSTNode));

// Later: ...

free(temp); // WRONG! don't do this!

The statement "free(temp);" will not free temp->left, causing a memory leak.

Because C does not have a garbage collector, C programmers are responsible for making sure there is
a free() exactly once for each time there is a malloc(). If a tree has been allocated one node at a
time, then it needs to be freed one node at a time.

26.4.2 Don't free undefined pointers

Furthermore, using free when the pointer in question was never allocated in the first place often
crashes or leads to mysterious bugs further along.

To avoid this problem, always initialize pointers when they are declared. Either use malloc at the point
they are declared (as in most examples in this chapter), or set them to NULL when they are declared (as
in the "delayed allocation" example in this chapter). 2

26.5 References

2 "Bug 478901 ... libpng-1.2.34 and earlier might free undefined pointers" ˆ{https://bugzilla.mozilla.
org/show_bug.cgi?id=478901}

182

https://bugzilla.mozilla.org/show_bug.cgi?id=478901
https://bugzilla.mozilla.org/show_bug.cgi?id=478901

27 Strings

A string in C is merely an array of characters. The length of a string is determined by a terminating
null character: '\0'. So, a string with the contents, say, "abc" has four characters: 'a', 'b', 'c',
and the terminating null character.

The terminating null character has the value zero.

27.1 Syntax

In C, string constants (literals) are surrounded by double quotes ("), e.g. "Hello world!" and are com-
piled to an array of the specified char values with an additional null terminating character (0-valued)
code to mark the end of the string. The type of a string constant is char *.

String literals may not directly in the source code contain embedded newlines or other control charac-
ters, or some other characters of special meaning in string.

To include such characters in a string, the backslash escapes may be used, like this:

Escape Meaning
\\ Literal backslash
\" Double quote
\' Single quote
\n Newline (line feed)
\r Carriage return
\b Backspace
\t Horizontal tab
\f Form feed
\a Alert (bell)
\v Vertical tab
\? Question mark (used to escape trigraphs1)
\nnn Character with octal value nnn
\xhh Character with hexadecimal value hh

27.1.1 Wide character strings

C supports wide character strings, defined as arrays of the type wchar_t, 16-bit (at least) values. They
are written with an L before the string like this

1 http://en.wikibooks.org/wiki/C%20trigraph

183

http://en.wikibooks.org/wiki/C%20trigraph

Strings

wchar_t *p = L"Hello world!";

This feature allows strings where more than 256 different possible characters are needed (although
also variable length char strings can be used). They end with a zero-valued wchar_t. These strings
are not supported by the <string.h> functions. Instead they have their own functions, declared in
<wchar.h>.

27.1.2 Character encodings

What character encoding the char and wchar_t represent is not specified by the C standard, except
that the value 0x00 and 0x0000 specify the end of the string and not a character. It the input and output
code which are directly affected by the character encoding. Other code should not be too affected. The
editor should also be able to handle the encoding if strings shall be able to written in the source code.

There are three major types of encodings:

• One byte per character. Normally based on ASCII. There is a limit of 255 different characters plus
the zero termination character.

• Variable length char strings, which allows many more than 255 different characters. Such strings
are written as normal char-based arrays. These encodings are normally ASCII-based and examples
are UTF-82 or Shift JIS3.

• Wide character strings. They are arrays of wchar_t values. UTF-164 is the most common such
encoding, and it is also variable-length, meaning that a character can be two wchar_t.

27.2 The <string.h> Standard Header

Because programmers find raw strings cumbersome to deal with, theywrote the code in the <string.h>
library. It represents not a concerted design effort but rather the accretion of contributions made by
various authors over a span of years.

First, three types of functions exist in the string library:

• the mem functions manipulate sequences of arbitrary characters without regard to the null character;
• the str functions manipulate null-terminated sequences of characters;
• the strn functions manipulate sequences of non-null characters.

27.2.1 The more commonly-used string functions

The nine most commonly used functions in the string library are:

• strcat - concatenate two strings
• strchr - string scanning operation
• strcmp - compare two strings
• strcpy - copy a string

2 http://en.wikibooks.org/wiki/UTF-8
3 http://en.wikibooks.org/wiki/Shift%20JIS
4 http://en.wikibooks.org/wiki/UTF-16

184

http://en.wikibooks.org/wiki/UTF-8
http://en.wikibooks.org/wiki/Shift%20JIS
http://en.wikibooks.org/wiki/UTF-16

The <string.h> Standard Header

• strlen - get string length
• strncat - concatenate one string with part of another
• strncmp - compare parts of two strings
• strncpy - copy part of a string
• strrchr - string scanning operation

The strcat function

char *strcat(char * restrict s1, const char * restrict s2);

Some people recommend using strncat() or strlcat() instead of strcat, in order to avoid buffer
overflow.

The strcat() function shall append a copy of the string pointed to by s2 (including the terminating
null byte) to the end of the string pointed to by s1. The initial byte of s2 overwrites the null byte at
the end of s1. If copying takes place between objects that overlap, the behavior is undefined. The
function returns s1.

This function is used to attach one string to the end of another string. It is imperative that the first
string (s1) have the space needed to store both strings.

Example:

#include <stdio.h>
#include <string.h>
...
static const char *colors[] =

{"Red","Orange","Yellow","Green","Blue","Purple" };
static const char *widths[] = {"Thin","Medium","Thick","Bold" };
...
char penText[20];
...
int penColor = 3, penThickness = 2;
strcpy(penText, colors[penColor]);
strcat(penText, widths[penThickness]);
printf("My pen is %s\n", penText); // prints 'My pen is GreenThick'

Before calling strcat(), the destination must currently contain a null terminated string or the first
character must have been initialized with the null character (e.g. penText[0] = '\0';).

The following is a public-domain implementation of strcat:

#include <string.h>
/* strcat */
char *(strcat)(char *restrict s1, const char *restrict s2)
{

char *s = s1;
/* Move s so that it points to the end of s1. */
while (*s != '\0')

s++;
/* Copy the contents of s2 into the space at the end of s1. */
strcpy(s, s2);
return s1;

}

185

Strings

The strchr function

char *strchr(const char *s, int c);

The strchr() function shall locate the first occurrence of c (converted to a char) in the string pointed
to by s. The terminating null byte is considered to be part of the string. The function returns the location
of the found character, or a null pointer if the character was not found.

This function is used to find certain characters in strings.

At one point in history, this function was named index. The strchr name, however cryptic, fits the
general pattern for naming.

The following is a public-domain implementation of strchr:

#include <string.h>
/* strchr */
char *(strchr)(const char *s, int c)
{

/* Scan s for the character. When this loop is finished,
s will either point to the end of the string or the
character we were looking for. */

while (*s != '\0' && *s != (char)c)
s++;

return ((*s == c) ? (char *) s : NULL);
}

The strcmp function

int strcmp(const char *s1, const char *s2);

A rudimentary form of string comparison is done with the strcmp() function. It takes two strings as
arguments and returns a value less than zero if the first is lexographically less than the second, a value
greater than zero if the first is lexographically greater than the second, or zero if the two strings are
equal. The comparison is done by comparing the coded (ascii) value of the chararacters, character by
character.

This simple type of string comparison is nowadays generally considered unacceptable when sorting
lists of strings. More advanced algorithms exist that are capable of producing lists in dictionary sorted
order. They can also fix problems such as strcmp() considering the string "Alpha2" greater than "Al-
pha12". (In the previous example, "Alpha2" compares greater than "Alpha12" because '2' comes after
'1' in the character set.) What we're saying is, don't use this strcmp() alone for general string sorting
in any commercial or professional code.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2. The
sign of a non-zero return value shall be determined by the sign of the difference between the values
of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings being
compared. Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if
the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2, respectively.

Since comparing pointers by themselves is not practically useful unless one is comparing pointers
within the same array, this function lexically compares the strings that two pointers point to.

186

The <string.h> Standard Header

This function is useful in comparisons, e.g.

if (strcmp(s, "whatever") == 0) /* do something */
;

The collating sequence used by strcmp() is equivalent to the machine's native character set. The only
guarantee about the order is that the digits from '0' to '9' are in consecutive order.

The following is a public-domain implementation of strcmp:

#include <string.h>
/* strcmp */
int (strcmp)(const char *s1, const char *s2)
{

unsigned char uc1, uc2;
/* Move s1 and s2 to the first differing characters

in each string, or the ends of the strings if they
are identical. */

while (*s1 != '\0' && *s1 == *s2) {
s1++;
s2++;

}
/* Compare the characters as unsigned char and

return the difference. */
uc1 = (*(unsigned char *) s1);
uc2 = (*(unsigned char *) s2);
return ((uc1 < uc2) ? -1 : (uc1 > uc2));

}

The strcpy function

char *strcpy(char *restrict s1, const char *restrict s2);

Some people recommend always using strncpy() instead of strcpy, to avoid buffer overflow.

The strcpy() function shall copy the C string pointed to by s2 (including the terminating null byte)
into the array pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined. The function returns s1. There is no value used to indicate an error: if the arguments to
strcpy() are correct, and the destination buffer is large enough, the function will never fail.

Example:

#include <stdio.h>
#include <string.h>
/* ... */
static const char *penType="round";
/* ... */
char penText[20];
/* ... */
strcpy(penText, penType);

Important: You must ensure that the destination buffer (s1) is able to contain all the characters in
the source array, including the terminating null byte. Otherwise, strcpy() will overwrite memory
past the end of the buffer, causing a buffer overflow, which can cause the program to crash, or can be
exploited by hackers to compromise the security of the computer.

The following is a public-domain implementation of strcpy:

187

Strings

#include <string.h>
/* strcpy */
char *(strcpy)(char *restrict s1, const char *restrict s2)
{

char *dst = s1;
const char *src = s2;
/* Do the copying in a loop. */
while ((*dst++ = *src++) != '\0')

; /* The body of this loop is left empty. */
/* Return the destination string. */
return s1;

}

The strlen function

size_t strlen(const char *s);

The strlen() function shall compute the number of bytes in the string to which s points, not including
the terminating null byte. It returns the number of bytes in the string. No value is used to indicate an
error.

The following is a public-domain implementation of strlen:

#include <string.h>
/* strlen */
size_t (strlen)(const char *s)
{

const char *p = s;
/* Loop over the data in s. */
while (*p != '\0')

p++;
return (size_t)(p - s);

}

The strncat function

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

The strncat() function shall append not more than n bytes (a null byte and bytes that follow it are
not appended) from the array pointed to by s2 to the end of the string pointed to by s1. The initial
byte of s2 overwrites the null byte at the end of s1. A terminating null byte is always appended to the
result. If copying takes place between objects that overlap, the behavior is undefined. The function
returns s1.

The following is a public-domain implementation of strncat:

#include <string.h>
/* strncat */
char *(strncat)(char *restrict s1, const char *restrict s2, size_t n)
{

char *s = s1;
/* Loop over the data in s1. */
while (*s != '\0')

s++;
/* s now points to s1's trailing null character, now copy

up to n bytes from s1 into s stopping if a null character
is encountered in s2.

188

The <string.h> Standard Header

It is not safe to use strncpy here since it copies EXACTLY n
characters, NULL padding if necessary. */

while (n != 0 && (*s = *s2++) != '\0') {
n--;
s++;

}
if (*s != '\0')

*s = '\0';
return s1;

}

The strncmp function

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function shall compare not more than n bytes (bytes that follow a null byte are not
compared) from the array pointed to by s1 to the array pointed to by s2. The sign of a non-zero return
value is determined by the sign of the difference between the values of the first pair of bytes (both
interpreted as type unsigned char) that differ in the strings being compared. See strcmp for an
explanation of the return value.

This function is useful in comparisons, as the strcmp function is.

The following is a public-domain implementation of strncmp:

#include <string.h>
/* strncmp */
int (strncmp)(const char *s1, const char *s2, size_t n)
{

unsigned char uc1, uc2;
/* Nothing to compare? Return zero. */
if (n == 0)

return 0;
/* Loop, comparing bytes. */
while (n-- > 0 && *s1 == *s2) {

/* If we've run out of bytes or hit a null, return zero
since we already know *s1 == *s2. */

if (n == 0 || *s1 == '\0')
return 0;

s1++;
s2++;

}
uc1 = (*(unsigned char *) s1);
uc2 = (*(unsigned char *) s2);
return ((uc1 < uc2) ? -1 : (uc1 > uc2));

}

The strncpy function

char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

The strncpy() function shall copy not more than n bytes (bytes that follow a null byte are not copied)
from the array pointed to by s2 to the array pointed to by s1. If copying takes place between objects
that overlap, the behavior is undefined. If the array pointed to by s2 is a string that is shorter than n
bytes, null bytes shall be appended to the copy in the array pointed to by s1, until n bytes in all are
written. The function shall return s1; no return value is reserved to indicate an error.

189

Strings

It is possible that the function will not return a null-terminated string, which happens if the s2 string
is longer than n bytes.

The following is a public-domain version of strncpy:

#include <string.h>
/* strncpy */
char *(strncpy)(char *restrict s1, const char *restrict s2, size_t n)
{

char *dst = s1;
const char *src = s2;
/* Copy bytes, one at a time. */
while (n > 0) {

n--;
if ((*dst++ = *src++) == '\0') {

/* If we get here, we found a null character at the end
of s2, so use memset to put null bytes at the end of
s1. */

memset(dst, '\0', n);
break;

}
}
return s1;

}

The strrchr function

char *strrchr(const char *s, int c);

strrchr is similar to strchr, except the string is searched right to left.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the string pointed
to by s. The terminating null byte is considered to be part of the string. Its return value is similar to
strchr's return value.

At one point in history, this function was named rindex. The strrchr name, however cryptic, fits
the general pattern for naming.

The following is a public-domain implementation of strrchr:

#include <string.h>
/* strrchr */
char *(strrchr)(const char *s, int c)
{

const char *last = NULL;
/* If the character we're looking for is the terminating null,

we just need to look for that character as there's only one
of them in the string. */

if (c == '\0')
return strchr(s, c);

/* Loop through, finding the last match before hitting NULL. */
while ((s = strchr(s, c)) != NULL) {

last = s;
s++;

}
return (char *) last;

}

190

The <string.h> Standard Header

27.2.2 The less commonly-used string functions

The less-used functions are:

• memchr - Find a byte in memory
• memcmp - Compare bytes in memory
• memcpy - Copy bytes in memory
• memmove - Copy bytes in memory with overlapping areas
• memset - Set bytes in memory
• strcoll - Compare bytes according to a locale-specific collating sequence
• strcspn - Get the length of a complementary substring
• strerror - Get error message
• strpbrk - Scan a string for a byte
• strspn - Get the length of a substring
• strstr - Find a substring
• strtok - Split a string into tokens
• strxfrm - Transform string

Copying functions

The memcpy function
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object pointed to
by s1. If copying takes place between objects that overlap, the behavior is undefined. The function
returns s1.

Because the function does not have to worry about overlap, it can do the simplest copy it can.

The following is a public-domain implementation of memcpy:

#include <string.h>
/* memcpy */
void *(memcpy)(void * restrict s1, const void * restrict s2, size_t n)
{

char *dst = s1;
const char *src = s2;
/* Loop and copy. */
while (n-- != 0)

*dst++ = *src++;
return s1;

}

The memmove function
void *memmove(void *s1, const void *s2, size_t n);

The memmove() function shall copy n bytes from the object pointed to by s2 into the object pointed
to by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first copied into
a temporary array of n bytes that does not overlap the objects pointed to by s1 and s2, and then the n
bytes from the temporary array are copied into the object pointed to by s1. The function returns the
value of s1.

191

Strings

The easy way to implement this without using a temporary array is to check for a condition that would
prevent an ascending copy, and if found, do a descending copy.

The following is a public-domain, though not completely portable, implementation of memmove:

#include <string.h>
/* memmove */
void *(memmove)(void *s1, const void *s2, size_t n)
{

/* note: these don't have to point to unsigned chars */
char *p1 = s1;
const char *p2 = s2;
/* test for overlap that prevents an ascending copy */
if (p2 < p1 && p1 < p2 + n) {

/* do a descending copy */
p2 += n;
p1 += n;
while (n-- != 0)

*--p1 = *--p2;
} else

while (n-- != 0)
*p1++ = *p2++;

return s1;
}

Comparison functions

The memcmp function
int memcmp(const void *s1, const void *s2, size_t n);

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the
object pointed to by s1 to the first n bytes of the object pointed to by s2. The sign of a non-zero return
value shall be determined by the sign of the difference between the values of the first pair of bytes
(both interpreted as type unsigned char) that differ in the objects being compared.

The following is a public-domain implementation of memcmp:

#include <string.h>
/* memcmp */
int (memcmp)(const void *s1, const void *s2, size_t n)
{

const unsigned char *us1 = (const unsigned char *) s1;
const unsigned char *us2 = (const unsigned char *) s2;
while (n-- != 0) {

if (*us1 != *us2)
return (*us1 < *us2) ? -1 : +1;

us1++;
us2++;

}
return 0;

}

The strcoll and strxfrm functions
int strcoll(const char *s1, const char *s2);

size_t strxfrm(char *s1, const char *s2, size_t n);

The ANSI C Standard specifies two locale-specific comparison functions.

192

The <string.h> Standard Header

The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both inter-
preted as appropriate to the LC_COLLATE category of the current locale. The return value is similar to
strcmp.

The strxfrm function transforms the string pointed to by s2 and places the resulting string into the
array pointed to by s1. The transformation is such that if the strcmp function is applied to the two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to the
result of the strcoll function applied to the same two original strings. No more than n characters are
placed into the resulting array pointed to by s1, including the terminating null character. If n is zero,
s1 is permitted to be a null pointer. If copying takes place between objects that overlap, the behavior
is undefined. The function returns the length of the transformed string.

These functions are rarely used and nontrivial to code, so there is no code for this section.

Search functions

The memchr function
void *memchr(const void *s, int c, size_t n);

The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in the
initial n bytes (each interpreted as unsigned char) of the object pointed to by s. If c is not found,
memchr returns a null pointer.

The following is a public-domain implementation of memchr:

#include <string.h>
/* memchr */
void *(memchr)(const void *s, int c, size_t n)
{

const unsigned char *src = s;
unsigned char uc = c;
while (n-- != 0) {

if (*src == uc)
return (void *) src;

src++;
}
return NULL;

}

The strcspn, strpbrk, and strspn functions
size_t strcspn(const char *s1, const char *s2);

char *strpbrk(const char *s1, const char *s2);

size_t strspn(const char *s1, const char *s2);

The strcspn function computes the length of the maximum initial segment of the string pointed to by
s1 which consists entirely of characters not from the string pointed to by s2.

The strpbrk function locates the first occurrence in the string pointed to by s1 of any character from
the string pointed to by s2, returning a pointer to that character or a null pointer if not found.

The strspn function computes the length of the maximum initial segment of the string pointed to by
s1 which consists entirely of characters from the string pointed to by s2.

193

Strings

All of these functions are similar except in the test and the return value.

The following are public-domain implementations of strcspn, strpbrk, and strspn:

#include <string.h>
/* strcspn */
size_t (strcspn)(const char *s1, const char *s2)
{

const char *sc1;
for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) != NULL)
return (sc1 - s1);

return sc1 - s1; /* terminating nulls match */
}

#include <string.h>
/* strpbrk */
char *(strpbrk)(const char *s1, const char *s2)
{

const char *sc1;
for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) != NULL)
return (char *)sc1;

return NULL; /* terminating nulls match */
}

#include <string.h>
/* strspn */
size_t (strspn)(const char *s1, const char *s2)
{

const char *sc1;
for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) == NULL)
return (sc1 - s1);

return sc1 - s1; /* terminating nulls don't match */
}

The strstr function
char *strstr(const char *haystack, const char *needle);

The strstr() function shall locate the first occurrence in the string pointed to by haystack of the
sequence of bytes (excluding the terminating null byte) in the string pointed to by needle. The function
returns the pointer to the matching string in haystack or a null pointer if a match is not found. If
needle is an empty string, the function returns haystack.

The following is a public-domain implementation of strstr:

#include <string.h>
/* strstr */
char *(strstr)(const char *haystack, const char *needle)
{

size_t needlelen;
/* Check for the null needle case. */
if (*needle == '\0')

return (char *) haystack;
needlelen = strlen(needle);
for (; (haystack = strchr(haystack, *needle)) != NULL; haystack++)

if (strncmp(haystack, needle, needlelen) == 0)
return (char *) haystack;

return NULL;
}

194

The <string.h> Standard Header

The strtok function
char *strtok(char *restrict s1, const char *restrict delimiters);

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens, each of
which is delimited by a byte from the string pointed to by delimiters. The first call in the sequence
has s1 as its first argument, and is followed by calls with a null pointer as their first argument. The
separator string pointed to by delimiters may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is not contained
in the current separator string pointed to by delimiters. If no such byte is found, then there are no
tokens in the string pointed to by s1 and strtok() shall return a null pointer. If such a byte is found,
it is the start of the first token.

The strtok() function then searches from there for a byte (or multiple, consecutive bytes) that is
contained in the current separator string. If no such byte is found, the current token extends to the end
of the string pointed to by s1, and subsequent searches for a token shall return a null pointer. If such
a byte is found, it is overwritten by a null byte, which terminates the current token. The strtok()
function saves a pointer to the following byte, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described above.

The strtok() function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

Because the strtok() function must save state between calls, and you could not have two tokenizers
going at the same time, the Single Unix Standard defined a similar function, strtok_r(), that does
not need to save state. Its prototype is this:

char *strtok_r(char *s, const char *delimiters, char **lasts);

The strtok_r() function considers the null-terminated string s as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string delimiters. The argu-
ment lasts points to a user-provided pointer which points to stored information necessary for strtok_-
r() to continue scanning the same string.

In the first call to strtok_r(), s points to a null-terminated string, delimiters to a null-terminated
string of separator characters, and the value pointed to by lasts is ignored. The strtok_r() function
shall return a pointer to the first character of the first token, write a null character into s immediately
following the returned token, and update the pointer to which lasts points.

In subsequent calls, s is a null pointer and lasts shall be unchanged from the previous call so that
subsequent calls shall move through the string s, returning successive tokens until no tokens remain.
The separator string delimiters may be different from call to call. When no token remains in s, a
NULL pointer shall be returned.

The following public-domain code for strtok and strtok_r codes the former as a special case of
the latter:

#include <string.h>
/* strtok_r */
char *(strtok_r)(char *s, const char *delimiters, char **lasts)
{

char *sbegin, *send;
sbegin = s ? s : *lasts;

195

Strings

sbegin += strspn(sbegin, delimiters);
if (*sbegin == '\0') {

*lasts = "";
return NULL;

}
send = sbegin + strcspn(sbegin, delimiters);
if (*send != '\0')

*send++ = '\0';
*lasts = send;
return sbegin;

}
/* strtok */
char *(strtok)(char *restrict s1, const char *restrict delimiters)
{

static char *ssave = "";
return strtok_r(s1, delimiters, &ssave);

}

Miscellaneous functions

These functions do not fit into one of the above categories.

The memset function
void *memset(void *s, int c, size_t n);

The memset() function converts c into unsigned char, then stores the character into the first n
bytes of memory pointed to by s.

The following is a public-domain implementation of memset:

#include <string.h>
/* memset */
void *(memset)(void *s, int c, size_t n)
{

unsigned char *us = s;
unsigned char uc = c;
while (n-- != 0)

*us++ = uc;
return s;

}

The strerror function
char *strerror(int errorcode);

This function returns a locale-specific error message corresponding to the parameter. Depending on
the circumstances, this function could be trivial to implement, but this author will not do that as it
varies.

The Single Unix System Version 3 has a variant, strerror_r, with this prototype:

int strerror_r(int errcode, char *buf, size_t buflen);

This function stores the message in buf, which has a length of size buflen.

196

Examples

27.3 Examples

To determine the number of characters in a string, the strlen() function is used:

#include <stdio.h>
#include <string.h>
...
int length, length2;
char *turkey;
static char *flower= "begonia";
static char *gemstone="ruby ";

length = strlen(flower);
printf("Length = %d\n", length); // prints 'Length = 7'
length2 = strlen(gemstone);

turkey = malloc(length + length2 + 1);
if (turkey) {
strcpy(turkey, gemstone);
strcat(turkey, flower);
printf("%s\n", turkey); // prints 'ruby begonia'
free(turkey);

}

Note that the amount of memory allocated for 'turkey' is one plus the sum of the lengths of the strings
to be concatenated. This is for the terminating null character, which is not counted in the lengths of
the strings.

27.3.1 Exercises

1. The string functions use a lot of looping constructs. Is there some way to portably unravel the
loops?

2. What functions are possibly missing from the library as it stands now?

27.4 Further reading

• A Little C Primer/C String Function Library5
• C++ Programming/Code/IO/Streams/string6

• Because so many functions in the standard string.h library are vulnerable to buffer overflow er-
rors, some people7 recommend avoiding the string.h library and "C style strings" and instead
using a dynamic string API, such as the ones listed in the String library comparison8.

• There's a tiny public domain concat() function, which will allocate memory and safely
concatenate any number of strings in portable C/C++ code9

pl:C/Napisy10 pt:Programar em C/Strings11

5 http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%20Library
6 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FStreams%2Fstring
7 http://www.and.org/vstr/security
8 http://www.and.org/vstr/comparison
9 http://openwall.info/wiki/people/solar/software/public-domain-source-code/concat
10 http://pl.wikibooks.org/wiki/C%2FNapisy
11 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FStrings

197

http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%20Library
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FStreams%2Fstring
http://www.and.org/vstr/security
http://www.and.org/vstr/comparison
http://openwall.info/wiki/people/solar/software/public-domain-source-code/concat
http://pl.wikibooks.org/wiki/C%2FNapisy
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FStrings

Strings

198

28 Complex types

In the section C types1 we looked at some basic types. However C complex types allow us greater
flexibility in managing data in our C program.

28.1 Data structures

A data structure ("struct") contains multiple pieces of data. Each piece of data (called a "member")
can be accessed by the name of the variable, followed by a '.', then the name of the member. (Another
way to access a member is using the member operator '->'). The member variables of a struct can be
of any data type and can even be an array or a pointer.

28.1.1 Pointers

Pointers are variables that don't hold the actual data. Instead they point to the memory location of some
other variable. For example,

int *pointer = &variable;

defines a pointer to an int, and also makes it point to the particular integer contained in variable.

The '*' is what makes this an integer pointer. To make the pointer point to a different integer, use the
form

pointer = &sandwiches;

Where & is the address of operator. Often programmers set the value of the pointer to NULL (a stan-
dard macro defined as 0 or (void*)0) like this:

pointer = NULL;

This tells us that the pointer isn't currently pointing to any real location.

Additionally, to dereference (access the thing being pointed at) the pointer, use the form:

1 http://en.wikibooks.org/wiki/C%20Programming%2FTypes

199

http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Complex types

value = *pointer;

28.1.2 Structs

A data structure contains multiple pieces of data. One defines a data structure using the struct key-
word. For example,

struct mystruct
{

int int_member;
double double_member;
char string_member[25];

} variable;

variable is an instance of mystruct. You can omit it from the end of the struct declaration and
declare it later using:

struct mystruct variable;

It is often common practice to make a type synonym so we don't have to type "struct mystruct" all the
time. C allows us the possibility to do so using a typedef statement, which aliases a type:

typedef struct
{

...
} Mystruct;

The struct itself has no name (by the absence of a name on the first line), but it is aliased as Mystruct.
Then you can use

Mystruct structure;

Note that it is commonplace, and good style to capitalize the first letter of a type synonym. However
in the actual definition we need to give the struct a tag so we can refer to it: we may have a recur-
sive data structure of some kind. For trees or chained lists, we need a pointer to the same data type
in the struct. During compilation, the type synonym is not known to the compiler and there will be an
error. To avoid this, it is necessary to let the compiler know the name right from the start (Note that
the struct keyword is used only inside the structure! After the declaration, the compiler knows that the
type synonym refers to a struct):

typedef struct Mystruct
{

...
struct Mystruct * pMystruct

} Mystruct;

200

Type modifiers

28.1.3 Unions

The definition of a union is similar to that of a struct. The difference between the two is that in a struct,
the members occupy different areas of memory, but in a union, the members occupy the same area of
memory. Thus, in the following type, for example:

union {
int i;
double d;

} u;

The programmer can access either u.i or u.d, but not both at the same time. Since u.i and u.d occupy
the same area of memory, modifying one modifies the value of the other, sometimes in unpredictable
ways.

The size of a union is the size of its largest member.

28.2 Type modifiers

For "register", "volatile", "auto" and "extern", see ../Variables#Other_Modifiers2.

de:C-Programmierung: Komplexe Datentypen3 pl:C/Typy złożone4

2 Chapter 12.9 on page 50
3 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Komplexe%20Datentypen
4 http://pl.wikibooks.org/wiki/C%2FTypy%20z%01%42o%01%7Cone

201

http://de.wikibooks.org/wiki/C-Programmierung%3A%20Komplexe%20Datentypen
http://pl.wikibooks.org/wiki/C%2FTypy%20z%01%42o%01%7Cone

Complex types

202

29 Networking in UNIX

Network programming under UNIX is relatively simple in C.

This guide assumes you already have a good general idea about C, UNIX and networks.

29.1 A simple client

To start with, we'll look at one of the simplest things you can do: initialize a stream connection and
receive a message from a remote server.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define MAXRCVLEN 500
#define PORTNUM 2343

int main(int argc, char *argv[])
{

char buffer[MAXRCVLEN + 1]; /* +1 so we can add null terminator */
int len, mysocket;
struct sockaddr_in dest;

mysocket = socket(AF_INET, SOCK_STREAM, 0);

memset(&dest, 0, sizeof(dest)); /* zero the struct */
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* set destination IP number */

dest.sin_port = htons(PORTNUM); /* set destination port number
*/

connect(mysocket, (struct sockaddr *)&dest, sizeof(struct sockaddr));

len = recv(mysocket, buffer, MAXRCVLEN, 0);

/* We have to null terminate the received data ourselves */
buffer[len] = '\0';

printf("Received %s (%d bytes).\n", buffer, len);

close(mysocket);
return EXIT_SUCCESS;

}

This is the very bare bones of a client; in practice, we would check every function that we call for
failure, however, error checking has been left out for clarity.

203

Networking in UNIX

As you can see, the code mainly revolves around dest which is a struct of type sockaddr_in. This
struct stores information about the machine we want to connect to.

mysocket = socket(AF_INET, SOCK_STREAM, 0);

The socket() function tells our OS that we want a file descriptor for a socket which we can use for
a network stream connection; what the parameters mean is mostly irrelevant for now.

memset(&dest, 0, sizeof(dest)); /* zero the struct */
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* set destination IP number */
dest.sin_port = htons(PORTNUM); /* set destination port number */

Now we get on to the interesting part:

The first line uses memset() to zero the struct.

The second line sets the address family. This should be the same value that was passed as the first
parameter to socket(); for most purposes AF_INET will serve.

The third line is where we set the IP of the machine we need to connect to. The variable dest.sin_-
addr.s_addr is just an integer stored in Big Endian format, but we don't have to know that as the
inet_addr() function will do the conversion from string into Big Endian integer for us.

The fourth line sets the destination port number. The htons() function converts the port number into
a Big Endian short integer. If your program is going to be run solely onmachines which use Big Endian
numbers as default then dest.sin_port = 21 would work just as well. However, for portability
reasons htons() should always be used.

Now that all of the preliminary work is done, we can actually make the connection and use it:

connect(mysocket, (struct sockaddr *)&dest, sizeof(struct sockaddr));

This tells our OS to use the socket mysocket to create a connection to the machine specified in dest.

len = recv(mysocket, buffer, MAXRCVLEN, 0);

Now this receives up to MAXRCVLEN bytes of data from the connection and stores them in the buffer
string. The number of characters received is returned by recv(). It is important to note that the
data received will not automatically be null terminated when stored in the buffer, so we need to do it
ourselves with buffer[inputlen] = '\0'.

And that's about it!

The next step after learning how to receive data is learning how to send it. If you've understood the
previous section then this is quite easy. All you have to do is use the send() function, which uses the
same parameters as recv(). If in our previous example buffer had the text we wanted to send and
its length was stored in len we would write send(mysocket, buffer, len, 0). send() returns
the number of bytes that were sent. It is important to remember that send(), for various reasons, may
not be able to send all of the bytes, so it is important to check that its return value is equal to the number
of bytes you tried to send. In most cases this can be resolved by resending the unsent data.

204

A simple server

29.2 A simple server

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORTNUM 2343

int main(int argc, char *argv[])
{

char msg[] = "Hello World !\n";

struct sockaddr_in dest; /* socket info about the machine connecting to us */
struct sockaddr_in serv; /* socket info about our server */
int mysocket; /* socket used to listen for incoming connections */
int socksize = sizeof(struct sockaddr_in);

memset(&serv, 0, sizeof(serv)); /* zero the struct before filling the
fields */

serv.sin_family = AF_INET; /* set the type of connection to TCP/IP */
serv.sin_addr.s_addr = INADDR_ANY; /* set our address to any interface */
serv.sin_port = htons(PORTNUM); /* set the server port number */

mysocket = socket(AF_INET, SOCK_STREAM, 0);

/* bind serv information to mysocket */
bind(mysocket, (struct sockaddr *)&serv, sizeof(struct sockaddr));

/* start listening, allowing a queue of up to 1 pending connection */
listen(mysocket, 1);
int consocket = accept(mysocket, (struct sockaddr *)&dest, &socksize);

while(consocket)
{

printf("Incoming connection from %s - sending welcome\n",
inet_ntoa(dest.sin_addr));

send(consocket, msg, strlen(msg), 0);
consocket = accept(mysocket, (struct sockaddr *)&dest, &socksize);

}

close(consocket);
close(mysocket);
return EXIT_SUCCESS;

}

Superficially, this is very similar to the client. The first important difference is that rather than creating a
sockaddr_in with information about the machine we're connecting to, we create it with information
about the server, and then we bind() it to the socket. This allows the machine to know the data
received on the port specified in the sockaddr_in should be handled by our specified socket.

The listen() function then tells our program to start listening using the given socket. The second
parameter of listen() allows us to specify the maximum number of connections that can be queued.
Each time a connection is made to the server it is added to the queue. We take connections from
the queue using the accept() function. If there is no connection waiting on the queue the program
waits until a connection is received. The accept() function returns another socket. This socket is
essentially a "session" socket, and can be used solely for communicating with connection we took

205

Networking in UNIX

off the queue. The original socket (mysocket) continues to listen on the specified port for further
connections.

Once we have "session" socket we can handle it in the same way as with the client, using send() and
recv() to handle data transfers.

Note that this server can only accept one connection at a time; if you want to simultaneously han-
dle multiple clients then you'll need to fork() off separate processes, or use threads, to handle the
connections.

29.3 Useful network functions

int gethostname(char *hostname, size_t size);

The parameters are a pointer to an array of chars and the size of that array. If possible, it finds the
hostname and stores it in the array. On failure it returns -1.

struct hostent *gethostbyname(const char *name);

This function obtains information about a domain name and stores it in a hostent struct. The most
useful part of a hostent structure is the (char**) h_addr_list field, which is a null terminated
array of the IP addresses associated with that domain. The field h_addr is a pointer to the first IP
address in the h_addr_list array. Returns NULL on failure.

29.4 FAQs

29.4.1 What about stateless connections?

If you don't want to exploit the properties of TCP in your program and would rather just use a UDP
conection, then you can just replace SOCK_STREAM with SOCK_DGRAM in your call to socket() and
use the result in the same way. It is important to remember that UDP does not guarantee delivery of
packets and order of delivery, so checking is important.

If you want to exploit the properties of UDP, then you can use sendto() and recvfrom(), which
operate like send() and recv() except you need to provide extra parameters specifying who you are
communicating with.

29.4.2 How do I check for errors?

The functions socket(), recv() and connect() all return -1 on failure and use errno for further
details.

206

30 Common practices

With its extensive use, a number of common practices and conventions have evolved to help avoid
errors in C programs. These are simultaneously a demonstration of the application of good software
engineering principles to a language and an indication of the limitations of C. Although few are used
universally, and some are controversial, each of these enjoys wide use.

30.1 Dynamic multidimensional arrays

Although one-dimensional arrays are easy to create dynamically using malloc, and fixed-size multi-
dimensional arrays are easy to create using the built-in language feature, dynamic multidimensional
arrays are trickier. There are a number of different ways to create them, each with different tradeoffs.
The two most popular ways to create them are:

• They can be allocated as a single block of memory, just like static multidimensional arrays. This
requires that the array be rectangular (i.e. subarrays of lower dimensions are static and have the same
size). The disadvantage is that the syntax of declaration the pointer is a little tricky for programmers
at first. For example, if one wanted to create an array of ints of 3 columns and rows rows, one would
do

int (*multi_array)[3] = malloc(rows * sizeof(int[3]));

(Note that here multi_array is a pointer to an array of 3 ints.)

Because of array-pointer interchangeability, you can index this just like static multidimensional ar-
rays, i.e. multi_array[5][2] is the element at the 6th row and 3rd column.

• They can be allocated by first allocating an array of pointers, and then allocating subarrays and
storing their addresses in the array of pointers (this approach is also known as an Iliffe vector1).
The syntax for accessing elements is the same as for multidimensional arrays described above (even
though they are stored very differently). This approach has the advantage of the ability to make
ragged arrays (i.e. with subarrays of different sizes). However, it also uses more space and requires
more levels of indirection to index into, and can have worse cache performance. It also requires
many dynamic allocations, each of which can be expensive.

For more information, see the comp.lang.c FAQ, question 6.162.

In some cases, the use of multi-dimensional arrays can best be addressed as an array of structures. Be-
fore user-defined data structureswere available, a common techniquewas to define amulti-dimensional

1 http://en.wikipedia.org/wiki/Iliffe%20vector
2 http://www.eskimo.com/~scs/C-faq/q6.16.html

207

http://en.wikipedia.org/wiki/Iliffe%20vector
http://www.eskimo.com/~scs/C-faq/q6.16.html

Common practices

array, where each column contained different information about the row. This approach is also fre-
quently used by beginner programmers. For example, columns of a two-dimensional character array
might contain last name, first name, address, etc.

In cases like this, it is better to define a structure that contains the information that was stored in the
columns, and then create an array of pointers to that structure. This is especially true when the number
of data points for a given record might vary, such as the tracks on an album. In these cases, it is better
to create a structure for the album that contains information about the album, along with a dynamic
array for the list of songs on the album. Then an array of pointers to the album structure can be used
to store the collection.

• Another useful way to create a dynamic multi-dimensional array is to flatten the array and index
manually. For example, a 2-dimensional array with sizes x and y has x*y elements, therefore can be
created by

int dynamic_multi_array[x*y];

The index is slightly trickier than before, but can still be obtained by y*i+j. You then access the array
with

static_multi_array[i][j];
dynamic_multi_array[y*i+j];

Some more examples with higher dimensions:

int dim1[w];
int dim2[w*x];
int dim3[w*x*y];
int dim4[w*x*y*z];

dim1[i]
dim2[w*j+i];
dim3[w*(x*i+j)+k] // index is k + w*j + w*x*i
dim4[w*(x*(y*i+j)+k)+l] // index is w*x*y*i + w*x*j + w*k + l

Note that w*(x*(y*i+j)+k)+l is equal to w*x*y*i + w*x*j + w*k + l, but uses fewer operations
(see Horner's Method3). It uses the same number of operations as accessing a static array by
dim4[i][j][k][l], so should not be any slower to use.

The advantage to using this method is that the array can be passed freely between functions without
knowing the size of the array at compile time (since C sees it as a 1-dimensional array, although some
way of passing the dimensions is still necessary), and the entire array is contiguous in memory, so
accessing consecutive elements should be fast. The disadvantage is that it can be difficult at first to get
used to how to index the elements.

30.2 Constructors and destructors

In most object-oriented languages, objects cannot be created directly by a client that wishes to use
them. Instead, the client must ask the class to build an instance of the object using a special routine
called a constructor. Constructors are important because they allow an object to enforce invariants

3 http://en.wikipedia.org/wiki/Horner%27s_method

208

http://en.wikipedia.org/wiki/Horner%27s_method

Nulling freed pointers

about its internal state throughout its lifetime. Destructors, called at the end of an object's lifetime, are
important in systems where an object holds exclusive access to some resource, and it is desirable to
ensure that it releases these resources for use by other objects.

Since C is not an object-oriented language, it has no built-in support for constructors or destructors. It
is not uncommon for clients to explicitly allocate and initialize records and other objects. However,
this leads to a potential for errors, since operations on the object may fail or behave unpredictably if
the object is not properly initialized. A better approach is to have a function that creates an instance of
the object, possibly taking initialization parameters, as in this example:

struct string {
size_t size;
char *data;

};

struct string *create_string(const char *initial) {
assert (initial != NULL);
struct string *new_string = malloc(sizeof(*new_string));
if (new_string != NULL) {

new_string->size = strlen(initial);
new_string->data = strdup(initial);

}
return new_string;

}

Similarly, if it is left to the client to destroy objects correctly, they may fail to do so, causing resource
leaks. It is better to have an explicit destructor which is always used, such as this one:

void free_string(struct string *s) {
assert (s != NULL);
free(s->data); /* free memory held by the structure */
free(s); /* free the structure itself */

}

It is often useful to combine destructors with #Nulling freed pointers4.

Sometimes it is useful to hide the definition of the object to ensure that the client does not allocate it
manually. To do this, the structure is defined in the source file (or a private header file not available
to users) instead of the header file, and a forward declaration is put in the header file:

struct string;
struct string *create_string(const char *initial);
void free_string(struct string *s);

30.3 Nulling freed pointers

As discussed earlier, after free() has been called on a pointer, it becomes a dangling pointer. Worse
still, most modern platforms cannot detect when such a pointer is used before being reassigned.

4 Chapter 30.3 on page 209

209

Common practices

One simple solution to this is to ensure that any pointer is set to a null pointer immediately after being
freed: 5

free(p);
p = NULL;

Unlike dangling pointers, a hardware exception will arise on many modern architectures when a null
pointer is dereferenced. Also, programs can include error checks for the null value, but not for a dan-
gling pointer value. To ensure it is done at all locations, a macro can be used:

#define FREE(p) do { free(p); (p) = NULL; } while(0)

(To see why the macro is written this way, see #Macro conventions6.) Also, when this technique is
used, destructors should zero out the pointer that they are passed, and their argument must be passed
by reference to allow this. For example, here's the destructor from #Constructors and destruc-
tors7 updated:

void free_string(struct string **s) {
assert(s != NULL && *s != NULL);
FREE((*s)->data); /* free memory held by the structure */
FREE(*s); /* free the structure itself */
s=NULL; / zero the argument */

}

Unfortunately, this idiom will not do anything to any other pointers that may be pointing to the freed
memory. For this reason, some C experts regard this idiom as dangerous due to creating a false sense
of security.

30.4 Macro conventions

Because preprocessor macros in C work using simple token replacement, they are prone to a number
of confusing errors, some of which can be avoided by following a simple set of conventions:

1. Placing parentheses around macro arguments wherever possible. This ensures that, if they are
expressions, the order of operations does not affect the behavior of the expression. For example:
• Wrong: #define square(x) x*x
• Better: #define square(x) (x)*(x)

2. Placing parentheses around the entire expression if it is a single expression. Again, this avoids
changes in meaning due to the order of operations.
• Wrong: #define square(x) (x)*(x)
• Better: #define square(x) ((x)*(x))

5 comp.lang.c FAQ list: "Why isn't a pointer null after calling free?" ˆ{http://c-faq.com/malloc/
ptrafterfree.html} mentions that "it is often useful to set [pointer variables] to NULL immediately after freeing
them".

6 Chapter 30.4 on page 210
7 Chapter 30.2 on page 208

210

http://c-faq.com/malloc/ptrafterfree.html
http://c-faq.com/malloc/ptrafterfree.html

Further reading

• Dangerous, remember it replaces the text in verbatim. Suppose your code is square (x++),
after the macro invocation will x be incremented by 2

3. If a macro produces multiple statements, or declares variables, it can be wrapped in a do { ...
} while(0) loop, with no terminating semicolon. This allows the macro to be used like a single
statement in any location, such as the body of an if statement, while still allowing a semicolon
to be placed after the macro invocation without creating a null statement. Care must be taken
that any new variables do not potentially mask portions of the macro's arguments.
• Wrong: #define FREE(p) free(p); p = NULL;
• Better: #define FREE(p) do { free(p); p = NULL; } while(0)

4. Avoiding using amacro argument twice or more inside amacro, if possible; this causes problems
with macro arguments that contain side effects, such as assignments.

5. If a macro may be replaced by a function in the future, considering naming it like a function.

30.5 Further reading

There are a huge number of C style guidelines.

• "C and C++ Style Guides"8 by Chris Lott lists many popular C style guides.
• The Motor Industry Software Reliability Association (MISRA) publishes "MISRA-C: Guidelines
for the use of the C language in critical systems". (Wikipedia: MISRA C9; http://www.misra-
c.com/10).

pl:C/Powszechne praktyki11

8 http://www.chris-lott.org/resources/cstyle/
9 http://en.wikipedia.org/wiki/%20MISRA%20C
10 http://www.misra-c.com/
11 http://pl.wikibooks.org/wiki/C%2FPowszechne%20praktyki

211

http://www.chris-lott.org/resources/cstyle/
http://en.wikipedia.org/wiki/%20MISRA%20C
http://www.misra-c.com/
http://pl.wikibooks.org/wiki/C%2FPowszechne%20praktyki

Common practices

212

31 C and beyond

213

C and beyond

214

32 Language extensions

Most C compilers have one or more "extensions" to the standard C language, to do things that are
inconvenient to do in standard, portable C.

Some examples of language extensions:

• in-line assembly language
• interrupt service routines
• variable-length data structure (a structure whose last item is a "zero-length array").1

2

• re-sizeable multidimensional arrays
• various "#pragma" settings to compile quickly, to generate fast code, or to generate compact code.
• bit manipulation, especially bit-rotations and things involving the "carry" bit
• storage alignment
• Arrays whose length is computed at run time.

32.1 External links

• GNU C: Extensions to the C Language3
• C/C++ interpreter Ch extensions to the C language for scripting4
• SDCC: Storage Class Language Extensions5

1
2 comp.lang.c FAQ list: Question 2.6 ˆ{http://c-faq.com/struct/structhack.html} : "C99 introduces the

concept of a flexible array member, which allows the size of an array to be omitted if it is the last member in a structure,
thus providing a well-defined solution."

3 http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions
4 http://www.softintegration.com/support/faq/general.html#4
5 http://sdcc.sourceforge.net/doc/sdccman.html/node56.html

215

http://c-faq.com/struct/structhack.html
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions
http://www.softintegration.com/support/faq/general.html#4
http://sdcc.sourceforge.net/doc/sdccman.html/node56.html

Language extensions

216

33 Mixing languages

33.1 Assembler

See Embedded Systems/Mixed C and Assembly Programming1

33.2 Cg

Make the main program (for CPU) in C, which loads and run the Cg2 program (for GPU).34455

33.2.1 Header Files

Add to C program :6

#include <Cg/cg.h> /* To include the core Cg runtime API into your program */
#include <Cg/cgGL.h> /* to include the OpenGL-specific Cg runtime API */

33.3 Java

Using the Java native interface (JNI), Java applications can call C libraries.

See also

• Java_Programming/Keywords/native7

1 http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%
20Programming

2 http://en.wikibooks.org/wiki/Cg_%28programming_language%29
3 Lesson: 47 from NeHe Productions ˆ{http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=

47}
4 Cg Bumpmapping by Razvan Surdulescu at GameDev ˆ{http://www.gamedev.net/reference/articles/

article1903.asp}
5 [http://www.fusionindustries.com/default.asp?page=cg-hlsl-faq | Cg & HLSL Shading Language

FAQ

by Fusion Industries]

6 http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_b.html NVidia Cg tutorial.
Appendix B. The Cg Runtime

7 http://en.wikibooks.org/wiki/Java_Programming%2FKeywords%2Fnative

217

http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Cg_%28programming_language%29
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47
http://www.gamedev.net/reference/articles/article1903.asp
http://www.gamedev.net/reference/articles/article1903.asp
http://www.fusionindustries.com/default.asp?page=cg-hlsl-faq
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_b.html
http://en.wikibooks.org/wiki/Java_Programming%2FKeywords%2Fnative

Mixing languages

33.4 Perl

Tomix Perl and C, we can use XS. XS is an interface description file format used to create an extension
interface between Perl and C code (or a C library) which one wishes to use with Perl.

The basic procedure is very simple. We can create the necessary subdirectory structure by running
"h2xs" application (e.g. "h2xs -A -n Modulename"). This will create - among others - a Makefile.PL,
a .pm Perl module and a .xs XSUB file in the subdirectory tree. We can edit the .xs file by adding our
code to that, let's say:

void
hello()

CODE:
printf("Hello, world!\n");

and we can successfully use our new command at Perl side, after running a "perl Makefile.PL" and
"make".

Further details can be found on the perlxstut8 perldoc9 page.

33.5 Python

33.6 For further reading

• Embedded Systems/Mixed C and Assembly Programming10

33.7 References

pl:C/Łączenie z innymi językami11

8 http://perldoc.perl.org/perlxstut.html
9 http://perldoc.perl.org
10 http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%

20Programming
11 http://pl.wikibooks.org/wiki/C%2F%01%41%01%05czenie%20z%20innymi%20j%01%19zykami

218

http://perldoc.perl.org/perlxstut.html
http://perldoc.perl.org
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://pl.wikibooks.org/wiki/C%2F%01%41%01%05czenie%20z%20innymi%20j%01%19zykami

34 Code library

The following is an implementation of the Standard C99 version of <assert.h>:

/* assert.h header */
#undef assert
#ifdef NDEBUG
#define assert(_Ignore) ((void)0)
#else
void _Assertfail(char *, char *, int, char *);
#define assert(_Test)
((_Test)?((void)0):_Assertfail(#_Test,__FILE__,__LINE__,__func__))
#endif
/* END OF FILE */

/* xassertfail.c -- _Assertfail function */
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
void
_Assertfail(char *test, char *filename, int line_number, char *function_name)
{

fprintf(stderr, "Assertion failed: %s, function %s, file %s, line %d.",
test, function_name, filename, line_number);

abort();
}
/* END OF FILE */

219

Code library

220

35 Computer Programming

The following articles are C adaptations from articles of the Computer programming1 book.

1 http://en.wikibooks.org/wiki/Computer%20programming

221

http://en.wikibooks.org/wiki/Computer%20programming

Computer Programming

222

36 Statements

A statement is a command given to the computer that instructs the computer to take a specific action,
such as display to the screen, or collect input. A computer program is made up of a series of statements.

puts ("Hi there!");

puts ("Hi there!");
puts ("Strange things are afoot...");

Category:C Programming1

1 http://en.wikibooks.org/wiki/Category%3AC%20Programming

223

http://en.wikibooks.org/wiki/Category%3AC%20Programming

Statements

224

37 C Reference Tables

This section has some tables and lists of C entities.

225

C Reference Tables

226

38 Reference Tables

38.1 List of Keywords

ANSI C (C89)/ISO C (C90) keywords:

• auto
• break
• case
• char
• const
• continue
• default
• do

• double
• else
• enum
• extern
• float
• for
• goto
• if

• int
• long
• register
• return
• short
• signed
• sizeof
• static

• struct
• switch
• typedef
• union
• unsigned
• void
• volatile
• while

Keywords added to ISO C (C99) (Supported only in new compilers):

• _Bool
• _Complex

• _Imaginary
• inline

• restrict1

Specific compilers may (in a non-standard-compliant mode) also treat some other words as keywords,
including asm, cdecl, far, fortran, huge, interrupt, near, pascal, typeof.

Very old compilers may not recognize some or all of the C89 keywords const, enum, signed, void,
volatile as well as the C99 keywords.

See also the list of reserved identifiers2.

38.2 List of Standard Headers

ANSI C (C89)/ISO C (C90) headers:

1 http://en.wikipedia.org/wiki/Restrict
2 http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/

language/ref/clrc02reserved_identifiers.htm

227

http://en.wikipedia.org/wiki/Restrict
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm

Reference Tables

•
<assert.h>3

• <ctype.h>4

• <errno.h>5

• <float.h>6

•
<limits.h>7

•
<locale.h>8

• <math.h>9

•
<setjmp.h>10

•
<signal.h>11

•
<stdarg.h>12

•
<stddef.h>13

•
<stdio.h>14

•
<stdlib.h>15

•
<string.h>16

• <time.h>17

Very old compilers may not include some or all of the following headers:

Headers added to ISO C (C94/C95) in Amendment 1 (AMD1):

• <iso646.h>18 • <wchar.h>19 • <wctype.h>20

Headers added to ISO C (C99) (Supported only in new compilers):

• <complex.h>21

• <fenv.h>22
• <inttypes.h>23

• <stdbool.h>24
• <stdint.h>25

• <tgmath.h>26

3 http://en.wikipedia.org/wiki/Assert.h
4 http://en.wikipedia.org/wiki/Ctype.h
5 http://en.wikipedia.org/wiki/Errno.h
6 http://en.wikipedia.org/wiki/Float.h
7 http://en.wikipedia.org/wiki/Limits.h
8 http://en.wikipedia.org/wiki/Locale.h
9 http://en.wikipedia.org/wiki/Math.h
10 http://en.wikipedia.org/wiki/Setjmp.h
11 http://en.wikipedia.org/wiki/Signal.h
12 http://en.wikipedia.org/wiki/Stdarg.h
13 http://en.wikipedia.org/wiki/Stddef.h
14 http://en.wikipedia.org/wiki/Stdio.h
15 http://en.wikipedia.org/wiki/Stdlib.h
16 http://en.wikipedia.org/wiki/String.h
17 http://en.wikipedia.org/wiki/Time.h
18 http://en.wikipedia.org/wiki/Iso646.h
19 http://en.wikipedia.org/wiki/Wchar.h
20 http://en.wikipedia.org/wiki/Wctype.h
21 http://en.wikipedia.org/wiki/Complex.h
22 http://en.wikipedia.org/wiki/Fenv.h
23 http://en.wikipedia.org/wiki/Inttypes.h
24 http://en.wikipedia.org/wiki/Stdbool.h
25 http://en.wikipedia.org/wiki/Stdint.h
26 http://en.wikipedia.org/wiki/Tgmath.h

228

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h
http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Tgmath.h

Table of Operators

38.3 Table of Operators

Operators in the same row of this table have the same precedence and the order of evaluation is decided
by the associativity (left-to-right or right-to-left). Operators closer to the top of this table have higher
precedence than those in a subsequent group.

Operators Description Example Usage Associativity
Postfix operators

Left to right
() function call opera-

tor
swap (x, y)

[] array index operator arr [i]
. member access op-

erator
for an object of
struct/union type
or a reference to it

obj.member

-> member access op-
erator
for a pointer to an
object of
struct/union type

ptr->member

Unary Operators

Right to left

! logical not operator !eof_reached
˜ bitwise not operator ˜mask
+ -[1]27 unary plus/minus

operators
-num

++ -- post-
increment/decrement
operators

num++

++ -- pre-
increment/decrement
operators

++num

& address-of operator &data
* indirection operator *ptr
sizeof sizeof operator for

expressions
sizeof 123

sizeof() sizeof operator for
types

sizeof (int)

(type) cast operator (float)i

Multiplicative Operators Left to right

27 Chapter 38.3.1 on page 231

229

Reference Tables

* / % multiplication, divi-
sion and
modulus operators

celsius_diff *
9.0 / 5.0

Additive Operators Left to right+ - addition and sub-
traction operators

end - start + 1

Bitwise Shift Operators
Left to right<< left shift operator bits << shift_-

len
>> right shift operator bits >> shift_-

len

Relational Inequality Operators Left to right< > <= >= less-than, greater-
than, less-than or
equal-to, greater-
than or equal-to
operators

i < num_-
elements

Relational Equality Operators Left to right== != equal-to, not-equal-
to

choice != 'n'

Bitwise And Operator Left to right& bits & clear_-
mask_complement

Bitwise Xor Operator Left to rightˆ bits ˆ invert_-
mask

Bitwise Or Operator Left to right| bits | set_mask

Logical And Operator Left to right&& arr != 0 &&
arr->len != 0

230

Table of Data Types

Logical Or Operator Left to right|| see Logical Ex-
pressions28

arr == 0 ||
arr->len == 0

Conditional Operator Right to left?: size != 0 ?
size : 0

Assignment Operators
Right to left= assignment operator i = 0

+= -= *= /=
%= &= |= ˆ=
<<= >>=

shorthand assign-
ment operators
(foo op=
barrepresents
foo = foo op
bar)

num /= 10

Comma Operator Left to right, i = 0, j = i +
1, k = 0

38.3.1 Table of Operators Footnotes

[1]Very old compilers may not recognize the unary + operator.

et:Programmeerimiskeel C/Operaatorid29

38.4 Table of Data Types

28 Chapter 16.1.2 on page 79
29 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FOperaatorid

231

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FOperaatorid

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
char ≥ 8

• sizeof gives the size in
units of chars. These "C
bytes" need not be 8-bit
bytes (though commonly
they are); the number
of bits is given by the
CHAR_BIT macro in the
limits.h header.

• Signedness is
implementation-defined.

• Any encoding of 8 bits or
less (e.g. ASCII) can be
used to store characters.

• Integer operations can be
performed portably only
for the range 0 ˜ 127.

• All bits contribute to the
value of the char, i.e.
there are no "holes" or
"padding" bits.

signed char same as char
• Characters stored like for

type char.
• Can store integers in

the range -127 ˜ 127
portably[1]30 .

unsigned char same as char
• Characters stored like for

type char.
• Can store integers in the

range 0 ˜ 255 portably.

short ≥ 16, ≥ size of char
• Can store integers in the

range -32767 ˜ 32767
portably[2]31 .

• Used to reduce memory
usage (although the
resulting executable may
be larger and probably
slower as compared to
using int.

short int, signed
short, signed short
int

unsigned short same as short
• Can store integers in the

range 0 ˜ 65535 portably.
• Used to reduce memory

usage (although the
resulting executable may
be larger and probably
slower as compared to
using int.

unsigned short int

30 Chapter 38.4.1 on page 235
31 Chapter 38.4.1 on page 235

232

Table of Data Types

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
int ≥ 16, ≥ size of short

• Represents the "normal"
size of data the processor
deals with (the word-
size); this is the integral
data-type used normally.

• Can store integers in the
range -32767 ˜ 32767
portably[2]32 .

signed, signed int

unsigned int same as int
• Can store integers in the

range 0 ˜ 65535 portably.

unsigned

long ≥ 32, ≥ size of int
• Can store integers in the

range -2147483647
˜ 2147483647
portably[3]33 .

long int, signed long,
signed long int

unsigned long same as long
• Can store integers in the

range 0 ˜ 4294967295
portably.

unsigned long int

float ≥ size of char
• Used to reduce memory

usage when the values
used do not vary widely.

• The floating-point format
used is implementation
defined and need not be
the IEEE single-precision
format.

• unsigned cannot be
specified.

double ≥ size of float
• Represents the "normal"

size of data the processor
deals with; this is the
floating-point data-type
used normally.

• The floating-point format
used is implementation
defined and need not
be the IEEE double-
precision format.

• unsigned cannot be
specified.

long double ≥ size of double
• unsigned cannot be

specified.

Primitive Types added to ISO C (C99)

32 Chapter 38.4.1 on page 235
33 Chapter 38.4.1 on page 235

233

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
long long ≥ 64, ≥ size of long

• Can store inte-
gers in the range -
9223372036854775807 ˜
9223372036854775807
portably[4]34 .

long long int, signed
long long, signed long
long int

unsigned long long same as long long
• Can store integers

in the range 0 ˜
18446744073709551615
portably.

unsigned long long
int

intmax_t (Write details here.)
• (Write details here.)

Used by the "j" length
modifier in the C
Programming/File
IO#Formatted output
functions: the printf
family of functions35.

User Defined Types
struct ≥ sum of size of each

member • Said to be an aggregate
type.

union ≥ size of the largest mem-
ber • Said to be an aggregate

type.

enum ≥ size of char
• Enumerations are a

separate type from ints,
though they are mutually
convertible.

typedef same as the type being
given a name • typedef has syntax

similar to a storage class
like static, register
or extern.

Derived Types[5]36

34 Chapter 38.4.1 on page 235
35 Chapter 21.4 on page 128
36 Chapter 38.4.1 on page 235

234

Table of Data Types

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
type*
(pointer)

≥ size of char
• 0 always represents the

null pointer (an address
where no data can be
placed), irrespective
of what bit sequence
represents the value of a
null pointer.

• Pointers to different
types may have different
representations, which
means they could also be
of different sizes. So they
are not convertible to one
another.

• Even in an implementa-
tion which guarantess all
data pointers to be of the
same size, function point-
ers and data pointers are
in general incompatible
with each other.

• For functions taking
variable number of ar-
guments, the arguments
passed must be of ap-
propriate type, so even
0 must be cast to the ap-
propriate type in such
function-calls.

type [integer[6]37]
(array)

≥ integer × size of type
• The brackets ([]) follow

the identifier name in a
declaration.

• In a declaration which
also initializes the array
(including a function
parameter declaration),
the size of the array (the
integer) can be omitted.

• type [] is not the same
as type*. Only under
some circumstances one
can be converted to the
other.

type (comma-delimited
list of
types/declarations)
(function)

• Functions declared with-

out any storage class are
extern.

• The parentheses (())
follow the identifier name
in a declaration, e.g. a
2-arg function pointer:
int (* fptr) (int
arg1, int arg2).

38.4.1 Table of Data Types Footnotes

37 Chapter 38.4.1 on page 235

235

Reference Tables

[1] -128 can be stored in two's-complement machines (i.e. most machines in existence). Very old
compilers may not recognize the signed keyword.
[2] -32768 can be stored in two's-complement machines (i.e. most machines in existence). Very
old compilers may not recognize the signed keyword.
[3] -2147483648 can be stored in two's-complement machines (i.e. most machines in existence).
Very old compilers may not recognize the signed keyword.
[4] -9223372036854775808 can be stored in two's-complement machines (i.e. most machines in
existence).
[5] The precedences in a dec-
laration are:
[], () (left associative) ---
Highest
* (right associative) ---
Lowest
[6] The standards do NOT
place any restriction on
the size/type of the inte-
ger, it's implementation de-
pendent. The only mention
in the standards is a refer-
ence that an implementation
may have limits to the max-
imum size of memory block
which can be allocated, and
as such the limit on inte-
ger will be size_of_max_-
block/sizeof(type).

pl:C/Składnia38

38 http://pl.wikibooks.org/wiki/C%2FSk%01%42adnia

236

http://pl.wikibooks.org/wiki/C%2FSk%01%42adnia

39 Compilers

39.1 Free (or with a free version)

• Ch_interpreter1 (http://www.softintegration.com)2 - The softwareworks inWindows, Linux,
Mac OS X, Freebsd, Solaris, AIX and HP-UX. The Ch Standard Edition is free for noncommercial
use.

• lcc-win323 (http://www.cs.virginia.edu/ lcc-win32)4 - Software copyrighted by Jacob Navia.
It is free for non-commercial use. Windows (98/ME/XP/2000/NT).

• GNU Compiler Collection5 (http://gcc.gnu.org)6 - GNU Compiler Collection. GNU General
Public License / GNU Lesser General Public License.
• MinGW7 (http://www.mingw.org/)8 provides GCC for Windows

• OpenWatcom9 (http://www.openwatcom.org)10 Open Source development community tomain-
tain and enhance the Watcom C/C++ and Fortran cross compilers and tools. Version 1.4 released in
December 2005.
• Host Platforms: Win32 systems (IDE and command line), 32-bit OS/2 (IDE and command line),
DOS (command line), and Windows 3.x (IDE)

• Target Platforms: DOS (16-bit),Windows 3.x (16-bit), OS/2 1.x (16-bit), ExtendedDOS,Win32s,
Windows 95/98/Me, Windows NT/2000/XP, 32-bit OS/2, and Novell NLMs

• Experimental / Development: Linux, BSD, *nix, PowerPC, Alpha AXP, MIPS, and Sparc v8
• Tiny C Compiler11
• Portable C Compiler12 (http://pcc.ludd.ltu.se)13 - Portable C Compiler. BSD Style License(s).
• Small Device C Compiler14 (SDCC)
• target platforms: Intel 8051-compatibles; Freescale (Motorola) HC08;Microchip PIC16 and PIC18.

• FpgaC15. Target platform: FPGA hardware via XNF or VHDL files.
• Interactive C16 (http://www.botball.org/educational-resources/ic.php).
• target platform: Handy Board (Freescale 68HC11); Lego RCX

1 http://en.wikipedia.org/wiki/Ch_interpreter
2 http://www.softintegration.com)
3 http://en.wikipedia.org/wiki/lcc-win32
4 http://www.cs.virginia.edu/~lcc-win32)
5 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
6 http://gcc.gnu.org)
7 http://en.wikipedia.org/wiki/MinGW
8 http://www.mingw.org/)
9 http://en.wikipedia.org/wiki/Open%20Watcom
10 http://www.openwatcom.org)
11 http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
12 http://en.wikipedia.org/wiki/Portable%20C%20Compiler
13 http://pcc.ludd.ltu.se)
14 http://en.wikipedia.org/wiki/Small%20Device%20C%20Compiler
15 http://en.wikipedia.org/wiki/FpgaC
16 http://en.wikipedia.org/wiki/Interactive%20C

237

http://en.wikipedia.org/wiki/Ch_interpreter
http://www.softintegration.com)
http://en.wikipedia.org/wiki/lcc-win32
http://www.cs.virginia.edu/~lcc-win32)
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://gcc.gnu.org)
http://en.wikipedia.org/wiki/MinGW
http://www.mingw.org/)
http://en.wikipedia.org/wiki/Open%20Watcom
http://www.openwatcom.org)
http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
http://en.wikipedia.org/wiki/Portable%20C%20Compiler
http://pcc.ludd.ltu.se)
http://en.wikipedia.org/wiki/Small%20Device%20C%20Compiler
http://en.wikipedia.org/wiki/FpgaC
http://en.wikipedia.org/wiki/Interactive%20C

Compilers

• C compilers for many digital signal processors (DSPs), many of them free, are listed in the comp.dsp
FAQ17.

39.2 Commercial

• Intel C Compiler18 (http://software.intel.com/en-us/intel-compilers)19 - Windows, Linux,
Mac, QNX, and embedded C/C++ compilers. Optimized for Intel 32-bit and 64-bit CPUs.

• Microsoft Visual C++20 (http://msdn.microsoft.com/visualc)21 - Free (partially limited) ver-
sion available (Express edition)

• Impulse C22 - Target platform: FPGA hardware via Hardware Description Language (HDL) files.

17 http://www.bdti.com/faq/3.htm
18 http://en.wikipedia.org/wiki/Intel%20C%20Compiler
19 http://software.intel.com/en-us/intel-compilers)
20 http://en.wikipedia.org/wiki/Microsoft%20Visual%20C%2B%2B
21 http://msdn.microsoft.com/visualc)
22 http://en.wikipedia.org/wiki/Impulse%20C

238

http://www.bdti.com/faq/3.htm
http://en.wikipedia.org/wiki/Intel%20C%20Compiler
http://software.intel.com/en-us/intel-compilers)
http://en.wikipedia.org/wiki/Microsoft%20Visual%20C%2B%2B
http://msdn.microsoft.com/visualc)
http://en.wikipedia.org/wiki/Impulse%20C

40 Contributors

Edits User
1 0x7c001
1 16@r2
2 2nth0nyj3

30 A thing4

1 A-Day5
8 A3 nm6

1 AB7 rule7
1 Ab8uu8

1 Abdull9
12 Adam majewski10
13 Adrignola11

1 Aentity12
1 Ahoerstemeier13
2 Akaberto14

1 Akihabara15

6 Akilaa16

5 AlbertCahalan17

6 Albmont18
2 AllenZh19

1 Alsocal20
4 Andrew Eugene21

1 http://en.wikibooks.org/w/index.php?title=User:0x7c00
2 http://en.wikibooks.org/w/index.php?title=User:16%40r
3 http://en.wikibooks.org/w/index.php?title=User:2nth0nyj
4 http://en.wikibooks.org/w/index.php?title=User:A_thing
5 http://en.wikibooks.org/w/index.php?title=User:A-Day
6 http://en.wikibooks.org/w/index.php?title=User:A3_nm
7 http://en.wikibooks.org/w/index.php?title=User:AB7_rule
8 http://en.wikibooks.org/w/index.php?title=User:Ab8uu
9 http://en.wikibooks.org/w/index.php?title=User:Abdull
10 http://en.wikibooks.org/w/index.php?title=User:Adam_majewski
11 http://en.wikibooks.org/w/index.php?title=User:Adrignola
12 http://en.wikibooks.org/w/index.php?title=User:Aentity
13 http://en.wikibooks.org/w/index.php?title=User:Ahoerstemeier
14 http://en.wikibooks.org/w/index.php?title=User:Akaberto
15 http://en.wikibooks.org/w/index.php?title=User:Akihabara
16 http://en.wikibooks.org/w/index.php?title=User:Akilaa
17 http://en.wikibooks.org/w/index.php?title=User:AlbertCahalan
18 http://en.wikibooks.org/w/index.php?title=User:Albmont
19 http://en.wikibooks.org/w/index.php?title=User:AllenZh
20 http://en.wikibooks.org/w/index.php?title=User:Alsocal
21 http://en.wikibooks.org/w/index.php?title=User:Andrew_Eugene

239

http://en.wikibooks.org/w/index.php?title=User:0x7c00
http://en.wikibooks.org/w/index.php?title=User:16%40r
http://en.wikibooks.org/w/index.php?title=User:2nth0nyj
http://en.wikibooks.org/w/index.php?title=User:A_thing
http://en.wikibooks.org/w/index.php?title=User:A-Day
http://en.wikibooks.org/w/index.php?title=User:A3_nm
http://en.wikibooks.org/w/index.php?title=User:AB7_rule
http://en.wikibooks.org/w/index.php?title=User:Ab8uu
http://en.wikibooks.org/w/index.php?title=User:Abdull
http://en.wikibooks.org/w/index.php?title=User:Adam_majewski
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Aentity
http://en.wikibooks.org/w/index.php?title=User:Ahoerstemeier
http://en.wikibooks.org/w/index.php?title=User:Akaberto
http://en.wikibooks.org/w/index.php?title=User:Akihabara
http://en.wikibooks.org/w/index.php?title=User:Akilaa
http://en.wikibooks.org/w/index.php?title=User:AlbertCahalan
http://en.wikibooks.org/w/index.php?title=User:Albmont
http://en.wikibooks.org/w/index.php?title=User:AllenZh
http://en.wikibooks.org/w/index.php?title=User:Alsocal
http://en.wikibooks.org/w/index.php?title=User:Andrew_Eugene

Contributors

1 Andrew Hickey22
1 Arbitrarily023
1 Arvindn24

1 Aseidl25
1 Ashwini200826

43 Astone4227
1 Athantor28
7 Avicennasis29
1 Avinashm30

2 Az156831
1 B32

2 BIL33
1 Basie34
1 Belteshazzar35
3 Bevo36

9 BimBot37
1 Bluemoose38
1 Bogdangiusca39

6 British0zzy40
1 Buggi2241
1 C. A. Russell42
1 CCFS43
1 Calabimanifold44

1 Capi45
1 Carlsonmark46

22 http://en.wikibooks.org/w/index.php?title=User:Andrew_Hickey
23 http://en.wikibooks.org/w/index.php?title=User:Arbitrarily0
24 http://en.wikibooks.org/w/index.php?title=User:Arvindn
25 http://en.wikibooks.org/w/index.php?title=User:Aseidl
26 http://en.wikibooks.org/w/index.php?title=User:Ashwini2008
27 http://en.wikibooks.org/w/index.php?title=User:Astone42
28 http://en.wikibooks.org/w/index.php?title=User:Athantor
29 http://en.wikibooks.org/w/index.php?title=User:Avicennasis
30 http://en.wikibooks.org/w/index.php?title=User:Avinashm
31 http://en.wikibooks.org/w/index.php?title=User:Az1568
32 http://en.wikibooks.org/w/index.php?title=User:B
33 http://en.wikibooks.org/w/index.php?title=User:BIL
34 http://en.wikibooks.org/w/index.php?title=User:Basie
35 http://en.wikibooks.org/w/index.php?title=User:Belteshazzar
36 http://en.wikibooks.org/w/index.php?title=User:Bevo
37 http://en.wikibooks.org/w/index.php?title=User:BimBot
38 http://en.wikibooks.org/w/index.php?title=User:Bluemoose
39 http://en.wikibooks.org/w/index.php?title=User:Bogdangiusca
40 http://en.wikibooks.org/w/index.php?title=User:British0zzy
41 http://en.wikibooks.org/w/index.php?title=User:Buggi22
42 http://en.wikibooks.org/w/index.php?title=User:C._A._Russell
43 http://en.wikibooks.org/w/index.php?title=User:CCFS
44 http://en.wikibooks.org/w/index.php?title=User:Calabimanifold
45 http://en.wikibooks.org/w/index.php?title=User:Capi
46 http://en.wikibooks.org/w/index.php?title=User:Carlsonmark

240

http://en.wikibooks.org/w/index.php?title=User:Andrew_Hickey
http://en.wikibooks.org/w/index.php?title=User:Arbitrarily0
http://en.wikibooks.org/w/index.php?title=User:Arvindn
http://en.wikibooks.org/w/index.php?title=User:Aseidl
http://en.wikibooks.org/w/index.php?title=User:Ashwini2008
http://en.wikibooks.org/w/index.php?title=User:Astone42
http://en.wikibooks.org/w/index.php?title=User:Athantor
http://en.wikibooks.org/w/index.php?title=User:Avicennasis
http://en.wikibooks.org/w/index.php?title=User:Avinashm
http://en.wikibooks.org/w/index.php?title=User:Az1568
http://en.wikibooks.org/w/index.php?title=User:B
http://en.wikibooks.org/w/index.php?title=User:BIL
http://en.wikibooks.org/w/index.php?title=User:Basie
http://en.wikibooks.org/w/index.php?title=User:Belteshazzar
http://en.wikibooks.org/w/index.php?title=User:Bevo
http://en.wikibooks.org/w/index.php?title=User:BimBot
http://en.wikibooks.org/w/index.php?title=User:Bluemoose
http://en.wikibooks.org/w/index.php?title=User:Bogdangiusca
http://en.wikibooks.org/w/index.php?title=User:British0zzy
http://en.wikibooks.org/w/index.php?title=User:Buggi22
http://en.wikibooks.org/w/index.php?title=User:C._A._Russell
http://en.wikibooks.org/w/index.php?title=User:CCFS
http://en.wikibooks.org/w/index.php?title=User:Calabimanifold
http://en.wikibooks.org/w/index.php?title=User:Capi
http://en.wikibooks.org/w/index.php?title=User:Carlsonmark

Commercial

12 CarsracBot47
1 Caue.cm.rego48

1 Cfailde49
1 Chouputra50

2 Cic51
63 CleverJake52
1 Crimer53
1 Cryptic54
1 Cuser55
1 Cybiko12356
2 Cyp57
4 Dan Polansky58
1 DanielKO59

2 Darklama60

57 DavidCary61
2 Davidam62

1 Decltype63
5 Deepakwgp64
2 Deepthawtz65
4 Dehomas66
1 Der Künstler67

13 Derbeth68

1 Deryck Chan69

1 Dethomas70
4 Dirk Hünniger71

47 http://en.wikibooks.org/w/index.php?title=User:CarsracBot
48 http://en.wikibooks.org/w/index.php?title=User:Caue.cm.rego
49 http://en.wikibooks.org/w/index.php?title=User:Cfailde
50 http://en.wikibooks.org/w/index.php?title=User:Chouputra
51 http://en.wikibooks.org/w/index.php?title=User:Cic
52 http://en.wikibooks.org/w/index.php?title=User:CleverJake
53 http://en.wikibooks.org/w/index.php?title=User:Crimer
54 http://en.wikibooks.org/w/index.php?title=User:Cryptic
55 http://en.wikibooks.org/w/index.php?title=User:Cuser
56 http://en.wikibooks.org/w/index.php?title=User:Cybiko123
57 http://en.wikibooks.org/w/index.php?title=User:Cyp
58 http://en.wikibooks.org/w/index.php?title=User:Dan_Polansky
59 http://en.wikibooks.org/w/index.php?title=User:DanielKO
60 http://en.wikibooks.org/w/index.php?title=User:Darklama
61 http://en.wikibooks.org/w/index.php?title=User:DavidCary
62 http://en.wikibooks.org/w/index.php?title=User:Davidam
63 http://en.wikibooks.org/w/index.php?title=User:Decltype
64 http://en.wikibooks.org/w/index.php?title=User:Deepakwgp
65 http://en.wikibooks.org/w/index.php?title=User:Deepthawtz
66 http://en.wikibooks.org/w/index.php?title=User:Dehomas
67 http://en.wikibooks.org/w/index.php?title=User:Der_K%C3%BCnstler
68 http://en.wikibooks.org/w/index.php?title=User:Derbeth
69 http://en.wikibooks.org/w/index.php?title=User:Deryck_Chan
70 http://en.wikibooks.org/w/index.php?title=User:Dethomas
71 http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger

241

http://en.wikibooks.org/w/index.php?title=User:CarsracBot
http://en.wikibooks.org/w/index.php?title=User:Caue.cm.rego
http://en.wikibooks.org/w/index.php?title=User:Cfailde
http://en.wikibooks.org/w/index.php?title=User:Chouputra
http://en.wikibooks.org/w/index.php?title=User:Cic
http://en.wikibooks.org/w/index.php?title=User:CleverJake
http://en.wikibooks.org/w/index.php?title=User:Crimer
http://en.wikibooks.org/w/index.php?title=User:Cryptic
http://en.wikibooks.org/w/index.php?title=User:Cuser
http://en.wikibooks.org/w/index.php?title=User:Cybiko123
http://en.wikibooks.org/w/index.php?title=User:Cyp
http://en.wikibooks.org/w/index.php?title=User:Dan_Polansky
http://en.wikibooks.org/w/index.php?title=User:DanielKO
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:Davidam
http://en.wikibooks.org/w/index.php?title=User:Decltype
http://en.wikibooks.org/w/index.php?title=User:Deepakwgp
http://en.wikibooks.org/w/index.php?title=User:Deepthawtz
http://en.wikibooks.org/w/index.php?title=User:Dehomas
http://en.wikibooks.org/w/index.php?title=User:Der_K%C3%BCnstler
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Deryck_Chan
http://en.wikibooks.org/w/index.php?title=User:Dethomas
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger

Contributors

2 Doodle7772
1 DouglasGreen73

1 Dr.alf74
2 Duplode75
2 Dwandelt76

50 Dysprosia77

1 Echoray78
1 Edudobay79
1 Elwood j blues80
8 Emperorbma81

1 Eneville82
5 Eric11983
1 Erkan Yilmaz84
2 Ervinn85

4 Explorer0986
1 Eyalevin87

1 FUNIX88

1 Fahidka89

1 Fayis um90

2 Fazalca91

3 Fdarkangel92
1 Feb30th171293
3 Felipebm94

37 Fernandopabon95

1 Filemon96

72 http://en.wikibooks.org/w/index.php?title=User:Doodle77
73 http://en.wikibooks.org/w/index.php?title=User:DouglasGreen
74 http://en.wikibooks.org/w/index.php?title=User:Dr.alf
75 http://en.wikibooks.org/w/index.php?title=User:Duplode
76 http://en.wikibooks.org/w/index.php?title=User:Dwandelt
77 http://en.wikibooks.org/w/index.php?title=User:Dysprosia
78 http://en.wikibooks.org/w/index.php?title=User:Echoray
79 http://en.wikibooks.org/w/index.php?title=User:Edudobay
80 http://en.wikibooks.org/w/index.php?title=User:Elwood_j_blues
81 http://en.wikibooks.org/w/index.php?title=User:Emperorbma
82 http://en.wikibooks.org/w/index.php?title=User:Eneville
83 http://en.wikibooks.org/w/index.php?title=User:Eric119
84 http://en.wikibooks.org/w/index.php?title=User:Erkan_Yilmaz
85 http://en.wikibooks.org/w/index.php?title=User:Ervinn
86 http://en.wikibooks.org/w/index.php?title=User:Explorer09
87 http://en.wikibooks.org/w/index.php?title=User:Eyalevin
88 http://en.wikibooks.org/w/index.php?title=User:FUNIX
89 http://en.wikibooks.org/w/index.php?title=User:Fahidka
90 http://en.wikibooks.org/w/index.php?title=User:Fayis_um
91 http://en.wikibooks.org/w/index.php?title=User:Fazalca
92 http://en.wikibooks.org/w/index.php?title=User:Fdarkangel
93 http://en.wikibooks.org/w/index.php?title=User:Feb30th1712
94 http://en.wikibooks.org/w/index.php?title=User:Felipebm
95 http://en.wikibooks.org/w/index.php?title=User:Fernandopabon
96 http://en.wikibooks.org/w/index.php?title=User:Filemon

242

http://en.wikibooks.org/w/index.php?title=User:Doodle77
http://en.wikibooks.org/w/index.php?title=User:DouglasGreen
http://en.wikibooks.org/w/index.php?title=User:Dr.alf
http://en.wikibooks.org/w/index.php?title=User:Duplode
http://en.wikibooks.org/w/index.php?title=User:Dwandelt
http://en.wikibooks.org/w/index.php?title=User:Dysprosia
http://en.wikibooks.org/w/index.php?title=User:Echoray
http://en.wikibooks.org/w/index.php?title=User:Edudobay
http://en.wikibooks.org/w/index.php?title=User:Elwood_j_blues
http://en.wikibooks.org/w/index.php?title=User:Emperorbma
http://en.wikibooks.org/w/index.php?title=User:Eneville
http://en.wikibooks.org/w/index.php?title=User:Eric119
http://en.wikibooks.org/w/index.php?title=User:Erkan_Yilmaz
http://en.wikibooks.org/w/index.php?title=User:Ervinn
http://en.wikibooks.org/w/index.php?title=User:Explorer09
http://en.wikibooks.org/w/index.php?title=User:Eyalevin
http://en.wikibooks.org/w/index.php?title=User:FUNIX
http://en.wikibooks.org/w/index.php?title=User:Fahidka
http://en.wikibooks.org/w/index.php?title=User:Fayis_um
http://en.wikibooks.org/w/index.php?title=User:Fazalca
http://en.wikibooks.org/w/index.php?title=User:Fdarkangel
http://en.wikibooks.org/w/index.php?title=User:Feb30th1712
http://en.wikibooks.org/w/index.php?title=User:Felipebm
http://en.wikibooks.org/w/index.php?title=User:Fernandopabon
http://en.wikibooks.org/w/index.php?title=User:Filemon

Commercial

7 Fishpi97
1 Fopam98

1 Fotuenti99
5 Fresheneesz100
1 Frigotoni101
2 Fusion102

1 Fxk14i103
1 Gabim104

3 Gandhisagar105
2 Garo106

1 Glenn107

8 Gpietsch108

1 Guanabot109
1 Gulmammad110

3 Gwern111

2 Hagindaz112
1 Happaballer12113
3 Hassanibraheem114

1 Henrywizard115

3 Herbythyme116
1 HethrirBot117
1 Hijarian118

2 Hokanomono119

6 Hoxel120
2 Hypergeek14121

97 http://en.wikibooks.org/w/index.php?title=User:Fishpi
98 http://en.wikibooks.org/w/index.php?title=User:Fopam
99 http://en.wikibooks.org/w/index.php?title=User:Fotuenti
100 http://en.wikibooks.org/w/index.php?title=User:Fresheneesz
101 http://en.wikibooks.org/w/index.php?title=User:Frigotoni
102 http://en.wikibooks.org/w/index.php?title=User:Fusion
103 http://en.wikibooks.org/w/index.php?title=User:Fxk14i
104 http://en.wikibooks.org/w/index.php?title=User:Gabim
105 http://en.wikibooks.org/w/index.php?title=User:Gandhisagar
106 http://en.wikibooks.org/w/index.php?title=User:Garo
107 http://en.wikibooks.org/w/index.php?title=User:Glenn
108 http://en.wikibooks.org/w/index.php?title=User:Gpietsch
109 http://en.wikibooks.org/w/index.php?title=User:Guanabot
110 http://en.wikibooks.org/w/index.php?title=User:Gulmammad
111 http://en.wikibooks.org/w/index.php?title=User:Gwern
112 http://en.wikibooks.org/w/index.php?title=User:Hagindaz
113 http://en.wikibooks.org/w/index.php?title=User:Happaballer12
114 http://en.wikibooks.org/w/index.php?title=User:Hassanibraheem
115 http://en.wikibooks.org/w/index.php?title=User:Henrywizard
116 http://en.wikibooks.org/w/index.php?title=User:Herbythyme
117 http://en.wikibooks.org/w/index.php?title=User:HethrirBot
118 http://en.wikibooks.org/w/index.php?title=User:Hijarian
119 http://en.wikibooks.org/w/index.php?title=User:Hokanomono
120 http://en.wikibooks.org/w/index.php?title=User:Hoxel
121 http://en.wikibooks.org/w/index.php?title=User:Hypergeek14

243

http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Fopam
http://en.wikibooks.org/w/index.php?title=User:Fotuenti
http://en.wikibooks.org/w/index.php?title=User:Fresheneesz
http://en.wikibooks.org/w/index.php?title=User:Frigotoni
http://en.wikibooks.org/w/index.php?title=User:Fusion
http://en.wikibooks.org/w/index.php?title=User:Fxk14i
http://en.wikibooks.org/w/index.php?title=User:Gabim
http://en.wikibooks.org/w/index.php?title=User:Gandhisagar
http://en.wikibooks.org/w/index.php?title=User:Garo
http://en.wikibooks.org/w/index.php?title=User:Glenn
http://en.wikibooks.org/w/index.php?title=User:Gpietsch
http://en.wikibooks.org/w/index.php?title=User:Guanabot
http://en.wikibooks.org/w/index.php?title=User:Gulmammad
http://en.wikibooks.org/w/index.php?title=User:Gwern
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Happaballer12
http://en.wikibooks.org/w/index.php?title=User:Hassanibraheem
http://en.wikibooks.org/w/index.php?title=User:Henrywizard
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:HethrirBot
http://en.wikibooks.org/w/index.php?title=User:Hijarian
http://en.wikibooks.org/w/index.php?title=User:Hokanomono
http://en.wikibooks.org/w/index.php?title=User:Hoxel
http://en.wikibooks.org/w/index.php?title=User:Hypergeek14

Contributors

4 Hythem1979122
1 Icewedge123
3 Imran124

3 Intermediate-Hacker125
5 InverseHypercube126
1 Iopq127

1 Istirbu128

2 Ivan Pozdeev129

2 Ixtli130
2 J.delanoy131
2 JackPotte132
1 Jafeluv133

11 James Dennett134
22 Jfmantis135
1 Jfreyre136
4 Jguk137

1 Jimbobbob138
1 Jleedev139

1 Jni140
2 JohnOwens141
1 Johnnylambada142

23 Jomegat143
1 Jorgenev144

1 Josephpiche145
1 Jsherman256146

122 http://en.wikibooks.org/w/index.php?title=User:Hythem1979
123 http://en.wikibooks.org/w/index.php?title=User:Icewedge
124 http://en.wikibooks.org/w/index.php?title=User:Imran
125 http://en.wikibooks.org/w/index.php?title=User:Intermediate-Hacker
126 http://en.wikibooks.org/w/index.php?title=User:InverseHypercube
127 http://en.wikibooks.org/w/index.php?title=User:Iopq
128 http://en.wikibooks.org/w/index.php?title=User:Istirbu
129 http://en.wikibooks.org/w/index.php?title=User:Ivan_Pozdeev
130 http://en.wikibooks.org/w/index.php?title=User:Ixtli
131 http://en.wikibooks.org/w/index.php?title=User:J.delanoy
132 http://en.wikibooks.org/w/index.php?title=User:JackPotte
133 http://en.wikibooks.org/w/index.php?title=User:Jafeluv
134 http://en.wikibooks.org/w/index.php?title=User:James_Dennett
135 http://en.wikibooks.org/w/index.php?title=User:Jfmantis
136 http://en.wikibooks.org/w/index.php?title=User:Jfreyre
137 http://en.wikibooks.org/w/index.php?title=User:Jguk
138 http://en.wikibooks.org/w/index.php?title=User:Jimbobbob
139 http://en.wikibooks.org/w/index.php?title=User:Jleedev
140 http://en.wikibooks.org/w/index.php?title=User:Jni
141 http://en.wikibooks.org/w/index.php?title=User:JohnOwens
142 http://en.wikibooks.org/w/index.php?title=User:Johnnylambada
143 http://en.wikibooks.org/w/index.php?title=User:Jomegat
144 http://en.wikibooks.org/w/index.php?title=User:Jorgenev
145 http://en.wikibooks.org/w/index.php?title=User:Josephpiche
146 http://en.wikibooks.org/w/index.php?title=User:Jsherman256

244

http://en.wikibooks.org/w/index.php?title=User:Hythem1979
http://en.wikibooks.org/w/index.php?title=User:Icewedge
http://en.wikibooks.org/w/index.php?title=User:Imran
http://en.wikibooks.org/w/index.php?title=User:Intermediate-Hacker
http://en.wikibooks.org/w/index.php?title=User:InverseHypercube
http://en.wikibooks.org/w/index.php?title=User:Iopq
http://en.wikibooks.org/w/index.php?title=User:Istirbu
http://en.wikibooks.org/w/index.php?title=User:Ivan_Pozdeev
http://en.wikibooks.org/w/index.php?title=User:Ixtli
http://en.wikibooks.org/w/index.php?title=User:J.delanoy
http://en.wikibooks.org/w/index.php?title=User:JackPotte
http://en.wikibooks.org/w/index.php?title=User:Jafeluv
http://en.wikibooks.org/w/index.php?title=User:James_Dennett
http://en.wikibooks.org/w/index.php?title=User:Jfmantis
http://en.wikibooks.org/w/index.php?title=User:Jfreyre
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jimbobbob
http://en.wikibooks.org/w/index.php?title=User:Jleedev
http://en.wikibooks.org/w/index.php?title=User:Jni
http://en.wikibooks.org/w/index.php?title=User:JohnOwens
http://en.wikibooks.org/w/index.php?title=User:Johnnylambada
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Jorgenev
http://en.wikibooks.org/w/index.php?title=User:Josephpiche
http://en.wikibooks.org/w/index.php?title=User:Jsherman256

Commercial

1 Jwmcmanus147
1 Jwwicks148
1 Kane77149
1 Karl Dickman150

1 Ke6jjj151
23 Kevinpaladin152

1 Keytotime153
1 Kiensvay154
2 Kinglag155

1 Kj156
1 Kjoehass157

18 Kpengboy158
25 Krischik159

2 Liam987160
3 Lincher161
1 Lkesteloot162
3 Logictheo163

1 Luckas-bot164
1 Lupin165

2 Lyetz166
1 Lynx7725167
8 M2s87168
1 Ma.mazmaz169
2 MadCowpoke170

51 Maffu171

147 http://en.wikibooks.org/w/index.php?title=User:Jwmcmanus
148 http://en.wikibooks.org/w/index.php?title=User:Jwwicks
149 http://en.wikibooks.org/w/index.php?title=User:Kane77
150 http://en.wikibooks.org/w/index.php?title=User:Karl_Dickman
151 http://en.wikibooks.org/w/index.php?title=User:Ke6jjj
152 http://en.wikibooks.org/w/index.php?title=User:Kevinpaladin
153 http://en.wikibooks.org/w/index.php?title=User:Keytotime
154 http://en.wikibooks.org/w/index.php?title=User:Kiensvay
155 http://en.wikibooks.org/w/index.php?title=User:Kinglag
156 http://en.wikibooks.org/w/index.php?title=User:Kj
157 http://en.wikibooks.org/w/index.php?title=User:Kjoehass
158 http://en.wikibooks.org/w/index.php?title=User:Kpengboy
159 http://en.wikibooks.org/w/index.php?title=User:Krischik
160 http://en.wikibooks.org/w/index.php?title=User:Liam987
161 http://en.wikibooks.org/w/index.php?title=User:Lincher
162 http://en.wikibooks.org/w/index.php?title=User:Lkesteloot
163 http://en.wikibooks.org/w/index.php?title=User:Logictheo
164 http://en.wikibooks.org/w/index.php?title=User:Luckas-bot
165 http://en.wikibooks.org/w/index.php?title=User:Lupin
166 http://en.wikibooks.org/w/index.php?title=User:Lyetz
167 http://en.wikibooks.org/w/index.php?title=User:Lynx7725
168 http://en.wikibooks.org/w/index.php?title=User:M2s87
169 http://en.wikibooks.org/w/index.php?title=User:Ma.mazmaz
170 http://en.wikibooks.org/w/index.php?title=User:MadCowpoke
171 http://en.wikibooks.org/w/index.php?title=User:Maffu

245

http://en.wikibooks.org/w/index.php?title=User:Jwmcmanus
http://en.wikibooks.org/w/index.php?title=User:Jwwicks
http://en.wikibooks.org/w/index.php?title=User:Kane77
http://en.wikibooks.org/w/index.php?title=User:Karl_Dickman
http://en.wikibooks.org/w/index.php?title=User:Ke6jjj
http://en.wikibooks.org/w/index.php?title=User:Kevinpaladin
http://en.wikibooks.org/w/index.php?title=User:Keytotime
http://en.wikibooks.org/w/index.php?title=User:Kiensvay
http://en.wikibooks.org/w/index.php?title=User:Kinglag
http://en.wikibooks.org/w/index.php?title=User:Kj
http://en.wikibooks.org/w/index.php?title=User:Kjoehass
http://en.wikibooks.org/w/index.php?title=User:Kpengboy
http://en.wikibooks.org/w/index.php?title=User:Krischik
http://en.wikibooks.org/w/index.php?title=User:Liam987
http://en.wikibooks.org/w/index.php?title=User:Lincher
http://en.wikibooks.org/w/index.php?title=User:Lkesteloot
http://en.wikibooks.org/w/index.php?title=User:Logictheo
http://en.wikibooks.org/w/index.php?title=User:Luckas-bot
http://en.wikibooks.org/w/index.php?title=User:Lupin
http://en.wikibooks.org/w/index.php?title=User:Lyetz
http://en.wikibooks.org/w/index.php?title=User:Lynx7725
http://en.wikibooks.org/w/index.php?title=User:M2s87
http://en.wikibooks.org/w/index.php?title=User:Ma.mazmaz
http://en.wikibooks.org/w/index.php?title=User:MadCowpoke
http://en.wikibooks.org/w/index.php?title=User:Maffu

Contributors

1 Mahanga172

2 ManuelGR173

2 Marianocecowski174
1 Markhobley175
4 Matillo176

1 Mattb112885177
1 Mdhowe178
3 MeMoria179

1 Mecanismo180

1 Mechsoft181
8 Merrheim182

2 Mfidelis183
10 Mickraus184
3 Mike.lifeguard185

6 Mike92591186
2 Mindmatrix187

1 MithrandirAgain188

1 Miyoko Moua189

1 Mkgreene190
5 Mminc10191
3 Monobi192
1 Morte193
1 Mr.Z-man194

1 MrJones195
4 Mrquick196

172 http://en.wikibooks.org/w/index.php?title=User:Mahanga
173 http://en.wikibooks.org/w/index.php?title=User:ManuelGR
174 http://en.wikibooks.org/w/index.php?title=User:Marianocecowski
175 http://en.wikibooks.org/w/index.php?title=User:Markhobley
176 http://en.wikibooks.org/w/index.php?title=User:Matillo
177 http://en.wikibooks.org/w/index.php?title=User:Mattb112885
178 http://en.wikibooks.org/w/index.php?title=User:Mdhowe
179 http://en.wikibooks.org/w/index.php?title=User:MeMoria
180 http://en.wikibooks.org/w/index.php?title=User:Mecanismo
181 http://en.wikibooks.org/w/index.php?title=User:Mechsoft
182 http://en.wikibooks.org/w/index.php?title=User:Merrheim
183 http://en.wikibooks.org/w/index.php?title=User:Mfidelis
184 http://en.wikibooks.org/w/index.php?title=User:Mickraus
185 http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard
186 http://en.wikibooks.org/w/index.php?title=User:Mike92591
187 http://en.wikibooks.org/w/index.php?title=User:Mindmatrix
188 http://en.wikibooks.org/w/index.php?title=User:MithrandirAgain
189 http://en.wikibooks.org/w/index.php?title=User:Miyoko_Moua
190 http://en.wikibooks.org/w/index.php?title=User:Mkgreene
191 http://en.wikibooks.org/w/index.php?title=User:Mminc10
192 http://en.wikibooks.org/w/index.php?title=User:Monobi
193 http://en.wikibooks.org/w/index.php?title=User:Morte
194 http://en.wikibooks.org/w/index.php?title=User:Mr.Z-man
195 http://en.wikibooks.org/w/index.php?title=User:MrJones
196 http://en.wikibooks.org/w/index.php?title=User:Mrquick

246

http://en.wikibooks.org/w/index.php?title=User:Mahanga
http://en.wikibooks.org/w/index.php?title=User:ManuelGR
http://en.wikibooks.org/w/index.php?title=User:Marianocecowski
http://en.wikibooks.org/w/index.php?title=User:Markhobley
http://en.wikibooks.org/w/index.php?title=User:Matillo
http://en.wikibooks.org/w/index.php?title=User:Mattb112885
http://en.wikibooks.org/w/index.php?title=User:Mdhowe
http://en.wikibooks.org/w/index.php?title=User:MeMoria
http://en.wikibooks.org/w/index.php?title=User:Mecanismo
http://en.wikibooks.org/w/index.php?title=User:Mechsoft
http://en.wikibooks.org/w/index.php?title=User:Merrheim
http://en.wikibooks.org/w/index.php?title=User:Mfidelis
http://en.wikibooks.org/w/index.php?title=User:Mickraus
http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard
http://en.wikibooks.org/w/index.php?title=User:Mike92591
http://en.wikibooks.org/w/index.php?title=User:Mindmatrix
http://en.wikibooks.org/w/index.php?title=User:MithrandirAgain
http://en.wikibooks.org/w/index.php?title=User:Miyoko_Moua
http://en.wikibooks.org/w/index.php?title=User:Mkgreene
http://en.wikibooks.org/w/index.php?title=User:Mminc10
http://en.wikibooks.org/w/index.php?title=User:Monobi
http://en.wikibooks.org/w/index.php?title=User:Morte
http://en.wikibooks.org/w/index.php?title=User:Mr.Z-man
http://en.wikibooks.org/w/index.php?title=User:MrJones
http://en.wikibooks.org/w/index.php?title=User:Mrquick

Commercial

1 Mshonle197
1 Mwtoews198
2 Myxomatosis199
3 Napalm Llama200

9 Ncmathsadist201
9 Nefthy202
1 Newmanbe203
1 Nick204

1 Nilson Cain205

1 Nimur206
4 NipplesMeCool207
2 NithinBekal208
1 Nixphoeni209
1 Nnh210

10 Noogz211
1 OMouse212
1 Oligomous213
1 Olspookishmagus214

216 Orderud215

2 Otus216
18 Paddu217

32 Panic2k4218
1 Parleybaerformayor219
6 Patrickdepinguin220

20 Pcu123456789221

197 http://en.wikibooks.org/w/index.php?title=User:Mshonle
198 http://en.wikibooks.org/w/index.php?title=User:Mwtoews
199 http://en.wikibooks.org/w/index.php?title=User:Myxomatosis
200 http://en.wikibooks.org/w/index.php?title=User:Napalm_Llama
201 http://en.wikibooks.org/w/index.php?title=User:Ncmathsadist
202 http://en.wikibooks.org/w/index.php?title=User:Nefthy
203 http://en.wikibooks.org/w/index.php?title=User:Newmanbe
204 http://en.wikibooks.org/w/index.php?title=User:Nick
205 http://en.wikibooks.org/w/index.php?title=User:Nilson_Cain
206 http://en.wikibooks.org/w/index.php?title=User:Nimur
207 http://en.wikibooks.org/w/index.php?title=User:NipplesMeCool
208 http://en.wikibooks.org/w/index.php?title=User:NithinBekal
209 http://en.wikibooks.org/w/index.php?title=User:Nixphoeni
210 http://en.wikibooks.org/w/index.php?title=User:Nnh
211 http://en.wikibooks.org/w/index.php?title=User:Noogz
212 http://en.wikibooks.org/w/index.php?title=User:OMouse
213 http://en.wikibooks.org/w/index.php?title=User:Oligomous
214 http://en.wikibooks.org/w/index.php?title=User:Olspookishmagus
215 http://en.wikibooks.org/w/index.php?title=User:Orderud
216 http://en.wikibooks.org/w/index.php?title=User:Otus
217 http://en.wikibooks.org/w/index.php?title=User:Paddu
218 http://en.wikibooks.org/w/index.php?title=User:Panic2k4
219 http://en.wikibooks.org/w/index.php?title=User:Parleybaerformayor
220 http://en.wikibooks.org/w/index.php?title=User:Patrickdepinguin
221 http://en.wikibooks.org/w/index.php?title=User:Pcu123456789

247

http://en.wikibooks.org/w/index.php?title=User:Mshonle
http://en.wikibooks.org/w/index.php?title=User:Mwtoews
http://en.wikibooks.org/w/index.php?title=User:Myxomatosis
http://en.wikibooks.org/w/index.php?title=User:Napalm_Llama
http://en.wikibooks.org/w/index.php?title=User:Ncmathsadist
http://en.wikibooks.org/w/index.php?title=User:Nefthy
http://en.wikibooks.org/w/index.php?title=User:Newmanbe
http://en.wikibooks.org/w/index.php?title=User:Nick
http://en.wikibooks.org/w/index.php?title=User:Nilson_Cain
http://en.wikibooks.org/w/index.php?title=User:Nimur
http://en.wikibooks.org/w/index.php?title=User:NipplesMeCool
http://en.wikibooks.org/w/index.php?title=User:NithinBekal
http://en.wikibooks.org/w/index.php?title=User:Nixphoeni
http://en.wikibooks.org/w/index.php?title=User:Nnh
http://en.wikibooks.org/w/index.php?title=User:Noogz
http://en.wikibooks.org/w/index.php?title=User:OMouse
http://en.wikibooks.org/w/index.php?title=User:Oligomous
http://en.wikibooks.org/w/index.php?title=User:Olspookishmagus
http://en.wikibooks.org/w/index.php?title=User:Orderud
http://en.wikibooks.org/w/index.php?title=User:Otus
http://en.wikibooks.org/w/index.php?title=User:Paddu
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Parleybaerformayor
http://en.wikibooks.org/w/index.php?title=User:Patrickdepinguin
http://en.wikibooks.org/w/index.php?title=User:Pcu123456789

Contributors

1 Pedram.salehpoor222
4 PhilippWeissenbacher223
9 Phosgram224

3 Pietrodn225

1 Pratik deshpande226
1 Pred227

6 PurplePieman228

3 QUBot229
1 Queeg (usurped)230

10 QuiteUnusual231
3 Quuxplusone232
4 Qwerky233
1 Ralmin234

3 Ralmoritz235
3 Ram epigon236

1 Rama mahesh237

1 Raoni Domingues238
3 Rathgemz239
6 Recent Runes240
2 RedWolf241
1 Redlentil242
8 Reep243

10 Remi0o244

1 Richfife245
5 RodrigoBaroni246

222 http://en.wikibooks.org/w/index.php?title=User:Pedram.salehpoor
223 http://en.wikibooks.org/w/index.php?title=User:PhilippWeissenbacher
224 http://en.wikibooks.org/w/index.php?title=User:Phosgram
225 http://en.wikibooks.org/w/index.php?title=User:Pietrodn
226 http://en.wikibooks.org/w/index.php?title=User:Pratik_deshpande
227 http://en.wikibooks.org/w/index.php?title=User:Pred
228 http://en.wikibooks.org/w/index.php?title=User:PurplePieman
229 http://en.wikibooks.org/w/index.php?title=User:QUBot
230 http://en.wikibooks.org/w/index.php?title=User:Queeg_%28usurped%29
231 http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
232 http://en.wikibooks.org/w/index.php?title=User:Quuxplusone
233 http://en.wikibooks.org/w/index.php?title=User:Qwerky
234 http://en.wikibooks.org/w/index.php?title=User:Ralmin
235 http://en.wikibooks.org/w/index.php?title=User:Ralmoritz
236 http://en.wikibooks.org/w/index.php?title=User:Ram_epigon
237 http://en.wikibooks.org/w/index.php?title=User:Rama_mahesh
238 http://en.wikibooks.org/w/index.php?title=User:Raoni_Domingues
239 http://en.wikibooks.org/w/index.php?title=User:Rathgemz
240 http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
241 http://en.wikibooks.org/w/index.php?title=User:RedWolf
242 http://en.wikibooks.org/w/index.php?title=User:Redlentil
243 http://en.wikibooks.org/w/index.php?title=User:Reep
244 http://en.wikibooks.org/w/index.php?title=User:Remi0o
245 http://en.wikibooks.org/w/index.php?title=User:Richfife
246 http://en.wikibooks.org/w/index.php?title=User:RodrigoBaroni

248

http://en.wikibooks.org/w/index.php?title=User:Pedram.salehpoor
http://en.wikibooks.org/w/index.php?title=User:PhilippWeissenbacher
http://en.wikibooks.org/w/index.php?title=User:Phosgram
http://en.wikibooks.org/w/index.php?title=User:Pietrodn
http://en.wikibooks.org/w/index.php?title=User:Pratik_deshpande
http://en.wikibooks.org/w/index.php?title=User:Pred
http://en.wikibooks.org/w/index.php?title=User:PurplePieman
http://en.wikibooks.org/w/index.php?title=User:QUBot
http://en.wikibooks.org/w/index.php?title=User:Queeg_%28usurped%29
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Quuxplusone
http://en.wikibooks.org/w/index.php?title=User:Qwerky
http://en.wikibooks.org/w/index.php?title=User:Ralmin
http://en.wikibooks.org/w/index.php?title=User:Ralmoritz
http://en.wikibooks.org/w/index.php?title=User:Ram_epigon
http://en.wikibooks.org/w/index.php?title=User:Rama_mahesh
http://en.wikibooks.org/w/index.php?title=User:Raoni_Domingues
http://en.wikibooks.org/w/index.php?title=User:Rathgemz
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:RedWolf
http://en.wikibooks.org/w/index.php?title=User:Redlentil
http://en.wikibooks.org/w/index.php?title=User:Reep
http://en.wikibooks.org/w/index.php?title=User:Remi0o
http://en.wikibooks.org/w/index.php?title=User:Richfife
http://en.wikibooks.org/w/index.php?title=User:RodrigoBaroni

Commercial

2 RogierBrussee247
1 Ronark248

2 Rouslan Nabioullin249

2 Ryanlitton250

1 SPat251
1 SakJur252
1 Santoshsy253
1 Sarimura254

1 Saughmraat255
1 Schzmo256

2 Sfliberal257
82 Sigma 7258
1 Signedlongint259
1 SimonP260
1 SkyLeo8261
2 SmackBot262
2 Snipsnap263
1 Snowolf264
3 Someoneinmyheadbutit'snotme265
3 SoniyaR266

1 Soumyasch267

1 Sourcejedi268
1 SpaceLem269

9 Spoon!270
2 Sprink271

247 http://en.wikibooks.org/w/index.php?title=User:RogierBrussee
248 http://en.wikibooks.org/w/index.php?title=User:Ronark
249 http://en.wikibooks.org/w/index.php?title=User:Rouslan_Nabioullin
250 http://en.wikibooks.org/w/index.php?title=User:Ryanlitton
251 http://en.wikibooks.org/w/index.php?title=User:SPat
252 http://en.wikibooks.org/w/index.php?title=User:SakJur
253 http://en.wikibooks.org/w/index.php?title=User:Santoshsy
254 http://en.wikibooks.org/w/index.php?title=User:Sarimura
255 http://en.wikibooks.org/w/index.php?title=User:Saughmraat
256 http://en.wikibooks.org/w/index.php?title=User:Schzmo
257 http://en.wikibooks.org/w/index.php?title=User:Sfliberal
258 http://en.wikibooks.org/w/index.php?title=User:Sigma_7
259 http://en.wikibooks.org/w/index.php?title=User:Signedlongint
260 http://en.wikibooks.org/w/index.php?title=User:SimonP
261 http://en.wikibooks.org/w/index.php?title=User:SkyLeo8
262 http://en.wikibooks.org/w/index.php?title=User:SmackBot
263 http://en.wikibooks.org/w/index.php?title=User:Snipsnap
264 http://en.wikibooks.org/w/index.php?title=User:Snowolf
265 http://en.wikibooks.org/w/index.php?title=User:Someoneinmyheadbutit%27snotme
266 http://en.wikibooks.org/w/index.php?title=User:SoniyaR
267 http://en.wikibooks.org/w/index.php?title=User:Soumyasch
268 http://en.wikibooks.org/w/index.php?title=User:Sourcejedi
269 http://en.wikibooks.org/w/index.php?title=User:SpaceLem
270 http://en.wikibooks.org/w/index.php?title=User:Spoon%21
271 http://en.wikibooks.org/w/index.php?title=User:Sprink

249

http://en.wikibooks.org/w/index.php?title=User:RogierBrussee
http://en.wikibooks.org/w/index.php?title=User:Ronark
http://en.wikibooks.org/w/index.php?title=User:Rouslan_Nabioullin
http://en.wikibooks.org/w/index.php?title=User:Ryanlitton
http://en.wikibooks.org/w/index.php?title=User:SPat
http://en.wikibooks.org/w/index.php?title=User:SakJur
http://en.wikibooks.org/w/index.php?title=User:Santoshsy
http://en.wikibooks.org/w/index.php?title=User:Sarimura
http://en.wikibooks.org/w/index.php?title=User:Saughmraat
http://en.wikibooks.org/w/index.php?title=User:Schzmo
http://en.wikibooks.org/w/index.php?title=User:Sfliberal
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Signedlongint
http://en.wikibooks.org/w/index.php?title=User:SimonP
http://en.wikibooks.org/w/index.php?title=User:SkyLeo8
http://en.wikibooks.org/w/index.php?title=User:SmackBot
http://en.wikibooks.org/w/index.php?title=User:Snipsnap
http://en.wikibooks.org/w/index.php?title=User:Snowolf
http://en.wikibooks.org/w/index.php?title=User:Someoneinmyheadbutit%27snotme
http://en.wikibooks.org/w/index.php?title=User:SoniyaR
http://en.wikibooks.org/w/index.php?title=User:Soumyasch
http://en.wikibooks.org/w/index.php?title=User:Sourcejedi
http://en.wikibooks.org/w/index.php?title=User:SpaceLem
http://en.wikibooks.org/w/index.php?title=User:Spoon%21
http://en.wikibooks.org/w/index.php?title=User:Sprink

Contributors

2 SssSss272
1 Stassats273
1 Superm401274
2 Suruena275

11 Tados276
5 TakuyaMurata277

3 Tang0delta278

1 Tardis279
1 Tedickey280
2 Thiagol281
1 ThoBe282

33 Thunderbunny283
1 Toussaint284
1 Trasz285
1 Ttv286

3 V-a-xvi287
3 Vinodkrishnan91288
3 Vsoro00289
1 Wagnarok290

4 Webaware291
36 Whiteknight292
4 Whizzer293
2 Whym294

1 Wik295

1 WikHead296

272 http://en.wikibooks.org/w/index.php?title=User:SssSss
273 http://en.wikibooks.org/w/index.php?title=User:Stassats
274 http://en.wikibooks.org/w/index.php?title=User:Superm401
275 http://en.wikibooks.org/w/index.php?title=User:Suruena
276 http://en.wikibooks.org/w/index.php?title=User:Tados
277 http://en.wikibooks.org/w/index.php?title=User:TakuyaMurata
278 http://en.wikibooks.org/w/index.php?title=User:Tang0delta
279 http://en.wikibooks.org/w/index.php?title=User:Tardis
280 http://en.wikibooks.org/w/index.php?title=User:Tedickey
281 http://en.wikibooks.org/w/index.php?title=User:Thiagol
282 http://en.wikibooks.org/w/index.php?title=User:ThoBe
283 http://en.wikibooks.org/w/index.php?title=User:Thunderbunny
284 http://en.wikibooks.org/w/index.php?title=User:Toussaint
285 http://en.wikibooks.org/w/index.php?title=User:Trasz
286 http://en.wikibooks.org/w/index.php?title=User:Ttv
287 http://en.wikibooks.org/w/index.php?title=User:V-a-xvi
288 http://en.wikibooks.org/w/index.php?title=User:Vinodkrishnan91
289 http://en.wikibooks.org/w/index.php?title=User:Vsoro00
290 http://en.wikibooks.org/w/index.php?title=User:Wagnarok
291 http://en.wikibooks.org/w/index.php?title=User:Webaware
292 http://en.wikibooks.org/w/index.php?title=User:Whiteknight
293 http://en.wikibooks.org/w/index.php?title=User:Whizzer
294 http://en.wikibooks.org/w/index.php?title=User:Whym
295 http://en.wikibooks.org/w/index.php?title=User:Wik
296 http://en.wikibooks.org/w/index.php?title=User:WikHead

250

http://en.wikibooks.org/w/index.php?title=User:SssSss
http://en.wikibooks.org/w/index.php?title=User:Stassats
http://en.wikibooks.org/w/index.php?title=User:Superm401
http://en.wikibooks.org/w/index.php?title=User:Suruena
http://en.wikibooks.org/w/index.php?title=User:Tados
http://en.wikibooks.org/w/index.php?title=User:TakuyaMurata
http://en.wikibooks.org/w/index.php?title=User:Tang0delta
http://en.wikibooks.org/w/index.php?title=User:Tardis
http://en.wikibooks.org/w/index.php?title=User:Tedickey
http://en.wikibooks.org/w/index.php?title=User:Thiagol
http://en.wikibooks.org/w/index.php?title=User:ThoBe
http://en.wikibooks.org/w/index.php?title=User:Thunderbunny
http://en.wikibooks.org/w/index.php?title=User:Toussaint
http://en.wikibooks.org/w/index.php?title=User:Trasz
http://en.wikibooks.org/w/index.php?title=User:Ttv
http://en.wikibooks.org/w/index.php?title=User:V-a-xvi
http://en.wikibooks.org/w/index.php?title=User:Vinodkrishnan91
http://en.wikibooks.org/w/index.php?title=User:Vsoro00
http://en.wikibooks.org/w/index.php?title=User:Wagnarok
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:Whizzer
http://en.wikibooks.org/w/index.php?title=User:Whym
http://en.wikibooks.org/w/index.php?title=User:Wik
http://en.wikibooks.org/w/index.php?title=User:WikHead

Commercial

2 Wj32297
1 Wragge298
3 Xania299

1 Xerol300
1 Xiainx301

1 Xianwen Chen302

16 Yacht303
4 Yuuki Mayuki304
1 Zoohouse305
1 Zvn306

1 Александр Цамутали307

3 タチコマ robot308

297 http://en.wikibooks.org/w/index.php?title=User:Wj32
298 http://en.wikibooks.org/w/index.php?title=User:Wragge
299 http://en.wikibooks.org/w/index.php?title=User:Xania
300 http://en.wikibooks.org/w/index.php?title=User:Xerol
301 http://en.wikibooks.org/w/index.php?title=User:Xiainx
302 http://en.wikibooks.org/w/index.php?title=User:Xianwen_Chen
303 http://en.wikibooks.org/w/index.php?title=User:Yacht
304 http://en.wikibooks.org/w/index.php?title=User:Yuuki_Mayuki
305 http://en.wikibooks.org/w/index.php?title=User:Zoohouse
306 http://en.wikibooks.org/w/index.php?title=User:Zvn
307 http://en.wikibooks.org/w/index.php?title=User:%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%

BD%D0%B4%D1%80_%D0%A6%D0%B0%D0%BC%D1%83%D1%82%D0%B0%D0%BB%D0%B8
308 http://en.wikibooks.org/w/index.php?title=User:%E3%82%BF%E3%83%81%E3%82%B3%E3%83%9E_

robot

251

http://en.wikibooks.org/w/index.php?title=User:Wj32
http://en.wikibooks.org/w/index.php?title=User:Wragge
http://en.wikibooks.org/w/index.php?title=User:Xania
http://en.wikibooks.org/w/index.php?title=User:Xerol
http://en.wikibooks.org/w/index.php?title=User:Xiainx
http://en.wikibooks.org/w/index.php?title=User:Xianwen_Chen
http://en.wikibooks.org/w/index.php?title=User:Yacht
http://en.wikibooks.org/w/index.php?title=User:Yuuki_Mayuki
http://en.wikibooks.org/w/index.php?title=User:Zoohouse
http://en.wikibooks.org/w/index.php?title=User:Zvn
http://en.wikibooks.org/w/index.php?title=User:%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A6%D0%B0%D0%BC%D1%83%D1%82%D0%B0%D0%BB%D0%B8
http://en.wikibooks.org/w/index.php?title=User:%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A6%D0%B0%D0%BC%D1%83%D1%82%D0%B0%D0%BB%D0%B8
http://en.wikibooks.org/w/index.php?title=User:%E3%82%BF%E3%83%81%E3%82%B3%E3%83%9E_robot
http://en.wikibooks.org/w/index.php?title=User:%E3%82%BF%E3%83%81%E3%82%B3%E3%83%9E_robot

Contributors

252

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative CommonsAttribution ShareAlike 3.0 License. http://creativecommons.
org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative CommonsAttribution ShareAlike 2.5 License. http://creativecommons.
org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative CommonsAttribution ShareAlike 2.0 License. http://creativecommons.
org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative CommonsAttribution ShareAlike 1.0 License. http://creativecommons.
org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/
licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/
licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.org/
licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.org/
licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that
the copyright holder is properly attributed. Redistribution, derivative work, commercial use,
and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the
common face of the euro coins belongs to the European Commission. Authorised is reproduction
in a format without relief (drawings, paintings, films) provided they are not detrimental to the
image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php

253

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses309. Please note that
images in the public domain do not require attribution. You may click on the image numbers in the
following table to open the webpage of the images in your webbrower.

309 Chapter 41 on page 257

254

List of Figures

1 PD
2 Daniel B310 GFDL
3 Pietrodn cc-by-sa-2.5

310 http://de.wikibooks.org/wiki/Benutzer%3ADaniel%20B

255

http://en.wikibooks.org/wiki/File:Merkkijono.svg
http://en.wikibooks.org/wiki/File:Zeiger.PNG
http://en.wikibooks.org/wiki/File:Pointers%20in%20programming.svg
http://de.wikibooks.org/wiki/Benutzer%3ADaniel%20B

List of Figures

256

41 Licenses

41.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed. Preamble

The GNU General Public License is a free, copyleft license for software and
other kinds of works.

The licenses for most software and other practical works are designed to take
away your freedom to share and change the works. By contrast, the GNUGen-
eral Public License is intended to guarantee your freedom to share and change
all versions of a program--to make sure it remains free software for all its users.
We, the Free Software Foundation, use the GNU General Public License for
most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the soft-
ware or use pieces of it in new free programs, and that you know you can do
these things.

To protect your rights, we need to prevent others from denying you these rights
or asking you to surrender the rights. Therefore, you have certain responsibili-
ties if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must pass on to the recipients the same freedoms that you received.
You must make sure that they, too, receive or can get the source code. And
you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) as-
sert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there
is no warranty for this free software. For both users' and authors' sake, the GPL
requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified ver-
sions of the software inside them, although the manufacturer can do so. This
is fundamentally incompatible with the aim of protecting users' freedom to
change the software. The systematic pattern of such abuse occurs in the area of
products for individuals to use, which is precisely where it is most unaccept-
able. Therefore, we have designed this version of the GPL to prohibit the prac-
tice for those products. If such problems arise substantially in other domains,
we stand ready to extend this provision to those domains in future versions of
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on general-
purpose computers, but in those that do, we wish to avoid the special danger
that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program
non-free.

The precise terms and conditions for copying, distribution and modification
follow. TERMS AND CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works,
such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License.
Each licensee is addressed as “you”. “Licensees” and “recipients” may be in-
dividuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in
a fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a “modified version” of the earlier work or
a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on
the Program.

To “propagate” a work means to do anything with it that, without permission,
would make you directly or secondarily liable for infringement under applica-
ble copyright law, except executing it on a computer or modifying a private
copy. Propagation includes copying, distribution (with or without modifica-
tion), making available to the public, and in some countries other activities as
well.

To “convey” a work means any kind of propagation that enables other parties
to make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent
that it includes a convenient and prominently visible feature that (1) displays
an appropriate copyright notice, and (2) tells the user that there is no warranty
for the work (except to the extent that warranties are provided), that licensees
may convey the work under this License, and how to view a copy of this Li-
cense. If the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred form of the work for making
modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard de-
fined by a recognized standards body, or, in the case of interfaces specified for
a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the
work as a whole, that (a) is included in the normal form of packaging a Major
Component, but which is not part of that Major Component, and (b) serves only
to enable use of the work with that Major Component, or to implement a Stan-
dard Interface for which an implementation is available to the public in source
code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating sys-
tem (if any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run the
object code and to modify the work, including scripts to control those activ-
ities. However, it does not include the work's System Libraries, or general-
purpose tools or generally available free programs which are used unmodified

in performing those activities but which are not part of the work. For exam-
ple, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such
as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on
the Program, and are irrevocable provided the stated conditions are met. This
License explicitly affirms your unlimited permission to run the unmodified Pro-
gram. The output from running a covered work is covered by this License only
if the output, given its content, constitutes a covered work. This License ac-
knowledges your rights of fair use or other equivalent, as provided by copyright
law.

Youmaymake, run and propagate covered works that you do not convey, with-
out conditions so long as your license otherwise remains in force. You may
convey covered works to others for the sole purpose of having themmakemod-
ifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying
all material for which you do not control copyright. Those thus making or run-
ning the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them frommaking any copies
of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the condi-
tions stated below. Sublicensing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circum-
vention of technological measures to the extent such circumvention is effected
by exercising rights under this License with respect to the covered work, and
you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work's users, your or third parties' legal rights
to forbid circumvention of technological measures. 4. Conveying Verbatim
Copies.

You may convey verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7
apply to the code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you
may offer support or warranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or the modifications to pro-
duce it from the Program, in the form of source code under the terms of section
4, provided that you also meet all of these conditions:

* a) The work must carry prominent notices stating that you modified it, and
giving a relevant date. * b) The work must carry prominent notices stating
that it is released under this License and any conditions added under section 7.
This requirement modifies the requirement in section 4 to “keep intact all no-
tices”. * c) You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will therefore ap-
ply, along with any applicable section 7 additional terms, to the whole of the
work, and all its parts, regardless of how they are packaged. This License gives
no permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it. * d) If the work has inter-
active user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works,
which are not by their nature extensions of the covered work, and which are not
combined with it such as to form a larger program, in or on a volume of a stor-
age or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compi-
lation's users beyond what the individual works permit. Inclusion of a covered
work in an aggregate does not cause this License to apply to the other parts of
the aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sec-
tions 4 and 5, provided that you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one of these ways:

* a) Convey the object code in, or embodied in, a physical product (including
a physical distribution medium), accompanied by the Corresponding Source
fixed on a durable physical medium customarily used for software interchange.
* b) Convey the object code in, or embodied in, a physical product (including a
physical distributionmedium), accompanied by awritten offer, valid for at least
three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the product that is cov-
ered by this License, on a durable physical medium customarily used for soft-
ware interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge. * c) Convey individual copies of
the object code with a copy of the written offer to provide the Corresponding
Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with sub-
section 6b. * d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the Corresponding
Source in the same way through the same place at no further charge. You need
not require recipients to copy the Corresponding Source along with the object
code. If the place to copy the object code is a network server, the Correspond-
ing Source may be on a different server (operated by you or a third party) that
supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain obligated
to ensure that it is available for as long as needed to satisfy these requirements.
* e) Convey the object code using peer-to-peer transmission, provided you in-
form other peers where the object code and Corresponding Source of the work
are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying
the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangi-
ble personal property which is normally used for personal, family, or household
purposes, or (2) anything designed or sold for incorporation into a dwelling. In

determining whether a product is a consumer product, doubtful cases shall be
resolved in favor of coverage. For a particular product received by a particular
user, “normally used” refers to a typical or common use of that class of prod-
uct, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substan-
tial commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures,
authorization keys, or other information required to install and execute modi-
fied versions of a covered work in that User Product from a modified version
of its Corresponding Source. The information must suffice to ensure that the
continued functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically
for use in, a User Product, and the conveying occurs as part of a transaction in
which the right of possession and use of the User Product is transferred to the
recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must
be accompanied by the Installation Information. But this requirement does not
apply if neither you nor any third party retains the ability to install modified
object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a require-
ment to continue to provide support service, warranty, or updates for a work
that has been modified or installed by the recipient, or for the User Product in
which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of
the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in ac-
cord with this section must be in a format that is publicly documented (and
with an implementation available to the public in source code form), and must
require no special password or key for unpacking, reading or copying. 7. Ad-
ditional Terms.

“Additional permissions” are terms that supplement the terms of this License
by making exceptions from one or more of its conditions. Additional permis-
sions that are applicable to the entire Program shall be treated as though they
were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may
be used separately under those permissions, but the entire Program remains
governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove
any additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when
you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate
copyright permission.

Notwithstanding any other provision of this License, for material you add to a
covered work, you may (if authorized by the copyright holders of that material)
supplement the terms of this License with terms:

* a) Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in that material or in the Appro-
priate Legal Notices displayed by works containing it; or * c) Prohibiting mis-
representation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original
version; or * d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or * e) Declining to grant rights under trademark
law for use of some trade names, trademarks, or service marks; or * f) Requir-
ing indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions”
within the meaning of section 10. If the Program as you received it, or any part
of it, contains a notice stating that it is governed by this License along with a
term that is a further restriction, you may remove that term. If a license docu-
ment contains a further restriction but permits relicensing or conveying under
this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place,
in the relevant source files, a statement of the additional terms that apply to
those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of
a separately written license, or stated as exceptions; the above requirements
apply either way. 8. Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void,
and will automatically terminate your rights under this License (including any
patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-
nently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, you do not qualify
to receive new licenses for the same material under section 10. 9. Acceptance
Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy
of the Program. Ancillary propagation of a covered work occurring solely as
a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions in-
fringe copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to
do so. 10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,

subject to this License. You are not responsible for enforcing compliance by
third parties with this License.

An “entity transaction” is a transaction transferring control of an organization,
or substantially all assets of one, or subdividing an organization, or merging
organizations. If propagation of a covered work results from an entity transac-
tion, each party to that transactionwho receives a copy of thework also receives
whatever licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the Correspond-
ing Source of the work from the predecessor in interest, if the predecessor has
it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose
a license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or coun-
terclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of
the Program or a work on which the Program is based. The work thus licensed
is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or con-
trolled by the contributor, whether already acquired or hereafter acquired, that
would be infringed by some manner, permitted by this License, of making, us-
ing, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor ver-
sion. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent li-
cense under the contributor's essential patent claims, to make, use, sell, offer
for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any express agreement
or commitment, however denominated, not to enforce a patent (such as an ex-
press permission to practice a patent or covenant not to sue for patent infringe-
ment). To “grant” such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free of
charge and under the terms of this License, through a publicly available net-
work server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself
of the benefit of the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in
a country, or your recipient's use of the covered work in a country, would in-
fringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you
convey, or propagate by procuring conveyance of, a covered work, and grant
a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of
the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of
its coverage, prohibits the exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with
a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of con-
veying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license
(a) in connection with copies of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into
that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied
license or other defenses to infringement that may otherwise be available to
you under applicable patent law. 12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or oth-
erwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot convey a covered work so
as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for fur-
ther conveying from those to whom you convey the Program, the only way
you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program. 13. Use with the GNU Affero General Public
License.

Notwithstanding any other provision of this License, you have permission to
link or combine any covered work with a work licensed under version 3 of the
GNU Affero General Public License into a single combined work, and to con-
vey the resulting work. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNUAffero
General Public License, section 13, concerning interaction through a network
will apply to the combination as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the
GNU General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies that a certain numbered version of the GNU General Public License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version
number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the
GNU General Public License can be used, that proxy's public statement of ac-
ceptance of a version permanently authorizes you to choose that version for the
Program.

Later license versions may give you additional or different permissions. How-
ever, no additional obligations are imposed on any author or copyright holder
as a result of your choosing to follow a later version. 15. Disclaimer of War-
ranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

257

Licenses

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. 17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot
be given local legal effect according to their terms, reviewing courts shall apply
local law that most closely approximates an absolute waiver of all civil liabil-
ity in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively state the exclusion of war-
ranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copy-
right (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this
when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author> This program comes with
ABSOLUTELY NO WARRANTY; for details type `show w'. This is free
software, and you are welcome to redistribute it under certain conditions; type
`show c' for details.

The hypothetical commands `show w' and `show c' should show the appropri-
ate parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser
General Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

41.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, ei-
ther commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this Li-
cense is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference. 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copy-
right law.

A "Modified Version" of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transpar-
ent if used for any substantial amount of text. A copy that is not "Transparent"
is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance
of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Doc-
ument to the public.

A section "Entitled XYZ" means a named subunit of the Document whose ti-
tle either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License. 2. VER-
BATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document's li-
cense notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus acces-
sible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, youmust do these things
in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission. * B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the Modified Ver-
sion, together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you from
this requirement. * C. State on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve all the copyright notices of
the Document. * E. Add an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F. Include, immediately after
the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the
Addendum below. * G. Preserve in that license notice the full lists of Invari-
ant Sections and required Cover Texts given in the Document's license notice.
* H. Include an unaltered copy of this License. * I. Preserve the section Enti-
tled "History", Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Ti-
tle Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the
previous sentence. * J. Preserve the network location, if any, given in the Doc-
ument for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it was based
on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission. *
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve
the Title of the section, and preserve in the section all the substance and tone

of each of the contributor acknowledgements and/or dedications given therein.
* L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles. * M. Delete any section Entitled "Endorsements". Such a
section may not be included in the Modified Version. * N. Do not retitle any
existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section. * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section
titles.

You may add a section Entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement
of any Modified Version. 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their War-
ranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the
various original documents, forming one section Entitled "History"; likewise
combine any sections Entitled "Acknowledgements", and any sections Enti-
tled "Dedications". You must delete all sections Entitled "Endorsements". 6.
COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it in-
dividually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document. 7. AGGREGATION WITH INDEPEN-
DENT WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation's users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications",
or "History", the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title. 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-
nently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy
of some or all of the same material does not give you any rights to use it. 10.
FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any
later version" applies to it, you have the option of following the terms and con-
ditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can
be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document. 11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World
Wide Web server that publishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A public wiki that anybody can
edit is an example of such a server. A "Massive Multiauthor Collaboration"
(or "MMC") contained in the site means any set of copyrightable works thus
published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 li-
cense published by Creative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site un-
der CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing. ADDENDUM: How to use this License
for your documents

To use this License in a document you have written, include a copy of the Li-
cense in the document and put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the "with … Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

41.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented
by the additional permissions listed below. 0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General
Public License, and the “GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by this License, other than an
Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Li-
brary, but which is not otherwise based on the Library. Defining a subclass of
a class defined by the Library is deemed a mode of using an interface provided
by the Library.

A “Combined Work” is a work produced by combining or linking an Appli-
cation with the Library. The particular version of the Library with which the
Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corre-
sponding Source for the Combined Work, excluding any source code for por-
tions of the Combined Work that, considered in isolation, are based on the
Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the ob-
ject code and/or source code for the Application, including any data and utility
programs needed for reproducing the Combined Work from the Application,
but excluding the System Libraries of the Combined Work. 1. Exception to
Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without
being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers
to a function or data to be supplied by anApplication that uses the facility (other
than as an argument passed when the facility is invoked), then you may convey
a copy of the modified version:

* a) under this License, provided that you make a good faith effort to ensure
that, in the event anApplication does not supply the function or data, the facility
still operates, and performs whatever part of its purpose remains meaningful,
or * b) under the GNU GPL, with none of the additional permissions of this
License applicable to that copy.

258

GNU Lesser General Public License

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header
file that is part of the Library. Youmay convey such object code under terms of
your choice, provided that, if the incorporated material is not limited to numer-
ical parameters, data structure layouts and accessors, or small macros, inline
functions and templates (ten or fewer lines in length), you do both of the fol-
lowing:

* a) Give prominent notice with each copy of the object code that the Library
is used in it and that the Library and its use are covered by this License. *
b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken to-
gether, effectively do not restrict modification of the portions of the Library
contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

* a) Give prominent notice with each copy of the Combined Work that the Li-
brary is used in it and that the Library and its use are covered by this License.
* b) Accompany the Combined Work with a copy of the GNU GPL and this
license document. * c) For a Combined Work that displays copyright notices
during execution, include the copyright notice for the Library among these no-
tices, as well as a reference directing the user to the copies of the GNUGPL and
this license document. * d) Do one of the following: o 0) Convey the Minimal
Corresponding Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of the Linked Ver-
sion to produce a modified CombinedWork, in the manner specified by section
6 of the GNU GPL for conveying Corresponding Source. o 1) Use a suitable
shared library mechanism for linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Library already present on the
user's computer system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked Version. * e) Pro-
vide Installation Information, but only if you would otherwise be required to
provide such information under section 6 of the GNU GPL, and only to the ex-
tent that such information is necessary to install and execute a modified version
of the Combined Work produced by recombining or relinking the Application
with a modified version of the Linked Version. (If you use option 4d0, the

Installation Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide
the Installation Information in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by
side in a single library together with other library facilities that are not Applica-
tions and are not covered by this License, and convey such a combined library
under terms of your choice, if you do both of the following:

* a) Accompany the combined library with a copy of the same work based on
the Library, uncombined with any other library facilities, conveyed under the
terms of this License. * b) Give prominent notice with the combined library
that part of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the
GNU Lesser General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Library as you
received it specifies that a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that published version or of any
later version published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser General Pub-
lic License, you may choose any version of the GNU Lesser General Public
License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future
versions of the GNU Lesser General Public License shall apply, that proxy's
public statement of acceptance of any version is permanent authorization for
you to choose that version for the Library.

259

	1 Why learn C?
	2 History
	3 What you need before you can learn
	3.1 Getting Started
	3.2 Footnotes

	4 Using a Compiler
	5 A taste of C
	6 Intro exercise
	6.1 Introductory Exercises

	7 Beginning C
	8 Preliminaries
	8.1 Basic Concepts
	8.2 Block Structure, Statements, Whitespace, and Scope
	8.3 Basics of Using Functions
	8.4 The Standard Library
	8.5 Comments and Coding Style

	9 Compiling
	9.1 Preprocessor
	9.2 Syntax Checking
	9.3 Object Code
	9.4 Linking
	9.5 Automation

	10 Structure and style
	10.1 C Structure and Style
	10.2 Introduction
	10.3 Line Breaks and Indentation
	10.4 Comments
	10.5 Links

	11 Error handling
	11.1 Preventing divide by zero errors
	11.2 Signals
	11.3 setjmp

	12 Variables
	12.1 Declaring, Initializing, and Assigning Variables
	12.2 Literals
	12.3 The Four Basic Data Types
	12.4 sizeof
	12.5 Data type modifiers
	12.6 const qualifier
	12.7 Magic numbers
	12.8 Scope
	12.9 Other Modifiers

	13 Simple Input and Output
	13.1 Output using printf()
	13.2 Other output methods
	13.3 fputs()
	13.4 Input using scanf()
	13.5 Links

	14 Simple math
	14.1 Operators and Assignments

	15 Further math
	15.1 Trigonometric functions
	15.2 Hyperbolic functions
	15.3 Exponential and logarithmic functions
	15.4 Power functions
	15.5 Nearest integer, absolute value, and remainder functions
	15.6 Error and gamma functions
	15.7 Further reading

	16 Control
	16.1 Conditionals
	16.2 Loops
	16.3 One last thing: goto
	16.4 Examples
	16.5 Further reading

	17 Procedures and functions
	17.1 More on functions
	17.2 Writing functions in C
	17.3 Using C functions
	17.4 Functions from the C Standard Library
	17.5 Variable-length argument lists

	18 Preprocessor
	18.1 Directives
	18.2 Useful Preprocessor Macros for Debugging

	19 Libraries
	19.1 Further reading

	20 Standard libraries
	20.1 History
	20.2 Design
	20.3 ANSI Standard
	20.4 Common support libraries
	20.5 Compiler built-in functions
	20.6 POSIX standard library

	21 File IO
	21.1 Introduction
	21.2 Streams
	21.3 Standard Streams
	21.4 FILE pointers
	21.5 Opening and Closing Files
	21.6 Other file access functions
	21.7 Functions that Modify the File Position Indicator
	21.8 Error Handling Functions
	21.9 Other Operations on Files
	21.10 Reading from Files
	21.11 Writing to Files
	21.12 References

	22 Beginning exercises
	22.1 Variables
	22.2 Simple I/O
	22.3 Program Flow
	22.4 Functions
	22.5 Math

	23 In-depth C ideas
	24 Arrays
	24.1 Arrays
	24.2 Strings

	25 Pointers and arrays
	25.1 Declaring pointers
	25.2 Assigning values to pointers
	25.3 Pointer dereferencing
	25.4 Pointers and Arrays
	25.5 Pointers in Function Arguments
	25.6 Pointers and Text Strings
	25.7 Pointers to Functions
	25.8 Practical use of function pointer in C
	25.9 Examples of pointer constructs
	25.10 sizeof
	25.11 External Links

	26 Memory management
	26.1 Malloc
	26.2 The calloc function
	26.3 The realloc function
	26.4 The free function
	26.5 References

	27 Strings
	27.1 Syntax
	27.2 The <string.h> Standard Header
	27.3 Examples
	27.4 Further reading

	28 Complex types
	28.1 Data structures
	28.2 Type modifiers

	29 Networking in UNIX
	29.1 A simple client
	29.2 A simple server
	29.3 Useful network functions
	29.4 FAQs

	30 Common practices
	30.1 Dynamic multidimensional arrays
	30.2 Constructors and destructors
	30.3 Nulling freed pointers
	30.4 Macro conventions
	30.5 Further reading

	31 C and beyond
	32 Language extensions
	32.1 External links

	33 Mixing languages
	33.1 Assembler
	33.2 Cg
	33.3 Java
	33.4 Perl
	33.5 Python
	33.6 For further reading
	33.7 References

	34 Code library
	35 Computer Programming
	36 Statements
	37 C Reference Tables
	38 Reference Tables
	38.1 List of Keywords
	38.2 List of Standard Headers
	38.3 Table of Operators
	38.4 Table of Data Types

	39 Compilers
	39.1 Free (or with a free version)
	39.2 Commercial

	40 Contributors
	List of Figures
	41 Licenses
	41.1 GNU GENERAL PUBLIC LICENSE
	41.2 GNU Free Documentation License
	41.3 GNU Lesser General Public License

