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2 Getting set up

This chapter will explore how to install the programs you’ll need to start coding in Haskell.

2.1 Installing Haskell

Haskell is a programming language, i.e. a language in which humans can express how computers
should behave. It’s like writing a cooking recipe: you write the recipe and the computer cooks it.

To write Haskell programs, you need a program called a Haskell compiler. A compiler is a pro-
gram that takes code written in Haskell and translates it into machine code, a second, more prim-
itive language which only computers can understand. Another explanation is that the Haskell
compiler will take the recipe you’ve written in Haskell and create a program from that.

Anyway, to start learning Haskell, download and install the HASKELL PLATFORM1. It will contain
the "Glasgow Haskell Compiler", GHC for short, and everything else you need.

Note:
UNIX users:

If you are a person who prefers to compile from source: This might be a bad idea with GHC,
especially if it’s the first time you install it. GHC is itself mostly written in Haskell, so trying to
bootstrap it by hand from source is very tricky. Besides, the build takes a very long time and
consumes a lot of disk space. If you are sure that you want to build GHC from the source, see
BUILDING AND PORTING GHC AT THE GHC HOMEPAGE2.

In short, we strongly recommend downloading the Haskell Platform instead of compiling from
source.

2.2 Very first steps

After you have installed the HASKELL PLATFORM3, it’s now time to write your first Haskell code.

For that, you will use the program called GHCi. The ’i’ stands for ’interactive’. Depending on
your operating system, perform the following steps:

• On Windows: Click Start, then Run, then type ’cmd’ and hit Enter, then type ghci and hit Enter
once more.

1 HTTP://HACKAGE.HASKELL.ORG/PLATFORM/
3 HTTP://HACKAGE.HASKELL.ORG/PLATFORM/
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• On MacOS: Open the application "Terminal" found in the "Applications/Utilities" folder, type
the letters ghci into the window that appears and hit the Enter key.

• On Linux: Open a terminal and run the ghci program.

You should get output that looks something like the following:

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.6, for Haskell

98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

\____/\/ /_/\____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude>

The first bit is GHCi’s logo. It then informs you it’s loading the base package, so you’ll have access
to most of the built-in functions and modules that come with GHC. Finally, the Prelude> bit is
known as the prompt. This is where you enter commands, and GHCi will respond with what they
evaluate to.

Now you’re ready to write your first Haskell code. In particular, let’s try some basic arithmetic:

Prelude> 2 + 2
4
Prelude> 5 * 4 + 3
23
Prelude> 2 ˆ 5
32

The operators are similar to what they are in other languages: + is addition, * is multiplication,
and ˆ is exponentiation (raising to the power of).

Now you know how to use Haskell as a calculator. A key idea of the Haskell language is that it will
always be like a calculator, except that it will become really powerful when we calculate not only
with numbers, but also with other objects like characters, lists, functions, trees and even other
programs.

GHCi is a very powerful development environment. As we progress through the course, we’ll
learn how we can load source files into GHCi, and evaluate different bits of them.

The next chapter will introduce some of the basic concepts of Haskell. Let’s dive into that and
have a look at our first Haskell functions.

PT:HASKELL/INSTALAÇÃO E ARITMÉTICA4

4 HTTP://PT.WIKIBOOKS.ORG/WIKI/HASKELL%2FINSTALA%E7%E3O%20E%20ARITM%E9TICA

4

http://pt.wikibooks.org/wiki/Haskell%2FInstala%E7%E3o%20e%20aritm%E9tica


3 Variables and functions

(All the examples in this chapter can be typed into a Haskell source file and evaluated by loading
that file into GHC or Hugs.)

3.1 Variables

We’ve already seen how to use the GHCi program as a calculator. Of course, this is only practical
for very short calculations. For longer calculations and for writing Haskell programs, we need to
keep track of intermediate results.

Intermediate results are stored in variables. For instance, consider the following calculation

ghci> 3.1416 * 5ˆ2
78.53999999999999

This is the area of a circle with radius 5. It is very cumbersome to type in the digits of π≈ 3.1416,
or even to remember them at all; in fact, the whole point of programming is to delegate mindless
repetition and rote memorization to a machine. That’s why Haskell has defined a variable named
pi that stores over a dozen digits of π for us.

ghci> pi
3.141592653589793
ghci> pi * 5ˆ2
78.53981633974483

In other words, the variable pi and its value 3.141592653589793 can be used interchangeably
in calculations.

Now, we want to define our own variables to help us in our calculations. This is done in a so
called Haskell source file.

3.2 Haskell source files

Create a new file called Varfun.hs in your favorite TEXT EDITOR1 (the file ending "hs" stands for
Haskell) and paste in the following definition:

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEXT%20EDITOR
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r = 5.0

Make sure that there are no spaces between the first letter and the beginning of the line, because
Haskell is a whitespace sensitive language.

Now change into the directory where you saved your file, open up GHCi, and use the :load
command in GHCi (:l can be used as abbreviation):

Prelude> :load Varfun.hs
Compiling Main ( Varfun.hs, interpreted )
Ok, modules loaded: Main.

• Main>

Loading a Haskell source file will make all its definitions available in the GHCi prompt.

If GHCi gives an error, "Could not find module ’Varfun.hs’", you probably forgot to change the
directory. Use the :cd command to change the current directory to the directory containing your
file "Varfun.hs":

Prelude> :cd c:\myDirectory
Prelude> :load Varfun.hs
Compiling Main ( Varfun.hs, interpreted )
Ok, modules loaded: Main.

• Main>

Now you can use the newly defined variable r in your calculations.

• Main> r

5

• Main> pi * rˆ2

78.53981633974483

So, to calculate the area of a circle of radius 5, we simply define r = 5.0 and then type in the
well-known formula π·r 2 for the area of a circle. There is no need to write the numbers out every
time; that’s very convenient!

Since this was so much fun, let’s add another definition; change the contents of the source file to

r = 5
area = pi * r ˆ 2

6
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Save the file and type the :reload (or just :r) command in GHCi to load the new contents

• Main> :reload

Compiling Main ( Varfun.hs, interpreted )
Ok, modules loaded: Main.

• Main>

Now we have two variables r and area available

• Main> area

78.53981633974483

• Main> area / r

15.707963267948966

Note:
It is also possible to define variables directly at the GHCi prompt, without a source file. Skipping
the details, the syntax for doing so uses the let keyword, and looks like:

Prelude> let area = pi * 5 ˆ 2

Although we will occasionally do such definitions for expediency in the examples, it will quickly
become obvious, as we move into slightly more complex tasks, that this practice is not really
convenient. That is why we are emphasizing the use of source files from the very start.

Note:
To experienced programmers: GHC can also be used as a compiler (that is, you could use GHC
to convert your Haskell files into a stand-alone program that can be run without running the
interpreter). How to do so will be explained much later.

3.3 Variables in imperative languages

If you are already familiar with imperative programming languages like C, you may have noticed
that variables in Haskell are quite different from variables as you know them. We now explain
why and how.

If you have no programming experience, you are to skip this section and continue reading with
FUNCTIONS2.

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23FUNCTIONS
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Note:
Variables do not vary

Unlike in imperative languages, variables in Haskell do not vary. Once defined, their value never
changes; they are immutable. For instance, the following code does not work:

-- this does not work
r = 5
r = 2

because it means to define one thing twice, which is silly. The compiler will complain something
about "multiple declarations of r". You may be accustomed to read this as first setting r = 5
and then changing it to r = 2, but that’s not how Haskell works. Variables in Haskell are more
like abbreviations for long expressions, much like in a calculation on paper, than locations in a
changing computer memory.

Another example that doesn’t work as you’d expect is

r = r + 1 -- this does not increment r

Instead of "incrementing the variable r", this is actually a recursive definition of r in terms of
itself. We will explain RECURSION3 in detail later on; for now just remember that this snippet of
code does something very different from what you might be accustomed to.

This also implies that the order in which you declare different variables does not matter. For
example, the following fragments of code do exactly the same thing:

y = x * 2
x = 3

x = 3
y = x * 2

We can write things in any order that we want, there is no notion of "x being declared before y"
or the other way round. (This is also why you can’t declare something more than once, it would
be ambiguous otherwise.)

By now, you will probably look very incredulous and wonder how you can actually do anything
at all in Haskell where variables don’t change. But trust us; as we hope to show you in the rest of
this book, you can write every program under the sun without ever changing a single variable!
In fact, variables that don’t change make life so much easier because it makes programs much
more predictable. It’s a key feature of purely functional programming, not a bug.

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FRECURSION
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3.4 Functions

Now, imagine that we have multiple circles with different radii whose areas we want to calculate.
For instance, to also calculate the area of another circle with radius 3, we would have to include
new variables r2 and area24 in our source file:

r = 5
area = pi*rˆ2
r2 = 3
area2 = pi*r2ˆ2

Clearly, this is not very satisfactory because we are repeating the formula for the area of a circle
verbatim; we would prefer to write it down only once and then apply it to different radii. That’s
exactly what functions allow us to do.

A function is a mapping from an argument value (also called parameter) to a result value. Defin-
ing functions in Haskell is simple; it is like defining a variable, except that we take note of the
function argument on the left hand side. For instance, the following is the definition of a func-
tion area which depends on a argument r

area r = pi * rˆ2

We can plug in different values for the parameter; load this definition into GHCi and try the
following

• Main> area 5

78.53981633974483

• Main> area 3

28.274333882308138

• Main> area 17

907.9202768874502

As you can see, we can apply this function to different radii to calculate their area of the corre-
sponding circles.

You should know functions from mathematics already. They are usually written something like

A(r ) =π · r 2

4 As you can see, the names of variables may also contain numbers. Variables must begin with a lowercase letter,
but for the rest, any string consisting of letter, numbers, underscore (_) or tick (’) is allowed.
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The parameter is enclosed in parentheses and we would talk about A(5) = 78.54 or A(3) = 28.27.
In Haskell, these parentheses are omitted, the function name and the argument will be separated
by just some whitespace. After all, since Haskell is a functional language, we will apply a lot of
functions, that’s why we better use a very brief notation for that.

Parentheses are still used for grouping, however. For example,

area (5+3)

means to first calculate (5+3) = 8 and then calculate the area of that, while

area 5 + 3

means to calculate area 5 first and add 3 to that.

3.4.1 Evaluation

Let us try to understand what exactly happens when you enter an expression into GHCi. After
you press the enter key, GHCi will evaluate the expression you have given. This means that it
will replace each function with its definition and calculate the results until a single value is left.
For example, the evaluation of area 5 proceeds as follows:

area 5
=> { replace the left-hand side area r = ... by the right-hand
side ... = pi * rˆ2 }

pi * 5ˆ2
=> { replace pi by its numerical value }

3.141592653589793 * 5ˆ2
=> { apply exponentiation (ˆ) }

3.141592653589793 * 25
=> { apply multiplication (*) }

78.53981633974483

To apply a function means to replace the left-hand side of its definition by its right-hand side. As
a last step, GHCi prints the final result on the screen.

Here are some more functions

double x = 2*x
quadruple x = double (double x)
square x = x*x
half x = x / 2

{{Exercises|1=

• Explain how GHCi evaluates quadruple 5.
• Define a function that subtracts 12 from half its argument.}}
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3.4.2 Multiple parameters

Functions can also have more than one argument. For example, here is a function for calculating
the area of a rectangle given its length and its width:

areaRect l w = l * w

• Main> areaRect 5 10

50

Another example that calculates the area of a right triangle
(

A = bh
2

)
:

areaRightTriangle b h = (b * h) / 2

• Main> areaRightTriangle 3 9

13.5

As you can see, multiple arguments are separated by spaces. That’s also why you sometimes have
to use parentheses to group expressions. For instance, to quadruple a value x, you can’t write

quadruple x = double double x -- wrong

because that would mean to apply a function named double to the two arguments double and
x. Instead, you have to put parentheses around the argument:

quadruple x = double (double x) -- correct

Arguments are always passed in the order given. So, areaRtTriangle 3 9 gives us the area of a
triangle with base 3 and height 9, whereas areaRtTriangle 9 3 gives us the area with the base
9 and height 3.

Exercises:

• Write a function to calculate the volume of a box.
• Approximately how many stones are the famous pyramids at Giza made up of? Use GHCi for

your calculations.

11
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3.4.3 Remark on combining functions

It goes without saying that you can use functions that you have already defined to define new
functions, just like you can use the predefined functions like addition (+) or multiplication (*).
For example, to calculate the area of a square, we can reuse our function that calculates the area
of a rectangle

areaRect l w = l * w
areaSquare s = areaRect s s

• Main> areaSquare 5

25

After all, a square is just a rectangle with equal sides.

This principle may seem innocent enough, but it is really powerful, in particular when we start
to calculate with other objects instead of numbers.

Exercises:

• Write a function to calculate the volume of a cylinder.

3.5 Local definitions (where clauses)

3.5.1 where clauses

When defining a function, it is not uncommon to define intermediate results that are local to the
function. For instance, consider HERON’S FORMULA5 for calculating the area of a triangle with
sides a, b and c:

heron a b c = sqrt (s*(s-a)*(s-b)*(s-c))
where
s = (a+b+c) / 2

The variable s is half the perimeter of the triangle and it would be tedious to write it out four
times in the argument of the square root function sqrt.

It would be wrong to just write the definitions in sequence

heron a b c = sqrt (s*(s-a)*(s-b)*(s-c)) -- wrong

5 HTTP://EN.WIKIPEDIA.ORG/WIKI/HERON%27S%20FORMULA
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s = (a+b+c) / 2

because the variables a, b, c are only available in the right-hand side of the function heron, but
the definition of s as written here is not part of the right-hand side of heron. To make it part of
the right-hand side, we have to use the where keyword.

Note that both the where and the local definitions are indented by 4 spaces, to distinguish them
from subsequent definitions. Here another example that shows a mix of local and top-level defi-
nitions:

areaTriangleTrig a b c = c * height / 2 -- use trigonometry
where
cosa = (bˆ2 + cˆ2 - aˆ2) / (2*b*c)
sina = sqrt (1 - cosaˆ2)
height = b*sina

areaTriangleHeron a b c = result -- use Heron’s formula
where
result = sqrt (s*(s-a)*(s-b)*(s-c))
s = (a+b+c)/2

3.5.2 Scope

If you look closely at the previous example, you’ll notice that we have used the variable names a,
b, c twice, once for each of the area.. functions. How does that work?

...

Fortunately, the following fragment of code does not contain any unpleasant surprises:

Prelude> let r = 0
Prelude> let area r = pi * r ˆ 2
Prelude> area 5
78.53981633974483

An unpleasant surprise here would have been getting the value 0 because of the let r = 0 def-
inition getting in the way. That does not happen because when you defined r the second time
you are talking about a different r. This is something that happens in real life as well. How many
people do you know that have the name John? What’s interesting about people named John is
that most of the time, you can talk about "John" to your friends, and depending on the context,
your friends will know which John you are referring to. Programming has something similar to
context, called SCOPE6. We won’t explain the technicalities behind scope (at least not now), but
Haskell’s lexical scope is the magic that lets us define two different r and always get the right one
back depending on context.

Thanks to scope, the value of a parameter is strictly what you pass in when you call the function.
Informally, we could say the r in let r = 0 is not the same r as the one inside our defined
function area - the r inside area overrides the other r; you can think of it as Haskell picking

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/SCOPE%20%28PROGRAMMING%29
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the most specific version of r there is. If you have many friends all named John, you go with the
one which just makes more sense and is specific to the context; similarly, what value of r we get
depends on the scope.

3.6 Summary

1. Variables store values. In fact, they store any arbitrary Haskell expressions.
2. Variables do not change.
3. Functions help you write reusable code.
4. Functions can accept more than one parameter.

3.7 Notes

<references/>

PT:HASKELL/VARIÁVEIS E FUNÇÕES7
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4 Truth values

4.1 Equality and other comparisons

So far we have seen how to use the equals sign to define variables and functions in Haskell.
Writing

r = 5

will cause occurrences of r to be replaced by 5 in all places where it makes sense to do so accord-
ing to the scope of the definition. Similarly,

f x = x + 3

causes occurrences of f followed by a number (which is taken as f’s argument) to be replaced by
that number plus three.

In Mathematics, however, the equals sign is also used in a subtly different and equally important
way. For instance, consider this simple problem:

Example: Solve the following equation:x +3 = 5
x +3 = 5

When we look at a problem like this one, our immediate concern is not the ability to represent
the value 5 as x +3, or vice-versa. Instead, we read the x +3 = 5 equation as a proposition, which
says that some number x gives 5 as result when added to 3. Solving the equation means finding
which, if any, values of x make that proposition true. In this case, using elementary algebra we
can convert the equation into x = 5−3 and finally to x = 2, which is the solution we were looking
for. The fact that it makes the equation true can be verified by replacing x with 2 in the original
equation, leading us to 2+3 = 5, which is evidently true.

The ability of comparing values to see if they are equal turns out to be extremely useful in pro-
gramming. Haskell allows us to write such tests in a very natural way that looks just like an
equation. The main difference is that, since the equals sign is already used for defining things,
we use a double equals sign, ==. To see it at work, you can start GHCi and enter the proposition
we wrote above like this:

Prelude> 2 + 3 == 5
True
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GHCi returns "True" lending further confirmation of the fact that 2+3 is equal to 5. Of course,
2 is the only value that satisfies the equation x +3 = 5, and therefore we would expect to obtain
different results with other numbers.

Prelude> 7 + 3 == 5
False

Nice and coherent. Another thing to point out is that nothing stops us from using our own func-
tions in these tests. Let us try it with the function f we mentioned at the start of the module:

Prelude> let f x = x + 3
Prelude> f 2 == 5
True

Just as expected, since f 2 is just 2 + 3.

In addition to tests for equality, we can just as easily compare two numerical values to see which
one is larger. Haskell provides a number of tests including: < (less than), > (greater than), <=
(less than or equal to) and >= (greater than or equal to), which work in exactly the same way
as == (equal to). For a simple application, we could use < alongside the area function from the
previous module to see whether a circle of a certain radius would have an area smaller than some
value.

Prelude> let area r = pi * rˆ2
Prelude> area 5 < 50
False

4.2 Boolean values

At this point, GHCi might look like some kind of oracle, which can tell you if propositions are
true or false. That’s all fine and dandy, but how could that help us to write programs? And what
is actually going on when GHCi "answers" such "questions"?

To understand that, we will start from a different but related question. If we enter an arithmetical
expression in GHCi the expression gets evaluated, and the resulting numerical value is displayed
on the screen:

Prelude> 2 + 2
4

If we replace the arithmetical expression with an equality comparison, something similar seems
to happen:

Prelude> 2 == 2
True
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But what is that "True" that gets displayed? It certainly does not look like a number. We can think
of it is as something that tells us about the veracity of the proposition 2 == 2. From that point
of view, it makes sense to regard it as a value - except that instead of representing some kind of
count, quantity, etc. it stands for the truth of a proposition. Such values are called truth values,
or boolean values1. Naturally, there are only two possible boolean values - True and False.

4.2.1 An introduction to types

When we say True and False are values, we are not just making an analogy. Boolean values have
the same status as numerical values in Haskell, and indeed you can manipulate them just as well.
One trivial example would be equality tests on truth values:

Prelude> True == True
True
Prelude> True == False
False

True is indeed equal to True, and True is not equal to False. Now, quickly: can you answer
whether 2 is equal to True?

Prelude> 2 == True
<interactive>:1:0:

No instance for (Num Bool)
arising from the literal ‘2’ at <interactive>:1:0

Possible fix: add an instance declaration for (Num Bool)
In the first argument of ‘(==)’, namely ‘2’
In the expression: 2 == True
In the definition of ‘it’: it = 2 == True

The correct answer is you can’t, no matter if quickly or with hours of reasoning, because the
question just does not make sense. It is impossible to compare a number with something that
is not a number, or a boolean with something that is not a boolean. Haskell incorporates that
notion, and the ugly error message we got is, in essence, stating exactly that. Ignoring all of the
obfuscating clutter (which we will get to understand eventually) what the message tells us is that,
since there was a number (Num) on the left side of the ==, some kind of number was expected on
the right side. But a boolean value (Bool) is not a number, and so the equality test exploded into
flames.

The general concept, therefore, is that values have types, and these types define what we can or
cannot do with the values. In this case, for instance, True is a value of type Bool, just like False
(as for the 2, while there is a well-defined concept of number in Haskell the situation is slightly
more complicated, so we will defer the explanations for a little while). Types are a very powerful
tool because they provide a way to regulate the behaviour of values with rules which make sense,

1 The term is a tribute to the mathematician and philosopher GEORGE BOOLE ˆ{HTTP://EN.WIKIPEDIA.ORG/
WIKI/GEORGE%20BOOLE} .
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making it easier to write programs that work correctly. We will come back to the topic of types in
many opportunities, starting with the very next module of this book.

4.3 Infix operators

What we have seen so far leads us to the conclusion that an equality test like 2 == 2 is an expres-
sion just like 2 + 2, and that it also evaluates to a value in pretty much the same way. That fact
is actually given a passing mention on the ugly error message we got on the previous example:

In the expression: 2 == True

Therefore, when we type 2 == 2 in the prompt and GHCi "answers" True it is just evaluating an
expression. But there is a deeper truth involved in this process. A hint is provided by the very
same error message:

In the first argument of ‘(==)’, namely ‘2’

GHCi called 2 the first argument of (==). In the previous module we used the term argument to
describe the values we feed a function with so that it evaluates to a result. It turns out that == is
just a function, which takes two arguments, namely the left side and the right side of the equality
test. The only special thing about it is the syntax: Haskell allows two-argument functions with
names composed only of non-alphanumeric characters to be used as infix operators, that is,
placed between their arguments. The only caveat is that if you wish to use such a function in
the "standard" way (writing the function name before the arguments, as a prefix operator) the
function name must be enclosed in parentheses. So the following expressions are completely
equivalent:

Prelude> 4 + 9 == 13
True
Prelude> (==) (4 + 9) 13
True

Writing the expression in this alternative style further drives the point that (==) is a function with
two arguments just like areaRect in the previous module was. What’s more, the same consider-
ations apply to the other relational operators we mentioned (<, >, <=, >=) and to the arithmetical
operators (+, *, etc.) - all of them are just functions. This generality is an illustration of one of the
strengths of Haskell - there are quite few "special cases", and that helps to keep things simple. In
general, we could say that all tangible things in Haskell are either values, variables or functions.2

2 In case you found this statement to be quite bold, don’t worry - we will go even further in due course.
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4.4 Boolean operations

One nice and useful way of seeing both truth values and infix operators in action are the boolean
operations, which allows us to manipulate truth values as in logic propositions. Haskell provides
us three basic functions for that purpose:

• (&&) performs the and operation. Given two boolean values, it evaluates to True if both the
first and the second are True, and to False otherwise.

Prelude> (3 < 8) && (False == False)
True
Prelude> (&&) (6 <= 5) (1 == 1)
False

• (||) performs the or operation. Given two boolean values, it evaluates to True if either the
first or the second are True (or if both are true), and to False otherwise.

• not performs the negation of a boolean value; that is, it converts True to False and vice-versa.

Prelude> not (5 * 2 == 10)
False

One relational operator we didn’t mention so far in our discussions about compari-
son of values is the not equal to operator. It is also provided by Haskell as the (/=)
function, but if we had to implement it a very natural way of doing so would be:

x /= y = not (x == y)

Note that it is perfectly legal syntax to write the operators infix, even when defining
them.

4.5 Guards

Earlier on in this module we proposed two questions about the operations involving truth val-
ues: what was actually going on when we used them and how they could help us in the task of
writing programs. While we now have a sound initial answer for the first question, the second
one could well look a bit nebulous to you at this point, as we did little more than testing one-line
expressions here. We will tackle this issue by introducing a feature that relies on boolean values
and operations and allows us to write more interesting and useful functions: guards.
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To show how guards work, we are going to implement the absolute value function. The absolute
value of a number is the number with its sign discarded3; so if the number is negative (that is,
smaller than zero) the sign is inverted; otherwise it remains unchanged. We could write the
definition as:

|x| =
{

x, if x ≥ 0

−x, if x < 0.

The key feature of the definition is that the actual expression to be used for calculating |x| de-
pends on a set of propositions made about x. If x ≥ 0 we use the first expression, but if x < 0 we
use the second one instead. If we are going to implement the absolute value function in Haskell
we need a way to express this decision process. That is exactly what guards help us to do. Using
them, the implementation could look like this:4

Example: The abs function.

abs x
| x < 0 = 0 - x
| otherwise = x

abs x
| x < 0 = 0 - x
| otherwise = x

Impressively enough, the above code is almost as readable as the corresponding mathematical
definition. In order to see how the guard syntax fits with the rest of the Haskell constructs, let us
dissect the components of the definition:

• We start just like in a normal function definition, providing a name for the function, abs, and
saying it will take a single parameter, which we will name x.

• Instead of just following with the = and the right-hand side of the definition, we entered a
line break, and, following it, the two alternatives, placed in separate lines.5 These alternatives
are the guards proper. An important observation is that the whitespace is not there just for
aesthetic reasons, but it is necessary for the code to be parsed correctly.

• Each of the guards begins with a pipe character, |. After the pipe, we put a expression which
evaluates to a boolean (also called a boolean condition or a predicate), which is followed by
the rest of the definition - the equals sign and the right-hand side which should be used if the
predicate evaluates to True.

• The otherwise deserves some additional explanation. If none of the preceding predicates
evaluates to True, the otherwise guard will be deployed by default. In this case, if x is not

3 Technically, that just covers how to get the absolute value of a real number, but let’s ignore this detail for now.
4 abs is also provided by Haskell, so in a real-world situation you don’t need to worry about providing an imple-

mentation yourself.</tt>
5 We could have joined the lines and written everything in a single line, but in this case it would be a lot less

readable.
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smaller than it must be greater or equal than zero, so it makes no difference to use x >= 0 or
otherwise as the last predicate.

Note:
There is no syntactical magic behind otherwise. It is defined alongside the default variables and
functions of Haskell as simply

otherwise = True

This definition makes for a catch-all guard since evaluation of the guard predicates is sequen-
tial, and so the always true otherwise predicate will only be reached if none of the other ones
evaluates to True (that is, assuming you place it as the last guard!). In general it is a good idea to
always provide an otherwise guard, as if none of the predicates is true for some input a rather
ugly runtime error will be produced.

Note:
You might be wondering why we wrote 0 - x and not simply -x to denote the sign inversion.
Truth is, we could have written the first guard as

| x < 0 = -x

and it would have worked just as well. The only issue is that this way of expressing sign inver-
sion is actually one of the few "special cases" in Haskell, in that this - is not a function that takes
one argument and evaluates to 0 - x, but just a syntactical abbreviation. While very handy, this
shortcut occasionally conflicts with the usage of (-) as an actual function (the subtraction op-
erator), which is a potential source of annoyance (for one of several possible issues, try writing
three minus minus four without using any parentheses for grouping). In any case, the only rea-
son we wrote 0 - x explicitly on the example was so that we could have an opportunity to make
this point perfectly clear in this brief digression.

4.5.1 where and guards

where clauses are particularly handy when used with guards. For instance, consider this func-
tion, which computes the number of (real) solutions for a QUADRATIC EQUATION6, ax2+bx+c = 0:

numOfSolutions a b c
| disc > 0 = 2
| disc == 0 = 1
| otherwise = 0

where
disc = bˆ2 - 4*a*c

The where definition is within the scope of all of the guards, sparing us from repeating the ex-
pression for disc.

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUADRATIC%20EQUATION
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4.6 Notes

<references/>
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5 Type basics

Types in programming are a way of grouping similar values into categories. In Haskell, the type
system is a powerful way of ensuring there are fewer mistakes in your code.

5.1 Introduction

Programming deals with different sorts of entities. For example, consider adding two numbers
together:

2+3

What are 2 and 3? We can quite simply describe them as numbers. And what about the plus sign
in the middle? That’s certainly not a number, but it stands for an operation which we can do with
two numbers - namely, addition.

Similarly, consider a program that asks you for your name and then greets you with a "Hello"
message. Neither your name nor the word Hello are numbers. What are they then? We might
refer to all words and sentences and so forth as text. In fact, it’s more normal in programming to
use a slightly more esoteric word, that is, String.

Note:
In Haskell, the rule is that all type names have to begin with a capital letter. We shall adhere to
this convention henceforth.

Databases illustrate clearly the concept of types. For example, say we had a table in a database
to store details about a person’s contacts; a kind of personal telephone book. The contents might
look like this:

First Name Last Name Telephone number Address
Sherlock Holmes 743756 221B Baker Street

London
Bob Jones 655523 99 Long Road

Street Villestown

The fields in each entry contain values. Sherlock is a value as is 99 Long Road Street
Villestown as well as 655523. As we’ve said, types are a way of categorizing data, so let us
see how we could classify the values in this example. The first three fields seem straightforward
enough. "First Name" and "Last Name" contain text, so we say that the values are of type String,
while "Telephone Number" is clearly a number.
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At first glance one may be tempted to classify address as a String. However, the semantics behind
an innocent address are quite complex. There are a whole lot of human conventions that dictate
how we interpret it. For example, if the beginning of the address text contains a number it is
likely the number of the house. If not, then it’s probably the name of the house - except if it starts
with "PO Box", in which case it’s just a postal box address and doesn’t indicate where the person
lives at all.

Clearly, there’s more going on here than just text, as each part of the address has its own mean-
ing. In principle there is nothing wrong with saying addresses are Strings, but when we describe
something as a String all that we are saying is that it is a sequence of letters, numbers, etc. Claim-
ing they’re of some more specialized type, say, Address, is far more meaningful. If we know some-
thing is an Address, we instantly know much more about the piece of data - for instance, that we
can interpret it using the "human conventions" that give meaning to addresses.

In retrospect, we might also apply this rationale to the telephone numbers. It could be a good
idea to speak in terms of a TelephoneNumber type. Then, if we were to come across some arbi-
trary sequence of digits which happened to be of type TelephoneNumber we would have access
to a lot more information than if it were just a Number - for instance, we could start looking for
things such as area and country codes on the initial digits.

Another reason to not consider the telephone numbers as just Numbers is that doing arithmetics
with them makes no sense. What is the meaning and expected effect of, say, adding 1 to a Tele-
phoneNumber? It would not allow calling anyone by phone. That’s a good reason for using a
more specialized type than Number. Also, each digit comprising a telephone number is impor-
tant; it’s not acceptable to lose some of them by rounding it or even by omitting leading zeroes.

5.1.1 Why types are useful

So far, it seems that all what we’ve done was to describe and categorize things, and it may not
be obvious why all of this talk would be so important for writing actual programs. Starting with
this module, we will explore how Haskell uses types to the programmer’s benefit, allowing us
to incorporate the semantics behind, say, an address or a telephone number seamlessly in the
code.

5.2 Using the interactive :type command

The best way to explore how types work in Haskell is from GHCi. The type of any expression can
be checked with the immensely useful :type command. Let us test it on the boolean values from
the previous module:

Example: Exploring the types of boolean values in GHCi
Prelude> :type True
True :: Bool
Prelude> :type False
False :: Bool
Prelude> :t (3 < 5)
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(3 < 5) :: Bool

Usage of :type is straightforward: enter the command into the prompt followed by whatever you
want to find the type of. On the third example, we show an abbreviated version of the command,
:t, which we will be using from now on. GHCi will then print the type of the expression. The
symbol ::, which will appear in a couple other places, can be read as simply "is of type".

:type reveals that truth values in Haskell are of type Bool, as illustrated above for the two possi-
ble values, True and False, as well as for a sample expression that will evaluate to one of them.
It is worthy to note at this point that boolean values are not just for value comparisons. Bool
captures in a very simple way the semantics of a yes/no answer, and so it can be useful to repre-
sent any information of such kind - say, whether a name was found in a spreadsheet, or whether
a user has toggled an on/off option.

5.2.1 Characters and strings

Now let us try :t on something new. Literal characters are entered by enclosing them with single
quotation marks. For instance this is a single H letter:

Example: Using the :type command in GHCi on a literal character
Prelude> :t ’H’
’H’ :: Char

Literal character values, then, have type Char. Single quotation marks, however, only work for
individual characters. If we need to enter actual text - that is, a string of characters - we use
double quotation marks instead:

Example: Using the :t command in GHCi on a literal string
Prelude> :t "Hello World"
"Hello World" :: [Char]

Seeing this output, a pertinent question would be "why did we get Char" again? The difference
is in the square brackets. [Char] means a number of characters chained together, forming a list.
That is what text strings are in Haskell - lists of characters.1

{{Exercises|1=

1. Try using :type on the literal value "H" (notice the double quotes). What happens? Why?
2. Try using :type on the literal value ’Hello World’ (notice the single quotes). What hap-

pens? Why?}}

1 Lists, be they of characters or of other things, are very important entities in Haskell, and we will cover them in
more detail in a little while.
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A nice thing to be aware of is that Haskell allows for type synonyms, which work pretty much
like synonyms in human languages (words that mean the same thing - say, ’fast’ and ’quick’).
In Haskell, type synonyms are alternate names for types. For instance, String is defined as a
synonym of [Char], and so we can freely substitute one with the other. Therefore, to say:

"Hello World" :: String

is also perfectly valid, and in many cases a lot more readable. From here on we’ll mostly refer to
text values as String, rather than [Char].

5.3 Functional types

So far, we have seen how values (strings, booleans, characters, etc.) have types and how these
types help us to categorize and describe them. Now, the big twist, and what makes the Haskell’s
type system truly powerful: Not only values, but functions have types as well2. Let’s look at some
examples to see how that works.

5.3.1 Example: not

Consider not, that negates boolean values (changing True to false and vice-versa). To figure out
the type of a function we consider two things: the type of values it takes as its input and the type
of value it returns. In this example, things are easy. not takes a Bool (the Bool to be negated),
and returns a Bool (the negated Bool). The notation for writing that down is:

Example: Type signature for not

not :: Bool -> Bool

not :: Bool -> Bool

You can read this as "not is a function from things of type Bool to things of type Bool". In case
you are wondering about using :t on a function...

Prelude> :t not
not :: Bool -> Bool

... it will work just as expected. This description of the type of a function in terms of the types of
argument(s) and result is called a type signature.

2 The deeper truth is that functions are values, just like all the others.
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5.3.2 Example: chr and ord

Text presents a problem to computers. Once everything is reduced to its lowest level, all a com-
puter knows how to deal with are 1s and 0s: computers work in binary. As working with binary
numbers isn’t at all convenient, humans have come up with ways of making computers store
text. Every character is first converted to a number, then that number is converted to binary
and stored. Hence, a piece of text, which is just a sequence of characters, can be encoded into
binary. Normally, we’re only interested in how to encode characters into their numerical rep-
resentations, because the computer generally takes care of the conversion to binary numbers
without our intervention.

The easiest way of converting characters to numbers is simply to write all the possible characters
down, then number them. For example, we might decide that ’a’ corresponds to 1, then ’b’ to 2,
and so on. This is exactly what a thing called the ASCII standard is: 128 of the most commonly-
used characters, numbered. Of course, it would be a bore to sit down and look up a character in
a big lookup table every time we wanted to encode it, so we’ve got two functions that can do it
for us, chr (pronounced ’char’) and ord 3:

Example: Type signatures for chr and ord

chr :: Int -> Char
ord :: Char -> Int

chr :: Int -> Char
ord :: Char -> Int

We already know what Char means. The new type on the signatures above, Int, amounts to
integer numbers, and is one of quite a few different types of numbers. 4 The type signature of
chr tells us that it takes an argument of type Int, an integer number, and evaluates to a result
of type Char. The converse is the case with ord: It takes things of type Char and returns things
of type Int. With the info from the type signatures, it becomes immediately clear which of the
functions encodes a character into a numeric code (ord) and which does the decoding back to a
character (chr).

To make things more concrete, here are a few examples of function calls to chr and ord. Notice
that the two functions aren’t available by default; so before trying them in GHCi you need to
use the :module Data.Char (or :m Data.Char) command to load the Data.Char module, where
they are defined.

Example: Function calls to chr and ord
Prelude> :m Data.Char
Prelude Data.Char> chr 97
’a’

3 This isn’t quite what chr and ord do, but that description fits our purposes well, and it’s close enough.
4 In fact, it is not even the only type for integers! We will meet its relatives in a short while.
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Prelude Data.Char> chr 98
’b’
Prelude Data.Char> ord ’c’
99

5.3.3 Functions in more than one argument

The style of type signatures we have been using works fine enough for functions of one argument.
But what would be the type of a function like this one?

Example: A function with more than one argument

f x y = x + 5 + 2 * y

f x y = x + 5 + 2 * y

(As we mentioned above, there’s more than one type for numbers, but for now we’re going to
cheat and pretend that x and y have to be Ints.)

The general technique for forming the type of a function that accepts more than one argument is
simply to write down all the types of the arguments in a row, in order (so in this case x first then
y), then link them all with ->. Finally, add the type of the result to the end of the row and stick a
final -> in just before it.5 In this example, we have:

Example: The type signature of a function with more than one argument

f :: (Num a) => a -> a -> a

f :: (Num a) => a -> a -> a

<!-- There’s a problem with using continuing list numbering, , and wiki syntax all together -->

<ol>

<li>

Write down the types of the arguments. We’ve already said that

<code>x</code> and <code>y</code> have to be Ints, so it becomes:

<pre>

Int Int

5 This method might seem just a trivial hack by now, but actually there are very deep reasons behind it, which
we’ll cover in the chapter on CURRYING ˆ{HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FHIGHER-{}ORDER%
20FUNCTIONS%20AND%20CURRYING} .
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ˆˆ x is an Int ˆˆ y is an Int as well

</li> Fill in the gaps with ->: Int -> Int

Add in the result type and a final ->. In our case, we’re just doing some basic arithmetic so the
result remains an Int.
Int -> Int -> Int

ˆˆ We’re returning an Int

ˆˆ There’s the extra -> that got added in

</ol>

5.3.4 Real-World Example: openWindow

Note:
A library is a collection of common code used by many programs.

As you’ll learn in the Practical Haskell section of the course, one popular group of Haskell li-
braries are the GUI ones. These provide functions for dealing with all the parts of Windows or
Linux you’re familiar with: opening and closing application windows, moving the mouse around
etc. One of the functions from one of these libraries is called openWindow, and you can use it to
open a new window in your application. For example, say you’re writing a word processor, and
the user has clicked on the ’Options’ button. You need to open a new window which contains all
the options that they can change. Let’s look at the type signature for this function 6:

Example: openWindow

openWindow :: WindowTitle -> WindowSize -> Window

openWindow :: WindowTitle -> WindowSize -> Window

Don’t panic! Here are a few more types you haven’t come across yet. But don’t worry, they’re
quite simple. All three of the types there, WindowTitle, WindowSize and Window are defined
by the GUI library that provides openWindow. As we saw when constructing the types above,
because there are two arrows, the first two types are the types of the parameters, and the last is
the type of the result. WindowTitle holds the title of the window (what appears in the bar at the
very top of the window, left of the close/minimize/etc. buttons), and WindowSize specifies how
big the window should be. The function then returns a value of type Window which represents
the actual window.

One key point illustrated by this example, as well as the chr/ord one is that, even if you have
never seen the function or don’t know how it actually works, a type signature can immediately
give you a good general idea of what the function is supposed to do. For that reason, a very useful

6 This has been somewhat simplified to fit our purposes. Don’t worry, the essence of the function is there.
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habit to acquire is testing every new function you meet with :t. If you start doing so right now
you’ll not only learn about the standard library Haskell functions quite a bit quicker but also
develop a useful kind of intuition. Curiosity pays off :)

{{Exercises| Finding types for functions is a basic Haskell skill that you should become very fa-
miliar with. What are the types of the following functions?

1. The negate function, which takes an Int and returns that Int with its sign swapped. For
example, negate 4 = -4, and negate (-2) = 2

2. The (&&) function, pronounced ’and’, that takes two Bools and returns a third Bool which
is True if both the arguments were, and False otherwise.

3. The (||) function, pronounced ’or’, that takes two Bools and returns a third Bool which is
True if either of the arguments were, and False otherwise.

For any functions hereafter involving numbers, you can just assume the numbers are Ints.

1. f x y = not x && y
2. g x = (2*x - 1)ˆ2
3. h x y z = chr (x - 2) }}

5.4 Type signatures in code

Now we’ve explored the basic theory behind types as well as how they apply to Haskell. The key
way in which type signatures are used is for annotating functions. For an applied example, let us
have a look at a very small module (modules in Haskell are just a neat way of making a library by
packing functions for usage in other programs. No need to worry with details now).

Example: Module without type signatures

module StringManip where
import Data.Char
uppercase = map toUpper
lowercase = map toLower
capitalise x =
let capWord [] = []

capWord (x:xs) = toUpper x : xs
in unwords (map capWord (words x))

module StringManip where
import Data.Char
uppercase = map toUpper
lowercase = map toLower
capitalise x =

let capWord [] = []
capWord (x:xs) = toUpper x : xs

in unwords (map capWord (words x))
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This tiny library provides three handy string manipulation functions. uppercase converts a
string to uppercase, lowercase to lowercase, and capitalize capitalizes the first letter of ev-
ery word. Each of these functions takes a String as argument and evaluates to another String.
For now, don’t worry with how the code actually works, as it is obviously full of features we
haven’t discussed yet. Anyway - and specially because we don’t understand the implementa-
tion yet - stating the type for these functions explicitly would make their roles more obvious.
Most Haskellers would write the above module using type signatures, like this:

Example: Module with type signatures

module StringManip where
import Data.Char
uppercase, lowercase :: String -> String
uppercase = map toUpper
lowercase = map toLower
capitalise :: String -> String
capitalise x =
let capWord [] = []

capWord (x:xs) = toUpper x : xs
in unwords (map capWord (words x))

module StringManip where
import Data.Char
uppercase, lowercase :: String -> String
uppercase = map toUpper
lowercase = map toLower
capitalise :: String -> String
capitalise x =

let capWord [] = []
capWord (x:xs) = toUpper x : xs

in unwords (map capWord (words x))

The added signatures inform the type of the functions to the human readers and, crucially, to the
compiler/interpreter as well. Note that you can write a single type signature if the two or more
functions share the same type (like uppercase and lowercase).

5.4.1 Type inference

We just said that type signatures tell the interpreter (or compiler) what the function type is. How-
ever, up to this point you wrote perfectly good Haskell code without any signatures, and it has
been accepted by GHC/GHCi. That shows that it is not strictly mandatory to add type signatures.
But that doesn’t mean that if you don’t add them Haskell simply forgets about types altogether!
Instead, when you didn’t tell Haskell the types of your functions and variables it figured them out
through a process called type inference. In essence, the compiler performs inference by starting
with the types of things it knows and then working out the types of the rest of the things. Let’s
see how that works with a general example.
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Example: Simple type inference

-- We’re deliberately not providing a type signature for this function
isL c = c == ’l’

-- We’re deliberately not providing a type signature for this function
isL c = c == ’l’

isL is a function that takes an argument c and returns the result of evaluating c == ’l’. If we
don’t provide a type signature the compiler, in principle, does not know the type of c, nor the
type of the result. In the expression c == ’l’, however, it does know that ’l’ is a Char. Since c
and ’l’ are being compared with equality with (==) and both arguments of (==) must have the
same type7, it follows that c must be a Char. Finally, since isL c is the result of (==) it must be
a Bool. And thus we have a signature for the function:

Example: isL with a type

isL :: Char -> Bool
isL c = c == ’l’

isL :: Char -> Bool
isL c = c == ’l’

And, indeed, if you leave out the type signature the Haskell compiler will discover it through this
process. You can verify that by using :t on isL with or without a signature.

So if type signatures are optional why bother with them at all? Here are a few reasons:

• Documentation: type signatures make your code easier to read. With most functions, the
name of the function along with the type of the function is sufficient to guess what the function
does. Of course, you should always comment your code properly too, but having the types
clearly stated helps a lot, too.

• Debugging: if you annotate a function with a type signature and then make a typo in the body
of the function which changes the type of a variable the compiler will tell you, at compile-time,
that your function is wrong. Leaving off the type signature could have the effect of allowing
your function to compile, and the compiler would assign it an erroneous type. You wouldn’t
know until you ran your program that it was wrong. In fact, since this is such a crucial point
we will explore it a bit further.

7 As we discussed in "Truth values". That fact is actually stated by the type signature of (==) - if you are curious
you can check it, although you will have to wait a little bit more for a full explanation of the notation used in it.
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5.4.2 Types prevent errors

The role of types in preventing errors is central to typed languages. When passing expressions
around you have to make sure the types match up like they did here. If they don’t, you’ll get type
errors when you try to compile; your program won’t typecheck. This is really how types help you
to keep your programs bug-free. To take a very trivial example:

Example: A non-typechecking program

"hello" + " world"

"hello" + " world"

Having that line as part of your program will make it fail to compile, because you can’t add two
strings together! In all likelihood the intention was to use the similar-looking string concatena-
tion operator, which joins two strings together into a single one:

Example: Our erroneous program, fixed

"hello" ++ " world"

"hello" ++ " world"

An easy typo to make, but because you use Haskell, it was caught when you tried to compile. You
didn’t have to wait until you ran the program for the bug to become apparent.

This was only a simple example. However, the idea of types being a system to catch mistakes
works on a much larger scale too. In general, when you make a change to your program, you’ll
change the type of one of the elements. If this change isn’t something that you intended, or has
unforeseen consequences, then it will show up immediately. A lot of Haskell programmers re-
mark that once they have fixed all the type errors in their programs, and their programs compile,
that they tend to "just work": run flawlessly at the first time, with only minor problems. Run-
time errors, where your program goes wrong when you run it rather than when you compile it,
are much rarer in Haskell than in other languages. This is a huge advantage of having a strong
type system like Haskell does.

5.5 Notes

<references/>
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6 Lists and tuples

Lists and tuples are the two most fundamental ways of manipulating several values together, by
binding them down into a single value.

6.1 Lists

Functions are one of the two major building blocks of any Haskell program. The other is the list.
So let’s switch over to the interpreter and build lists:

Prelude> let numbers = [1,2,3,4]
Prelude> let truths = [True, False, False]
Prelude> let strings = ["here", "are", "some", "strings"]

The square brackets delimit the list, and individual elements are separated by commas. The only
important restriction is that all elements in a list must be of the same type. Trying to define a list
with mixed-type elements results in a typical type error:

Prelude> let mixed = [True, "bonjour"]
<interactive>:1:19:

Couldn’t match ‘Bool’ against ‘[Char]’
Expected type: Bool
Inferred type: [Char]

In the list element: "bonjour"
In the definition of ‘mixed’: mixed = [True, "bonjour"]

6.1.1 Building lists

In addition to specifying the whole list at once using square brackets and commas, you can build
them up piece by piece using the (:) operator. This process is often referred to as consing1.

Example: Consing something on to a list
Prelude> let numbers = [1,2,3,4]

1 You might object that that isn’t even a proper word. Well, it isn’t. LISP programmers invented the verb "to cons"
to refer to this specific task of appending an element to the front of a list. "cons" happens to be a mnemonic for
"constructor". Later on we will see why that makes sense.
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Prelude> numbers
[1,2,3,4]
Prelude> 0:numbers
[0,1,2,3,4]

When you cons something on to a list (something:someList), what you get back is another list.
Therefore you can keep on consing for as long as you wish.

Example: Consing lots of things to a list
Prelude> 1:0:numbers
[1,0,1,2,3,4]
Prelude> 2:1:0:numbers
[2,1,0,1,2,3,4]
Prelude> 5:4:3:2:1:0:numbers
[5,4,3,2,1,0,1,2,3,4]

In fact, this is how lists are actually built, by consing all elements to an empty list ([]). The
commas-and-brackets notation is just syntactic sugar - a more pleasant way to write code. So
[1,2,3,4,5] is exactly equivalent to 1:2:3:4:5:[]

You will, however, want to watch out for a potential pitfall in list construction. Whereas some-
thing like True:False:[] is perfectly good Haskell, True:False is not:

Example: Whoops!
Prelude> True:False
<interactive>:1:5:

Couldn’t match ‘[Bool]’ against ‘Bool’
Expected type: [Bool]
Inferred type: Bool

In the second argument of ‘(:)’, namely ‘False’
In the definition of ‘it’: it = True : False

True:False produces a familiar-looking type error message, which tells us that the cons oper-
ator (:) (which is really just a function) expected a list as its second argument but we gave it
another Bool instead. (:) only knows how to stick things onto lists.2

Summarizing:

• The elements of the list must have the same type.

2 At this point you might be justified in seeing types as an annoying thing. In a way they are, but more often than
not they are actually a lifesaver. In any case, when you are programming in Haskell and something blows up,
you’ll probably want to think "type error".
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• You can only cons (:) something onto a list.

Exercises:

1. Would the following piece of Haskell work: 3:[True,False]? Why or why not?
2. Write a function cons8 that takes a list and conses 8 on to it. Test it out on the following

lists by doing:
a) cons8 []
b) cons8 [1,2,3]
c) cons8 [True,False]
d) let foo = cons8 [1,2,3]
e) cons8 foo

3. Write a function that takes two arguments, a list and a thing, and conses the thing onto the
list. You should start out with:

&#8195;&#8195;&#8195;&#8195;&#8195;let myCons list thing =

6.1.2 Strings are just lists

As we briefly mentioned in the Type Basics module, strings in Haskell are just lists of characters.
That means values of type String can be manipulated just like any other list. For instance, instead
of entering strings directly as a sequence of characters enclosed in double quotation marks, they
may also be constructed through a sequence of Char values, either linked with (:) and termi-
nated by an empty list or using the commas-and-brackets notation.

Prelude>"hey" == [’h’,’e’,’y’]
True
Prelude>"hey" == ’h’:’e’:’y’:[]
True

6.1.3 Lists within lists

Lists can contain anything, just as long as they are all of the same type. Well, then, lists are things
too, therefore, lists can contain other lists! Try the following in the interpreter:

Example: Lists can contain lists
Prelude> let listOfLists = 1,2],[3,4],[5,63

Prelude> listOfLists
1,2],[3,4],[5,64

Lists of lists can be pretty tricky sometimes, because a list of things does not have the same type
as a thing all by itself. Let’s sort through these implications with a few exercises:
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Exercises:

1. Which of these are valid Haskell and which are not? Rewrite in cons notation.
a) [1,2,3,[]]
b) [1,[2,3],4]
c) 1,2,3],[5

2. Which of these are valid Haskell, and which are not? Rewrite in comma and bracket nota-
tion.

a) []:1,2,3],[4,5,66

b) []:[]
c) []:[]:[]
d) [1]:[]:[]
e) ["hi"]:[1]:[]

3. Can Haskell have lists of lists of lists? Why or why not?
4. Why is the following list invalid in Haskell?

a) 1,2],3,[4,57

Lists of lists are extremely useful, because they allow you to express some very complicated,
structured data (two-dimensional matrices, for example). They are also one of the places where
the Haskell type system truly shines. Human programmers, or at least this wikibook co-author,
get confused all the time when working with lists of lists, and having restrictions of types often
helps in wading through the potential mess.

6.2 Tuples

6.2.1 A different notion of many

Tuples are another way of storing multiple values in a single value. There are two key differences
between tuples and lists:

• They have a fixed number of elements, and so you can’t cons to a tuple. Therefore it makes
sense to use tuples when you know in advance how many values are to be stored. For example,
we might want a type for storing 2D coordinates of a point. We know exactly how many values
we need for each point (two - the x and y coordinates), so tuples are applicable.

• The elements of a tuple do not need to be all of the same type. For instance, in a phonebook
application we might want to handle the entries by crunching three values into one: the name,
phone number and address of each person. In such a case the three values won’t have the same
type, and so lists wouldn’t help - but tuples would.

Let’s look at some sample tuples.

Example: Some tuples
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(True, 1)
("Hello world", False)
(4, 5, "Six", True, ’b’)

(True, 1)
("Hello world", False)
(4, 5, "Six", True, ’b’)

The first example is a tuple containing two elements. The first one is True and the second is
1. The next example again has two elements, the first is "Hello world" and the second, False.
The third example is a tuple consisting of five elements, the first is 4 (a number), the second 5
(another number), the third "Six" (a string), the fourth True (a boolean value), and the last one
’b’ (a character). So the syntax for tuples is: separate the different elements with a comma, and
surround the whole thing in parentheses.

A quick note on nomenclature: in general you write n-tuple for a tuple of size n. 2-tuples (that
is, tuples with 2 elements) are normally called ’pairs’ and 3-tuples triples. Tuples of greater sizes
aren’t actually all that common, although, if you were to logically extend the naming system,
you’d have ’quadruples’, ’quintuples’ and so on, hence the general term ’tuple’.

Exercises:

1. Write down the 3-tuple whose first element is 4, second element is "hello" and third ele-
ment is True.

2. Which of the following are valid tuples ?
a) (4, 4)
b) (4, "hello")
c) (True, "Blah", "foo")

3. Lists can be built by consing new elements onto them: you cons a number onto a list of
numbers, and get back a list of numbers. It turns out that there is no such way to build up
tuples.

a) Why do you think that is?
b) Say for the sake of argument, that there was such a function. What would you get if

you "consed" something on a tuple?

Tuples are also handy when you want to return more than one value from a function. In most
languages trying to return two or more things at once means wrapping them up in a special data
structure, maybe one that only gets used in that function. In Haskell, you have the alternative of
just returning them as a tuple8.

8 An alternative interpretation of that would be that tuples are, indeed, as a primitive kind of data structure. But
we digress.
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6.2.2 Getting data out of tuples

In this section, we focus on pairs for simplicity’s sake, but also because they are far and away the
most commonly used size of tuple.

Okay, so we’ve seen how we can put values into tuples, simply by using the (x, y) syntax. How
can we get them out again? For example, a typical use of pairs is to store the (x, y) coordinates
of a point: imagine you have a chess board, and want to specify a specific square. You could
do this by labeling all the rows from 1 to 8, and similarly with the columns, then letting, say,
(2, 5) represent the square in row 2 and column 5. Say we want to define a function for finding
all the pieces in a given row. One way of doing this would be to find the coordinates of all the
pieces, then look at the row part and see whether it’s equal to whatever row we’re being asked to
examine. This function would need, once it had the coordinate pair (x, y) of a piece, to extract
the x (the row part). To do that there are two functions, fst and snd, that retrieve9 the first and
second elements out of a pair, respectively. Let’s see some examples:

Example: Using fst and snd
Prelude> fst (2, 5)
2
Prelude> fst (True, "boo")
True
Prelude> snd (5, "Hello")
"Hello"

Note that these functions only work on pairs. Why? Yet again, it has to do with types. Pairs and
triples (and quadruples, etc.) have necessarily different types, and fst and snd only accepts
pairs as arguments.

Exercises:

1. Use a combination of fst and snd to extract the 4 from the tuple (("Hello", 4), True).
2. Normal chess notation is somewhat different to ours: it numbers the rows from 1-8 and

the columns a-h; and the column label is customarily given first. Could we label a specific
point with a character and a number, like (’a’, 4)? What important difference with lists
does this illustrate?

The general technique for extracting a component out of a tuple is pattern matching (yep, we’ll
talk about it in great detail later on, as this is one of the distinctive features of functional lan-
guages). Without making things more complicated than they ought to be at this point, let me
just show you how I can write a function named first that does the same thing as fst:

Example: The definition of first
Prelude> let first (x, y) = x

9 Or, more technically, which project. In math-speak, a function that gets some data out of a structure is called a
projection.
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Prelude> first (3, True)
3

This just says that given a pair (x, y), first (x, y) gives you x.

6.2.3 Tuples within tuples (and other combinations)

We can apply the same reasoning to tuples about storing lists within lists. Tuples are things
too, so you can store tuples with tuples (within tuples up to any arbitrary level of complexity).
Likewise, you could also have lists of tuples, tuples of lists, all sorts of combinations along the
same lines.

Example: Nesting tuples and lists

((2,3), True)
((2,3), [2,3])
[(1,2), (3,4), (5,6)]

((2,3), True)
((2,3), [2,3])
[(1,2), (3,4), (5,6)]

There is one bit of trickiness to watch out for, however. The type of a tuple is defined not only
by its size, but by the types of objects it contains. For example, the tuples ("Hello",32) and
(47,"World") are fundamentally different. One is of type (String,Int), whereas the other is
(Int,String). This has implications for building up lists of tuples. We could very well have lists
like [("a",1),("b",9),("c",9)], but having a list like [("a",1),(2,"b"),(9,"c")] is right
out. Can you spot the difference?

Exercises:

1. Which of these are valid Haskell, and why?
• fst [1,2]
• 1:(2,3)
• (2,4):(2,3)
• (2,4):[]
• [(2,4),(5,5),(’a’,’b’)]
• ([2,4],[2,2])
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6.3 Polymorphic types

As you may have found out already by playing with :t, the type of a list depends on the types of
its elements, and is denoted by enclosing it in square brackets:

Prelude>:t [True, False]
[True, False] :: [Bool]
Prelude>:t ["hey", "my"]
["hey", "my"] :: CHAR10

Therefore, lists of Bool have different types than lists of [Char] (that is, strings), of Int and so
on. Since we have seen that functions only accept arguments of the types specified in the type
of the function, that leads to some practical complication. For example, imagine a function that
finds the length of a list. But since [Int], [Bool] and [String] are different types it seems
we would need separate functions for each case - lengthInts :: [Int] -> Int, as well as
a lengthBools :: [Bool] -> Int, as well as a lengthStrings :: [String] -> Int, as
well as a...

That would be horribly annoying, and frustrating too, because intuitively it would seem that
counting how many things there are in a list should be independent of what the things actually
are. Fortunately, it does not work like that: there is a single function length, which works on all
lists. But how can that possibly work? As usual, checking the type of length provides a good hint
that there is something different going on...

Example: Our first polymorphic type
Prelude>:t length
length :: [a] -> Int

Note:
We’ll look at the theory behind polymorphism in much more detail later in the course.

The "a" in the square brackets is not a type - remember that type names always start with upper-
case letters. Instead, it is a type variable. When Haskell sees a type variable, it allows any type
to take its place. This is exactly what we want. In type theory (a branch of mathematics), this is
called polymorphism: functions or values with only a single type are called monomorphic, and
things that use type variables to admit more than one type are therefore polymorphic.

6.3.1 Example: fst and snd

As we saw, you can use the fst and snd functions to extract parts of pairs. By this time you
should already be developing the habit of wondering "what type is that function?" about every
function you come across. Let’s consider the cases of fst and snd . These two functions take a
pair as their argument and return one element of this pair. First of all, the type of a pair depends
on the type of its elements, just as with lists, so the functions need to be polymorphic. Also it is
important to keep in mind that pairs, and tuples in general, don’t have to be homogeneous with
respect to types; their different parts can be different types. So if we were to say:
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fst :: (a, a) -> a

That would mean fst would only work if the first and second part of the pair given as input
had the same type. That illustrates an important aspect to type variables: although they can be
replaced with any type, they have to be replaced with the same type everywhere for consistency.
So what is the correct type? Simply:

Example: The types of fst and snd

fst :: (a, b) -> a
snd :: (a, b) -> b

fst :: (a, b) -> a
snd :: (a, b) -> b

b is a second type variable, which stands for a type which may or may not be equal to the one
which replaces a.

Note that if you knew nothing about fst and snd other than the type signatures you might guess
that they return the first and second parts of a pair, respectively. In fact that would not be neces-
sarily true, as all the signatures say is that they just have to return something with the same type
of the first and second parts of the pair.

6.4 Summary

We have introduced two new notions in this chapter, lists and tuples. To sum up:

1. Lists are defined by square brackets and commas : [1,2,3].
• They can contain anything as long as all the candidate elements of the list are of the

same type
• They can also be built by the cons operator, (:), but you can only cons things onto lists

2. Tuples are defined by parentheses and commas : ("Bob",32)
• They can contain anything, even things of different types
• Their length is encoded in their type. That is, two tuples with different lengths will have

different types.
3. Lists and tuples can be combined in any number of ways: lists within lists, tuples with lists,

etc.

6.5 Notes

<references/>
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PT:HASKELL/LISTAS E N-UPLAS11

11 HTTP://PT.WIKIBOOKS.ORG/WIKI/HASKELL%2FLISTAS%20E%20N-{}UPLAS
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7 Type basics II

Up to now we have shrewdly avoided number types in our examples. In one exercise, we even
went as far as asking you to "pretend" the arguments to (+) had to be an Int. So what are we
hiding from?

The main theme of this module will be how numerical types are handled in Haskell. While doing
so, we will introduce some important features of the type system. Before diving into the text,
though, pause for a moment and consider the following question: what should be the type of the
function (+) ?1

7.1 The Num class

As far as everyday Mathematics is concerned, there are very few restrictions on which kind of
numbers we can add together. 2+3 (two natural numbers), (−7)+5.12 (a negative integer and a
rational number) 1

7 +π (a rational and an irrational)... all of these are valid - indeed, any two real
numbers can be added together. In order to capture such generality in the simplest way possible
we would like to have a very general Number type in Haskell, so that the signature of (+) would
be simply

(+) :: Number -> Number -> Number

That design, however, does not fit well with the way computers perform arithmetic. While inte-
ger numbers in programs can be quite straightforwardly handled as sequences of binary digits in
memory, that approach does not work for non-integer real numbers2, thus making it necessary a
more involved encoding to support them: FLOATING POINT NUMBERS3. While floating point pro-
vides a reasonable way to deal with real numbers in general, it has some inconveniences (most
notably, loss of precision) which make it worthy to keep using the simpler encoding for integer
values. We are thus left with at least two different ways of storing numbers, one for integers and
another one for general real numbers, which should correspond to different Haskell types. Fur-
thermore, computers are only able to perform operations like (+) on a pair of numbers if they
are in the same format. That should put an end to our hopes of using a universal Number type -
or even having (+) working with both integers and floating-point numbers...

1 If you followed our recommendations in "Type basics" chances are you have already seen the rather exotic an-
swer by testing with :t... if that is the case, consider the following analysis as a path to understanding the mean-
ing of that signature.

2 One of the reasons being that between any two real numbers there are infinite real numbers - and that can’t be
directly mapped into a representation in memory no matter what we do.

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLOATING%20POINT
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It is easy, however, to see reality is not that bad. We can use (+) with both integers and floating
point numbers:

Prelude>3 + 4
7
Prelude>4.34 + 3.12
7.46

When discussing lists and tuples, we saw that functions can accept arguments of different types if
they are made polymorphic. In that spirit, one possible type signature for (+) that would account
for the facts above would be:

(+) :: a -> a -> a

(+)would then take two arguments of the same type a (which could be integers or floating-point
numbers) and evaluate to a result of type a. There is a problem with that solution, however. As we
saw before, the type variable a can stand for any type at all. If (+) really had that type signature
we would be able to add up two Bool, or two Char, which would make no sense - and is indeed
impossible. Rather, the actual type signature of (+) takes advantage of a language feature that
allows us to express the semantic restriction that a can be any type as long as it is a number type:

(+) :: (Num a) => a -> a -> a

Num is a typeclass - a group of types which includes all types which are regarded as numbers4.
The (Num a) => part of the signature restricts a to number types - or, more accurately, instances
of Num.

7.2 Numeric types

But what are the actual number types - the instances of Num that a stands for in the signature?
The most important numeric types are Int, Integer and Double:

• Int corresponds to the vanilla integer type found in most languages. It has fixed precision, and
thus maximum and minimum values (in 32-bit machines the range goes from -2147483648 to
2147483647).

• Integer also is used for integer numbers, but unlike Int it supports arbitrarily large values -
at the cost of some efficiency.

• Double is the double-precision floating point type, and what you will want to use for real num-
bers in the overwhelming majority of cases (there is also Float, the single-precision counter-
part of Double, which in general is not an attractive option due to the loss of precision).

4 That is a very loose definition, but will suffice until we are ready to discuss typeclasses in more detail.
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These types are available by default in Haskell, and are the ones you will generally deal with in
everyday tasks.

7.2.1 Polymorphic guesswork

There is one thing we haven’t explained yet, though. If you tried the examples of addition we
mentioned at the beginning you know that something like this is perfectly valid:

Prelude> (-7) + 5.12
-1.88

Here, it seems we are adding two numbers of different types - an integer and a non-integer.
Shouldn’t the type of (+) make that impossible?

To answer that question we have to see what the types of the numbers we entered actually are:

Prelude> :t (-7)
(-7) :: (Num a) => a

And, lo and behold, (-7) is neither Int or Integer! Rather, it is a polymorphic constant, which
can "morph" into any number type if need be. The reason for that becomes clearer when we
look at the other number...

Prelude> :t 5.12
5.12 :: (Fractional t) => t

5.12 is also a polymorphic constant, but one of the Fractional class, which is more restrictive
than Num - every Fractional is a Num, but not every Num is a Fractional (for instance, Ints and
Integers are not).

When a Haskell program evaluates (-7) + 5.12, it must settle for an actual type for the num-
bers. It does so by performing type inference while accounting for the class specifications. (-7)
can be any Num, but there are extra restrictions for 5.12, so its type will define what (-7) will
become. Since there is no other clues to what the types should be, 5.12 will assume the de-
fault Fractional type, which is Double; and, consequently, (-7) will become a Double as well,
allowing the addition to proceed normally and return a Double5.

There is a nice quick test you can do to get a better feel of that process. In a source file, define

x = 2

5 For seasoned programmers: This appears to have the same effect of what programs in C (and many other lan-
guages) would manage with an implicit cast - in which case the integer literal would be silently converted to a
double. The difference is that in C the conversion is done behind your back, while in Haskell it only occurs if the
variable/literal is explicitly made a polymorphic constant. The difference will become clearer shortly, when we
show a counter-example.
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then load the file in GHCi and check the type of x. Then, add an y variable

x = 2
y = x + 3

and check the types of x and y. Finally, modify y to

x = 2
y = x + 3.1

and see what happens with the types of both variables.

7.2.2 Monomorphic trouble

The sophistication of the numerical types and classes occasionally leads to some complications.
Consider, for instance, the common division operator (/). It has the following type signature:

(/) :: (Fractional a) => a -> a -> a

Restricting a to fractional types is a must because the division of two integer numbers in general
will not result in an integer. Nevertheless, we can still write something like

Prelude> 4 / 3
1.3333333333333333

because the literals 4 and 3 are polymorphic constants and therefore assume the type Double at
the behest of (/). Suppose, however, we want to divide a number by the length of a list6. The
obvious thing to do would be using the length function:

Prelude> 4 / length [1,2,3]

Unfortunately, that blows up:

<interactive>:1:0:

No instance for (Fractional Int)
arising from a use of ‘/’ at <interactive>:1:0-17

Possible fix: add an instance declaration for (Fractional Int)
In the expression: 4 / length [1, 2, 3]
In the definition of ‘it’: it = 4 / length [1, 2, 3]

6 A reasonable scenario - think of computing an average of the values in a list.
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As usual, the problem can be understood by looking at the type signature of length:

length :: [a] -> Int

The result of length is not a polymorphic constant, but an Int; and since an Int is not a
Fractional it can’t fit the signature of (/).

There is a handy function which provides a way of escaping from this problem. Before following
on with the text, try to guess what it does only from the name and signature:

fromIntegral :: (Integral a, Num b) => a -> b

fromIntegral takes an argument of some Integral type (like Int or Integer) and makes it a
polymorphic constant. By combining it with length we can make the length of the list fit into
the signature of (/):

Prelude> 4 / fromIntegral (length [1,2,3])
1.3333333333333333

While this complication may look spurious at first, this way of doing things makes it easier to be
rigorous when manipulating numbers. If you define a function that takes an Int argument you
can be entirely sure that it will never be converted to an Integer or a Doubleunless you explicitly
tell the program to do so (for instance, by using fromIntegral). As a direct consequence of the
refinement of the type system, there is a surprising diversity of classes and functions for dealing
with numbers in Haskell7.

7.3 Classes beyond numbers

There are many other use cases for typeclasses beyond arithmetic. For example, the type signa-
ture of (==) is:

(==) :: (Eq a) => a -> a -> Bool

Like (+) or (/), (==) is a polymorphic function. It compares two values of the same type, which
must belong to the class Eq, and returns a Bool. Eq is simply the class of types of values which
can be compared for equality, and includes all of the basic non-functional types.

Typeclasses are a very general language feature which adds a lot to the power of the type system.
Later in the book we will return to this topic to see how to use them in custom ways, which will
allow you to appreciate their usefulness in its fullest extent.

7 A more descriptive overview of the main ones will be made in a module which is currently under development.
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7.4 Notes

<references/>
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8 Next steps

Working with actual source code files instead of typing things into the interpreter makes it con-
venient to define much more substantial functions than those we’ve seen up to now. Let’s flex
some Haskell muscle here and examine the kinds of things we can do with our functions.

8.1 Conditional expressions

8.1.1 if / then / else

Haskell supports standard conditional expressions. For instance, we could define a function that
returns −1 if its argument is less than 0; 0 if its argument is 0; and 1 if its argument is greater than
0. Actually, such a function already exists (called the signum function), but let’s define one of our
own, what we’ll call mySignum.

Example: The signum function.

mySignum x =
if x < 0 then

-1
else if x > 0 then

1
else

0

You can experiment with this as:

• Main> mySignum 5

1

• Main> mySignum 0

0

• Main> mySignum (5-10)

-1

• Main> mySignum (-1)

-1
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mySignum x =
if x < 0 then

-1
else if x > 0 then

1
else

0
You can experiment with this as:

• Main> mySignum 5

1

• Main> mySignum 0

0

• Main> mySignum (5-10)

-1

• Main> mySignum (-1)

-1

Note that the parenthesis around "-1" in the last example are required; if missing, the system will
think you are trying to subtract the value "1" from the value "mySignum", which is ill-typed.

The if/then/else construct in Haskell looks very similar to that of most other programming lan-
guages; however, you must have both a then and an else clause. It evaluates the condition (in
this case x < 0) and, if this evaluates to True, it evaluates the then condition; if the condition
evaluated to False, it evaluates the else condition.

You can test this program by editing the file and loading it back into your interpreter. Instead of
typing :l Varfun.hs again, you can simply type :reload or just :r to reload the current file.
This is usually much faster.

8.1.2 case

Haskell, like many other languages, also supports case constructions. These are used when there
are multiple values that you want to check against (case expressions are actually quite a bit more
powerful than this -- see the ../PATTERN MATCHING/1 chapter for all of the details).

Suppose we wanted to define a function that had a value of 1 if its argument were 0; a value of 5
if its argument were 1; a value of 2 if its argument were 2; and a value of −1 in all other instances.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPATTERN%20MATCHING%2F
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Indentation

Writing this function using if statements would be long and very unreadable; so we write it using
a case statement as follows (we call this function f):

Example:

f x =
case x of
0 -> 1
1 -> 5
2 -> 2
_ -> -1

f x =
case x of

0 -> 1
1 -> 5
2 -> 2
_ -> -1

In this program, we’re defining f to take an argument x and then inspecting the value of x. If it
matches 0, the value of f is 1. If it matches 1, the value of f is 5. If it matches 2, then the value of
f is 2; and if it hasn’t matched anything by that point, the value of f is −1 (the underscore can be
thought of as a "wildcard" -- it will match anything).

The indentation here is important. Haskell uses a system called "layout" to structure its code
(the programming language Python uses a similar system). The layout system allows you to write
code without the explicit semicolons and braces that other languages like C and Java require.

B Warning

Because whitespace matters in Haskell, you need to be careful about whether you are using
tabs or spaces. If you can configure your editor to never use tabs, that’s probably better. If
not, make sure your tabs are always 8 spaces long, or you’re likely to run into problems.

8.2 Indentation

The general rule for layout is that an open-brace is inserted after the keywords where, let, do and
of, and the column position at which the next command appears is remembered. From then on,
a semicolon is inserted before every new line that is indented the same amount. If a following
line is indented less, a close-brace is inserted. This may sound complicated, but if you follow the
general rule of indenting after each of those keywords, you’ll never have to remember it (see the
../INDENTATION/2 chapter for a more complete discussion of layout).

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FINDENTATION%2F
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Some people prefer not to use layout and write the braces and semicolons explicitly. This is
perfectly acceptable. In this style, the above function might look like:

f x = case x of
{ 0 -> 1 ; 1 -> 5 ; 2 -> 2 ; _ -> -1 }

Of course, if you write the braces and semicolons explicitly, you’re free to structure the code as
you wish. The following is also equally valid:

f x =
case x of { 0 -> 1 ;
1 -> 5 ; 2 -> 2

; _ -> -1 }

However, structuring your code like this only serves to make it unreadable (in this case).

8.3 Defining one function for different parameters

Functions can also be defined piece-wise, meaning that you can write one version of your func-
tion for certain parameters and then another version for other parameters. For instance, the
above function f could also be written as:

Example:

f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1

f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1

Just like in the case situation above, order is important. If we had put the last line first, it would
have matched every argument, and f would return -1, regardless of its argument (most com-
pilers will warn you about this, though, saying something about overlapping patterns). If we
had not included this last line, f would produce an error if anything other than 0, 1 or 2 were
applied to it (most compilers will warn you about this, too, saying something about incomplete
patterns). This style of piece-wise definition is very popular and will be used quite frequently
throughout this tutorial. These two definitions of f are actually equivalent -- this piece-wise
version is translated into the case expression.
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8.4 Function composition

More complicated functions can be built from simpler functions using function composition.
Function composition is simply taking the result of the application of one function and using
that as an argument for another. We’ve already seen this back in the ../GETTING SET UP/3 chap-
ter, when we wrote 5*4+3. In this, we were evaluating 5 ·4 and then applying +3 to the result. We
can do the same thing with our square and f functions:

Example:

square x = xˆ2

• Main> square (f 1)

25

• Main> square (f 2)

4

• Main> f (square 1)

5

• Main> f (square 2)

-1

square x = xˆ2

• Main> square (f 1)

25

• Main> square (f 2)

4

• Main> f (square 1)

5

• Main> f (square 2)

-1

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGETTING%20SET%20UP%2F
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The result of each of these function applications is fairly straightforward. The parentheses
around the inner function are necessary; otherwise, in the first line, the interpreter would think
that you were trying to get the value of square f, which has no meaning. Function application
like this is fairly standard in most programming languages.

There is another, more mathematical way to express function composition: the (.) enclosed
period function. This (.) function is modeled after the (◦) operator in mathematics.

Note:
In mathematics we write f ◦g to mean "f following g." In Haskell , we write f . g also to mean
"f following g."

The meaning of f ◦g is simply that ( f ◦g )(x) = f (g (x)). That is, applying the function f ◦g to the
value x is the same as applying g to x, taking the result, and then applying f to that.

The (.) function (called the function composition function), takes two functions and makes
them into one. For instance, if we write (square . f), this means that it creates a new func-
tion that takes an argument, applies f to that argument and then applies square to the result.
Conversely, (f . square) means that a new function is created that takes an argument, ap-
plies square to that argument and then applies f to the result. We can see this by testing it as
before:

Example:

• Main> (square . f) 1

25

• Main> (square . f) 2

4

• Main> (f . square) 1

5

• Main> (f . square) 2

-1

Here, we must enclose the function composition in parentheses; otherwise, the Haskell compiler
will think we’re trying to compose square with the value f 1 in the first line, which makes no
sense since f 1 isn’t even a function.

Note:
At this point, it would be wise to be aware of Prelude, which is a set of functions and other fa-
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cilities automatically made available to every Haskell program. Undoubtedly, at some point,
you will accidentally rewrite some already-existing function (I’ve done it more times than I can
count). While doing so may be a very instructive experience as you begin to learn Haskell, once
you start to tackle more complex tasks avoiding reimplementing existing functionality saves a
lot of time. If you are curious you can check the PRELUDE SPECIFICATION4 right now (don’t worry
about all the unfamiliar syntax you’ll see there, we’ll catch up with that further on).

8.5 Let Bindings

Often we wish to provide local declarations for use in our functions. For instance, if you remem-
ber back to your grade school mathematics courses, the following formula is used to find the
roots (zeros) of a polynomial of the form ax2 +bx + c:

x = −b ±
p

b2 −4ac

2a
.

We could write the following function to compute the two values of x:

roots a b c =
((-b + sqrt(b*b - 4*a*c)) / (2*a),
(-b - sqrt(b*b - 4*a*c)) / (2*a))

Notice that our definition here has a bit of redundancy. It is not quite as nice as the mathe-
matical definition because we have needlessly repeated the code for sqrt(b*b - 4*a*c). To
remedy this problem, Haskell allows for local bindings. That is, we can create values inside of
a function that only that function can see. For instance, we could create a local binding for
sqrt(b*b-4*a*c) and call it, say, sdisc (short for square root of discriminant) and then use that
in both places where sqrt(b*b - 4*a*c) occurred. We can do this using a let/in declaration:

roots a b c =
let sdisc = sqrt (b*b - 4*a*c)
in ((-b + sdisc) / (2*a),

(-b - sdisc) / (2*a))

In fact, you can provide multiple declarations inside a let. Just make sure they’re indented the
same amount, or you will have layout problems:

roots a b c =
let sdisc = sqrt (b*b - 4*a*c)

twice_a = 2*a
in ((-b + sdisc) / twice_a,

(-b - sdisc) / twice_a)
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9 Simple input and output

So far this tutorial has discussed functions that return values, which is well and good. But how do
we write "Hello world"? To give you a first taste of it, here is a small variant of the "Hello world"
program:

Example: Hello! What is your name?

main = do
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

main = do
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

At the very least, what should be clear is that dealing with input and output (IO) in Haskell is not
a lost cause! Functional languages have always had a problem with input and output because IO
requires side effects. Functions always have to return the same results for the same arguments.
But how can a function "getLine" return the same value every time it is called? Before we give
the solution, let’s take a step back and think about the difficulties inherent in such a task.

Any IO library should provide a host of functions, containing (at a minimum) operations like:

• print a string to the screen
• read a string from a keyboard
• write data to a file
• read data from a file

There are two issues here. Let’s first consider the initial two examples and think about what
their types should be. Certainly the first procedure should take a String argument and produce
something, but what should it produce? It could produce a unit (), since there is essentially no
return value from printing a string. The second operation, similarly, should return a String, but
it doesn’t seem to require an argument.

We want both of these operations to be functions, but they are by definition not functions. The
item that reads a string from the keyboard cannot be a function, as it will not return the same
String every time. And if the first function simply returns () every time, then referential trans-
parency tells us we should have no problem with replacing it with a function f _= (). But clearly
this does not have the desired effect.
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9.1 Actions

The breakthrough for solving this problem came when Philip Wadler realized that monads would
be a good way to think about IO computations. In fact, monads are able to express much more
than just the simple operations described above; we can use them to express a variety of con-
structions like concurrence, exceptions, IO, non-determinism and much more. Moreover, there
is nothing special about them; they can be defined within Haskell with no special handling from
the compiler (though compilers often choose to optimize monadic operations). Monads also
have a somewhat undeserved reputation of being difficult to understand. So we’re going to leave
things at that -- knowing simply that IO somehow makes use of monads without necessarily un-
derstanding the gory details behind them (they really aren’t so gory). So for now, we can forget
that monads even exist.

As pointed out before, we cannot think of things like "print a string to the screen" or "read data
from a file" as functions, since they are not (in the pure mathematical sense). Therefore, we give
them another name: actions. Not only do we give them a special name, we give them a special
type. One particularly useful action is putStrLn, which prints a string to the screen. This action
has type:

putStrLn :: String -> IO ()

As expected, putStrLn takes a string argument. What it returns is of type IO (). This means that
this function is actually an action (that is what the IO means). Furthermore, when this action is
evaluated (or "run") , the result will have type ().

Note:
Actually, this type means that putStrLn is an action "within the IO monad", but we will gloss
over this for now.

You can probably already guess the type of getLine:

getLine :: IO String

This means that getLine is an IO action that, when run, will have type String.

The question immediately arises: "how do you ’run’ an action?". This is something that is left up
to the compiler. You cannot actually run an action yourself; instead, a program is, itself, a single
action that is run when the compiled program is executed. Thus, the compiler requires that the
main function have type IO (), which means that it is an IO action that returns nothing. The
compiled code then executes this action.

However, while you are not allowed to run actions yourself, you are allowed to combine actions.
There are two ways to go about this. The one we will focus on in this chapter is the do nota-
tion, which provides a convenient means of putting actions together, and allows us to get useful
things done in Haskell without having to understand what really happens. Lurking behind the
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do notation is the more explicit approach using the (>>=) operator, but we will not be ready to
cover this until the chapter ../UNDERSTANDING MONADS/1.

Note:
Do notation is just syntactic sugar for (>>=). If you have experience with higher order functions,
it might be worth starting with the latter approach and coming back here to see how do notation
gets used.

Let’s consider the following name program:

Example: What is your name?

main = do
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

main = do
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

We can consider the do notation as a way to combine a sequence of actions. Moreover, the
<- notation is a way to get the value out of an action. So, in this program, we’re sequencing
three actions: a putStrLn, a getLine and another putStrLn. The putStrLn action has type
String -> IO (), so we provide it a String, and the fully applied action has type IO (). This
is something that we are allowed to run as a program.

Exercises:
Write a program which asks the user for the base and height of a right angled triangle, calculates
its area and prints it to the screen. The interaction should look something like:
The base?

3.3

The height?

5.4

The area of that triangle is 8.91

Hint: you can use the function read to convert user strings like "3.3" into numbers like 3.3 and
function show to convert a number into string.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FUNDERSTANDING%20MONADS%2F
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9.1.1 Left arrow clarifications

<- is optional

While we are allowed to get a value out of certain actions like getLine, we certainly are not
obliged to do so. For example, we could very well have written something like this:

Example: executing getLine directly

main = do
putStrLn "Please enter your name: "
getLine
putStrLn ("Hello, how are you?")

main = do
putStrLn "Please enter your name: "
getLine
putStrLn ("Hello, how are you?")

Clearly, that isn’t very useful: the whole point of prompting the user for his or her name was so
that we could do something with the result. That being said, it is conceivable that one might wish
to read a line and completely ignore the result. Omitting the <- will allow for that; the action will
happen, but the data won’t be stored anywhere.

In order to get the value out of the action, we write name <- getLine, which basically means
"run getLine, and put the results in the variable called name."

<- can be used with any action but the last

On the flip side, there are also very few restrictions on which actions can have values obtained
from them. Consider the following example, where we put the results of each action into a vari-
able (except the last... more on that later):

Example: putting all results into a variable

main = do
x <- putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

main = do
x <- putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")
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The variable x gets the value out of its action, but that isn’t very interesting because the action
returns the unit value (). So while we could technically get the value out of any action, it isn’t
always worth it. But wait, what about that last action? Why can’t we get a value out of that? Let’s
see what happens when we try:

Example: getting the value out of the last action

main = do
x <- putStrLn "Please enter your name: "
name <- getLine
y <- putStrLn ("Hello, " ++ name ++ ", how are you?")

Whoops!

YourName.hs:5:2:

The last statement in a ’do’ construct must be an expression

main = do
x <- putStrLn "Please enter your name: "
name <- getLine
y <- putStrLn ("Hello, " ++ name ++ ", how are you?")

Whoops!

YourName.hs:5:2:

The last statement in a ’do’ construct must be an expression

This is a much more interesting example, but it requires a somewhat deeper understanding of
Haskell than we currently have. Suffice it to say, whenever you use <- to get the value of an
action, Haskell is always expecting another action to follow it. So the very last action better not
have any <-s.

9.1.2 Controlling actions

Normal Haskell constructions like if/then/else and case/of can be used within the do notation,
but you need to be somewhat careful. For instance, in a simple "guess the number" program, we
have:
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doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
if (read guess) < num
then do putStrLn "Too low!"

doGuessing num
else if (read guess) > num

then do putStrLn "Too high!"
doGuessing num

else do putStrLn "You Win!"

If we think about how the if/then/else construction works, it essentially takes three arguments:
the condition, the "then" branch, and the "else" branch. The condition needs to have type Bool,
and the two branches can have any type, provided that they have the same type. The type of the
entire if/then/else construction is then the type of the two branches.

In the outermost comparison, we have (read guess) < num as the condition. This clearly has
the correct type. Let’s just consider the "then" branch. The code here is:

do putStrLn "Too low!"
doGuessing num

Here, we are sequencing two actions: putStrLn and doGuessing. The first has type IO (), which
is fine. The second also has type IO (), which is fine. The type result of the entire computation
is precisely the type of the final computation. Thus, the type of the "then" branch is also IO ().
A similar argument shows that the type of the "else" branch is also IO (). This means the type
of the entire if/then/else construction is IO (), which is just what we want.

Note:
In this code, the last line is else do putStrLn "You Win!". This is somewhat overly verbose.
In fact, else putStrLn "You Win!" would have been sufficient, since do is only necessary to
sequence actions. Since we have only one action here, it is superfluous.

It is incorrect to think to yourself "Well, I already started a do block; I don’t need another one,"
and hence write something like:

do if (read guess) < num
then putStrLn "Too low!"

doGuessing num
else ...

Here, since we didn’t repeat the do, the compiler doesn’t know that the putStrLn and
doGuessing calls are supposed to be sequenced, and the compiler will think you’re trying to
call putStrLn with three arguments: the string, the function doGuessing and the integer num.
It will certainly complain (though the error may be somewhat difficult to comprehend at this
point).
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We can write the same doGuessing function using a case statement. To do this, we first introduce
the Prelude function compare, which takes two values of the same type (in the Ord class) and
returns a value of type Ordering, namely one of GT, LT, EQ, depending on whether the first is
greater than, less than or equal to the second.

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
LT -> do putStrLn "Too low!"

doGuessing num
GT -> do putStrLn "Too high!"

doGuessing num
EQ -> putStrLn "You Win!"

Here, again, the dos after the ->s are necessary on the first two options, because we are sequenc-
ing actions.

If you’re used to programming in an imperative language like C or Java, you might think that
return will exit you from the current function. This is not so in Haskell. In Haskell, return sim-
ply takes a normal value (for instance, one of type Int) and makes it into an action that when
evaluated, gives the given value (for the same example, the action would be of type IO Int). In
particular, in an imperative language, you might write this function as:

void doGuessing(int num) {
print "Enter your guess:";
int guess = atoi(readLine());
if (guess == num) {
print "You win!";
return ();

}
// we won’t get here if guess == num
if (guess < num) {
print "Too low!";
doGuessing(num);

} else {
print "Too high!";
doGuessing(num);

}
}

Here, because we have the return () in the first if match, we expect the code to exit there (and
in most imperative languages, it does). However, the equivalent code in Haskell, which might
look something like:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
EQ -> do putStrLn "You win!"

return ()
-- we don’t expect to get here if guess == num
if (read guess < num)
then do print "Too low!";

doGuessing num
else do print "Too high!";
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doGuessing num

First of all, if you guess correctly, it will first print "You win!," but it won’t exit, and it will check
whether guess is less than num. Of course it is not, so the else branch is taken, and it will print
"Too high!" and then ask you to guess again.

On the other hand, if you guess incorrectly, it will try to evaluate the case statement and get either
LT or GT as the result of the compare. In either case, it won’t have a pattern that matches, and the
program will fail immediately with an exception.

Exercises:
What does the following program print out?

main =
do x <- getX

putStrLn x
getX =
do return "hello"

return "aren’t"
return "these"
return "returns"
return "rather"
return "pointless?"

Why?

Exercises:
Write a program that asks the user for his or her name. If the name is one of Simon, John or Phil,
tell the user that you think Haskell is a great programming language. If the name is Koen, tell
them that you think debugging Haskell is fun (Koen Classen is one of the people who works on
Haskell debugging); otherwise, tell the user that you don’t know who he or she is.

Write two different versions of this program, one using if statements, the other using a case state-
ment.

9.2 Actions under the microscope

Actions may look easy up to now, but they are actually a common stumbling block for new
Haskellers. If you have run into trouble working with actions, you might consider looking to
see if one of your problems or questions matches the cases below. It might be worth skimming
this section now, and coming back to it when you actually experience trouble.

9.2.1 Mind your action types

One temptation might be to simplify our program for getting a name and printing it back out.
Here is one unsuccessful attempt:
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Example: Why doesn’t this work?

main =
do putStrLn "What is your name? "

putStrLn ("Hello " ++ getLine)

Ouch!

YourName.hs:3:26:

Couldn’t match expected type ‘[Char]’
against inferred type ‘IO String’

main =
do putStrLn "What is your name? "

putStrLn ("Hello " ++ getLine)
Ouch!

YourName.hs:3:26:

Couldn’t match expected type ‘[Char]’
against inferred type ‘IO String’

Let us boil the example above down to its simplest form. Would you expect this program to
compile?

Example: This still does not work

main =
do putStrLn getLine

main =
do putStrLn getLine

For the most part, this is the same (attempted) program, except that we’ve stripped off the su-
perflous "What is your name" prompt as well as the polite "Hello". One trick to understanding
this is to reason about it in terms of types. Let us compare:
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putStrLn :: String -> IO ()
getLine :: IO String

We can use the same mental machinery we learned in ../TYPE BASICS/2 to figure how everything
went wrong. Simply put, putStrLn is expecting a String as input. We do not have a String, but
something tantalisingly close, an IO String. This represents an action that will give us a String
when it’s run. To obtain the String that putStrLn wants, we need to run the action, and we do
that with the ever-handy left arrow, <-.

Example: This time it works

main =
do name <- getLine

putStrLn name

Working our way back up to the fancy example:

main =
do putStrLn "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

main =
do name <- getLine

putStrLn name
Working our way back up to the fancy example:
main =

do putStrLn "What is your name? "
name <- getLine
putStrLn ("Hello " ++ name)

Now the name is the String we are looking for and everything is rolling again.

9.2.2 Mind your expression types too

Fine, so we’ve made a big deal out of the idea that you can’t use actions in situations that don’t
call for them. The converse of this is that you can’t use non-actions in situations that DO expect
actions. Say we want to greet the user, but this time we’re so excited to meet them, we just have
to SHOUT their name out:

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FTYPE%20BASICS%2F
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Example: Exciting but incorrect. Why?

import Data.Char (toUpper)
main =
do name <- getLine

loudName <- makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

-- Don’t worry too much about this function; it just capitalises a
String

makeLoud :: String -> String
makeLoud s = map toUpper s

This goes wrong...

Couldn’t match expected type ‘IO’ against inferred type ‘[]’
Expected type: IO t
Inferred type: String

In a ’do’ expression: loudName <- makeLoud name

import Data.Char (toUpper)
main =

do name <- getLine
loudName <- makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

-- Don’t worry too much about this function; it just capitalises a String
makeLoud :: String -> String
makeLoud s = map toUpper s
This goes wrong...

Couldn’t match expected type ‘IO’ against inferred type ‘[]’
Expected type: IO t
Inferred type: String

In a ’do’ expression: loudName <- makeLoud name

This is quite similar to the problem we ran into above: we’ve got a mismatch between something
that is expecting an IO type, and something which is not. This time, the cause is our use of
the left arrow <-; we’re trying to left arrow a value of makeLoud name, which really isn’t left arrow
material. It’s basically the same mismatch we saw in the previous section, except now we’re trying
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to use regular old String (the loud name) as an IO String, which clearly are not the same thing.
The latter is an action, something to be run, whereas the former is just an expression minding
its own business. Note that we cannot simply use loudName = makeLoud name because a do
sequences actions, and loudName = makeLoud name is not an action.

So how do we extricate ourselves from this mess? We have a number of options:

• We could find a way to turn makeLoud into an action, to make it return IO String. But this is
not desirable, because the whole point of functional programming is to cleanly separate our
side-effecting stuff (actions) from the pure and simple stuff. For example, what if we wanted
to use makeLoud from some other, non-IO, function? An IO makeLoud is certainly possible
(how?), but missing the point entirely.

• We could use return to promote the loud name into an action, writing something like
loudName <- return (makeLoud name). This is slightly better, in that we are at least leav-
ing the makeLoud function itself nice and IO-free, whilst using it in an IO-compatible fashion.
But it’s still moderately clunky, because by virtue of left arrow, we’re implying that there’s action
to be had -- how exciting! -- only to let our reader down with a somewhat anticlimactic return

• Or we could use a let binding...

It turns out that Haskell has a special extra-convenient syntax for let bindings in actions. It looks
a little like this:

Example: let bindings in do blocks.

main =
do name <- getLine

let loudName = makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

main =
do name <- getLine

let loudName = makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

If you’re paying attention, you might notice that the let binding above is missing an in. This is
because let bindings in do blocks do not require the in keyword. You could very well use it, but
then you’d have to make a mess of your do blocks. For what it’s worth, the following two blocks
of code are equivalent.

sweet unsweet

do name <- getLine
let loudName = makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

do name <- getLine
let loudName = makeLoud name
in do putStrLn ("Hello " ++ loudName ++ "!")

putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)
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Exercises:

1. Why does the unsweet version of the let binding require an extra do keyword?
2. Do you always need the extra do?
3. (extra credit) Curiously, let without in is exactly how we wrote things when we were play-

ing with the interpreter in the beginning of this book. Why can you omit the in keyword in
the interpreter, when you’d have to put it in when typing up a source file?

9.3 Learn more

At this point, you should have the fundamentals needed to do some fancier input/output. Here
are some IO-related topics you may want to check in parallel with the main track of the course.

• You could continue the sequential track, by learning more about TYPES3 and eventually MON-
ADS4.

• Alternately: you could start learning about building graphical user interfaces in the ../GUI/5

chapter
• For more IO-related functionality, you could also consider learning more about the SYSTEM.IO

LIBRARY6

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FTYPE%20DECLARATIONS%2F
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FUNDERSTANDING%20MONADS%2F
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGUI%2F
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FHIERARCHICAL%20LIBRARIES%2FIO
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11 Recursion

Recursion is a clever idea which plays a central role in Haskell (and computer science in general):
namely, recursion is the idea of using a given function as part of its own definition. A function
defined in this way is said to be recursive. It might sound like this always leads to infinite regress,
but if done properly it doesn’t have to.

Generally speaking, a recursive definition comes in two parts. First, there are one or more base
cases which say what to do in simple cases where no recursion is necessary (that is, when the
answer can be given straightaway without recursively calling the function being defined). This
ensures that the recursion can eventually stop. The recursive case is more general, and defines
the function in terms of a ’simpler’ call to itself. Let’s look at a few examples.

11.1 Numeric recursion

11.1.1 The factorial function

In mathematics, especially combinatorics, there is a function used fairly frequently called the
factorial function 1. It takes a single number as an argument, finds all the numbers between one
and this number, and multiplies them all together. For example, the factorial of 6 is 1 × 2 × 3 ×
4 × 5 × 6 = 720. This is an interesting function for us, because it is a candidate to be written in a
recursive style.

The idea is to look at the factorials of adjacent numbers:

Example: Factorials of consecutive numbers
Factorial of 6 = 6 × 5 × 4 × 3 × 2 × 1

Factorial of 5 = 5 × 4 × 3 × 2 × 1

Factorial of 6 = 6 × 5 × 4 × 3 × 2 × 1

Factorial of 5 = 5 × 4 × 3 × 2 × 1

Notice how we’ve lined things up. You can see here that the factorial of 6 involves the factorial of
5. In fact, the factorial of 6 is just 6 × (factorial of 5). Let’s look at another example:

1 In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we don’t use it
here.
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Example: Factorials of consecutive numbers
Factorial of 4 = 4 × 3 × 2 × 1

Factorial of 3 = 3 × 2 × 1

Factorial of 2 = 2 × 1

Factorial of 1 = 1

Factorial of 4 = 4 × 3 × 2 × 1

Factorial of 3 = 3 × 2 × 1

Factorial of 2 = 2 × 1

Factorial of 1 = 1

Indeed, we can see that the factorial of any number is just that number multiplied by the factorial
of the number one less than it. There’s one exception to this: if we ask for the factorial of 0, we
don’t want to multiply 0 by the factorial of -1 In fact, we just say the factorial of 0 is 1 (we define
it to be so. It just is, okay?2). So, 0 is the base case for the recursion: when we get to 0 we can
immediately say that the answer is 1, without using recursion. We can summarize the definition
of the factorial function as follows:

• The factorial of 0 is 1.
• The factorial of any other number is that number multiplied by the factorial of the number one

less than it.

We can translate this directly into Haskell:

Example: Factorial function

factorial 0 = 1
factorial n = n * factorial (n-1)

factorial 0 = 1
factorial n = n * factorial (n-1)

This defines a new function called factorial. The first line says that the factorial of 0 is 1, and
the second one says that the factorial of any other number n is equal to n times the factorial
of n-1. Note the parentheses around the n-1: without them this would have been parsed as
(factorial n) - 1; function application (applying a function to a value) will happen before
anything else does (we say that function application binds more tightly than anything else).

B Warning

2 Actually, defining the factorial of 0 to be 1 is not just arbitrary; it’s because the factorial of 0 represents an EMPTY

PRODUCT ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/EMPTY%20PRODUCT} .
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This function must be defined in a file, rather than using let statements in the interpreter.
The latter will cause the function to be redefined with the last definition, losing the
important first definition and leading to infinite recursion.

This all seems a little voodoo so far. How does it work? Well, let’s look at what happens when you
execute factorial 3:

• 3 isn’t 0, so we recur: work out the factorial of 2
• 2 isn’t 0, so we recur.

• 1 isn’t 0, so we recur.
• 0 is 0, so we return 1.

• We multiply the current number, 1, by the result of the recursion, 1, obtaining 1 (1 × 1).
• We multiply the current number, 2, by the result of the recursion, 1, obtaining 2 (2 × 1 × 1).

• We multiply the current number, 3, by the result of the recursion, 2, obtaining 6 (3 × 2 × 1 × 1).

We can see how the multiplication ’builds up’ through the recursion.

(Note that we end up with the one appearing twice, since the base case is 0 rather than 1; but
that’s okay since multiplying by one has no effect. We could have designed factorial to stop at
1 if we had wanted to, but it’s conventional, and often useful, to have the factorial of 0 defined.)

One more thing to note about the recursive definition of factorial: the order of the two dec-
larations (one for factorial 0 and one for factorial n) is important. Haskell decides which
function definition to use by starting at the top and picking the first one that matches. In this
case, if we had the general case (factorial n) before the ’base case’ (factorial 0), then the
general n would match anything passed into it -- including 0. So factorial 0 would match the
general n case, the compiler would conclude that factorial 0 equals 0 * factorial (-1),
and so on to negative infinity. Definitely not what we want. The lesson here is that one should
always list multiple function definitions starting with the most specific and proceeding to the
most general.

Exercises:

1. Type the factorial function into a Haskell source file and load it into your favourite Haskell
environment.
• What is factorial 5?
• What about factorial 1000? If you have a scientific calculator (that isn’t your com-

puter), try it there first. Does Haskell give you what you expected?
• What about factorial (-1)? Why does this happen?

2. The double factorial of a number n is the product of every other number from 1 (or 2) up to
n. For example, the double factorial of 8 is 8 × 6 × 4 × 2 = 384, and the double factorial of 7
is 7 × 5 × 3 × 1 = 105. Define a doublefactorial function in Haskell.

11.1.2 A quick aside

This section is aimed at people who are used to more imperative-style languages like
C and Java.
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Loops are the bread and butter of imperative languages. For example, the idiomatic way of writ-
ing a factorial function in an imperative language would be to use a for loop, like the following
(in C):

Example: The factorial function in an imperative language

int factorial(int n) {
int res;
for (res = 1; n > 1; n--)
res *= n;

return res;
}

int factorial(int n) {
int res;
for (res = 1; n > 1; n--)

res *= n;
return res;

}

This isn’t directly possible in Haskell, since changing the value of the variables res and n (a de-
structive update) would not be allowed. However, you can always translate a loop into an equiv-
alent recursive form. The idea is to make each loop variable in need of updating into a parameter
of a recursive function. For example, here is a direct ’translation’ of the above loop into Haskell:

Example: Using recursion to simulate a loop

factorial n = factorialWorker n 1 where
factorialWorker n res | n > 1 = factorialWorker (n - 1) (res * n)

| otherwise = res

factorial n = factorialWorker n 1 where
factorialWorker n res | n > 1 = factorialWorker (n - 1) (res * n)

| otherwise = res

The expressions after the vertical bars are called guards, and we’ll learn more about them in
the section on CONTROL STRUCTURES3. For now, you can probably figure out how they work by
comparing them to the corresponding C code above.

Obviously this is not the shortest or most elegant way to implement factorial in Haskell (trans-
lating directly from an imperative paradigm into Haskell like this rarely is), but it can be nice to
know that this sort of translation is always possible.

3 Chapter 16 on page 115
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Another thing to note is that you shouldn’t be worried about poor performance through re-
cursion with Haskell. In general, functional programming compilers include a lot of optimiza-
tion for recursion, including an important one called tail-call optimisation; remember too that
Haskell is lazy -- if a calculation isn’t needed, it won’t be done. We’ll learn about these in later
chapters.

11.1.3 Other recursive functions

As it turns out, there is nothing particularly special about the factorial function; a great many
numeric functions can be defined recursively in a natural way. For example, let’s think about
multiplication. When you were first introduced to multiplication (remember that moment? :)),
it may have been through a process of ’repeated addition’. That is, 5 × 4 is the same as summing
four copies of the number 5. Of course, summing four copies of 5 is the same as summing three
copies, and then adding one more -- that is, 5 × 4 = 5 × 3 + 5. This leads us to a natural recursive
definition of multiplication:

Example: Multiplication defined recursively

mult n 0 = 0 -- anything times 0 is zero
mult n 1 = n -- anything times 1 is itself
mult n m = (mult n (m - 1)) + n -- recur: multiply by one less, and
add an extra copy

mult n 0 = 0 -- anything times 0 is zero
mult n 1 = n -- anything times 1 is itself
mult n m = (mult n (m - 1)) + n -- recur: multiply by one less, and add

an extra copy

Stepping back a bit, we can see how numeric recursion fits into the general recursive pattern.
The base case for numeric recursion usually consists of one or more specific numbers (often 0
or 1) for which the answer can be immediately given. The recursive case computes the result by
recursively calling the function with a smaller argument and using the result in some manner to
produce the final answer. The ’smaller argument’ used is often one less than the current argu-
ment, leading to recursion which ’walks down the number line’ (like the examples of factorial
and mult above), but it doesn’t have to be; the smaller argument could be produced in some
other way as well.

Exercises:

1. Expand out the multiplication 5 × 4 similarly to the expansion we used above for
factorial 3.

2. Define a recursive function power such that power x y raises x to the y power.
3. You are given a function plusOne x = x + 1. Without using any other (+)s, define a re-

cursive function addition such that addition x y adds x and y together.
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4. (Harder) Implement the function log2, which computes the integer log (base 2) of its argu-
ment. That is, log2 computes the exponent of the largest power of 2 which is less than or
equal to its argument. For example, log2 16 = 4, log2 11 = 3, and log2 1 = 0. (Small
hint: read the last phrase of the paragraph immediately preceding these exercises.)

11.2 List-based recursion

A lot of functions in Haskell turn out to be recursive, especially those concerning lists.4 Consider
the length function that finds the length of a list:

Example: The recursive definition of length

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

Don’t worry too much about the syntax; we’ll learn more about it in the section on ../PATTERN

MATCHING/5. For now, let’s rephrase this code into English to get an idea of how it works. The
first line gives the type of length: it takes any sort of list and produces an Int. The next line says
that the length of an empty list is 0. This, of course, is the base case. The final line is the recursive
case: if a list consists of a first element x and another list xs representing the rest of the list, the
length of the list is one more than the length of xs.

How about the concatenation function (++), which joins two lists together? (Some examples of
usage are also given, as we haven’t come across this function so far in this chapter.)

Example: The recursive (++)

Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]
Prelude> "Hello " ++ "world" -- Strings are lists of Chars
"Hello world"

4 This is no coincidence; without mutable variables, recursion is the only way to implement control structures.
This might sound like a limitation until you get used to it (it isn’t, really).

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPATTERN%20MATCHING%2F
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(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]
Prelude> "Hello " ++ "world" -- Strings are lists of Chars
"Hello world"

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

This is a little more complicated than length but not too difficult once you break it down. The
type says that (++) takes two lists and produces another. The base case says that concatenating
the empty list with a list ys is the same as ys itself. Finally, the recursive case breaks the first list
into its head (x) and tail (xs) and says that to concatenate the two lists, concatenate the tail of
the first list with the second list, and then tack the head x on the front.

There’s a pattern here: with list-based functions, the base case usually involves an empty list,
and the recursive case involves passing the tail of the list to our function again, so that the list
becomes progressively smaller.

Exercises:
Give recursive definitions for the following list-based functions. In each case, think what the base
case would be, then think what the general case would look like, in terms of everything smaller
than it.

1. replicat :: Int -> a -> [a], which takes an element and a count and returns the
list which is that element repeated that many times. E.g. replicat 3 ’a’ = "aaa".
(Hint: think about what replicate of anything with a count of 0 should be; a count of 0
is your ’base case’.)

2. (!!) :: [a] -> Int -> a, which returns the element at the given ’index’. The first
element is at index 0, the second at index 1, and so on. Note that with this function, you’re
recurring both numerically and down a list.

3. (A bit harder.) zip :: [a] -> [b] -> [(a, b)], which takes two lists and ’zips’ them
together, so that the first pair in the resulting list is the first two elements of the two lists,
and so on. E.g. zip [1,2,3] "abc" = [(1, ’a’), (2, ’b’), (3, ’c’)]. If either of
the lists is shorter than the other, you can stop once either list runs out. E.g. zip [1,2]
"abc" = [(1, ’a’), (2, ’b’)].

Recursion is used to define nearly all functions to do with lists and numbers. The next time you
need a list-based algorithm, start with a case for the empty list and a case for the non-empty list
and see if your algorithm is recursive.
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11.3 Don’t get TOO excited about recursion...

Although it’s very important to have a solid understanding of recursion when programming in
Haskell, one rarely has to write functions that are explicitly recursive. Instead, there are all sorts
of standard library functions which perform recursion for you in various ways, and one usually
ends up using those instead. For example, a much simpler way to implement the factorial
function is as follows:

Example: Implementing factorial with a standard library function

factorial n = product [1..n]

factorial n = product [1..n]

Almost seems like cheating, doesn’t it? :) This is the version of factorial that most experienced
Haskell programmers would write, rather than the explicitly recursive version we started out
with. Of course, the product function is using some list recursion behind the scenes6, but writing
factorial in this way means you, the programmer, don’t have to worry about it.

11.4 Summary

Recursion is the practise of using a function you’re defining in the body of the function itself. It
nearly always comes in two parts: a base case and a recursive case. Recursion is especially useful
for dealing with list- and number-based functions.

11.5 Notes

<references />

6 Actually, it’s using a function called foldl, which actually does the recursion.
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By now we have already met the basic tools for working with lists. We can build lists up from
the cons operator (:) and the empty list [] (see ../LISTS AND TUPLES/1 if you are unsure about
this); and we can take them apart by using a combination of recursion and pattern matching
(as demonstrated IN THE PREVIOUS MODULE2). In this and the next chapter we will delve a little
deeper into the inner workings and the usage of Haskell lists. In that process, we’ll discover
a bit of new notation and some characteristically Haskell-ish features like infinite lists and list
comprehensions and explore some useful list manipulation functions. But before going into
this, let us step back for a moment and put together the things we have already learned about
lists.

12.1 Constructing lists

We’ll start by writing and analysing a function to double every element of a list of integers. First,
we must specify the type declaration for our function. For our purposes here, the function takes
a list of integers and evaluates to another list of integers:

doubleList :: [Integer] -> [Integer]

Then we must write the function definition. As usual in such cases, we will go for a recursive
definition:

doubleList [] = []
doubleList (n:ns) = (n * 2) : doubleList ns

First, let us briefly dissect the definition:

• The base case is for an empty list. In it, the function evaluates to an empty list.
• As for the general case, let us consider the two sides of the equality separately:

• On the left-hand side, the operator (:) is seen playing a special role on dealing with the list
passed as argument, splitting it as part of a process called pattern matching. This kind of
breaking down always splits a list into its first element (known as the "head") and the rest
of the list (known as the "tail"). In this case, the argument passed to doubleList is split into
head, n, and tail, ns,3 which are then referenced on the right-hand side of the equation.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FLISTS%20AND%20TUPLES%2F
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FRECURSION%23LIST-{}BASED%20RECURSION
3 it costs nothing to use the opportunity to mention the naming convention we are adopting in (n:ns) is motivated

by the fact that if the list head is an element "n" then the list tail is likely to contain several other "ns".
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• On the right-hand side, doubleList builds up a new list by using (:). The first element of this
new list is twice the head of the argument, and the rest of the result is obtained by a recursive
call - the application of doubleList to the tail. If the tail happens to be an empty list, the base
case will be invoked and recursion stops.4

By understanding the recursive definition we can picture what actually happens when we eval-
uate an expression such as

doubleList [1,2,3,4]

We can work it out longhand by substituting the argument into the function definition, just like
schoolbook algebra:

doubleList 1:[2,3,4] = (1*2) : doubleList (2 : [3,4])
= (1*2) : (2*2) : doubleList (3 : [4])
= (1*2) : (2*2) : (3*2) : doubleList (4 : [])
= (1*2) : (2*2) : (3*2) : (4*2) : doubleList []
= (1*2) : (2*2) : (3*2) : (4*2) : []
= 2 : 4 : 6 : 8 : []
= [2, 4, 6, 8]

One important thing to notice is that in this longhand evaluation exercise the moment at which
we choose to evaluate the multiplications does not affect the result 5. If we had done them imme-
diately after each recursive call of doubleList it would have made no difference. This reflects an
important property of Haskell: it is a "pure" functional programming language. Because evalua-
tion order can never change the result, it is mostly left to the compiler to decide when to actually
evaluate things. Haskell is a "lazy" evaluation language, so evaluation is usually deferred until
the value is really needed, but the compiler is free to evaluate things sooner if this will improve
efficiency. From the programmer’s point of view evaluation order rarely matters (except, for in-
stance, in the case of infinite lists, which will be discussed soon).

A function to double a list has quite limited applicability. An obvious improvement would be
generalizing it to allow multiplication by any number. Doing so would require a function that
takes a multiplicand as well as a list of integers. It could look like this:

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m (n:ns) = (m*n) : multiplyList m ns

This example deploys _, which is used as a "don’t care" argument. The multiplicand is not used
for the base case, so instead of giving it a name (like m, n or ns) it is explicitly thrown away.

4 In fact, the splitting with (:) doesn’t apply to empty lists - for starters, they have no elements, and therefore no
head to be split.

5 unless one of them is an error or nontermination: we’ll get to that later
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An additional observation about the type declaration. Hiding behind the rather odd syntax is a
deep and clever idea. The "->" arrow is actually an operator for types, and is right associative. So
if you add in the implied brackets the type definition is actually

multiplyList :: Integer -> ( [Integer] -> [Integer] )

Think about what this is saying. It means that "multiplyList" doesn’t take two arguments. Instead
it takes one (an Integer), and then evaluates to a new function. This new function itself takes
one argument (a list of Integers) and evaluates to another list of Integers. This process is called
"currying", and is a very important technique which will be explored further later in the book.

The new function can be used in a straightforward way:

evens = multiplyList 2 [1,2,3,4]

or it can do something which, in most other languages, would be an error; this is partial function
application and because we’re using Haskell, we can write the following neat & elegant bits of
code:

doubleList = multiplyList 2
evens = doubleList [1,2,3,4]

It may help you to understand if you put the implied brackets in the first definition of "evens":

evens = (multiplyList 2) [1,2,3,4]

In other words multiplyList 2 evaluates to a new function that is then applied to [1,2,3,4].

12.1.1 Dot Dot Notation

Haskell has a convenient shorthand for specifying a list containing a sequence of integers. Some
examples to illustrate it:

Code Result
---- ------
[1..10] [1,2,3,4,5,6,7,8,9,10]
[2,4..10] [2,4,6,8,10]
[5,4..1] [5,4,3,2,1]
[1,3..10] [1,3,5,7,9]

The same notation can be used for floating point numbers and characters as well. However, be
careful with floating point numbers: rounding errors can cause unexpected things to happen.
Try this:
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[0,0.1 .. 1]

Additionally, the notation only works be used for sequences with fixed differences between con-
secutive elements. For instance, you can’t put in

[0,1,1,2,3,5,8..100]

and expect to get back the rest of the Fibonacci series, or put in the beginning of a geometric
sequence like

[1,3,9,27..100]

12.1.2 Infinite Lists

One of the most mind-bending things about Haskell lists is that they are allowed to be infinite.
For example, the following generates the infinite list of integers starting with 1:

[1..]

(If you try this in GHCi, remember you can stop an evaluation with Ctrl-c).

Or you could define the same list in a more primitive way by using a recursive function:

intsFrom n = n : intsFrom (n+1)
positiveInts = intsFrom 1

This works because Haskell uses lazy evaluation: it never actually evaluates more than it needs
at any given moment. In most cases an infinite list can be treated just like an ordinary one. The
program will only go into an infinite loop when evaluation would actually require all the values
in the list. Examples of this include sorting or printing the entire list. However:

evens = doubleList [1..]

will define "evens" to be the infinite list [2,4,6,8..]. And you can pass "evens" into other functions,
and it will all just work. See the exercise 4 below for an example of how to process an infinite list
and then take the first few elements of the result.

Infinite lists are quite useful in Haskell. Often it’s more convenient to define an infinite list and
then take the first few items than to create a finite list. Functions that process two lists in parallel
generally stop with the shortest, so making the second one infinite avoids having to find the
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length of the first. An infinite list is often a handy alternative to the traditional endless loop at
the top level of an interactive program.

Exercises:
Write the following functions and test them out. Don’t forget the type declarations.

1. takeInt returns the first n items in a list. So takeInt 4 [11,21,31,41,51,61] returns
[11,21,31,41]

2. dropInt drops the first n items in a list and returns the rest. so dropInt 3 [11,21,31,41,51]
returns [41,51].

3. sumInt returns the sum of the items in a list.
4. scanSum adds the items in a list and returns a list of the running totals. So scanSum

[2,3,4,5] returns [2,5,9,14]. Is there any difference between "scanSum (takeInt 10 [1..])"
and "takeInt 10 (scanSum [1..])"?

5. diffs returns a list of the differences between adjacent items. So diffs [3,5,6,8] returns
[2,1,2]. (Hint: write a second function that takes two lists and finds the difference between
corresponding items).

12.1.3 head and tail

As an additional note, Prelude (the standard library available by default to all Haskell programs)
provides a wrapper for the "(x:xs)" pattern matching splitting of lists through the functions head
and tail. Their definitions should look entirely unsurprising:

Example: head and tail

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"
tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"
tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

While at first it might look like there is not much need to resort to head and tail when you
could just use pattern matching, the functions prove quite convenient, for instance, when doing
function composition.

Exercises:
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1. The (!!) operator takes a list and an Int as arguments and returns the list element at the
position given by the Int (starting from zero). Write a function which performs that task
using head and tail.

2. Write functions that when applied to lists give the last element of the list and the list with
the last element dropped. That can be done with the usual pattern matching schemes or
using head and tail only. We suggest you to try, and compare, both approaches. (Note that
this functionality is provided by Prelude through the last and init functions.)

12.2 map

Because lists are such a fundamental data type in Haskell, there is a large collection of stan-
dard functions for list processing, most of them being in Prelude - and thus available by default
(there are also additional list processing functions to be found in the Data.List module, but
that needn’t be an immediate concern of yours). We will close this module by discussing one
particularly important function, called map. In the next module, LIST PROCESSING6, will pick up
from that point and describe some other key list processing tools.

Let us begin by recalling the multiplyList function from a couple of sections ago.

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m (n:ns) = (m*n) : multiplyList m ns

This works on a list of integers, multiplying each item by a constant. But Haskell allows us to
pass functions around just as easily as we can pass integers. So instead of passing a multiplier m
we could pass a function f, like this:

mapList1 :: (Integer -> Integer) -> [Integer] -> [Integer]
mapList1 _ [] = []
mapList1 f (n:ns) = (f n) : mapList1 f ns

Take a minute to compare the two functions. The difference is in the first parameter. Instead of
being just an Integer it is now a function. This function parameter has the type (Integer ->
Integer), meaning that it is a function from one integer to another. The second line says that if
this is applied to an empty list then the result is itself an empty list, and the third line says that
for a non-empty list the result is f applied to the first item in the list, followed by a recursive call
to mapList1 for the rest of the list.

Remember that (*) has type Integer -> Integer -> Integer. So if we write (2*) then this
returns a new function that doubles its argument and has type Integer -> Integer. But that is
exactly the type of functions that can be passed to mapList1. So now we can write doubleList
like this:

6 Chapter 13 on page 91
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doubleList = mapList1 (2*)

We could also write it like this, making all the arguments explicit:

doubleList ns = mapList1 (2*) ns

(The two are equivalent because if we pass just one argument to mapList1 we get back a new
function. The second version is more natural for newcomers to Haskell, but experts often favour
the first, known as ’point free’ style.)

Obviously this idea is not limited to just integers. We could just as easily write

mapListString :: (String -> String) -> [String] -> [String]
mapListString _ [] = []
mapListString f (n:ns) = (f n) : mapListString f ns

and have a function that does this for strings. But this is horribly wasteful: the code is exactly the
same for both strings and integers. What is needed is a way to say that mapList works for both
Integers, Strings, and any other type we might want to put in a list. In fact there is no reason why
the input list should be the same type as the output list: we might very well want to convert a list
of integers into a list of their string representations, or vice versa. And indeed Haskell provides a
way to do this. The Standard Prelude contains the following definition of map:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = (f x) : map f xs

Instead of constant types like String or Integer this definition uses type variables. These start
with lower case letters (as opposed to type constants that start with upper case) and otherwise
follow the same lexical rules as normal variables. However the convention is to start with "a" and
go up the alphabet. Even the most complicated functions rarely get beyond "d".

So what this says is that map takes two parameters:

• A function from a thing of type a to a thing of type b.
• A list of things of type a.

Then it returns a new list containing things of type b, constructed by applying the function to
each element of the input list.

Exercises:

1. Use map to build functions that, given a list l of Ints, returns:
• A list that is the element-wise negation of l.
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• A list of lists of Ints ll that, for each element of l, contains the factors of l. It will help to
know that factors p = [ f | f <- [1..p], p ‘mod‘ f == 0 ]

• The element-wise negation of ll.
2. Implement a Run Length Encoding (RLE) encoder and decoder.

• The idea of RLE is simple; given some input: "aaaabbaaa" compress it by taking the length
of each run of characters: (4,’a’), (2, ’b’), (3, ’a’)

• The concat and group functions might be helpful. In order to use group, you will need
to import the Data.List module. You can access this by typing :m Data.List at the ghci
prompt, or by adding import Data.List to your Haskell source code file.

• What is the type of your encode and decode functions?
• How would you convert the list of tuples (e.g. [(4,’a’), (6,’b’)]) into a string (e.g.

"4a6b")?
• (bonus) Assuming numeric characters are forbidden in the original string, how would

you parse that string back into a list of tuples?

12.3 Notes

<references/>
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13 List processing

As promised, we’ll pick up from where we stopped in the previous module and continue to explore
list processing functions. Conceptually, our main concern this time will be three classes of functions,
namely folds, scans and filters.

13.1 Folds

A fold applies a function to a list in a way similar to map, but accumulates a single result instead of
a list.

Take for example, a function like sum, which might be implemented as follows:

Example: sum
sum :: [Integer] -> Integer

sum [] = 0

sum (x:xs) = x + sum xs

sum :: [Integer] -> Integer

sum [] = 0

sum (x:xs) = x + sum xs

or product:

Example: product
product :: [Integer] -> Integer

product [] = 1

product (x:xs) = x * product xs

product :: [Integer] -> Integer
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product [] = 1

product (x:xs) = x * product xs

or concat, which takes a list of lists and joins (concatenates) them into one:

Example: concat
concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

There is a certain pattern of recursion common to all of these examples. This pattern is known as a
fold, possibly from the idea that a list is being "folded up" into a single value, or that a function is
being "folded between" the elements of the list.

The Standard Prelude defines four fold functions: foldr, foldl, foldr1 and foldl1.

13.1.1 foldr

The right-associative foldr folds up a list from the right, that is, it walks from the last to the first
element of the list and applies the given function to each of the elements and the accumulator, the
initial value of which has to be set:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)

The first argument is a function with two arguments, the second is a "zero" value for the accumulator,
and the third is the list to be folded.

For example, in sum, f is (+), and acc is 0, and in concat, f is (++) and acc is []. In many cases,
like all of our examples so far, the function passed to a fold will have both its arguments be of the
same type, but this is not necessarily the case in general.

What foldr f acc xs does is to replace each cons (:) in the list xs with the function f, and the
empty list at the end with acc. That is,

a : b : c : []

becomes

f a (f b (f c acc))
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This is perhaps most elegantly seen by picturing the list data structure as a tree:

: f
/ \ / \

a : foldr f acc a f
/ \ -------------> / \
b : b f

/ \ / \
c [] c acc

It is fairly easy to see with this picture that foldr (:) [] is just the identity function on lists (that
is, the function which returns its argument unmodified).

13.1.2 foldl

The left-associative foldl processes the list in the opposite direction, starting at the left side with
the first element, and proceeding to the last one step by step:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs

So brackets in the resulting expression accumulate on the left. Our list above, after being trans-
formed by foldl f z becomes:

f (f (f acc a) b) c

The corresponding trees look like:

: f
/ \ / \

a : foldl f acc f c
/ \ -------------> / \
b : f b

/ \ / \
c [] acc a

Note:
Technical Note: The left associative fold is tail-recursive, that is, it recurs immediately, calling
itself. For this reason the compiler will optimise it to a simple loop, and it will then be much more
efficient than foldr. However, Haskell is a lazy language, and so the calls to f will by default be
left unevaluated, building up an expression in memory whose size is linear in the length of the list,
exactly what we hoped to avoid in the first place. To get back this efficiency, there is a version of
foldl which is strict, that is, it forces the evaluation of f immediately, called foldl’. Note the single
quote character: this is pronounced "fold-ell-tick". A tick is a valid character in Haskell identifiers.
foldl’ can be found in the library Data.List (which can be imported by adding import Data.list
to a source file). As a rule of thumb you should use foldr on lists that might be infinite or where

93



List processing

the fold is building up a data structure, and foldl’ if the list is known to be finite and comes down
to a single value. foldl (without the tick) should rarely be used at all, unless the list is not too long,
or memory usage isn’t a problem.

13.1.3 foldr1 and foldl1

As previously noted, the type declaration for foldr makes it quite possible for the list elements and
result to be of different types. For example, "read" is a function that takes a string and converts it
into some type (the type system is smart enough to figure out which one). In this case we convert it
into a float.

Example: The list elements and results can have different types
addStr :: String -> Float -> Float

addStr str x = read str + x

sumStr :: [String] -> Float

sumStr = foldr addStr 0.0

addStr :: String -> Float -> Float

addStr str x = read str + x

sumStr :: [String] -> Float

sumStr = foldr addStr 0.0

If you substitute the types Float and String for the type variables a and b in the type of foldr you
will see that this is type correct.

There is also a variant called foldr1 ("fold - arr - one") which dispenses with an explicit zero by
taking the last element of the list instead:

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "Prelude.foldr1: empty list"

And foldl1 as well:

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "Prelude.foldl1: empty list"

Note: There is additionally a strict version of foldl1 called foldl1’ in the Data.List library.

Notice that in this case all the types have to be the same, and that an empty list is an error. These
variants are occasionally useful, especially when there is no obvious candidate for z, but you need
to be sure that the list is not going to be empty. If in doubt, use foldr or foldl’.
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13.1.4 folds and laziness

One good reason that right-associative folds are more natural to use in Haskell than left-associative
ones is that right folds can operate on infinite lists, which are not so uncommon in Haskell program-
ming. If the input function f only needs its first parameter to produce the first part of the output,
then everything works just fine. However, a left fold must call itself recursively until it reaches the
end of the input list; this is inevitable, because the recursive call is not made in an argument to f.
Needless to say, this never happens if the input list is infinite and the program will spin endlessly in
an infinite loop.

As a toy example of how this can work, consider a function echoes taking a list of integers and
producing a list where if the number n occurs in the input list, then n replicated n times will occur
in the output list. We will make use of the prelude function replicate: replicate n x is a list of
length n with x the value of every element.

We can write echoes as a foldr quite handily:

echoes = foldr (\x xs -> (replicate x x) ++ xs) []

(Note: That is very compact thanks to the \xs x -> syntax. Instead of defining a function some-
where else and passing it to foldr we provided the definition in situ; x and xs being the arguments
and the right-hand side of the definition being what is after the ->)

or, equally handily, as a foldl:

echoes = foldl (\xs x -> xs ++ (replicate x x)) []

but only the first definition works on an infinite list like [1..]. Try it! (If you try this in GHCi,
remember you can stop an evaluation with Ctrl-c, but you have to be quick and keep an eye on the
system monitor or your memory will be consumed in no time and your system will hang.)

As a final example, another thing that you might notice is that map itself is patterned as a fold:

map f = foldr (\x xs -> f x : xs) []

Folding takes a little time to get used to, but it is a fundamental pattern in functional programming
and eventually becomes very natural. Any time you want to traverse a list and build up a result from
its members, you likely want a fold.

Exercises:
Define the following functions recursively (like the definitions for sum, product and concat
above), then turn them into a fold:

• and :: [Bool] -> Bool, which returns True if a list of Bools are all True, and False otherwise.
• or :: [Bool] -> Bool, which returns True if any of a list of Bools are True, and False other-

wise.

Define the following functions using foldl1 or foldr1:
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• maximum :: Ord a => [a] -> a, which returns the maximum element of a list (hint: max ::
Ord a => a -> a -> a returns the maximum of two values).

• minimum :: Ord a => [a] -> a, which returns the minimum element of a list (hint: min ::
Ord a => a -> a -> a returns the minimum of two values).

13.2 Scans

A "scan" is much like a cross between a map and a fold. Folding a list accumulates a single return
value, whereas mapping puts each item through a function with no accumulation. A scan does both:
it accumulates a value like a fold, but instead of returning a final value it returns a list of all the
intermediate values.

The Standard Prelude contains four scan functions:

scanl :: (a -> b -> a) -> a -> [b] -> [a]

This accumulates the list from the left, and the second argument becomes the first item in the
resulting list. So scanl (+) 0 [1,2,3] = [0,1,3,6]

scanl1 :: (a -> a -> a) -> [a] -> [a]

This is the same as scanl, but uses the first item of the list as a zero parameter. It is what you
would typically use if the input and output items are the same type. Notice the difference in the
type signatures. scanl1 (+) [1,2,3] = [1,3,6].

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr1 :: (a -> a -> a) -> [a] -> [a]

These two functions are the exact counterparts of scanl and scanl1. They accumulate the totals
from the right. So:

scanr (+) 0 [1,2,3] = [6,5,3,0]
scanr1 (+) [1,2,3] = [6,5,3]

Exercises:

1. Write your own definition of scanr, first using recursion, and then using foldr. Do the same
for scanl first using recursion then foldl.

2. Define the following functions:
• factList :: Integer -> [Integer], which returns a list of factorials from 1 up to its

argument. For example, factList 4 = [1,2,6,24].
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More to be added

13.3 filter

A very common operation performed on lists is FILTERING1, which is generating a new list com-
posed only of elements of the first list that meet a certain condition. One simple example of that
would be taking a list of integers and making from it a list which only retains its even numbers.

retainEven :: [Int] -> [Int]
retainEven [] = []
retainEven (n:ns) =
-- mod n 2 computes the remainder for the integer division of n by 2,
so if it is zero the number is even
if (mod n 2) == 0)
then n : (retainEven ns)
else retainEven ns

That works fine, but it is a slightly verbose solution. It would be nice to have a more concise way to
write the filter function. Also, it would certainly be very useful to be able to generalize the filtering
operation - that is, make it capable of filtering a list using any boolean condition we’d like. To help
us with both of these issues Prelude provides a filter function. filter has the following type
signature:

(a -> Bool) -> [a] -> [a]

That means it evaluates to a list when given two arguments, namely an (a -> Bool) function which
carries the actual test of the condition for the elements of the list and the list to be filtered. In order
to write retainEven using filter, we need to state the condition as an auxiliary (a -> Bool)
function, like this one:

isEven :: Int -> Bool
isEven n = ((mod n 2) == 0)

And then retainEven becomes simply:

retainEven ns = filter isEven ns

It can be made even more terse by writing it in point-free style:

retainEven = filter isEven

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/FILTER%20%28MATHEMATICS%29
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This is just like what we demonstrated before for map and the folds. Like filter, those take another
function as argument; and using them point-free emphasizes this "functions-of-functions" aspect.

13.4 List comprehensions

An additional tool for list processing is the LIST COMPREHENSION2, a powerful, concise and ex-
pressive syntactic construct. In their most elementary form, list comprehensions are SYNTACTIC

SUGAR3 for filtering. So, instead of using the Prelude filter, we could write retainEven like
this:

retainEven es = [ n | n <- es , isEven n ]

This compact syntax may look a bit intimidating at first, but it is simple to break down. One possible
way to read it would be:

• (Starting from the middle) Take the list es and draw (the "<-") each of its elements as a value n.
• (After the comma) For each drawn n test the boolean condition isEven n.
• (Before the vertical bar) If (and only if) the boolean condition is satisfied, prepend n to the new

list being created (note the square brackets around the whole expression).

Thus if es is equal to [1,2,3,4], then we would get back the list [2,4]. 1 and 3 were not drawn
because (isEven n) == False .

The real power of list comprehensions, though, comes from the fact they are easily extensible.
Firstly, we can use as many tests as we wish (even zero!). Multiple conditions are written as a
comma-separated list of expressions (which should evaluate to a Boolean, of course). For a simple
example, suppose we want to modify retainEven so that only numbers larger than 100 are retained:

retainLargeEvens :: [Int] -> [Int]
retainLargeEvens es = [ n | n <- es , isEven n, n > 100 ]

Writing this function with filter would require explicitly defining a new function to combine the
conditions by a logical and (&&). List comprehensions can provide a clearer syntax in such cases,
particularly if there are several conditions to be tested.

Another useful thing to know is that list comprehensions can be used for defining simple variables
as well as functions. For instance:

someListOfEvens = [ n | n <- [1..10000] , isEven n ]

someListOfEvens will be [2,4..10000], as expected.

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIST%20COMPREHENSION
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNTACTIC%20SUGAR
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Furthermore, we are not limited to using n as the element to be prepended when generating a new
list. Instead, we could place any expression before the vertical bar (if it is compatible with the type
of the list, of course). For instance, if we we wanted to subtract one from every even number, all it
would take is:

evensMinusOne es = [ n - 1 | n <- es , isEven n ]

In effect, that means the list comprehension syntax incorporates the functionality of map as well as
of filter. Now that is conciseness! (and in a very readable way despite the terseness)

To further sweeten things, the left arrow notation in list comprehensions can be combined with
pattern matching. For example, suppose we had a list of (Int, Int) tuples and we would like
to construct a list with the first element of every tuple whose second element is even. Using list
comprehensions, we might write it as follows:

firstForEvenSeconds :: [(Int, Int)] -> [Int]
firstForEvenSeconds ps = [ fst p | p <- ps, isEven (snd p) ] -- here,
p is for pairs.

Patterns (which can be used with tuples as well as with lists) can make what the function is doing
more obvious:

firstForEvenSeconds ps = [ x | (x,y) <- ps, isEven y ]

As in other cases, arbitrary expressions may be used before the |. If we wanted a list with the double
of those first elements:

doubleOfFirstForEvenSeconds :: [(Int, Int)] -> [Int]
doubleOfFirstForEvenSeconds ps = [ 2 * x | (x,y) <- ps, isEven y ]

Note that the function code is actually shorter than its descriptive name.

Exercises:

1. Write a returnDivisible :: Int -> [Int] -> [Int] function which filters a list of
integers retaining only the numbers divisible by the integer passed as first argument. For
integers x and n, x is divisible by n if (mod x n) == 0 (note that the test for evenness is a
specific case of that)

2. • Write - using list comprehension syntax, a single function definition and no if, case and
similar constructs - a [[Int]] -> [[Int]] which, from a list of lists of Int, returns a list
of the tails of those lists using, as filtering condition, that the head of each [Int] must be
larger than 5. Also, your function must not trigger an error when it meets an empty [Int],
so you’ll need to add an additional test to detect emptiness.
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• Does order matter when listing the conditions for list comprehension? (You can find it out
by playing with the function you wrote for the first part of the exercise.)

3. Over this section we’ve seen how list comprehensions are essentially syntactic sugar for
filter and map. Now work in the opposite direction and define alternative versions of the
filter and map using the list comprehension syntax.

4. Rewrite doubleOfFirstForEvenSeconds using filter and map instead of list comprehen-
sion.
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You’re not restricted to working with just the types provided by default with the language. Haskell
allows you to define new types. Reasons why doing so can be very useful including:

• It allows for code to be written in terms of the problem being solved, making programs easier to
design, write and understand.

• It allows for handling related pieces of data together in ways more convenient and meaningful
than say, simply putting and getting values from lists or tuples.

• It makes it possible to use two powerful features of Haskell, pattern matching and the type system,
to their fullest extent by making them work with your custom types.

How these things are achieved and why they are so important will gradually become clear as you
progress on this course.

Haskell has three basic ways to declare a new type:

• The data declaration, which defines new data types.
• The type declaration for type synonyms.
• The newtype declaration, which is a cross between the other two.

In this chapter, we will discuss the most essential way, data. We’ll also mention type, which is a
convenience feature. You’ll find out about newtype later on, but don’t worry too much about it; it’s
there mainly for optimisation.

14.1 data and constructor functions

data is used to define new data types using existing ones as building blocks. Here’s a data structure
for elements in a simple list of anniversaries:

data Anniversary = Birthday String Int Int Int -- name, year,
month, day

| Wedding String String Int Int Int -- spouse name 1,
spouse name 2, year, month, day
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A type declaration like this has two effects:

• First, it declares a new data type Anniversary, which can be either a Birthday or a Wedding.
A Birthday contains one string and three integers and a Wedding contains two strings and three
integers. The definitions of the two possibilities are separated by the vertical bar. The text after
the "--" are just comments, explaining to readers of the code what the fields actually mean.

• Moreover, it defines two constructor functions for Anniversary, called, appropriately enough,
Birthday and Wedding. These functions provide a way to build a new Anniversary, be it a
"Birthday" or a "Wedding".

Types defined by data declarations are often referred to as algebraic data types. We will eventually
return to this topic to address the theory behind such a name and the practical implications of said
theory.

As usual with Haskell the case of the first letter is important: type names and constructor functions
must always start with capital letters. Other than this syntactic detail, constructor functions work
pretty much like the "conventional" functions we met so far. In fact, if you use :t in ghci to query
the type of, say, Birthday, you’ll get:

• Main> :t Birthday

Birthday :: String -> Int -> Int -> Int -> Anniversary

Meaning it’s just a function which takes one String and three Int as arguments and evaluates to
an Anniversary. This anniversary will contain the four arguments we passed as specified by the
Birthday constructor.

Calling the constructor functions is no different from calling other functions. For example, suppose
we have John Smith born on 3rd July 1968:

johnSmith :: Anniversary
johnSmith = Birthday "John Smith" 1968 7 3

He married Jane Smith on 4th March 1987:

smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" 1987 3 4

These two anniversaries can, for instance, be put in a list:

anniversariesOfJohnSmith :: [Anniversary]
anniversariesOfJohnSmith = [johnSmith, smithWedding]

Or you could just as easily have called the constructors straight away when building the list (al-
though the resulting code looks a bit cluttered).
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anniversariesOfJohnSmith = [Birthday "John Smith" 1968 7 3, Wedding
"John Smith" "Jane Smith" 1987 3 4]

14.2 Deconstructing types

So far we’ve seen how to define a new type and create values of that type. If the new data types are
to be of any use, however, we must have a way to access its contents, that is, the values we used at
construction. For instance, one very basic operation with the anniversaries defined above would be
extracting the names and dates they contain as a String. Let us see how a function which does that,
showAnniversary, could be written and analyse what’s going on in it (you’ll see that, in the sake
of code clarity, we used an auxiliary showDate function but let’s ignore it for a moment and focus
on showAnniversary).

showDate :: Int -> Int -> Int -> String
showDate y m d = show y ++ "-" ++ show m ++ "-" ++ show d
showAnniversary :: Anniversary -> String
showAnniversary (Birthday name year month day) =

name ++ " born " ++ showDate year month day
showAnniversary (Wedding name1 name2 year month day) =

name1 ++ " married " ++ name2 ++ " on " ++ showDate year month day

This example shows what is truly special about constructor functions: they can also be used to
deconstruct the values they build. showAnniversary takes a single argument of type Anniversary.
Instead of just providing a name for the argument on the left side of the definition, however, we
specify one of the constructor functions and give names to each argument of the constructor - which
correspond to the contents of the Anniversary. A more formal way of describing this "giving names"
process is to say we are binding variables - "binding" is being used in the sense of assigning a
variable to each of the values so that we can refer to them on the right side of the function definition.

For such an approach be able to handle both "Birthday" and "Wedding" Anniversaries we needed
to provide two function definitions, one for each constructor. When showAnniversary is called,
if the argument is a Birthday Anniversary the first version is used and the variables name, month,
date and year are bound to its contents. If the argument is a Wedding Anniversary then the second
version is used and the variables are bound in the same way. This process of using a different version
of the function depending on the type of constructor used to build the Anniversary is pretty much
like what happens when we use a case statement or define a function piece-wise.

An important observation on syntax is that the parentheses around the constructor name and the
bound variables are mandatory; otherwise the compiler or interpreter would not take them as a
single argument. Also, it is important to have it absolutely clear that the expression inside the
parentheses is not a call to the constructor function, even though it may look just like one.

Exercises:
Note: There are spoilers for this exercise near the end of the module, so we recommend that you
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attempt it before getting there.

Reread the function definitions above, now having a closer look at the showDate helper function.
In spite of us saying it was provided "in the sake of code clarity", there is a certain clumsiness in the
way it is used. You have to pass three separate Int arguments to it, but these arguments are always
linked to each other in that they are part of a single date. It would make no sense to do things like
passing the year, month and day values of the Anniversary in a different order, or to pass the month
value twice and omit the day.

• Could we use what we’ve seen in this chapter so far to reduce this clumsiness?
• Declare a Date type which is composed of three Int, corresponding to year, month and date.

Then, rewrite showDate so that it uses the new data type, and picture the changes needed in
showAnniversary and the Anniversary for them to make use of it as well.

14.3 type for making type synonyms

As mentioned in the introduction of this module, code clarity is one of the motivations for using
custom types. In that spirit, it could be nice to make it clear that the Strings in the Anniversary type
are being used as names while still being able to manipulate them like ordinary Strings. The type
declaration allows us to do that.

type Name = String

The code above says that a Name is now a synonym for a String. Any function that takes a String
will now take a Name as well (and vice-versa: functions that take Name will accept any String). The
right hand side of a type declaration can be a more complex type as well. For example, String
itself is defined in the standard libraries as

type String = [Char]

We can do something similar for the list of anniversaries we made use of:

type AnniversaryBook = [Anniversary]

Since type synonyms are mostly a convenience feature for making the roles of types clearer or
providing an alias to, for instance, a complicated list or tuple type, it is largely a matter of personal
discretion to decide how they should be deployed. Abuse of synonyms might even, on occasion,
make code confusing (for instance, picture a long program using multiple names for common types
like Int or String simultaneously, all of course having the same functionality).

Incorporating the suggested type synonyms and the Date type we proposed in the exercise(*) of the
previous section the code we’ve written so far looks like this:
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((*) last chance to try that exercise without looking at the spoilers...)

type Name = String
data Anniversary =

Birthday Name Date
| Wedding Name Name Date

data Date = Date Int Int Int -- Year, Month, Day
johnSmith :: Anniversary
johnSmith = Birthday "John Smith" (Date 1968 7 3)
smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" (Date 1987 3 4)
type AnniversaryBook = [Anniversary]
anniversariesOfJohnSmith :: AnniversaryBook
anniversariesOfJohnSmith = [johnSmith, smithWedding]
showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d
showAnniversary :: Anniversary -> String
showAnniversary (Birthday name date) =

name ++ " born " ++ showDate date
showAnniversary (Wedding name1 name2 date) =

name1 ++ " married " ++ name2 ++ " on " ++ showDate date

Even in a simple example like this one, there is a very noticeable gain in terms of simplicity and
clarity when compared to what would be needed to do the same task using only Ints, Strings, and
corresponding lists.

A final observation on syntax: note that the Date type has a constructor function which is called
Date as well. That is perfectly valid and indeed giving the constructor the same name of the type
when there is just one constructor is good practice, as a simple way of making the role of the
function obvious.

Note:
After these initial examples, the mechanics of using constructor functions may look a bit unwieldy,
particularly if you’re familiar with analogous features in other languages. There are syntactical
constructs that make dealing with constructors more convenient. These will be dealt with later on,
when we return to the topic of constructors and data types to explore them in detail (in sections like
PATTERN MATCHING1 and MORE ON DATATYPES2 - no need to rush over there right now, though).
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15 Pattern matching

Over the previous modules of this book we occasionally mentioned pattern matching, pointing out
some common situations in which it was involved without providing a clear definition. Now that
you have some familiarity with the fundamental language constructs, it is a proper time for a more
formal discussion of pattern matching. Let us start with a possible one-line definition:

Pattern matching is a convenient way to ’bindvariables to different partsof a given value.

Note:
’Pattern matching on what?

Some languages like Perl and Python use the term pattern matching for matching regular expres-
sions against strings. The pattern matching we are referring to in this chapter is something com-
pletely different. In fact, you’re probably best off forgetting what you know about pattern matching
for now.1 Here, pattern matching is used in the same way as in other ML-like languages : to
deconstruct values according to their type specification.

15.1 What is pattern matching?

Actually, you have seen many examples of pattern matching already - it is virtually everywhere. For
instance, pick a function definition like that of map:

map _ [] = []
map f (x:xs) = f x : map f xs

Here there are four different patterns involved, two per equation. Let’s explore each one in turn:

• f is a pattern which matches anything at all, and binds the f variable to that something.
• (x:xs) is a pattern that matches a non-empty list which is formed by something (which gets

bound to the x variable) which was cons’d (by the function (:)) onto something else (which gets
bound to xs). xs can be an empty list.

• [] is a pattern that matches the empty list. It doesn’t bind any variables.
• _ is the pattern which matches anything at all, but doesn’t do any binding.

So pattern matching is a way of:

• recognizing values. For instance, when map is called and the second argument matches [] the
first definition of map is used instead of the second one.

• binding variables to the recognized values. In this case, the variables f, x and xs are assigned
to the values passed as arguments to map when the second definition is used. Not all patterns do
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binding - for example, _ is used as a "whatever/don’t care" wildcard exactly because it doesn’t
bind variables, and so it is not possible to refer to any value it matches.

• breaking down values into parts, as the (x:xs) pattern does by assigning two variables to parts
(head and tail) of a single argument (the list).

At this point, the process of using a function to break down a value by effectively undoing its
effects may look a little bit too magical. It is not, however, a universally deployable technique. For
example, one might think of, by analogy to how (:) is used to break down a list, define a function
which uses (++) to chop off the first three elements of a list:

dropThree ([x,y,z] ++ xs) = xs

However, that will not work. The function (++) isn’t allowed in patterns, and in fact most other
functions that act on lists wouldn’t be allowed either. So which functions are allowed?

The one-word answer is constructors - the functions used to build values of algebraic data types.
Let us consider a generic example:

data Foo = Bar | Baz Int

Here Bar and Baz are constructors for the type Foo. And so you can use them for pattern matching
Foo values, and bind variables to the Int value contained in a Foo constructed with Baz:

f :: Foo -> Int
f Bar = 1
f (Baz x) = x - 1

That was exactly what was going on back when we defined showAnniversary and showDate in
the Type declarations module. For instance:

data Date = Date Int Int Int -- Year, Month, Day
showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d

The (Date y m d) pattern in the left-hand side of the showDate definition matches a Date (built
with the Date constructor) and binds the variables y, m and d to the contents of the Date value.

As for lists, they are not different from data-defined algebraic data types as far as pattern matching
is concerned. In effect, it’s like lists were defined with this data declaration (note that the following
isn’t actually valid syntax: lists are in reality deeply ingrained into Haskell):

data [a] = [] | a : [a]

So the empty list, [], and the (:) function, are in reality constructors of the list datatype, so you
can pattern match with them. [] takes no arguments, and therefore no variables are bound when
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it is used for pattern matching. (:) takes two arguments, the list head and tail, which can then be
bound to variables when the pattern is recognized.

Furthermore, since [x, y, z] is just syntactic sugar for x:y:z:[], there is a pattern matching
solution for the dropThree problem above:

dropThree (_:_:_:xs) = xs

15.1.1 Introduction to records

For constructors with many elements, records provide useful syntactical assistance. Briefly, they are
a way of naming values in a datatype, using the following syntax:

data Foo2 = Bar2 | Baz2 {barNumber::Int, barName::String}

Using records allows doing matching and binding only for the variables relevant to the function
we’re writing, making code much clearer:

h :: Foo2 -> Int
h Baz2 {barName=name} = length name
h Bar2 {} = 0

Also, the {} pattern can be used for matching a constructor regardless of the datatype elements even
if you don’t use records in the data declaration:

data Foo = Bar | Baz Int
g :: Foo -> Bool
g Bar {} = True
g Baz {} = False

The function g does not have to be changed if we modify the number or the type of elements of the
constructors Bar or Baz.

The record syntax will be covered with more detail later in the book.

15.1.2 As-patterns

Sometimes, when matching a pattern with a value, it may be useful to bind a name also to the whole
value being matched. As-patterns allow exactly this: they are of the form var@pattern and have
the additional effect to bind the name var to the whole value being matched by pattern.

For instance, the following code snippet:

other_map f [] = []
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other_map f list@(x:xs) = f x list : other_map f xs

creates a variant of map, called other_map, which passes to the parameter function f also the
original list. Writing it without as-patterns would have been more cumbersome, because you must
recreate the original value, i.e. x:xs:

other_map f [] = []
other_map f (x:xs) = f x (x:xs) : other_map f xs

The difference would be more notable with a more complex pattern.

15.1.3 Literal values

A simple piece-wise function definition like this one

f :: Int -> Int
f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1

is performing pattern matching as well, matching the argument of f with the Int literals 0, 1 and 2.
In general, numeric and character literals can be used in pattern matching. They can also be used
together with constructors. For instance, this function

g :: [Int] -> Bool
g (0:[]) = False
g (0:xs) = True
g _ = False

will evaluate to False for the [0] list, to True if the list has 0 as first element and a non-empty tail
and to False in all other cases. Also, lists with literal elements like [1,2,3], or even "abc" (which
is equivalent to [’a’,’b’,’c’]) can be used for pattern matching as well, since these forms are only
syntactic sugar for the (:) constructor.

It costs nothing to emphasize that the above considerations are only valid for literal values, so the
following will not work:

k = 1
--again, this won’t work as expected
h :: Int -> Bool
h k = True
h _ = False
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Exercises:
Test the flawed h function above in GHCi, with arguments equal to and different from 1. Then, try
to explain what goes wrong. (Hint: re-read the detailed description of the pattern matching used in
the map definition at the start of the module.)

15.1.4 n+k patterns

There is one exception to the rule that you can only pattern match with constructor functions. It is
known as n+k patterns, which make it valid Haskell 98 to write something like:

pred :: Int -> Int
pred (n+1) = n

However, this exception is generally considered unsightly and has now been removed in the Haskell
2010 standard.

15.2 Where you can use it

The short answer is that wherever you can bind variables, you can pattern match. Let’s have a look
at that more precisely.

15.2.1 Equations

The first place is in the left-hand side of function definition equations, which were the subject of
our examples so far.

map _ [] = []
map f (x:xs) = f x : map f xs

In the map definition we’re binding, and doing pattern-matching, on the left hand side of both of
these equations.

15.2.2 Let expressions

Let expressions are a way of doing local variable bindings. As such, you can also use pattern
matching in them. A simple example:

y =
let
(x:xs) = map (2*) [1,2,3]

in x + 5
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Here, x will be bound to the first element of map (2*) [1,2,3]. y, therefore, will evaluate to
2+5 = 7.

15.2.3 Case expressions

Another typical usage of pattern binding is on the left hand side of case branches:

describeList :: [a] -> String
describeList list =
case list of
[] -> "The list was empty"
(x:xs) -> "The list wasn’t empty: the first element was " ++ show x

++ ", and " ++
"there were " ++ show (length xs) ++ " more elements in

the list."

15.2.4 List comprehensions

After the | in list comprehensions you can pattern match. This is actually extremely useful, and
adds a lot to the expressiveness of comprehensions. Let’s see how that works with a slightly more
sophisticated example. Prelude provides a Maybe type which has the following constructors:

data Maybe a = Nothing | Just a

It is typically used to hold values resulting from an operation which may or may not succeed, such as
a lookup in a list (if the operation succeeds, the Just constructor is used and the value is passed to it;
otherwise Nothing is used). The utility function catMaybes (which is available from Data.Maybe
library module) takes a list of Maybes (which may contain both "Just" and "Nothing" Maybes),
and retrieves the contained values by filtering all the Just x and getting rid of the Just wrappers.
Writing it with list comprehensions is very straightforward:

catMaybes :: [Maybe a] -> [a]
catMaybes ms = [ x | Just x <- ms ]

Another nice thing about using a list comprehension for this task is that if the pattern match fails
(that is, it meets a Nothing) it just moves on to the next element in ms,3 thus avoiding the need of
explicitly handling each constructor with alternate function definitions.

3 Advanced note for the curious: More formally, as list comprehensions are just the list monad, a failed pattern
match invokes fail, which is the empty list in this case, and so gets ignored.
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15.2.5 Other places

There are a few other situations in which patterns can be used that we’ll meet later on. Here’s a list
in case you’re very eager already:

• where clauses, which are an alternative to let bindings;
• lambdas, which are anonymous function definitions;
• In p <- x assignments in do-blocks, p can be a pattern.
• Similarly, with let bindings in do-blocks, you can pattern match analogously to ’real’ let bindings.

15.3 Notes

<references/>
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16 Control structures

Haskell offers several ways of expressing a choice between different values. This section will
describe them all and explain what they are for:

16.1 if Expressions

You have already seen these. The full syntax is:

if <condition> then <true-value> else <false-value>

Here, condition is an expression which evaluates to a boolean. If the <condition> is True then
the <true-value> is returned, otherwise the <false-value> is returned. Note that in Haskell if
is an expression (which is converted to a value) - and not a statement (which is executed), as usual
for imperative languages. A very important consequence of this fact is that in Haskell the else is
required. Since if is an expression, it must evaluate to a result, and the else ensures this. For the
same reason, the usual indentation is different from imperative languages. If you need to split an if
expression across multiple lines then you should indent it like one of these:

if <condition>
then <true-value>
else <false-value>

if <condition>
then

<true-value>
else

<false-value>

Here is a simple example:

message42 :: Integer -> String
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message42 n =
if n == 42

then "The Answer is forty two."
else "The Answer is not forty two."

16.2 case Expressions

One interesting way of thinking about case expressions is seeing them as a generalization of if
expressions. We could even write a clone of if as a case:

alternativeIf :: Bool -> a -> a -> a
alternativeIf cond ifTrue ifFalse =
case cond of
True -> ifTrue
False -> ifFalse

First, this checks cond for a pattern match against True. If there is a match, the whole expression
will evaluate to ifTrue, otherwise it will evaluate to ifFalse (since a Bool can only be True or
False there is no need for a default case). case is more general than if because the pattern matching
in which case selection is based allows it to work with expressions which evaluate to values of any
type. 1 In fact, the left hand side of any case branch is just a pattern, so it can also be used for
binding:

describeString :: String -> String
describeString str =
case str of
(x:xs) -> "The first character is: " ++ [x] ++ "; the rest of the

string is: " ++ xs
"" -> "This is an empty string."

This expression tells you whether str is an empty string or something else. Of course, you could
just do this with an if-statement (with a condition of str == []), but using a case binds variables
to the head and tail of our list, which is convenient in this instance.

16.2.1 Equations and Case Expressions

Remember you can use multiple equations as an alternative to case expressions. The
describeString function above could be written like this:

describeString :: String -> String
describeString (x:xs) = "The first character is " ++ [x] ++ "; the
rest of the string is " ++ xs

describeString "" = "This is the empty string."

1 Again, this is quite different from what happens in most imperative languages, in which switch/case statements
are restricted to equality tests, often only on integral primitive types.
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Named functions and case expressions at the top level are completely interchangeable. In fact the
function definition form shown here is just syntactic sugar for a case expression.

One handy thing about case expressions, and indeed about Haskell control structures in general, is
that since they evaluate to values they can go inside other expressions just like an ordinary expres-
sion would. For example, this case expression evaluates to a string which is then concatenated with
two other strings, all inside a single expression:

data Colour = Black | White | RGB Int Int Int
describeColour :: Colour -> String
describeColour c =
"This colour is "
++ case c of

Black -> "black"
White -> "white"
RGB 0 0 0 -> "black"
RGB 255 255 255 -> "white"
_ -> "freaky, man, sort of in between"

++ ", yeah?"

Writing this function in an equivalent way using the multiple equations style would need a named
function inside something like a let block.

16.3 Guards

As shown, if we have a top-level case expression, we can just give multiple equations for the
function instead, which is often neater. Is there an analogue for if expressions? It turns out there
is. We use some additional syntax known as "guards". A guard is a boolean condition, like this:

describeLetter :: Char -> String
describeLetter c

| c >= ’a’ && c <= ’z’ = "Lower case"
| c >= ’A’ && c <= ’Z’ = "Upper case"
| otherwise = "Not a letter"

Note the lack of an = before the first |. Guards are evaluated in the order they appear. That is, if you
have a set up similar to the following:

f (pattern1) | predicate1 = w
| predicate2 = x

f (pattern2) | predicate3 = y
| predicate4 = z

Then the input to f will be pattern-matched against pattern1. If it succeeds, then predicate1 will
be evaluated. If this is true, then w is returned. If not, then predicate2 is evaluated. If this is true,
then x is returned. Again, if not, then we jump out of this ’branch’ of f and try to pattern match
against pattern2, repeating the guards procedure with predicate3 and predicate4. Unlike the else in
if statements, otherwise is not mandatory. Still, if no guards match an error will be produced at
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runtime, so it’s always a good idea to provide the ’otherwise’ guard, even if it is just to handle the
"But this can’t happen!" case (which normally does happen anyway...).

The otherwise you saw above is actually just a normal value defined in the Standard Prelude as:

otherwise :: Bool
otherwise = True

This works because of the sequential evaluation described a couple of paragraphs back: if none of
the guards previous to your ’otherwise’ one are true, then your otherwise will definitely be true and
so whatever is on the right-hand side gets returned. It’s just nice for readability’s sake.

16.4 Notes

<references/>
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17 More on functions

As functions are absolutely essential to functional programming, there are some nice features you
can use to make using functions easier.

17.1 Private functions - let and where

Remember the sumStr function from the chapter on list processing. It used another function called
addStr:

addStr :: Float -> String -> Float
addStr x str = x + read str
sumStr :: [String] -> Float
sumStr = foldl addStr 0.0

So you could find that

addStr 4.3 "23.7"

gives 28.0, and

sumStr ["1.2", "4.3", "6.0"]

gives 11.5.

But maybe you don’t want addStr cluttering up the top level of your program if it is only used as
part of the sumStr. Haskell lets you nest declarations in two subtly different ways: either using the
let bindings we already know:

sumStr =
let addStr x str = x + read str
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in foldl addStr 0.0

or with where clauses, which work in pretty much the same way but come after the expression
which use the function.

sumStr = foldl addStr 0.0
where addStr x str = x + read str

You can also use let and where in case expression and similar control structures, just as you can
in functions:

describeColour c =
"This colour is "
++ case c of

Black -> "black"
White -> "white"
RGB red green blue -> "the average of the components is " ++

show av
where av = (red + green + blue) ‘div‘ 3

++ ", yeah?"

In this example, the indentation of the where clause sets the scope of the av variable so that it only
exists as far as the RGB red green blue case is concerned. Placing it at the same indentation of
the cases would make it available for all cases. Here is an example of such an usage with guards:

doStuff :: Int -> String
doStuff x
| x < 3 = report "less than three"
| otherwise = report "normal"
where
report y = "the input is " ++ y

17.2 Anonymous Functions - lambdas

An alternative to creating a private named function like addStr is to create an anonymous function,
also known as a lambda function. For example, sumStr could have been defined like this:

sumStr = foldl (\x str -> x + read str) 0.0

The expression in the parentheses is a lambda function. The backslash is used as the nearest ASCII
equivalent to the Greek letter lambda (λ). This example is a lambda function with two arguments,
x and str, which evaluates to "x + read str". So, the sumStr presented just above is precisely the
same as the one that used addStr in a let binding.

Lambdas are handy for writing one-off functions to be used with maps, folds and their siblings,
especially where the function in question is simple. The example above is about as complicated
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as you’ll want them to be - cramming more verbose constructs like conditionals in such a compact
syntactic form could get messy.

Since variables are being bound in a lambda expression (to the arguments, just like in a regular
function definition), pattern matching can be used in them as well. A trivial example would be
redefining head with a lambda:

head = (\(x:xs) -> x)

17.3 Infix versus Prefix

As we noted previously, you can take an operator and turn it into a function by surrounding it in
brackets:

2 + 4
(+) 2 4

This is called making the operator prefix: you’re using it before its arguments, so it’s known as a
prefix function. We can now formalise the term ’operator’: it’s a function which entirely consists
of non-alphanumeric characters, and is used infix (normally). You can define your own operators
just the same as functions, just don’t use any alphanumeric characters. For example, here’s the
set-difference definition from Data.List:

(\\) :: Eq a => [a] -> [a] -> [a]
xs \\ ys = foldl (\zs y -> delete y zs) xs ys

Note that aside from just using operators infix, you can define them infix as well. This is a point
that most newcomers to Haskell miss. I.e., although one could have written:

(\\) xs ys = foldl (\zs y -> delete y zs) xs ys

It’s more common to define operators infix. However, do note that in type declarations, you have to
surround the operators by parentheses.

You can use a variant on this parentheses style for ’sections’:

(2+) 4
(+4) 2

These sections are functions in their own right. (2+) has the type Int -> Int, for example, and
you can pass sections to other functions, e.g. map (+2) [1..4].

If you have a (prefix) function, and want to use it as an operator, simply surround it by backticks:
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1 ‘elem‘ [1..4]

This is called making the function infix: you’re using it in between its arguments. It’s normally
done for readability purposes: 1 ‘elem‘ [1..4] reads better than elem 1 [1..4]. You can also
define functions infix:

elem :: Eq a => a -> [a] -> Bool
x ‘elem‘ xs = any (==x) xs

But once again notice that in the type signature you have to use the prefix style.

Sections even work with infix functions:

(1 ‘elem‘) [1..4]
(‘elem‘ [1..4]) 1

You can only make binary functions (those that take two arguments) infix. Think about the functions
you use, and see which ones would read better if you used them infix.

Exercises:

• Lambdas are a nice way to avoid defining unnecessary separate functions. Convert the following
let- or where-bindings to lambdas:
• map f xs where f x = x * 2 + 3
• let f x y = read x + y in foldr f 1 xs

• Sections are just syntactic sugar for lambda operations. I.e. (+2) is equivalent to \x -> x + 2.
What would the following sections ’desugar’ to? What would be their types?
• (4+)
• (1 ‘elem‘)
• (‘notElem‘ "abc")
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Higher-order functions are functions that take other functions as arguments. We have already met
some of them, such as map, so there isn’t anything really frightening or unfamiliar about them.
They offer a form of abstraction that is unique to the functional programming style. In functional
programming languages like Haskell, functions are just like any other value, so it doesn’t get any
harder to deal with higher-order functions.

Higher order functions have a separate chapter in this book, not because they are particularly diffi-
cult -- we’ve already worked with them, after all -- but because they are powerful enough to draw
special attention to them. We will see in this chapter how much we can do if we can pass around
functions as values. Generally speaking, it is a good idea to abstract over a functionality whenever
we can. Besides, Haskell without higher order functions wouldn’t be quite as much fun.

18.1 The Quickest Sorting Algorithm In Town

Don’t get too excited, but quickSort is certainly one of the quickest. Have you heard of it? If so,
you can skip the following subsection and go straight to the next one:

18.1.1 The Idea Behind quickSort

The idea is very simple. For a big list, we pick an element, and divide the whole list into three parts.

The first part has all elements that should go before that element, the second part consists of all of
the elements that are equal to the picked element, the third has the elements that ought to go after
that element. And then, of course, we are supposed to concatenate these. What we get is somewhat
better, right?

The trick is to note that only the first and the third are yet to be sorted, and for the second, sorting
doesn’t really make sense (they are all equal!). How to go about sorting the yet-to-be-sorted sub-
lists? Why... apply the same algorithm on them again! By the time the whole process is finished,
you get a completely sorted list.
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18.1.2 So Let’s Get Down To It!

-- if the list is empty, we do nothing
-- note that this is the base case for the recursion
quickSort [] = []
-- if there’s only one element, no need to sort it
-- actually, the third case takes care of this one pretty well
-- I just wanted you to take it step by step
quickSort [x] = [x]
-- this is the gist of the process
-- we pick the first element as our "pivot", the rest is to be sorted
-- don’t forget to include the pivot in the middle part!
quickSort (x : xs) = (quickSort less) ++ (x : equal) ++ (quickSort
more)

where less = filter (< x) xs
equal = filter (== x) xs
more = filter (> x) xs

And we are done! I suppose if you have met quickSort before, you probably thought recursion
was a neat trick but difficult to implement.

18.2 Now, How Do We Use It?

With quickSort at our disposal, sorting any list is a piece of cake. Suppose we have a list of
String, maybe from a dictionary, and we want to sort them, we just apply quickSort to the list.
For the rest of this chapter, we will use a pseudo-dictionary of words (but a 25,000 word dictionary
should do the trick as well):

dictionary = ["I", "have", "a", "thing", "for", "Linux"]

We get, for quickSort dictionary,

["I", "Linux", "a", "for", "have", "thing"]

But, what if we wanted to sort them in the descending order? Easy, just reverse the list, reverse
(quickSort dictionary) gives us what we want.

But wait! We didn’t really sort in the descending order, we sorted (in the ascending order) and
reversed it. They may have the same effect, but they are not the same thing!

Besides, you might object that the list you got isn’t what you wanted. "a" should certainly be placed
before "I". "Linux" should be placed between "have" and "thing". What’s the problem here?

The problem is, the way Strings are represented in a typical programming settings is by a list of
ASCII characters. ASCII (and almost all other encodings of characters) specifies that the character
code for capital letters are less than the small letters. Bummer. So "Z" is less than "a". We should
do something about it. Looks like we need a case insensitive quickSort as well. It might come
handy some day.

But, there’s no way you can blend that into quickSort as it stands. We have work to do.
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18.3 Tweaking What We Already Have

What we need to do is to factor out the comparisons quickSort makes. We need to provide
quickSort with a function that compares two elements, and gives an Ordering, and as you can
imagine, an Ordering is any of LT, EQ, GT.

To sort in the descending order, we supply quickSort with a function that returns the opposite of
the usual Ordering. For the case-insensitive sort, we may need to define the function ourselves.
By all means, we want to make quickSort applicable to all such functions so that we don’t end up
writing it over and over again, each time with only minor changes.

18.4 quickSort, Take Two

Our quickSort will take two things this time: first, the comparison function, and second, the list to
sort.

A comparison function will be a function that takes two things, say, x and y, and compares them. If
x is less than y (according to the criteria we want to implement by this function), then the value will
be LT. If they are equal (well, equal with respect to the comparison, we want "Linux" and "linux" to
be equal when we are dealing with the insensitive case), we will have EQ. The remaining case gives
us GT (pronounced: greater than, for obvious reasons).

-- no matter how we compare two things
-- the first two equations should not change
-- they need to accept the comparison function though
-- but the result doesn’t need it
quickSort _ [] = []
quickSort _ [x] = [x]
-- we are in a more general setting now
-- but the changes are worth it!
-- c is the comparison function
quickSort c (x : xs) = (quickSort c less) ++ (x : equal) ++ (quickSort
c more)

where less = filter (\y -> y ‘c‘ x ==
LT) xs

equal = filter (\y -> y ‘c‘ x ==
EQ) xs

more = filter (\y -> y ‘c‘ x ==
GT) xs

Cool!

Note:
Almost all the basic data types in Haskell are members of the Ord class. This class defines an
ordering, the "natural" one. The functions (or, operators, in this case) (<), (==) or (>) provide
shortcuts to the compare function each type defines. When we want to use the natural ordering as
defined by the types themselves, the above code can be written using those operators, as we did last
time. In fact, that makes for much clearer style; however, we wrote it the long way just to make the
relationship between sorting and comparing more evident.
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18.5 But What Did We Gain?

Reuse. We can reuse quickSort to serve different purposes.

-- the usual ordering
-- uses the compare function from the Ord class
usual = compare
-- the descending ordering, note we flip the order of the arguments to
compare

descending x y = compare y x
-- the case-insensitive version is left as an exercise!
insensitive = ...
-- can you think of anything without making a very big list of all
possible cases?

And we are done!

quickSort usual dictionary should, then, give ["I", "Linux", "a", "for", "have", "thing"]

The comparison is just compare from the Ord class. This was our quickSort, before the tweaking.

quickSort descending dictionary now gives ["thing", "have", "for", "a", "Linux", "I"]

And finally, quickSort insensitive dictionary gives ["a", "for", "have", "I", "Linux", "thing"]

Exactly what we wanted!

Exercises
Write insensitive, such that quickSort insensitive dictionary gives ["a", "for",
"have", "I", "Linux", "thing"]

18.6 Higher-Order Functions and Types

Our quickSort has type (a -> a -> Ordering) -> [a] -> [a].

Most of the time, the type of a higher-order function provides a good guideline about how to use
it. A straightforward way of reading the type signature would be, "quickSort takes a function that
gives an ordering of as, and a list of as, to give a list of as". It is then natural to guess that the
function sorts the list respecting the given ordering function.

Note that the parentheses surrounding a -> a -> Ordering is mandatory. It says that a -> a
-> Ordering altogether form a single argument, an argument that happens to be a function. What
happens if we omit the parentheses? We would get a function of type a -> a -> Ordering ->
[a] -> [a], which accepts four arguments instead of the desired two (a -> a -> Ordering and
[a]). Furthermore none of the four arguments, neither a nor Ordering nor [a] are functions, so
omitting the parentheses would give us something that isn’t a higher order function.

Furthermore, it’s worth noting that the -> operator is right-associative, which means that a -> a
-> Ordering -> [a] -> [a] means the same thing as a -> (a -> (Ordering -> ([a] ->
[a]))). We really must insist that the a -> a -> Ordering be clumped together by writing those
parentheses... but wait... if -> is right-associative, wouldn’t that mean that the correct signature (a
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-> a -> Ordering) -> [a] -> [a] actually means... (a -> a -> Ordering) -> ([a] ->
[a])?

Is that really what we want?

If you think about it, we’re trying to build a function that takes two arguments, a function and a list,
returning a list. Instead, what this type signature is telling us is that our function takes one argument
(a function) and returns another function. That is profoundly odd... but if you’re lucky, it might also
strike you as being profoundly beautiful. Functions in multiple arguments are fundamentally the
same thing as functions that take one argument and give another function back. It’s OK if you’re
not entirely convinced. We’ll go into a little bit more detail below and then show how something
like this can be turned to our advantage.

{{Exercises|1= The following exercise combines what you have learned about higher order func-
tions, recursion and IO. We are going to recreate what programmers from more popular languages
call a "for loop". Implement a function for :: a -> (a->Bool) -> (a->a) -> (a-> IO ()) -> IO ()

for i p f job = -- ??? An example of how this function would be used might be
for 1 (<10) (+1) (print) which prints the numbers 1 to 9 on the screen.

Starting from an initial value i, the for executes job i. It then modifies this value f i and checks
to see if the modified value satisfies some condition. If it doesn’t, it stops; otherwise, the for loop
continues, using the modified f i in place of i.

1. The paragraph above gives an imperative description of the for loop. What would a more
functional description be?

2. Implement the for loop in Haskell.
3. Why does Haskell not have a for loop as part of the language, or in the standard library?

Some more challenging exercises you could try

1. What would be a more Haskell-like way of performing a task like ’print the list of numbers
from 1 to 10’? Are there any problems with your solution?

2. Implement a function sequenceIO :: [IO a] -> IO [a]. Given a list of
actions, this function runs each of the actions in order and returns
all their results as a list.
a) Implement a function mapIO :: (a -> IO b) -> [a] -> IO [b] which

given a function of type a -> IO b and a list of type [a], runs that
action on each item in the list, and returns the results.

This exercise was inspired from a blog post by osfameron. No peeking!
}}

18.7 Currying

I hope you followed the reasoning of the preceding chapter closely
enough. If you haven’t, you should, so give it another try.
Currying is a technique1 that lets you partially apply a multi-parameter
function. When you do that, it remembers those given values, and waits
for the remaining parameters.

1 named after the outstanding logician Haskell Brooks Curry, the same guy after whom the language is named.
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Our quickSort takes two parameters, the comparison function, and the
list. We can, by currying, construct variations of quickSort with a
given comparison function. The variation just "remembers" the specific
comparison, so you can apply it to the list, and it will sort the list
using the that comparison function.

descendingSort = quickSort descending

What is the type of descendingSort? quickSort was (a -> a -> Ordering) ->
[a] -> [a], and the comparison function descending was a -> a -> Ordering. Apply-
ing quickSort to descending (that is, applying it partially, we haven’t specified the list
in the definition) we get a function (our descendingSort) for which the first parameter is
already given, so you can scratch that type out from the type of quickSort, and we are left
with a simple [a] -> [a]. So we can apply this one to a list right away!

descendingSort dictionary

gives us

["thing", "have", "for", "a", "Linux", "I"]

It’s rather neat. But is it useful? You bet it is. It is particularly useful as sections, you might notice.
Currying often makes Haskell programs very concise. More than that, it often makes your intentions
a lot clearer. Remember

less = filter (< x) xs

from the first version of quickSort? You can read it aloud like "keep those in xs that are less than
x". Although (< x) is just a shorthand for (\y -> y < x), try reading that aloud!

18.8 Notes

<references/>
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19 Using GHCi effectively

GHCi offers several ways to make you work faster. This section will describe them and explain
what they are for:

19.1 User interface

19.1.1 Tab completion

Whenever you are typing anything into the GHCi, you can hit Tab and you will be presented with a
list of all possible names that start with what you’ve written so far. And if there is only one way how
to continue, the string will be auto-completed. For example fol<Tab> will append letter d, another
<t>Tab</t> will list four functions: fold foldl1 foldr and foldr1. Only functions and other defined
objects (e.g. Data types) from modules that are currently imported are offered.

Tab completion works also when you are loading a file with your program into GHCi. After typing
:l fi<Tab>, you will be presented with all files that start with "fi" and are present in the current
directory (the one you were in when you launched GHCi)

19.1.2 ": commands"

On GHCi command line, commands for the interpreter start with the character ":" (colon).

• :help - prints a list of all available commands
• :load myfile.hs - loads a file "myfiile.hs" into GHCi
• :reload - reloads the file that has been loaded last time, so changes are visible from GHCi
• :type haskell expression - prints the type of a given expression, e.g. function that has been defined

previously

commands can be abbreviated, writing :l for :load or :r for :reload.
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19.2 Programming efficiently

It can be helpful to know how are the built-in function you use implemented. One possibility is to
study the source codes, which are available with GHC installation,

19.2.1 Most notable examples

Some operations on lists are slow. If you ever need to do those on big Lists, use Arrays instead.
Most importantly, indexing lists takes linear time. That means printing the 100th item in a list
(mylist !! 99) takes twice the time printing 50th item does (mylist !! 49). That is caused by the way
how lists are implemented, that the !! function has to "drill through" the list one element by one,
from the beginning to the one we want to get to. For that reason, use Array, which has constant
access time for any element it contains.

19.3 Notes

<references/>
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21 Modules

21.1 Modules

Haskell modules are a useful way to group a set of related functionalities into a single package and
manage a set of different functions that have the same name. The module definition is the first thing
that goes in your Haskell file.

Here is what a basic module definition looks like:

module YourModule where

Note that

1. The name of the module begins with a capital letter
2. Each file contains only one module.

The name of the file must be that of the module but with a .hs file extension. Any dots ’.’ in
the module name are changed for directories. So the module YourModule would be in the file
YourModule.hs while a module Foo.Bar would be in the file Foo/Bar.hs or Foo\Bar.hs. Since
the module name must begin with a capital letter, the file name must also start with a capital letter.

21.2 Importing

One thing your module can do is import functions from other modules. That is, in between the
module declaration and the rest of your code, you may include some import declarations such as

-- import only the functions toLower and toUpper from Data.Char
import Data.Char (toLower, toUpper)
-- import everything exported from Data.List
import Data.List
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-- import everything exported from MyModule
import MyModule

Imported datatypes are specified by their name, followed by a list of imported constructors in paren-
thesis. For example:

-- import only the Tree data type, and its Node constructor from
Data.Tree

import Data.Tree (Tree(Node))

Now what to do if you import some modules, but some of them have overlapping definitions? Or
if you import a module, but want to overwrite a function yourself? There are three ways to handle
these cases: Qualified imports, hiding definitions and renaming imports.

21.2.1 Qualified imports

Say MyModule and MyOtherModule both have a definition for remove_e, which removes all in-
stances of e from a string. However, MyModule only removes lower-case e’s, and MyOtherModule
removes both upper and lower case. In this case the following code is ambiguous:

-- import everything exported from MyModule
import MyModule
-- import everything exported from MyOtherModule
import MyOtherModule
-- someFunction puts a c in front of the text, and removes all e’s
from the rest

someFunction :: String -> String
someFunction text = ’c’ : remove_e text

It isn’t clear which remove_e is meant! To avoid this, use the qualified keyword:

import qualified MyModule
import qualified MyOtherModule
someFunction text = ’c’ : MyModule.remove_e text -- Will work, removes
lower case e’s

someOtherFunction text = ’c’ : MyOtherModule.remove_e text -- Will
work, removes all e’s

someIllegalFunction text = ’c’ : remove_e text -- Won’t work, remove_e
isn’t defined.

See the difference? In the latter code snippet, the function remove_e isn’t even defined. Instead, we
call the functions from the imported modules by prefixing them with the module’s name. Note that
MyModule.remove_e also works if the qualified keyword isn’t included. The difference lies in the
fact that remove_e is ambiguously defined in the first case, and undefined in the second case. If we
have a remove_e defined in the current module, then using remove_e without any prefix will call
this function.
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Note:
There is an ambiguity between a qualified name like MyModule.remove_e and FUNCTION COM-
POSITION1 (.). Writing reverse.MyModule.remove_e is bound to confuse your Haskell compiler.
One solution is stylistic: to always use spaces for function composition, for example, reverse .
remove_e or Just . remove_e or even Just . MyModule.remove_e

21.2.2 Hiding definitions

Now suppose we want to import both MyModule and MyOtherModule, but we know for sure we want
to remove all e’s, not just the lower cased ones. It will become really tedious to add MyOtherModule
before every call to remove_e. Can’t we just not import remove_e from MyModule? The answer
is: yes we can.

-- Note that I didn’t use qualified this time.
import MyModule hiding (remove_e)
import MyOtherModule
someFunction text = ’c’ : remove_e text

This works. Why? Because of the word hiding on the import line. Followed by it, is a list of
functions that shouldn’t be imported. Hiding more than one function works like this:

import MyModule hiding (remove_e, remove_f)

Note that algebraic datatypes and type synonyms cannot be hidden. These are always imported. If
you have a datatype defined in more modules, you must use qualified names.

21.2.3 Renaming imports

This is not really a technique to allow for overwriting, but it is often used along with the qualified
flag. Imagine:

import qualified MyModuleWithAVeryLongModuleName
someFunction text = ’c’ : MyModuleWithAVeryLongModuleName.remove_e $
text

Especially when using qualified, this gets irritating. What we can do about it, is using the as
keyword:

import qualified MyModuleWithAVeryLongModuleName as Shorty
someFunction text = ’c’ : Shorty.remove_e $ text
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This allows us to use Shorty instead of MyModuleWithAVeryLongModuleName as prefix for the
imported functions. As long as there are no ambiguous definitions, the following is also possible:

import MyModule as My
import MyCompletelyDifferentModule as My

In this case, both the functions in MyModule and the functions in MyCompletelyDifferentModule
can be prefixed with My.

21.3 Exporting

In the examples at the start of this article, the words "import everything exported from MyModule"
were used. This raises a question. How can we decide which functions are exported and which stay
"internal"? Here’s how:

module MyModule (remove_e, add_two) where
add_one blah = blah + 1
remove_e text = filter (/= ’e’) text
add_two blah = add_one . add_one $ blah

In this case, only remove_e and add_two are exported. While add_two is allowed to make use of
add_one, functions in modules that import MyModule cannot use add_one, as it isn’t exported.

Datatype export specifications are written quite similarly to import. You name the type, and follow
with the list of constructors in parenthesis:

module MyModule2 (Tree(Branch, Leaf)) where
data Tree a = Branch {left, right :: Tree a}

| Leaf a

In this case, the module declaration could be rewritten "MyModule2 (Tree(..))", declaring that all
constructors are exported.

Note: maintaining an export list is good practice not only because it reduces namespace pollu-
tion, but also because it enables certain COMPILE-TIME OPTIMIZATIONS2 which are unavailable
otherwise.

21.4 Notes

In Haskell98, the last standardised version of Haskell, the module system is fairly conservative,
but recent common practice consists of employing an hierarchical module system, using periods to
section off namespaces.

2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE/GHC#INLINING
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Mutual recursive modules are possible but need some special treatment. For how to do it in GHC
see: http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html#mutual-
recursion

A module may export functions that it imports.

See the Haskell report for more details on the module system:

• http://www.haskell.org/onlinereport/modules.html

MODULES3

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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22 Indentation

Haskell relies on indentation to reduce the verbosity of your code, but working with the indentation
rules can be a bit confusing. The rules may seem many and arbitrary, but the reality of things is that
there are only one or two layout rules, and all the seeming complexity and arbitrariness comes from
how these rules interact with your code. So to take the frustration out of indentation and layout, the
simplest solution is to get a grip on these rules.

22.1 The golden rule of indentation

Whilst the rest of this chapter will discuss in detail Haskell’s indentation system, you will do fairly
well if you just remember a single rule: Code which is part of some expression should be indented
further in than the line containing the beginning of that expression

What does that mean? The easiest example is a let binding group. The equations binding the
variables are part of the let expression, and so should be indented further in than the beginning of
the binding group: the let keyword. So,

let
x = a
y = b

Although you actually only need to indent by one extra space, it’s more normal to place the first
line alongside the ’let’ and indent the rest to line up:

let x = a
y = b

Here are some more examples:
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do foo
bar
baz

where x = a
y = b

case x of
p -> foo
p’ -> baz

Note that with ’case’ it’s less common to place the next expression on the same line as the beginning
of the expression, as with ’do’ and ’where’. Also note we lined up the arrows here: this is purely
aesthetic and isn’t counted as different layout; only indentation, whitespace beginning on the far-
left edge, makes a difference to layout.

Things get more complicated when the beginning of the expression doesn’t start at the left-hand
edge. In this case, it’s safe to just indent further than the line containing the expression’s beginning.
So,

myFunction firstArgument secondArgument = do -- the ’do’ doesn’t
start at the left-hand edge
foo -- so indent these

commands more than the beginning of the line containing the ’do’.
bar
baz

Here are some alternative layouts to the above which would have also worked:

myFunction firstArgument secondArgument =
do foo

bar
baz

myFunction firstArgument secondArgument = do foo
bar
baz

22.2 A mechanical translation

Did you know that indentation layout is optional? It is entirely possible to write in Haskell as in a
"one-dimensional" language like C, using semicolons to separate things and curly braces to group
them back. Not only it can be occasionally useful to write code in this style, but also understanding
how to convert from one style to the other can help understand the indentation rules. To do so, you
need to understand two things: where we need semicolons/braces, and how to get there from layout.
The entire layout process can be summed up in three translation rules (plus a fourth one that doesn’t
come up very often):

1. If you see one of the layout keywords, (let, where, of, do), insert an open curly brace (right
before the stuff that follows it)

2. If you see something indented to the SAME level, insert a semicolon
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3. If you see something indented LESS, insert a closing curly brace
4. If you see something unexpected in a list, like where, insert a closing brace before instead of

a semicolon.

Exercises:
Answer in one word: what happens if you see something indented MORE?

Exercises:
Translate the following layout into curly braces and semicolons. Note: to underscore the mechanical
nature of this process, we deliberately chose something which is probably not valid Haskell:
of a

b

c

d

where

a

b

c

do

you

like

the

way

i let myself

abuse

these

layout rules

22.3 Layout in action

Wrong Right

do first thing second thing third thing
do first thing second thing third thing

22.3.1 do within if

What happens if we put a do expression with an if? Well, as we stated above, the keywords if
then else, and anything else but the four layout keywords do <em>not</em> affect layout. So
things remain exactly the same:

Wrong Right

if foo then do first thing second thing third
thing else do something else

if foo then do first thing second thing third
thing else do something else
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22.3.2 Indent to the first

Remember that, due to the "golden rule of indentation" described above, although the keyword do
tells Haskell to insert a curly brace where the curly braces goes depends not on the do, but the thing
that immediately follows it. For example, this weird-looking block of code is totally acceptable:

do
first thing
second thing
third thing

As a result, you could also write combined if/do combination like this:

Wrong Right

if foo then do first thing second thing third
thing else do something else

if foo then do first thing second thing third
thing else do something else

This is also the reason why you can write things like this

main = do
first thing
second thing

instead of

main =
do first thing

second thing

Both are acceptable

22.3.3 if within do

This is a combination which trips up many Haskell programmers. Why does the following block of
code not work?

-- why is this bad?
do first thing

if condition
then foo
else bar
third thing

Just to reiterate, the if then else block is not at fault for this problem. Instead, the issue is that
the do block notices that the then part is indented to the same column as the if part, so it is not
very happy, because from its point of view, it just found a new statement of the block. It is as if you
had written the unsugared version on the right:
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sweet (layout) unsweet

-- why is this bad? do first thing if condition
then foo else bar third thing

-- still bad, just explicitly so do { first thing ;
if condition ; then foo ; else bar ; third thing
}

Naturally, the Haskell compiler is confused because it thinks that you never finished writing your
if expression, before writing a new statement. The compiler sees that you have written something
like if condition;, which is clearly bad, because it is unfinished. So, in order to fix this, we need
to indent the bottom parts of this if block a little bit inwards

sweet (layout) unsweet

-- whew, fixed it! do first thing if condition
then foo else bar third thing

-- the fixed version without sugar do { first
thing ; if condition then foo else bar ; third
thing }

This little bit of indentation prevents the do block from misinterpreting your then as a brand new
expression. Of course, you might as well prefer to always add indentation before then and else,
even when it is not really necessary. That wouldn’t hurt legibility, and would avoid bad surprises
like this one.

Exercises:
The if-within-do issue has tripped up so many Haskellers that one programmer has posted a PRO-
POSAL1 to the Haskell prime initiative to add optional semicolons between if then else. How
would that help?

22.4 References

• THE HASKELL REPORT (LEXEMES)2 - see 2.7 on layout

INDENTATION3

2 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/LEXEMES.HTML#SECT2.7
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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23 More on datatypes

23.1 Enumerations

One special case of the data declaration is the enumeration. This is simply a data type where none
of the constructor functions have any arguments:

data Month = January | February | March | April | May | June | July
| August | September | October | November | December

You can mix constructors that do and do not have arguments, but it’s only an enumeration if none
of the constructors have arguments. For instance,

data Colour = Black | Red | Green | Blue | Cyan
| Yellow | Magenta | White | RGB Int Int Int

The last constructor takes three arguments, so Colour is not an enumeration. As you will see further
on when we discuss classes and derivation, this distinction is not only conceptual.

Incidentally, the definition of the Bool datatype is:

data Bool = False | True
deriving (Eq, Ord, Enum, Read, Show, Bounded)

23.2 Named Fields (Record Syntax)

Consider a datatype whose purpose is to hold configuration settings. Usually when you extract
members from this type, you really only care about one or possibly two of the many settings.
Moreover, if many of the settings have the same type, you might often find yourself wondering
"wait, was this the fourth or fifth element?" One thing you could do would be to write accessor
functions. Consider the following made-up configuration type for a terminal program:

data Configuration =

Configuration String -- user name

String -- local host

String -- remote host

Bool -- is guest?

Bool -- is super user?
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String -- current directory

String -- home directory

Integer -- time connected

deriving (Eq, Show)

You could then write accessor functions, like (I’ve only listed a few):

getUserName (Configuration un _ _ _ _ _ _ _) = un

getLocalHost (Configuration _ lh _ _ _ _ _ _) = lh

getRemoteHost (Configuration _ _ rh _ _ _ _ _) = rh

getIsGuest (Configuration _ _ _ ig _ _ _ _) = ig

...

You could also write update functions to update a single element. Of course, now if you add an
element to the configuration, or remove one, all of these functions now have to take a different
number of arguments. This is highly annoying and is an easy place for bugs to slip in. However,
there’s a solution. We simply give names to the fields in the datatype declaration, as follows:

data Configuration =

Configuration { username :: String,

localhost :: String,

remotehost :: String,

isguest :: Bool,

issuperuser :: Bool,

currentdir :: String,

homedir :: String,

timeconnected :: Integer

}

This will automatically generate the following accessor functions for us:

username :: Configuration -> String

localhost :: Configuration -> String

...

Moreover, it gives us very convenient update methods. Here is a short example for a "post working
directory" and "change directory" like functions that work on Configurations:

changeDir :: Configuration -> String -> Configuration

changeDir cfg newDir =

-- make sure the directory exists

if directoryExists newDir

then -- change our current directory

cfg{currentdir = newDir}
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else error "directory does not exist"

postWorkingDir :: Configuration -> String

-- retrieve our current directory

postWorkingDir cfg = currentdir cfg

So, in general, to update the field x in a datatype y to z, you write y{x=z}. You can change more
than one; each should be separated by commas, for instance, y{x=z, a=b, c=d}.

Note:

Those of you familiar with object-oriented languages might be tempted to, after all of this talk
about "accessor functions" and "update methods", think of the y{x=z} construct as a setter method,
which modifies the value of x in a pre-existing y. It is not like that - remember that in Haskell
VARIABLES ARE IMMUTABLE1. Therefore, if, using the example above, you do something like
conf2 = changeDir conf1 "/opt/foo/bar" conf2 will be defined as a Configuration which is
just like conf1 except for having "/opt/foo/bar" as its currentdir, but conf1 will remain unchanged.

23.2.1 It’s only sugar

You can of course continue to pattern match against Configurations as you did before. The named
fields are simply syntactic sugar; you can still write something like:

getUserName (Configuration un _ _ _ _ _ _ _) = un

But there is little reason to. Finally, you can pattern match against named fields as in:

getHostData (Configuration {localhost=lh,remotehost=rh})

= (lh,rh)

This matches the variable lh against the localhost field on the Configuration and the variable
rh against the remotehost field on the Configuration. These matches of course succeed. You
could also constrain the matches by putting values instead of variable names in these positions, as
you would for standard datatypes.

You can create values of Configuration in the old way as shown in the first definition below, or
in the named-field’s type, as shown in the second definition below:
initCFG =

Configuration "nobody" "nowhere" "nowhere"

False False "/" "/" 0

initCFG’ =

Configuration

{ username="nobody",

localhost="nowhere",

remotehost="nowhere",
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isguest=False,

issuperuser=False,

currentdir="/",

homedir="/",

timeconnected=0 }

The first way is much shorter, although the second is much more understandable (unless you litter
your code with comments).

23.3 Parameterised Types

Parameterised types are similar to "generic" or "template" types in other languages. A parame-
terised type takes one or more type parameters. For example the Standard Prelude type Maybe is
defined as follows:

data Maybe a = Nothing | Just a

This says that the type Maybe takes a type parameter a. You can use this to declare, for example:

lookupBirthday :: [Anniversary] -> String -> Maybe Anniversary

The lookupBirthday function takes a list of birthday records and a string and returns a Maybe
Anniversary. Typically, our interpretation is that if it finds the name then it will return Just the
corresponding record, and otherwise, it will return Nothing.

You can parameterise type and newtype declarations in exactly the same way. Furthermore you
can combine parameterised types in arbitrary ways to construct new types.

23.3.1 More than one type parameter

We can also have more than one type parameter. An example of this is the Either type:

data Either a b = Left a | Right b

For example:

eitherExample :: Int -> Either Int String
eitherExample a | even a = Left (a ‘div‘ 2)

| a ‘mod‘ 3 == 0 = Right "three"
| otherwise = Right "neither two nor three"

otherFunction :: Int -> String
otherFunction a = case eitherExample a of
Left c -> "Even: " ++ show a ++ " = 2*" ++ show c ++ "."
Right s -> show a ++ " is divisible by " ++ s ++ "."
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In this example, when you call otherFunction, it’ll return a String. If you give it an even number
as argument, it’ll say so, and give half of it. If you give it anything else, eitherExample will
determine if it’s divisible by three and pass it through to otherFunction.

23.3.2 Kind Errors

The flexibility of Haskell parameterised types can lead to errors in type declarations that are some-
what like type errors, except that they occur in the type declarations rather than in the program
proper. Errors in these "types of types" are known as "kind" errors. You don’t program with kinds:
the compiler infers them for itself. But if you get parameterised types wrong then the compiler will
report a kind error.

MORE ON DATATYPES2

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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24 Other data structures

24.1 Trees

Now let’s look at one of the most important datastructures: Trees. A tree is an example of a
recursive datatype. Typically, its definition will look like this:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

As you can see, it’s parameterised, so we can have trees of Ints, trees of Strings, trees of Maybe
Ints, even trees of (Int, String) pairs, if you really want. What makes it special is that Tree
appears in the definition of itself. We will see how this works by using an already known example:
the list.

24.1.1 Lists as Trees

As we have seen in MORE ABOUT LISTS1 and LIST PROCESSING2, we break lists down into
two cases: An empty list (denoted by []), and an element of the specified type, with another list
(denoted by (x:xs)). This gives us valuable insight about the definition of lists:

data [a] = [] | (a:[a]) -- Pseudo-Haskell, will not work properly.

Which is sometimes written as (for Lisp-inclined people):

data List a = Nil | Cons a (List a)

As you can see this is also recursive, like the tree we had. Here, the constructor functions are [] and
(:). They represent what we have called Leaf and Branch. We can use these in pattern matching,
just as we did with the empty list and the (x:xs):

24.1.2 Maps and Folds

We already know about maps and folds for lists. With our realisation that a list is some sort of tree,
we can try to write map and fold functions for our own type Tree. To recap:

1 Chapter 12 on page 83
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FLIST_PROCESSING
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data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Show)
data [a] = [] | (:) a [a]
-- (:) a [a] would be the same as (a:[a]) with prefix instead of

infix notation.

We consider map first, then folds.

Note:
Deriving is explained later on in the section CLASS DECLARATIONS3. For now, understand it as
telling Haskell (and by extension your interpreter) how to display a Tree instance.

Map

Let’s take a look at the definition of map for lists:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

First, if we were to write treeMap, what would its type be? Defining the function is easier if you
have an idea of what its type should be.

We want it to work on a Tree of some type, and it should return another Tree of some type. What
treeMap does is applying a function on each element of the tree, so we also need a function. In
short:

treeMap :: (a -> b) -> Tree a -> Tree b

See how this is similar to the list example?

Next, we should start with the easiest case. When talking about a Tree, this is obviously the case
of a Leaf. A Leaf only contains a single value, so all we have to do is apply the function to that
value and then return a Leaf with the altered value:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)

Also, this looks a lot like the empty list case with map. Now if we have a Branch, it will include
two subtrees; what do we do with them? When looking at the list-map, you can see it uses a call to
itself on the tail of the list. We also shall do that with the two subtrees. The complete definition of
treeMap is as follows:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Branch left right) = Branch (treeMap f left) (treeMap f
right)
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We can make this a bit more readable by noting that treeMap f is itself a function with type Tree
a -> Tree b, and what we really need is a recursive definition of treeMap f. This gives us the
following revised definition:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f = g where
g (Leaf x) = Leaf (f x)
g (Branch left right) = Branch (g left) (g right)

If you don’t understand it just now, re-read it. Especially the use of pattern matching may seem
weird at first, but it is essential to the use of datatypes. The most important thing to remember is
that pattern matching happens on constructor functions.

If you understand it, read on for folds.

Fold

Now we’ve had the treeMap, let’s try to write a treeFold. Again let’s take a look at the definition
of foldr for lists, as it is easier to understand.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Recall that lists have two constructors:

(:) :: a -> [a] -> [a] -- two arguments
[] :: [a] -- zero arguments

Thus foldr takes two arguments corresponding to the two constructors:

f :: a -> b -> b -- a two-argument function
z :: b -- like a zero-argument function

We’ll use the same strategy to find a definition for treeFold as we did for treeMap. First, the type.
We want treeFold to transform a tree of some type into a value of some other type; so in place of
[a] -> b we will have Tree a -> b. How do we specify the transformation? First note that Tree
a has two constructors:

Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

So treeFold will have two arguments corresponding to the two constructors:

fbranch :: b -> b -> b
fleaf :: a -> b
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Putting it all together we get the following type definition:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b

That is, the first argument, of type (b -> b -> b), is a function specifying how to combine sub-
trees; the second argument, of type a -> b, is a function specifying what to do with leaves; and the
third argument, of type Tree a, is the tree we want to "fold".

As with treeMap, we’ll avoid repeating the arguments fbranch and fleaf by introducing a local
function g:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where
-- definition of g goes here

The argument fleaf tells us what to do with Leaf subtrees:

g (Leaf x) = fleaf x

The argument fbranch tells us how to combine the results of "folding" two subtrees:

g (Branch left right) = fbranch (g left) (g right)

Our full definition becomes:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where
g (Leaf x) = fleaf x
g (Branch left right) = fbranch (g left) (g right)

For examples of how these work, copy the Tree data definition and the treeMap and treeFold
functions to a Haskell file, along with the following:

tree1 :: Tree Integer
tree1 =

Branch
(Branch

(Branch
(Leaf 1)
(Branch (Leaf 2) (Leaf 3)))

(Branch
(Leaf 4)
(Branch (Leaf 5) (Leaf 6))))

(Branch
(Branch (Leaf 7) (Leaf 8))
(Leaf 9))

doubleTree = treeMap (*2) -- doubles each value in tree
sumTree = treeFold (+) id -- sum of the leaf values in tree
fringeTree = treeFold (++) (: []) -- list of the leaves of tree
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Then load it into your favourite Haskell interpreter, and evaluate:

doubleTree tree1
sumTree tree1
fringeTree tree1

Unfolds

Dually it is also possible to write unfolds. UnfoldTree is of type

(b -> Either (b,b) a ) -> b -> Tree a

and can be implemented as

unfoldTree f x=case f x of { Right a -> Leaf a ; Left (l,r) -> Branch
(unfoldTree f l, unfoldTree f r) }

24.2 Other datatypes

map and fold functions can be defined for any kind of data type. In order to generalize the strategy
applied for lists and trees, in this final section we will work out a map and a fold for a very strange,
intentionally contrived, datatype:

data Weird a b =
First a |
Second b |
Third [(a,b)] |
Fourth (Weird a b)

It can be a useful exercise to write the functions as you follow the examples, trying to keep the
coding one step ahead of your reading.

24.2.1 General Map

Again, we will begin with weirdMap. The first important difference in working with this Weird
type is that it has two type parameters. For that reason, we will want the map function to take two
functions as arguments, one to be applied on the elements of type a and another for the elements of
type b. With that accounted for, we can write the type signature of weirdMap:

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d

Next step is writing the definitions for weirdMap. The key point is that maps preserve the
structure of a datatype, so the function must evaluate to a Weird which uses the same constructor
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than the one used for the original Weird. For that reason, we need one definition to handle
each constructor, and these constructors are used as patterns for writing them. As before, to
avoid repeating the weirdMap argument list over and over again a where clause comes in handy.
A sketch of the function is below (note we already prepared a template for the list of tuples in Third.

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
where
g (First x) = --More to follow
g (Second y) = --More to follow
g (Third z) = --More to follow
g (Fourth w) = --More to follow

The first two cases are fairly straightforward, as there is just a single element of a or b type inside
the Weird.

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
where
g (First x) = First (fa x)
g (Second y) = Second (fb y)
g (Third z) = --More to follow
g (Fourth w) = --More to follow

Third is trickier because it contains another data structure (a list) whose elements are themselves
data structures (the tuples). So we need to navigate the nested data structures, apply fa and fb on
all elements of type a and b inside it and eventually (as a map must preserve structure) produce a
list of tuples - [(c,d)] - to be used with the constructor. The simplest approach might seem to be
just breaking down the list inside the Weird and playing with the patterns:

g (Third []) = Third []
g (Third ((x,y):zs)) = Third ( (fa x, fb y) : ( (\(Third z) -> z)

(g (Third zs)) ) )

This appears to be written as a typical recursive function for lists. We start by applying the functions
of interest to the first element in order to obtain the head of the new list, (fa x, fb y). But to
what we will cons it to? As g requires a Weird argument we need to make a Weird using the list
tail in order to make the recursive call. But then g will give a Weird and not a list, so we have to
retrieve the modified list from that - that’s the role of the lambda function. And finally, there is also
the empty list base case to be defined as well.

After all of that, we are left with a messy function. Every recursive call of g requires wrapping xs
into a Weird, while what we really wanted to do was to build a list with (fa x, fb y) and the
modified xs. The problem with this solution is that g can (thanks to pattern matching) act directly
on the list head but (due to its type signature) can’t be called directly on the list tail. For that reason,
it would be better to apply fa and fb without breaking down the list with pattern matching (as far as
g is directly concerned, at least). But there was a way to directly modify a list element-by-element...

g (Third z) = Third ( map (\(x, y) -> (fa x, fb y) ) z)
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...our good old map function, which modifies all tuples in the list z using a lambda function. In fact,
the first attempt at writing the definition looked just like an application of the list map except for
the spurious Weird packing and unpacking. We got rid of these by having the pattern splitting of z
done by map, which works directly with regular lists. You could find it useful to expand the map
definition inside g for seeing a clearer picture of that difference. Finally, you may prefer to write
this new version in an alternative, very clean way using list comprehension syntax:

g (Third z) = Third [ (fa x, fb y) | (x,y) <- z ]

Adding the Third function, we only have the Fourth left to do:

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
where
g (First x) = First (fa x)
g (Second y) = Second (fb y)
g (Third z) = Third ( map (\(x, y) -> (fa x, fb y) ) z)
g (Fourth w) = --More to follow

Dealing with the recursive Fourth constructor is actually really easy. Just apply g recursively!

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
where
g (First x) = First (fa x)
g (Second y) = Second (fb y)
g (Third z) = Third ( map (\(x, y) -> (fa x, fb y) ) z)
g (Fourth w) = Fourth (g w)

24.2.2 General Fold

While we were able to define a map by specifying as arguments a function for every separate type,
this isn’t enough for a fold. For a fold, we’ll need a function for every constructor function. This
is also the case with lists! Remember the constructors of a list are [] and (:). The z argument
in the foldr function corresponds to the [] constructor. The f argument in the foldr function
corresponds to the (:) constructor. The Weird datatype has four constructors, so we need four
functions - one for handling the internal structure of the datatype specified by each constructor.
Next, we have an argument of the Weird a b type, and finally we want the whole fold function to
evaluate to a value of some other, arbitrary, type. Additionally, each individual function we pass to
weirdFold must evaluate to the same type weirdFold does. That allows us to make a mock type
signature and sketch the definition:

weirdFold :: (something1 -> c) -> (something2 -> c) -> (something3 ->
c) -> (something4 -> c) -> Weird a b -> c
weirdFold f1 f2 f3 f4 = g
where
g (First x) = --Something of type c here
g (Second y) = --Something of type c here
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g (Third z) = --Something of type c here
g (Fourth w) = --Something of type c here

Now we need to figure out to which types something1, something2, something3 and something4
correspond to. That is done by analysing the constructors, since the functions must take as argu-
ments the elements of the datatype (whose types are specified by the constructor type signature).
Again, the types and definitions of the first two functions are easy to find. The third one isn’t
difficult either, as for the purposes of folding the list of (a,b) tuples is no different from a simple
type - unlike in the map example, its internal structure does not concern us now. The fourth
constructor, however, is recursive, and we have to watch out. As in the case of weirdMap, we also
need to recursively call the g function. This brings us to the following, final, definition:

weirdFold :: (a -> c) -> (b -> c) -> ([(a,b)] -> c) -> (c -> c) ->
Weird a b -> c
weirdFold f1 f2 f3 f4 = g
where
g (First x) = f1 x
g (Second y) = f2 y
g (Third z) = f3 z
g (Fourth w) = f4 (g w)

Note:
If you were expecting very complex expressions in the weirdFold above and is surprised by the
immediacy of the solution, it might be helpful to have a look on what the common foldr would look
like if we wrote it in this style and didn’t have the special square-bracket syntax of lists to distract
us:
-- List a is [a], Cons is (:) and Nil is []

data List a = Cons a (List a) | Nil

listFoldr :: (a -> b -> b) -> (b) -> List a -> b

listFoldr fCons fNil = g

where

g (Cons x xs) = fCons x (g xs)

g Nil = fNil

Now it is easier to see the parallels. The extra complications are that Cons (that is, (:)) takes two
arguments (and, for that reason, so does fCons) and is recursive, requiring a call to g. Also, fNil is
of course not really a function, as it takes no arguments.

Folds on recursive datatypes

As far as folds are concerned Weird was a fairly nice datatype to deal with. Just one recursive
constructor, which isn’t even nested inside other structures. What would happen if we added a truly
complicated fifth constructor?
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Fifth [Weird a b] a (Weird a a, Maybe (Weird a b))

A valid, and tricky, question. In general, the following rules apply:

• A function to be supplied to a fold has the same number of arguments as the corresponding
constructor.

• The type of the arguments of such a function match the types of the constructor arguments, except
if the constructor is recursive (that is, takes an argument of its own type).

• If a constructor is recursive, any recursive argument of the constructor will correspond to an
argument of the type the fold evaluates to. 4

• If a constructor is recursive, the complete fold function should be (recursively) applied to the
recursive constructor arguments.

• If a recursive element appears inside another data structure, the appropriate map function for that
data structure should be used to apply the fold function to it.

So f5 would have the type:

f5 :: [c] -> a -> (Weird a a, Maybe c)

as the type of Fifth is:

Fifth :: [Weird a b] -> a -> (Weird a a, Maybe (Weird a b)) -> Weird
a b

The definition of g for the Fifth constructor will be:

g (Fifth list x (waa, mc)) = f5 (map g list) x (waa, maybeMap g
mc)

where
maybeMap f Nothing = Nothing
maybeMap f (Just w) = Just (f w)

Now note that nothing strange happens with the Weird a a part. No g gets called. What’s up? This
is a recursion, right? Well... not really. Weird a a and Weird a b are different types, so it isn’t a
real recursion. It isn’t guaranteed that, for example, f2 will work with something of type ’a’, where
it expects a type ’b’. It can be true for some cases, but not for everything.

Also look at the definition of maybeMap. Verify that it is indeed a map function as:

• It preserves structure.
• Only types are changed.

4 This sort of recursiveness, in which the function used for folding can take the result of another fold as an argu-
ment, is what confers the folds of data structures such as lists and trees their "accumulating" functionality.
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24.3 Notes

<references/>

OTHER DATA STRUCTURES5

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL

160

http://en.wikibooks.org/wiki/Category%3AHaskell


25 Class declarations

Type classes are a way of ensuring certain operations defined on inputs. For example, if you know
a certain type instantiates the class Fractional, then you can find its reciprocal.

Note:
Programmers coming from object-oriented languages like C++ or Java: A "class" in Haskell is
not what you expect! Don’t let the terms confuse you. In Java’s terms, a Haskell class is a little
like an interface (but nothing like a Java class). In C++ terms, think how the Standard Template Li-
brary talks informally about "categories" (such as InputIterator, EqualityComparable, ...). If you’re
familiar with C++ 0x, a Haskell class is like a "concept".

Indeed, OO languages use nominal subtyping; Haskell classes use structural subtyping. Haskell
classes also are not types, but categories of types. They cannot be used to hold any object fulfilling
the interface, but only to parametrize arguments.

25.1 Introduction

Haskell has several numeric types, including Int, Integer and Float. You can add any two
numbers of the same type together, but not numbers of different types. You can also compare two
numbers of the same type for equality. You can also compare two values of type Bool for equality,
but you cannot add them together.

The Haskell type system expresses these rules using classes. A class is a template for types: it
specifies the operations that the types must support. A type is said to be an "instance" of a class if it
supports these operations.

For instance, here is the definition of the "Eq" class from the Standard Prelude. It defines the ==
and /= functions.

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
-- (==) or (/=)

x /= y = not (x == y)
x == y = not (x /= y)

This says that a type a is an instance of Eq if it supports these two functions. It also gives default
definitions of the functions in terms of each other. This means that if an instance of Eq defines one
of these functions then the other one will be defined automatically.
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Here is how we declare that a type is an instance of Eq:

data Foo = Foo {x :: Integer, str :: String}

instance Eq Foo where
(Foo x1 str1) == (Foo x2 str2) = (x1 == x2) && (str1 == str2)

There are several things to notice about this:

• The class Eq is defined in the Standard Prelude. This code sample defines the type Foo and
then declares it to be an instance of Eq. The three definitions (class, data type and instance) are
completely separate and there is no rule about how they are grouped. You could just as easily
create a new class Bar and then declare the type Integer to be an instance of it.

• Types and classes are not the same thing. A class is a "template" for types. Again this is unlike
most OO languages, where a class is also itself a type.

• The definition of == depends on the fact that Integer and String are also members of Eq. In
fact almost all types in Haskell (the most notable exception being functions) are members of Eq.

• You can only declare types to be instances of a class if they were defined with data or newtype.
(Type synonyms defined with type are not allowed.)

25.2 Deriving

Since equality tests between values are commonplace, in all likelihood most of the data types you
create in any real program should be members of Eq, and for that matter a lot of them will also
be members of other Standard Prelude classes such as Ord and Show. This would require large
amounts of boilerplate for every new type, so Haskell has a convenient way to declare the "obvious"
instance definitions using the keyword deriving. Using it, Foo would be written as:

data Foo = Foo {x :: Integer, str :: String}
deriving (Eq, Ord, Show)

This makes Foo an instance of Eq with an automatically generated definition of == exactly
equivalent to the one we just wrote, and also makes it an instance of Ord and Show for good mea-
sure. If you are only deriving from one class then you can omit the parentheses around its name, e.g.:

data Foo = Foo {x :: Integer, str :: String}
deriving Eq

You can only use deriving with a limited set of built-in classes. They are:

Eq : Equality operators == and /=

Ord : Comparison operators < <= > >=. Also min and max.

Enum : For enumerations only. Allows the use of list syntax such as [Blue .. Green].
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Bounded : Also for enumerations, but can also be used on types that have only one constructor.
Provides minBound and maxBound, the lowest and highest values that the type can take.

Show : Defines the function show (note the letter case of the class and function names) which
converts the type to a string. Also defines some other functions that will be described later.

Read : Defines the function read which parses a string into a value of the type. As with Show it
also defines some other functions as well.

The precise rules for deriving the relevant functions are given in the language report. However they
can generally be relied upon to be the "right thing" for most cases. The types of elements inside the
data type must also be instances of the class you are deriving.

This provision of special "magic" function synthesis for a limited set of predefined classes goes
against the general Haskell philosophy that "built in things are not special". However it does save a
lot of typing. Experimental work with Template Haskell is looking at how this magic (or something
like it) can be extended to all classes.

25.3 Class Inheritance

Classes can inherit from other classes. For example, here is the definition of the class Ord from the
Standard Prelude, for types that have comparison operators:

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

The actual definition is rather longer and includes default implementations for most of the functions.
The point here is that Ord inherits from Eq. This is indicated by the => symbol in the first line. It
says that in order for a type to be an instance of Ord it must also be an instance of Eq, and hence
must also implement the == and /= operations.

A class can inherit from several other classes: just put all the ancestor classes in the parentheses
before the =>. Strictly speaking those parentheses can be omitted for a single ancestor, but including
them acts as a visual prompt that this is not the class being defined and hence makes for easier
reading.

25.4 Standard Classes

This diagram, copied from the Haskell Report, shows the relationships between the classes and
types in the Standard Prelude. The names in bold are the classes. The non-bold text is the types that
are instances of each class. The (->) refers to functions and the [] refers to lists.
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Abb. 1

CLASS DECLARATIONS1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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26 Classes and types

26.1 Classes and Types

26.1.1 Simple Type Constraints

So far we have seen how to declare classes, how to declare types, and how to declare that types
are instances of classes. But there is something missing. How do we declare the type of a simple
arithmetic function?

plus x y = x + y

Obviously x and y must be of the same type because you can’t add different types of numbers
together. So how about:

plus :: a -> a -> a

which says that plus takes two values and returns a new value, and all three values are of the same
type. But there is a problem: the arguments to plus need to be of a type that supports addition.
Instances of the class Num support addition, so we need to limit the type signature to just that class.
The syntax for this is:

plus :: (Num a) => a -> a -> a

This says that the type of the arguments to plus must be an instance of Num, which is what we want.

You can put several limits into a type signature like this:
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foo :: (Num a, Show a, Show b) => a -> a -> b -> String
foo x y t =

show x ++ " plus " ++ show y ++ " is " ++ show (x+y) ++ ". " ++
show t

This says that the arguments x and y must be of the same type, and that type must be an instance of
both Num and Show. Furthermore the final argument t must be of some (possibly different) type that
is also an instance of Show.

You can omit the parentheses for a single constraint, but they are required for multiple constraints.
Actually it is common practice to put even single constraints in parentheses because it makes things
easier to read.

26.1.2 More Type Constraints

You can put a type constraint in almost any type declaration. The only exception is a type synonym
declaration. The following is not legal:

type (Num a) => Foo a = a -> a -> a

But you can say:

data (Num a) => Foo a = F1 a | F2 Integer

This declares a type Foo with two constructors. F1 takes any numeric type, while F2 takes an integer.

You can also use type parameters in newtype and instance declarations. Class inheritance (see
the previous section) also uses the same syntax.

CLASSES AND TYPES1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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28 Understanding monads

28.1 First things first: Why, why, why, do I need Monads?

Monads, classically, are used for a very important thing: when the program you are building is
logically ordered such that you will think, "first, do this, then, do that, then, do that other thing".

For example, in parsing, you might want to say, "first, check that it’s a IF keyword. if so, then look
for an expression, then look for a THEN keyword, then look for a statement, then look for an ELSE
keyword, then look for a statement".

For another example, you might want to say, "first, write ’Hello rodney, welcome back to
HaskHack!’, then write a newline, then write our prompt ’> ’, then get a keyboard press".

For a third example, you might want to say, "first, try to find some entity, then try to find some other
entity, and finally, combine both of those entities (and if we succeeded, return Just ’that entity’, but
if any step failed, return Nothing)".

All three examples are very different: the first involves reading from a stream of input tokens, the
next involves interacting with the user, and the third involves attempting (and possibly failing) to
perform some operation. However there is a single common factor: each of them involves doing
something in sequence. It’s that sequencing that is the heart of the term "monad".

Now, one very important thing about monads is that while most of the time the order in which you
write "do this then do that" means that "this" really does occur before "that" in execution time,
it is not necessarily so. Some monads may be able to arrange to have "that" occur, in execution
time, before "this", or may not specify it at all; what matters more is that conceptually, you, the
programmer, want to think of it in that very specific order (in some cases the difference between
order-of-specification from order-of-execution may be advantageous, <insert example here>).

Monads are extremely general. They only need to provide three things: how to say "do this then do
that", how to say "do this" (and optionally, to say "do this but if something bad happens, FAIL!"),
and how to say "I have ’do this then do that’, now run it".

28.2 Introduction

Monads are a very useful concept in Haskell, but also a relatively difficult one for newcomers. Since
they have so many applications, people have often explained them from a particular point of view,
which can make it confusing to understand monads in their full generality.

Historically, monads were first introduced into Haskell as a way to perform input/output. After all,
lazy evaluation means that the order of evaluation is rather unpredictable, whereas a determined
execution order is crucial for things like reading and writing files. Hence, a method for specifying
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a determined sequence of operations was needed and monads are exactly the right abstraction for
that.

But monads are by no means limited to input/output, they can model any imperative language. The
choice of monad determines the semantics of this language, i.e., whether it supports exceptions,
state, non-determinism, continuations, coroutines and so on. Indeed, in Haskell all of these con-
structs are not a built-in part of the language, but rather defined by standard libraries! Because of
this, monadic values are sometimes also referred to as "actions" or "computations". In general, an
action can produce a result of a certain type, called the result type of the action; however, it is up
to the monad to establish if this has to always happen. For instance, throwing an exception implies
returning no value, while a non-deterministic computation produces not just one value, but a list of
them.

The present chapter introduces the basic notions with the example of the Maybe monad, the sim-
plest monad for handling exceptions. Beginning Haskell programmers will probably also want to
understand the IO monad and then broaden their scope to the many other monads and the effects
they represent; this chapter provides the corresponding hyperlinks.

28.3 Definition

A monad is defined by three things:

• a way to produce types of "actions" from the types of their result; formally, a TYPE CONSTRUC-
TOR1 M,

• a way to produce actions which simply produce a value; formally a function named return:

return :: a -> M a

From the type, we can read that return produces an action with "result type" a, and as we will see
later, the action will have to return exactly the parameter of return, without doing anything else
(not even to the control flow).2

• and a way to chain "actions" together, while allowing the result of an action to be used for the
second action; formally, an operator (>>=), which is pronounced "bind":

(>>=) :: M a -> ( a -> M b ) -> M b

From the type, we can read that this operator takes an action producing a value of type a and a
function consuming a value of type a and producing an action with return type b. Its result is a
simple action with return type b - we can already guess that this resulting action will probably feed
the result of the first action into the second function.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FMORE%20ON%20DATATYPES%23PARAMETERISED%
20TYPES%20

2 In imperative languages like C or Java, the return keyword, unrelated to the Haskell return function, causes the
containing function to return to its caller. This does not happen in Haskell - return has no effect on the control
flow, so don’t confound these two.
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They are also required to obey THREE LAWS3 that will be explained later on - for now, it suffices
to say that our explanation of the meaning of return and (>>=) would not be valid without these
laws.

Let’s give an example: the Maybe monad, which allows implementing a very simple form of ex-
ceptions (more powerful exceptions are also supported). The type constructor is M = Maybe so that
return and (>>=) have types

return :: a -> Maybe a
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

They are implemented as

return x = Just x
(>>=) m g = case m of

Nothing -> Nothing
Just x -> g x

and our task is to explain how and why this definition is useful.

28.3.1 Motivation: Maybe

To see the usefulness of (>>=) and the Maybe monad, consider the following example: imagine a
family database that provides two functions

father :: Person -> Maybe Person
mother :: Person -> Maybe Person

that look up the name of someone’s father/mother or return Nothing if they are not stored in the
database. With these, we can query various grandparents. For instance, the following function looks
up the maternal grandfather:

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =

case mother p of
Nothing -> Nothing
Just m -> father m -- mother’s

father

Or consider a function that checks whether both grandfathers are in the database:

bothGrandfathers :: Person -> Maybe (Person, Person)
bothGrandfathers p =

case father p of

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23MONAD%20LAWS
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Nothing -> Nothing
Just f ->

case father f of
Nothing -> Nothing
Just gf -> -- found first

grandfather
case mother p of

Nothing -> Nothing
Just m ->

case father m of
Nothing -> Nothing
Just gm -> -- found

second one
Just (gf, gm)

What a mouthful! Every single query might fail by returning Nothing and the whole functions must
fail with Nothing if that happens.

But clearly, there has to be a better way than repeating the case of Nothing again and again! Indeed,
and that’s what the Maybe monad is set out to do. For instance, the function retrieving the maternal
grandfather has exactly the same structure as the (>>=) operator, and we can rewrite it as

maternalGrandfather p = mother p >>= father

With the help of lambda expressions and return, we can rewrite the mouthful of two grandfathers
as well:

bothGrandfathers p =
father p >>=

(\f -> father f >>=
(\gf -> mother p >>=

(\m -> father m >>=
(\gm -> return (gf,gm) ))))

While these nested lambda expressions may look confusing to you, the thing to take away here
is that (>>=) eliminates any mention of Nothing, shifting the focus back to the interesting part
of the code. The next chapter will also explain a way to express the same algorithm in a nicer-
looking notation, where this sequence of actions looks a bit like a sequence of statements of a more
conventional language.

28.3.2 Type class

In Haskell, the type class Monad is used to implement monads. It is defined in the CON-
TROL.MONAD4 module and part of the PRELUDE5:

4 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-MONAD.HTML

5 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/PRELUDE.
HTML
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class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b
fail :: String -> m a

Aside from return and bind, it defines two additional functions (>>) and fail.

The operator (>>) called "then" is a mere convenience and commonly implemented as

m >> n = m >>= \_ -> n

It is used for sequencing two monadic actions when the second does not care about the result of the
first, which is common for monads like IO.

printSomethingTwice :: String -> IO ()
printSomethingTwice str = putStrLn str >> putStrLn str

The function fail handles pattern match failures in do NOTATION6. It’s an unfortunate technical
necessity and doesn’t really have to do anything with monads. You are advised to not use fail
directly in your code.

28.3.3 Is my Monad a Functor?

In case you forgot, a functor is a type to which we can apply the fmap function, which is analogous
to the map function for lists.

According to CATEGORY THEORY7, all monads are by definition functors too. However, GHC
thinks it different, and the Monad class has actually nothing to do with the Functor class. This will
likely change in future versions of Haskell, so that every Monad will have its own fmap; until then,
you will have to make two separate instances of your monads (as Monad and as Functor) if you
want to use a monad as a functor.

28.4 Notions of Computation

While you probably agree now that (>>=) and return are very handy for removing boilerplate
code that crops up when using Maybe, there is still the question of why this works and what this is
all about.

To answer this, we shall write the example with the two grandpas in a very suggestive style:

6 Chapter 29 on page 179
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%20THEORY
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bothGrandfathers p = do {
f <- father p; -- assign the result of father p to

the variable f
gf <- father f; -- similar
m <- mother p; -- ...
gm <- father m; -- ...
return (gf,gm); -- return result pair

}

If this looks like a code snippet of an imperative programming language to you, that’s because it is.
In particular, this imperative language supports exceptions : father and mother are functions that
might fail to produce results, i.e. raise an exception, and when that happens, the whole do-block
will fail, i.e. terminate with an exception.

In other words, the expression father p, which has type Maybe Person, is interpreted as a state-
ment of an imperative language that returns a Person as result. This is true for all monads: a value
of type M a is interpreted as a statement of an imperative language that returns a value of type a as
result; and the semantics of this language are determined by the monad M. TODO: diagram, picture?

Now, the bind operator (>>=) is simply a function version of the semicolon. Just like a let
expression can be written as a function application,

let x = foo in bar corresponds to (\x -> bar) foo

an assignment and semicolon can be written as the bind operator:

x <- foo; bar corresponds to foo >>= (\x -> bar)

The return function lifts a value a to a full-fledged statement M a of the imperative language.

Different semantics of the imperative language correspond to different monads. The following table
shows the classic selection that every Haskell programmer should know. Also, if the idea behind
monads is still unclear to you, studying each of the following examples in the order suggested will
not only give you a well-rounded toolbox but also help you understand the common abstraction
behind them.

Semantics Monad Wikibook chapter
Exception (anonymous) Maybe HASKELL/UNDERSTANDING

MONADS/MAYBE8

Exception (with error de-
scription)

Error HASKELL/UNDERSTANDING

MONADS/ERROR9

Global state State HASKELL/UNDERSTANDING

MONADS/STATE10

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FMAYBE
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FERROR
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FSTATE
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Semantics Monad Wikibook chapter
Input/Output IO HASKELL/UNDERSTANDING

MONADS/IO11

Nondeterminism [] (lists) HASKELL/UNDERSTANDING

MONADS/LIST12

Environment Reader HASKELL/UNDERSTANDING

MONADS/READER13

Logger Writer HASKELL/UNDERSTANDING

MONADS/WRITER14

Furthermore, the semantics do not only occur in isolation but can also be mixed and matched. This
gives rise to MONAD TRANSFORMERS15.

Some monads, like MONADIC PARSER COMBINATORS16 have loosened their correspondence to an
imperative language.

28.5 Monad Laws

We can’t just allow any junky implementation of (>>=) and return if we want to interpret them
as the primitive building blocks of an imperative language. For that, an implementation has to obey
the following three laws:

m >>= return = m -- right unit
return x >>= f = f x -- left unit

(m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity

In Haskell, every instance of the Monad type class is expected to obey them.

28.5.1 Return as neutral element

The behavior of return is specified by the left and right unit laws. They state that return doesn’t
perform any computation, it just collects values. For instance,

maternalGrandfather p = do {
m <- mother p;
gm <- father m;
return gm;

}

11 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FIO
12 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FLIST
13 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FREADER
14 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FWRITER
15 Chapter 33 on page 199
16 Chapter 32 on page 197
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is exactly the same as

maternalGrandfather p = do {
m <- mother p;
father m;

}

by virtue of the right unit law.

These two laws are in analogy to the laws for the neutral element of a MONOID17.

28.5.2 Associativity of bind

The law of associativity makes sure that - just like the semicolon - the bind operator (>>=) only
cares about the order of computations, not about their nesting, e.g. the following is equivalent:

bothGrandfathers p =
(father p >>= father) >>=

(\gf -> (mother p >>= father) >>=
(\gm -> return (gf,gm) ))

Again, this law is analogous to the associativity of a MONOID18, although it looks a bit different due
to the lambda expression (\x -> f x >>= g). There is the alternative formulation as

(f >=> g) >=> h = f >=> (g >=> h)

where (>=>) is the equivalent of function composition (.) for monads and defined as

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
f >=> g = \x -> f x >>= g

The associativity of the then operator (>>) is a special case:

(m >> n) >> o = m >> (n >> o)

17 Chapter 42 on page 289
18 Chapter 42 on page 289
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28.6 Monads and Category Theory

Monads originally come from a branch of mathematics called CATEGORY THEORY19. Fortunately,
it is entirely unnecessary to understand category theory in order to understand and use monads in
Haskell. However, the Category Theoretical definition of monads uses a slightly different presenta-
tion. When translated into Haskell, this presentation gives a different, but equivalent definition of a
monad which may be useful to understand.

So far, we have defined monads in terms of >>= and return, but there’s also an alternative definition
that starts with monads as functors with two additional combinators

fmap :: (a -> b) -> M a -> M b -- functor
return :: a -> M a
join :: M (M a) -> M a

A functor M can be thought of as container, so that M a "contains" values of type a.

Under this interpretation, the functions behave as follows:

• fmap applies a given function to every element in a container
• return packages an element into a container,
• join takes a container of containers and turns them into a single container.

With these functions, the bind combinator is defined as follows:

m >>= g = join (fmap g m)

Likewise, we could give a definition of fmap and join in terms of >>=:

fmap f x = x >>= (return . f)
join x = x >>= id

For more information on this point of view, see also the WIKIBOOK CHAPTER ON CATEGORY

THEORY20.

28.7 Footnotes

<references/>

UNDERSTANDING MONADS21

19 Chapter 53 on page 365
20 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FCATEGORY%20THEORY%23MONADS
21 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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29 do Notation

The do notation is a different way of writing monadic code; it is especially useful with the IO
monad, since that monad does not allow to extract pure values from it by design; in contrast, you
can extract pure values from Maybe or lists using pattern matching or appropriate functions.

29.1 Translating the then operator

The (>>) (then) operator is easy to translate between do notation and plain code, so we will see it
first. For example, suppose we have a chain of monads like the following one:

putStr "Hello" >>
putStr " " >>
putStr "world!" >>
putStr "\n"

We can rewrite it in do notation as follows:

do putStr "Hello"
putStr " "
putStr "world!"
putStr "\n"

This sequence of instructions is very similar to what you would see in any imperative language such
as C.

Since the do notation is used especially with input-output, monads are often called actions in this
context; an action could be writing to a file, opening a network connection or asking the user for
input. The general way we translate these actions from the do notation to standard Haskell code
is:

do action
other_action
yet_another_action

which becomes

action >>
do other_action

yet_another_action

179



do Notation

and so on until the do block is empty.

29.2 Translating the bind operator

The (>>=) is a bit more difficult to translate from and to do notation, essentially because it involves
passing a value downstream in the binding sequence. These values can be stored using the <-
notation, and used downstream in the do block.

do result <- action
another_result <- another_action
(action_based_on_previous_results result another_result)

This is translated back into monadic code substituting:

action >>= f
where f result = do another_result <- another_action

(action_based_on_previous_results result
another_result)

f _ = fail "..."

In words, the action brought outside of the do block is bound to a function, which is defined to take
an argument (to make it easy to identify it, we named result just like in the complete do block). If
the pattern matching is unsuccessful, the monad’s implementation of fail will be called.

Notice that the variables left of the <- in the do block have been extracted from the monad, so if
action produces e.g. a IO String, the type of result will be String.

29.3 Example: user-interactive program

Consider this simple program that asks the user for his or her first and last names:

nameDo :: IO ()
nameDo = do putStr "What is your first name? "

first <- getLine
putStr "And your last name? "
last <- getLine
let full = first++" "++last
putStrLn ("Pleased to meet you, "++full++"!")

The code in do notation is quite readable, and it is easy to see where it is going to. The <- notation
makes it possible to store first and last names as if they were pure variables, though they never can
be in reality: function getLine is not pure because it can give a different result every time it is run
(in fact, it would be of very little help if it did not).

If we were to translate the code into standard monadic code, the result would be:
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name :: IO ()
name = putStr "What is your first name? " >>

getLine >>= f
where
f first = putStr "And your last name? " >>

getLine >>= g
where
g last = putStrLn ("Pleased to meet you,

"++full++"!")
where
full = first++" "++last

The advantage of the do notation should now be apparent: the code in nameDo is much more read-
able, and does not run off the right edge of the screen.

The indentation increase is mainly caused by where clauses related to (>>=) operators, and by the
fact that we cannot simply extract a value from the IO monad but must define new functions instead,
and take advantage of pattern matching. This explains why the do notation is so popular when
dealing with the IO monad, which is often used to obtain values (user input, reading files, etc.) that
cannot, by construction, be taken out of the monad.

29.4 Returning values

The last statement in a do notation is the result of the do block. In the previous example, the result
was of the type IO (), that is an empty value in the IO monad.

Suppose that we want to rewrite the example, but returning a IO String with the acquired name.
All we need to do is add a return instruction:

nameReturn :: IO String
nameReturn = do putStr "What is your first name? "

first <- getLine
putStr "And your last name? "
last <- getLine
let full = first++" "++last
putStrLn ("Pleased to meet you, "++full++"!")
return full

This example will "return" the full name as a string inside the IO monad, which can then be utilized
downstream. This kind of code is probably the reason it is so easy to misunderstand the nature of
return: it does not only share a name with C’s keyword, it seems to have the same function here.

However, check this code now:

nameReturn’ = do putStr "What is your first name? "
first <- getLine
putStr "And your last name? "
last <- getLine
let full = first++" "++last
putStrLn ("Pleased to meet you, "++full++"!")
return full
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putStrLn "I am not finished yet!"

The last string will be printed out, meaning that a return is not a final statement interrupting the
flow, as it is in C and other languages. Indeed, the type of nameReturn’ is IO (), meaning that the
IO String created by the return full instruction has been completely removed: the result of the
do block is now the result of the final putStrLn action, which is exactly IO ().

THE DO NOTATION1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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This chapter follows on from ../UNDERSTANDING MONADS/1, and explains a few more of the more
advanced concepts.

30.1 Monads as computations

30.1.1 The concept

A metaphor we explored in the last chapter was that of monads as containers. That is, we looked
at what monads are in terms of their structure. What was touched on but not fully explored is why
we use monads. After all, monads structurally can be very simple, so why bother at all?

The secret is in the view that each monad represents a different type of computation. Here, and in
the rest of this chapter, a ’computation’ is simply a function call: we’re computing the result of this
function. In a minute, we’ll give some examples to explain what we mean by this, but first, let’s
re-interpret our basic monadic operators:

>>=

The >>= operator is used to sequence two monadic computations. That means it combines them so
that when the combined computation is run, the first computation will run and its output will be fed
into the second which will then run using (or dependent upon) that value.

return

return x, in computation-speak, is simply a computation that, when run, will produce the result x
as-is, but in its own (the computation’s) specific way. The meaning of the latter phrase will become
clearer when we look at State below.

So how does the computations analogy work in practice? Let’s look at some examples.

30.1.2 The Maybe monad

Computations in the Maybe monad (that is, function calls which result in a type wrapped up in
a Maybe) represent computations that might fail. The easiest example is with lookup tables. A
lookup table is a table which relates keys to values. You look up a value by knowing its key and

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FUNDERSTANDING%20MONADS%2F

183

http://en.wikibooks.org/wiki/..%2FUnderstanding%20monads%2F


Advanced monads

using the lookup table. For example, you might have a lookup table of contact names as keys to
their phone numbers as the values in a phonebook application. One way of implementing lookup
tables in Haskell is to use a list of pairs: [(a, b)]. Here a is the type of the keys, and b the type of
the values. Here’s how the phonebook lookup table might look:

phonebook :: [(String, String)]
phonebook = [ ("Bob", "01788 665242"),

("Fred", "01624 556442"),
("Alice", "01889 985333"),
("Jane", "01732 187565") ]

The most common thing you might do with a lookup table is look up values! However, this
computation might fail. Everything’s fine if we try to look up one of "Bob", "Fred", "Alice" or
"Jane" in our phonebook, but what if we were to look up "Zoe"? Zoe isn’t in our phonebook, so
the lookup has failed. Hence, the Haskell function to look up a value from the table is a Maybe
computation:

lookup :: Eq a => a -- a key
-> [(a, b)] -- the lookup table to use
-> Maybe b -- the result of the lookup

Lets explore some of the results from lookup:

Prelude> lookup "Bob" phonebook
Just "01788 665242"
Prelude> lookup "Jane" phonebook
Just "01732 187565"
Prelude> lookup "Zoe" phonebook
Nothing

Now let’s expand this into using the full power of the monadic interface. Say, we’re now working
for the government, and once we have a phone number from our contact, we want to look up this
phone number in a big, government-sized lookup table to find out the registration number of their
car. This, of course, will be another Maybe-computation. But if they’re not in our phonebook, we
certainly won’t be able to look up their registration number in the governmental database! So what
we need is a function that will take the results from the first computation, and put it into the second
lookup, but only if we didn’t get Nothing the first time around. If we did indeed get Nothing from
the first computation, or if we get Nothing from the second computation, our final result should be
Nothing.

comb :: Maybe a -> (a -> Maybe b) -> Maybe b
comb Nothing _ = Nothing
comb (Just x) f = f x

Observant readers may have guessed where we’re going with this one. That’s right, comb is just
>>=, but restricted to Maybe-computations. So we can chain our computations together:
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getRegistrationNumber :: String -- their name
-> Maybe String -- their registration number

getRegistrationNumber name =
lookup name phonebook >>=
(\number -> lookup number governmentalDatabase)

If we then wanted to use the result from the governmental database lookup in a third lookup (say
we want to look up their registration number to see if they owe any car tax), then we could extend
our getRegistrationNumber function:

getTaxOwed :: String -- their name
-> Maybe Double -- the amount of tax they owe

getTaxOwed name =
lookup name phonebook >>=
(\number -> lookup number governmentalDatabase) >>=
(\registration -> lookup registration taxDatabase)

Or, using the do-block style:

getTaxOwed name = do
number <- lookup name phonebook
registration <- lookup number governmentalDatabase
lookup registration taxDatabase

Let’s just pause here and think about what would happen if we got a Nothing anywhere. Trying
to use >>= to combine a Nothing from one computation with another function will result in the
Nothing being carried on and the second function ignored (refer to our definition of comb above if
you’re not sure). That is, a Nothing at any stage in the large computation will result in a Nothing
overall, regardless of the other functions! Thus we say that the structure of the Maybe monad
propagates failures.

An important thing to note is that we’re not by any means restricted to lookups! There are many,
many functions whose results could fail and therefore use Maybe. You’ve probably written one or
two yourself. Any computations in Maybe can be combined in this way.

Summary

The important features of the Maybe monad are that:

1. It represents computations that could fail.
2. It propagates failure.

30.1.3 The List monad

Computations that are in the list monad (that is, they end in a type [a]) represent computations with
zero or more valid answers. For example, say we are modelling the game of noughts and crosses
(known as tic-tac-toe in some parts of the world). An interesting (if somewhat contrived) problem
might be to find all the possible ways the game could progress: find the possible states of the board
3 turns later, given a certain board configuration (i.e. a game in progress).
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Here is the instance declaration for the list monad:

instance Monad [] where
return a = [a]
xs >>= f = concat (map f xs)

As monads are only really useful when we’re chaining computations together, let’s go into more
detail on our example. The problem can be boiled down to the following steps:

1. Find the list of possible board configurations for the next turn.
2. Repeat the computation for each of these configurations: replace each configuration, call it C,

with the list of possible configurations of the turn after C.
3. We will now have a list of lists (each sublist representing the turns after a previous configu-

ration), so in order to be able to repeat this process, we need to collapse this list of lists into a
single list.

This structure should look similar to the monadic instance declaration above. Here’s how it might
look, without using the list monad:

getNextConfigs :: Board -> [Board]
getNextConfigs = undefined -- details not important

tick :: [Board] -> [Board]
tick bds = concatMap getNextConfigs bds

find3rdConfig :: Board -> [Board]
find3rdConfig bd = tick $ tick $ tick [bd]

(concatMap is a handy function for when you need to concat the results of a map: concatMap f
xs = concat (map f xs).) Alternatively, we could define this with the list monad:

find3rdConfig :: Board -> [Board]
find3rdConfig bd0 = do
bd1 <- getNextConfigs bd0
bd2 <- getNextConfigs bd1
bd3 <- getNextConfigs bd2
return bd3

List comprehensions

An interesting thing to note is how similar list comprehensions and the list monad are. For example,
the classic function to find Pythagorean triples:

pythags = [ (x, y, z) | z <- [1..], x <- [1..z], y <- [x..z], xˆ2 +
yˆ2 == zˆ2 ]

This can be directly translated to the list monad:
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import Control.Monad (guard)

pythags = do
z <- [1..]
x <- [1..z]
y <- [x..z]
guard (xˆ2 + yˆ2 == zˆ2)
return (x, y, z)

The only non-trivial element here is guard. This is explained in the next module, ADDITIVE MON-
ADS2.

30.1.4 The State monad

The State monad actually makes a lot more sense when viewed as a computation, rather than a
container. Computations in State represents computations that depend on and modify some internal
state. For example, say you were writing a program to model the THREE BODY PROBLEM3. The
internal state would be the positions, masses and velocities of all three bodies. Then a function,
to, say, get the acceleration of a specific body would need to reference this state as part of its
calculations.

The other important aspect of computations in State is that they can modify the internal state. Again,
in the three-body problem, you could write a function that, given an acceleration for a specific body,
updates its position.

The State monad is quite different from the Maybe and the list monads, in that it doesn’t represent
the result of a computation, but rather a certain property of the computation itself.

What we do is model computations that depend on some internal state as functions which take a
state parameter. For example, if you had a function f :: String -> Int -> Bool, and we want
to modify it to make it depend on some internal state of type s, then the function becomes f ::
String -> Int -> s -> Bool. To allow the function to change the internal state, the function
returns a pair of (return value, new state). So our function becomes f :: String -> Int -> s
-> (Bool, s)

It should be clear that this method is a bit cumbersome. However, the types aren’t the worst of it:
what would happen if we wanted to run two stateful computations, call them f and g, one after
another, passing the result of f into g? The second would need to be passed the new state from
running the first computation, so we end up ’threading the state’:

fThenG :: (s -> (a, s)) -> (a -> s -> (b, s)) -> s -> (b, s)
fThenG f g s =
let (v, s’ ) = f s -- run f with our initial state s.

(v’, s”) = g v s’ -- run g with the new state s’ and the result
of f, v.
in (v’, s”) -- return the latest state and the result of

g

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FMONADPLUS
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREE%20BODY%20PROBLEM%23THREE-{}BODY%20PROBLEM
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All this ’plumbing’ can be nicely hidden by using the State monad. The type constructor State
takes two type parameters: the type of its environment (internal state), and the type of its output.
(Even though the new state comes last in the result pair, the state type must come first in the type
parameters, since the ’real’ monad is bound to some particular type of state but lets the result type
vary.) So State s a indicates a stateful computation which depends on, and can modify, some
internal state of type s, and has a result of type a. How is it defined? Well, simply as a function that
takes some state and returns a pair of (value, new state):

newtype State s a = State (s -> (a, s))

The above example of fThenG is, in fact, the definition of >>= for the State monad, which you
probably remember from the first monads chapter.

30.1.5 The meaning of return

We mentioned right at the start that return x was the computation that ’did nothing’ and just re-
turned x. This idea only really starts to take on any meaning in monads with side-effects, like State.
That is, computations in State have the opportunity to change the outcome of later computations by
modifying the internal state. It’s a similar situation with IO (because, of course, IO is just a special
case of State).

return x doesn’t do this. A computation produced by return generally won’t have any side-
effects. The monad law <tt>return x >>= f == f x<tt> basically guarantees this, for most uses of the
term ’side-effect’.

30.2 Further reading

• A TOUR OF THE HASKELL MONAD FUNCTIONS4 by Henk-Jan van Tuyl
• ALL ABOUT MONADS5 by Jeff Newbern explains well the concept of monads as computations,

using good examples. It also has a section outlining all the major monads, explains each one in
terms of this computational view, and gives a full example.

• MONADS6 by Eugene Kirpichov attempts to give a broader and more intuitive understanding of
monads by giving non-trivial examples of them

ADVANCED MONADS7

4 HTTP://MEMBERS.CHELLO.NL/HJGTUYL/TOURDEMONAD.HTML
5 HTTP://WWW.HASKELL.ORG/ALL_ABOUT_MONADS/HTML/INDEX.HTML
6 HTTP://SPBHUG.FOLDING-{}MAPS.ORG/WIKI/MONADSEN
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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31 Additive monads (MonadPlus)

MonadPlus is a typeclass whose instances are monads which represent a number of computations.

31.1 Introduction

You may have noticed, whilst studying monads, that the Maybe and list monads are quite similar,
in that they both represent the number of results a computation can have. That is, you use Maybe
when you want to indicate that a computation can fail somehow (i.e. it can have 0 or 1 result), and
you use the list monad when you want to indicate a computation could have many valid answers
(i.e. it could have 0 results -- a failure -- or many results).

Given two computations in one of these monads, it might be interesting to amalgamate these: find
all the valid solutions. I.e. given two lists of valid solutions, to find all of the valid solutions, you
simply concatenate the lists together. It’s also useful, especially when working with folds, to require
a ’zero results’ value (i.e. failure). For lists, the empty list represents zero results.

We combine these two features into a typeclass:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

Here are the two instance declarations for Maybe and the list monad:

instance MonadPlus [] where
mzero = []
mplus = (++)

instance MonadPlus Maybe where
mzero = Nothing
Nothing ‘mplus‘ Nothing = Nothing -- 0 solutions + 0 solutions = 0

solutions
Just x ‘mplus‘ Nothing = Just x -- 1 solution + 0 solutions = 1
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solution
Nothing ‘mplus‘ Just x = Just x -- 0 solutions + 1 solution = 1

solution
Just x ‘mplus‘ Just y = Just x -- 1 solution + 1 solution = 2

solutions,
-- but as Maybe can only have up

to one
-- solution, we disregard the

second one.

Also, if you import Control.Monad.Error, then (Either e) becomes an instance:

instance (Error e) => MonadPlus (Either e) where
mzero = Left noMsg
Left _ ‘mplus‘ n = n
Right x ‘mplus‘ _ = Right x

Remember that (Either e) is similar to Maybe in that it represents computations that can fail, but
it allows the failing computations to include an error message. Typically, Left s means a failed
computation with error message s, and Right x means a successful computation with result x.

31.2 Example

A traditional way of parsing an input is to write functions which consume it, one character at a
time. That is, they take an input string, then chop off (’consume’) some characters from the front if
they satisfy certain criteria (for example, you could write a function which consumes one uppercase
character). However, if the characters on the front of the string don’t satisfy these criteria, the
parsers have failed, and therefore they make a valid candidate for a Maybe.

Here we use mplus to run two parsers in parallel. That is, we use the result of the first one if it
succeeds, but if not, we use the result of the second. If that too fails, then our whole parser returns
Nothing.

-- | Consume a digit in the input, and return the digit that was
parsed. We use
-- a do-block so that if the pattern match fails at any point, fail
of the
-- the Maybe monad (i.e. Nothing) is returned.
digit :: Int -> String -> Maybe Int
digit i s | i > 9 || i < 0 = Nothing

| otherwise = do
let (c:_) = s
if read [c] == i then Just i else Nothing

-- | Consume a binary character in the input (i.e. either a 0 or an
1)
binChar :: String -> Maybe Int
binChar s = digit 0 s ‘mplus‘ digit 1 s
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31.3 The MonadPlus laws

Instances of MonadPlus are required to fulfill several rules, just as instances of Monad are required
to fulfill the three monad laws. Unfortunately, these laws aren’t set in stone anywhere and aren’t
fully agreed on. The most essential are that mzero and mplus form a monoid, i.e.:

mzero ‘mplus‘ m = m
m ‘mplus‘ mzero = m
m ‘mplus‘ (n ‘mplus‘ o) = (m ‘mplus‘ n) ‘mplus‘ o

The HADDOCK DOCUMENTATION1 for Control.Monad quotes additional laws:

mzero >>= f = mzero
m >> mzero = mzero

And the HASKELLWIKI PAGE2 cites another (with controversy):

(m ‘mplus‘ n) >>= k = (m >>= k) ‘mplus‘ (n >>= k)

There are even more sets of laws available, and therefore you’ll sometimes see monads like IO being
used as a MonadPlus. ALL ABOUT MONADS3 and the HASKELL WIKI PAGE4 for MonadPlus
have more information on this. TODO: should that information be copied here?

31.4 Useful functions

Beyond the basic mplus and mzero themselves, there are a few functions you should know about:

31.4.1 msum

A very common task when working with instances of MonadPlus is to take a list of the monad, e.g.
[Maybe a] or [[a]], and fold down the list with mplus. msum fulfills this role:

msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero

A nice way of thinking about this is that it generalises the list-specific concat operation. Indeed,
for lists, the two are equivalent. For Maybe it finds the first Just x in the list, or returns Nothing
if there aren’t any.

1 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/CONTROL-{}MONAD.HTML#
T%3AMONADPLUS

2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/MONADPLUS
3 HTTP://WWW.HASKELL.ORG/ALL_ABOUT_MONADS/HTML/LAWS.HTML#ZERO
4 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/MONADPLUS
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31.4.2 guard

This is a very nice function which you have almost certainly used before, without knowing about
it. It’s used in list comprehensions, as we saw in the previous chapter. List comprehensions can be
decomposed into the list monad, as we saw:

pythags = [ (x, y, z) | z <- [1..], x <- [1..z], y <- [x..z], xˆ2 +
yˆ2 == zˆ2 ]

The previous can be considered syntactic sugar for:

pythags = do
z <- [1..]
x <- [1..z]
y <- [x..z]
guard (xˆ2 + yˆ2 == zˆ2)
return (x, y, z)

guard looks like this:

guard :: MonadPlus m => Bool -> m ()
guard True = return ()
guard False = mzero

Concretely, guard will reduce a do-block to mzero if its predicate is False. By the very first law
stated in the ’MonadPlus laws’ section above, an mzero on the left-hand side of an >>= operation
will produce mzero again. As do-blocks are decomposed to lots of expressions joined up by >>=,
an mzero at any point will cause the entire do-block to become mzero.

To further illustrate that, we will examine guard in the special case of the list monad, extending on
the pythags function above. First, here is guard defined for the list monad:

guard :: Bool -> [()]
guard True = [()]
guard False = []

guard blocks off a route. For example, in pythags, we want to block off all the routes (or
combinations of x, y and z) where xˆ2 + yˆ2 == zˆ2 is False. Let’s look at the expansion of the
above do-block to see how it works:

pythags =
[1..] >>= \z ->
[1..z] >>= \x ->
[x..z] >>= \y ->
guard (xˆ2 + yˆ2 == zˆ2) >>= \_ ->
return (x, y, z)
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Replacing >>= and return with their definitions for the list monad (and using some let-bindings to
make things prettier), we obtain:

pythags =
let ret x y z = [(x, y, z)]

gd z x y = concatMap (\_ -> ret x y z) (guard $ xˆ2 + yˆ2 ==
zˆ2)

doY z x = concatMap (gd z x) [x..z]
doX z = concatMap (doY z ) [1..z]
doZ = concatMap (doX ) [1..]

in doZ

Remember that guard returns the empty list in the case of its argument being False. Mapping
across the empty list produces the empty list, no matter what function you pass in. So the empty list
produced by the call to guard in the binding of gd will cause gd to be the empty list, and therefore
ret to be the empty list.

To understand why this matters, think about list-computations as a tree. With our Pythagorean
triple algorithm, we need a branch starting from the top for every choice of z, then a branch from
each of these branches for every value of x, then from each of these, a branch for every value of y.
So the tree looks like this:

start
|__________________...
| | |

z 1 2 3
| |____ |__________
| | | | | |

x 1 1 2 1 2 3
| |__ | |____ |__ |
| | | | | | | | | |

y 1 1 2 2 1 2 3 2 3 3

Each combination of x, y and z represents a route through the tree. Once all the functions have
been applied, each branch is concatenated together, starting from the bottom. Any route where our
predicate doesn’t hold evaluates to an empty list, and so has no impact on this concat operation.

31.5 Exercises

<ol> Prove the MonadPlus laws for Maybe and the list monad. We could augment our above parser
to involve a parser for any character:
-- | Consume a given character in the input, and return the character

we

-- just consumed, paired with rest of the string. We use a do-block

so that

-- if the pattern match fails at any point, fail of the Maybe monad

(i.e.

-- Nothing) is returned.

char :: Char -> String -> Maybe (Char, String)

char c s = do
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let (c’:s’) = s

if c == c’ then Just (c, s’) else Nothing

It would then be possible to write a hexChar function which parses any valid hexidecimal character
(0-9 or a-f). Try writing this function (hint: map digit [0..9] :: [String -> Maybe Int]).
More to come... </ol>

31.6 Relationship with Monoids

TODO: is this at all useful? --- I really thought so. Gave me some idea about Monoids. It’s re-
ally lacking in documentation (Random Haskell newbie) (If you don’t know anything about the
Monoid data structure, then don’t worry about this section. It’s just a bit of a muse.)

Monoids are a data structure with two operations defined: an identity (or ’zero’) and a binary
operation (or ’plus’), which satisfy some axioms.

class Monoid m where
mempty :: m
mappend :: m -> m -> m

For example, lists form a simple monoid:

instance Monoid [a] where
mempty = []
mappend = (++)

Note the usage of [a], not [], in the instance declaration. Monoids are not necessarily ’contain-
ers’ of anything. For example, the integers (or indeed even the naturals) form two possible monoids:

newtype AdditiveInt = AI Int
newtype MultiplicativeInt = MI Int

instance Monoid AdditiveInt where
mempty = AI 0
AI x ‘mappend‘ AI y = AI (x + y)

instance Monoid MultiplicativeInt where
mempty = MI 1
MI x ‘mappend‘ MI y = MI (x * y)

(A nice use of the latter is to keep track of probabilities.)

Monoids, then, look very similar to MonadPlus instances. Both feature concepts of a zero and plus,
and indeed MonadPlus can be a subclass of Monoid (the following is not Haskell 98, but works
with -fglasgow-exts):
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instance MonadPlus m => Monoid (m a) where
mempty = mzero
mappend = mplus

However, they work at different levels. As noted, there is no requirement for monoids to be any kind
of container. More formally, monoids have kind *, but instances of MonadPlus, as they’re Monads,
have kind * -> *.

MONADPLUS5

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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32 Monadic parser combinators

Monads provide a clean means of embedding a domain specific parsing language directly into
Haskell without the need for external tools or code generators.

• FUNCTIONAL PEARLS: MONADIC PARSING IN HASKELL1

• PRACTICAL MONADS: PARSING MONADS2 which shows an example using PARSEC3, a popu-
lar, efficient monadic recursive descent parser library

4

1 HTTP://WWW.CS.NOTT.AC.UK/~{}GMH/PEARL.PDF
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FPRACTICAL_MONADS%23PARSING_MONADS
3 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/PARSEC.HTML
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL

197

http://www.cs.nott.ac.uk/~{}gmh/pearl.pdf
http://en.wikibooks.org/wiki/Haskell%2FPractical_monads%23Parsing_monads
http://research.microsoft.com/users/daan/parsec.html
http://en.wikibooks.org/wiki/Category%3AHaskell


Monadic parser combinators

198



33 Monad transformers

By this point you should have grasped the concept of monad, and what different monads are used
for: IO for impure functions, Maybe for values that can be there or not, and so on. A common practi-
cal problem is that, sometimes, you would like to have a monad with several of these characteristic
at once. Indeed you can use things like IO (Maybe a), but then you have to start doing pattern
matching within do blocks to extract the values you want: the point of monads was also to get rid
of that.

Enter monad transformers: these are special types that, when applied to a monad, generate a new,
combined monad, that shares the behaviour of both.

33.1 Motivation

Consider a common real-life problem for IT staff worldwide: to get their users to select passwords
that are not easy to guess. A typical strategy is to force the user to enter a password with a minimum
length, and at least one letter, one number and similar irritating requirements.

A Haskell function to acquire a password from a user could look like:

getPassword :: IO (Maybe String)
getPassword = do s <- getLine

if isValid s then return $ Just s
else return Nothing

We need the IO monad because the function will not return always the same result, and the Maybe
monad because we intend to return Nothing in case the password does not pass some test.

For the isValid function, you can use whatever you want; as an example, consider:

isValid :: String -> Bool
isValid s = length s >= 8 && any isAlpha s && any isNumber s && any
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isPunctuation s

The true motivation for monad transformers is not only to make it easier to write getPassword
(which it nevertheless does), but rather to simplify all the code instances in which we use it:

askPassword :: IO ()
askPassword = do putStrLn "Insert your new password:"

maybe_value <- getPassword
if isJust maybe_value

then do putStrLn "Storing in database..."
-- ... other stuff, including ’else’

We need one line to generate the maybe_value variable, and then we have to do some further
checking to figure out whether our password is OK or not.

With monad combinators, we will be able to extract the password in one go, without any pattern
matching. The gains for our simple example may seem small, but will scale up for more complex
ones.

33.2 A Simple Monad Transformer: MaybeT

To simplify the code for the getPassword function and the code that uses it, we will define a
monad transformer that gives the IO monad some characteristics of the Maybe monad; we will call
it MaybeT, following the convention that monad transformers have a "T" appended to the name of
the monad whose characteristics they provide.

MaybeT is essentially a wrapper around m (Maybe a), where m can be any monad (for our particular
case, we are interested in IO):

newtype (Monad m) => MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

using the accessor function runMaybeT we can access the underlying representation.

Monad transformers are monads themselves, so we need to make MaybeT m an instance of the
Monad class:

instance Monad m => Monad (MaybeT m) where
return = MaybeT . return . Just

return is implemented by Just, which injects into the Maybe monad, a generic return that in-
jects into m (whatever it is), and the MaybeT constructor. It would also have been possible (though
arguably less readable) to write return = MaybeT . return . return.

x >>= f = MaybeT $ do maybe_value <- runMaybeT x
case maybe_value of

Nothing -> return Nothing
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Just value -> runMaybeT $ f value

The bind operator, which is the most important code snippet to understand how the transformer
works, extracts the Maybe value in the do block, and based on whether it is a Nothing or Just value
it returns accordingly either m Nothing or m (Just value), wrapped in the MaybeT constructor.

You may wonder why we are using the MaybeT constructor before the do block, when inside it we
use the accessor runMaybeT: however, the do block must be in the m monad, not in MaybeT m, since
for the latter we have not yet defined the bind operator.

Technically, this is all we need; however, it is convenient to make MaybeT an instance of a few other
classes:

instance Monad m => MonadPlus (MaybeT m) where
mzero = MaybeT $ return Nothing
mplus x y = MaybeT $ do maybe_value <- runMaybeT x

case maybe_value of
Nothing -> runMaybeT y
Just value -> runMaybeT x

instance MonadTrans MaybeT where
lift = MaybeT . (liftM Just)

The latter class, MonadTrans, implements the lift function, which is very useful to take functions
from the m monad and bring them into the MaybeT m monad, so that we can use them in do blocks
inside the MaybeT m monad.

33.2.1 Application to Password Example

After having done all this, here is how the previous example of password management looks
like:

getValidPassword :: MaybeT IO String
getValidPassword = do s <- lift getLine

guard (isValid s)
return s

askPassword :: MaybeT IO ()
askPassword = do lift $ putStrLn "Insert your new password:"

value <- getValidPassword
lift $ putStrLn "Storing in database..."

The code is now simpler, especially in the user function askPassword, and what is most important
in that we do not need to manually check whether the result is Nothing or Just: the bind operator
takes care of it for us.

Note how we use lift to bring functions getLine and putStrLn into the MaybeT IO monad. Also,
since MaybeT IO is an instance of MonadPlus, checking for password validity can be taken care of
by a guard statement, which will return mzero (i.e. IO Nothing) in case of a bad password.

Incidentally, it also becomes very easy to ask the user ad infinitum for a valid password:
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askPassword :: MaybeT IO ()
askPassword = do lift $ putStrLn "Insert your new password:"

value <- msum $ repeat getValidPassword
lift $ putStrLn "Storing in database..."

33.3 Introduction

Note:
Monad transformers are monads too!

</div> Monad transformers are special variants of standard monads that facilitate the combining
of monads. For example, <code>ReaderT Env IO a<code> is a computation which can read from
some environment of type Env, can do some IO and returns a type a. Their type constructors are
parameterized over a monad type constructor, and they produce combined monadic types. In this
tutorial, we will assume that you understand the internal mechanics of the monad abstraction, what
makes monads "tick". If, for instance, you are not comfortable with the bind operator (>>=), we
would recommend that you first read UNDERSTANDING MONADS1.

33.3.1 Transformers are cousins

A useful way to look at transformers is as cousins of some base monad. For example, the monad
ListT is a cousin of its base monad List. Monad transformers are typically implemented almost
exactly the same way that their cousins are, only more complicated because they are trying to thread
some inner monad through.

The standard monads of the monad template library all have transformer versions which are de-
fined consistently with their non-transformer versions. However, it is not the case that all monad
transformers apply the same transformation. We have seen that the ContT transformer turns contin-
uations of the form (a->r)->r into continuations of the form (a->m r)->m r. The StateT trans-
former is different. It turns state transformer functions of the form s->(a,s) into state transformer
functions of the form s->m (a,s). In general, there is no magic formula to create a transformer
version of a monad &mdash; the form of each transformer depends on what makes sense in the
context of its non-transformer type.

Standard Monad Transformer Ver-
sion

Original Type Combined Type

Error ErrorT Either e a m (Either e a)
State StateT s -> (a,s) s -> m (a,s)
Reader ReaderT r -> a r -> m a
Writer WriterT (a,w) m (a,w)
Cont ContT (a -> r) -> r (a -> m r) -> m

r

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FUNDERSTANDING%20MONADS
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In the table above, most of the transformers FooT differ from their base monad Foo by the wrapping
of the result type (right-hand side of the -> for function kinds, or the whole type for non-function
types) in the threaded monad (m). The Cont monad has two "results" in its type (it maps functions to
values), and so ContT wraps both in the threaded monad. In other words, the commonality between
all these transformers is like so, with some abuse of syntax:

Original Kind Combined Kind
* m *
* -> * * -> m *
(* -> *) -> * (* -> m *) -> m *

33.4 Implementing transformers

The key to understanding how monad transformers work is understanding how they implement the
bind (>>=) operator. You’ll notice that this implementation very closely resembles that of their
standard, non-transformer cousins.

33.4.1 Transformer type constructors

Type constructors play a fundamental role in Haskell’s monad support. Recall that Reader r a is
the type of values of type a within a Reader monad with environment of type r. The type constructor
Reader r is an instance of the Monad class, and the runReader :: Reader r a -> r -> a
function performs a computation in the Reader monad and returns the result of type a.

A transformer version of the Reader monad, called ReaderT, exists which adds a monad type con-
structor as an addition parameter. ReaderT r m a is the type of values of the combined monad in
which Reader is the base monad and m is the inner monad.

ReaderT r m is an instance of the monad class, and the runReaderT :: ReaderT r m a -> r
-> m a function performs a computation in the combined monad and returns a result of type m a.

33.4.2 The Maybe transformer

We begin by defining the data type for the Maybe transformer. Our MaybeT constructor takes a
single argument. Since transformers have the same data as their non-transformer cousins, we will
use the newtype keyword. We could very well have chosen to use data, but that introduces needless
overhead.

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

Note:
Records are just syntactic sugar
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This might seem a little off-putting at first, but it’s actually simpler than it looks. The constructor
for MaybeT takes a single argument, of type m (Maybe a). That is all. We use some syntactic
sugar so that you can see MaybeT as a record, and access the value of this single argument by
calling runMaybeT. One trick to understanding this is to see monad transformers as sandwiches:
the bottom slice of the sandwich is the base monad (in this case, Maybe). The filling is the inner
monad, m. And the top slice is the monad transformer MaybeT. The purpose of the runMaybeT
function is simply to remove this top slice from the sandwich. What is the type of runMaybeT? It is
(MaybeT m a) -> m (Maybe a).

As we mentioned in the beginning of this tutorial, monad transformers are monads too. Here is a
partial implementation of the MaybeT monad. To understand this implementation, it really helps to
know how its simpler cousin Maybe works. For comparison’s sake, we put the two monad imple-
mentations side by side

Note:
Note the use of ’t’, ’m’ and ’b’ to mean ’top’, ’middle’, ’bottom’ respectively

Maybe MaybeT

instance Monad Maybe where
b_v >>= f = case b_v of

Nothing -> Nothing
Just v -> f v

instance (Monad m) => Monad (MaybeT m) where
tmb_v >>= f =
MaybeT $ runMaybeT tmb_v

>>= \b_v -> case b_v of
Nothing -> return Nothing
Just v -> runMaybeT $ f v

You’ll notice that the MaybeT implementation looks a lot like the Maybe implementation of bind,
with the exception that MaybeT is doing a lot of extra work. This extra work consists of unpacking
the two extra layers of monadic sandwich (note the convention tmb to reflect the sandwich layers)
and packing them up. If you really want to cut into the meat of this, read on. If you think you’ve
understood up to here, why not try the following exercises:

Exercises:

1. Implement the return function for the MaybeT monad
2. Rewrite the implementation of the bind operator >>= to be more concise.

Dissecting the bind operator

So what’s going on here? You can think of this as working in three phases: first we remove the
sandwich layer by layer, and then we apply a function to the data, and finally we pack the new value
into a new sandwich

Unpacking the sandwich: Let us ignore the MaybeT constructor for now, but note that everything
that’s going on after the $ is happening within the m monad and not the MaybeT monad!

1. The first step is to remove the top slice of the sandwich by calling runMaybeT tmb_v
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2. We use the bind operator (>>=) to remove the second layer of the sandwich -- remember that
we are working in the confines of the m monad.

3. Finally, we use case and pattern matching to strip off the bottom layer of the sandwich,
leaving behind the actual data with which we are working

Packing the sandwich back up:

• If the bottom layer was Nothing, we simply return Nothing (which gives us a 2-layer sand-
wich). This value then goes to the MaybeT constructor at the very beginning of this function,
which adds the top layer and gives us back a full sandwich.

• If the bottom layer was Just v (note how we have pattern-matched that bottom slice of monad
off): we apply the function f to it. But now we have a problem: applying f to v gives a full
three-layer sandwich, which would be absolutely perfect except for the fact that we’re now going
to apply the MaybeT constructor to it and get a type clash! So how do we avoid this? By first
running runMaybeT to peel the top slice off so that the MaybeT constructor is happy when you try
to add it back on.

33.4.3 The List transformer

Just as with the Maybe transformer, we create a datatype with a constructor that takes one argu-
ment:

newtype ListT m a = ListT { runListT :: m [a] }

The implementation of the ListT monad is also strikingly similar to its cousin, the List monad.
We do exactly the same things for List, but with a little extra support to operate within the inner
monad m, and to pack and unpack the monadic sandwich ListT - m - List.

List ListT

instance Monad [] where
b_v >>= f =
--
let x = map f b_v
in concat x

instance (Monad m) => Monad (ListT m) where
tmb_v >>= f =
ListT $ runListT tmb_v
>>= \b_v -> mapM (runListT . f) b_v
>>= \x -> return (concat x)

Exercises:

1. Dissect the bind operator for the (ListT m) monad. For example, why do we now have mapM
and return?

2. Now that you have seen two simple monad transformers, write a monad transformer
IdentityT, which would be the transforming cousin of the Identity monad.

3. Would IdentityT SomeMonad be equivalent to SomeMonadT Identity for a given monad
and its transformer cousin?
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33.5 Lifting

FIXME: insert introduction

33.5.1 liftM

We begin with a notion which, strictly speaking, isn’t about monad transformers. One small and
surprisingly useful function in the standard library is liftM, which as the API states, is meant for
lifting non-monadic functions into monadic ones. Let’s take a look at that type:

liftM :: Monad m => (a1 -> r) -> m a1 -> m r

So let’s see here, it takes a function (a1 -> r), takes a monad with an a1 in it, applies that function
to the a1, and returns the result. In my opinion, the best way to understand this function is to see
how it is used. The following pieces of code all mean the same thing.

do notation liftM liftM as an operator

do foo <- someMonadicThing
return (myFn foo)

liftM myFn someMonadicThing myFn ‘liftM‘ someMonadicThing

What made the light bulb go off for me is this third example, where we use liftM as an operator.
liftM is just a monadic version of ($)!

non monadic monadic

myFn $ aNonMonadicThing myFn ‘liftM‘ someMonadicThing

Exercises:

1. How would you write liftM? You can inspire yourself from the first example.

33.5.2 lift

When using combined monads created by the monad transformers, we avoid having to explicitly
manage the inner monad types, resulting in clearer, simpler code. Instead of creating additional
do-blocks within the computation to manipulate values in the inner monad type, we can use lifting
operations to bring functions from the inner monad into the combined monad.
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Recall the liftM family of functions which are used to lift non-monadic functions into a monad.
Each monad transformer provides a lift function that is used to lift a monadic computation into a
combined monad.

The MonadTrans class is defined in CONTROL.MONAD.TRANS2 and provides the single function
lift. The lift function lifts a monadic computation in the inner monad into the combined monad.

class MonadTrans t where
lift :: (Monad m) => m a -> t m a

Monads which provide optimized support for lifting IO operations are defined as members of the
MonadIO class, which defines the liftIO function.

class (Monad m) => MonadIO m where
liftIO :: IO a -> m a

33.5.3 Using lift

33.5.4 Implementing lift

Implementing lift is usually pretty straightforward. Consider the transformer MaybeT:

instance MonadTrans MaybeT where
lift mon = MaybeT (mon >>= return . Just)

We begin with a monadic value (of the inner monad), the middle layer, if you prefer the monadic
sandwich analogy. Using the bind operator and a type constructor for the base monad, we slip the
bottom slice (the base monad) under the middle layer. Finally we place the top slice of our sandwich
by using the constructor MaybeT. So using the lift function, we have transformed a lowly piece of
sandwich filling into a bona-fide three-layer monadic sandwich.

As with our implementation of the Monad class, the bind operator is working within the confines of the inner
monad.

Exercises:

1. Why is it that the lift function has to be defined seperately for each monad, where as liftM
can be defined in a universal way?

2. Implement the lift function for the ListT transformer.
3. How would you lift a regular function into a monad transformer? Hint: very easily.

2 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-MONAD-TRANS.HTML
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33.6 The State monad transformer

Previously, we have pored over the implementation of two very simple monad transformers, MaybeT
and ListT. We then took a short detour to talk about lifting a monad into its transformer variant.
Here, we will bring the two ideas together by taking a detailed look at the implementation of one
of the more interesting transformers in the standard library, StateT. Studying this transformer will
build insight into the transformer mechanism that you can call upon when using monad transformers
in your code. You might want to review the section on the STATE MONAD3 before continuing.

Just as the State monad was built upon the definition newtype State s a = State { runState
:: (s -> (a,s)) } the StateT transformer is built upon the definition

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }

State s is an instance of both the Monad class and the MonadState s class, so

StateT s m should also be members of the Monad and MonadState s classes. Furthermore, if m is
an instance of MonadPlus,

StateT s m should also be a member of MonadPlus.

To define StateT s m as a Monad instance:

State StateT

newtype State s a = State { runState :: (s -> (a,s)) }
instance Monad (State s) where
return a = State $ \s -> (a,s)
(State x) >>= f = State $ \s ->

let (v,s’) = x s
in runState (f v) s’

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }
instance (Monad m) => Monad (StateT s m) where
return a = StateT $ \s -> return (a,s)
(StateT x) >>= f = StateT $ \s -> do

(v,s’) <- x s -- get new value and state
runStateT (f v) s’ -- pass them to f

Our definition of return makes use of the return function of the inner monad, and the binding
operator uses a do-block to perform a computation in the inner monad.

We also want to declare all combined monads that use the StateT transformer to be instances of
the MonadState class, so we will have to give definitions for get and put:

instance (Monad m) => MonadState s (StateT s m) where
get = StateT $ \s -> return (s,s)
put s = StateT $ \_ -> return ((),s)

Finally, we want to declare all combined monads in which StateT is used with an instance of
MonadPlus to be instances of MonadPlus:

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FADVANCED%20MONADS%23THE%20STATE%
20MONAD
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instance (MonadPlus m) => MonadPlus (StateT s m) where
mzero = StateT $ \s -> mzero
(StateT x1) ‘mplus‘ (StateT x2) = StateT $ \s -> (x1 s) ‘mplus‘ (x2
s)

The final step to make our monad transformer fully integrated with Haskell’s monad classes is to
make StateT s an instance of the MonadTrans class by providing a lift function:

instance MonadTrans (StateT s) where
lift c = StateT $ \s -> c >>= (\x -> return (x,s))

The lift function creates a StateT state transformation function that binds the computation in
the inner monad to a function that packages the result with the input state. The result is that,
if for instance we apply StateT to the List monad, a function that returns a list (i.e., a compu-
tation in the List monad) can be lifted into StateT s [], where it becomes a function that re-
turns a StateT (s -> [(a,s)]). That is, the lifted computation produces <em>multiple</em>
(value,state) pairs from its input state. The effect of this is to "fork" the computation in StateT,
creating a different branch of the computation for each value in the list returned by the lifted func-
tion. Of course, applying StateT to a different monad will produce different semantics for the lift
function.

33.7 Acknowledgements
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Jeff Newbern.
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34 Practical monads

34.1 Parsing monads

In the beginner’s track of this book, we saw how monads were used for IO. We’ve also started
working more extensively with some of the more rudimentary monads like Maybe, List or State.
Now let’s try using monads for something quintessentially "practical". Let’s try writing a very
simple parser. We’ll be using the PARSEC1 library, which comes with GHC but may need to be
downloaded separately if you’re using another compiler.

Start by adding this line to the import section:

import System
import Text.ParserCombinators.Parsec hiding (spaces)

This makes the Parsec library functions and getArgs available to us, except the "spaces" function,
whose name conflicts with a function that we’ll be defining later.

Now, we’ll define a parser that recognizes one of the symbols allowed in Scheme identifiers:

symbol :: Parser Char
symbol = oneOf "!$%&|*+-/:<=>?@ˆ_˜"

This is another example of a monad: in this case, the "extra information" that is being hidden is all
the info about position in the input stream, backtracking record, first and follow sets, etc. Parsec
takes care of all of that for us. We need only use the Parsec library function ONEOF2, and it’ll
recognize a single one of any of the characters in the string passed to it. Parsec provides a number
of pre-built parsers: for example, LETTER3 and DIGIT4 are library functions. And as you’re about
to see, you can compose primitive parsers into more sophisticated productions.

Let’s define a function to call our parser and handle any possible errors:

readExpr :: String -> String
readExpr input = case parse symbol "lisp" input of

Left err -> "No match: " ++ show err
Right val -> "Found value"

1 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML
2 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#ONEOF
3 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#LETTER
4 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#DIGIT
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As you can see from the type signature, readExpr is a function (->) from a String to a String. We
name the parameter input, and pass it, along with the symbol action we defined above and the name
of the parser ("lisp"), to the Parsec function PARSE5.

Parse can return either the parsed value or an error, so we need to handle the error case. Following
typical Haskell convention, Parsec returns an EITHER6 data type, using the Left constructor to
indicate an error and the Right one for a normal value.

We use a case...of construction to match the result of parse against these alternatives. If we get a Left
value (error), then we bind the error itself to err and return "No match" with the string representation
of the error. If we get a Right value, we bind it to val, ignore it, and return the string "Found value".

The case...of construction is an example of pattern matching, which we will see in much greater
detail [evaluator1.html#primitiveval later on].

Finally, we need to change our main function to call readExpr and print out the result:

main :: IO ()
main = do args <- getArgs

putStrLn (readExpr (args !! 0))

To compile and run this, you need to specify "-package parsec" on the command line, or else there
will be link errors. For example:

debian:/home/jdtang/haskell_tutorial/code# ghc -package parsec -o
simple_parser [../code/listing3.1.hs listing3.1.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser $
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser a
No match: "lisp" (line 1, column 1):
unexpected "a"

34.1.1 Whitespace

Next, we’ll add a series of improvements to our parser that’ll let it recognize progressively more
complicated expressions. The current parser chokes if there’s whitespace preceding our symbol:

debian:/home/jdtang/haskell_tutorial/code# ./simple_parser " %"
No match: "lisp" (line 1, column 1):
unexpected " "

Let’s fix that, so that we ignore whitespace.

First, lets define a parser that recognizes any number of whitespace characters. Incidentally, this is
why we included the "hiding (spaces)" clause when we imported Parsec: there’s already a function

5 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#PARSE
6 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/STANDARD-{}PRELUDE.HTML#\PROTECT\T1\

TEXTDOLLAR{}TEITHER
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" SPACES7" in that library, but it doesn’t quite do what we want it to. (For that matter, there’s also
a parser called LEXEME8 that does exactly what we want, but we’ll ignore that for pedagogical
purposes.)

spaces :: Parser ()
spaces = skipMany1 space

Just as functions can be passed to functions, so can actions. Here we pass the Parser action SPACE9

to the Parser action SKIPMANY110, to get a Parser that will recognize one or more spaces.

Now, let’s edit our parse function so that it uses this new parser. Changes are in red:

readExpr input = case parse (spaces >> symbol) "lisp" input of
Left err -> "No match: " ++ show err
Right val -> "Found value"

We touched briefly on the >> ("bind") operator in lesson 2, where we mentioned that it was used
behind the scenes to combine the lines of a do-block. Here, we use it explicitly to combine our
whitespace and symbol parsers. However, bind has completely different semantics in the Parser and
IO monads. In the Parser monad, bind means "Attempt to match the first parser, then attempt to
match the second with the remaining input, and fail if either fails." In general, bind will have wildly
different effects in different monads; it’s intended as a general way to structure computations, and
so needs to be general enough to accommodate all the different types of computations. Read the
documentation for the monad to figure out precisely what it does.

Compile and run this code. Note that since we defined spaces in terms of skipMany1, it will no
longer recognize a plain old single character. Instead you have to precede a symbol with some
whitespace. We’ll see how this is useful shortly:

debian:/home/jdtang/haskell_tutorial/code# ghc -package parsec -o
simple_parser [../code/listing3.2.hs listing3.2.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser " %"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser %
No match: "lisp" (line 1, column 1):
unexpected "%"
expecting space
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser " abc"
No match: "lisp" (line 1, column 4):
unexpected "a"
expecting space

7 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#SPACES
8 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#LEXEME
9 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#SPACE
10 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#

SKIPMANY1
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34.1.2 Return Values

Right now, the parser doesn’t do much of anything - it just tells us whether a given string can be
recognized or not. Generally, we want something more out of our parsers: we want them to convert
the input into a data structure that we can traverse easily. In this section, we learn how to define a
data type, and how to modify our parser so that it returns this data type.

First, we need to define a data type that can hold any Lisp value:

data LispVal = Atom String
| List [LispVal]
| DottedList [LispVal] LispVal
| Number Integer
| String String
| Bool Bool

This is an example of an algebraic data type: it defines a set of possible values that a variable of
type LispVal can hold. Each alternative (called a constructor and separated by |) contains a tag for
the constructor along with the type of data that that constructor can hold. In this example, a LispVal
can be:

1. An Atom, which stores a String naming the atom
2. A List, which stores a list of other LispVals (Haskell lists are denoted by brackets)
3. A DottedList, representing the Scheme form (a b . c). This stores a list of all elements but the

last, and then stores the last element as another field
4. A Number, containing a Haskell Integer
5. A String, containing a Haskell String
6. A Bool, containing a Haskell boolean value

Constructors and types have different namespaces, so you can have both a constructor named String
and a type named String. Both types and constructor tags always begin with capital letters.

Next, let’s add a few more parsing functions to create values of these types. A string is a dou-
ble quote mark, followed by any number of non-quote characters, followed by a closing quote mark:

parseString :: Parser LispVal
parseString = do char ’"’

x <- many (noneOf "\"")
char ’"’
return $ String x

We’re back to using the do-notation instead of the >> operator. This is because we’ll be retrieving
the value of our parse (returned by MANY11 ( NONEOF12 "\"")) and manipulating it, interleaving
some other parse operations in the meantime. In general, use >> if the actions don’t return a value,
>>= if you’ll be immediately passing that value into the next action, and do-notation otherwise.

Once we’ve finished the parse and have the Haskell String returned from many, we apply the String
constructor (from our LispVal data type) to turn it into a LispVal. Every constructor in an algebraic

11 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#MANY
12 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#NONEOF
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data type also acts like a function that turns its arguments into a value of its type. It also serves as a
pattern that can be used in the left-hand side of a pattern-matching expression; we saw an example
of this in [#symbols Lesson 3.1] when we matched our parser result against the two constructors in
the Either data type.

We then apply the built-in function RETURN13 to lift our LispVal into the Parser monad. Remember,
each line of a do-block must have the same type, but the result of our String constructor is just a
plain old LispVal. Return lets us wrap that up in a Parser action that consumes no input but returns
it as the inner value. Thus, the whole parseString action will have type Parser LispVal.

The $ operator is infix function application: it’s the same as if we’d written return (String x), but $ is
right-associative, letting us eliminate some parentheses. Since $ is an operator, you can do anything
with it that you’d normally do to a function: pass it around, partially apply it, etc. In this respect, it
functions like the Lisp function APPLY14.

Now let’s move on to Scheme variables. An ATOM15 is a letter or symbol, followed by any number
of letters, digits, or symbols:

parseAtom :: Parser LispVal
parseAtom = do first <- letter <|> symbol

rest <- many (letter <|> digit <|> symbol)
let atom = [first] ++ rest
return $ case atom of

"#t" -> Bool True
"#f" -> Bool False
otherwise -> Atom atom

Here, we introduce another Parsec combinator, the choice operator <|>16. This tries the first parser,
then if it fails, tries the second. If either succeeds, then it returns the value returned by that parser.
The first parser must fail before it consumes any input: we’ll see later how to implement backtrack-
ing.

Once we’ve read the first character and the rest of the atom, we need to put them together. The "let"
statement defines a new variable "atom". We use the list concatenation operator ++ for this. Recall
that first is just a single character, so we convert it into a singleton list by putting brackets around it.
If we’d wanted to create a list containing many elements, we need only separate them by commas.

Then we use a case statement to determine which LispVal to create and return, matching against the
literal strings for true and false. The otherwise alternative is a readability trick: it binds a variable
named otherwise, whose value we ignore, and then always returns the value of atom.

Finally, we create one more parser, for numbers. This shows one more way of dealing with monadic
values:

13 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/STANDARD-{}PRELUDE.HTML#\PROTECT\T1\
TEXTDOLLAR{}TMONAD

14 HTTP://WWW.SCHEMERS.ORG/DOCUMENTS/STANDARDS/R5RS/HTML/R5RS-{}Z-{}H-{}9.HTML#
%_SEC_6.4

15 HTTP://WWW.SCHEMERS.ORG/DOCUMENTS/STANDARDS/R5RS/HTML/R5RS-{}Z-{}H-{}5.HTML#
%_SEC_2.1

16 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#OR
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parseNumber :: Parser LispVal
parseNumber = liftM (Number . read) $ many1 digit

It’s easiest to read this backwards, since both function application ($) and function composition (.)
associate to the right. The parsec combinator MANY117 matches one or more of its argument, so
here we’re matching one or more digits. We’d like to construct a number LispVal from the resulting
string, but we have a few type mismatches. First, we use the built-in function READ18 to convert that
string into a number. Then we pass the result to Number to get a LispVal. The function composition
operator "." creates a function that applies its right argument and then passes the result to the left
argument, so we use that to combine the two function applications.

Unfortunately, the result of many1 digit is actually a Parser LispVal, so our combined Number .
read still can’t operate on it. We need a way to tell it to just operate on the value inside the monad,
giving us back a Parser LispVal. The standard function liftM does exactly that, so we apply liftM to
our Number . read function, and then apply the result of that to our Parser.

We also have to import the Monad module up at the top of our program to get access to liftM:

import Monad

This style of programming - relying heavily on function composition, function application, and
passing functions to functions - is very common in Haskell code. It often lets you express very
complicated algorithms in a single line, breaking down intermediate steps into other functions that
can be combined in various ways. Unfortunately, it means that you often have to read Haskell
code from right-to-left and keep careful track of the types. We’ll be seeing many more examples
throughout the rest of the tutorial, so hopefully you’ll get pretty comfortable with it.

Let’s create a parser that accepts either a string, a number, or an atom:

parseExpr :: Parser LispVal
parseExpr = parseAtom

<|> parseString
<|> parseNumber

And edit readExpr so it calls our new parser:

readExpr :: String -> String
readExpr input = case parse parseExpr "lisp" input of

Left err -> "No match: " ++ show err
Right _ -> "Found value"

17 HTTP://WWW.CS.UU.NL/~{}DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#MANY1
18 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/STANDARD-{}PRELUDE.HTML#\PROTECT\T1\

TEXTDOLLAR{}VREAD
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Compile and run this code, and you’ll notice that it accepts any number, string, or symbol, but not
other strings:

debian:/home/jdtang/haskell_tutorial/code# ghc -package parsec -o
simple_parser [.../code/listing3.3.hs listing3.3.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "\"this is
a string\""
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser 25 Found
value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser symbol
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser (symbol)
bash: syntax error near unexpected token ‘symbol’
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "(symbol)"
No match: "lisp" (line 1, column 1):
unexpected "("
expecting letter, "\"" or digit

Exercises:

1. Rewrite parseNumber using
a) do-notation
b) explicit sequencing with the >>=19 operator

2. Our strings aren’t quite R5RS COMPLIANT20, because they don’t support escaping of in-
ternal quotes within the string. Change parseString so that \" gives a literal quote character
instead of terminating the string. You may want to replace noneOf "\"" with a new parser
action that accepts either a non-quote character or a backslash followed by a quote mark.

3. Modify the previous exercise to support \n, \r, \t, \\, and any other desired escape characters
4. Change parseNumber to support the SCHEME STANDARD FOR DIFFERENT BASES21. You

may find the READOCT AND READHEX22 functions useful.
5. Add a Character constructor to LispVal, and create a parser for CHARACTER LITERALS23 as

described in R5RS.
6. Add a Float constructor to LispVal, and support R5RS syntax for DECIMALS24. The Haskell

function READFLOAT25 may be useful.
7. Add data types and parsers to support the FULL NUMERIC TOWER26 of Scheme numeric

types. Haskell has built-in types to represent many of these; check the PRELUDE27. For
the others, you can define compound types that represent eg. a Rational as a numerator and
denominator, or a Complex as a real and imaginary part (each itself a Real number).

34.1.3 Recursive Parsers: Adding lists, dotted lists, and quoted datums

Next, we add a few more parser actions to our interpreter. Start with the parenthesized lists that
make Lisp famous:

parseList :: Parser LispVal
parseList = liftM List $ sepBy parseExpr spaces
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This works analogously to parseNumber, first parsing a series of expressions separated by whites-
pace (sepBy parseExpr spaces) and then apply the List constructor to it within the Parser monad.
Note too that we can pass parseExpr to SEPBY28, even though it’s an action we wrote ourselves.

The dotted-list parser is somewhat more complex, but still uses only concepts that we’re already
familiar with:

parseDottedList :: Parser LispVal
parseDottedList = do

head <- endBy parseExpr spaces
tail <- char ’.’ >> spaces >> parseExpr
return $ DottedList head tail

Note how we can sequence together a series of Parser actions with >> and then use the whole
sequence on the right hand side of a do-statement. The expression char ’.’ >> spaces returns a
Parser (), then combining that with parseExpr gives a Parser LispVal, exactly the type we need for
the do-block.

Next, let’s add support for the single-quote syntactic sugar of Scheme:

parseQuoted :: Parser LispVal parseQuoted = do char ’\” x <- parseExpr return $ List [Atom
"quote", x]

Most of this is fairly familiar stuff: it reads a single quote character, reads an expression and binds
it to x, and then returns (quote x), to use Scheme notation. The Atom constructor works like an
ordinary function: you pass it the String you’re encapsulating, and it gives you back a LispVal. You
can do anything with this LispVal that you normally could, like put it in a list.

Finally, edit our definition of parseExpr to include our new parsers:

parseExpr :: Parser LispVal
parseExpr = parseAtom

<|> parseString
<|> parseNumber
<|> parseQuoted <|> do char ’(’ x <- (try parseList) <|> parseDottedList char ’)’ return x

This illustrates one last feature of Parsec: backtracking. parseList and parseDottedList recognize
identical strings up to the dot; this breaks the requirement that a choice alternative may not consume
any input before failing. The TRY29 combinator attempts to run the specified parser, but if it fails,
it backs up to the previous state. This lets you use it in a choice alternative without interfering with
the other alternative.

Compile and run this code:

debian:/home/jdtang/haskell_tutorial/code# ghc -package parsec -o
simple_parser [../code/listing3.4.hs listing3.4.hs]

28 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#SEPBY
29 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML#TRY
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debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "(a test)"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "(a
(nested) test)" Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "(a
(dotted . list) test)"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "(a
’(quoted (dotted . list)) test)"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple_parser "(a
’(imbalanced parens)"
No match: "lisp" (line 1, column 24):
unexpected end of input
expecting space or ")"

Note that by referring to parseExpr within our parsers, we can nest them arbitrarily deep. Thus, we
get a full Lisp reader with only a few definitions. That’s the power of recursion.

Exercises:

1. Add support for the BACKQUOTE30 syntactic sugar: the Scheme standard details what it
should expand into (quasiquote/unquote).

2. Add support for VECTORS31. The Haskell representation is up to you: GHC does have an
ARRAY32 data type, but it can be difficult to use. Strictly speaking, a vector should have
constant-time indexing and updating, but destructive update in a purely functional language
is difficult. You may have a better idea how to do this after the section on set!, later in this
tutorial.

3. Instead of using the try combinator, left-factor the grammar so that the common subsequence
is its own parser. You should end up with a parser that matches a string of expressions, and
one that matches either nothing or a dot and a single expressions. Combining the return values
of these into either a List or a DottedList is left as a (somewhat tricky) exercise for the reader:
you may want to break it out into another helper function

34.2 Generic monads

Write me: The idea is that this section can show some of the benefits of not tying your-
self to one single monad, but writing your code for any arbitrary monad m. Maybe
run with the idea of having some elementary monad, and then deciding it’s not good
enough, so replacing it with a fancier one... and then deciding you need to go even
further and just plug in a monad transformer

For instance: Using the Identity Monad:

module Identity(Id(Id)) where

newtype Id a = Id a
instance Monad Id where

(>>=) (Id x) f = f x
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return = Id

instance (Show a) => Show (Id a) where
show (Id x) = show x

In another File

import Identity
type M = Id

my_fib :: Integer -> M Integer
my_fib = my_fib_acc 0 1

my_fib_acc :: Integer -> Integer -> Integer -> M Integer
my_fib_acc _ fn1 1 = return fn1
my_fib_acc fn2 _ 0 = return fn2
my_fib_acc fn2 fn1 n_rem = do

val <- my_fib_acc fn1 (fn2+fn1) (n_rem - 1)
return val

Doesn’t seem to accomplish much, but It allows to you add debugging facilities to a part of your
program on the fly. As long as you’ve used return instead of explicit Id constructors, then you can
drop in the following monad:

module PMD (Pmd(Pmd)) where --PMD = Poor Man’s Debugging, Now
available for haskell

import IO

newtype Pmd a = Pmd (a, IO ())

instance Monad Pmd where
(>>=) (Pmd (x, prt)) f = let (Pmd (v, prt’)) = f x

in Pmd (v, prt >> prt’)
return x = Pmd (x, return ())

instance (Show a) => Show (Pmd a) where
show (Pmd (x, _) ) = show x

If we wanted to debug our Fibonacci program above, We could modify it as follows:

import Identity
import PMD
import IO
type M = Pmd
...
my_fib_acc :: Integer -> Integer -> Integer -> M Integer
my_fib_acc _ fn1 1 = return fn1
my_fib_acc fn2 _ 0 = return fn2
my_fib_acc fn2 fn1 n_rem =

val <- my_fib_acc fn1 (fn2+fn1) (n_rem - 1)
Pmd (val, putStrLn (show fn1))

All we had to change is the lines where we wanted to print something for debugging, and add some
code wherever you extracted the value from the Id Monad to execute the resulting IO () you’ve
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returned. Something like

main :: IO ()
main = do

let (Id f25) = my_fib 25
putStrLn ("f25 is: " ++ show f25)

for the Id Monad vs.

main :: IO ()
main = do

let (Pmd (f25, prt)) = my_fib 25
prt
putStrLn ("f25 is: " ++ show f25)

For the Pmd Monad. Notice that we didn’t have to touch any of the functions that we weren’t
debugging.

34.3 Stateful monads for concurrent applications

You’re going to have to know about MONAD TRANSFORMERS 33 before you can do these things.
Although the example came up because of CONCURRENCY 34, if you realize a TVar is a mutable
variable of some kind, why this example came up might make some sense to you.

This is a little trick that I find makes writing stateful concurrent applications easier, especially for
network applications. Lets look at an imaginary stateful server.

Each currently connected client has a thread allowing the client to update the state.

The server also has a main logic thread which also transforms the state.

So you want to allow the client to update the state of the program

It’s sometimes really simple and easy to expose the whole state of the program in a TVar, but I find
this can get really messy, especially when the definition of the state changes!

Also it can be very annoying if you have to do anything conditional.

So to help tidy things up ( Say your state is called World )

34.3.1 Make a monad over state

First, make a monad over the World type

import Control.Monad.State.Lazy

33 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FMONAD%20TRANSFORMERS%20
34 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FCONCURRENCY%20
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-- heres yer monad
-- it can liftIO too
type WorldM
= StateT World IO

data World =
World { objects :: [ WorldObject ] }

Now you can write some accessors in WorldM

-- maybe you have a bunch of objects each with a unique id
import Data.Unique
import Data.Maybe
import Prelude hiding ( id )

data WorldObject =
WorldObject { id :: Unique }

-- check Control.Monad.State.Lazy if you are confused about get and
put
addObject :: WorldObject -> WorldM ( )
addObject wO = do

wst <- get
put $ World $ wO : ( objects wst )

-- presuming unique id
getObject :: Unique -> WorldM ( Maybe WorldObject )
getObject id1 = do

wst <- get
return $ listToMaybe $ filter ( \ wO -> id wO == id1 )

( objects wst )

now heres a type representing a change to the World

data WorldChange = NewObj WorldObject |
UpdateObj WorldObject | -- use the unique ids as

replace match
RemoveObj Unique -- delete obj with named id

What it looks like all there’s left to do is to

type ChangeBucket = TVar [ WorldChange ]

mainLoop :: ChangeBucket -> WorldM ( )
mainLoop cB =

-- do some stuff
-- it’s probably fun

-- using your cheeky wee WorldM accessors
mainLoop cB -- recurse on the shared variable

Remember, your main thread is a transformer of World and IO so it can run ’atomically’ and read
the changeBucket.
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Now, presuming you have a function that can incorporate a WorldChange into the existing WorldM
your ’wait-for-client-input’ thread can communicate with the main thread of the program, and it
doesn’t look too nasty.

34.3.2 Make the external changes to the state monadic themselves

However! Since all the state inside your main thread is now hidden from the rest of the program
and you communicate through a one way channel --- data goes from the client to the server, but the
mainLoop keeps its state a secret --- your client thread is never going to be able to make conditional
choices about the environment - the client thread runs in IO but the main thread runs in WorldM.

So the REAL type of your shared variable is

type ChangeBucket =
TVar [ WorldM ( Maybe WorldChange ) ]

This can be generated from the client-input thread, but you’ll be able to include conditional state-
ments inside the code, which is only evaluated against the state when it is run from your main
thread

It all sounds a little random, but it’s made my life a lot easier. Heres some real working code, based
on this idea

• this takes commands from a client, and attempts change the object representing the client inside
the game’s state

• the output from this function is then written to a ChangeBucket ( using the ChangeBucket defini-
tion in this section, above ) and run inside the DState of the game’s main loop.

( you might want to mentally substitute DState for WorldM )

-- cmd is a command generated from parsing network input
mkChange :: Unique -> Command -> DState ( Maybe WorldChange )
mkChange oid cmd = do

mp <- getObject oid -- this is maybe an object, as per the
getObject definition earlier in the article

-- enter the maybe monad
return $ do p <- mp -- if its Nothing, the rest will be nothing

case cmd of
-- but it might be something
Disconnect ->

Just $ RemoveObject oid
Move x y ->

Just $ UpdateObject $ DO ( oid )
( name p )
( speed p )
( netclient p )
( pos p )
[ ( x , y ) ]
( method p )
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A note and some more ideas.

Another design might just have

type ChangeBucket = TVar [ WorldM ( ) ]

And so just update the game world as they are run. I have other uses for the WorldM ( Maybe
Change ) type.

So I conclude - All I have are my monads and my word so go use your monads imaginatively and
write some computer games ;)
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36 Arrows

36.1 Introduction

Arrows are a generalization of monads: every monad gives rise to an arrow, but not all arrows give
rise to monads. They serve much the same purpose as monads -- providing a common structure
for libraries -- but are more general. In particular they allow notions of computation that may be
partially static (independent of the input) or may take multiple inputs. If your application works
fine with monads, you might as well stick with them. But if you’re using a structure that’s very like
a monad, but isn’t one, maybe it’s an arrow.

36.2 proc and the arrow tail

Let’s begin by getting to grips with the arrows notation. We’ll work with the simplest possible arrow
there is (the function) and build some toy programs strictly in the aims of getting acquainted with
the syntax.

Fire up your text editor and create a Haskell file, say toyArrows.hs:

{-# LANGUAGE Arrows #-}
import Control.Arrow (returnA)
idA :: a -> a
idA = proc a -> returnA -< a
plusOne :: Int -> Int
plusOne = proc a -> returnA -< (a+1)

These are our first two arrows. The first is the identity function in arrow form, and second, slightly
more exciting, is an arrow that adds one to its input. Load this up in GHCi, using the -XArrows
extension and see what happens.
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% ghci -XArrows toyArrows.hs

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.4.1, for Haskell

98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

\____/\/ /_/\____/|_| Type :? for help.

Loading package base-1.0 ... linking ... done.

Compiling Main ( toyArrows.hs, interpreted )

Ok, modules loaded: Main.

*Main> idA 3

3

*Main> idA "foo"

"foo"

*Main> plusOne 3

4

*Main> plusOne 100

101

Thrilling indeed. Up to now, we have seen three new constructs in the arrow notation:

• the keyword proc
• -<
• the imported function returnA

Now that we know how to add one to a value, let’s try something twice as difficult: adding TWO:

plusOne = proc a -> returnA -< (a+1)
plusTwo = proc a -> plusOne -< (a+1)

One simple approach is to feed (a+1) as input into the plusOne arrow. Note the similarity between
plusOne and plusTwo. You should notice that there is a basic pattern here which goes a little
something like this: proc FOO -> SOME_ARROW -< (SOMETHING_WITH_FOO)

Exercises:

1. plusOne is an arrow, so by the pattern above returnA must be an arrow too. What do you
think returnA does?

36.3 do notation

Our current implementation of plusTwo is rather disappointing actually... shouldn’t it just be
plusOne twice? We can do better, but to do so, we need to introduce the do notation:
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plusTwoBis =
proc a -> do b <- plusOne -< a

plusOne -< b

Now try this out in GHCi:

Prelude> :r

Compiling Main ( toyArrows.hs, interpreted )

Ok, modules loaded: Main.

*Main> plusTwoBis 5

7

You can use this do notation to build up sequences as long as you would like:

plusFive =
proc a -> do b <- plusOne -< a

c <- plusOne -< b
d <- plusOne -< c
e <- plusOne -< d
plusOne -< e

36.4 Monads and arrows

FIXME: I’m no longer sure, but I believe the intention here was to show what the dif-
ference is having this proc notation instead to just a regular chain of dos

RU:HASKELL/Ñòðåëêè1

1 HTTP://RU.WIKIBOOKS.ORG/WIKI/HASKELL%2F%04%21%04%42%04%40%04%35%04%3B%04%3A%
04%38
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37 Understanding arrows

We have permission to import material from the HASKELL ARROWS PAGE1. See the talk page for
details.

37.1 The factory and conveyor belt metaphor

In this tutorial, we shall present arrows from the perspective of stream processors, using the factory
metaphor from the MONADS MODULE2 as a support. Let’s get our hands dirty right away.

You are a factory owner, and as before you own a set of processing machines. Processing machines
are just a metaphor for functions; they accept some input and produce some output. Your goal is
to combine these processing machines so that they can perform richer, and more complicated tasks.
Monads allow you to combine these machines in a pipeline. Arrows allow you to combine them in
more interesting ways. The result of this is that you can perform certain tasks in a less complicated
and more efficient manner.

In a monadic factory, we took the approach of wrapping the outputs of our machines in containers.
The arrow factory takes a completely different route: rather than wrapping the outputs in containers,
we wrap the machines themselves. More specifically, in an arrow factory, we attach a pair of
conveyor belts to each machine, one for the input and one for the output.

So given a function of type b -> c, we can construct an equivalent a arrow by attaching a b and c
conveyor belt to the machine. The equivalent arrow is of type a b c, which we can pronounce as
an arrow a from b to c.

37.2 Plethora of robots

We mentioned earlier that arrows give you more ways to combine machines together than monads
did. Indeed, the arrow type class provides six distinct robots (compared to the two you get with
monads).

37.2.1 arr

The simplest robot is arr with the type signature arr :: (b -> c) -> a b c. In other words,
the arr robot takes a processing machine of type b -> c, and adds conveyor belts to form an a arrow
from b to c.

1 HTTP://WWW.HASKELL.ORG/ARROWS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FUNDERSTANDING%20MONADS
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Abb. 2: the arr robot

37.2.2 (>>>)

The next, and probably the most important, robot is (>>>). This is basically the arrow equivalent to
the monadic bind robot (>>=). The arrow version of bind (>>>) puts two arrows into a sequence.
That is, it connects the output conveyor belt of the first arrow to the input conveyor belt of the second
one.

Abb. 3: the (>>>) robot

What we get out of this is a new arrow. One consideration to make, though is what input and output
types our arrows may take. Since we’re connecting output and the input conveyor belts of the first
and second arrows, the second arrow must accept the same kind of input as what the first arrow
outputs. If the first arrow is of type a b c, the second arrow must be of type a c d. Here is the
same diagram as above, but with things on the conveyor belts to help you see the issue with types.
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Abb. 4: running the combined arrow

Exercises:
What is the type of the combined arrow?

37.2.3 first

Up to now, our arrows can only do the same things that monads can. Here is where things get
interesting! The arrows type class provides functions which allow arrows to work with pairs of
input. As we will see later on, this leads us to be able to express parallel computation in a very
succinct manner. The first of these functions, naturally enough, is first.

If you are skimming this tutorial, it is probably a good idea to slow down at least in this section,
because the first robot is one of the things that makes arrows truly useful.

Abb. 5: The first robot

Given an arrow f, the first robot attaches some conveyor belts and extra machinery to form a new,
more complicated arrow. The machines that bookend the input arrow split the input pairs into their
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component parts, and put them back together. The idea behind this is that the first part of every
pair is fed into the f, whilst the second part is passed through on an empty conveyor belt. When
everything is put back together, we have same pairs that we fed in, except that the first part of every
pair has been replaced by an equivalent output from f.

Abb. 6: The combined arrow from the first robot

Now the question we need to ask ourselves is that of types. Say that the input tuples are of type
(b,d) and the input arrow is of type a b c (that is, it is an arrow from b to c). What is the type of
the output? Well, the arrow converts all bs into cs, so when everything is put back together, the type
of the output must be (c,d).

Exercises:
What is the type of the first robot?

37.2.4 second

If you understand the first robot, the second robot is a piece of cake. It does the same exact thing,
except that it feeds the second part of every input pair into the given arrow f instead of the first part.
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Abb. 7: the second robot with things running

What makes the second robot interesting is that it can be derived from the previous robots! Strictly
speaking, the only robots you need for arrows are arr, (>>>) and first. The rest can be had "for
free".

{{Exercises|

1. Write a function to swap two components of a tuple.
2. Combine this helper function with the robots arr, (>>>) and first to implement the second

robot}}

37.2.5 ***

One of the selling points of arrows is that you can use them to express parallel computation. The
(***) robot is just the right tool for the job. Given two arrows, f and g, the (***) combines them
into a new arrow using the same bookend-machines we saw in the previous two robots

Abb. 8: The (***) robot.
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Conceptually, this isn’t very much different from the robots first and second. As before, our new
arrow accepts pairs of inputs. It splits them up, sends them on to separate conveyor belts, and puts
them back together. The only difference here is that, rather than having one arrow and one empty
conveyor belt, we have two distinct arrows. But why not?

Abb. 9: The (***) robot: running the combined arrow

{{Exercises|

1. What is the type of the (***) robot?
2. Given the (>>>), first and second robots, implement the (***) robot.}}

37.2.6 &&&

The final robot in the Arrow class is very similar to the (***) robot, except that the resulting arrow
accepts a single input and not a pair. Yet, the rest of the machine is exactly the same. How can we
work with two arrows, when we only have one input to give them?

Abb. 10: The &&& robot
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The answer is simple: we clone the input and feed a copy into each machine!

Abb. 11: The &&& robot: the resulting arrow with inputs

Exercises:

1. Write a simple function to clone an input into a pair.
2. Using your cloning function, as well as the robots arr, (>>>) and ***, implement the &&&

robot
3. Similarly, rewrite the following function without using &&&:

addA f g = f &&& g >>> arr (\ (y, z) -> y + z)

37.3 Functions are arrows

Now that we have presented the 6 arrow robots, we would like to make sure that you have a more
solid grasp of them by walking through a simple implementations of the Arrow class. As in the
monadic world, there are many different types of arrows. What is the simplest one you can think
of? Functions.

Put concretely, the type constructor for functions (->) is an instance of Arrow

instance Arrow (->) where
arr f = f
f >>> g = g . f
first f = \(x,y) -> (f x, y)

Now let’s examine this in detail:

• arr - Converting a function into an arrow is trivial. In fact, the function already is an arrow.
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• (>>>) - we want to feed the output of the first function into the input of the second function. This
is nothing more than function composition.

• first - this is a little more elaborate. Given a function f, we return a function which accepts a
pair of inputs (x,y), and runs f on x, leaving y untouched.

And that, strictly speaking, is all we need to have a complete arrow, but the arrow typeclass also
allows you to make up your own definition of the other three robots, so let’s have a go at that:

first f = \(x,y) -> (f x, y) -- for comparison’s sake
second f = \(x,y) -> ( x, f y) -- like first
f *** g = \(x,y) -> (f x, g y) -- takes two arrows, and not just

one
f &&& g = \x -> (f x, g x) -- feed the same input into both

functions

And that’s it! Nothing could be simpler.

Note that this is not the official instance of functions as arrows. You should take a look at the HASKELL

LIBRARY3 if you want the real deal.

37.4 The arrow notation

In the introductory ../ARROWS/4 chapter, we introduced the proc and -< notation. How does this
tie in with all the arrow robots we just presented? Sadly, it’s a little bit less straightforward than
do-notation, but let’s have a look.

STEPHEN’S ARROW TUTORIAL5 I’ve written a tutorial that covers arrow notation. How might we
integrate it into this page?

37.5 Maybe functor

It turns out that any monad can be made into arrow. We’ll go into that later on, but for now, FIXME:
transition

(This seems inconsistent with Typeclassopedia p19? google for typeclassopedia )

37.6 Using arrows

At this point in the tutorial, you should have a strong enough grasp of the arrow machinery that we
can start to meaningfully tackle the question of what arrows are good for.

3 HTTP://DARCS.HASKELL.ORG/PACKAGES/BASE/CONTROL/ARROW.HS
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FARROWS%2F
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FSTEPHENSARROWTUTORIAL
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37.6.1 Stream processing

37.6.2 Avoiding leaks

Arrows were originally motivated by an efficient parser design found by Swierstra & Duponcheel6.

To describe the benefits of their design, let’s examine exactly how monadic parsers work.

If you want to parse a single word, you end up with several monadic parsers stacked end to end.
Taking Parsec as an example, the parser string "word" can also be viewed as

word = do char ’w’ >> char ’o’ >> char ’r’ >> char ’d’

return "word"

Each character is tried in order, if "worg" is the input, then the first three parsers will succeed, and
the last one will fail, making the entire string "word" parser fail.

If you want to parse one of two options, you create a new parser for each and they are tried in order.
The first one must fail and then the next will be tried with the same input.

ab = do char ’a’ <|> char ’b’ <|> char ’c’

To parse "c" successfully, both ’a’ and ’b’ must have been tried.

one = do char ’o’ >> char ’n’ >> char ’e’

return "one"

two = do char ’t’ >> char ’w’ >> char ’o’

return "two"

three = do char ’t’ >> char ’h’ >> char ’r’ >> char ’e’ >> char ’e’

return "three"

nums = do one <|> two <|> three

With these three parsers, you can’t know that the string "four" will fail the parser nums until the last
parser has failed.

If one of the options can consume much of the input but will fail, you still must descend down the
chain of parsers until the final parser fails. All of the input that can possibly be consumed by later
parsers must be retained in memory in case one of them does consume it. That can lead to much
more space usage than you would naively expect, this is often called a space leak.

The general pattern of monadic parsers is that each option must fail or one option must succeed.

6 Swierstra, Duponcheel. Deterministic, error correcting parser combinators.
HTTP://CITESEERX.IST.PSU.EDU/VIEWDOC/SUMMARY?DOI=10.1.1.29.2760 ˆ{HTTP://CITESEERX.IST.
PSU.EDU/VIEWDOC/SUMMARY?DOI=10.1.1.29.2760}
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So what’s better?

Swierstra & Duponcheel (1996) noticed that a smarter parser could immediately fail upon seeing
the very first character. For example, in the nums parser above, the choice of first letter parsers was
limited to either the letter ’o’ for "one" or the letter ’t’ for both "two" and "three". This smarter
parser would also be able to garbage collect input sooner because it could look ahead to see if
any other parsers might be able to consume the input, and drop input that could not be consumed.
This new parser is a lot like the monadic parsers with the major difference that it exports static
information. It’s like a monad, but it also tells you what it can parse.

There’s one major problem. This doesn’t fit into the monadic interface. Monads are (a -> m b),
they’re based around functions only. There’s no way to attach static information. You have only one
choice, throw in some input, and see if it passes or fails.

The monadic interface has been touted as a general purpose tool in the functional programming
community, so finding that there was some particularly useful code that just couldn’t fit into that
interface was something of a setback. This is where Arrows come in. John Hughes’s Generalising
monads to arrows proposed the arrows abstraction as new, more flexible tool.

Static and dynamic parsers

Let us examine Swierstra & Duponcheel’s parser in greater detail, from the perspective of arrows.
The parser has two components: a fast, static parser which tells us if the input is worth trying to
parse; and a slow, dynamic parser which does the actual parsing work.

data Parser s a b = P (StaticParser s) (DynamicParser s a b)

data StaticParser s = SP Bool [s]

newtype DynamicParser s a b = DP ((a,[s]) -> (b,[s]))

The static parser consists of a flag, which tells us if the parser can accept the empty input, and a list
of possible starting characters. For example, the static parser for a single character would be as
follows:

spCharA :: Char -> StaticParser Char
spCharA c = SP False [c]

It does not accept the empty string (False) and the list of possible starting characters consists only
of c.

B Warning
The rest of this section needs to be verified

The dynamic parser needs a little more dissecting : what we see is a function that goes from (a,[s])
to (b,[s]). It is useful to think in terms of sequencing two parsers : Each parser consumes the result
of the previous parser (a), along with the remaining bits of input stream ([s]), it does something
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with a to produce its own result b, consumes a bit of string and returns that. Ooof. So, as an
example of this in action, consider a dynamic parser (Int,String) -> (Int,String), where the
Int represents a count of the characters parsed so far. The table belows shows what would happen
if we sequence a few of them together and set them loose on the string "cake" :

result remaining
before 0 cake
after first parser 1 ake
after second parser 2 ke
after third parser 3 e

So the point here is that a dynamic parser has two jobs : it does something to the output of the
previous parser (informally, a -> b), and it consumes a bit of the input string, (informally, [s]
-> [s]), hence the type DP ((a,[s]) -> (b,[s])). Now, in the case of a dynamic parser for a
single character, the first job is trivial. We ignore the output of the previous parser. We return the
character we have parsed. And we consume one character off the stream :

dpCharA :: Char -> DynamicParser Char Char Char
dpCharA c = DP (\(_,x:xs) -> (c,xs))

This might lead you to ask a few questions. For instance, what’s the point of accepting the output
of the previous parser if we’re just going to ignore it? The best answer we can give right now is
"wait and see". If you’re comfortable with monads, consider the bind operator (>>=). While bind
is immensely useful by itself, sometimes, when sequencing two monadic computations together, we
like to ignore the output of the first computation by using the anonymous bind (>>). This is the
same situation here. We’ve got an interesting little bit of power on our hands, but we’re not going
to use it quite yet.

The next question, then, shouldn’t the dynamic parser be making sure that the current character off
the stream matches the character to be parsed? Shouldn’t x == c be checked for? No. And in
fact, this is part of the point; the work is not necessary because the check would already have been
performed by the static parser.

Anyway, let us put this together. Here is our S+D style parser for a single character:

charA :: Char -> Parser Char Char Char
charA c = P (SP False [c]) (DP (\(_,x:xs) -> (c,xs)))

Arrow combinators (robots)

Up to this point, we have explored two somewhat independent trains of thought. On the one hand,
we’ve taken a look at some arrow machinery, the combinators/robots from above, although we
don’t exactly know what it’s for. On the other hand, we have introduced a type of parser using the
Arrow class. We know that the goal is to avoid space leaks and that it somehow involves separating
a fast static parser from its slow dynamic part, but we don’t really understand how that ties in to all
this arrow machinery. In this section, we will attempt to address both of these gaps in our knowl-
edge and merge our twin trains of thought into one. We’re going to implement the Arrow class
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for Parser s, and by doing so, give you a glimpse of what makes arrows useful. So let’s get started:

instance Arrow (Parser s) where

Abb. 12

One of the simplest things we can do is to convert an arbitrary function into a parsing arrow. We’re
going to use "parse" in the loose sense of the term: our resulting arrow accepts the empty string,
and only the empty string (its set of first characters is []). Its sole job is take the output of the
previous parsing arrow and do something with it. Otherwise, it does not consume any input.

arr f = P (SP True []) (DP (\(b,s) -> (f b,s))

Abb. 13

Likewise, the first combinator is relatively straightforward. Recall the conveyor belts from above.
Given a parser, we want to produce a new parser that accepts a pair of inputs (b,d). The first part
of the input b, is what we actually want to parse. The second part is passed through completely
untouched:

first (P sp (DP p)) = (P sp (DP (\((b,d),s) -> let (c, s’) = p (b,s)
in ((c,d),s’))))
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Abb. 14

On the other hand, the implementation of (>>>) requires a little more thought. We want to take
two parsers, and returns a combined parser incorporating the static and dynamic parsers of both
arguments:

(P (SP empty1 start1) (DP p1)) >>>
(P (SP empty2 start2) (DP p2)) =
P (SP (empty1 && empty2)

(if not empty1 then start1 else start1 ‘union‘ start2))
(DP (p2.p1))

Combining the dynamic parsers is easy enough; we just do function composition. Putting the static
parsers together requires a little bit of thought. First of all, the combined parser can only accept the
empty string if both parsers do. Fair enough, now how about the starting symbols? Well, the parsers
are supposed to be in a sequence, so the starting symbols of the second parser shouldn’t really matter.
If life were simple, the starting symbols of the combined parser would only be start1. Alas, life
is NOT simple, because parsers could very well accept the empty input. If the first parser accepts
the empty input, then we have to account for this possibility by accepting the starting symbols from
both the first and the second parsers.

Exercises:

1. Consider the charA parser from above. What would charA ’o’ >>> charA ’n’ >>>
charA ’e’ result in?

2. Write a simplified version of that combined parser. That is: does it accept the empty string?
What are its starting symbols? What is the dynamic parser for this?

So what do arrows buy us in all this?

If you look back at our Parser type and blank out the static parser section, you might notice that this
looks a lot like the arrow instance for functions.

arr f = \(b, s) -> (f b, s)
first p = \((b, d), s) ->

let (c, s’) = p (b, s)
in ((c, d), s’))

p1 >>> p2 = p2 . p1
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There’s the odd s variable out for the ride, which makes the definitions look a little strange, but you
can roughly see the outline of the conveyor belts and computing machines. Actually, what you see
here is roughly the arrow instance for the State monad (let f :: b -> c, p :: b -> State s c and . actually
be <=<.

That’s fine, but we could have done that with bind in classic monadic style, and first would have just
been an odd helper function that you could have easily pattern matched. But remember, our Parser
type is not just the dynamic parser; it also contains the static parser.

arr f = SP True []
first sp = sp
(SP empty1 start1) >>> (SP empty2 start2) = (SP (empty1 && empty2)

(if not empty1 then start1 else start1 ‘union‘ start2))

This is not at all a function, it’s just pushing around some data types. But the arrow metaphor works
for it too, and we wrap it up with the same names. And when we combine the two types, we get
a two-for-one deal; the static parser data structure goes along for the ride along with the dynamic
parser. The Arrow interface lets us transparently simultaneously compose and manipulate the two
parsers as a unit, which we can then run as a traditional, unified function.

37.7 Monads can be arrows too

The real flexibility with arrows comes with the ones that aren’t monads, otherwise it’s
just a clunkier syntax -- Philippa Cowderoy

It turns out that all monads can be made into arrows. Here’s a central quote from the original
arrows papers: <blockquote>Just as we think of a monadic type m a as representing a ’computation
delivering an a ’; so we think of an arrow type a b c, (that is, the application of the parameterised
type a to the two parameters b and c) as representing ’a computation with input of type b delivering
a c’; arrows make the dependence on input explicit.</blockquote>

One way to look at arrows is the way the English language allows you to noun a verb, for example, "I
had a chat with them" versus "I chatted with them." Arrows are much like that, they turn a function
from a to b into a value. This value is a first class transformation from a to b.

37.8 Arrows in practice

Arrows are a relatively new abstraction, but they already found a number of uses in the Haskell
world

• Hughes’ arrow-style parsers were first described in his 2000 paper, but a usable implementation
wasn’t available until May 2005. Einar Karttunen wrote an implementation called PArrows that
approaches the features of standard Haskell parser combinator library, Parsec.

• The Fudgets library for building graphical interfaces FIXME: complete this paragraph
• Yampa - FIXME: talk briefly about Yampa
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• The Haskell XML Toolbox ( HXT7) uses arrows for processing XML. There is a Wiki page in
the Haskell Wiki with a somewhat GENTLE INTRODUCTION TO HXT8.

37.9 See also

• Generalising Monads to Arrows - John Hughes
• http://www.haskell.org/arrows/biblio.html

37.10 References
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8 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/HXT
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38 Continuation passing style (CPS)

Continuation Passing Style is a format for expressions such that no function ever returns, instead
they pass control onto a continuation. Conceptually a continuation is what happens next, for exam-
ple the continuation for x in (x+1)*2 is add one then multiply by two.

38.1 When do you need this?

Classically, continuations have been used primarily to dramatically alter the control flow of a pro-
gram. For example, returning early from a procedure can be implemented with continuations. Ex-
ceptions and failure can also be signaled using continuations - pass in a continuation for success,
another continuation for fail, and simply invoke the appropriate continuation. If your function-that-
can-fail itself calls another function-that-can-fail, you create a new success continuation, but pass
the fail continuation you got.

Also, continuations allow you to "suspend" a computation, returning to that computation at another
time. They can be used to implement simple forms of concurrency (notably, one Haskell implemen-
tation, Hugs, uses continuations to implement cooperative concurrency). Other control flows are
possible.

In Haskell, continuations can be used in a similar fashion, for implementing interesting behavior in
some monads. (Note that there are usually other techniques for this available, too, especially in tan-
dem with laziness) They can be used to improve performance by eliminating certain construction-
pattern matching sequences (i.e. a function returns a complex structure which the caller will at some
point deconstruct), though a sufficiently smart compiler "should" be able to eliminate this.

38.2 Starting simple

To begin with, we’re going to explore two simple examples which illustrate what CPS and contin-
uations are. Firstly a ’first order’ example (meaning there are no higher order functions in to CPS
transform), then a higher order one.

38.2.1 square

Example: A simple module, no continuations
-- We assume some primitives add and square for the example:

add :: Int -> Int -> Int

add x y = x + y
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square :: Int -> Int

square x = x * x

pythagoras :: Int -> Int -> Int

pythagoras x y = add (square x) (square y)

-- We assume some primitives add and square for the example:

add :: Int -> Int -> Int

add x y = x + y

square :: Int -> Int

square x = x * x

pythagoras :: Int -> Int -> Int

pythagoras x y = add (square x) (square y)

And the same function pythagoras, written in CPS looks like this:

Example: A simple module, using continuations
-- We assume CPS versions of the add and square primitives,

-- (note: the actual definitions of add’cps and square’cps are not

-- in CPS form, they just have the correct type)

add’cps :: Int -> Int -> (Int -> r) -> r

add’cps x y k = k (add x y)

square’cps :: Int -> (Int -> r) -> r

square’cps x k = k (square x)

pythagoras’cps :: Int -> Int -> (Int -> r) -> r

pythagoras’cps x y k =

square’cps x $ \x’squared ->

square’cps y $ \y’squared ->

add’cps x’squared y’squared $ \sum’of’squares ->

k sum’of’squares

-- We assume CPS versions of the add and square primitives,

-- (note: the actual definitions of add’cps and square’cps are not

-- in CPS form, they just have the correct type)

add’cps :: Int -> Int -> (Int -> r) -> r

add’cps x y k = k (add x y)

square’cps :: Int -> (Int -> r) -> r

square’cps x k = k (square x)

pythagoras’cps :: Int -> Int -> (Int -> r) -> r

pythagoras’cps x y k =

square’cps x $ \x’squared ->

square’cps y $ \y’squared ->
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add’cps x’squared y’squared $ \sum’of’squares ->

k sum’of’squares

How the pythagoras’cps example operates is:

1. square x and throw the result into the (\x’squared -> ...) continuation
2. square y and throw the result into the (\y’squared -> ...) continuation
3. add x’squared and y’squared and throw the result into the (\sum’of’squares -> ...) continuation
4. throw the sum’of’squares into the toplevel/program continuation

And one can try it out:
*Main> pythagoras’cps 3 4 print

25

38.2.2 thrice

Example: A simple higher order function, no continuations
thrice :: (o -> o) -> o -> o

thrice f x = f (f (f x))

thrice :: (o -> o) -> o -> o

thrice f x = f (f (f x))

*Main> thrice tail "foobar"

"bar"

Now the first thing to do, to CPS convert thrice, is compute the type of the CPSd form. We
can see that f :: o -> o, so in the CPSd version, f’cps :: o -> (o -> r) -> r, and the
whole type will be thrice’cps :: (o -> (o -> r) -> r) -> o -> (o -> r) -> r. Once
we have the new type, that can help direct you how to write the function.

Example: A simple higher order function, with continuations
thrice’cps :: (o -> (o -> r) -> r) -> o -> (o -> r) -> r

thrice’cps f’cps x k =

f’cps x $ \f’x ->

f’cps f’x $ \f’f’x ->

f’cps f’f’x $ \f’f’f’x ->

k f’f’f’x
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thrice’cps :: (o -> (o -> r) -> r) -> o -> (o -> r) -> r

thrice’cps f’cps x k =

f’cps x $ \f’x ->

f’cps f’x $ \f’f’x ->

f’cps f’f’x $ \f’f’f’x ->

k f’f’f’x

Exercises:
FIXME: write some exercises

38.3 Using the Cont monad

By now, you should be used to the (meta-)pattern that whenever we find a pattern we like (here the
pattern is using continuations), but it makes our code a little ugly, we use a monad to encapsulate
the ’plumbing’. Indeed, there is a monad for modelling computations which use CPS.

Example: The Cont monad
newtype Cont r a = Cont { runCont :: (a -> r) -> r }

newtype Cont r a = Cont { runCont :: (a -> r) -> r }

Removing the newtype and record cruft, we obtain that Cont r a expands to (a -> r) -> r. So
how does this fit with our idea of continuations we presented above? Well, remember that a function
in CPS basically took an extra parameter which represented ’what to do next’. So, here, the type
of Cont r a expands to be an extra function (the continuation), which is a function from things of
type a (what the result of the function would have been, if we were returning it normally instead
of throwing it into the continuation), to things of type r, which becomes the final result type of our
function.

Example: The pythagoras example, using the Cont monad</code>
import Control.Monad.Cont

add’cont :: Int -> Int -> Cont r Int

add’cont x y = return (add x y)

square’cont :: Int -> Cont r Int

square’cont x = return (square x)

pythagoras’cont :: Int -> Int -> Cont r Int

pythagoras’cont x y =

do x’squared <- square’cont x

y’squared <- square’cont y

sum’of’squares <- add’cont x’squared y’squared
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return sum’of’squares

import Control.Monad.Cont

add’cont :: Int -> Int -> Cont r Int

add’cont x y = return (add x y)

square’cont :: Int -> Cont r Int

square’cont x = return (square x)

pythagoras’cont :: Int -> Int -> Cont r Int

pythagoras’cont x y =

do x’squared <- square’cont x

y’squared <- square’cont y

sum’of’squares <- add’cont x’squared y’squared

return sum’of’squares

*Main> runCont (pythagoras’cont 3 4) print

25

Every function that returns a Cont-value actually takes an extra parameter, which is the continuation.
Using return simply throws its argument into the continuation.

How does the Cont implementation of (>>=) work, then? It’s easiest to see it at work:

Example: The (>>=) function for the Cont monad
square :: Int -> Cont r Int

square x = return (x ˆ 2)

addThree :: Int -> Cont r Int

addThree x = return (x + 3)

main = runCont (square 4 >>= addThree) print

{- Result: 19 -}

square :: Int -> Cont r Int

square x = return (x ˆ 2)

addThree :: Int -> Cont r Int

addThree x = return (x + 3)

main = runCont (square 4 >>= addThree) print

{- Result: 19 -}

The Monad instance for (Cont r) is given below:
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instance Monad (Cont r) where
return n = Cont (\k -> k n)
m >>= f = Cont (\k -> runCont m (\a -> runCont (f a) k))

So return n is a Cont-value that throws n straight away into whatever continuation it is applied to.
m >>= f is a Cont-value that runs m with the continuation \a -> f a k, which maybe, receive the
result of computation inside m (the result is bound to a) , then applies that result to f to get another
Cont-value. This is then called with the continuation we got at the top level (the continuation is
bound to k); in essence m >>= f is a Cont-value that takes the result from m, applies it to f, then
throws that into the continuation.

Exercises:
To come.

38.4 callCC

By now you should be fairly confident using the basic notions of continuations and Cont, so we’re
going to skip ahead to the next big concept in continuation-land. This is a function called callCC,
which is short for ’call with current continuation’. We’ll start with an easy example.

Example: square using callCC
-- Without callCC

square :: Int -> Cont r Int

square n = return (n ˆ 2)

-- With callCC

square :: Int -> Cont r Int

square n = callCC $ \k -> k (n ˆ 2)

-- Without callCC

square :: Int -> Cont r Int

square n = return (n ˆ 2)

-- With callCC

square :: Int -> Cont r Int

square n = callCC $ \k -> k (n ˆ 2)

We pass a function to callCC that accepts one parameter that is in turn a function. This function (k
in our example) is our tangible continuation: we can see here we’re throwing a value (in this case, n
ˆ 2) into our continuation. We can see that the callCC version is equivalent to the return version
stated above because we stated that return n is just a Cont-value that throws n into whatever
continuation that it is given. Here, we use callCC to bring the continuation ’into scope’, and
immediately throw a value into it, just like using return.
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However, these versions look remarkably similar, so why should we bother using callCC at all?
The power lies in that we now have precise control of exactly when we call our continuation, and
with what values. Let’s explore some of the surprising power that gives us.

38.4.1 Deciding when to use k

We mentioned above that the point of using callCC in the first place was that it gave us extra power
over what we threw into our continuation, and when. The following example shows how we might
want to use this extra flexibility.

Example: Our first proper callCC function
foo :: Int -> Cont r String

foo n =

callCC $ \k -> do

let n’ = n ˆ 2 + 3

when (n’ > 20) $ k "over twenty"

return (show $ n’ - 4)

foo :: Int -> Cont r String

foo n =

callCC $ \k -> do

let n’ = n ˆ 2 + 3

when (n’ > 20) $ k "over twenty"

return (show $ n’ - 4)

foo is a slightly pathological function that computes the square of its input and adds three; if the
result of this computation is greater than 20, then we return from the function immediately, throwing
the String value "over twenty" into the continuation that is passed to foo. If not, then we subtract
four from our previous computation, show it, and throw it into the computation. If you’re used
to imperative languages, you can think of k like the ’return’ statement that immediately exits the
function. Of course, the advantages of an expressive language like Haskell are that k is just an
ordinary first-class function, so you can pass it to other functions like when, or store it in a Reader,
etc.

Naturally, you can embed calls to callCC within do-blocks:

Example: More developed callCC example involving a do-block
bar :: Char -> String -> Cont r Int

bar c s = do

msg <- callCC $ \k -> do

let s’ = c : s

when (s’ == "hello") $ k "They say hello."

let s” = show s’
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return ("They appear to be saying " ++ s”)

return (length msg)

bar :: Char -> String -> Cont r Int

bar c s = do

msg <- callCC $ \k -> do

let s’ = c : s

when (s’ == "hello") $ k "They say hello."

let s” = show s’

return ("They appear to be saying " ++ s”)

return (length msg)

When you call k with a value, the entire callCC call takes that value. In other words, k is a bit
like a ’goto’ statement in other languages: when we call k in our example, it pops the execution
out to where you first called callCC, the msg <- callCC $ ... line. No more of the argument to
callCC (the inner do-block) is executed. Hence the following example contains a useless line:

Example: Popping out a function, introducing a useless line
bar :: Cont r Int

bar = callCC $ \k -> do

let n = 5

k n

return 25

bar :: Cont r Int

bar = callCC $ \k -> do

let n = 5

k n

return 25

bar will always return 5, and never 25, because we pop out of bar before getting to the return 25
line.

38.4.2 A note on typing

Why do we exit using return rather than k the second time within the foo example? It’s to do with
types. Firstly, we need to think about the type of k. We mentioned that we can throw something
into k, and nothing after that call will get run (unless k is run conditionally, like when wrapped
in a when). So the return type of k doesn’t matter; we can never do anything with the result of
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running k. Actually, k never compute the continuation argument of return Cont-value of k. We say,
therefore, that the type of k is:

k :: a -> Cont r b

Inside <code>Cont r b</b>, because k never computes that continuation, type b which is the
parameter type of that continuation can be anything independent of type a. We universally
quantify the return type of k. This is possible for the aforementioned reasons, and the reason it’s
advantageous is that we can do whatever we want with the result of computation inside k. In our
above code, we use it as part of a when construct:

when :: Monad m => Bool -> m () -> m ()

As soon as the compiler sees k being used in this when, it infers that we want a () argument type
of the continuation taking from the return value of k. The return Cont-value of k has type Cont r
(). This argument type b is independent of the argument type a of k. 1. The return Cont-value of
k doesn’t use the continuation which is argument of this Cont-value itself, it use the continuation
which is argument of return Cont-value of the callCC. So that callCC has return type Cont r
String. Because the final expression in inner do-block has type Cont r String, the inner do-
block has type Cont r String. There are two possible execution routes: either the condition
for the when succeeds, k doesn’t use continuation providing by the inner do-block which finally
takes the continuation which is argument of return Cont-value of the callCC, k uses directly the
continuation which is argument of return Cont-value of the callCC, expressions inside do-block
after k will totally not be used, because Haskell is lazy, unused expressions will not be executed. If
the condition fails, the when returns return () which use the continuation providing by the inner
do-block, so execution passes on.

If you didn’t follow any of that, just make sure you use return at the end of a do-block inside a call
to callCC, not k.

38.4.3 The type of callCC

We’ve deliberately broken a trend here: normally when we’ve introduced a function, we’ve given its
type straight away, but in this case we haven’t. The reason is simple: the type is rather horrendously
complex, and it doesn’t immediately give insight into what the function does, or how it works.
Nevertheless, you should be familiar with it, so now you’ve hopefully understood the function
itself, here’s it’s type:

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

This seems like a really weird type to begin with, so let’s use a contrived example.

1 Type a infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas
always have monomorphic types. See POLYMORPHISM ˆ{Kapitel 45 on page 297}.
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callCC $ \k -> k 5

You pass a function to callCC. This in turn takes a parameter, k, which is another function. k, as
we remarked above, has the type:

k :: a -> Cont r b

The entire argument to callCC, then, is a function that takes something of the above type and
returns Cont r t, where t is whatever the type of the argument to k was. So, callCC’s argument
has type:

(a -> Cont r b) -> Cont r a

Finally, callCC is therefore a function which takes that argument and returns its result. So the type
of callCC is:

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

38.4.4 The implementation of callCC

So far we have looked at the use of callCC and its type. This just leaves its implementation, which
is:

callCC f = Cont $ \k -> runCont (f (\a -> Cont $ \_ -> k a)) k

This code is far from obvious. However, the amazing fact is that the imple-
mentations for callCC f, return n and m >>= f can all be produced automat-
ically from their type signatures - Lennart Augustsson’s Djinn HTTP://LAMBDA-
THE-ULTIMATE.ORG/NODE/11782 is a program that will do this for you. See
Phil Gossart’s Google tech talk: HTTP://VIDEO.GOOGLE.COM/VIDEOPLAY?DOCID=-
48512503724223747913 for background on the theory behind Djinn; and Dan Piponi’s
article: HTTP://WWW.HASKELL.ORG/SITEWIKI/IMAGES/1/14/TMR-ISSUE6.PDF4 which uses
Djinn in deriving Continuation Passing Style.

2 HTTP://LAMBDA-{}THE-{}ULTIMATE.ORG/NODE/1178
3 HTTP://VIDEO.GOOGLE.COM/VIDEOPLAY?DOCID=-{}4851250372422374791
4 HTTP://WWW.HASKELL.ORG/SITEWIKI/IMAGES/1/14/TMR-{}ISSUE6.PDF
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38.5 Example: a complicated control structure

This example was originally taken from the ’The Continuation monad’ section of the ALL ABOUT

MONADS TUTORIAL5, used with permission.

Example: Using Cont for a complicated control structure
{- We use the continuation monad to perform "escapes" from code

blocks.

This function implements a complicated control structure to process

numbers:

Input (n) Output List Shown

========= ====== ==========

0-9 n none

10-199 number of digits in (n/2) digits of (n/2)

200-19999 n digits of (n/2)

20000-1999999 (n/2) backwards none

>= 2000000 sum of digits of (n/2) digits of (n/2)

-}

fun :: Int -> String

fun n = (‘runCont‘ id) $ do

str <- callCC $ \exit1 -> do -- define

"exit1"

when (n < 10) (exit1 $ show n)

let ns = map digitToInt (show $ n ‘div‘ 2)

n’ <- callCC $ \exit2 -> do -- define

"exit2"

when (length ns < 3) (exit2 $ length ns)

when (length ns < 5) (exit2 n)

when (length ns < 7) $ do

let ns’ = map intToDigit (reverse ns)

exit1 (dropWhile (==’0’) ns’) -- escape

2 levels

return $ sum ns

return $ "(ns = " ++ show ns ++ ") " ++ show n’

return $ "Answer: " ++ str

{- We use the continuation monad to perform "escapes" from code

blocks.

This function implements a complicated control structure to process

numbers:

Input (n) Output List Shown

========= ====== ==========

0-9 n none

5 HTTP://WWW.HASKELL.ORG/ALL_ABOUT_MONADS/HTML/INDEX.HTML
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10-199 number of digits in (n/2) digits of (n/2)

200-19999 n digits of (n/2)

20000-1999999 (n/2) backwards none

>= 2000000 sum of digits of (n/2) digits of (n/2)

-}

fun :: Int -> String

fun n = (‘runCont‘ id) $ do

str <- callCC $ \exit1 -> do -- define

"exit1"

when (n < 10) (exit1 $ show n)

let ns = map digitToInt (show $ n ‘div‘ 2)

n’ <- callCC $ \exit2 -> do -- define

"exit2"

when (length ns < 3) (exit2 $ length ns)

when (length ns < 5) (exit2 n)

when (length ns < 7) $ do

let ns’ = map intToDigit (reverse ns)

exit1 (dropWhile (==’0’) ns’) -- escape

2 levels

return $ sum ns

return $ "(ns = " ++ show ns ++ ") " ++ show n’

return $ "Answer: " ++ str

Because it isn’t initially clear what’s going on, especially regarding the usage of callCC, we will
explore this somewhat.

38.5.1 Analysis of the example

Firstly, we can see that fun is a function that takes an integer n. We basically implement a control
structure using Cont and callCC that does different things based on the range that n falls in, as
explained with the comment at the top of the function. Let’s dive into the analysis of how it works.

1. Firstly, the (‘runCont‘ id) at the top just means that we run the Cont block that follows
with a final continuation of id. This is necessary as the result type of fun doesn’t mention
Cont.

2. We bind str to the result of the following callCC do-block:
a) If n is less than 10, we exit straight away, just showing n.
b) If not, we proceed. We construct a list, ns, of digits of n ‘div‘ 2.
c) n’ (an Int) gets bound to the result of the following inner callCC do-block.

i. If length ns < 3, i.e., if n ‘div‘ 2 has less than 3 digits, we pop out of this
inner do-block with the number of digits as the result.

ii. If n ‘div‘ 2 has less than 5 digits, we pop out of the inner do-block returning the
original n.

iii. If n ‘div‘ 2 has less than 7 digits, we pop out of both the inner and outer do-
blocks, with the result of the digits of n ‘div‘ 2 in reverse order (a String).
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iv. Otherwise, we end the inner do-block, returning the sum of the digits of n ‘div‘
2.

d) We end this do-block, returning the String "(ns = X) Y", where X is ns, the digits of
n ‘div‘ 2, and Y is the result from the inner do-block, n’.

3. Finally, we return out of the entire function, with our result being the string "Answer: Z",
where Z is the string we got from the callCC do-block.

38.6 Example: exceptions

One use of continuations is to model exceptions. To do this, we hold on to two continuations: one
that takes us out to the handler in case of an exception, and one that takes us to the post-handler
code in case of a success. Here’s a simple function that takes two numbers and does integer division
on them, failing when the denominator is zero.

Example: An exception-throwing div
divExcpt :: Int -> Int -> (String -> Cont r Int) -> Cont r Int

divExcpt x y handler =

callCC $ \ok -> do

err <- callCC $ \notOk -> do

when (y == 0) $ notOk "Denominator 0"

ok $ x ‘div‘ y

handler err

{- For example,

runCont (divExcpt 10 2 error) id --> 5

runCont (divExcpt 10 0 error) id --> *** Exception: Denominator 0

-}

divExcpt :: Int -> Int -> (String -> Cont r Int) -> Cont r Int

divExcpt x y handler =

callCC $ \ok -> do

err <- callCC $ \notOk -> do

when (y == 0) $ notOk "Denominator 0"

ok $ x ‘div‘ y

handler err

{- For example,

runCont (divExcpt 10 2 error) id --> 5

runCont (divExcpt 10 0 error) id --> *** Exception: Denominator 0

-}

How does it work? We use two nested calls to callCC. The first labels a continuation that will be
used when there’s no problem. The second labels a continuation that will be used when we wish

259



Continuation passing style (CPS)

to throw an exception. If the denominator isn’t 0, x ‘div‘ y is thrown into the ok continuation,
so the execution pops right back out to the top level of divExcpt. If, however, we were passed a
zero denominator, we throw an error message into the notOk continuation, which pops us out to the
inner do-block, and that string gets assigned to err and given to handler.

A more general approach to handling exceptions can be seen with the following function. Pass a
computation as the first parameter (which should be a function taking a continuation to the error
handler) and an error handler as the second parameter. This example takes advantage of the generic
MonadCont class which covers both Cont and ContT by default, plus any other continuation classes
the user has defined.

Example: General try using continuations.
tryCont :: MonadCont m => ((err -> m a) -> m a) -> (err -> m a) -> m

a

tryCont c h =

callCC $ \ok -> do

err <- callCC $ \notOk -> do x <- c notOk; ok x

h err

tryCont :: MonadCont m => ((err -> m a) -> m a) -> (err -> m a) -> m

a

tryCont c h =

callCC $ \ok -> do

err <- callCC $ \notOk -> do x <- c notOk; ok x

h err

For an example using try, see the following program.

Example: Using try
data SqrtException = LessThanZero deriving (Show, Eq)

sqrtIO :: (SqrtException -> ContT r IO ()) -> ContT r IO ()

sqrtIO throw = do

ln <- lift (putStr "Enter a number to sqrt: " >> readLn)

when (ln < 0) (throw LessThanZero)

lift $ print (sqrt ln)

main = runContT (tryCont sqrtIO (lift . print)) return

data SqrtException = LessThanZero deriving (Show, Eq)

sqrtIO :: (SqrtException -> ContT r IO ()) -> ContT r IO ()

sqrtIO throw = do

ln <- lift (putStr "Enter a number to sqrt: " >> readLn)

when (ln < 0) (throw LessThanZero)

lift $ print (sqrt ln)
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main = runContT (tryCont sqrtIO (lift . print)) return

38.7 Example: coroutines

38.8 Notes

<references />
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39 Mutable objects

As one of the key strengths of Haskell is its purity: all side-effects are encapsulated in a MONAD1.
This makes reasoning about programs much easier, but many practical programming tasks require
manipulating state and using imperative structures. This chapter will discuss advanced program-
ming techniques for using imperative constructs, such as references and mutable arrays, without
compromising (too much) purity.

39.1 The ST and IO monads

Recall the THE STATE MONAD2 and THE IO MONAD3 from the chapter on Monads. These are two
methods of structuring imperative effects. Both references and arrays can live in state monads or
the IO monad, so which one is more appropriate for what, and how does one use them?

39.2 State references: STRef and IORef

39.3 Mutable arrays

39.4 Examples

import Control.Monad.ST

import Data.STRef

import Data.Map(Map)

import qualified Data.Map as M

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FMONADS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FMONADS%23THE_STATE_MONAD
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FMONADS%23THE_.28I.29O_MONAD
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import Data.Monoid(Monoid(..))

memo :: (Ord a) => (a -> b) -> ST s (a -> ST s b)

memo f = do m <- newMemo

return (withMemo m f)

newtype Memo s a b = Memo (STRef s (Map a b))

newMemo :: (Ord a) => ST s (Memo s a b)

newMemo = Memo ‘fmap‘ newSTRef mempty

withMemo :: (Ord a) => Memo s a b -> (a -> b) -> (a -> ST s b)

withMemo (Memo r) f a = do m <- readSTRef r

case M.lookup a m of

Just b -> return b

Nothing -> do let b = f a

writeSTRef r (M.insert a b

m)

return b
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40.1 Theseus and the Zipper

40.1.1 The Labyrinth

"Theseus, we have to do something" said Homer, chief marketing officer of Ancient Geeks Inc..
Theseus put the Minotaur action figure™ back onto the shelf and nodded. "Today’s children are no
longer interested in the ancient myths, they prefer modern heroes like Spiderman or Sponge Bob."
Heroes. Theseus knew well how much he had been a hero in the labyrinth back then on Crete1.
But those "modern heroes" did not even try to appear realistic. What made them so successful?
Anyway, if the pending sales problems could not be resolved, the shareholders would certainly
arrange a passage over the Styx for Ancient Geeks Inc.

"Heureka! Theseus, I have an idea: we implement your story with the Minotaur as a computer game!
What do you say?" Homer was right. There had been several books, epic (and chart breaking) songs,
a mandatory movie trilogy and uncountable Theseus & the Minotaur™ gimmicks, but a computer
game was missing. "Perfect, then. Now, Theseus, your task is to implement the game".

A true hero, Theseus chose Haskell as the language to implement the company’s redeeming product
in. Of course, exploring the labyrinth of the Minotaur was to become one of the game’s highlights.
He pondered: "We have a two-dimensional labyrinth whose corridors can point in many directions.
Of course, we can abstract from the detailed lengths and angles: for the purpose of finding the way
out, we only need to know how the path forks. To keep things easy, we model the labyrinth as a
tree. This way, the two branches of a fork cannot join again when walking deeper and the player
cannot go round in circles. But I think there is enough opportunity to get lost; and this way, if the
player is patient enough, he can explore the entire labyrinth with the left-hand rule."

data Node a = DeadEnd a
| Passage a (Node a)
| Fork a (Node a) (Node a)

1 Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American, February 1991,
page 137.

265



Zippers

Abb. 15: An example labyrinth and its representation as tree.

Theseus made the nodes of the labyrinth carry an extra parameter of type a. Later on, it may hold
game relevant information like the coordinates of the spot a node designates, the ambience around
it, a list of game items that lie on the floor, or a list of monsters wandering in that section of the
labyrinth. We assume that two helper functions

get :: Node a -> a
put :: a -> Node a -> Node a

retrieve and change the value of type a stored in the first argument of every constructor of Node a.
{{Exercises|1=

1. Implement get and put. One case for get is
get (Passage x _) = x.

2. To get a concrete example, write down the labyrinth shown in the picture as a value of
type Node (Int,Int). The extra parameter (Int,Int) holds the cartesian coordinates of a
node.}}

"Mh, how to represent the player’s current position in the labyrinth? The player can explore deeper
by choosing left or right branches, like in"

turnRight :: Node a -> Maybe (Node a)
turnRight (Fork _ l r) = Just r
turnRight _ = Nothing

"But replacing the current top of the labyrinth with the corresponding sub-labyrinth this way is not
an option, because he cannot go back then." He pondered. "Ah, we can apply Ariadne’s trick with
the thread for going back. We simply represent the player’s position by the list of branches his
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thread takes, the labyrinth always remains the same."

data Branch = KeepStraightOn
| TurnLeft
| TurnRight

type Thread = [Branch]

Abb. 16: Representation of the player’s position by Ariadne’s thread.

"For example, a thread [TurnRight,KeepStraightOn] means that the player took the right
branch at the entrance and then went straight down a Passage to reach its current position. With
the thread, the player can now explore the labyrinth by extending or shortening it. For instance, the
function turnRight extends the thread by appending the TurnRight to it."

turnRight :: Thread -> Thread
turnRight t = t ++ [TurnRight]

"To access the extra data, i.e. the game relevant items and such, we simply follow the thread into
the labyrinth."
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retrieve :: Thread -> Node a -> a
retrieve [] n = get n
retrieve (KeepStraightOn:bs) (Passage _ n) = retrieve bs n
retrieve (TurnLeft :bs) (Fork _ l r) = retrieve bs l
retrieve (TurnRight :bs) (Fork _ l r) = retrieve bs r

Exercises:
Write a function update that applies a function of type a -> a to the extra data at the player’s
position.

Theseus’ satisfaction over this solution did not last long. "Unfortunately, if we want to extend the
path or go back a step, we have to change the last element of the list. We could store the list
in reverse, but even then, we have to follow the thread again and again to access the data in the
labyrinth at the player’s position. Both actions take time proportional to the length of the thread and
for large labyrinths, this will be too long. Isn’t there another way?"

40.1.2 Ariadne’s Zipper

While Theseus was a skillful warrior, he did not train much in the art of programming and could
not find a satisfying solution. After intense but fruitless cogitation, he decided to call his former
love Ariadne to ask her for advice. After all, it was she who had the idea with the thread. Ariadne
Consulting. What can I do for you? Our hero immediately recognized the voice. "Hello Ariadne,
it’s Theseus." An uneasy silence paused the conversation. Theseus remembered well that he had
abandoned her on the island of Naxos and knew that she would not appreciate his call. But Ancient
Geeks Inc. was on the road to Hades and he had no choice. "Uhm, darling, ... how are you?"
Ariadne retorted an icy response, Mr. Theseus, the times of darling are long over. What do you
want? "Well, I uhm ... I need some help with a programming problem. I’m programming a new
Theseus & the Minotaur™ computer game." She jeered, Yet another artifact to glorify your ’heroic
being’? And you want me of all people to help you? "Ariadne, please, I beg of you, Ancient Geeks
Inc. is on the brink of insolvency. The game is our last hope!" After a pause, she came to a decision.
Fine, I will help you. But only if you transfer a substantial part of Ancient Geeks Inc. to me. Let’s
say thirty percent. Theseus turned pale. But what could he do? The situation was desperate enough,
so he agreed but only after negotiating Ariadne’s share to a tenth.

After Theseus told Ariadne of the labyrinth representation he had in mind, she could immediately
give advice, You need a zipper. "Huh? What does the problem have to do with my fly?" Nothing,
it’s a data structure first published by Gérard Huet2. "Ah." More precisely, it’s a purely functional
way to augment tree-like data structures like lists or binary trees with a single focus or finger that
points to a subtree inside the data structure and allows constant time updates and lookups at the spot
it points to3. In our case, we want a focus on the player’s position. "I know for myself that I want

2 Gérard Huet. The Zipper. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549--
554. PDF ˆ{HTTP://WWW.ST.CS.UNI-{}SB.DE/EDU/SEMINARE/2005/ADVANCED-{}FP/DOCS/
HUET-{}ZIPPER.PDF}

3 Note the notion of zipper as coined by Gérard Huet also allows to replace whole subtrees even if there is no extra
data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to this in the section
DIFFERENTIATION OF DATA TYPES ˆ{HTTP://EN.WIKIBOOKS.ORG/WIKI/%23DIFFERENTIATION%20OF%
20DATA%20TYPES} .
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fast updates, but how do I code it?" Don’t get impatient, you cannot solve problems by coding,
you can only solve them by thinking. The only place where we can get constant time updates in a
purely functional data structure is the topmost node4,5. So, the focus necessarily has to be at the
top. Currently, the topmost node in your labyrinth is always the entrance, but your previous idea
of replacing the labyrinth by one of its sub-labyrinths ensures that the player’s position is at the
topmost node. "But then, the problem is how to go back, because all those sub-labyrinths get lost
that the player did not choose to branch into." Well, you can use my thread in order not to lose
the sub-labyrinths. Ariadne savored Theseus’ puzzlement but quickly continued before he could
complain that he already used Ariadne’s thread, The key is to glue the lost sub-labyrinths to the
thread so that they actually don’t get lost at all. The intention is that the thread and the current
sub-labyrinth complement one another to the whole labyrinth. With ’current’ sub-labyrinth, I mean
the one that the player stands on top of. The zipper simply consists of the thread and the current
sub-labyrinth.

type Zipper a = (Thread a, Node a)

Abb. 17: The zipper is a pair of Ariadne’s thread and the current sub-labyrinth that the player
stands on top. The main thread is colored red and has sub-labyrinths attached to it, such that the
whole labyrinth can be reconstructed from the pair.

4 Of course, the second topmost node or any other node at most a constant number of links away from the top will
do as well.

5 Note that changing the whole data structure as opposed to updating the data at a node can be achieved in amor-
tized constant time even if more nodes than just the top node is affected. An example is incrementing a number
in binary representation. While incrementing say 111..11must touch all digits to yield 1000..00, the increment
function nevertheless runs in constant amortized time (but not in constant worst case time).
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Theseus didn’t say anything. You can also view the thread as a context in which the current
sub-labyrinth resides. Now, let’s find out how to define Thread a. By the way, Thread has to
take the extra parameter a because it now stores sub-labyrinths. The thread is still a simple list of
branches, but the branches are different from before.

data Branch a = KeepStraightOn a
| TurnLeft a (Node a)
| TurnRight a (Node a)

type Thread a = [Branch a]

Most importantly, TurnLeft and TurnRight have a sub-labyrinth glued to them. When the player
chooses say to turn right, we extend the thread with a TurnRight and now attach the untaken left
branch to it, so that it doesn’t get lost. Theseus interrupts, "Wait, how would I implement this
behavior as a function turnRight? And what about the first argument of type a for TurnRight?
Ah, I see. We not only need to glue the branch that would get lost, but also the extra data of
the Fork because it would otherwise get lost as well. So, we can generate a new branch by a
preliminary"

branchRight (Fork x l r) = TurnRight x l

"Now, we have to somehow extend the existing thread with it." Indeed. The second point about
the thread is that it is stored backwards. To extend it, you put a new branch in front of the list. To
go back, you delete the topmost element. "Aha, this makes extending and going back take only
constant time, not time proportional to the length as in my previous version. So the final version of
turnRight is"

turnRight :: Zipper a -> Maybe (Zipper a)
turnRight (t, Fork x l r) = Just (TurnRight x l : t, r)
turnRight _ = Nothing

Abb. 18: Taking the right subtree from the entrance. Of course, the thread is initially empty. Note
that the thread runs backwards, i.e. the topmost segment is the most recent.
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"That was not too difficult. So let’s continue with keepStraightOn for going down a passage.
This is even easier than choosing a branch as we only need to keep the extra data:"

keepStraightOn :: Zipper a -> Maybe (Zipper a)
keepStraightOn (t, Passage x n) = Just (KeepStraightOn x : t, n)
keepStraightOn _ = Nothing

Abb. 19: Now going down a passage.

Exercises:
Write the function turnLeft.

Pleased, he continued, "But the interesting part is to go back, of course. Let’s see..."

back :: Zipper a -> Maybe (Zipper a)
back ([] , _) = Nothing
back (KeepStraightOn x : t , n) = Just (t, Passage x n)
back (TurnLeft x r : t , l) = Just (t, Fork x l r)
back (TurnRight x l : t , r) = Just (t, Fork x l r)

"If the thread is empty, we’re already at the entrance of the labyrinth and cannot go back. In all
other cases, we have to wind up the thread. And thanks to the attachments to the thread, we can
actually reconstruct the sub-labyrinth we came from." Ariadne remarked, Note that a partial test for
correctness is to check that each bound variable like x, l and r on the left hand side appears exactly
once at the right hands side as well. So, when walking up and down a zipper, we only redistribute
data between the thread and the current sub-labyrinth.

Exercises:
<ol>Now that we can navigate the zipper, code the functions get, put and update that operate on
the extra data at the player’s position. Zippers are by no means limited to the concrete example
Node a, they can be constructed for all tree-like data types. Go on and construct a zipper for binary
trees
data Tree a = Leaf a | Bin (Tree a) (Tree a)
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Start by thinking about the possible branches Branch a that a thread can take. What do you have
to glue to the thread when exploring the tree? Simple lists have a zipper as well.
data List a = Empty | Cons a (List a)

What does it look like? Write a complete game based on Theseus’ labyrinth. </ol>

Heureka! That was the solution Theseus sought and Ancient Geeks Inc. should prevail, even if
partially sold to Ariadne Consulting. But one question remained: "Why is it called zipper?" Well, I
would have called it ’Ariadne’s pearl necklace’. But most likely, it’s called zipper because the thread
is in analogy to the open part and the sub-labyrinth is like the closed part of a zipper. Moving around
in the data structure is analogous to zipping or unzipping the zipper. "’Ariadne’s pearl necklace’,"
he articulated disdainfully. "As if your thread was any help back then on Crete." As if the idea with
the thread was yours, she replied. "Bah, I need no thread," he defied the fact that he actually did
need the thread to program the game. Much to his surprise, she agreed, Well, indeed you don’t need
a thread. Another view is to literally grab the tree at the focus with your finger and lift it up in the
air. The focus will be at the top and all other branches of the tree hang down. You only have to
assign the resulting tree a suitable algebraic data type, most likely that of the zipper.

Abb. 20: Grab the focus with your finger, lift it in the air and the hanging branches will form new
tree with your finger at the top, ready to be structured by an algebraic data type.

"Ah." He didn’t need Ariadne’s thread but he needed Ariadne to tell him? That was too much.
"Thank you, Ariadne, good bye." She did not hide her smirk as he could not see it anyway through
the phone.
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Exercises:
Take a list, fix one element in the middle with your finger and lift the list into the air. What type can
you give to the resulting tree?

Half a year later, Theseus stopped in front of a shop window, defying the cold rain that tried to creep
under his buttoned up anorak. Blinking letters announced

"Spider-Man: lost in the Web"

- find your way through the labyrinth of threads -

the great computer game by Ancient Geeks Inc.

He cursed the day when he called Ariadne and sold her a part of the company. Was it she who
contrived the unfriendly takeover by WineOS Corp., led by Ariadne’s husband Dionysus? Theseus
watched the raindrops finding their way down the glass window. After the production line was
changed, nobody would produce Theseus and the Minotaur™ merchandise anymore. He sighed.
His time, the time of heroes, was over. Now came the super-heroes.

40.2 Differentiation of data types

The previous section has presented the zipper, a way to augment a tree-like data structure Node a
with a finger that can focus on the different subtrees. While we constructed a zipper for a particular
data structure Node a, the construction can be easily adapted to different tree data structures by
hand.

Exercises:
Start with a ternary tree
data Tree a = Leaf a | Node (Tree a) (Tree a) (Tree a)

and derive the corresponding Thread a and Zipper a.

40.2.1 Mechanical Differentiation

But there is also an entirely mechanical way to derive the zipper of any (suitably regular) data type.
Surprisingly, ’derive’ is to be taken literally, for the zipper can be obtained by the derivative of
the data type, a discovery first described by Conor McBride6. The subsequent section is going to
explicate this truly wonderful mathematical gem.

6 Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online. PDF
ˆ{HTTP://STRICTLYPOSITIVE.ORG/DIFF.PDF}
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For a systematic construction, we need to calculate with types. The basics of structural calculations
with types are outlined in a separate chapter ../GENERIC PROGRAMMING/7 and we will heavily
rely on this material.

Let’s look at some examples to see what their zippers have in common and how they hint differen-
tiation. The type of binary tree is the fixed point of the recursive equation

Tree2 = 1+Tree2×Tree2

.

When walking down the tree, we iteratively choose to enter the left or the right subtree and then
glue the not-entered subtree to Ariadne’s thread. Thus, the branches of our thread have the type

Branch2 = Tree2+Tree2 ∼= 2×Tree2

.

Similarly, the thread for a ternary tree

Tree3 = 1+Tree3×Tree3×Tree3

has branches of type

Branch3 = 3×Tree3×Tree3

because at every step, we can choose between three subtrees and have to store the two subtrees we
don’t enter. Isn’t this strikingly similar to the derivatives d

d x x2 = 2×x and d
d x x3 = 3×x2?

The key to the mystery is the notion of the one-hole context of a data structure. Imagine a data
structure parameterised over a type X , like the type of trees Tree X . If we were to remove one of
the items of this type X from the structure and somehow mark the now empty position, we obtain a
structure with a marked hole. The result is called "one-hole context" and inserting an item of type
X into the hole gives back a completely filled Tree X . The hole acts as a distinguished position, a
focus. The figures illustrate this.

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGENERIC%20PROGRAMMING%2F
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Abb. 21: Removing a value of type X from a
Tree X leaves a hole at that position.

Abb. 22: A more abstract illustration of
plugging X into a one-hole context.

Of course, we are interested in the type to give to a one-hole context, i.e. how to represent it in
Haskell. The problem is how to efficiently mark the focus. But as we will see, finding a represen-
tation for one-hole contexts by induction on the structure of the type we want to take the one-hole
context of automatically leads to an efficient data type8. So, given a data structure F X with a func-
tor F and an argument type X , we want to calculate the type ∂F X of one-hole contexts from the
structure of F . As our choice of notation ∂F already reveals, the rules for constructing one-hole
contexts of sums, products and compositions are exactly Leibniz’ rules for differentiation.

One-hole context Illustration
(∂ConstA) X = 0 < /mat H >

|T her ei sno < math > X in
A = ConstA X , so the type of
its one-hole contexts must
be empty.

(∂Id) X = 1 < /mat H >
|T her ei sonl yoneposi t i on f or i tems <
math > X in X = Id X .
Removing one X leaves no
X in the result. And as there
is only one position we can
remove it from, there is
exactly one one-hole context
for Id X . Thus, the type of
one-hole contexts is the
singleton type.

∂(F +G) = ∂F +∂G As an element of type F +G
is either of type F or of type
G , a one-hole context is also
either ∂F or ∂G .

8 This phenomenon already shows up with generic tries.
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One-hole context Illustration
∂(F ×G) = F ×∂G +∂F ×G

Abb. 23
The hole in a one-hole con-
text of a pair is either in the
first or in the second compo-
nent.

∂(F ◦G) = (∂F ◦G)×∂G

Abb. 24
Chain rule. The hole in a
composition arises by mak-
ing a hole in the enclosing
structure and fitting the en-
closed structure in.

Of course, the function plug that fills a hole has the type (∂F X )×X → F X .

So far, the syntax ∂ denotes the differentiation of functors, i.e. of a kind of type functions with
one argument. But there is also a handy expression oriented notation ∂X slightly more suitable for
calculation. The subscript indicates the variable with respect to which we want to differentiate. In
general, we have

(∂F ) X = ∂X (F X )

An example is

∂(Id× Id) X = ∂X (X ×X ) = 1×X +X ×1 ∼= 2×X

Of course, ∂X is just point-wise whereas ∂ is point-free style.

Exercises:

1. Rewrite some rules in point-wise style. For example, the left hand side of the product rule
becomes ∂X (F X ×G X ) = . . . .
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2. To get familiar with one-hole contexts, differentiate the product X n := X × X × ·· · × X of
exactly n factors formally and convince yourself that the result is indeed the corresponding
one-hole context.

3. Of course, one-hole contexts are useless if we cannot plug values of type X back into them.
Write the plug functions corresponding to the five rules.

4. Formulate the chain rule for two variables and prove that it yields one-hole contexts. You
can do this by viewing a bifunctor F X Y as an normal functor in the pair (X ,Y ). Of course,
you may need a handy notation for partial derivatives of bifunctors in point-free style.

40.2.2 Zippers via Differentiation

The above rules enable us to construct zippers for recursive data types µF := µX .F X where F is a
polynomial functor. A zipper is a focus on a particular subtree, i.e. substructure of type µF inside a
large tree of the same type. As in the previous chapter, it can be represented by the subtree we want
to focus at and the thread, that is the context in which the subtree resides

ZipperF =µF ×ContextF

.

Now, the context is a series of steps each of which chooses a particular subtree µF among those in
F µF . Thus, the unchosen subtrees are collected together by the one-hole context ∂F (µF ). The hole
of this context comes from removing the subtree we’ve chosen to enter. Putting things together, we
have

ContextF = List (∂F (µF ))

.

or equivalently

ContextF = 1+∂F (µF )×ContextF

.

To illustrate how a concrete calculation proceeds, let’s systematically construct the zipper for our
labyrinth data type

data Node a = DeadEnd a
| Passage a (Node a)
| Fork a (Node a) (Node a)

This recursive type is the fixed point
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Node A =µX .NodeF A X

of the functor

NodeF A X = A+ A×X + A×X ×X

.

In other words, we have

Node A ∼= NodeF A (Node A) ∼= A+ A×Node A+ A×Node A×Node A

.

The derivative reads

∂X (NodeF A X ) ∼= A+2× A×X

and we get

∂NodeF A (Node A) ∼= A+2× A×Node A

.

Thus, the context reads

ContextNodeF
∼= List (∂NodeF A (Node A)) ∼= List (A+2× A× (Node A))

.

Comparing with

data Branch a = KeepStraightOn a
| TurnLeft a (Node a)
| TurnRight a (Node a)

data Thread a = [Branch a]

we see that both are exactly the same as expected!
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Exercises:

1. Redo the zipper for a ternary tree, but with differentiation this time.
2. Construct the zipper for a list.
3. Rhetorical question concerning the previous exercise: what’s the difference between a list and

a stack?

40.2.3 Differentation of Fixed Point

There is more to data types than sums and products, we also have a fixed point operator with
no direct correspondence in calculus. Consequently, the table is missing a rule of differentiation,
namely how to differentiate fixed points µF X =µY .F X Y :

∂X (µF X ) = ?

.

As its formulation involves the chain rule in two variables, we delegate it to the exercises. Instead,
we will calculate it for our concrete example type Node A:

∂A(Node A) = ∂A(A+ A×Node A+ A×Node A×Node A)
∼= 1+Node A+Node A×Node A

+∂A(Node A)× (A+2× A×Node A).

Of course, expanding ∂A(Node A) further is of no use, but we can see this as a fixed point equation
and arrive at

∂A(Node A) =µX .T A+S A×X

with the abbreviations

T A = 1+Node A+Node A×Node A

and

S A = A+2× A×Node A

.
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The recursive type is like a list with element types S A, only that the empty list is replaced by a base
case of type T A. But given that the list is finite, we can replace the base case with 1 and pull T A
out of the list:

∂A(Node A) ∼= T A× (µX .1+S A×X ) = T A×List (S A)

.

Comparing with the zipper we derived in the last paragraph, we see that the list type is our context

List (S A) ∼= ContextNodeF

and that

A×T A ∼= Node A

.

In the end, we have

ZipperNodeF
∼= ∂A(Node A)× A

.

Thus, differentiating our concrete example Node A with respect to A yields the zipper up to an A!

Exercises:

1. Use the chain rule in two variables to formulate a rule for the differentiation of a fixed point.
2. Maybe you know that there are inductive (µ) and coinductive fixed points (ν). What’s the rule

for coinductive fixed points?

40.2.4 Differentation with respect to functions of the argument

When finding the type of a one-hole context one does d f(x)/d x. It is entirely possible to solve
expressions like d f(x)/d g(x). For example, solving d xˆ4 / d xˆ2 gives 2xˆ2 , a two-hole context of
a 4-tuple. The derivation is as follows let u=xˆ2 d xˆ4 / d xˆ2 = d uˆ2 /d u = 2u = 2 xˆ2 .
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40.2.5 Zippers vs Contexts

In general however, zippers and one-hole contexts denote different things. The zipper is a focus on
arbitrary subtrees whereas a one-hole context can only focus on the argument of a type constructor.
Take for example the data type

data Tree a = Leaf a | Bin (Tree a) (Tree a)

which is the fixed point

Tree A =µX . A+X ×X

.

The zipper can focus on subtrees whose top is Bin or Leaf but the hole of one-hole context of Tree A
may only focus a Leafs because this is where the items of type A reside. The derivative of Node A
only turned out to be the zipper because every top of a subtree is always decorated with an A.

Exercises:

1. Surprisingly, ∂A(Tree A)× A and the zipper for Tree A again turn out to be the same type.
Doing the calculation is not difficult but can you give a reason why this has to be the case?

2. Prove that the zipper construction for µF can be obtained by introducing an auxiliary variable
Y , differentiating µX .Y ×F X with respect to it and re-substituting Y = 1. Why does this
work?

3. Find a type G A whose zipper is different from the one-hole context.

40.2.6 Conclusion

We close this section by asking how it may happen that rules from calculus appear in a discrete
setting. Currently, nobody knows. But at least, there is a discrete notion of linear, namely in the
sense of "exactly once". The key feature of the function that plugs an item of type X into the hole
of a one-hole context is the fact that the item is used exactly once, i.e. linearly. We may think of the
plugging map as having type

∂X F X → (X ( F X )

where A ( B denotes a linear function, one that does not duplicate or ignore its argument like in
linear logic. In a sense, the one-hole context is a representation of the function space X ( F X ,
which can be thought of being a linear approximation to X → F X .
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40.3 Notes

<references/>

40.4 See Also

ZIPPER (DATA STRUCTURE)9

• ZIPPER10 on the haskell.org wiki
• GENERIC ZIPPER AND ITS APPLICATIONS11

• ZIPPER-BASED FILE SERVER/OS12

• SCRAP YOUR ZIPPERS: A GENERIC ZIPPER FOR HETEROGENEOUS TYPES13

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZIPPER%20%28DATA%20STRUCTURE%29
10 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/ZIPPER
11 HTTP://OKMIJ.ORG/FTP/COMPUTATION/CONTINUATIONS.HTML#ZIPPER
12 HTTP://OKMIJ.ORG/FTP/COMPUTATION/CONTINUATIONS.HTML#ZIPPER-{}FS
13 HTTP://WWW.CS.INDIANA.EDU/~{}ADAMSMD/PAPERS/SCRAP_YOUR_ZIPPERS/
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41 Applicative Functors

Applicative functors are functors with some extra properties, the most important one is that it allows
you to apply functions inside the functor (hence the name) to other values. First we do a quick recap
of functors, next we will see the applicative functors, and for what structure they are used. After
that, we’ll see that we can get an applicative functor out of every monad, and then we’ll see an
example of an applicative functor that is not a monad, but still very useful.

41.1 Functors

Functors, or instances of the typeclass Functor, are some of the most often used structures in
Haskell. Typically, they are structures that "can be mapped over". Here is the class definition of
Functor:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The most well-known functor is the list, where fmap corresponds to map. Another example is Maybe:

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

Typically, for all tree-like structures you can write an instance of Functor.

Exercises:
Define instances of Functor for the following types:

1. The rose tree type Tree, defined by: data Tree a = Node a [Tree a]

2. Either e for a fixed e.
3. The function type ((->) t). In this case, f a will be (t -> a)

41.2 Applicative Functors

Applicative functors are functors with extra properties: you can apply functions inside a functor
to values that can be inside the functor or not. We will first look at the definition, then at some
instances of applicative functors and their most important use.
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41.2.1 Definition

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

The pure function lifts any value inside the functor. (<*>) changes a function inside the functor to
a function over values of the functor. The functor should satisfy some laws:

pure id <*> v = v -- Identity
pure (.) <*> u <*> v <*> w = u <*> (v <*> w) -- Composition
pure f <*> pure x = pure (f x) -- Homomorphism
u <*> pure y = pure ($ y) <*> u -- Interchange

And the Functor instance should satisfy the following law:

fmap f x = pure f <*> x -- Fmap

41.2.2 Instances

As we have seen the Functor instance of Maybe, let’s try to make it Applicative as well.

The definition of pure is easy. It is Just. Now the definition of (<*>). If any of the two arguments
is Nothing, the result should be Nothing. Otherwise, we extract the function and its argument
from the two Just values, and return Just the function applied to its argument:

instance Applicative Maybe where
pure = Just
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

Exercises:

1. Check that the Applicative laws hold for this instance for Maybe
2. Write Applicative instances for

1. Either e, for a fixed e
2. ((->) t), for a fixed t

41.2.3 Using Applicative Functors

The use of (<*>) may not be immediately clear, so let us look at some example that you may have
come across yourself.

Suppose we have the following function:
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f :: Int -> Int -> Int
f x y = 2 * x + y

But instead of Ints, we want to apply this function to values of type Maybe Int. Because you’ve
seen this problem before, you decide to write a function fmap2:

fmap2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
fmap2 f (Just x) (Just y) = Just (f x y)
fmap2 _ _ _ = Nothing

You are happy for a while, but then you find that f really needs another Int argument. But now,
fmap2 isn’t sufficient anymore. You need another function to accommodate for this extra parameter:

fmap3 :: (a -> b -> c -> d) -> Maybe a -> Maybe b -> Maybe c ->
Maybe d
fmap3 f (Just x) (Just y) (Just z) = Just (f x y z)
fmap3 _ _ _ _ = Nothing

This is all good as such, but what if f suddenly needs 4 arguments, or 5, or 10?

Here is where (<*>) comes in. Look at what happens if you write fmap f:

f :: (a -> b -> c)
fmap :: Functor f => (d -> e) -> f d -> f e
fmap f :: Functor f => f a -> f (b -> c) -- Identify d with a,

and e with (b -> c)

Now the use of (<*>) becomes clear. Once we have the final f (b -> c), we can use it to get a
(f b -> f c). And indeed:

fmap2 f a b = f ‘fmap‘ a <*> b
fmap3 f a b c = f ‘fmap‘ a <*> b <*> c
fmap4 f a b c d = f ‘fmap‘ a <*> b <*> c <*> d

To make it look more pretty, the CONTROL.APPLICATIVE1 library defines (<$>) as a synonym of
fmap. The ultimate result is that the code is much cleaner to read and easier to adapt and reuse.

fmap2 f a b = f <$> a <*> b
fmap3 f a b c = f <$> a <*> b <*> c
fmap4 f a b c d = f <$> a <*> b <*> c <*> d

Anytime you feel the need to define different higher order functions to accommodate for function-
arguments with a different number of arguments, think about how defining a proper instance of
Applicative can make your life easier.

1 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-APPLICATIVE.HTML
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Of course, CONTROL.APPLICATIVE2 provides the above functions as convenience, under the names
of liftA to liftA3.

41.3 Monads and Applicative Functors

The type of pure may look familiar. Indeed, if you change its typeclass restriction from:

Applicative f => a -> f a

to

Monad m => a -> m a

it has exactly the same type as return.

As a matter of fact, every instance of Monad can also be made an instance of Applicative. Here
are the definitions that can be used:

pure = return
(<*>) = ap

Here, ap is defined as:

ap f a = do
f’ <- f
a’ <- a
return (f’ a’)

It is also defined in CONTROL.MONAD3

Exercises:
Check that the Applicative instance of Maybe can be obtained by the above transformation.

2 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-APPLICATIVE.HTML

3 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-MONAD.HTML
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41.4 ZipLists

Let’s come back now to the idea that Applicative can make life easier. Perhaps the best known
example of this are the different zipWithN functions of DATA.LIST4. It looks exactly like the kind
of pattern that an applicative functor would be useful for.

For technical reasons, we can not define a Applicative instance for [], as it already has one
defined. This instance does something completely different. fs <*> xs takes all functions from
fs and applies them to all values in xs. To remedy this, we create a wrapper:

newtype ZipList a = ZipList [a]

instance Functor ZipList where
fmap f (ZipList xs) = ZipList (map f xs)

To make this an instance of Applicative with the expected behaviour, we shall first look at the
definition of (<*>), as it follows quite straightforward from what we want to do. The (<*>)
operator takes a list of functions and a list of values, and it should apply the functions to the values
in a pairwise way. This sounds a lot like zipWith ($), we just need to add the ZipList wrapper:

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList $ zipWith ($) fs xs
pure = undefined

Now we only need to define pure. If we define it like this:

pure x = ZipList [x]

it won’t satisfy the Identity law, pure id <*> v = v, since v can contain more than one element,
and zipWith only returns a list of the smaller of the two input sizes. Since we don’t know how
many elements v has, the safest way is to let pure return a list of infinite elements. Now our
instance declaration is complete:

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList (zipWith ($) fs xs)
pure x = ZipList (repeat x)

41.5 References

CONTROL.APPLICATIVE5

4 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/DATA-LIST.
HTML

5 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-APPLICATIVE.HTML
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42 Monoids

42.1 Introduction

A monoid is any data type which has a "zero" value and a binary "append" operation satisfying
certain laws. For example, in a list, the "zero" is [], while the "append" is ++.

In Haskell’s Monoid TYPE CLASS1, the "zero" is called mzero while the "append" is called mappend.

An example instance for integers might be

instance Monoid Integer where
mzero=0
mappend=(+)

A monoid must satisfy this law:

forall x, mappend mzero x = mappend x mzero = x

Sigfpe: BLOG POST2 INTUITION ON ASSOCIATIVITY3

MANY MONOID RELATED LINKS4

42.2 Examples

USAGE IN CABAL5 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-CAFE/2009-
JANUARY/053626.HTML6 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-CAFE/2009-
JANUARY/053721.HTML7. "Package databases are monoids. Configuration files are monoids.
Command line flags and sets of command line flags are monoids. Package build information is a
monoid."

1 Chapter 25 on page 161
2 HTTP://SIGFPE.BLOGSPOT.COM/2009/01/HASKELL-{}MONOIDS-{}AND-{}THEIR-{}USES.

HTML

3 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053798.HTML
4 HTTP://GROUPS.GOOGLE.COM/GROUP/BAHASKELL/BROWSE_THREAD/THREAD/

4CF0164263E0FD6B/42B621F5A4DA6019
5 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053602.HTML
6 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053626.HTML
7 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053721.HTML
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USAGE IN XMONAD8. "xmonad configuration hooks are monoidal".

FINGERTREES9.

42.3 Homomorphisms

A function f :: A -> B between two monoids A and B is called a homomorphism if it preserves
the monoid structure

f empty = empty
f (x ‘mappend‘ y) = f x ‘mappend‘ f y

For example, length is a homomorphism between ([],++) and (Int,+)

length [] = 0
length (xs ++ ys) = length x + length y

GOOGLE PROTOCOL BUFFERS EXAMPLE10. The property that

MyMessage message;
message.ParseFromString(str1 + str2);

is equivalent to

MyMessage message, message2;
message.ParseFromString(str1);
message2.ParseFromString(str2);
message.MergeFrom(message2);

means that parse is a homomorphism:

parse :: String -> Message
parse [] = mempty
parse (xs ++ ys) = parse xs ‘merge‘ parse ys

Well, not quite because parse can fail, but more or less.

42.4 See also

8 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053603.HTML
9 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053689.HTML
10 HTTP://WWW.NABBLE.COM/RE%3A-{}COMMENTS-{}FROM-{}OCAML-{}HACKER-{}BRIAN-{}HURT-{}P21496412.

HTML
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43 Concurrency

43.1 Concurrency

Concurrency in Haskell is mostly done with Haskell threads. Haskell threads are user-space threads
that are implemented in the runtime. Haskell threads are much more efficient in terms of both time
and space than Operating System threads. Apart from traditional synchronization primitives like
semaphores, Haskell offers Software Transactional Memory which greatly simplifies concurrent
access to shared memory.

The modules for concurrency are Control.Concurrent.* and Control.Monad.STM.

43.2 When do you need it?

Perhaps more important than when is when not. Concurrency in Haskell is not used to utilize
multiple processor cores; you need another thing, "parallelism", for that. Instead, concurrency is
used for when a single core must divide its attention between various things, typically IO.

For example, consider a simple "static" webserver (i.e. serves only static content such as images).
Ideally, such a webserver should consume few processing resources; instead, it must be able to
transfer data as fast as possible. The bottleneck should be I/O, where you can throw more hardware
at the problem. So you must be able to efficiently utilize a single processor core among several
connections.

In a C version of such a webserver, you’d use a big loop centered around select() on each con-
nection and on the listening socket. Each open connection would have an attached data structure
specifying the state of that connection (i.e. receiving the HTTP header, parsing it, sending the
file). Such a big loop would be difficult and error-prone to code by hand. However, using Concur-
rent Haskell, you would be able to write a much smaller loop concentrating solely on the listening
socket, which would spawn a new "thread" for each accepted connection. You can then write a new
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"thread" in the IO monad which, in sequence, receives the HTTP header, parses it, and sends the
file.

Internally, the Haskell compiler will then convert the spawning of the thread to an allocation of a
small structure specifying the state of the "thread", congruent to the data structure you would have
defined in C. It will then convert the various threads into a single big loop. Thus, while you write as
if each thread is independent, internally the compiler will convert it to a big loop centered around
select() or whatever alternative is best on your system.

43.3 Example

Example: Downloading files in parallel
downloadFile :: URL -> IO ()

downloadFile = undefined

downloadFiles :: [URL] -> IO ()

downloadFiles = mapM_ (forkIO . downloadFile)

downloadFile :: URL -> IO ()

downloadFile = undefined

downloadFiles :: [URL] -> IO ()

downloadFiles = mapM_ (forkIO . downloadFile)

43.4 Software Transactional Memory

Software Transactional Memory (STM) is a mechanism that allows transactions on memory similar
to database transactions. It greatly simplifies access to shared resources when programming in a
multithreaded environment. By using STM, you no longer have to rely on locking.

To use STM, you have to include Control.Monad.STM. To change into the STM-Monad the atomi-
cally function is used. STM offers different primitives (TVar, TMVar, TChan and TArray) that can
be used for communication.

The following example shows how to use a TChan to communicate between two threads. The
channel is created in the main function and handed over to the reader/writerThread functions. The
readerThread waits on the TChan for new input and prints it. The writerThread writes some Int-
values to the channel and terminates.

Example: Communication with a TChan
import Control.Monad.STM

import Control.Concurrent

import Control.Concurrent.STM.TChan

oneSecond = 1000000

writerThread :: TChan Int -> IO ()

writerThread chan = do

atomically $ writeTChan chan 1
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threadDelay oneSecond

atomically $ writeTChan chan 2

threadDelay oneSecond

atomically $ writeTChan chan 3

threadDelay oneSecond

readerThread :: TChan Int -> IO ()

readerThread chan = do

newInt <- atomically $ readTChan chan

putStrLn $ "read new value: " ++ show newInt

readerThread chan

main = do

chan <- atomically $ newTChan

forkIO $ readerThread chan

forkIO $ writerThread chan

threadDelay $ 5 * oneSecond

import Control.Monad.STM

import Control.Concurrent

import Control.Concurrent.STM.TChan

oneSecond = 1000000

writerThread :: TChan Int -> IO ()

writerThread chan = do

atomically $ writeTChan chan 1

threadDelay oneSecond

atomically $ writeTChan chan 2

threadDelay oneSecond

atomically $ writeTChan chan 3

threadDelay oneSecond

readerThread :: TChan Int -> IO ()

readerThread chan = do

newInt <- atomically $ readTChan chan

putStrLn $ "read new value: " ++ show newInt

readerThread chan

main = do

chan <- atomically $ newTChan

forkIO $ readerThread chan

forkIO $ writerThread chan

threadDelay $ 5 * oneSecond

1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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45 Polymorphism basics

45.1 Parametric Polymorphism

Section goal = short, enables reader to read code (ParseP) with &forall; and use libraries (ST) with-
out horror. Question TALK:HASKELL/THE_CURRY-HOWARD_ISOMORPHISM#POLYMORPHIC

TYPES1 would be solved by this section.

Link to the following paper: Luca Cardelli: ON UNDERSTANDING TYPES, DATA ABSTRACTION,
AND POLYMORPHISM2.

45.1.1 forall a

As you may know, a polymorphic function is a function that works for many different types. For
instance,

length :: [a] -> Int

can calculate the length of any list, be it a string String = [Char] or a list of integers [Int]. The
type variable a indicates that length accepts any element type. Other examples of polymorphic
functions are

fst :: (a, b) -> a
snd :: (a, b) -> b
map :: (a -> b) -> [a] -> [b]

Type variables always begin in lowercase whereas concrete types like Int or String always start
with an uppercase letter, that’s how we can tell them apart.

There is a more explicit way to indicate that a can be any type

length :: forall a. [a] -> Int

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/TALK%3AHASKELL%2FTHE_CURRY-{}HOWARD_
ISOMORPHISM%23POLYMORPHIC%20TYPES

2 HTTP://LUCACARDELLI.NAME/PAPERS/ONUNDERSTANDING.A4.PDF
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In other words, "for all types a, the function length takes a list of elements of type a and returns an
integer". You should think of the old signature as an abbreviation for the new one with the forall3.
That is, the compiler will internally insert any missing forall for you. Another example: the types
signature for fst is really a shorthand for

fst :: forall a. forall b. (a,b) -> a

or equivalently

fst :: forall a b. (a,b) -> a

Similarly, the type of map is really

map :: forall a b. (a -> b) -> [a] -> [b]

The idea that something is applicable to every type or holds for everything is called UNIVER-
SAL QUANTIFICATION4. In mathematical logic, the symbol &forall;5 (an upside-down A, read as
"forall") is commonly used for that, it is called the universal quantifier.

45.1.2 Higher rank types

With explicit forall, it now becomes possible to write functions that expect polymorphic argu-
ments, like for instance

foo :: (forall a. a -> a) -> (Char,Bool)
foo f = (f ’c’, f True)

Here, f is a polymorphic function, it can be applied to anything. In particular, foo can apply it to
both the character ’c’ and the boolean True.

It is not possible to write a function like foo in Haskell98, the type checker will complain that f
may only be applied to values of either the type Char or the type Bool and reject the definition. The
closest we could come to the type signature of foo would be

bar :: (a -> a) -> (Char, Bool)

3 Note that the keyword forall is not part of the Haskell 98 standard, but any of the language extensions
ScopedTypeVariables, Rank2Types or RankNTypes will enable it in the compiler. A future Haskell standard
will incorporate one of these.

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIVERSAL%20QUANTIFICATION
5 The UnicodeSyntax extension allows you to use the symbol &forall; instead of the forall keyword in your

Haskell source code.
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which is the same as

bar :: forall a. ((a -> a) -> (Char, Bool))

But this is very different from foo. The forall at the outermost level means that bar promises
to work with any argument f as long as f has the shape a -> a for some type a unknown to bar.
Contrast this with foo, where it’s the argument f who promises to be of shape a -> a for all types
a at the same time , and it’s foo who makes use of that promise by choosing both a = Char and a
= Bool.

Concerning nomenclature, simple polymorphic functions like bar are said to have a rank-1 type
while the type foo is classified as rank-2 type. In general, a rank-n type is a function that has at
least one rank-(n-1) argument but no arguments of even higher rank.

The theoretical basis for higher rank types is SYSTEM F6, also known as the second-order lambda
calculus. We will detail it in the section SYSTEM F7 in order to better understand the meaning of
forall and its placement like in foo and bar.

Haskell98 is based on the HINDLEY-MILNER8 type system, which is a restriction of System F and
does not support forall and rank-2 types or types of even higher rank. You have to enable the
RankNTypes9 language extension to make use of the full power of System F.

But of course, there is a good reason that Haskell98 does not support higher rank types: type in-
ference for the full System F is undecidable, the programmer would have to write down all type
signatures himself. Thus, the early versions of Haskell have adopted the Hindley-Milner type sys-
tem which only offers simple polymorphic function but enables complete type inference in return.
Recent advances in research have reduced the burden of writing type signatures and made rank-n
types practical in current Haskell compilers.

45.1.3 runST

For the practical Haskell programmer, the ST MONAD10 is probably the first example of a rank-2
type in the wild. Similar to the IO monad, it offers mutable references

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

and mutable arrays. The type variable s represents the state that is being manipulated. But unlike
IO, these stateful computations can be used in pure code. In particular, the function

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYSTEM%20F
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23SYSTEM%20F
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/HINDLEY-{}MILNER
9 Or enable just Rank2Types if you only want to use rank-2 types
10 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/MONAD/ST
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runST :: (forall s. ST s a) -> a

sets up the initial state, runs the computation, discards the state and returns the result. As you can
see, it has a rank-2 type. Why?

The point is that mutable references should be local to one runST. For instance,

v = runST (newSTRef "abc")
foo = runST (readVar v)

is wrong because a mutable reference created in the context of one runST is used again in a second
runST. In other words, the result type a in (forall s. ST s a) -> a may not be a reference
like STRef s String in the case of v. But the rank-2 type guarantees exactly that! Because the
argument must be polymorphic in s, it has to return one and the same type a for all states s; the
result a may not depend on the state. Thus, the unwanted code snippet above contains a type error
and the compiler will reject it.

You can find a more detailed explanation of the ST monad in the original paper LAZY FUNCTIONAL

STATE THREADS11,12.

45.1.4 Impredicativity

• predicative = type variables instantiated to monotypes. impredicative = also polytypes. Exam-
ple: length [id :: forall a . a -> a] or Just (id :: forall a. a -> a). Sub-
tly different from higher-rank.

• relation of polymorphic types by their generality, i.e. ‘isInstanceOf‘.
• HASKELL-CAFE: RANKNTYPES SHORT EXPLANATION.13

45.2 System F

Section goal = a little bit lambda calculus foundation to prevent brain damage from implicit type
parameter passing.

• System F = Basis for all this &forall;-stuff.
• Explicit type applications i.e. map Int (+1) [1,2,3]. &forall; similar to the function arrow

->.
• Terms depend on types. Big Λ for type arguments, small λ for value arguments.

11 HTTP://WWW.DCS.GLA.AC.UK/FP/PAPERS/LAZY-{}FUNCTIONAL-{}STATE-{}THREADS.PS.Z
12 John Launchbury; Simon Peyton Jones 1994-??-??. Lazy functional state threads- ACM Press". pp. 24-35
13 HTTP://THREAD.GMANE.ORG/GMANE.COMP.LANG.HASKELL.CAFE/40508/FOCUS=40610
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45.3 Examples

Section goal = enable reader to judge whether to use data structures with &forall; in his own code.

• Church numerals, Encoding of arbitrary recursive types (positivity conditions): &forall x. (F
x -> x) -> x

• Continuations, Pattern-matching: maybe, either and foldr

I.e. &forall; can be put to good use for implementing data types in Haskell.

45.4 Other forms of Polymorphism

Section goal = contrast polymorphism in OOP and stuff. how type classes fit in.

• ad-hoc polymorphism = different behavior depending on type s. => Haskell type classes.
• parametric polymorphism = ignorant of the type actually used. => &forall;
• subtyping

45.5 Free Theorems

Secion goal = enable reader to come up with free theorems. no need to prove them, intuition is
enough.

• free theorems for parametric polymorphism.

45.6 Footnotes

<references/>

45.7 See also

• Luca Cardelli. ON UNDERSTANDING TYPES, DATA ABSTRACTION, AND POLYMORPHISM14.

14 HTTP://LUCACARDELLI.NAME/PAPERS/ONUNDERSTANDING.A4.PDF
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46 Existentially quantified types

Existential types, or ’existentials’ for short, are a way of ’squashing’ a group of types into one,
single type.

Firstly, a note to those of you following along at home: existentials are part of GHC’s type system
extensions. They aren’t part of Haskell98, and as such you’ll have to either compile any code that
contains them with an extra command-line parameter of -XExistentialQuantification, or put
{-# LANGUAGE ExistentialQuantification #-} at the top of your sources that use existen-
tials.

46.1 The forall keyword

The forall keyword is used to explicitly bring type variables into scope. For example, consider
something you’ve innocuously seen written a hundred times so far:

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

map :: (a -> b) -> [a] -> [b]

But what are these a and b? Well, they’re type variables, you answer. The compiler sees that they
begin with a lowercase letter and as such allows any type to fill that role. Another way of putting
this is that those variables are ’universally quantified’. If you’ve studied formal logic, you will
have undoubtedly come across the quantifiers: ’for all’ (or ∀) and ’exists’ (or ∃). They ’quantify’
whatever comes after them: for example, ∃x means that whatever follows is true for at least one
value of x. ∀x means that what follows is true for every x you could imagine. For example,
∀x, x2 ≥ 0 and ∃x, x3 = 27.

The forall keyword quantifies types in a similar way. We would rewrite map’s type as follows:

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]
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map :: forall a b. (a -> b) -> [a] -> [b]

So we see that for any a and b we can imagine, map takes the type (a -> b) -> [a] -> [b]. For
example, we might choose a = Int and b = String. Then it’s valid to say that map has the type
(Int -> String) -> [Int] -> [String]. We are instantiating the general type of map to a
more specific type.

However, in Haskell, as we know, any use of a lowercase type implicitly begins with a forall
keyword, so the two type declarations for map are equivalent, as are the declarations below:

Example: Two equivalent type statements

id :: a -> a
id :: forall a . a -> a

id :: a -> a
id :: forall a . a -> a

What makes life really interesting is that you can override this default behaviour by explicitly telling
Haskell where the forall keyword goes. One use of this is for building existentially quantified
types, also known as existential types, or simply existentials. But wait... isn’t forall the universal
quantifier? How do you get an existential type out of that? We look at this in a later section.
However, first, let’s dive right into the deep end by seeing an example of the power of existential
types in action.

46.2 Example: heterogeneous lists

The premise behind Haskell’s typeclass system is grouping types that all share a common property.
So if you know a type instantiates some class C, you know certain things about that type. For
example, Int instantiates Eq, so we know that elements of Int can be compared for equality.

Suppose we have a group of values, and we don’t know if they are all the same type, but we do
know they all instantiate some class, i.e. we know all the values have a certain property. It might be
useful to throw all these values into a list. We can’t do this normally because lists are homogeneous
with respect to types: they can only contain a single type. However, existential types allow us to
loosen this requirement by defining a ’type hider’ or ’type box’:

Example: Constructing a heterogeneous list
data ShowBox = forall s. Show s => SB s
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heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

We won’t explain precisely what we mean by that datatype definition, but its meaning should be
clear to your intuition. The important thing is that we’re calling the constructor on three values of
different types, and we place them all into a list, so we must end up with the same type for each
one. Essentially this is because our use of the forall keyword gives our constructor the type SB ::
forall s. Show s => s -> ShowBox. If we were now writing a function to which we intend to
pass heteroList, we couldn’t apply any functions like not to the values inside the SB because they
might not be Bools. But we do know something about each of the elements: they can be converted
to a string via show. In fact, that’s pretty much the only thing we know about them.

Example: Using our heterogeneous list
instance Show ShowBox where

show (SB s) = show s -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

instance Show ShowBox where

show (SB s) = show s -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Let’s expand on this a bit more. In the definition of show for ShowBox – the line marked with (*)
see the comment in the text below – we don’t know the type of s. But as we mentioned, we
do know that the type is an instance of Show due to the constraint on the SB constructor. Therefore,
it’s legal to use the function show on s, as seen in the right-hand side of the function definition.

As for f, recall the type of print:

Example: Types of the functions involved
print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()
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mapM_ print :: Show s => [s] -> IO ()

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

As we just declared ShowBox an instance of Show, we can print the values in the list.

46.3 Explaining the term existential

Note:
Since you can get existential types with forall, Haskell forgoes the use of an exists keyword,
which would just be redundant.

Let’s get back to the question we asked ourselves a couple of sections back. Why are we calling
these existential types if forall is the universal quantifier?

Firstly, forall really does mean ’for all’. One way of thinking about types is as sets of values with
that type, for example, Bool is the set {True, False, &perp;} (remember that bottom, &perp;, is a
member of every type!), Integer is the set of integers (and bottom), String is the set of all possible
strings (and bottom), and so on. forall serves as an intersection over those sets. For example,
forall a. a is the intersection over all types, which must be {&perp;}, that is, the type (i.e. set)
whose only value (i.e. element) is bottom. Why? Think about it: how many of the elements of Bool
appear in, for example, String? Bottom is the only value common to all types.

A few more examples:

1. [forall a. a] is the type of a list whose elements all have the type forall a. a, i.e. a
list of bottoms.

2. [forall a. Show a => a] is the type of a list whose elements all have the type forall
a. Show a => a. The Show class constraint limits the sets you intersect over (here we’re
only intersecting over instances of Show), but ⊥ is still the only value common to all these
types, so this too is a list of bottoms.

3. [forall a. Num a => a]. Again, the list where each element is a member of all types
that instantiate Num. This could involve numeric literals, which have the type forall a.
Num a => a, as well as bottom.

4. forall a. [a] is the type of the list whose elements have some (the same) type a, which
can be assumed to be any type at all by a callee (and therefore this too is a list of bottoms).

We see that most intersections over types just lead to combinations of bottoms in some ways, be-
cause types don’t have a lot of values in common.

Recall that in the last section, we developed a heterogeneous list using a ’type hider’. Ideally, we’d
like the type of a heterogeneous list to be [exists a. a], i.e. the list where all elements have
type exists a. a. This ’exists’ keyword (which isn’t present in Haskell) is, as you may guess,
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a union of types, so that [exists a. a] is the type of a list where all elements could take any
type at all (and the types of different elements needn’t be the same).

But we got almost the same behaviour above using datatypes. Let’s declare one.

Example: An existential datatype
data T = forall a. MkT a

data T = forall a. MkT a

This means that:

Example: The type of our existential constructor

MkT :: forall a. a -> T

MkT :: forall a. a -> T

So we can pass any type we want to MkT and it’ll convert it into a T. So what happens when we
deconstruct a MkT value?

Example: Pattern matching on our existential constructor
foo (MkT x) = ... -- what is the type of x?

foo (MkT x) = ... -- what is the type of x?

As we’ve just stated, x could be of any type. That means it’s a member of some arbitrary type,
so has the type x :: exists a. a. In other words, our declaration for T is isomorphic to the
following one:

Example: An equivalent version of our existential datatype (pseudo-Haskell)
data T = MkT (exists a. a)

data T = MkT (exists a. a)

And suddenly we have existential types. Now we can make a heterogeneous list:
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Example: Constructing the hetereogeneous list
heteroList = [MkT 5, MkT (), MkT True, MkT map]

heteroList = [MkT 5, MkT (), MkT True, MkT map]

Of course, when we pattern match on heteroList we can’t do anything with its elements1, as all
we know is that they have some arbitrary type. However, if we are to introduce class constraints:

Example: A new existential datatype, with a class constraint
data T’ = forall a. Show a => MkT’ a

data T’ = forall a. Show a => MkT’ a

Which is isomorphic to:

Example: The new datatype, translated into ’true’ existential types
data T’ = MkT’ (exists a. Show a => a)

data T’ = MkT’ (exists a. Show a => a)

Again the class constraint serves to limit the types we’re unioning over, so that now we know the
values inside a MkT’ are elements of some arbitrary type which instantiates Show. The implication
of this is that we can apply show to a value of type exists a. Show a => a. It doesn’t matter
exactly which type it turns out to be.

Example: Using our new heterogenous setup
heteroList’ = [MkT’ 5, MkT’ (), MkT’ True, MkT’ "Sartre"]

main = mapM_ (\(MkT’ x) -> print x) heteroList’

{- prints:

5

()

True

"Sartre"

-}

1 Actually, we can apply them to functions whose type is forall a. a -> R, for some arbitrary R, as these accept
values of any type as a parameter. Examples of such functions: id, const k for any k, seq. So technically, we
can’t do anything useful with its elements, except reduce them to WHNF.
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heteroList’ = [MkT’ 5, MkT’ (), MkT’ True, MkT’ "Sartre"]

main = mapM_ (\(MkT’ x) -> print x) heteroList’

{- prints:

5

()

True

"Sartre"

-}

To summarise, the interaction of the universal quantifier with datatypes produces existential types.
As most interesting applications of forall-involving types use this interaction, we label such types
’existential’. Whenever you want existential types, you must wrap them up in a datatype constructor,
they can’t exist "out in the open" like with [exists a. a].

46.4 Example: runST

One monad that you may not have come across so far is the ST monad. This is essentially the State
monad on steroids: it has a much more complicated structure and involves some more advanced
topics. It was originally written to provide Haskell with IO. As we mentioned in the ../UNDER-
STANDING MONADS/2 chapter, IO is basically just a State monad with an environment of all the
information about the real world. In fact, inside GHC at least, ST is used, and the environment is a
type called RealWorld.

To get out of the State monad, you can use runState. The analogous function for ST is called
runST, and it has a rather particular type:

Example: The runST function

runST :: forall a. (forall s. ST s a) -> a

runST :: forall a. (forall s. ST s a) -> a

This is actually an example of a more complicated language feature called rank-2 polymorphism,
which we don’t go into detail here. It’s important to notice that there is no parameter for the initial
state. Indeed, ST uses a different notion of state to State; while State allows you to get and put
the current state, ST provides an interface to references. You create references, which have type
STRef, with newSTRef :: a -> ST s (STRef s a), providing an initial value, then you can
use readSTRef :: STRef s a -> ST s a and writeSTRef :: STRef s a -> a -> ST s
() to manipulate them. As such, the internal environment of a ST computation is not one specific

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FUNDERSTANDING%20MONADS%2F
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value, but a mapping from references to values. Therefore, you don’t need to provide an initial state
to runST, as the initial state is just the empty mapping containing no references.

However, things aren’t quite as simple as this. What stops you creating a reference in one ST
computation, then using it in another? We don’t want to allow this because (for reasons of thread-
safety) no ST computation should be allowed to assume that the initial internal environment contains
any specific references. More concretely, we want the following code to be invalid:

Example: Bad ST code
let v = runST (newSTRef True)

in runST (readSTRef v)

let v = runST (newSTRef True)

in runST (readSTRef v)

What would prevent this? The effect of the rank-2 polymorphism in runST’s type is to constrain
the scope of the type variable <code>s<code> to be within the first parameter. In other words, if the
type variable s appears in the first parameter it cannot also appear in the second. Let’s take a look
at how exactly this is done. Say we have some code like the following:

Example: Briefer bad ST code

... runST (newSTRef True) ...

... runST (newSTRef True) ...

The compiler tries to fit the types together:

Example: The compiler’s typechecking stage

newSTRef True :: forall s. ST s (STRef s Bool)
runST :: forall a. (forall s. ST s a) -> a
together, forall a. (forall s. ST s (STRef s Bool)) -> STRef s Bool

newSTRef True :: forall s. ST s (STRef s Bool)
runST :: forall a. (forall s. ST s a) -> a
together, forall a. (forall s. ST s (STRef s Bool)) -> STRef s Bool

The importance of the forall in the first bracket is that we can change the name of the s. That is,
we could write:
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Example: A type mismatch!

together, forall a. (forall s’. ST s’ (STRef s’ Bool)) -> STRef s
Bool

together, forall a. (forall s’. ST s’ (STRef s’ Bool)) -> STRef s
Bool

This makes sense: in mathematics, saying ∀x.x > 5 is precisely the same as saying ∀y.y > 5; you’re
just giving the variable a different label. However, we have a problem with our above code. Notice
that as the forall does not scope over the return type of runST, we don’t rename the s there as
well. But suddenly, we’ve got a type mismatch! The result type of the ST computation in the first
parameter must match the result type of runST, but now it doesn’t!

The key feature of the existential is that it allows the compiler to generalise the type of the state in
the first parameter, and so the result type cannot depend on it. This neatly sidesteps our dependence
problems, and ’compartmentalises’ each call to runST into its own little heap, with references not
being able to be shared between different calls.

46.5 Quantification as a primitive

Universal quantification is useful for defining data types that aren’t already defined. Suppose there
was no such thing as pairs built into haskell. Quantification could be used to define them.

newtype Pair a b=Pair (forall c.(a->b->c)->c)

46.6 Notes

<references />

46.7 Further reading

• GHC’s user guide contains USEFUL INFORMATION3 on existentials, including the various limi-
tations placed on them (which you should know about).

• LAZY FUNCTIONAL STATE THREADS4, by Simon Peyton-Jones and John Launchbury, is a paper
which explains more fully the ideas behind ST.

3 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/USERS_GUIDE/DATA-{}TYPE-{}EXTENSIONS.
HTML#EXISTENTIAL-{}QUANTIFICATION

4 HTTP://CITESEER.IST.PSU.EDU/LAUNCHBURY94LAZY.HTML
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47 Advanced type classes

Type classes may seem innocuous, but research on the subject has resulted in several advancements
and generalisations which make them a very powerful tool.

47.1 Multi-parameter type classes

Multi-parameter type classes are a generalisation of the single parameter TYPE CLASSES1, and are
supported by some Haskell implementations.

Suppose we wanted to create a ’Collection’ type class that could be used with a variety of concrete
data types, and supports two operations -- ’insert’ for adding elements, and ’member’ for testing
membership. A first attempt might look like this:

Example: The Collection type class (wrong)
class Collection c where

insert :: c -> e -> c

member :: c -> e -> Bool

-- Make lists an instance of Collection:

instance Collection [a] where

insert xs x = x:xs

member = flip elem

class Collection c where

insert :: c -> e -> c

member :: c -> e -> Bool

-- Make lists an instance of Collection:

instance Collection [a] where

insert xs x = x:xs

member = flip elem

This won’t compile, however. The problem is that the ’e’ type variable in the Collection operations
comes from nowhere -- there is nothing in the type of an instance of Collection that will tell us
what the ’e’ actually is, so we can never define implementations of these methods. Multi-parameter
type classes solve this by allowing us to put ’e’ into the type of the class. Here is an example that
compiles and can be used:

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CLASS_DECLARATIONS
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Example: The Collection type class (right)
class Eq e => Collection c e where

insert :: c -> e -> c

member :: c -> e -> Bool

instance Eq a => Collection [a] a where

insert = flip (:)

member = flip elem

class Eq e => Collection c e where

insert :: c -> e -> c

member :: c -> e -> Bool

instance Eq a => Collection [a] a where

insert = flip (:)

member = flip elem

47.2 Functional dependencies

A problem with the above example is that, in this case, we have extra information that the compiler
doesn’t know, which can lead to false ambiguities and over-generalised function signatures. In this
case, we can see intuitively that the type of the collection will always determine the type of the
element it contains - so if c is [a], then e will be a. If c is Hashmap a, then e will be a. (The
reverse is not true: many different collection types can hold the same element type, so knowing the
element type was e.g. Int, would not tell you the collection type).

In order to tell the compiler this information, we add a functional dependency, changing the class
declaration to

Example: A functional dependency
class Eq e => Collection c e | c -> e where ...

class Eq e => Collection c e | c -> e where ...

A functional dependency is a constraint that we can place on type class parameters. Here, the extra
| c -> e should be read ’c uniquely identifies e’, meaning for a given c, there will only be one
e. You can have more than one functional dependency in a class -- for example you could have c
-> e, e -> c in the above case. And you can have more than two parameters in multi-parameter
classes.
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47.3 Examples

47.3.1 Matrices and vectors

Suppose you want to implement some code to perform simple linear algebra:

Example: The Vector and Matrix datatypes
data Vector = Vector Int Int deriving (Eq, Show)

data Matrix = Matrix Vector Vector deriving (Eq, Show)

data Vector = Vector Int Int deriving (Eq, Show)

data Matrix = Matrix Vector Vector deriving (Eq, Show)

You want these to behave as much like numbers as possible. So you might start by overloading
Haskell’s Num class:

Example: Instance declarations for Vector and Matrix
instance Num Vector where

Vector a1 b1 + Vector a2 b2 = Vector (a1+a2) (b1+b2)

Vector a1 b1 - Vector a2 b2 = Vector (a1-a2) (b1-b2)

{- ... and so on ... -}

instance Num Matrix where

Matrix a1 b1 + Matrix a2 b2 = Matrix (a1+a2) (b1+b2)

Matrix a1 b1 - Matrix a2 b2 = Matrix (a1-a2) (b1-b2)

{- ... and so on ... -}

instance Num Vector where

Vector a1 b1 + Vector a2 b2 = Vector (a1+a2) (b1+b2)

Vector a1 b1 - Vector a2 b2 = Vector (a1-a2) (b1-b2)

{- ... and so on ... -}

instance Num Matrix where

Matrix a1 b1 + Matrix a2 b2 = Matrix (a1+a2) (b1+b2)

Matrix a1 b1 - Matrix a2 b2 = Matrix (a1-a2) (b1-b2)

{- ... and so on ... -}

The problem comes when you want to start multiplying quantities. You really need a multiplication
function which overloads to different types:

Example: What we need
(*) :: Matrix -> Matrix -> Matrix

(*) :: Matrix -> Vector -> Vector

(*) :: Matrix -> Int -> Matrix

(*) :: Int -> Matrix -> Matrix
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{- ... and so on ... -}

(*) :: Matrix -> Matrix -> Matrix

(*) :: Matrix -> Vector -> Vector

(*) :: Matrix -> Int -> Matrix

(*) :: Int -> Matrix -> Matrix

{- ... and so on ... -}

How do we specify a type class which allows all these possibilities?

We could try this:

Example: An ineffective attempt (too general)
class Mult a b c where

(*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where

{- ... -}

instance Mult Matrix Vector Vector where

{- ... -}

class Mult a b c where

(*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where

{- ... -}

instance Mult Matrix Vector Vector where

{- ... -}

That, however, isn’t really what we want. As it stands, even a simple expression like this has an
ambiguous type unless you supply an additional type declaration on the intermediate expression:

Example: Ambiguities lead to more verbose code
m1, m2, m3 :: Matrix

(m1 * m2) * m3 -- type error; type of (m1*m2) is

ambiguous

(m1 * m2) :: Matrix * m3 -- this is ok

m1, m2, m3 :: Matrix

(m1 * m2) * m3 -- type error; type of (m1*m2) is

ambiguous

(m1 * m2) :: Matrix * m3 -- this is ok
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After all, nothing is stopping someone from coming along later and adding another instance:

Example: A nonsensical instance of Mult
instance Mult Matrix Matrix (Maybe Char) where

{- whatever -}

instance Mult Matrix Matrix (Maybe Char) where

{- whatever -}

The problem is that c shouldn’t really be a free type variable. When you know the types of the
things that you’re multiplying, the result type should be determined from that information alone.

You can express this by specifying a functional dependency:

Example: The correct definition of Mult
class Mult a b c | a b -> c where

(*) :: a -> b -> c

class Mult a b c | a b -> c where

(*) :: a -> b -> c

This tells Haskell that c is uniquely determined from a and b.
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48 Phantom types

Phantom types are a way to embed a language with a stronger type system than Haskell’s.

48.1 Phantom types

An ordinary type

data T = TI Int | TS String

plus :: T -> T -> T
concat :: T -> T -> T

its phantom type version

data T a = TI Int | TS String

Nothing’s changed - just a new argument a that we don’t touch. But magic!

plus :: T Int -> T Int -> T Int
concat :: T String -> T String -> T String

Now we can enforce a little bit more!

This is useful if you want to increase the type-safety of your code, but not impose additional
runtime overhead:

-- Peano numbers at the type level.
data Zero = Zero
data Succ a = Succ a
-- Example: 3 can be modeled as the type
-- Succ (Succ (Succ Zero)))

data Vector n a = Vector [a] deriving (Eq, Show)

vector2d :: Vector (Succ (Succ Zero)) Int
vector2d = Vector [1,2]

vector3d :: Vector (Succ (Succ (Succ Zero))) Int
vector3d = Vector [1,2,3]

-- vector2d == vector3d raises a type error
-- at compile-time:
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-- Couldn’t match expected type ‘Zero’
-- against inferred type ‘Succ Zero’
-- Expected type: Vector (Succ (Succ Zero)) Int
-- Inferred type: Vector (Succ (Succ (Succ Zero))) Int
-- In the second argument of ‘(==)’, namely ‘vector3d’
-- In the expression: vector2d == vector3d

-- while vector2d == Vector [1,2,3] works
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49 Generalised algebraic data-types (GADT)

ERRORMAP1

49.1 Introduction

Generalized Algebraic Datatypes are, as the name suggests, a generalization of Algebraic Data
Types that you are already familiar with. Basically, they allow you to explicitly write down the
types of the constructors. In this chapter, you’ll learn why this is useful and how to declare your
own.

We begin with an example of building a simple embedded domain specific language (EDSL) for
simple arithmetical expressions, which is put on a sounder footing with GADTs. This is followed
by a review of the syntax for GADTs, with simpler illustrations, and a different application to
construct a safe list type for which the equivalent of head [] fails to typecheck and thus does not
give the usual runtime error: *** Exception: Prelude.head: empty list.

49.2 Understanding GADTs

So, what are GADTs and what are they useful for? GADTs are mainly used to implement domain
specific languages and this section will introduce them with a corresponding example.

49.2.1 Arithmetic expressions

Let’s consider a small language for arithmetic expressions, given by the data type

data Expr = I Int -- integer constants
| Add Expr Expr -- add two expressions
| Mul Expr Expr -- multiply two expressions

In other words, this data type corresponds to the abstract syntax tree, an arithmetic term like
(5+1)*7 would be represented as (I 5 ‘Add‘ I 1) ‘Mul‘ I 7 :: Expr.

Given the abstract syntax tree, we would like to do something with it; we want to compile it,
optimize it and so on. For starters, let’s write an evaluation function that takes an expressions and
calculates the integer value it represents. The definition is straightforward:

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/ERRORMAP
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eval :: Expr -> Int
eval (I n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

49.2.2 Extending the language

Now, imagine that we would like to extend our language with other types than just integers. For
instance, let’s say we want to represent equality tests, so we need booleans as well. We augment
the ‘Expr‘ type to become

data Expr = I Int
| B Bool -- boolean constants
| Add Expr Expr
| Mul Expr Expr
| Eq Expr Expr -- equality test

The term <code>5+1 == 7<code> would be represented as (I 5 ‘Add‘ I 1) ‘Eq‘ I 7.

As before, we want to write a function eval to evaluate expressions. But this time, expressions can
now represent either integers or booleans and we have to capture that in the return type

eval :: Expr -> Either Int Bool

The first two cases are straightforward

eval (I n) = Left n
eval (B b) = Right b

but now we get in trouble. We would like to write

eval (Add e1 e2) = eval e1 + eval e2 -- ???

but this doesn’t type check: the addition function + expects two integer arguments, but eval e1 is
of type Either Int Bool and we’d have extract the Int from that.

Even worse, what happens if e1 actually represents a boolean? The following is a valid expression

B True ‘Add‘ I 5 :: Expr

but clearly, it doesn’t make any sense; we can’t add booleans to integers! In other words, evaluation
may return integers or booleans, but it may also fail because the expression makes no sense. We
have to incorporate that in the return type:
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eval :: Expr -> Maybe (Either Int Bool)

Now, we could write this function just fine, but that would still be unsatisfactory, because what we
really want to do is to have Haskell’s type system rule out any invalid expressions; we don’t want to
check types ourselves while deconstructing the abstract syntax tree.

Exercise: Despite our goal, it may still be instructional to implement the eval function; do this.

49.2.3 Phantom types

The so-called phantom types are the first step towards our goal. The technique is to augment the
Expr with a type variable, so that it becomes

data Expr a = I Int
| B Bool
| Add (Expr a) (Expr a)
| Mul (Expr a) (Expr a)
| Eq (Expr a) (Expr a)

Note that an expression Expr a does not contain a value a at all; that’s why a is called a phantom
type, it’s just a dummy variable. Compare that with, say, a list [a] which does contain a bunch of
a’s.

The key idea is that we’re going to use a to track the type of the expression for us. Instead of
making the constructor

Add :: Expr a -> Expr a -> Expr a

available to users of our small language, we are only going to provide a smart constructor with a
more restricted type

add :: Expr Int -> Expr Int -> Expr Int
add = Add

The implementation is the same, but the types are different. Doing this with the other constructors
as well,

i :: Int -> Expr Int
i = I
b :: Bool -> Expr Bool
b = B

the previously problematic expression

b True ‘add‘ i 5
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no longer type checks! After all, the first arguments has the type Expr Bool while add expects an
Expr Int. In other words, the phantom type a marks the intended type of the expression. By only
exporting the smart constructors, the user cannot create expressions with incorrect types.

As before, we want to implement an evaluation function. With our new marker a, we might hope
to give it the type

eval :: Expr a -> a

and implement the first case like this

eval (I n) = n

But alas, this does not work: how would the compiler know that encountering the constructor I
means that a = Int? Granted, this will be case for all the expression that were created by users
of our language because they are only allowed to use the smart constructors. But internally, an
expression like

I 5 :: Expr String

is still valid. In fact, as you can see, a doesn’t even have to be Int or Bool, it could be anything.

What we need is a way to restrict the return types of the constructors proper, and that’s exactly what
generalized data types do.

49.2.4 GADTs

The obvious notation for restricting the type of a constructor is to write down its type, and that’s
exactly how GADTs are defined:

data Expr a where
I :: Int -> Expr Int
B :: Bool -> Expr Bool
Add :: Expr Int -> Expr Int -> Expr Int
Mul :: Expr Int -> Expr Int -> Expr Int
Eq :: Expr Int -> Expr Int -> Expr Bool

In other words, we simply list the type signatures of all the constructors. In particular, the marker
type a is specialised to Int or Bool according to our needs, just like we would have done with smart
constructors.

And the great thing about GADTs is that we now can implement an evaluation function that takes
advantage of the type marker:

eval :: Expr a -> a
eval (I n) = n
eval (B b) = b
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eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Eq e1 e2) = eval e1 == eval e2

In particular, in the first case

eval (I n) = n

the compiler is now able infer that a=Int when we encounter a constructor I and that it is legal to
return the <code>n :: Int<code>; similarly for the other cases.

To summarise, GADTs allows us to restrict the return types of constructors and thus enable us to
take advantage of Haskell’s type system for our domain specific languages. Thus, we can implement
more languages and their implementation becomes simpler.

49.3 Summary

49.3.1 Syntax

Here a quick summary of how the syntax for declaring GADTs works.

First, consider the following ordinary algebraic datatypes: the familiar List and Maybe types, and
a simple tree type, RoseTree:

Maybe List Rose Tree

data Maybe a = Nothing |
Just a

data List a = Nil | Cons a
(List a)

data RoseTree a = RoseTree
a [RoseTree a]

Remember that the constructors introduced by these declarations can be used both for pattern
matches to deconstruct values and as functions to construct values. (Nothing and Nil are func-
tions with "zero arguments".) We can ask what the types of the latter are:

Maybe List Rose Tree

> :t Nothing Nothing ::
Maybe a > :t Just Just :: a
-> Maybe a

> :t Nil Nil :: List a > :t
Cons Cons :: a -> List a -
> List a

> :t RoseTree RoseTree ::
a -> [RoseTree a] -> Rose-
Tree a

It is clear that this type information about the constructors for Maybe, List and RoseTree respec-
tively is equivalent to the information we gave to the compiler when declaring the datatype in the
first place. In other words, it’s also conceivable to declare a datatype by simply listing the types of
all of its constructors, and that’s exactly what the GADT syntax does:
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Maybe List Rose Tree

data Maybe a where Noth-
ing :: Maybe a Just :: a ->
Maybe a

data List a where Nil :: List
a Cons :: a -> List a -> List
a

data RoseTree a where
RoseTree :: a -> [RoseTree
a] -> RoseTree a

This syntax is made available by the language option {-#LANGUAGE GADTs #-}. It should be famil-
iar to you in that it closely resembles the syntax type class declarations. It’s also easy to remember
if you already like to think of constructors as just being functions. Each constructor is just defined
by a type signature.

49.3.2 New possibilities

Note that when we asked the GHCi for the types of Nothing and Just it returned Maybe a and a
-> Maybe a as the types. In these and the other cases, the type of the final output of the function
associated with a constructor is the type we were initially defining - Maybe a, List a or RoseTree
a. In general, in standard Haskell, the constructor functions for Foo a have Foo a as their final
return type. If the new syntax were to be strictly equivalent to the old, we would have to place this
restriction on its use for valid type declarations.

So what do GADTs add for us? The ability to control exactly what kind of Foo you return. With
GADTs, a constructor for Foo a is not obliged to return Foo a; it can return any Foo blah that
you can think of. In the code sample below, for instance, the GadtedFoo constructor returns a
GadtedFoo Int even though it is for the type GadtedFoo x.

Example: GADT gives you more control
data FooInGadtClothing a where

MkFooInGadtClothing :: a -> FooInGadtClothing a

--which is no different from: data Haskell98Foo a = MkHaskell98Foo a

,

--by contrast, consider:

data TrueGadtFoo a where

MkTrueGadtFoo :: a -> TrueGadtFoo Int

--This has no Haskell 98 equivalent.

data FooInGadtClothing a where

MkFooInGadtClothing :: a -> FooInGadtClothing a

--which is no different from: data Haskell98Foo a = MkHaskell98Foo a

,

--by contrast, consider:

data TrueGadtFoo a where

MkTrueGadtFoo :: a -> TrueGadtFoo Int

--This has no Haskell 98 equivalent.

326



Examples

But note that you can only push the generalization so far... if the datatype you are declaring is a Foo,
the constructor functions must return some kind of Foo or another. Returning anything else simply
wouldn’t work

Example: Try this out. It doesn’t work
data Bar where

BarNone :: Bar -- This is ok

data Foo where

MkFoo :: Bar Int-- This will not typecheck

data Bar where

BarNone :: Bar -- This is ok

data Foo where

MkFoo :: Bar Int-- This will not typecheck

49.4 Examples

49.4.1 Safe Lists

Prerequisite: We assume in this section that you know how a List tends to be repre-
sented in functional languages
Note: The examples in this article additionally require the extensions EmptyDataDe-
cls and KindSignatures to be enabled

We’ve now gotten a glimpse of the extra control given to us by the GADT syntax. The only thing
new is that you can control exactly what kind of data structure you return. Now, what can we use
it for? Consider the humble Haskell list. What happens when you invoke head []? Haskell blows
up. Have you ever wished you could have a magical version of head that only accepts lists with at
least one element, lists on which it will never blow up?

To begin with, let’s define a new type, SafeList x y. The idea is to have something similar to
normal Haskell lists [x], but with a little extra information in the type. This extra information (the
type variable y) tells us whether or not the list is empty. Empty lists are represented as SafeList x
Empty, whereas non-empty lists are represented as SafeList x NonEmpty.

-- we have to define these types

data Empty

data NonEmpty

-- the idea is that you can have either
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-- SafeList a Empty

-- or SafeList a NonEmpty

data SafeList a b where

-- to be implemented

Since we have this extra information, we can now define a function safeHead on only the non-
empty lists! Calling safeHead on an empty list would simply refuse to type-check.

safeHead :: SafeList a NonEmpty -> a

So now that we know what we want, safeHead, how do we actually go about getting it? The
answer is GADT. The key is that we take advantage of the GADT feature to return two different
list-of-a types, SafeList a Empty for the Nil constructor, and SafeList a NonEmpty for the
Cons constructor:

data SafeList a b where

Nil :: SafeList a Empty

Cons :: a -> SafeList a b -> SafeList a NonEmpty

This wouldn’t have been possible without GADT, because all of our constructors would have been
required to return the same type of list; whereas with GADT we can now return different types of
lists with different constructors. Anyway, let’s put this all together, along with the actual definition
of SafeHead:

Example: safe lists via GADT
{-#LANGUAGE GADTs, EmptyDataDecls #-}

-- (the EmptyDataDecls pragma must also appear at the very top of the

module,

-- in order to allow the Empty and NonEmpty datatype declarations.)

data Empty

data NonEmpty

data SafeList a b where

Nil :: SafeList a Empty

Cons:: a -> SafeList a b -> SafeList a NonEmpty

safeHead :: SafeList a NonEmpty -> a

safeHead (Cons x _) = x

{-#LANGUAGE GADTs, EmptyDataDecls #-}

-- (the EmptyDataDecls pragma must also appear at the very top of the

module,

-- in order to allow the Empty and NonEmpty datatype declarations.)

data Empty

data NonEmpty
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data SafeList a b where

Nil :: SafeList a Empty

Cons:: a -> SafeList a b -> SafeList a NonEmpty

safeHead :: SafeList a NonEmpty -> a

safeHead (Cons x _) = x

Copy this listing into a file and load in ghci -fglasgow-exts. You should notice the following
difference, calling safeHead on a non-empty and an empty-list respectively:

Example: safeHead is... safe
Prelude Main> safeHead (Cons "hi" Nil)

"hi"

Prelude Main> safeHead Nil

<interactive>:1:9:

Couldn’t match ‘NonEmpty’ against ‘Empty’

Expected type: SafeList a NonEmpty

Inferred type: SafeList a Empty

In the first argument of ‘safeHead’, namely ‘Nil’

In the definition of ‘it’: it = safeHead Nil

Prelude Main> safeHead (Cons "hi" Nil)

"hi"

Prelude Main> safeHead Nil

<interactive>:1:9:

Couldn’t match ‘NonEmpty’ against ‘Empty’

Expected type: SafeList a NonEmpty

Inferred type: SafeList a Empty

In the first argument of ‘safeHead’, namely ‘Nil’

In the definition of ‘it’: it = safeHead Nil

This complaint is a good thing: it means that we can now ensure during compile-time if we’re
calling safeHead on an appropriate list. However, this is a potential pitfall that you’ll want to look
out for.

Consider the following function. What do you think its type is?

Example: Trouble with GADTs
silly 0 = Nil

silly 1 = Cons 1 Nil
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silly 0 = Nil

silly 1 = Cons 1 Nil

Now try loading the example up in GHCi. You’ll notice the following complaint:

Example: Trouble with GADTs - the complaint
Couldn’t match ‘Empty’ against ‘NonEmpty’

Expected type: SafeList a Empty

Inferred type: SafeList a NonEmpty

In the application ‘Cons 1 Nil’

In the definition of ‘silly’: silly 1 = Cons 1 Nil

Couldn’t match ‘Empty’ against ‘NonEmpty’

Expected type: SafeList a Empty

Inferred type: SafeList a NonEmpty

In the application ‘Cons 1 Nil’

In the definition of ‘silly’: silly 1 = Cons 1 Nil

By liberalizing the type of a Cons, we are able to use it to construct both safe and unsafe lists. The
functions that operate on the lists must carry the safety constraint (we can create type declarations
to make this easy for clients to our module).

Example: A different approach
{-#LANGUAGE GADTs, EmptyDataDecls, KindSignatures #-}

-- here we add the KindSignatures pragma,

-- which makes the GADT declaration a bit more elegant.

data NotSafe

data Safe

data MarkedList :: * -> * -> * where

Nil :: MarkedList t NotSafe

Cons :: a -> MarkedList a b -> MarkedList a c

safeHead :: MarkedList a Safe -> a

safeHead (Cons x _) = x

silly 0 = Nil

silly 1 = Cons () Nil

silly n = Cons () $ silly (n-1)

{-#LANGUAGE GADTs, EmptyDataDecls, KindSignatures #-}

-- here we add the KindSignatures pragma,
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-- which makes the GADT declaration a bit more elegant.

data NotSafe

data Safe

data MarkedList :: * -> * -> * where

Nil :: MarkedList t NotSafe

Cons :: a -> MarkedList a b -> MarkedList a c

safeHead :: MarkedList a Safe -> a

safeHead (Cons x _) = x

silly 0 = Nil

silly 1 = Cons () Nil

silly n = Cons () $ silly (n-1)

Exercises:

1. Could you implement a safeTail function?

49.4.2 A simple expression evaluator

Insert the example used in Wobbly Types paper... I thought that was quite pedagogical

This is already covered in the first part of the tutorial.

49.5 Discussion

More examples, thoughts

From FOSDEM 2006, I vaguely recall that there is some relationship between GADT
and the below... what?

49.5.1 Phantom types

See ../PHANTOM TYPES/2.

49.5.2 Existential types

If you like ../EXISTENTIALLY QUANTIFIED TYPES/3, you’d probably want to notice that they are
now subsumbed by GADTs. As the GHC manual says, the following two type declarations give

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPHANTOM%20TYPES%2F
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FEXISTENTIALLY%20QUANTIFIED%20TYPES%2F
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you the same thing.

data TE a = forall b. MkTE b (b->a)
data TG a where { MkTG :: b -> (b->a) -> TG a }

Heterogeneous lists are accomplished with GADTs like this:

data TE2 = forall b. Show b => MkTE2 [b]
data TG2 where
MkTG2 :: Show b => [b] -> TG2

49.5.3 Witness types

49.6 References
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50 Type constructors & Kinds

50.1 Kinds for C++ users

• * is any concrete type, including functions. These all have kind *:

type MyType = Int
type MyFuncType = Int -> Int
myFunc :: Int -> Int

typedef int MyType;
typedef int (*MyFuncType)(int);
int MyFunc(int a);

• * -> * is a template that takes one type argument. It is like a function from types to types: you
plug a type in and the result is a type. Confusion can arise from the two uses of MyData (although
you can give them different names if you wish) - the first is a type constructor, the second is a
data constructor. These are equivalent to a class template and a constructor respectively in C++.
Context resolves the ambiguity - where Haskell expects a type (e.g. in a type signature) MyData
is a type constructor, where a value, it is a data constructor.

data MyData t -- type constructor with kind * -> *
= MyData t -- data constructor with type a -> MyData a

*Main> :k MyData
MyData :: * -> *
*Main> :t MyData
MyData :: a -> MyData a

template <typename t> class MyData
{

t member;
};

• * -> * -> * is a template that takes two type arguments

data MyData t1 t2 = MyData t1 t2

template <typename t1, typename t2> class MyData
{

t1 member1;
t2 member2;
MyData(t1 m1, t2 m2) : member1(m1), member2(m2) { }

};

• (* -> *) -> * is a template that takes one template argument of kind (* -> *)

data MyData tmpl = MyData (tmpl Int)
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template <template <typename t> tmpl> class MyData
{

tmpl<int> member1;
MyData(tmpl<int> m) : member1(m) { }

};
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52 Denotational semantics

i Information
New readers: Please report stumbling blocks! While the material on this page is intended
to explain clearly, there are always mental traps that innocent readers new to the subject fall in
but that the authors are not aware of. Please report any tricky passages to the TALK1 page or
the #haskell IRC channel so that the style of exposition can be improved.

52.1 Introduction

This chapter explains how to formalize the meaning of Haskell programs, the denotational seman-
tics. It may seem to be nit-picking to formally specify that the program square x = x*x means the
same as the mathematical square function that maps each number to its square, but what about the
meaning of a program like f x = f (x+1) that loops forever? In the following, we will exemplify
the approach first taken by Scott and Strachey to this question and obtain a foundation to reason
about the correctness of functional programs in general and recursive definitions in particular. Of
course, we will concentrate on those topics needed to understand Haskell programs2.

Another aim of this chapter is to illustrate the notions strict and lazy that capture the idea that a
function needs or needs not to evaluate its argument. This is a basic ingredient to predict the course
of evaluation of Haskell programs and hence of primary interest to the programmer. Interestingly,
these notions can be formulated concisely with denotational semantics alone, no reference to an
execution model is necessary. They will be put to good use in GRAPH REDUCTION3, but it is
this chapter that will familiarize the reader with the denotational definition and involved notions
such as &perp; ("Bottom"). The reader only interested in strictness may wish to poke around in
section BOTTOM AND PARTIAL FUNCTIONS4 and quickly head over to STRICT AND NON-STRICT

SEMANTICS5.

52.1.1 What are Denotational Semantics and what are they for?

What does a Haskell program mean? This question is answered by the denotational semantics
of Haskell. In general, the denotational semantics of a programming language map each of its
programs to a mathematical object (denotation), that represents the meaning of the program in
question. As an example, the mathematical object for the Haskell programs 10, 9+1, 2*5 and sum

2 In fact, there are no written down and complete denotational semantics of Haskell. This would be a tedious task
void of additional insight and we happily embrace the folklore and common sense semantics.

3 Chapter 59 on page 409
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23BOTTOM%20AND%20PARTIAL%20FUNCTIONS
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23STRICT%20AND%20NON-{}STRICT%20SEMANTICS
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[1..4] can be represented by the integer 10. We say that all those programs denote the integer 10.
The collection of such mathematical objects is called the semantic domain.

The mapping from program codes to a semantic domain is commonly written down with double
square brackets ("Oxford brackets") around program code. For example,

[[2*5]] = 10.

Denotations are compositional, i.e. the meaning of a program like 1+9 only depends on the meaning
of its constituents:

[[a+b]] = [[a]]+ [[b]].

The same notation is used for types, i.e.

[[Integer]] =Z.

For simplicity however, we will silently identify expressions with their semantic objects in subse-
quent chapters and use this notation only when clarification is needed.

It is one of the key properties of purely functional languages like Haskell that a direct mathematical
interpretation like "1+9 denotes 10" carries over to functions, too: in essence, the denotation of a
program of type Integer -> Integer is a mathematical function Z→Z between integers. While
we will see that this expression needs refinement generally, to include non-termination, the situa-
tion for imperative languages is clearly worse: a procedure with that type denotes something that
changes the state of a machine in possibly unintended ways. Imperative languages are tightly tied to
operational semantics which describes their way of execution on a machine. It is possible to de-
fine a denotational semantics for imperative programs and to use it to reason about such programs,
but the semantics often has operational nature and sometimes must be extended in comparison to
the denotational semantics for functional languages.6 In contrast, the meaning of purely functional
languages is by default completely independent from their way of execution. The Haskell98 stan-
dard even goes as far as to specify only Haskell’s non-strict denotational semantics, leaving open
how to implement them.

In the end, denotational semantics enables us to develop formal proofs that programs indeed do
what we want them to do mathematically. Ironically, for proving program properties in day-to-day
Haskell, one can use EQUATIONAL REASONING7, which transforms programs into equivalent ones
without seeing much of the underlying mathematical objects we are concentrating on in this chapter.
But the denotational semantics actually show up whenever we have to reason about non-terminating
programs, for instance in INFINITE LISTS8.

6 Monads are one of the most successful ways to give denotational semantics to imperative programs. See also
HASKELL/ADVANCED MONADS ˆ{Kapitel 30 on page 183}.

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FEQUATIONAL%20REASONING
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23RECURSIVE%20DATA%20TYPES%20AND%20INFINITE%

20LISTS
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Of course, because they only state what a program is, denotational semantics cannot answer ques-
tions about how long a program takes or how much memory it eats; this is governed by the eval-
uation strategy which dictates how the computer calculates the normal form of an expression. On
the other hand, the implementation has to respect the semantics, and to a certain extent, it is the
semantics that determine how Haskell programs must be evaluated on a machine. We will elaborate
on this in STRICT AND NON-STRICT SEMANTICS9.

52.1.2 What to choose as Semantic Domain?

We are now looking for suitable mathematical objects that we can attribute to every Haskell pro-
gram. In case of the example 10, 2*5 and sum [1..4], it is clear that all expressions should denote
the integer 10. Generalizing, every value x of type Integer is likely to be an element of the set Z.
The same can be done with values of type Bool. For functions like f :: Integer -> Integer,
we can appeal to the mathematical definition of "function" as a set of (argument,value)-pairs, its
graph.

But interpreting functions as their graph was too quick, because it does not work well with recursive
definitions. Consider the definition

shaves :: Integer -> Integer -> Bool
1 ‘shaves‘ 1 = True
2 ‘shaves‘ 2 = False
0 ‘shaves‘ x = not (x ‘shaves‘ x)
_ ‘shaves‘ _ = False

We can think of 0,1 and 2 as being male persons with long beards and the question is who shaves
whom. Person 1 shaves himself, but 2 gets shaved by the barber 0 because evaluating the third
equation yields 0 ‘shaves‘ 2 == True. In general, the third line says that the barber 0 shaves all
persons that do not shave themselves.

What about the barber himself, is 0 ‘shaves‘ 0 true or not? If it is, then the third equation says
that it is not. If it is not, then the third equation says that it is. Puzzled, we see that we just
cannot attribute True or False to 0 ‘shaves‘ 0, the graph we use as interpretation for the function
shaves must have an empty spot. We realize that our semantic objects must be able to incorporate
partial functions, functions that are undefined for some arguments.

It is well known that this famous example gave rise to serious foundational problems in set the-
ory. It’s an example of an impredicative definition, a definition which uses itself, a logical circle.
Unfortunately for recursive definitions, the circle is not the problem but the feature.

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23STRICT%20AND%20NON-{}STRICT%20SEMANTICS
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52.2 Bottom and Partial Functions

52.2.1 &perp; Bottom

To define partial functions, we introduce a special value ⊥, named bottom and commonly written
_|_ in typewriter font. We say that ⊥ is the completely "undefined" value or function. Every basic
data type like Integer or () contains one ⊥ besides their usual elements. So the possible values of
type Integer are

⊥,0,±1,±2,±3, . . .

Adding ⊥ to the set of values is also called lifting. This is often depicted by a subscript like in
Z⊥. While this is the correct notation for the mathematical set "lifted integers", we prefer to talk
about "values of type Integer". We do this because Z⊥ suggests that there are "real" integers Z,
but inside Haskell, the "integers" are Integer.

As another example, the type () with only one element actually has two inhabitants:

⊥, ()

For now, we will stick to programming with Integers. Arbitrary algebraic data types will be
treated in section ALGEBRAIC DATA TYPES10 as strict and non-strict languages diverge on how
these include ⊥.

In Haskell, the expression undefined denotes ⊥. With its help, one can indeed verify some seman-
tic properties of actual Haskell programs. undefined has the polymorphic type forall a . a
which of course can be specialized to undefined :: Integer, undefined :: (), undefined
:: Integer -> Integer and so on. In the Haskell Prelude, it is defined as

undefined = error "Prelude.undefined"

As a side note, it follows from THE CURRY-HOWARD ISOMORPHISM11 that any value of the poly-
morphic type forall a . a must denote ⊥.

52.2.2 Partial Functions and the Semantic Approximation Order

Now, ⊥ (bottom type) gives us the possibility to denote partial functions:

f (n) =


1 if n is 0

−2 if n is 1

⊥ else

10 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23ALGEBRAIC%20DATA%20TYPES
11 Chapter 54 on page 381
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Here, f (n) yields well defined values for n = 0 and n = 1 but gives ⊥ for all other n. Note that the
type ⊥ is universal, as ⊥ has no value: the function ⊥:: Integer -> Integer is given by

⊥ (n) =⊥

for all

n

where the ⊥ on the right hand side denotes a value of type Integer.

To formalize, partial functions say, of type Integer -> Integer are at least mathematical map-
pings from the lifted integers Z⊥ = {⊥,0,±1,±2,±3, . . . } to the lifted integers. But this is not enough,
since it does not acknowledge the special role of ⊥. For example, the definition

g (n) =
{

1 if n is ⊥
⊥ else

looks counterintuitive, and, in fact, is wrong. Why does g (⊥) yield a defined value whereas g (1) is
undefined? The intuition is that every partial function g should yield more defined answers for more
defined arguments. To formalize, we can say that every concrete number is more defined than ⊥:

⊥ < 1 , ⊥ < 2 , . . .

Here, a < b denotes that b is more defined than a. Likewise, a v b will denote that either b is
more defined than a or both are equal (and so have the same definedness). < is also called the
semantic approximation order because we can approximate defined values by less defined ones
thus interpreting "more defined" as "approximating better". Of course, ⊥ is designed to be the least
element of a data type, we always have that ⊥ < x for all x, except the case when x happens to
denote ⊥ itself:

∀x 6=⊥ ⊥< x

As no number is more defined than another, the mathematical relation < is false for any pair of
numbers:

1 < 1

does not hold.
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neither

1 < 2

nor

2 < 1

hold.

This is contrasted to ordinary order predicate ≤, which can compare any two numbers. A quick way
to remember this is the sentence: "1 and 2 are different in terms of information content but are
equal in terms of information quantity". That’s another reason why we use a different symbol: v.

neither

1 v 2

nor

2 v 1

hold,

but

1 v 1

holds.

One says that v specifies a partial order and that the values of type Integer form a partially
ordered set (poset for short). A partial order is characterized by the following three laws

• Reflexivity, everything is just as defined as itself: x v x for all x
• Transitivity: if x v y and y v z, then x v z
• Antisymmetry: if both x v y and y v x hold, then x and y must be equal: x = y .

Exercises:
Do the integers form a poset with respect to the order ≤?

We can depict the order v on the values of type Integer by the following graph
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Abb. 25

where every link between two nodes specifies that the one above is more defined than the one below.
Because there is only one level (excluding ⊥), one says that Integer is a flat domain. The picture
also explains the name of ⊥: it’s called bottom because it always sits at the bottom.

52.2.3 Monotonicity

Our intuition about partial functions now can be formulated as following: every partial function f
is a monotone mapping between partially ordered sets. More defined arguments will yield more
defined values:

x v y =⇒ f (x) v f (y)

In particular, a function h with h(⊥) = 1 is constant: h(n) = 1 for all n. Note that here it is crucial
that 1 v 2 etc. don’t hold.

Translated to Haskell, monotonicity means that we cannot use ⊥ as a condition, i.e. we cannot
pattern match on ⊥, or its equivalent undefined. Otherwise, the example g from above could be
expressed as a Haskell program. As we shall see later, ⊥ also denotes non-terminating programs, so
that the inability to observe ⊥ inside Haskell is related to the halting problem.

Of course, the notion of more defined than can be extended to partial functions by saying that a
function is more defined than another if it is so at every possible argument:
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f v g if ∀x. f (x) v g (x)

Thus, the partial functions also form a poset, with the undefined function ⊥ (x) =⊥ being the least
element.

52.3 Recursive Definitions as Fixed Point Iterations

52.3.1 Approximations of the Factorial Function

Now that we have a means to describe partial functions, we can give an interpretation to recursive
definitions. Lets take the prominent example of the factorial function f (n) = n! whose recursive
definition is

f (n) = if n == 0 then 1 else n · f (n −1)

Although we saw that interpreting this directly as a set description may lead to problems, we in-
tuitively know that in order to calculate f (n) for every given n we have to iterate the right hand
side. This iteration can be formalized as follows: we calculate a sequence of functions fk with the
property that each one consists of the right hand side applied to the previous one, that is

fk+1(n) = if n == 0 then 1 else n · fk (n −1)

We start with the undefined function f0(n) =⊥, and the resulting sequence of partial functions reads:

f1(n) =
{

1 if n is 0

⊥ else
, f2(n) =


1 if n is 0

1 if n is 1

⊥ else

, f3(n) =


1 if n is 0

1 if n is 1

2 if n is 2

⊥ else

and so on. Clearly,

⊥= f0 v f1 v f2 v . . .

and we expect that the sequence converges to the factorial function.

The iteration follows the well known scheme of a fixed point iteration
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x0, g (x0), g (g (x0)), g (g (g (x0))), . . .

In our case, x0 is a function and g is a functional, a mapping between functions. We have

x0 =⊥
and

g (x) = n 7→ if n == 0 then 1 else n ∗x(n −1)

If we start with x0 =⊥, the iteration will yield increasingly defined approximations to the factorial
function

⊥ v g (⊥) v g (g (⊥)) v g (g (g (⊥))) v . . .

(Proof that the sequence increases: The first inequality ⊥ v g (⊥) follows from the fact that ⊥ is less
defined than anything else. The second inequality follows from the first one by applying g to both
sides and noting that g is monotone. The third follows from the second in the same fashion and so
on.)

It is very illustrative to formulate this iteration scheme in Haskell. As functionals are just ordinary
higher order functions, we have

g :: (Integer -> Integer) -> (Integer -> Integer)
g x = \n -> if n == 0 then 1 else n * x (n-1)

x0 :: Integer -> Integer
x0 = undefined

(f0:f1:f2:f3:f4:fs) = iterate g x0

We can now evaluate the functions f0,f1,... at sample arguments and see whether they yield
undefined or not:

> f3 0
1
> f3 1
1
> f3 2
2
> f3 5
*** Exception: Prelude.undefined
> map f3 [0..]
[1,1,2,*** Exception: Prelude.undefined
> map f4 [0..]
[1,1,2,6,*** Exception: Prelude.undefined
> map f1 [0..]
[1,*** Exception: Prelude.undefined

Of course, we cannot use this to check whether f4 is really undefined for all arguments.
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52.3.2 Convergence

To the mathematician, the question whether this sequence of approximations converges is still to
be answered. For that, we say that a poset is a directed complete partial order (dcpo) iff every
monotone sequence x0 v x1 v . . . (also called chain) has a least upper bound (supremum)

sup
v

{x0 v x1 v . . . } = x

.

If that’s the case for the semantic approximation order, we clearly can be sure that monotone se-
quence of functions approximating the factorial function indeed has a limit. For our denotational
semantics, we will only meet dcpos which have a least element ⊥ which are called complete partial
orders (cpo).

The Integers clearly form a (d)cpo, because the monotone sequences consisting of more than one
element must be of the form

⊥ v ·· · v ⊥ v n v n v ·· · v n

where n is an ordinary number. Thus, n is already the least upper bound.

For functions Integer -> Integer, this argument fails because monotone sequences may be of
infinite length. But because Integer is a (d)cpo, we know that for every point n, there is a least
upper bound

sup
v

{⊥= f0(n) v f1(n) v f2(n) v . . . } =: f (n)

.

As the semantic approximation order is defined point-wise, the function f is the supremum we
looked for.

These have been the last touches for our aim to transform the impredicative definition of the factorial
function into a well defined construction. Of course, it remains to be shown that f (n) actually yields
a defined value for every n, but this is not hard and far more reasonable than a completely ill-formed
definition.

52.3.3 Bottom includes Non-Termination

It is instructive to try our newly gained insight into recursive definitions on an example that does
not terminate:

f (n) = f (n +1)
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The approximating sequence reads

f0 =⊥, f1 =⊥, . . .

and consists only of ⊥. Clearly, the resulting limit is ⊥ again. From an operational point of view,
a machine executing this program will loop indefinitely. We thus see that ⊥ may also denote a
non-terminating function or value. Hence, given the halting problem, pattern matching on ⊥ in
Haskell is impossible.

52.3.4 Interpretation as Least Fixed Point

Earlier, we called the approximating sequence an example of the well known "fixed point itera-
tion" scheme. And of course, the definition of the factorial function f can also be thought as the
specification of a fixed point of the functional g :

f = g ( f ) = n 7→ if n == 0 then 1 else n · f (n −1)

However, there might be multiple fixed points. For instance, there are several f which fulfill the
specification

f = n 7→ if n == 0 then 1 else f (n +1)

,

Of course, when executing such a program, the machine will loop forever on f (1) or f (2) and thus
not produce any valuable information about the value of f (1). This corresponds to choosing the
least defined fixed point as semantic object f and this is indeed a canonical choice. Thus, we say
that

f = g ( f )

,

defines the least fixed point f of g . Clearly, least is with respect to our semantic approximation
order v.

The existence of a least fixed point is guaranteed by our iterative construction if we add the condition
that g must be continuous (sometimes also called "chain continuous"). That simply means that g
respects suprema of monotone sequences:

sup
v

{g (x0) v g (x1) v . . . } = g

(
sup
v

{x0 v x1 v . . . }

)
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We can then argue that with

f = sup
v

{x0 v g (x0) v g (g (x0)) v . . . }

we have

g ( f ) = g
(
supv{x0 v g (x0) v g (g (x0)) v . . . }

)
= supv{g (x0) v g (g (x0)) v . . . }
= supv{x0 v g (x0) v g (g (x0)) v . . . }
= f

and the iteration limit is indeed a fixed point of g . You may also want to convince yourself that the
fixed point iteration yields the least fixed point possible.

Exercises:
Prove that the fixed point obtained by fixed point iteration starting with x0 =⊥ is also the least
one, that it is smaller than any other fixed point. (Hint: ⊥ is the least element of our cpo and g is
monotone)

By the way, how do we know that each Haskell function we write down indeed is continuous? Just
as with monotonicity, this has to be enforced by the programming language. Admittedly, these
properties can somewhat be enforced or broken at will, so the question feels a bit void. But intu-
itively, monotonicity is guaranteed by not allowing pattern matches on ⊥. For continuity, we note
that for an arbitrary type a, every simple function a -> Integer is automatically continuous be-
cause the monotone sequences of Integer’s are of finite length. Any infinite chain of values of
type a gets mapped to a finite chain of Integers and respect for suprema becomes a consequence
of monotonicity. Thus, all functions of the special case Integer -> Integer must be continu-
ous. For functionals like g::(Integer -> Integer) -> (Integer -> Integer), the continu-
ity then materializes due to currying, as the type is isomorphic to ::((Integer -> Integer),
Integer) -> Integer and we can take a=((Integer -> Integer), Integer).

In Haskell, the fixed interpretation of the factorial function can be coded as

factorial = fix g

with the help of the fixed point combinator

fix :: (a -> a) -> a.

We can define it by

fix f = let x = f x in x

which leaves us somewhat puzzled because when expanding f actor i al , the result is not anything
different from how we would have defined the factorial function in Haskell in the first place. But
of course, the construction this whole section was about is not at all present when running a real
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Haskell program. It’s just a means to put the mathematical interpretation a Haskell programs to a
firm ground. Yet it is very nice that we can explore these semantics in Haskell itself with the help
of undefined.

52.4 Strict and Non-Strict Semantics

After having elaborated on the denotational semantics of Haskell programs, we will drop the mathe-
matical function notation f (n) for semantic objects in favor of their now equivalent Haskell notation
f n.

52.4.1 Strict Functions

A function f with one argument is called strict, if and only if

f &perp; = &perp;.

Here are some examples of strict functions

id x = x
succ x = x + 1
power2 0 = 1
power2 n = 2 * power2 (n-1)

and there is nothing unexpected about them. But why are they strict? It is instructive to prove
that these functions are indeed strict. For id, this follows from the definition. For succ, we have
to ponder whether &perp; + 1 is &perp; or not. If it was not, then we should for example have
&perp; + 1 = 2 or more general &perp; + 1 = k for some concrete number k. We remember
that every function is monotone, so we should have for example

2 = &perp; + 1 v 4 + 1 = 5

as &perp; v 4. But neither of 2 v 5, 2 = 5 nor 2 w 5 is valid so that k cannot be 2. In general,
we obtain the contradiction

k = &perp; + 1 v k + 1 = k + 1.

and thus the only possible choice is

succ &perp; = &perp; + 1 = &perp;

and succ is strict.

Exercises:
Prove that power2 is strict. While one can base the proof on the "obvious" fact that power2 n is
2n , the latter is preferably proven using fixed point iteration.
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52.4.2 Non-Strict and Strict Languages

Searching for non-strict functions, it happens that there is only one prototype of a non-strict
function of type Integer -> Integer:

one x = 1

Its variants are constk x = k for every concrete number k. Why are these the only ones possible?
Remember that one n can be no less defined than one &perp;. As Integer is a flat domain, both
must be equal.

Why is one non-strict? To see that it is, we use a Haskell interpreter and try

> one (undefined :: Integer)
1

which is not &perp;. This is reasonable as one completely ignores its argument. When interpreting
&perp; in an operational sense as "non-termination", one may say that the non-strictness of one
means that it does not force its argument to be evaluated and therefore avoids the infinite loop when
evaluating the argument &perp;. But one might as well say that every function must evaluate its
arguments before computing the result which means that one &perp; should be &perp;, too. That
is, if the program computing the argument does not halt, one should not halt as well.12 It shows
up that one can choose freely this or the other design for a functional programming language. One
says that the language is strict or non-strict depending on whether functions are strict or non-strict
by default. The choice for Haskell is non-strict. In contrast, the functional languages ML and Lisp
choose strict semantics.

52.4.3 Functions with several Arguments

The notion of strictness extends to functions with several variables. For example, a function f of
two arguments is strict in the second argument if and only if

f x &perp; = &perp;

for every x. But for multiple arguments, mixed forms where the strictness depends on the given
value of the other arguments, are much more common. An example is the conditional

cond b x y = if b then x else y

We see that it is strict in y depending on whether the test b is True or False:

cond True x &perp; = x
cond False x &perp; = &perp;

12 Strictness as premature evaluation of function arguments is elaborated in the chapter GRAPH REDUCTION

ˆ{HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FGRAPH%20REDUCTION} .
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and likewise for x. Apparently, cond is certainly &perp; if both x and y are, but not necessarily
when at least one of them is defined. This behavior is called joint strictness.

Clearly, cond behaves like the if-then-else statement where it is crucial not to evaluate both the
then and the else branches:

if null xs then ’a’ else head xs
if n == 0 then 1 else 5 / n

Here, the else part is &perp; when the condition is met. Thus, in a non-strict language, we have
the possibility to wrap primitive control statements such as if-then-else into functions like cond.
This way, we can define our own control operators. In a strict language, this is not possible as both
branches will be evaluated when calling cond which makes it rather useless. This is a glimpse of
the general observation that non-strictness offers more flexibility for code reuse than strictness. See
the chapter LAZINESS13,14 for more on this subject.

52.4.4 Not all Functions in Strict Languages are Strict

This section is wrong.

It is important to note that even in a strict language, not all functions are strict. The choice
whether to have strictness and non-strictness by default only applies to certain argument data
types. Argument types that solely contain data like Integer, (Bool,Integer) or Either String
[Integer] impose strictness, but functions are not necessarily strict in function types like Integer
-> Bool. Thus, in a hypothetical strict language with Haskell-like syntax, we would have the
interpreter session

!> let const1 _ = 1

!> const1 (undefined :: Integer)
!!! Exception: Prelude.undefined

!> const1 (undefined :: Integer -> Bool)
1

Why are strict languages not strict in arguments of function type? If they were, fixed point iteration
would crumble to dust! Remember the fixed point iteration

⊥ v g (⊥) v g (g (⊥)) . . .

for a functional g::(Integer -> Integer) -> (Integer -> Integer). If g would be strict,
the sequence would read

13 Chapter 60 on page 421
14 The term Laziness comes from the fact that the prevalent implementation technique for non-strict languages is

called lazy evaluation
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⊥ v ⊥ v ⊥ v . . .

which obviously converges to a useless ⊥. It is crucial that g makes the argument function more
defined. This means that g must not be strict in its argument to yield a useful fixed point.

As a side note, the fact that things must be non-strict in function types can be used to recover some
non-strict behavior in strict languages. One simply replaces a data type like Integer with () ->
Integer where () denotes the well known singleton type. It is clear that every such function has
the only possible argument () (besides &perp;) and therefore corresponds to a single integer. But
operations may be non-strict in arguments of type () -> Integer.

Exercises:
It’s tedious to lift every Integer to a () -> Integer for using non-strict behavior in strict lan-
guages. Can you write a function

lift :: Integer -> (() -> Integer)

that does this for us? Where is the trap?

52.5 Algebraic Data Types

After treating the motivation case of partial functions between Integers, we now want to extend
the scope of denotational semantics to arbitrary algebraic data types in Haskell.

A word about nomenclature: the collection of semantic objects for a particular type is usually
called a domain. This term is more a generic name than a particular definition and we decide
that our domains are cpos (complete partial orders), that is sets of values together with a relation
more defined that obeys some conditions to allow fixed point iteration. Usually, one adds additional
conditions to the cpos that ensure that the values of our domains can be represented in some finite
way on a computer and thereby avoiding to ponder the twisted ways of uncountable infinite sets.
But as we are not going to prove general domain theoretic theorems, the conditions will just happen
to hold by construction.

52.5.1 Constructors

Let’s take the example types

data Bool = True | False
data Maybe a = Just a | Nothing

Here, True, False and Nothing are nullary constructors whereas Just is an unary constructor. The
inhabitants of Bool form the following domain:
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Abb. 26

Remember that &perp; is added as least element to the set of values True and False, we say that the
type is lifted15. A domain whose poset diagram consists of only one level is called a flat domain.
We already know that Integ er is a flat domain as well, it’s just that the level above &perp; has an
infinite number of elements.

What are the possible inhabitants of Maybe Bool? They are

&perp;, Nothing, Just &perp;, Just True, Just False

So the general rule is to insert all possible values into the unary (binary, ternary, ...) constructors as
usual but without forgetting &perp;. Concerning the partial order, we remember the condition that
the constructors should be monotone just as any other functions. Hence, the partial order looks as
follows

15 The term lifted is somewhat overloaded, see also UNBOXED TYPES ˆ{HTTP://EN.WIKIBOOKS.ORG/WIKI/
%23UNBOXED%20TYPES} .
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Abb. 27

But there is something to ponder: why isn’t Just &perp; = &perp;? I mean "Just undefined" is
as undefined as "undefined"! The answer is that this depends on whether the language is strict or
non-strict. In a strict language, all constructors are strict by default, i.e. Just &perp; = &perp;
and the diagram would reduce to

Abb. 28

As a consequence, all domains of a strict language are flat.

But in a non-strict language like Haskell, constructors are non-strict by default and Just &perp; is
a new element different from &perp;, because we can write a function that reacts differently to them:
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f (Just _) = 4
f Nothing = 7

As f ignores the contents of the Just constructor, f (Just &perp;) is 4 but f &perp; is &perp;
(intuitively, if f is passed &perp;, it will not be possible to tell whether to take the Just branch or the
Nothing branch, and so &perp; will be returned).

This gives rise to non-flat domains as depicted in the former graph. What should these be of use
for? In the context of GRAPH REDUCTION16, we may also think of &perp; as an unevaluated ex-
pression. Thus, a value x = Just &perp; may tell us that a computation (say a lookup) succeeded
and is not Nothing, but that the true value has not been evaluated yet. If we are only interested in
whether x succeeded or not, this actually saves us from the unnecessary work to calculate whether
x is Just True or Just False as would be the case in a flat domain. The full impact of non-flat
domains will be explored in the chapter LAZINESS17, but one prominent example are infinite lists
treated in section RECURSIVE DATA TYPES AND INFINITE LISTS18.

52.5.2 Pattern Matching

In the section STRICT FUNCTIONS19, we proved that some functions are strict by inspecting their
results on different inputs and insisting on monotonicity. However, in the light of algebraic data
types, there can only be one source of strictness in real life Haskell: pattern matching, i.e. case
expressions. The general rule is that pattern matching on a constructor of a data-type will force
the function to be strict, i.e. matching &perp; against a constructor always gives &perp;. For
illustration, consider

const1 _ = 1

const1’ True = 1
const1’ False = 1

The first function const1 is non-strict whereas the const1’ is strict because it decides whether the
argument is True or False although its result doesn’t depend on that. Pattern matching in function
arguments is equivalent to case-expressions

const1’ x = case x of
True -> 1
False -> 1

which similarly impose strictness on x: if the argument to the case expression denotes &perp; the
while case will denote &perp;, too. However, the argument for case expressions may be more

16 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FGRAPH%20REDUCTION
17 Chapter 60 on page 421
18 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23RECURSIVE%20DATA%20TYPES%20AND%20INFINITE%

20LISTS
19 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23STRICT%20FUNCTIONS
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involved as in

foo k table = case lookup ("Foo." ++ k) table of
Nothing -> ...
Just x -> ...

and it can be difficult to track what this means for the strictness of foo.

An example for multiple pattern matches in the equational style is the logical or:

or True _ = True
or _ True = True
or _ _ = False

Note that equations are matched from top to bottom. The first equation for or matches the first
argument against True, so or is strict in its first argument. The same equation also tells us that
or True x is non-strict in x. If the first argument is False, then the second will be matched
against True and or False x is strict in x. Note that while wildcards are a general sign of non-
strictness, this depends on their position with respect to the pattern matches against constructors.
{{Exercises|1=

1. Give an equivalent discussion for the logical and
2. Can the logical "excluded or" (xor) be non-strict in one of its arguments if we know the

other?}}

There is another form of pattern matching, namely irrefutable patterns marked with a tilde ˜.
Their use is demonstrated by

f ˜(Just x) = 1
f Nothing = 2

An irrefutable pattern always succeeds (hence the name) resulting in f &perp; = 1. But when
changing the definition of f to

f ˜(Just x) = x + 1
f Nothing = 2 -- this line may as well be left away

we have

f &perp; = &perp; + 1 = &perp;
f (Just 1) = 1 + 1 = 2

If the argument matches the pattern, x will be bound to the corresponding value. Otherwise, any
variable like x will be bound to &perp;.

By default, let and where bindings are non-strict, too:
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foo key map = let Just x = lookup key map in ...

is equivalent to

foo key map = case (lookup key map) of ˜(Just x) -> ...

Exercises:
<ol> The HASKELL LANGUAGE DEFINITION20 gives the detailed SEMANTICS OF PATTERN

MATCHING21 and you should now be able to understand it. So go on and have a look! Consider a
function or of two Boolean arguments with the following properties:

or &perp; &perp; = &perp; or True &perp; = True or &perp; True = True

or False y = y or x False = x

This function is another example of joint strictness, but a much sharper one: the result is only
&perp; if both arguments are (at least when we restrict the arguments to True and &perp;). Can
such a function be implemented in Haskell? </ol>

52.5.3 Recursive Data Types and Infinite Lists

The case of recursive data structures is not very different from the base case. Consider a list of unit
values

data List = [] | () : List

Though this seems like a simple type, there is a surprisingly complicated number of ways you can
fit ⊥ in here and there, and therefore the corresponding graph is complicated. The bottom of this
graph is shown below. An ellipsis indicates that the graph continues along this direction. A red
ellipse behind an element indicates that this is the end of a chain; the element is in normal form.

Abb. 29
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and so on. But now, there are also chains of infinite length like

&perp; v ():&perp; v ():():&perp; v ...

This causes us some trouble as we noted in section CONVERGENCE22 that every monotone sequence
must have a least upper bound. This is only possible if we allow for infinite lists. Infinite lists
(sometimes also called streams) turn out to be very useful and their manifold use cases are treated
in full detail in chapter LAZINESS23. Here, we will show what their denotational semantics should
be and how to reason about them. Note that while the following discussion is restricted to lists only,
it easily generalizes to arbitrary recursive data structures like trees.

In the following, we will switch back to the standard list type

data [a] = [] | a : [a]

to close the syntactic gap to practical programming with infinite lists in Haskell. {{Exercises|1=

1. Draw the non-flat domain corresponding [Bool].
2. How is the graphic to be changed for [Integer]?}}

Calculating with infinite lists is best shown by example. For that, we need an infinite list

ones :: [Integer]
ones = 1 : ones

When applying the fixed point iteration to this recursive definition, we see that ones ought to be the
supremum of

&perp; v 1:&perp; v 1:1:&perp; v 1:1:1:&perp; v...,

that is an infinite list of 1. Let’s try to understand what take 2 ones should be. With the definition
of take

take 0 _ = []
take n (x:xs) = x : take (n-1) xs
take n [] = []

we can apply take to elements of the approximating sequence of ones:

take 2 &perp; ==> &perp;
take 2 (1:&perp;) ==> 1 : take 1 &perp; ==> 1 : &perp;
take 2 (1:1:&perp;) ==> 1 : take 1 (1:&perp;) ==> 1 : 1 : take 0
&perp;

==> 1 : 1 : []

We see that take 2 (1:1:1:&perp;) and so on must be the same as take 2 (1:1:&perp;) =
1:1:[] because 1:1:[] is fully defined. Taking the supremum on both the sequence of input lists

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23CONVERGENCE
23 Chapter 60 on page 421
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and the resulting sequence of output lists, we can conclude

take 2 ones = 1:1:[]

Thus, taking the first two elements of ones behaves exactly as expected.

Generalizing from the example, we see that reasoning about infinite lists involves considering the
approximating sequence and passing to the supremum, the truly infinite list. Still, we did not give it
a firm ground. The solution is to identify the infinite list with the whole chain itself and to formally
add it as a new element to our domain: the infinite list is the sequence of its approximations. Of
course, any infinite list like ones can compactly depicted as

ones = 1 : 1 : 1 : 1 : ...

what simply means that

ones = (&perp; v 1:&perp; v 1:1:&perp; v ...)

{{Exercises|1=

1. Of course, there are more interesting infinite lists than ones. Can you write recursive defini-
tion in Haskell for

a) the natural numbers nats = 1:2:3:4:...
b) a cycle like cycle123 = 1:2:3: 1:2:3 : ...

2. Look at the Prelude functions repeat and iterate and try to solve the previous exercise
with their help.

3. Use the example from the text to find the value the expression drop 3 nats denotes.
4. Assume that the work in a strict setting, i.e. that the domain of [Integer] is flat. What does

the domain look like? What about infinite lists? What value does ones denote?}}

What about the puzzle of how a computer can calculate with infinite lists? It takes an infinite
amount of time, after all? Well, this is true. But the trick is that the computer may well finish in a
finite amount of time if it only considers a finite part of the infinite list. So, infinite lists should be
thought of as potentially infinite lists. In general, intermediate results take the form of infinite lists
whereas the final value is finite. It is one of the benefits of denotational semantics that one treat the
intermediate infinite data structures as truly infinite when reasoning about program correctness.

Exercises:
<ol> To demonstrate the use of infinite lists as intermediate results, show that
take 3 (map (+1) nats) = take 3 (tail nats)

by first calculating the infinite sequence corresponding to map (+1) nats. Of course, we should
give an example where the final result indeed takes an infinite time. So, what does

filter (< 5) nats

denote? Sometimes, one can replace filter with takeWhile in the previous exercise. Why only
sometimes and what happens if one does? </ol>
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As a last note, the construction of a recursive domain can be done by a fixed point iteration similar
to recursive definition for functions. Yet, the problem of infinite chains has to be tackled explicitly.
See the literature in EXTERNAL LINKS24 for a formal construction.

52.5.4 Haskell specialities: Strictness Annotations and Newtypes

Haskell offers a way to change the default non-strict behavior of data type constructors by strictness
annotations. In a data declaration like

data Maybe’ a = Just’ !a | Nothing’

an exclamation point ! before an argument of the constructor specifies that he should be strict in
this argument. Hence we have Just’ &perp; = &perp; in our example. Further information may
be found in chapter STRICTNESS25.

In some cases, one wants to rename a data type, like in

data Couldbe a = Couldbe (Maybe a)

However, Couldbe a contains both the elements &perp; and Couldbe &perp;. With the help of a
newtype definition

newtype Couldbe a = Couldbe (Maybe a)

we can arrange that Couldbe a is semantically equal to Maybe a, but different during type
checking. In particular, the constructor Couldbe is strict. Yet, this definition is subtly different
from

data Couldbe’ a = Couldbe’ !(Maybe a)

To explain how, consider the functions

f (Couldbe m) = 42
f’ (Couldbe’ m) = 42

Here, f’ &perp; will cause the pattern match on the constructor Couldbe’ fail with the effect
that f’ &perp; = &perp;. But for the newtype, the match on Couldbe will never fail, we get f
&perp; = 42. In a sense, the difference can be stated as:

• for the strict case, Couldbe’ &perp; is a synonym for &perp;
• for the newtype, &perp; is a synonym for Couldbe &perp;

24 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23EXTERNAL%20LINKS
25 Chapter 61 on page 435
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with the agreement that a pattern match on &perp; fails and that a match on Constructor &perp;
does not.

Newtypes may also be used to define recursive types. An example is the alternate definition of the
list type [a]

newtype List a = In (Maybe (a, List a))

Again, the point is that the constructor In does not introduce an additional lifting with &perp;.

52.6 Other Selected Topics

52.6.1 Abstract Interpretation and Strictness Analysis

As lazy evaluation means a constant computational overhead, a Haskell compiler may want to dis-
cover where inherent non-strictness is not needed at all which allows it to drop the overhead at these
particular places. To that extent, the compiler performs strictness analysis just like we proved in
some functions to be strict section STRICT FUNCTIONS26. Of course, details of strictness depend-
ing on the exact values of arguments like in our example cond are out of scope (this is in general
undecidable). But the compiler may try to find approximate strictness information and this works
in many common cases like power2.

Now, abstract interpretation is a formidable idea to reason about strictness: ...

For more about strictness analysis, see the RESEARCH PAPERS ABOUT STRICTNESS ANALYSIS

ON THE HASKELL WIKI27.

52.6.2 Interpretation as Powersets

So far, we have introduced &perp; and the semantic approximation order v abstractly by specifying
their properties. However, both as well as any inhabitants of a data type like Just &perp; can be
interpreted as ordinary sets. This is called the powerset construction. NOTE: i’m not sure whether
this is really true. Someone how knows, please correct this.

The idea is to think of &perp; as the set of all possible values and that a computation retrieves more
information this by choosing a subset. In a sense, the denotation of a value starts its life as the set
of all values which will be reduced by computations until there remains a set with a single element
only.

As an example, consider Bool where the domain looks like

26 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23STRICT%20FUNCTIONS
27 HTTP://HASKELL.ORG/HASKELLWIKI/RESEARCH_PAPERS/COMPILATION#STRICTNESS
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{True} {False}
\ /
\ /
&perp; = {True, False}

The values True and False are encoded as the singleton sets {True} and {False} and &perp; is
the set of all possible values.

Another example is Maybe Bool:

{Just True} {Just False}
\ /
\ /

{Nothing} {Just True, Just False}
\ /
\ /

&perp; = {Nothing, Just True, Just False}

We see that the semantic approximation order is equivalent to set inclusion, but with arguments
switched:

x v y ⇐⇒ x ⊇ y

This approach can be used to give a semantics to exceptions in Haskell28.

52.6.3 Naïve Sets are unsuited for Recursive Data Types

In section NAÏVE SETS ARE UNSUITED FOR RECURSIVE DEFINITIONS29, we argued that taking
simple sets as denotation for types doesn’t work well with partial functions. In the light of recursive
data types, things become even worse as John C. Reynolds showed in his paper Polymorphism is
not set-theoretic30.

Reynolds actually considers the recursive type

newtype U = In ((U -> Bool) -> Bool)

Interpreting Bool as the set {True,False} and the function type A -> B as the set of functions
from A to B, the type U cannot denote a set. This is because (A -> Bool) is the set of subsets
(powerset) of A which, due to a diagonal argument analogous to Cantor’s argument that there are
"more" real numbers than natural ones, always has a bigger cardinality than A. Thus, (U -> Bool)

28 S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A SEMANTICS FOR IMPRECISE EXCEP-
TIONS. ˆ{HTTP://RESEARCH.MICROSOFT.COM/~{}SIMONPJ/PAPERS/IMPRECISE-{}EXN.HTM} In
Programming Languages Design and Implementation. ACM press, May 1999.

29 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23NA%EFVE%20SETS%20ARE%20UNSUITED%20FOR%
20RECURSIVE%20DEFINITIONS

30 John C. Reynolds. Polymorphism is not set-theoretic. INRIA Rapports de Recherche No. 296. May 1984.
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-> Bool has an even bigger cardinality than U and there is no way for it to be isomorphic to U.
Hence, the set U must not exist, a contradiction.

In our world of partial functions, this argument fails. Here, an element of U is given by a sequence
of approximations taken from the sequence of domains

&perp;, (&perp; -> Bool) -> Bool, (((&perp; -> Bool) -> Bool) -> Bool) ->
Bool and so on

where &perp; denotes the domain with the single inhabitant &perp;. While the author of this text
admittedly has no clue on what such a thing should mean, the constructor gives a perfectly well
defined object for U. We see that the type (U -> Bool) -> Bool merely consists of shifted ap-
proximating sequences which means that it is isomorphic to U.

As a last note, Reynolds actually constructs an equivalent of U in the second order polymorphic
lambda calcus. There, it happens that all terms have a normal form, i.e. there are only total functions
when we do not include a primitive recursion operator fix :: (a -> a) -> a. Thus, there is
no true need for partial functions and &perp;, yet a naïve set theoretic semantics fails. We can only
speculate that this has to do with the fact that not every mathematical function is computable. In
particular, the set of computable functions A -> Bool should not have a bigger cardinality than A.

52.7 Footnotes

<references/>

52.8 External Links

DENOTATIONAL SEMANTICS31

Online books about Denotational Semantics

• {{cite book

|title=Denotational Semantics. A Methodology for Language Development
|last=Schmidt|first=David A.
|publisher=Allyn and Bacon
|year=1986
|url=http://www.cis.ksu.edu/˜schmidt/text/densem.html
}}

32

31 HTTP://EN.WIKIPEDIA.ORG/WIKI/DENOTATIONAL%20SEMANTICS
32 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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53 Category theory

This article attempts to give an overview of category theory, in so far as it applies to Haskell. To
this end, Haskell code will be given alongside the mathematical definitions. Absolute rigour is not
followed; in its place, we seek to give the reader an intuitive feel for what the concepts of category
theory are and how they relate to Haskell.
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53.1 Introduction to categories

Abb. 30: A simple category, with three objects A, B and C, three identity morphisms idA , idB and
idC , and two other morphisms f : C → B and g : A → B . The third element (the specification of
how to compose the morphisms) is not shown.

A category is, in essence, a simple collection. It has three components:

• A collection of objects.
• A collection of morphisms, each of which ties two objects (a source object and a target ob-

ject) together. (These are sometimes called arrows, but we avoid that term here as it has other
connotations in Haskell.) If f is a morphism with source object A and target object B, we write
f : A → B .

• A notion of composition of these morphisms. If h is the composition of morphisms f and g, we
write h = f ◦ g .
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Lots of things form categories. For example, Set is the category of all sets with morphisms as
standard functions and composition being standard function composition. (Category names are
often typeset in bold face.) Grp is the category of all groups with morphisms as functions that
preserve group operations (the group homomorphisms), i.e. for any two groups G with operation *
and H with operation ·, a function f : G → H is a morphism in Grp iff:

f (u ∗ v) = f (u) · f (v)

It may seem that morphisms are always functions, but this needn’t be the case. For example, any
partial order (P, ≤) defines a category where the objects are the elements of P, and there is a mor-
phism between any two objects A and B iff A ≤ B . Moreover, there are allowed to be multiple
morphisms with the same source and target objects; using the Set example, sin and cos are both
functions with source object R and target object [−1,1], but they’re most certainly not the same
morphism!

53.1.1 Category laws

There are three laws that categories need to follow. Firstly, and most simply, the composition of
morphisms needs to be associative. Symbolically,

f ◦ (g ◦h) = ( f ◦ g )◦h

Secondly, the category needs to be closed under the composition operation. So if f : B → C and
g : A → B , then there must be some morphism h : A →C in the category such that h = f ◦g . We can
see how this works using the following category:

Abb. 31

f and g are both morphisms so we must be able to compose them and get another morphism in the
category. So which is the morphism f ◦g ? The only option is idA . Similarly, we see that g ◦ f = idB .

Lastly, given a category C there needs to be for every object A an identity’ morphism, idA : A → A
that is an identity of composition with other morphisms. Put precisely, for every morphism g : A →
B:

g ◦ idA = idB ◦ g = g
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53.1.2 Hask, the Haskell category

The main category we’ll be concerning ourselves with in this article is Hask, the category of Haskell
types and Haskell functions as morphisms, using (.) for composition: a function f :: A -> B
for types A and B is a morphism in Hask. We can check the first and second law easily: we know
(.) is an associative function, and clearly, for any f and g, f . g is another function. In Hask,
the identity morphism is id, and we have trivially:

id . f = f . id = f

1 This isn’t an exact translation of the law above, though; we’re missing subscripts. The function
id in Haskell is polymorphic - it can take many different types for its domain and range, or, in
category-speak, can have many different source and target objects. But morphisms in category
theory are by definition monomorphic - each morphism has one specific source object and one
specific target object. A polymorphic Haskell function can be made monomorphic by specifying
its type (instantiating with a monomorphic type), so it would be more precise if we said that the
identity morphism from Hask on a type A is (id :: A -> A). With this in mind, the above law
would be rewritten as:

(id :: B -> B) . f = f . (id :: A -> A) = f

However, for simplicity, we will ignore this distinction when the meaning is clear.

Exercises:

• As was mentioned, any partial order (P, ≤) is a category with objects as the elements of P and a
morphism between elements a and b iff a ≤ b. Which of the above laws guarantees the transitivity
of ≤?

• (Harder.) If we add another morphism to the above example, it fails to be a category. Why? Hint:
think about associativity of the composition operation.

Abb. 32

1 Actually, there is a subtlety here: because (.) is a lazy function, if f is undefined, we have that id . f = \_-
-> _|_. Now, while this may seem equivalent to _|_ for all intents and purposes, you can actually tell them
apart using the strictifying function seq, meaning that the last category law is broken. We can define a new strict
composition function, f .! g = ((.) $! f) $! g, that makes Hask a category. We proceed by using the
normal (.), though, and attribute any discrepancies to the fact that seq breaks an awful lot of the nice language
properties anyway.
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53.2 Functors

Abb. 33: A functor between two categories, C and D. Of note is that the objects A and B both get
mapped to the same object in D, and that therefore g becomes a morphism with the same source
and target object (but isn’t necessarily an identity), and i dA and i dB become the same morphism.
The arrows showing the mapping of objects are shown in a dotted, pale olive. The arrows showing
the mapping of morphisms are shown in a dotted, pale blue.

So we have some categories which have objects and morphisms that relate our objects together. The
next Big Topic in category theory is the functor, which relates categories together. A functor is
essentially a transformation between categories, so given categories C and D, a functor F : C → D:

• Maps any object A in C to F (A), in D.
• Maps morphisms f : A → B in C to F ( f ) : F (A) → F (B) in D.

One of the canonical examples of a functor is the forgetful functor Grp → Set which maps groups to
their underlying sets and group morphisms to the functions which behave the same but are defined
on sets instead of groups. Another example is the power set functor Set → Set which maps sets to
their power sets and maps functions f : X → Y to functions P (X ) →P (Y ) which take inputs U ⊂ X
and return f (U ), the image of U under f, defined by f (U ) = { f (u) : u ∈ U }. For any category C,
we can define a functor known as the identity functor on C, or 1C : C → C , that just maps objects
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to themselves and morphisms to themselves. This will turn out to be useful in the MONAD LAWS2

section later on.

Once again there are a few axioms that functors have to obey. Firstly, given an identity morphism
i dA on an object A, F (i dA) must be the identity morphism on F (A), i.e.:

F (i dA) = i dF (A)

Secondly functors must distribute over morphism composition, i.e.

F ( f ◦ g ) = F ( f )◦F (g )

Exercises:
For the diagram given on the right, check these functor laws.

53.2.1 Functors on Hask

The Functor typeclass you will probably have seen in Haskell does in fact tie in with the categorical
notion of a functor. Remember that a functor has two parts: it maps objects in one category to
objects in another and morphisms in the first category to morphisms in the second. Functors in
Haskell are from Hask to func, where func is the subcategory of Hask defined on just that functor’s
types. E.g. the list functor goes from Hask to Lst, where Lst is the category containing only list
types, that is, [T] for any type T. The morphisms in Lst are functions defined on list types, that is,
functions [T] -> [U] for types T, U. How does this tie into the Haskell typeclass Functor? Recall
its definition:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> (f a -> f b)

Let’s have a sample instance, too:

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

Here’s the key part: the type constructor Maybe takes any type T to a new type, Maybe T. Also, fmap
restricted to Maybe types takes a function a -> b to a function Maybe a -> Maybe b. But that’s
it! We’ve defined two parts, something that takes objects in Hask to objects in another category
(that of Maybe types and functions defined on Maybe types), and something that takes morphisms
in Hask to morphisms in this category. So Maybe is a functor.

A useful intuition regarding Haskell functors is that they represent types that can be mapped over.
This could be a list or a Maybe, but also more complicated structures like trees. A function that does

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23THE%20MONAD%20LAWS%20AND%20THEIR%20IMPORTANCE
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some mapping could be written using fmap, then any functor structure could be passed into this
function. E.g. you could write a generic function that covers all of Data.List.map, Data.Map.map,
Data.Array.IArray.amap, and so on.

What about the functor axioms? The polymorphic function id takes the place of i dA for any A, so
the first law states:

fmap id = id

With our above intuition in mind, this states that mapping over a structure doing nothing to each
element is equivalent to doing nothing overall. Secondly, morphism composition is just (.), so

fmap (f . g) = fmap f . fmap g

This second law is very useful in practice. Picturing the functor as a list or similar container, the
right-hand side is a two-pass algorithm: we map over the structure, performing g, then map over
it again, performing f. The functor axioms guarantee we can transform this into a single-pass
algorithm that performs f . g. This is a process known as fusion.

Exercises:
Check the laws for the Maybe and list functors.

53.2.2 Translating categorical concepts into Haskell

Functors provide a good example of how category theory gets translated into Haskell. The key
points to remember are that:

• We work in the category Hask and its subcategories.
• Objects are types.
• Morphisms are functions.
• Things that take a type and return another type are type constructors.
• Things that take a function and return another function are higher-order functions.
• Typeclasses, along with the polymorphism they provide, make a nice way of capturing the fact

that in category theory things are often defined over a number of objects at once.

371



Category theory

53.3 Monads

Abb. 34: unit and join, the two morphisms that must exist for every object for a given monad.

Monads are obviously an extremely important concept in Haskell, and in fact they originally came
from category theory. A monad is a special type of functor, from a category to that same category,
that supports some additional structure. So, down to definitions. A monad is a functor M : C →C ,
along with two morphisms3 for every object X in C:

• unitM
X : X → M(X )

• joinM
X : M(M(X )) → M(X )

3 Experienced category theorists will notice that we’re simplifying things a bit here; instead of presenting unit and
join as natural transformations, we treat them explicitly as morphisms, and require naturality as extra axioms
alongside the THE STANDARD MONAD LAWS ˆ{HTTP://EN.WIKIBOOKS.ORG/WIKI/%23THE%20MONAD%
20LAWS} (laws 3 and 4). The reasoning is simplicity; we are not trying to teach category theory as a whole,
simply give a categorical background to some of the structures in Haskell. You may also notice that we are giving
these morphisms names suggestive of their Haskell analogues, because the names η and µ don’t provide much
intuition.
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When the monad under discussion is obvious, we’ll leave out the M superscript for these functions
and just talk about unitX and joinX for some X.

Let’s see how this translates to the Haskell typeclass Monad, then.

class Functor m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The class constraint of Functor m ensures that we already have the functor structure: a mapping
of objects and of morphisms. return is the (polymorphic) analogue to unitX for any X. But we
have a problem. Although return’s type looks quite similar to that of unit; the other function,
(>>=), often called bind, bears no resemblance to join. There is however another monad function,
join :: Monad m => m (m a) -> m a, that looks quite similar. Indeed, we can recover join
and (>>=) from each other:

join :: Monad m => m (m a) -> m a
join x = x >>= id

(>>=) :: Monad m => m a -> (a -> m b) -> m b
x >>= f = join (fmap f x)

So specifying a monad’s return, fmap, and join is equivalent to specifying its return and (>>=).
It just turns out that the normal way of defining a monad in category theory is to give unit and join,
whereas Haskell programmers like to give return and (>>=).4 Often, the categorical way makes
more sense. Any time you have some kind of structure M and a natural way of taking any object X
into M(X ), as well as a way of taking M(M(X )) into M(X ), you probably have a monad. We can
see this in the following example section.

53.3.1 Example: the powerset functor is also a monad

The power set functor P : Set → Set described above forms a monad. For any set S you have a
unitS(x) = {x}, mapping elements to their singleton set. Note that each of these singleton sets are
trivially a subset of S, so unitS returns elements of the powerset of S, as is required. Also, you can
define a function joinS as follows: we receive an input L ∈P (P (S)). This is:

• A member of the powerset of the powerset of S.
• So a member of the set of all subsets of the set of all subsets of S.
• So a set of subsets of S

We then return the union of these subsets, giving another subset of S. Symbolically,

joinS(L) =⋃
L

4 This is perhaps due to the fact that Haskell programmers like to think of monads as a way of sequencing com-
putations with a common feature, whereas in category theory the container aspect of the various structures is
emphasised. join pertains naturally to containers (squashing two layers of a container down into one), but
(>>=) is the natural sequencing operation (do something, feeding its results into something else).
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.

Hence P is a monad 5.

In fact, P is almost equivalent to the list monad; with the exception that we’re talking lists instead
of sets, they’re almost the same. Compare:

Function type
Def-
i-
ni-
tion

Function type
Def-
i-
ni-
tion

Given a set S and a morphism f : A → B : Given a type T and a function f :: A ->
B

P ( f ) : P (A) →P (B) (P ( f ))(S) =
{ f (a) :
a ∈
S}

fmap f :: [A] -> [B] fmap
f
xs
=
[
f
a
|
a
<-
xs
]

unitS : S →P (S) unitS(x) =
{x}

return :: T -> [T] return
x
=
[x]

joinS : P (P (S)) →P (S) joinS(L) =⋃
L

join :: [[T]] -> [T] join
xs
=
concat
xs

53.4 The monad laws and their importance

Just as functors had to obey certain axioms in order to be called functors, monads have a few of
their own. We’ll first list them, then translate to Haskell, then see why they’re important.

Given a monad M : C →C and a morphism f : A → B for A,B ∈C ,

1. join◦M(join) = join◦ join

5 If you can prove that certain laws hold, which we’ll explore in the next section.
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2. join◦M(unit) = join◦unit = id
3. unit ◦ f = M( f )◦unit
4. join◦M(M( f )) = M( f )◦ join

By now, the Haskell translations should be hopefully self-explanatory:

1. join . fmap join = join . join
2. join . fmap return = join . return = id
3. return . f = fmap f . return
4. join . fmap (fmap f) = fmap f . join

(Remember that fmap is the part of a functor that acts on morphisms.) These laws seem a bit
impenetrable at first, though. What on earth do these laws mean, and why should they be true for
monads? Let’s explore the laws.

53.4.1 The first law

join . fmap join = join . join
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Abb. 35: A demonstration of the first law for lists. Remember that join is concat and fmap is map
in the list monad.

In order to understand this law, we’ll first use the example of lists. The first law mentions two
functions, join . fmap join (the left-hand side) and join . join (the right-hand side). What
will the types of these functions be? Remembering that join’s type is [[a]] -> [a] (we’re talking
just about lists for now), the types are both [A6] -> [a] (the fact that they’re the same is handy;
after all, we’re trying to show they’re completely the same function!). So we have a list of list of
lists. The left-hand side, then, performs fmap join on this 3-layered list, then uses join on the
result. fmap is just the familiar map for lists, so we first map across each of the list of lists inside the
top-level list, concatenating them down into a list each. So afterward, we have a list of lists, which
we then run through join. In summary, we ’enter’ the top level, collapse the second and third levels
down, then collapse this new level with the top level.

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/%5BA
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What about the right-hand side? We first run join on our list of list of lists. Although this is three
layers, and you normally apply a two-layered list to join, this will still work, because a [A7] is just
[[b]], where b = [a], so in a sense, a three-layered list is just a two layered list, but rather than the
last layer being ’flat’, it is composed of another list. So if we apply our list of lists (of lists) to join,
it will flatten those outer two layers into one. As the second layer wasn’t flat but instead contained
a third layer, we will still end up with a list of lists, which the other join flattens. Summing up, the
left-hand side will flatten the inner two layers into a new layer, then flatten this with the outermost
layer. The right-hand side will flatten the outer two layers, then flatten this with the innermost layer.
These two operations should be equivalent. It’s sort of like a law of associativity for join.

Maybe is also a monad, with

return :: a -> Maybe a
return x = Just x

join :: Maybe (Maybe a) -> Maybe a
join Nothing = Nothing
join (Just Nothing) = Nothing
join (Just (Just x)) = Just x

So if we had a three-layered Maybe (i.e., it could be Nothing, Just Nothing, Just (Just
Nothing) or Just (Just (Just x))), the first law says that collapsing the inner two layers first,
then that with the outer layer is exactly the same as collapsing the outer layers first, then that with
the innermost layer.

Exercises:
Verify that the list and Maybe monads do in fact obey this law with some examples to see precisely
how the layer flattening works.

53.4.2 The second law

join . fmap return = join . return = id

What about the second law, then? Again, we’ll start with the example of lists. Both functions
mentioned in the second law are functions [a] -> [a]. The left-hand side expresses a function
that maps over the list, turning each element x into its singleton list [x], so that at the end we’re
left with a list of singleton lists. This two-layered list is flattened down into a single-layer list again
using the join. The right hand side, however, takes the entire list [x, y, z, ...], turns it into
the singleton list of lists [[x, y, z, ...]], then flattens the two layers down into one again. This
law is less obvious to state quickly, but it essentially says that applying return to a monadic value,
then joining the result should have the same effect whether you perform the return from inside
the top layer or from outside it.

Exercises:
Prove this second law for the Maybe monad.

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/%5BA
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53.4.3 The third and fourth laws

return . f = fmap f . return

join . fmap (fmap f) = fmap f . join

The last two laws express more self evident fact about how we expect monads to behave. The easiest
way to see how they are true is to expand them to use the expanded form:

1. \x -> return (f x) = \x -> fmap f (return x)
2. \x -> join (fmap (fmap f) x) = \x -> fmap f (join x)

Exercises:
Convince yourself that these laws should hold true for any monad by exploring what they mean, in
a similar style to how we explained the first and second laws.

53.4.4 Application to do-blocks

Well, we have intuitive statements about the laws that a monad must support, but why is that
important? The answer becomes obvious when we consider do-blocks. Recall that a do-block is
just syntactic sugar for a combination of statements involving (>>=) as witnessed by the usual
translation:

do { x } --> x
do { let { y = v }; x } --> let y = v in do { x }
do { v <- y; x } --> y >>= \v -> do { x }
do { y; x } --> y >>= \_ -> do { x }

Also notice that we can prove what are normally quoted as the monad laws using return and (>>=)
from our above laws (the proofs are a little heavy in some cases, feel free to skip them if you want
to):

<ol>

return x >>= f = f x. Proof: return x >>= f

= join (fmap f (return x)) -- By the definition of (>>=)

= join (return (f x)) -- By law 3

= (join . return) (f x)

= id (f x) -- By law 2

= f x

m >>= return = m. Proof: m >>= return = join (fmap return m) -- By the definition of (>>=) =
(join . fmap return) m = id m -- By law 2 = m

(m >>= f) >>= g = m >>= (\x -> f x >>= g). Proof (recall that fmap f . fmap g =
fmap (f . g)): (m >>= f) >>= g = (join (fmap f m)) >>= g -- By the definition of (>>=) =
join (fmap g (join (fmap f m))) -- By the definition of (>>=) = (join . fmap g) (join (fmap f m)) =
(join . fmap g . join) (fmap f m) = (join . join . fmap (fmap g)) (fmap f m) -- By law 4 = (join .
join . fmap (fmap g) . fmap f) m = (join . join . fmap (fmap g . f)) m -- By the distributive law of
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functors = (join . join . fmap (\x -> fmap g (f x))) m = (join . fmap join . fmap (\x -> fmap g (f x)))
m -- By law 1 = (join . fmap (join . (\x -> fmap g (f x)))) m -- By the distributive law of functors =
(join . fmap (\x -> join (fmap g (f x)))) m = (join . fmap (\x -> f x >>= g)) m -- By the definition of
(>>=) = join (fmap (\x -> f x >>= g) m) = m >>= (\x -> f x >>= g) -- By the definition of (>>=)

</ol>

These new monad laws, using return and (>>=), can be translated into do-block notation.

Points-free style Do-block style

return x >>= f = f x
do { v <- return x; f v } = do { f
x }

m >>= return = m do { v <- m; return v } = do { m }
(m >>= f) >>= g = m >>= (\x -> f x
>>= g)

do { y <- do { x <- m; f x }; g y } = do { x <-
m; y <- f x; g y }

The monad laws are now common-sense statements about how do-blocks should function. If one
of these laws were invalidated, users would become confused, as you couldn’t be able to manipu-
late things within the do-blocks as would be expected. The monad laws are, in essence, usability
guidelines.

Exercises:
In fact, the two versions of the laws we gave:

-- Categorical:
join . fmap join = join . join
join . fmap return = join . return = id
return . f = fmap f . return
join . fmap (fmap f) = fmap f . join

-- Functional:
m >>= return = m
return m >>= f = f m
(m >>= f) >>= g = m >>= (\x -> f x >>= g)

are entirely equivalent. We showed that we can recover the functional laws from the categorical
ones. Go the other way; show that starting from the functional laws, the categorical laws hold. It
may be useful to remember the following definitions:

join m = m >>= id
fmap f m = m >>= return . f

Thanks to Yitzchak Gale for suggesting this exercise.

53.5 Summary

We’ve come a long way in this chapter. We’ve looked at what categories are and how they apply
to Haskell. We’ve introduced the basic concepts of category theory including functors, as well as
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some more advanced topics like monads, and seen how they’re crucial to idiomatic Haskell. We
haven’t covered some of the basic category theory that wasn’t needed for our aims, like natural
transformations, but have instead provided an intuitive feel for the categorical grounding behind
Haskell’s structures.

53.6 Notes

<references />

CATEGORY THEORY8

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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54 The Curry-Howard isomorphism

The Curry-Howard isomorphism is a striking relationship connecting two seemingly unrelated
areas of mathematics &mdash; type theory and structural logic.

54.1 Introduction

The Curry-Howard isomorphism, hereafter referred to as simply C-H, tells us that in order to prove
any mathematical theorem, all we have to do is construct a certain type which reflects the nature
of that theorem, then find a value that has that type. This seems extremely weird at first: what do
types have to do with theorems? However, as we shall see, the two are very closely related. A quick
note before we begin: for these introductory paragraphs, we ignore the existence of expressions
like error and undefined whose DENOTATIONAL SEMANTICS1 are . These have an extremely
important role, but we will consider them separately in due time. We also ignore functions that
bypass the type system like unsafeCoerce#.

We can build incredibly complicated types using Haskell’s HIGHER-ORDER FUNCTIONS2 feature.
We might want to ask the question: given an arbitrary type, under what conditions does there exist
a value with that type (we say the type is inhabited)? A first guess might be ’all the time’, but
this quickly breaks down under examples. For example, there is no function with type a -> b,
because we have no way of turning something of type a into something of a completely different
type b (unless we know in advance which types a and b are, in which case we’re talking about a
monomorphic function, such as ord :: Char -> Int).

Incredibly, it turns out that a type is only inhabited when it corresponds to a true theorem in math-
ematical logic. But what is the nature of this correspondence? What does a type like a -> b mean
in the context of logic?

54.1.1 A crash course in formal logic

We need some background on formal logic before we can begin to explore its relationship to type
theory. This is a very brief introduction; for a wider grounding we recommend you consult an
introductory textbook on the subject matter.

In everyday language we use a lot of ’If... then...’ sentences. For example, ’If the weather is nice
today, then we’ll walk into town’. These kinds of statements also crop up in mathematics; we can
say things like ’If x is positive, then it has a (real) square root’. Formal logic is a way of translating
these statements from loose, woolly, ambiguous English into precise symbolism. We use the �

1 Chapter 52 on page 337
2 Chapter 18 on page 123
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sign (read as ’implies’) to indicate that something is true if something else is true. For example,
our earlier statement could be recast as ’The weather is nice today� we’ll walk into town’, which
means that it is true that we’ll walk into town if it is true that the weather is nice, which is just
the same as the ’If... then...’ version we used earlier. We’ll often use letters to stand for entire
statements, so for example if W is the statement ’the weather is nice’, and T is the statement ’we’ll
walk into town’, then our example becomes simply W� T.

Notice the crafty way we phrased our definition of�. P� Q means that if P is true, then Q is true.
But if Q is some statement that is always true, no matter what the circumstances &mdash; like ’the
sun is hot’ &mdash; then it doesn’t matter what P is. P could even be a false statement, Q would
still be true if P were true, so P� Q would still hold. The fact that Q would be true if P isn’t true is
a whole different matter; we’re not asking that question when we say P� Q. So� doesn’t really
represent any kind of cause-effect relationship; things like ’the sky is pink� the sun is hot’ are still
valid statements. 3

Other things that crop up lots in both everyday language and mathematics are things called conjunc-
tions and disjunctions. The former represent statements involving an ’and’, the latter statements
involving an ’or’. We could represent the statement ’I will buy this magazine if it’s in stock and I
have enough money’ by the symbolism (M ∧S) → B , where M = ’I have enough money’, S = ’The
magazine is in stock’, B = ’I will buy the magazine’. Essentially, one can just read the symbol ∧ as
’and’. Similarly, one can read the symbol ∨ as ’or’, so that the statement ’I will either walk or get
the train to work’ could be represented as W ∨T , where W = ’I will walk to work’, and T = ’I will
get the train to work’.

Using these symbols, and a few more which will be introduced as we go, we can produce arbitrarily
complicated symbol strings. There are two classes of these symbol strings: those that represent
true statements, often called the theorems; and those which represent false statements, called the
nontheorems. Note that whether a symbol string is a theorem or nontheorem depends on what the
letters stand for, so P ∨Q is a theorem if, for example, P represents the statement ’It is daytime’
and Q represents the statement ’It is night time’ (ignoring exceptions like twilight), but it would be
a nontheorem if P were ’Trees are blue’ and Q were ’All birds can fly’. We’ll often call a symbol
string a proposition if we don’t know whether it’s a theorem or not.

There are many more subtleties to the subject of logic (including the fact that when we say ’If you
eat your dinner you’ll get dessert’ we actually mean ’If and only if you eat your dinner will you get
dessert’). If this is a subject that interests you, there are many textbooks around that comprehen-
sively cover the subject.

54.1.2 Propositions are types

So, given a type a -> b, what does that mean in terms of symbolistic logic? Handily, it simply
means that a � b. Of course, this only makes sense if a and b are types which can further be

3 Another way of looking at this is that we’re trying to define our logical operator � such that it captures our
intuition of the "if... then" construct in natural language. So we want statements like for all all naturals x, "x is
even"� "x+1 is odd" to be true. I.e. that implication must hold when we substitute x for any natural including,
say, 5. But "5 is even" and "6 is odd" are both false, so we must have that False� False is true. Similarly by
considering the statement for all naturals x > 3, "x is prime"� "x +1 is not prime", we must have that False�
True is true. And obviously True� True must be true, and True� False is false. So we have that x� y unless x
is true and y false.
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interpreted in our symbolistic logic. This is the essence of C-H. Furthermore, as we mentioned
before, a� b is a theorem if and only if a -> b is an inhabited type.

Let’s see this using one of the simplest of Haskell functions. const has the type a -> b -> a.
Translated into logic, we have that a � b � a. This must be a theorem, as the type a -> b ->
a is inhabited by the value const. Now, another way of expressing a� b is that ’If we assume a
is true, then b must be true.’ So a� b� a means that if we assume a is true, then if we further
assume that b is true, then we can conclude a. This is of course a theorem; we assumed a, so a is
true under our assumptions.

54.1.3 The problem with

We’ve mentioned that a type corresponds to a theorem if that type is inhabited. However, in Haskell,
every type is inhabited by the value undefined. Indeed, more generally, anything with type forall
a. a, a value with denotational semantics of , is a problem. in type theory corresponds to incon-
sistency in logic; we can prove any theorem using Haskell types because every type is inhabited.
Therefore, Haskell’s type system actually corresponds to an inconsistent logic system. However,
if we work with a limited subset of Haskell’s type system, and in particular disallow polymorphic
types, we have a consistent logic system we can do some cool stuff in. Hereafter it is assumed we
are working in such a type system.

Now that we have the basics of C-H, we can begin to unpack a little more the relationship between
types and propositions.

54.2 Logical operations and their equivalents

The essence of symbolic logic is a set of propositions, such as P and Q, and different ways of
combining these propositions such as Q� P or P ∨Q. These ways of combining propositions can
be thought of as operations on propositions. By C-H, propositions correspond to types, so we should
have that the C-H equivalents of these proposition combinators are type operations, more normally
known as type constructors. We’ve already seen an example of this: the implication operator� in
logic corresponds to the type constructor (->). The rest of this section proceeds to explore the rest
of the proposition combinators and explain their correspondence.

54.2.1 Conjunction and Disjunction

In order for A ∧B to be a theorem, both A and B must be theorems. So a proof for A ∧B amounts
to proving both A and B. Remember that to prove a proposition A we find a value of type A, where
A and A are C-H correspondents. So in this instance we wish to find a value that contains two sub-
values: the first whose type corresponds to A, and the second whose type corresponds to B. This
sounds remarkably like a pair. Indeed, we represent the symbol string A ∧B by (a, b), where a
corresponds to A and b corresponds to B.

Disjunction is opposite to conjunction. In order for A ∨B to be a theorem, either A or B must be a
theorem. Again, we search for a value which contains either a value of type A or a value of type B.
This is Either. Either A B is the type which corresponds to the proposition A∨B .
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54.2.2 Falsity

It is occasionally useful to represent a false statement in our logic system. By definition, a false
statement is one that can’t be proven. So we’re looking for a type which isn’t inhabited. Although
none of these types exist in the default libraries (don’t get confused with the () type, which has
precisely one value), we can define one, if we turn on the -fglasgow-exts flag in GHC:

data Void

The effect of omitting the constructors means that Void is an uninhabited type. So the Void type
corresponds to a nontheorem in our logic. There are a few handy corollaries here:

<ol>

(Void, A) and (A, Void) are both uninhabited types for any type A, corresponding to the fact that
F ∧ A and A∧F are both nontheorems if F is a nontheorem.

Either Void A and Either A Void are essentially the same as A for any type A, 4 corresponding
to the fact that F ∨ A and A∨F , where F is a nontheorem, are theorems only if A is a theorem.

Any type that corresponds to a nontheorem can be replaced with Void. This is because any
nontheorem-type must be uninhabited, so replacing it with Void everywhere doesn’t change any-
thing. Void is really equivalent to any nontheorem type5.

<p>As we remarked in the first section, the implication P � Q is true if Q is true, regardless of
the truth value of P. So we should be able to find a term with type Void -> a. In fact one does
exist, but it’s somewhat complicated to explain: the answer is the empty function. We can define
a function f :: A -> B as a (probably infinite) set of pairs whose first element is an element of
A (the domain) and second element is f’s output on this term, an element of B (the range). For
example, the successor function on the naturals is represented as {(0,1), (1,2), (2,3), ...}.
Note that in order to be a (total and well-defined) function, we must have precisely one pair (a, f
a) for each term a with type A.</p>

<p>The empty function, let’s call it empty is represented in this way by the empty set. But as we
must have a pair for each element of the domain, and there no pairs in our representation, the domain
type must be empty, i.e. Void. What about the range type? empty never produces any output, so
there are no restrictions placed on the range type. Thus, it is valid to assume that the range type has
any type, so we can say empty :: forall a. Void -> a. Unfortunately, it’s not possible to
write this function in Haskell; we’d ideally like to write something like:</p>

empty :: Void -> a

<p>And stop there, but this is illegal Haskell. The closest we can come is the following:</p>

empty :: Void -> a empty _= undefined

<p>Another reasonable way (also disallowed in Haskell) would be to write:</p>

empty x = case x of { }

4 Technically, the types Either Void A and A are isomorphic. Seeing as you can’t have a value of type Void, every
value in Either Void A must be a Right-tagged value, so the transformation just strips the Right constructors.

5 Again, the technical statement is that Void is isomorphic to any type which is a nontheorem.
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<p>The case statement is perfectly well formed since it handles every possible value of x.</p>

<p>Note that this is perfectly safe, since the right-hand side of this function can never be reached
(since we have nothing to pass it). So, the conclusion of all this is that Void -> a is an inhabited
type, just as P� Q is true if P is false.</p>

</ol>

54.2.3 Negation

The ¬ operation in logic turns theorems into nontheorems and vice versa: if A is a theorem then ¬A
is a nontheorem; if A is a nontheorem then ¬A is a theorem. How can we represent this in Haskell?
The answer’s a sneaky one. We define a type synonym:

type Not a = a -> Void

So for a type A, Not A is just A -> Void. How does this work? Well, if A was a theorem-type, then
A -> Void must be uninhabited: there’s no way any function could return any value, because the
return type, Void has no values (The function has to provide values for all inhabitants of A)! On
the other hand, if A was a nontheorem, then A can be replaced with Void as we explored in the last
section. Then the function id :: Void -> Void is an inhabitant of Not A, so Not A is a theorem
as required (The function doesn’t have to provide any values, since there are no inhabitants in its
domain. Nevertheless it’s a function — with an empty graph).

54.3 Axiomatic logic and the combinatory calculus

So far we’ve only used some very basic features from Haskell’s type system. Indeed, most of the
features of logic we’ve mentioned can be explored using a very basic ’programming language’,
the combinator calculus. To fully appreciate how closely C-H ties together these two areas of
mathematics, we need to axiomatise both our discussion of formal logic and our discussion of
programming languages.

54.3.1 Axiomatic logic

We start with two axioms about how the� operation should behave (from now on, we assume that
� is a right-associative function, i.e. A� B� C means A� (B� C)):

1. A� B� A
2. (A� B� C)� (A� B)� A� C

The first axiom says that given any two propositions A and B, if we assume both A and B, we know
that A is true. The second says that if A implies that B implies C (or equivalently, if C is true whenever
A and B are true), and A itself implies B, then knowing A is true would be enough to conclude that
C is true. This may seem complicated, but a bit of thought reveals it to be common sense. Imagine
we have a collection of boxes of various colours, some with wheels, some with lids, such that all
the red boxes with wheels also have lids, and all the red boxes have wheels. Pick one box. Let A =
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’The box under consideration is red’, B = ’The box under consideration has wheels’, C = ’The box
under consideration has a lid’. Then the second law tells us that, as A� B� C (all red boxes with
wheels also have lids), and A� B (all red boxes have wheels), then if A (if the box is red), then C
must be true (the box has a lid).

We also allow one inference law, called modus ponens:

1. If A� B, and A, then B.

This law allows us to create new theorems given old one. It should be fairly obvious; it is essentially
the definition of what� means. This small basis provides a simple enough logic system which is
expressive enough to cover most of our discussions. Here’s a sample proof of the law A� A in our
system:

Firstly, we know the two axioms to be theorems:

• A� B� A
• (A� B� C)� (A� B)� A� C

You’ll notice that the left-hand side of the second axiom looks a bit like the first axiom. The second
axiom guarantees that if we know that A � B � C, then we can conclude (A � B) � A � C. In
this case, if we let C be the same proposition as A, then we have that if A� B� A, then (A� B)�
A� A. But we already know A� B� A, that was the first axiom. Therefore, we have that (A�
B)� A� A is a theorem. If we further let B be the proposition C� A, for some other proposition
C, then we have that if A� C� A, then A� A. But, again, we know that A� C� A (it’s the first
axiom again), so A� A, as we wanted.

This example demonstrates that given some simple axioms and a simple way to make new theorems
from old, we can derive more complicated theorems. It may take a while to get there &mdash;
here we had several lines of reasoning to prove just that the obvious statement A� A is a theorem!
&mdash; but we get there in the end. This kind of formalisation is attractive because we have
essentially defined a very simple system, and it is very easy to study how that system works.

54.3.2 Combinator calculus

The LAMBDA CALCULUS6 is a way of defining a simple programming language from a very simple
basis. If you haven’t already read the chapter that was just linked to, we recommend you read at
least the introductory sections on the untyped version of the calculus. Here’s a refresher in case
you’re feeling dusty. A lambda term is one of three things:

• A value, v.
• A lambda abstraction λx.t , where t is another lambda term.
• An application (t1t2), where t1 and t2 are lambda terms.

There is one reduction law, too, called beta-reduction:

• ((λx.t1)t2) � t1[x := t2], where t1[x := t2] means t1 with all the free occurrences of x replaced
with t2.

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FLAMBDA%20CALCULUS
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Sample proofs

As mentioned in the LAMBDA CALCULUS7 article, the difficulty comes when trying to pin down the
notion of a free occurrence of an identifier. The combinator calculus was invented by the American
mathematician Haskell Curry (after whom a certain programming language is named) because of
these difficulties. There are many variants on the basic combinator calculus, but we consider one of
the simplest here. We start with two so-called combinators:

• K takes two values and returns the first. In the lambda calculus, K =λx y. x.
• S takes a binary function, a unary function and a value, and applies that value and the value passed

into the unary function to the binary function. again, in the lambda calculus: S =λx y z. xz(y z).

The first function you should recognise as const. The second is more complicated, it is the monadic
function ap in the ((->) e) monad (which is essentially Reader). These two combinators form a
complete basis for the entire lambda calculus. Every lambda calculus program can be written using
just these two functions.

54.4 Sample proofs

54.5 Intuitionistic vs classical logic

So far, all of the results we have proved are theorems of intuitionistic logic. Let’s see what hap-
pens when we try to prove the basic theorem of classical logic, Not Not A -> A . Recall that
this translates as ((A -> Void) -> Void) -> A . So, given a function of type (A -> Void) ->
Void we need a function of type A. Now a function of type (A -> Void) -> Void exists pre-
cisely if type A -> Void is uninhabited, or in other words if type A is inhabited. So we need a
function which takes any inhabited type, and returns an element of that type. Although it is simple
enough to do this on a computer - we need only find the "simplest" or "first" inhabitant of each type
- there is no way to do this using standard lambda-calculus or combinator techniques. So we see
that this result cannot be proved using these two techniques, and hence that the underlying logic is
intuitionistic rather than classical.

Instead, consider a traditional error handling function which calls throw when an error occurs,
transferring computation to catch. The throw function cancels any return value from the original
function, so it has type A -> Void, where A is the type of its arguments. The catch function then
takes the throw function as its argument, and, if the throw triggers (i.e. returns a Void) will return
the argument of the throw function. So the type of catch is ((A -> Void) -> Void) -> A . 8

54.6 Notes

<references />
9

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FLAMBDA%20CALCULUS
8 This argument is taken from Dan Piponi . Adventures in Classical Land Adventures in Classical Land . The

Monad Reader , ERRORMAP
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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55 fix and recursion

The fix function is a particularly weird-looking function when you first see it. However, it is useful
for one main theoretical reason: introducing it into the (typed) lambda calculus as a primitive allows
you to define recursive functions.

55.1 Introducing fix

Let’s have the definition of fix before we go any further:

fix :: (a -> a) -> a
fix f = f (fix f)

This immediately seems quite magical. Surely fix f will yield an infinite application stream of fs:
f (f (f (... )))? The resolution to this is our good friend, lazy evaluation. Essentially, this
sequence of applications of f will converge to a value if (and only if) f is a lazy function. Let’s see
some examples:

Example: fix examples

Prelude> :m Control.Monad.Fix
Prelude Control.Monad.Fix> fix (2+)
*** Exception: stack overflow
Prelude Control.Monad.Fix> fix (const "hello")
"hello"
Prelude Control.Monad.Fix> fix (1:)
[1,1,1,1

,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

Prelude> :m Control.Monad.Fix
Prelude Control.Monad.Fix> fix (2+)
*** Exception: stack overflow
Prelude Control.Monad.Fix> fix (const "hello")
"hello"
Prelude Control.Monad.Fix> fix (1:)
[1,1,1,1

,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

We first import the Control.Monad.Fix module to bring fix into scope (this is also available in
the Data.Function). Then we try some examples. Since the definition of fix is so simple, let’s
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expand our examples to explain what happens:

fix (2+)
= 2 + (fix (2+))
= 2 + (2 + fix (2+))
= 4 + (fix (2+))
= 4 + (2 + fix (2+))
= 6 + fix (2+)
= ...

It’s clear that this will never converge to any value. Let’s expand the next example:

fix (const "hello")
= const "hello" (fix (const "hello"))
= "hello"

This is quite different: we can see after one expansion of the definition of fix that because const
ignores its second argument, the evaluation concludes. The evaluation for the last example is a little
different, but we can proceed similarly:

fix (1:)
= 1 : fix (1:)
= 1 : (1 : fix (1:))
= 1 : (1 : (1 : fix (1:)))

Although this similarly looks like it’ll never converge to a value, keep in mind that when you
type fix (1:) into GHCi, what it’s really doing is applying show to that. So we should look at
how show (fix (1:)) evaluates (for simplicity, we’ll pretend show on lists doesn’t put commas
between items):

show (fix (1:))
= "[" ++ map show (fix (1:)) ++ "]"
= "[" ++ map show (1 : fix (1:)) ++ "]"
= "[" ++ "1" ++ map show (fix (1:)) ++ "]"
= "[" ++ "1" ++ "1" ++ map show (fix (1:)) ++ "]"

So although the map show (fix (1:)) will never terminate, it does produce output: GHCi can
print the beginning of the string, "[" ++ "1" ++ "1", and continue to print more as map show
(fix (1:)) produces more. This is lazy evaluation at work: the printing function doesn’t need to
consume its entire input string before beginning to print, it does so as soon as it can start.

Exercises:
What, if anything, will the following expressions converge to?

• fix ("hello"++)
• fix (\x -> cycle (1:x))
• fix reverse
• fix id
• fix (\x -> take 2 $ cycle (1:x))
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55.2 fix and fixed points

A fixed point of a function f is a value a such that f a == a. For example, 0 is a fixed point of
the function (* 3) since 0 * 3 == 0. This is where the name of fix comes from: it finds the
least-defined fixed point of a function. (We’ll come to what "least defined" means in a minute.)
Notice that for both of our examples above that converge, this is readily seen:

const "hello" "hello" -> "hello"
(1:) [1,1,..] -> [1,1,...]

And since there’s no number x such that 2+x == x, it also makes sense that fix (2+) diverges.

Exercises:
For each of the functions f in the above exercises for which you decided that fix f converges,
verify that fix f finds a fixed point.

In fact, it’s obvious from the definition of fix that it finds a fixed point. All we need to do is write
the equation for fix the other way around:

f (fix f) = fix f

Which is precisely the definition of a fixed point! So it seems that fix should always find a fixed
point. But sometimes fix seems to fail at this, as sometimes it diverges. We can repair this property,
however, if we bring in some DENOTATIONAL SEMANTICS1. Every Haskell type actually include
a special value called bottom, written . So the values with type, for example, Int include, in fact,
as well as 1, 2, 3 etc.. Divergent computations are denoted by a value of , i.e., we have that fix
(2+) = .

The special value undefined is also denoted by this . Now we can understand how fix finds fixed
points of functions like (2+):

Example: Fixed points of (2+)
Prelude> (2+) undefined

*** Exception: Prelude.undefined

Prelude> (2+) undefined

*** Exception: Prelude.undefined

So feeding undefined (i.e., ) to (2+) gives us undefined back. So is a fixed point of (2+)!

In the case of (2+), it is the only fixed point. However, there are other functions f with several fixed
points for which fix f still diverges: fix (*3) diverges, but we remarked above that 0 is a fixed

1 Chapter 52 on page 337
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point of that function. This is where the "least-defined" clause comes in. Types in Haskell have a
PARTIAL ORDER2 on them called definedness. In any type, is the least-defined value (hence the
name "bottom"). For simple types like Int, the only pairs in the partial order are 1, 2 and so
on. We do not have m n for any non-bottom Ints m, n. Similar comments apply to other simple
types like Bool and (). For "layered" values such as lists or Maybe, the picture is more complicated,
and we refer to the chapter on DENOTATIONAL SEMANTICS3.

So since is the least-defined value for all types and fix finds the least-defined fixed point, if f =
, we will have fix f = (and the converse is also true). If you’ve read the denotational semantics
article, you will recognise this as the criterion for a strict function: fix f diverges if and only if f
is strict.

55.3 Recursion

If you’ve come across examples of fix on the internet, or on the #HASKELL IRC CHANNEL4, the
chances are that you’ve seen examples involving fix and recursion. Here’s a classic example:

Example: Encoding recursion with fix
Prelude> let fact n = if n == 0 then 1 else n * fact (n-1) in fact 5

120

Prelude> fix (\rec n -> if n == 0 then 1 else n * rec (n-1)) 5

120

Prelude> let fact n = if n == 0 then 1 else n * fact (n-1) in fact 5

120

Prelude> fix (\rec n -> if n == 0 then 1 else n * rec (n-1)) 5

120

Here we have used fix to "encode" the factorial function: note that (if we regard fix as a language
primitive) our second definition of fact doesn’t involve recursion at all. In a language like the typed
lambda calculus that doesn’t feature recursion, we can introduce fix in to write recursive functions
in this way. Here are some more examples:

Example: More fix examples
Prelude> fix (\rec f l -> if null l then [] else f (head l) : rec f

(tail l)) (+1) [1..3]

[2,3,4]

Prelude> map (fix (\rec n -> if n == 1 || n == 2 then 1 else rec (n-1)

+ rec (n-2))) [1..10]

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARTIAL_ORDER
3 Chapter 52 on page 337
4 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/IRC_CHANNEL

392

http://en.wikipedia.org/wiki/Partial_order
http://www.haskell.org/haskellwiki/IRC_channel


Recursion

[1,1,2,3,5,8,13,21,34,55]

Prelude> fix (\rec f l -> if null l then [] else f (head l) : rec f

(tail l)) (+1) [1..3]

[2,3,4]

Prelude> map (fix (\rec n -> if n == 1 || n == 2 then 1 else rec (n-1)

+ rec (n-2))) [1..10]

[1,1,2,3,5,8,13,21,34,55]

So how does this work? Let’s first approach it from a denotational point of view with our fact
function. For brevity let’s define:

fact’ rec n = if n == 0 then 1 else n * rec (n-1)

So that we’re computing fix fact’ 5. fix will find a fixed point of fact’, i.e. the function f
such that f == fact’ f. But let’s expand what this means:

f = fact’ f
= \n -> if n == 0 then 1 else n * f (n-1)

All we did was substitute rec for f in the definition of fact’. But this looks exactly like a recursive
definition of a factorial function! fix feeds fact’ itself as its first parameter in order to create a
recursive function out of a higher-order function.

We can also consider things from a more operational point of view. Let’s actually expand the
definition of fix fact’:

fix fact’
= fact’ (fix fact’)
= (\rec n -> if n == 0 then 1 else n * rec (n-1)) (fix fact’)
= \n -> if n == 0 then 1 else n * fix fact’ (n-1)
= \n -> if n == 0 then 1 else n * fact’ (fix fact’) (n-1)
= \n -> if n == 0 then 1

else n * (\rec n’ -> if n’ == 0 then 1 else n’ * rec (n’-1))
(fix fact’) (n-1)
= \n -> if n == 0 then 1

else n * (if n-1 == 0 then 1 else (n-1) * fix fact’ (n-2))
= \n -> if n == 0 then 1

else n * (if n-1 == 0 then 1
else (n-1) * (if n-2 == 0 then 1

else (n-2) * fix fact’ (n-3)))
= ...

Notice that the use of fix allows us to keep "unravelling" the definition of fact’: every time we
hit the else clause, we product another copy of fact’ via the evaluation rule fix fact’ = fact’
(fix fact’), which functions as the next call in the recursion chain. Eventually we hit the then
clause and bottom out of this chain.
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Exercises:

1. Expand the other two examples we gave above in this sense. You may need a lot of paper for
the Fibonacci example!

2. Write non-recursive versions of filter and foldr.

55.4 The typed lambda calculus

In this section we’ll expand upon a point mentioned a few times in the previous section: how
fix allows us to encode recursion in the typed lambda calculus. It presumes you’ve already met
the typed lambda calculus. Recall that in the lambda calculus, there is no let clause or top-level
bindings. Every program is a simple tree of lambda abstractions, applications and literals. Let’s say
we want to write a fact function. Assuming we have a type called Nat for the natural numbers,
we’d start out something like the following:

n:Nat. if iszero n then 1 else n * <blank> (n-1)

The problem is, how do we fill in the <blank>? We don’t have a name for our function, so we can’t
call it recursively. The only way to bind names to terms is to use a lambda abstraction, so let’s give
that a go:

(f:Nat�Nat. n:Nat. if iszero n then 1 else n * f (n-1))
(m:Nat. if iszero m then 1 else m * <blank> (m-1))

This expands to:

n:Nat. if iszero n then 1
else n * (if iszero n-1 then 1 else (n-1) * <blank> (n-2))

We still have a <blank>. We could try to add one more layer in:

(f:Nat�Nat. n:Nat. if iszero n then 1 else n * f (n-1)
((g:Nat�Nat. m:Nat. if iszero n’ then 1 else n’ * g (m-1))

(p:Nat. if iszero p then 1 else p * <blank> (p-1))))

->

n:Nat. if iszero n then 1
else n * (if iszero n-1 then 1

else (n-1) * (if iszero n-2 then 1 else (n-2) *
<blank> (n-3)))

It’s pretty clear we’re never going to be able to get rid of this <blank>, no matter how many levels
of naming we add in. Never, that is, unless we use fix, which, in essence, provides an object from
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which we can always unravel one more layer of recursion and still have what we started off:

fix (f:Nat�Nat. n:Nat. if iszero n then 1 else n * f (n-1))

This is a perfect factorial function in the typed lambda calculus plus fix.

fix is actually slightly more interesting than that in the context of the typed lambda calculus: if
we introduce it into the language, then every type becomes inhabited, because given some concrete
type T, the following expression has type T:

fix (x:T. x)

This, in Haskell-speak, is fix id, which is denotationally . So we see that as soon as we introduce
fix to the typed lambda calculus, the property that every well-typed term reduces to a value is lost.

55.5 Fix as a data type

It is also possible to make a fix data type.

There are three ways of defining it.

newtype Fix f=Fix (f (Fix f))

and

newtype Mu f=Mu (forall a.(f a->a)->a)
data Nu f=forall a.Nu a (a->f a)

Mu and Nu help generalize folds, unfolds and refolds.

fold :: (f a -> a) -> Mu f -> a
fold g (Mu f)=f g
unfold :: (a -> f a) -> a -> Nu f
unfold f x=Nu x f
refold :: (a -> f a) -> (g a-> a) -> Mu f -> Nu g
refold f g=unfold g . fold f

Mu and Nu are restricted versions of Fix. Mu is used for making inductive noninfinite data and Nu
is used for making coinductive infinite data. Eg)

newpoint Stream a=Stream (Nu ((,) a)) -- forsome b. (b,b->(a,b))
newpoint Void a=Void (Mu ((,) a)) -- forall b.((a,b)->b)->b

Unlike the fix point function the fix point types do not lead to bottom. In the following code Bot is
perfectly defined. It is equivalent to the unit type ().
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newtype Id a=Id a
newtype Bot=Bot (Fix Id) -- equals newtype Bot=Bot Bot
-- There is only one allowable term. Bot $ Bot $ Bot $ Bot ..,

The Fix data type cannot model all forms of recursion. Take for instance this nonregular data type.

data Node a=Two a a|Three a a a
data FingerTree a=U a|Up (FingerTree (Node a))

It is not easy to implement this using Fix.

FIX AND RECURSION5

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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57 Introduction

57.1 Execution Model

57.1.1 Introducing Lazy Evaluation

Programming is not only about writing programs that work but also about programs that require
little memory and time to execute on a computer. While both time and memory use are relatively
straightforward to predict in an imperative programming language or in strict functional languages
like LISP or ML, things are different here. In Haskell, expressions are evaluated on demand. For
instance, the expression

head (map (2 *) [1 .. 10])

will be evaluated as follows

&rArr; head (map (2 *) (1 : [2 .. 10])) ([1 .. 10])
&rArr; head (2 * 1 : map (2 *) [2 .. 10]) (map)
&rArr; 2 * 1 (head)
&rArr; 2 (*)

The function head demands only the first element of the list and consequently, the remaining part
map (2 *) [2 .. 10] of the list is never evaluated. Since this strategy only performs as much
evaluation as necessary, it’s called lazy evaluation. The chapter ../GRAPH REDUCTION/1 will
present it in detail.

While lazy evaluation is the commonly employed implementation technique for Haskell, the LAN-
GUAGE STANDARD2 only specifies that Haskell has non-strict DENOTATIONAL SEMANTICS3 with-
out fixing a particular execution model. A function f with one argument is said to be strict if it
doesn’t terminate or yields an error whenever the evaluation of its argument will loop forever or is
otherwise undefined. Writing &perp; for the "result" of an infinite loop, the definition for strictness
is

A function f is called strict if f &perp; = &perp; .

For example, trying to add 1 to a number that loops forever will still loop forever, so &perp;+1
= &perp; and the addition function (+1) is strict. The function head is also strict since the first
element of a list won’t be available if the whole list is undefined. But it may well be that the first

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGRAPH%20REDUCTION%2F
2 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FDENOTATIONAL%20SEMANTICS
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element is well-defined while the remaining list is not. In this case, we have

head (x : &perp;) = x

This equation means that head does not evaluate the remaining list, otherwise it would loop as well.
Thus, such purely algebraic strictness properties are a great help for reasoning about execution time
and memory. In strict languages like LISP or ML, we would always have head (x:&perp;) =
&perp;, whereas Haskell being "non-strict" means that we can write functions which are not strict,
like the above property of head or the simplest example (const 1) &perp; = 1. With the help
of the constant undefined from the PRELUDE4, we can even explore strictness interactively

> head (1 : undefined)
1
> head undefined
*** Exception: Prelude.undefined

Strictness and &perp; will be used thorough these chapters. ../GRAPH REDUCTION/5 presents
further introductory examples and the denotational point of view is elaborated in ../DENOTATIONAL

SEMANTICS/6.

57.1.2 Example: fold

The best way to get a first feeling for lazy evaluation is to study an example. Therefore, we will
consider some prototypical use case of <code>foldr<code> and its variants. The needed basics
for studying the time and space complexity of programs are recapped in chapter ../ALGORITHM

COMPLEXITY/7.

Time

Consider the following function isPrime that examines whether a number is a prime number or
not

isPrime n = not $ any (‘divides‘ n) [2..n-1]
d ‘divides‘ n = n ‘mod‘ d == 0
any p = or . map p
or = foldr (||) False

The helper function any from the Haskell PRELUDE8 checks whether there is at least one element
in the list that satisfies some property p. For isPrime , the property is "being a divisor of n".

4 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/PRELUDE.
HTML

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGRAPH%20REDUCTION%2F
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FDENOTATIONAL%20SEMANTICS%2F
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FALGORITHM%20COMPLEXITY%2F
8 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/PRELUDE.

HTML
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The amount of time it takes to evaluate an expression is of course measured by the number of
reduction steps. If n is a prime number, the above algorithm will examine the full list of numbers
from 2 to n-1 and thus has a worst-case running time of O(n) reductions. However, if n is not a
prime number, we do not need to loop through every one of these numbers, we can stop as soon
as we found one divisor and report n as being composite. The joy of lazy evaluation is that this
behavior is already built-in into the logical disjunction ||!

isPrime 42
&rArr; not $ any (‘divides‘ 42) [2..41]

&rArr; not ( or (map (‘divides‘ 42) [2..41]
) )
&rArr; not ( or ((42 ‘mod‘ 2 == 0) : map (‘divides‘ 42)

[3..41]) )
&rArr; not ( (42 ‘mod‘ 2 == 0) || or (map (‘divides‘ 42)

[3..41]) )
&rArr; not ( True || or (map (‘divides‘ 42)

[3..41]) )
&rArr; not True
&rArr; False

The function returns False after seeing that 42 is even, || does not look at its second argument
when the first one determines the result to be True. In other words, we have the following strictness
property

True || &perp; = True

Of course, the above algorithm can be implemented with a custom loop. But the crux of lazy eval-
uation is that we could formulate the algorithm in a transparent way by reusing the standard foldr
and still get early bail-out. Put differently, lazy evaluation is about formulating fast algorithms in a
modular way. An extreme example is to use infinite data structures to efficiently modularize gener-
ate & prune - algorithms. This and many other neat techniques with lazy evaluation will be detailed
in the chapter ../LAZINESS/9.

It’s neither feasible nor necessary to perform a detailed graph reduction to analyze execution time.
Shortcuts are available, like non-strictness or the fact that lazy evaluation will always take fewer
reduction steps than eager evaluation. They will be presented in ../GRAPH REDUCTION/10.

Space

While execution time is modeled by the number of reduction steps, memory usage is modeled by
the size of an expression during evaluation. Unfortunately, it’s harder to predict and deviating from
the normal course lazy evaluation by more strictness can ameliorate it. More details in ../GRAPH

REDUCTION/11. Here, we will present the prototypical example for unexpected space behavior.

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FLAZINESS%2F
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGRAPH%20REDUCTION%2F
11 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGRAPH%20REDUCTION%2F
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Naively summing a huge number of integers

> foldr (+) 0 [1..1000000]
*** Exception: stack overflow

produces a stack overflow. What happens? The evaluation proceeds as follows

foldr (+) 0 [1..1000000]
&rArr; 1+(foldr (+) 0 [2..1000000])
&rArr; 1+(2+(foldr (+) 0 [3..1000000]))
&rArr; 1+(2+(3+(foldr (+) 0 [4..1000000]))

and so on. We see that the expression grows larger and larger, needing more and more memory.
In this case, the memory is allocated on the stack for performing the pending additions after the
recursive calls to foldr return. At some point, the memory needed exceeds the maximum possible
stack size raising the "stack overflow" error. Don’t worry whether it’s stack or heap, the thing to
keep in mind is that the size of the expression corresponds to the memory used and we see that in
general, evaluating foldr (+) 0 [1..n] needs O(n) memory.

But it should be possible to do it in O(1) space by keeping an accumulated sum of numbers seen so
far, exploiting that + is associative. (Some readers may notice that this means to make the function
tail recursive.) This is what foldl does:

foldl (+) 0 [1..n]
&rArr; foldl (+) (0+1) [2..n]
&rArr; foldl (+) ((0+1)+2) [3..n]
&rArr; foldl (+) (((0+1)+2)+3) [4..n]

But much to our horror, the accumulated sum will not be reduced any further! It will grow on the
heap until the end of the list is reached

&rArr; ... &rArr; foldl (+) ((((0+1)+2)+3)+...) []
&rArr; ((((0+1)+2)+3)+...)

and subsequent reduction of this huge unevaluated sum will fail with a stack overflow, too. (So, just
introducing an accumulating parameter doesn’t make it tail recursive.)

The problem is that the unevaluated sum is an overly large representation for a single integer and
it’s cheaper to evaluate it eagerly. This is what foldl’ does:

foldl’ f z [] = z
foldl’ f z (x:xs) = z ‘seq‘ foldl’ f (f z x) xs
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Here, evaluating a ‘seq‘ b will reduce a to WEAK HEAD NORMAL FORM12 before proceeding
with the reduction of b. With this, the sum proceeds as

foldl’ (+) 0 [1..n]
&rArr; foldl’ (+) (0+1) [2..n]
&rArr; foldl’ (+) (1+2) [3..n]
&rArr; foldl’ (+) (3+3) [4..n]
&rArr; foldl’ (+) (6+4) [5..n]
&rArr; ...

in constant space.

For more details and examples, read the chapter ../GRAPH REDUCTION/13.

57.1.3 Low-level Overhead

Compared to eager evaluation, lazy evaluation adds a considerable overhead, even integers or char-
acters have to be stored as pointers since they might be &perp;. An array of 1-byte characters is
several times more compact than a String = [Char] of similar length. With strictness annotations,
unboxed types and automatic strictness analysis, the overhead can be reduced. The Haskell wiki is
a good resource HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE14 concerning these
low-level details, the wikibook currently doesn’t cover them.

57.2 Algorithms & Data Structures

57.2.1 Algorithms

While this wikibook is not a general book on algorithms, there are many techniques of writing ef-
ficient programs unique to functional programming. The chapter ../ALGORITHM COMPLEXITY/15

recaps the big-O notation and presents a few examples from practice.

In ../LAZINESS/16, the focus is on exploiting lazy evaluation to write efficient algorithms in a mod-
ular way.

A common theme of ../PROGRAM DERIVATION/17 and ../EQUATIONAL REASONING/18 is to
derive an efficient program from a specification by applying and proving equations like

map f . reverse = reverse . map f
filter p . map f = map f . filter (p . f)

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGRAPH%20REDUCTION%23WEAK%20HEAD%20NORMAL%
20FORM

13 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FGRAPH%20REDUCTION%2F
14 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE
15 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FALGORITHM%20COMPLEXITY%2F
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FLAZINESS%2F
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPROGRAM%20DERIVATION%2F
18 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FEQUATIONAL%20REASONING%2F
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This quest has given rise to a gemstone, namely a purely algebraic approach to dynamic program-
ming which will be introduced in some chapter with a good name.

Another equational technique known as fusion or deforestation aims to remove intermediate data
structures in function compositions. For instance, the composition on the left hand side of

map f . map g = map (f . g)

constructs and deconstructs an intermediate list whereas the right hand side is a single pass over the
list. The general theme here is to fuse constructor-deconstructor pairs like

case (Just y) of { Just x -> f x; Nothing -> ...; } = f y

This will be detailed in some chapter with a good name.

57.2.2 Data structures

Choosing the right data structure is key to success. While lists are common and can lead surprisingly
far, they are more a kind of materialized loops than a classical data structure with fast access and
updates. Many languages have special support for particular data structures of that kind like arrays
in C, hash tables in Perl or lists in LISP. Natively, Haskell favors any kind of tree. But thanks to
parametric polymorphism and type classes, any abstract type like balanced binary trees is easy to
use and reuse! The chapter ../DATA STRUCTURES/19 details the natural choices of data structures
for common problems.

Because Haskell is purely functional, data structures share the common trait of being persistent.
This means that older version of a data structure are still available like in

foo set = (newset, set)
where newset = insert "bar" set

Compared to that, the default in imperative languages is ephemeral, i.e. data is updated in place
and old versions are overridden. For example, arrays are ephemeral. That’s why they are either
immutable or require monads to use in Haskell. Fortunately, many ephemeral structures like queues
or heaps have persistent counterparts and the chapter ../DATA STRUCTURES/20 will also gently
introduce some design principles in that direction, for instance concerning amortization.

57.3 Parallelism

The goal of parallelism is to run an algorithm on multiple cores / computers in parallel for faster
results. Because Haskell doesn’t impose an execution order thanks to its purity, it is well-suited for
formulating parallel algorithms.

19 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FDATA%20STRUCTURES%2F
20 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FDATA%20STRUCTURES%2F
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Currently, parallelism in Haskell is still a research topic and subject to experimentation. There are
combinators for controlling the execution order CONTROL.PARALLEL.STRATEGIES21, but they are
rather fine-grained. Research on a less ambitious but more practical alternative DATA PARALLEL

HASKELL22 is ongoing.

The chapter ../PARALLELISM/23 is not yet written but is intended to be a gentle introduction to
parallel algorithms and current possibilities in Haskell.

21 HTTP://HACKAGE.HASKELL.ORG/PACKAGES/ARCHIVE/BASE/4.1.0.0/DOC/HTML/
CONTROL-PARALLEL-STRATEGIES.HTML

22 HTTP://HASKELL.ORG/HASKELLWIKI/GHC/DATA_PARALLEL_HASKELL
23 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPARALLELISM%2F
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58 Step by Step Examples

Goal: Explain optimizations step by step with examples that actually happened.

58.1 Tight loop

DONS: WRITE HASKELL AS FAST AS C: EXPLOITING STRICTNESS, LAZINESS AND RECUR-
SION.1

58.2 CSV Parsing

HASKELL-CAFE: ANOTHER NEWBIE PERFORMANCE QUESTION2 I hope he doesn’t mind if I
post his code here, I still have to ask him. -- APFEλMUS3 08:46, 18 May 2008 (UTC)
type CSV = [[String]]

main = do

args <- getArgs

file <- readFile (head args)

writeFile (head args ++ "2") (processFile (args !!

1) file)

processFile s = writeCSV . doInteraction s . readCSV

doInteraction line csv = insertLine (show line) (length csv - 1) csv

writeCSV = (\x -> x ++ "\n") . concat . intersperse "\n" .

(map (concat . intersperse "," . (map show)))

insertLine line pos csv = (take pos csv) ++ [readCSVLine line] ++ drop

pos csv

readCSVLine = read . (\x -> "["++x++"]")

readCSV = map readCSVLine . lines

I think there was another cvs parsing thread on the mailing list which I deemed appropriate, but I
can’t remember.

1 HTTP://CGI.CSE.UNSW.EDU.AU/~{}DONS/BLOG/2008/05/16#FAST
2 HTTP://THREAD.GMANE.ORG/GMANE.COMP.LANG.HASKELL.CAFE/40114
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AAPFELMUS
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58.3 Space Leak

jkff asked about some code in #haskell which was analyzing a logfile. Basically, it was building a
histogram

foldl’ (\m (x,y) -> insertWith’ x (\[y] ys -> y:ys) [y] m) M.empty

[(ByteString.copy foo, ByteString.copy bar) | (foo,bar) <- map

(match regex) lines]

The input was a 1GB logfile and the program blew the available memory mainly because the
ByteString.copy weren’t forced and the whole file lingered around in memory.
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59 Graph reduction

59.1 Notes and TODOs

• TODO: Pour lazy evaluation explanation from ../LAZINESS/1 into this mold.
• TODO: better section names.
• TODO: ponder the graphical representation of graphs.

• No grapical representation, do it with let .. in. Pro: Reduction are easiest to perform in
that way anyway. Cons: no graphic.

• ASCII art / line art similar to the one in Bird&Wadler? Pro: displays only the relevant parts
truly as graph, easy to perform on paper. Cons: Ugly, no large graphs with that.

• Full blown graphs with @-nodes? Pro: look graphy. Cons: nobody needs to know @-nodes in
order to understand graph reduction. Can be explained in the implementation section.

• Graphs without @-nodes. Pro: easy to understand. Cons: what about currying?
• ! Keep this chapter short. The sooner the reader knows how to evaluate Haskell programs by

hand, the better.
• First sections closely follow Bird&Wadler

59.2 Introduction

Programming is not only about writing correct programs, answered by denotational semantics, but
also about writing fast ones that require little memory. For that, we need to know how they’re exe-
cuted on a machine, commonly given by operational semantics. This chapter explains how Haskell
programs are commonly executed on a real computer and thus serves as foundation for analyzing
time and space usage. Note that the Haskell standard deliberately does <em>not</em> give opera-
tional semantics, implementations are free to choose their own. But so far, every implementation of
Haskell more or less closely follows the execution model of <em>lazy evaluation</em>.

In the following, we will detail lazy evaluation and subsequently use this execution model to explain
and exemplify the reasoning about time and memory complexity of Haskell programs.

59.3 Evaluating Expressions by Lazy Evaluation

59.3.1 Reductions

Executing a functional program, i.e. evaluating an expression, means to repeatedly apply function
definitions until all function applications have been expanded. Take for example the expression

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FLAZINESS%2F
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pythagoras 3 4 together with the definitions

square x = x * x
pythagoras x y = square x + square y

One possible sequence of such reductions is

pythagoras 3 4
&rArr; square 3 + square 4 (pythagoras)
&rArr; (3*3) + square 4 (square)
&rArr; 9 + square 4 (*)
&rArr; 9 + (4*4) (square)
&rArr; 9 + 16 (*)
&rArr; 25

Every reduction replaces a subexpression, called reducible expression or redex for short, with an
equivalent one, either by appealing to a function definition like for square or by using a built-in
function like (+). An expression without redexes is said to be in normal form. Of course, execution
stops once reaching a normal form which thus is the result of the computation.

Clearly, the fewer reductions that have to be performed, the faster the program runs. We cannot
expect each reduction step to take the same amount of time because its implementation on real
hardware looks very different, but in terms of asymptotic complexity, this number of reductions is
an accurate measure.

59.3.2 Reduction Strategies

There are many possible reduction sequences and the number of reductions may depend on the
order in which reductions are performed. Take for example the expression fst (square 3,
square 4). One systematic possibility is to evaluate all function arguments before applying the
function definition

fst (square 3, square 4)
&rArr; fst (3*3, square 4) (square)
&rArr; fst ( 9 , square 4) (*)
&rArr; fst ( 9 , 4*4) (square)
&rArr; fst ( 9 , 16 ) (*)
&rArr; 9 (fst)

This is called an innermost reduction strategy and an innermost redex is a redex that has no
other redex as subexpression inside.

Another systematic possibility is to apply all function definitions first and only then evaluate
arguments:

fst (square 3, square 4)
&rArr; square 3 (fst)
&rArr; 3*3 (square)
&rArr; 9 (*)
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which is named outermost reduction and always reduces outermost redexes that are not inside
another redex. Here, the outermost reduction uses fewer reduction steps than the innermost re-
duction. Why? Because the function fst doesn’t need the second component of the pair and the
reduction of square 4 was superflous.

59.3.3 Termination

For some expressions like

loop = 1 + loop

no reduction sequence may terminate and program execution enters a neverending loop, those
expressions do not have a normal form. But there are also expressions where some reduction
sequences terminate and some do not, an example being

fst (42, loop)
&rArr; 42 (fst)

fst (42, loop)
&rArr; fst (42,1+loop) (loop)
&rArr; fst (42,1+(1+loop)) (loop)
&rArr; ...

The first reduction sequence is outermost reduction and the second is innermost reduction which
tries in vain to evaluate the loop even though it is ignored by fst anyway. The ability to evaluate
function arguments only when needed is what makes outermost optimal when it comes to termina-
tion:

Theorem (Church Rosser II): If there is one terminating reduction, then outermost reduction will
terminate, too.

59.3.4 Graph Reduction

Despite the ability to discard arguments, outermost reduction doesn’t always take fewer reduction
steps than innermost reduction:

square (1+2)
&rArr; (1+2)*(1+2) (square)
&rArr; (1+2)*3 (+)
&rArr; 3*3 (+)
&rArr; 9 (*)

Here, the argument (1+2) is duplicated and subsequently reduced twice. But because it is one and
the same argument, the solution is to share the reduction (1+2) &rArr; 3 with all other incarna-
tions of this argument. This can be achieved by representing expressions as <em>graphs</em>.
For example,
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__________
| | &darr;
&loz; * &loz; (1+2)

represents the expression (1+2)*(1+2). Now, the outermost graph reduction of square (1+2)
proceeds as follows

square (1+2)
&rArr; __________ (square)

| | &darr;
&loz; * &loz; (1+2)

&rArr; __________ (+)
| | &darr;
&loz; * &loz; 3

&rArr; 9 (*)

and the work has been shared. In other words, outermost graph reduction now reduces every ar-
gument at most once. For this reason, it always takes fewer reduction steps than the innermost
reduction, a fact we will prove when REASONING ABOUT TIME2.

Sharing of expressions is also introduced with let and where constructs. For instance, consider
HERON’S FORMULA3 for the area of a triangle with sides a,b and c:

area a b c = let s = (a+b+c)/2 in
sqrt (s*(s-a)*(s-b)*(s-c))

Instantiating this to an equilateral triangle will reduce as

area 1 1 1
&rArr; _____________________ (area)

| | | | &darr;
sqrt (&loz;*(&loz;-a)*(&loz;-b)*(&loz;-c)) ((1+1+1)/2)

&rArr; _____________________ (+),(+),(/)
| | | | &darr;

sqrt (&loz;*(&loz;-a)*(&loz;-b)*(&loz;-c)) 1.5
&rArr;

...
&rArr;

0.433012702

which is
p

3/4. Put differently, let-bindings simply give names to nodes in the graph. In fact, one
can dispense entirely with a graphical notation and solely rely on let to mark sharing and express
a graph structure.4

Any implementation of Haskell is in some form based on outermost graph reduction which thus
provides a good model for reasoning about the asympotic complexity of time and memory alloca-

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23REASONING%20ABOUT%20TIME
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/HERON%27S%20FORMULA
4 {{cite journal | author = John Maraist, Martin Odersky, and Philip Wadler | year = 1998 | month = May | title = The

call-by-need lambda calculus | journal = Journal of Functional Programming | volume = 8 | issue = 3 | pages =
257-317 | url = http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html#need-journal }}
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tion. The number of reduction steps to reach normal form corresponds to the execution time and the
size of the terms in the graph corresponds to the memory used.

Exercises:
<ol> Reduce square (square 3) to normal form with innermost, outermost and outermost graph
reduction. Consider the fast exponentiation algorithm power x 0 = 1 power x n = x’ * x’ * (if n
‘mod‘ 2 == 0 then 1 else x) where x’ = power x (n ‘div‘ 2) that takes x to the power of n. Reduce
power 2 5 with innermost and outermost graph reduction. How many reductions are performed?
What is the asymptotic time complexity for the general power 2 n? What happens to the algorithm
if we use "graphless" outermost reduction? </ol>

59.3.5 Pattern Matching

So far, our description of outermost graph reduction is still underspecified when it comes to pattern
matching and data constructors. Explaining these points will enable the reader to trace most cases of
the reduction strategy that is commonly the base for implementing non-strict functional languages
like Haskell. It is called call-by-need or lazy evaluation in allusion to the fact that it "lazily"
postpones the reduction of function arguments to the last possible moment. Of course, the remaining
details are covered in subsequent chapters.

To see how pattern matching needs specification, consider for example the boolean disjunction

or True y = True
or False y = y

and the expression

or (1==1) loop

with a non-terminating loop = not loop. The following reduction sequence

or (1==1) loop
&rArr; or (1==1) (not loop) (loop)
&rArr; or (1==1) (not (not loop)) (loop)
&rArr; ...

only reduces outermost redexes and therefore is an outermost reduction. But

or (1==1) loop
&rArr; or True loop (or)
&rArr; True

makes much more sense. Of course, we just want to apply the definition of or and are only reducing
arguments to decide which equation to choose. This intention is captured by the following rules for
pattern matching in Haskell:
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• Left hand sides are matched from top to bottom
• When matching a left hand side, arguments are matched from left to right
• Evaluate arguments only as much as needed to decide whether they match or not.

Thus, for our example or (1==1) loop, we have to reduce the first argument to either True or
False, then evaluate the second to match a variable y pattern and then expand the matching function
definition. As the match against a variable always succeeds, the second argument will not be reduced
at all. It is the second reduction section above that reproduces this behavior.

With these preparations, the reader should now be able to evaluate most Haskell expressions. Here
are some random encounters to test this ability:

Exercises:
Reduce the following expressions with lazy evaluation to normal form. Assume the standard func-
tion definitions from the Prelude.

• length [42,42+1,42-1]
• head (map (2*) [1,2,3])
• head $ [1,2,3] ++ (let loop = tail loop in loop)
• zip [1..3] (iterate (+1) 0)
• head $ concatMap (\x -> [x,x+1]) [1,2,3]
• take (42-6*7) $ map square [2718..3146]

59.3.6 Higher Order Functions

The remaining point to clarify is the reduction of higher order functions and currying. For instance,
consider the definitions

id x = x
a = id (+1) 41

twice f = f . f
b = twice (+1) (13*3)

where both id and twice are only defined with one argument. The solution is to see multiple
arguments as subsequent applications to one argument, this is called currying

a = (id (+1)) 41
b = (twice (+1)) (13*3)

To reduce an arbitrary application expression1 expression2, call-by-need first reduce expression1

until this becomes a function whose definition can be unfolded with the argument expression2.
Hence, the reduction sequences are

a
&rArr; (id (+1)) 41 (a)
&rArr; (+1) 41 (id)
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&rArr; 42 (+)

b
&rArr; (twice (+1)) (13*3) (b)
&rArr; ((+1).(+1) ) (13*3) (twice)
&rArr; (+1) ((+1) (13*3)) (.)
&rArr; (+1) ((+1) 39) (*)
&rArr; (+1) 40 (+)
&rArr; 41 (+)

Admittedly, the description is a bit vague and the next section will detail a way to state it clearly.

While it may seem that pattern matching is the workhorse of time intensive computations and higher
order functions are only for capturing the essence of an algorithm, functions are indeed useful as
data structures. One example are difference lists ([a] -> [a]) that permit concatenation in O(1)
time, another is the representation of a stream by a fold. In fact, all data structures are represented
as functions in the pure lambda calculus, the root of all functional programming languages.

Exercises! Or not? Diff-Lists Best done with foldl (++) but this requires knowledge of the fold
example. Oh, where do we introduce the foldl VS. foldr example at all? Hm, Bird&Wadler sneak
in an extra section "Meet again with fold" for the (++) example at the end of "Controlling reduc-
tion order and space requirements" :-/ The complexity of (++) is explained when arguing about
reverse.

59.3.7 Weak Head Normal Form

To formulate precisely how lazy evaluation chooses its reduction sequence, it is best to abandon
equational function definitions and replace them with an expression-oriented approach. In other
words, our goal is to translate function definitions like f (x:xs) = ... into the form f = expres-
sion. This can be done with two primitives, namely case-expressions and lambda abstractions.

In their primitive form, case-expressions only allow the discrimination of the outermost constructor.
For instance, the primitive case-expression for lists has the form

case expression of
[] -> ...
x:xs -> ...

Lambda abstractions are functions of one parameter, so that the following two definitions are
equivalent

f x = expression
f = \x -> expression

Here is a translation of the definition of zip

zip :: [a] -> [a] -> [(a,a)]
zip [] ys = []
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zip xs [] = []
zip (x:xs’) (y:ys’) = (x,y):zip xs’ ys’

to case-expressions and lambda-abstractions:

zip = \xs -> \ys ->
case xs of

[] -> []
x:xs’ ->

case ys of
[] -> []
y:ys’ -> (x,y):zip xs’ ys’

Assuming that all definitions have been translated to those primitives, every redex now has the form
of either

• a function application (\variable->expression1) expression2

• or a case-expression case expression of { ... }

<em>lazy evaluation</em>.

Weak Head Normal Form:An expression is in weak head normal form, iff it is either

• a constructor (eventually applied to arguments) like True, Just (square 42) or (:) 1
• a built-in function applied to too few arguments (perhaps none) like (+) 2 or sqrt.
• or a lambda abstraction \x -> expression.

functions types cannot be pattern matched anyway, but the devious seq can evaluate them to
WHNF nonetheless. "weak" = no reduction under lambdas. "head" = first the function applica-
tion, then the arguments.

59.3.8 Strict and Non-strict Functions

A non-strict function doesn’t need its argument. A strict function needs its argument in WHNF,
as long as we do not distinguish between different forms of non-termination (f x = loop doesn’t
need its argument, for example).

59.4 Controlling Space

NOTE: The chapter ../STRICTNESS5 is intended to elaborate on the stuff here.

NOTE: The notion of strict function is to be introduced before this section.

Now’s the time for the space-eating fold example:

foldl (+) 0 [1..10]

Introduce seq and $! that can force an expression to WHNF. => foldl’.

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FSTRICTNESS
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Tricky space leak example:

(\xs -> head xs + last xs) [1..n] (\xs -> last xs + head xs) [1..n]

The first version runs on O(1) space. The second in O(n).

59.4.1 Sharing and CSE

NOTE: overlaps with section about time. Hm, make an extra memoization section?

How to share

foo x y = -- s is not shared foo x = \y -> s + y where s = expensive x -- s is shared

"Lambda-lifting", "Full laziness". The compiler should not do full laziness.

A classic and important example for the trade between space and time:

sublists [] = 6 sublists (x:xs) = sublists xs ++ map (x:) (sublists xs) sublists’ (x:xs) = let ys = sublists’ xs
in ys ++ map (x:) ys

That’s why the compiler should not do common subexpression elimination as optimization. (Does
GHC?).

59.4.2 Tail recursion

NOTE: Does this belong to the space section? I think so, it’s about stack space.

Tail recursion in Haskell looks different.

59.5 Reasoning about Time

Note: introducing strictness before the upper time bound saves some hassle with explanation?

59.5.1 Lazy eval < Eager eval

When reasoning about execution time, naively performing graph reduction by hand to get a clue
on what’s going is most often infeasible. In fact, the order of evaluation taken by lazy evaluation
is difficult to predict by humans, it is much easier to trace the path of eager evaluation where
arguments are reduced to normal form before being supplied to a function. But knowing that
lazy evaluation always performs less reduction steps than eager evaluation (present the proof!),
we can easily get an upper bound for the number of reductions by pretending that our function is
evaluated eagerly.

Example: or = foldr (||) False isPrime n = not $ or $ map (\k -> n ‘mod‘ k == 0) [2..n-1]

=> eager evaluation always takes n steps, lazy won’t take more than that. But it will actually take
fewer.

6 Chapter ?? on page ??
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59.5.2 Throwing away arguments

Time bound exact for functions that examine their argument to normal form anyway. The prop-
erty that a function needs its argument can concisely be captured by denotational semantics:

f &perp; = &perp;

Argument in WHNF only, though. Operationally: non-termination -> non-termination. (this is
an approximation only, though because f anything = &perp; doesn’t "need" its argument). Non-
strict functions don’t need their argument and eager time bound is not sharp. But the information
whether a function is strict or not can already be used to great benefit in the analysis.

isPrime n = not $ or $ (n ‘mod‘ 2 == 0) : (n ‘mod‘ 3 == 0) : ...

It’s enough to know or True &perp; = True.

Other examples:

• foldr (:) [] vs. foldl (flip (:)) [] with &perp;.
• Can head . mergesort be analyzed only with &perp;? In any case, this example is too involed

and belongs to ../LAZINESS7.

59.5.3 Persistence & Amortisation

NOTE: this section is better left to a data structures chapter because the subsections above cover
most of the cases a programmer not focussing on data structures / amortization will encounter.

Persistence = no updates in place, older versions are still there. Amortisation = distribute unequal
running times across a sequence of operations. Both don’t go well together in a strict setting. Lazy
evaluation can reconcile them. Debit invariants. Example: incrementing numbers in binary rep-
resentation.

59.6 Implementation of Graph reduction

Small talk about G-machines and such. Main definition:

closure = thunk = code/data pair on the heap. What do they do? Consider (λx.λy.x + y)2. This is a
function that returns a function, namely λy.2+y in this case. But when you want to compile code,
it’s prohibitive to actually perform the substitution in memory and replace all occurrences of x by
2. So, you return a closure that consists of the function code λy.x + y and an environment {x = 2}
that assigns values to the free variables appearing in there.

GHC (?, most Haskell implementations?) avoid free variables completely and use supercombi-
nators. In other words, they’re supplied as extra-parameters and the observation that lambda-
expressions with too few parameters don’t need to be reduced since their WHNF is not very differ-
ent.

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FLAZINESS
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Note that these terms are technical terms for implementation stuff, lazy evaluation happily lives
without them. Don’t use them in any of the sections above.
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60 Laziness

Quote:
Hard work pays off later. Laziness pays off now! – Steven Wright

60.1 Introduction

By now you are aware that Haskell uses lazy evaluation in the sense that nothing is evaluated until
necessary. The problem is what exactly does "until necessary" mean? In this chapter, we will see
how lazy evaluation works (how little black magic there is), what exactly it means for functional
programming, and how to make the best use of it. But first, let’s consider the reasons and implica-
tions of lazy evaluation. At first glance, it is tempting to think that lazy evaluation is meant to make
programs more efficient. After all, what can be more efficient than not doing anything? This is only
true in a superficial sense. In practice, laziness often introduces an overhead that leads program-
mers to hunt for places where they can make their code more strict. The real benefit of laziness is
not merely that it makes things efficient, but that it makes the right things ’efficient enough. Lazy
evaluation allows us to write simple, elegant code which would simply not be practical in a strict
environment.

60.1.1 Nonstrictness versus Laziness

There is a slight difference between laziness and nonstrictness. Nonstrict semantics refers to
a given property of Haskell programs that you can rely on: nothing will be evaluated until it is
needed. Lazy evaluation is how you implement nonstrictness, using a device called thunks which
we explain in the next section. However, these two concepts are so closely linked that it is beneficial
to explain them both together: a knowledge of thunks is useful for understanding nonstrictness, and
the semantics of nonstrictness explains why you use lazy evaluation in the first place. As such, we
introduce the concepts simultaneously and make no particular effort to keep them from intertwining,
with the exception of getting the terminology right.

60.2 Thunks and Weak head normal form

There are two principles you need to understand to get how programs execute in Haskell. First, we
have the property of nonstrictness: we evaluate as little as possible for as long as possible. Second,
Haskell values are highly layered; ’evaluating’ a Haskell value could mean evaluating down to any
one of these layers. To see what this means, let’s walk through a few examples using a pair.
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let (x, y) = (length [1..5], reverse "olleh") in ...

(We’ll assume that in the ’in’ part, we use x and y somewhere. Otherwise, we’re not forced to
evaluate the let-binding at all; the right-hand side could have been undefined and it would still
work if the ’in’ part doesn’t mention x or y. This assumption will remain for all the examples in
this section.) What do we know about x? Looking at it we can see it’s pretty obvious x is 5 and
y "hello"</code>, but remember the first principle: we don’t want to evaluate the calls to length
and reverse until we’re forced to. So okay, we can say that x and y are both thunks: that is, they
are unevaluated values with a recipe that explains how to evaluate them. For example, for x this
recipe says ’Evaluate length [1..5]’. However, we are actually doing some pattern matching on
the left hand side. What would happen if we removed that?

let z = (length [1..5], reverse "olleh") in ...

Although it’s still pretty obvious to us that z is a pair, the compiler sees that we’re not trying to
deconstruct the value on the right-hand side of the ’=’ sign at all, so it doesn’t really care what’s
there. It lets z be a thunk on its own. Later on, when we try to use z, we’ll probably need one or
both of the components, so we’ll have to evaluate z, but for now, it can be a thunk.

Above, we said Haskell values were layered. We can see that at work if we pattern match on z:

let z = (length [1..5], reverse "olleh")
(n, s) = z

in ...

After the first line has been executed, z is simply a thunk. We know nothing about the sort of value
it is because we haven’t been asked to find out yet. In the second line, however, we pattern match
on z using a pair pattern. The compiler thinks ’I better make sure that pattern does indeed match
z, and in order to do that, I need to make sure z is a pair.’ Be careful, though. We’re not as of yet
doing anything with the component parts (the calls to length and reverse), so they can remain
unevaluated. In other words, z, which was just a thunk, gets evaluated to something like (*thunk*,
*thunk*), and n and s become thunks which, when evaluated, will be the component parts of the
original z.

Let’s try a slightly more complicated pattern match:

let z = (length [1..5], reverse "olleh")
(n, s) = z
’h’:ss = s

in ...
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Abb. 36: Evaluating the value (4, [1, 2]) step by step. The first stage is completely
unevaluated; all subsequent forms are in WHNF, and the last one is also in normal form.

The pattern match on the second component of z causes some evaluation. The compiler wishes to
check that the ’h’:ss pattern matches the second component of the pair. So, it:

• Evaluates the top level of s to ensure it’s a cons cell: s = *thunk* : *thunk*. (If s had been
an empty list we would encounter an pattern match failure error at this point.)

• Evaluates the first thunk it just revealed to make sure it’s ’h’: s = ’h’ : *thunk*
• The rest of the list stays unevaluated, and ss becomes a thunk which, when evaluated, will be the

rest of this list.

So it seems that we can ’partially evaluate’ (most) Haskell values. Also, there is some sense of
the minimum amount of evaluation we can do. For example, if we have a pair thunk, then the
minimum amount of evaluation takes us to the pair constructor with two unevaluated components:
(*thunk*, *thunk*). If we have a list, the minimum amount of evaluation takes us either to
a cons cell *thunk* : *thunk* or an empty list []. Note that in the second case, no more
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evaluation can be performed on the value; it is said to be in normal form. If we are at any of the
intermediate steps so that we’ve performed at least some evaluation on a value, it is in weak head
normal form (WHNF). (There is also a ’head normal form’, but it’s not used in Haskell.) Fully
evaluating something in WHNF reduces it to something in normal form; if at some point we needed
to, say, print z out to the user, we’d need to fully evaluate it, including those calls to length and
reverse, to (5, "hello"), where it is in normal form. Performing any degree of evaluation on a
value is sometimes called forcing that value.

Note that for some values there is only one. For example, you can’t partially evaluate an integer. It’s
either a thunk or it’s in normal form. Furthermore, if we have a constructor with strict components
(annotated with an exclamation mark, as with data MaybeS a = NothingS | JustS !a), these
components become evaluated as soon as we evaluate the level above. I.e. we can never have JustS
*thunk*, as soon as we get to this level the strictness annotation on the component of JustS forces
us to evaluate the component part.

So in this section we’ve explored the basics of laziness. We’ve seen that nothing gets evaluated until
it is needed (in fact the only place that Haskell values get evaluated is in pattern matches, and inside
certain primitive IO functions), and that this principle even applies to evaluating values — we do
the minimum amount of work on a value that we need to compute our result.

60.3 Lazy and strict functions

Functions can be lazy or strict ’in an argument’. Most functions need to do something with their ar-
guments, and this will involve evaluating these arguments to different levels. For example, length
needs to evaluate only the cons cells in the argument you give it, not the contents of those cons
cells — length *thunk* might evaluate to something like length (*thunk* : *thunk* :
*thunk* : []), which in turn evaluates to 3. Others need to evaluate their arguments fully, like
(length . show). If you had length $ show *thunk*, there’s no way you can do anything
other than evaluate that thunk to normal form.

So some functions evaluate their arguments more fully than others. Given two functions of one
parameter, f and g, we say f is stricter than g if f x evaluates x to a deeper level than g x. Often we
only care about WHNF, so a function that evaluates its argument to at least WHNF is called strict
and one that performs no evaluation is lazy. What about functions of more than one parameter?
Well, we can talk about functions being strict in one parameter, but lazy in another. For example,
given a function like the following:

f x y = length $ show x

Clearly we need to perform no evaluation on y, but we need to evaluate x fully to normal form, so
f is strict in its first parameter but lazy in its second.

Exercises:

1. Which is the stricter function?
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f x = length [head x]

g x = length (tail x)

TODO: explain that it’s also about how much of the input we need to consume before we can
start producing output. E.g. foldr (:) [] and foldl (flip (:)) [] both evaluate their arguments to the
same level of strictness, but foldr can start producing values straight away, whereas foldl needs to
evaluate cons cells all the way to the end before it starts anything.

60.3.1 Black-box strictness analysis

Abb. 37: If f returns an error when passed undefined, it must be strict. Otherwise, it’s lazy.

Imagine we’re given some function f which takes a single parameter. We’re not allowed to look at
its source code, but we want to know whether f is strict or not. How might we do this? Probably
the easiest way is to use the standard Prelude value undefined. Forcing undefined to any level of
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evaluation will halt our program and print an error, so all of these print errors:

let (x, y) = undefined in x
length undefined
head undefined
JustS undefined -- Using MaybeS as defined in the last section

So if a function is strict, passing it undefined will result in an error. Were the function lazy, passing
it undefined will print no error and we can carry on as normal. For example, none of the following
produce errors:

let (x, y) = (4, undefined) in x
length [undefined, undefined, undefined]
head (4 : undefined)
Just undefined

So we can say that f is a strict function if, and only if, f undefined results in an error being printed
and the halting of our program.

60.3.2 In the context of nonstrict semantics

What we’ve presented so far makes sense until you start to think about functions like id. Is id
strict? Our gut reaction is probably to say "No! It doesn’t evaluate its argument, therefore its
lazy". However, let’s apply our black-box strictness analysis from the last section to id. Clearly,
id undefined is going to print an error and halt our program, so shouldn’t we say that id is strict?
The reason for this mixup is that Haskell’s nonstrict semantics makes the whole issue a bit murkier.

Nothing gets evaluated if it doesn’t need to be, according to nonstrictness. In the following code,
will length undefined be evaluated?

[4, 10, length undefined, 12]

If you type this into GHCi, it seems so, because you’ll get an error printed. However, our question
was something of a trick one; it doesn’t make sense to say whether a value gets evaluated, unless
we’re doing something to this value. Think about it: if we type in head [1, 2, 3] into GHCi,
the only reason we have to do any evaluation whatsoever is because GHCi has to print us out the
result. Typing [4, 10, length undefined, 12] again requires GHCi to print that list back to
us, so it must evaluate it to normal form. In your average Haskell program, nothing at all will be
evaluated until we come to perform the IO in main. So it makes no sense to say whether something
is evaluated or not unless we know what it’s being passed to, one level up.

So when we say "Does f x force x?" what we really mean is "Given that we’re forcing f x, does x
get forced as a result?". Now we can turn our attention back to id. If we force id x to normal form,
then x will be forced to normal form, so we conclude that id is strict. id itself doesn’t evaluate its
argument, it just hands it on to the caller who will. One way to see this is in the following code:
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-- We evaluate the right-hand of the let-binding to WHNF by
pattern-matching
-- against it.
let (x, y) = undefined in x -- Error, because we force undefined.
let (x, y) = id undefined in x -- Error, because we force undefined.

id doesn’t "stop" the forcing, so it is strict. Contrast this to a clearly lazy function, const (3, 4):

let (x, y) = undefined in x -- Error, because we force undefined.
let (x, y) = const (3, 4) undefined -- No error, because const (3, 4)
is lazy.

60.3.3 The denotational view on things

If you’re familiar with denotational semantics (perhaps you’ve read the WIKIBOOK CHAPTER1 on
it?), then the strictness of a function can be summed up very succinctly:

f ⊥=⊥ ⇔ f is strict

Assuming that you say that everything with type forall a. a, including undefined, error
"any string", throw and so on, has denotation &perp;.

60.4 Lazy pattern matching

You might have seen pattern matches like the following in Haskell sources.

Example: A lazy pattern match
-- From Control.Arrow

(***) f g ˜(x, y) = (f x, g y)

-- From Control.Arrow

(***) f g ˜(x, y) = (f x, g y)

The question is: what does the tilde sign (˜) mean in the above pattern match? ˜ makes a lazy pattern
or irrefutable pattern. Normally, if you pattern match using a constructor as part of the pattern, you
have to evaluate any argument passed into that function to make sure it matches the pattern. For
example, if you had a function like the above, the third argument would be evaluated when you call
the function to make sure the value matches the pattern. (Note that the first and second arguments

1 Chapter 52 on page 337
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won’t be evaluated, because the patterns f and g match anything. Also it’s worth noting that the
components of the tuple won’t be evaluated: just the ’top level’. Try let f (Just x) = 1 in f
(Just undefined) to see the this.)

However, prepending a pattern with a tilde sign delays the evaluation of the value until the com-
ponent parts are actually used. But you run the risk that the value might not match the pattern —
you’re telling the compiler ’Trust me, I know it’ll work out’. (If it turns out it doesn’t match the
pattern, you get a runtime error.) To illustrate the difference:

Example: How ˜ makes a difference
Prelude> let f (x,y) = 1

Prelude> f undefined

*** Exception: Prelude.undefined

Prelude> let f ˜(x,y) = 1

Prelude> f undefined

1

Prelude> let f (x,y) = 1

Prelude> f undefined

*** Exception: Prelude.undefined

Prelude> let f ˜(x,y) = 1

Prelude> f undefined

1

In the first example, the value is evaluated because it has to match the tuple pattern. You evaluate
undefined and get undefined, which stops the proceedings. In the latter example, you don’t bother
evaluating the parameter until it’s needed, which turns out to be never, so it doesn’t matter you
passed it undefined. To bring the discussion around in a circle back to (***):

Example: How ˜ makes a difference with (***))
Prelude> (const 1 *** const 2) undefined

(1,2)

Prelude> (const 1 *** const 2) undefined

(1,2)

If the pattern weren’t irrefutable, the example would have failed.
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60.4.1 When does it make sense to use lazy patterns?

Essentially, when you only have the single constructor for the type, e.g. tuples. Multiple equations
won’t work nicely with irrefutable patterns. To see this, let’s examine what would happen were we
to make head have an irrefutable pattern:

Example: Lazier head
head’ :: [a] -> a

head’ ˜[] = undefined

head’ ˜(x:xs) = x

head’ :: [a] -> a

head’ ˜[] = undefined

head’ ˜(x:xs) = x

The fact we’re using one of these patterns tells us not to evaluate even the top level of the argument
until absolutely necessary, so we don’t know whether it’s an empty list or a cons cell. As we’re
using an irrefutable pattern for the first equation, this will match, and the function will always
return undefined.

Exercises:

• Why won’t changing the order of the equations to head’ help here?
• If the first equation is changed to use an ordinary refutable pattern, will the behavior of head’

still be different from that of head? If so, how?
• More to come...

60.5 Benefits of nonstrict semantics

We’ve been explaining lazy evaluation so far, how nonstrict semantics are actually implemented in
terms of thunks. But why is Haskell a nonstrict language in the first place? What advantages are
there? In this section, we give some of the benefits of nonstrictness.

60.5.1 Separation of concerns without time penality

Lazy evaluation encourages a kind of "what you see is what you get" mentality when it comes to
coding. For example, let’s say you wanted to find the lowest three numbers in a long list. In Haskell
this is achieved extremely naturally: take 3 (sort xs). However that code in a strict language
would be a very bad idea! It would involve computing the entire sorted list, then chopping off
all but the first three elements. However, with lazy evaluation we stop once we’ve sorted the list
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up to the third element, so this natural definition turns out to be efficient, too (depending on the
implementation of sort).

To give a second example, the function ISINFIXOF2 from Data.List allows you to see if one
string is a substring of another string. It’s easily definable as:

isInfixOf :: Eq a => [a] -> [a] -> Bool
isInfixOf x y = any (isPrefixOf x) (tails y)

Again, this would be suicide in a strict language as to compute all the tails of a list would be very
time-consuming. However here we only compute as many as is necessary: once we’ve found one
that x is a prefix of we can stop and return True once away, "shortcutting" the rest of the work.
In fact there is a further advantage: we can use an infinite list for y. So, for example, finding out
whether a given list is a sequence of consecutive natural numbers is easy: isInfixOf xs [1..].
FIXME: this doesn’t work because if xs is NOT a sequence of consecutive natural numbers, the
function isInfixOf will run endlessly. ENDFIXME

There are many more examples along these lines.3 So we can write code that looks and feels natural
but doesn’t actually incur any time penalty. As one of the highest aims of programming is to write
code that is maintainable and clear, this is a big bonus!

However, as always in Computer Science (and in life), a tradeoff exists (in particular, a space-time
tradeoff). Using a thunk instead of a plain Int, for a trivial calculation like 2+2, can be a waste. For
more examples, see the page on ../STRICTNESS4.

60.5.2 Improved code reuse

TODO: integrate in.
Maybe the above TODO talks about the above section, doesn’t it?

Often code reuse is far better.

To show an example, we take again (but in more detail) ISINFIXOF5 from Data.List. Let’s look
at the full definition

Example: Laziness helps code reuse
-- From the Prelude

or = foldr (||) False

any p = or . map p

-- From Data.List

2 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-{}LIST.HTML#V%
3AISINFIXOF

3 In general expressions like prune . generate, where generate produces a list of items and prune cuts them
down, will be much more efficient in a nonstrict language.

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FSTRICTNESS
5 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-{}LIST.HTML#V%

3AISINFIXOF
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isPrefixOf [] _ = True

isPrefixOf _ [] = False

isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

tails [] = [[]]

tails xss@(_:xs) = xss : tails xs

-- Our function

isInfixOf :: Eq a => [a] -> [a] -> Bool

isInfixOf x y = any (isPrefixOf x) (tails y)

-- From the Prelude

or = foldr (||) False

any p = or . map p

-- From Data.List

isPrefixOf [] _ = True

isPrefixOf _ [] = False

isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

tails [] = [[]]

tails xss@(_:xs) = xss : tails xs

-- Our function

isInfixOf :: Eq a => [a] -> [a] -> Bool

isInfixOf x y = any (isPrefixOf x) (tails y)

Where any, isPrefixOf and tails are the functions taken from the Data.List library. This
function determines if its first parameter, x occurs as a subsequence of its second, y; when applied
on String’s (i.e. [Char]), it checks if x is a substring of y. Read in a strict way, it forms the
list of all the tails of y, then checks them all to see if any of them have x as a prefix. In a strict
language, writing this function this way (relying on the already-written programs any, isPrefixOf,
and tails) would be silly, because it would be far slower than it needed to be. You’d end up doing
direct recursion again, or in an imperative language, a couple of nested loops. You might be able to
get some use out of isPrefixOf, but you certainly wouldn’t use tails. You might be able to write
a usable shortcutting any, but it would be more work, since you wouldn’t want to use foldr to do
it.

Now, in a lazy language, all the shortcutting is done for you. You don’t end up rewriting foldr to
shortcut when you find a solution, or rewriting the recursion done in tails so that it will stop early
again. You can reuse standard library code better. Laziness isn’t just a constant-factor speed thing,
it makes a qualitative impact on the code which is reasonable to write. In fact, it’s commonplace to
define infinite structures, and then only use as much as is needed, rather than having to mix up the
logic of constructing the data structure with code that determines whether any part is needed. Code
modularity is increased, as laziness gives you more ways to chop up your code into small pieces,
each of which does a simple task of generating, filtering, or otherwise manipulating data.
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WHY FUNCTIONAL PROGRAMMING MATTERS6 — largely focuses on examples where laziness
is crucial, and provides a strong argument for lazy evaluation being the default.

60.5.3 Infinite data structures

Examples:

fibs = 1:1:zipWith (+) fibs (tail fibs) "rock-scissors-paper" example from Bird&Wadler prune . gen-
erate

Infinite data structures usually tie a knot, too, but the Sci-Fi-Explanation of that is better left to
the next section. One could move the next section before this one but I think that infinite data
structures are simpler than tying general knots

60.6 Common nonstrict idioms

60.6.1 Tying the knot

More practical examples? repMin

Sci-Fi-Explanation: "You can borrow things from the future as long as you don’t try to change
them". Advanced: the "Blueprint"-technique. Examples: the one from the haskellwiki, the one
from the mailing list.

At first a pure functional language seems to have a problem with circular data structures. Suppose I
have a data type like this:

data Foo a = Foo {value :: a, next :: Foo a}

If I want to create two objects "x" and "y" where "x" contains a reference to "y" and "y" contains a
reference to "x" then in a conventional language this is straightforward: create the objects and then
set the relevant fields to point to each other:

-- Not Haskell code
x := new Foo;
y := new Foo;
x.value := 1;
x.next := y;
y.value := 2
y.next := x;

In Haskell this kind of modification is not allowed. So instead we depend on lazy evaluation:

6 HTTP://WWW.MD.CHALMERS.SE/~{}RJMH/PAPERS/WHYFP.HTML
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circularFoo :: Foo Int
circularFoo = x

where
x = Foo 1 y
y = Foo 2 x

This depends on the fact that the "Foo" constructor is a function, and like most functions it gets
evaluated lazily. Only when one of the fields is required does it get evaluated.

It may help to understand what happens behind the scenes here. When a lazy value is created,
for example by a call to "Foo", the compiler generates an internal data structure called a "thunk"
containing the function call and arguments. When the value of the function is demanded the function
is called, as you would expect. But then the thunk data structure is replaced with the return value.
Thus anything else that refers to that value gets it straight away without the need to call the function.

(Note that the Haskell language standard makes no mention of thunks: they are an implementation
mechanism. From the mathematical point of view this is a straightforward example of mutual
recursion)

So when I call "circularFoo" the result "x" is actually a thunk. One of the arguments is a reference
to a second thunk representing "y". This in turn has a reference back to the thunk representing "x".
If I then use the value "next x" this forces the "x" thunk to be evaluated and returns me a reference
to the "y" thunk. If I use the value "next $ next x" then I force the evaluation of both thunks. So now
both thunks have been replaced with the actual "Foo" structures, referring to each other. Which is
what we wanted.

This is most often applied with constructor functions, but it isn’t limited just to constructors. You
can just as readily write:

x = f y
y = g x

The same logic applies.

60.6.2 Memoization, Sharing and Dynamic Programming

Dynamic programming with immutable arrays. DP with other finite maps, Hinze’s paper "Trouble
shared is Trouble halved". Let-floating \x-> let z = foo x in \y -> ... .

60.7 Conclusions about laziness

Move conclusions to the introduction?

• Can make qualitative improvements to performance!
• Can hurt performance in some other cases.
• Makes code simpler.
• Makes hard problems conceivable.
• Allows for separation of concerns with regard to generating and processing data.
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60.8 Notes

<references />

60.9 References

• LAZINESS ON THE HASKELL WIKI7

• LAZY EVALUATION TUTORIAL ON THE HASKELL WIKI8

7 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE/LAZINESS
8 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/HASKELL/LAZY_EVALUATION
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61 Strictness

61.1 Difference between strict and lazy evaluation

Strict evaluation, or eager evaluation, is an evaluation strategy where expressions are evaluated as
soon as they are bound to a variable. For example, with strict evaluation, when x = 3 * 7 is read,
3 * 7 is immediately computed and 21 is bound to x. Conversely, with LAZY EVALUATION1 values
are only computed when they are needed. In the example x = 3 * 7, 3 * 7 isn’t evaluated until it’s
needed, like if you needed to output the value of x.

61.2 Why laziness can be problematic

Lazy evaluation often involves objects called thunks. A thunk is a placeholder object, specifying
not the data itself, but rather how to compute that data. An entity can be replaced with a thunk to
compute that entity. When an entity is copied, whether or not it is a thunk doesn’t matter - it’s copied
as is (on most implementations, a pointer to the data is created). When an entity is evaluated, it is
first checked if it is thunk; if it’s a thunk, then it is executed, otherwise the actual data is returned. It
is by the magic of thunks that laziness can be implemented.

Generally, in the implementation the thunk is really just a pointer to a piece of (usually static) code,
plus another pointer to the data the code should work on. If the entity computed by the thunk is
larger than the pointer to the code and the associated data, then a thunk wins out in memory usage.
But if the entity computed by the thunk is smaller, the thunk ends up using more memory.

As an example, consider an infinite length list generated using the expression iterate (+ 1) 0.
The size of the list is infinite, but the code is just an add instruction, and the two pieces of data, 1
and 0, are just two Integers. In this case, the thunk representing that list takes much less memory
than the actual list, which would take infinite memory.

1 Chapter 60 on page 421
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However, as another example consider the number generated using the expression 4 * 13 + 2.
The value of that number is 54, but in thunk form it is a multiply, an add, and three numbers. In
such a case, the thunk loses in terms of memory.

Often, the second case above will consume so much memory that it will consume the entire heap
and force the garbage collector. This can slow down the execution of the program significantly. And
that, in fact, is the main reason why laziness can be problematic.

Additionally, if the resulting value is used, no computation is saved; instead, a slight overhead (of
a constanct factor) for building the thunk is paid. However, this overhead is not something the
programmer should deal with most of the times; more important factors must be considered and
may give a much bigger improvements; additionally, optimizing Haskell compilers like GHC can
perform ’strictness analysis’ and remove that slight overhead.

61.3 Strictness annotations

61.4 seq

61.4.1 DeepSeq

61.5 References

• STRICTNESS ON THE HASKELL WIKI2

2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE/STRICTNESS
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62 Algorithm complexity

Complexity Theory is the study of how long a program will take to run, depending on the size of its
input. There are many good introductory books to complexity theory and the basics are explained
in any good algorithms book. I’ll keep the discussion here to a minimum.

The idea is to say how well a program scales with more data. If you have a program that runs
quickly on very small amounts of data but chokes on huge amounts of data, it’s not very useful
(unless you know you’ll only be working with small amounts of data, of course). Consider the
following Haskell function to return the sum of the elements in a list:

sum [] = 0

sum (x:xs) = x + sum xs

How long does it take this function to complete? That’s a very difficult question; it would depend
on all sorts of things: your processor speed, your amount of memory, the exact way in which
the addition is carried out, the length of the list, how many other programs are running on your
computer, and so on. This is far too much to deal with, so we need to invent a simpler model. The
model we use is sort of an arbitrary "machine step." So the question is "how many machine steps
will it take for this program to complete?" In this case, it only depends on the length of the input
list.

If the input list is of length 0, the function will take either 0 or 1 or 2 or some very small number of
machine steps, depending exactly on how you count them (perhaps 1 step to do the pattern matching
and 1 more to return the value 0). What if the list is of length 1? Well, it would take however much
time the list of length 0 would take, plus a few more steps for doing the first (and only element).

If the input list is of length n, it will take however many steps an empty list would take (call this
value y) and then, for each element it would take a certain number of steps to do the addition and
the recursive call (call this number x). Then, the total time this function will take is nx + y since it
needs to do those additions n many times. These x and y values are called constant values, since
they are independent of n, and actually dependent only on exactly how we define a machine step,
so we really don’t want to consider them all that important. Therefore, we say that the complexity
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of this sum function is O (n) (read "order n"). Basically saying something is O (n) means that for
some constant factors x and y , the function takes nx + y machine steps to complete.

Consider the following sorting algorithm for lists (commonly called "insertion sort"):

sort [] = []

sort [x] = [x]

sort (x:xs) = insert (sort xs)

where insert [] = [x]

insert (y:ys) | x <= y = x : y : ys

| otherwise = y : insert ys

The way this algorithm works is as follow: if we want to sort an empty list or a list of just one
element, we return them as they are, as they are already sorted. Otherwise, we have a list of the
form x:xs. In this case, we sort xs and then want to insert x in the appropriate location. That’s what
the insert function does. It traverses the now-sorted tail and inserts x wherever it naturally fits.

Let’s analyze how long this function takes to complete. Suppose it takes f (n) stepts to sort a list of
length n. Then, in order to sort a list of n-many elements, we first have to sort the tail of the list
first, which takes f (n −1) time. Then, we have to insert x into this new list. If x has to go at the
end, this will take O (n−1) =O (n) steps. Putting all of this together, we see that we have to do O (n)
amount of work O (n) many times, which means that the entire complexity of this sorting algorithm
is O (n2). Here, the squared is not a constant value, so we cannot throw it out.

What does this mean? Simply that for really long lists, the sum function won’t take very long, but
that the sort function will take quite some time. Of course there are algorithms that run much more
slowly than simply O (n2) and there are ones that run more quickly than O (n). (Also note that a
O (n2) algorithm may actually be much faster than a O (n) algorithm in practice, if it takes much less
time to perform a single step of the O (n2) algorithm.)

Consider the random access functions for lists and arrays. In the worst case, accessing an arbitrary
element in a list of length n will take O (n) time (think about accessing the last element). However
with arrays, you can access any element immediately, which is said to be in constant time, or O (1),
which is basically as fast an any algorithm can go.

There’s much more in complexity theory than this, but this should be enough to allow you to under-
stand all the discussions in this tutorial. Just keep in mind that O (1) is faster than O (n) is faster than
O (n2), etc.

62.1 Optimising

62.1.1 Profiling
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64 The Hierarchical Libraries

Haskell has a rich and growing set of function libraries. They fall into several groups:

• The Standard Prelude (often referred to as just "the Prelude") is defined in the Haskell 98 standard
and imported automatically to every module you write. This defines standard types such as strings,
lists and numbers and the basic functions on them, such as arithmetic, map and foldr

• The Standard Libraries are also defined in the Haskell 98 standard, but you have to
import them when you need them. The reference manuals for these libraries are at
http://www.haskell.org/onlinereport/

• Since 1998 the Standard Libraries have been gradually extended, and the resulting de-facto stan-
dard is known as the Base libraries. The same set is available for both HUGS and GHC.

• Other libraries may be included with your compiler, or can be installed using the Cabal mecha-
nism.

When Haskell 98 was standardised modules were given a flat namespace. This has proved in-
adequate and a hierarchical namespace has been added by allowing dots in module names. For
backward compatibility the standard libraries can still be accessed by their non-hierarchical names,
so the modules List and Data.List both refer to the standard list library.

For details of how to import libraries into your program, see MODULES AND LIBRARIES1. For an
explanation of the Cabal system for packaging Haskell software see ../PACKAGING2.

64.1 Haddock Documentation

Library reference documentation is generally produced using the Haddock tool. The libraries
shipped with GHC are documented using this mechanism. You can view the documentation
at http://www.haskell.org/ghc/docs/latest/html/libraries/index.html, and if you have installed GHC
then there should also be a local copy.

Haddock produces hyperlinked documentation, so every time you see a function, type or class name
you can click on it to get to the definition. The sheer wealth of libraries available can be intimidating,
so this tutorial will point out the highlights.

One thing worth noting with Haddock is that types and classes are cross-referenced by instance. So
for example in the DATA.MAYBE3 library the Maybe data type is listed as an instance of Ord:

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FMODULES
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPACKAGING
3 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-{}MAYBE.HTML
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Ord a => Ord (Maybe a)

This means that if you declare a type Foo is an instance of Ord then the type Maybe Foo will
automatically be an instance of Ord as well. If you click on the word Ord in the document then you
will be taken to the definiton of the Ord class and its (very long) list of instances. The instance for
Maybe will be down there as well.

CATEGORY:HASKELL4

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL

442

http://en.wikibooks.org/wiki/Category%3AHaskell


65 Lists

The List datatype (see DATA.LIST1) is the fundamental data structure in Haskell — this is the basic
building-block of data storage and manipulation. In computer science terms it is a singly-linked
list. In the hierarchical library system the List module is stored in Data.List; but this module only
contains utility functions. The definition of list itself is integral to the Haskell language.

65.1 Theory

A singly-linked list is a set of values in a defined order. The list can only be traversed in one
direction (i.e., you cannot move back and forth through the list like tape in a cassette machine).

The list of the first 5 positive integers is written as

[ 1, 2, 3, 4, 5 ]

We can move through this list, examining and changing values, from left to right, but not in the
other direction. This means that the list

[ 5, 4, 3, 2, 1 ]

is not just a trivial change in perspective from the previous list, but the result of significant compu-
tation (O(n) in the length of the list).

65.2 Definition

The polymorphic list datatype can be defined with the following recursive definition:

data [a] = []
| a : [a]

The "base case" for this definition is [], the empty list. In order to put something into this list, we
use the (:) constructor

1 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-{}LIST.HTML

443

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-{}List.html


Lists

emptyList = []
oneElem = 1:[]

The (:) (pronounced cons) is right-associative, so that creating multi-element lists can be done
like

manyElems = 1:2:3:4:5:[]

or even just

manyElems’ = [1,2,3,4,5]

65.3 Basic list usage

65.3.1 Prepending

It’s easy to hard-code lists without cons, but run-time list creation will use cons. For example, to
push an argument onto a simulated stack, we would use:

push :: Arg -> [Arg] -> [Arg]
push arg stack = arg:stack

65.3.2 Pattern-matching

If we want to examine the top of the stack, we would typically use a peek function. We can try
pattern-matching for this.

peek :: [Arg] -> Maybe Arg
peek [] = Nothing
peek (a:as) = Just a

The a before the cons in the pattern matches the head of the list. The as matches the tail of the list.
Since we don’t actually want the tail (and it’s not referenced anywhere else in the code), we can tell
the compiler this explicitly, by using a wild-card match, in the form of an underscore:

peek (a:_) = Just a
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65.4 List utilities

FIXME: is this not covered in the chapter on LIST MANIPULATION2?

65.4.1 Maps

65.4.2 Folds, unfolds and scans

65.4.3 Length, head, tail etc.

2 Chapter 13 on page 91
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66 Arrays

Haskell’98 supports just one array constructor type, namely ARRAY1, which gives you immutable
boxed arrays. "Immutable" means that these arrays, like any other pure functional data structure,
have contents fixed at construction time. You can’t modify them, only query. There are "modifica-
tion" operations, but they just return new arrays and don’t modify the original one. This makes it
possible to use Arrays in pure functional code along with lists. "Boxed" means that array elements
are just ordinary Haskell (lazy) values, which are evaluated on demand, and can even contain bottom
(undefined) value. You can learn how to use these arrays at http://haskell.org/tutorial/arrays.html
and I’d recommend that you read this before proceeding to the rest of this page

Nowadays the main Haskell compilers, GHC and Hugs, ship with the same set of HIERARCHICAL

LIBRARIES2, and these libraries contain a new implementation of arrays which is backward com-
patible with the Haskell’98 one, but which has far more features. Suffice it to say that these libraries
support 9 types of array constructors: Array, UArray, IOArray, IOUArray, STArray, STUArray, Dif-
fArray, DiffUArray and StorableArray. It is no wonder that the array libraries are a source of so
much confusion for new Haskellers. However, they are actually very simple - each provides just
one of two interfaces, and one of these you already know.

66.1 Quick reference

Immutable
instance IArray
a e

IO monad
instance MArray
a e IO

ST monad
instance MArray
a e ST

Standard Array
DiffArray

IOArray STArray

Unboxed UArray
DiffUArray

IOUArray
StorableArray

STUArray

66.2 Immutable arrays (module DATA.ARRAY.IARRAY3)

The first interface provided by the new array library, is defined by the typeclass IArray (which stands
for "immutable array" and defined in the module DATA.ARRAY.IARRAY4) and defines the same

1 HTTP://HASKELL.ORG/ONLINEREPORT/ARRAY.HTML
2 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/INDEX.HTML
3 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/

DATA-{}ARRAY-{}IARRAY.HTML
4 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/

DATA-{}ARRAY-{}IARRAY.HTML

447

http://haskell.org/onlinereport/array.html
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-{}Array-{}IArray.html
http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-{}Array-{}IArray.html
http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-{}Array-{}IArray.html
http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-{}Array-{}IArray.html


Arrays

operations that were defined for Array in Haskell ’98. Here’s a simple example of its use that prints
(37,64):

import Data.Array

buildPair :: (Int, Int)

buildPair = let arr = listArray (1,10) (repeat 37) :: Array Int Int

arr’ = arr // [(1, 64)]

in (arr ! 1, arr’ ! 1)

main = print buildPair

The big difference is that it is now a typeclass and there are 4 array type constructors, each of which
implements this interface: Array, UArray, DiffArray, and DiffUArray. We will later describe the
differences between them and the cases when these other types are preferable to use instead of the
good old Array. Also note that to use Array type constructor together with other new array types,
you need to import Data.Array.IArray module instead of Data.Array.

66.3 Mutable IO arrays (module DATA.ARRAY.IO5)

The second interface is defined by the type class MArray (which stands for "mutable array" and is
defined in the module DATA.ARRAY.MARRAY6) and contains operations to update array elements
in-place. Mutable arrays are very similar to IORefs, only they contain multiple values. Type con-
structors for mutable arrays are IOArray and IOUArray and operations which create, update and
query these arrays all belong to the IO monad:

import Data.Array.IO

main = do arr <- newArray (1,10) 37 :: IO (IOArray Int Int)

a <- readArray arr 1

writeArray arr 1 64

b <- readArray arr 1

print (a,b)

This program creates an array of 10 elements with all values initially set to 37. Then it reads the first
element of the array. After that, the program modifies the first element of the array and then reads
it again. The type declaration in the second line is necessary because our little program doesn’t
provide enough context to allow the compiler to determine the concrete type of arr.

5 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
DATA-{}ARRAY-{}IO.HTML

6 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
DATA-{}ARRAY-{}MARRAY.HTML
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66.4 Mutable arrays in ST monad (module DATA.ARRAY.ST7)

In the same way that IORef has its more general cousin STRef, IOArray has a more general version
STArray (and similarly, IOUArray is parodied by STUArray). These array types allow one to work
with mutable arrays in the ST monad:

import Control.Monad.ST

import Data.Array.ST

buildPair = do arr <- newArray (1,10) 37 :: ST s (STArray s Int Int)

a <- readArray arr 1

writeArray arr 1 64

b <- readArray arr 1

return (a,b)

main = print $ runST buildPair

Believe it or not, now you know all that is needed to use any array type. Unless you are interested
in speed issues, just use Array, IOArray and STArray where appropriate. The following topics are
almost exclusively about selecting the proper array type to make programs run faster.

66.5 Freezing and thawing

Haskell allows conversion between immutable and mutable arrays with the freeze and thaw
functions:
freeze :: (Ix i, MArray a e m, IArray b e) => a i e -> m (b i e)

thaw :: (Ix i, IArray a e, MArray b e m) => a i e -> m (b i e)

For instance, the following converts an Array into an STArray, alters it, and then converts it back:

import Data.Array

import Control.Monad.ST

import Data.Array.ST

buildPair :: (Int, Int)

buildPair = let arr = listArray (1,10) (repeat 37) :: Array Int Int

arr’ = modifyAsST arr

in (arr ! 1, arr’ ! 1)

modifyAsST :: Array Int Int -> Array Int Int

modifyAsST arr = runST $ do starr <- thaw arr

compute starr

newarr <- freeze starr

return newarr

compute :: STArray s Int Int -> ST s ()

7 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/
DATA-{}ARRAY-{}ST.HTML
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compute arr = do writeArray arr 1 64

main = print buildPair

Freezing and thawing both copy the entire array. If you want to use the same memory locations
before and after freezing or thawing but can allow some access restrictions, see the section UNSAFE

OPERATIONS AND RUNNING OVER ARRAY ELEMENTS9.

66.6 DiffArray (module DATA.ARRAY.DIFF10)

As we already stated, the update operation on immutable arrays (IArray) just creates a new copy of
the array, which is very inefficient, but it is a pure operation which can be used in pure functions. On
the other hand, updates on mutable arrays (MArray) are efficient but can be done only in monadic
code. DiffArray combines the best of both worlds - it supports the IArray interface and therefore
can be used in a purely functional way, but internally it uses the efficient update of MArrays.

How does this trick work? DiffArray has a pure external interface, but internally it is represented as
a reference to an IOArray.

When the ’//’ operator is applied to a diff array, its contents are physically updated in place. The
old array silently changes its representation without changing the visible behavior: it stores a link
to the new current array along with the difference to be applied to get the old contents.

So if a diff array is used in a single-threaded style, that is, after ’//’ application the old version is
no longer used, then a ! i takes O(1) time and a // d takes O(n) time. Accessing elements of
older versions gradually becomes slower.

Updating an array which is not current makes a physical copy. The resulting array is unlinked from
the old family. So you can obtain a version which is guaranteed to be current and thus has fast
element access by performing the "identity update", old // [].

The library provides two "differential" array constructors - DiffArray, made internally from IOAr-
ray, and DiffUArray, based on IOUArray. If you really need to, you can construct new "differential"
array types from any ’MArray’ types living in the ’IO’ monad. See the MODULE DOCUMENTA-
TION11 for further details.

Usage of DiffArray doesn’t differ from that of Array, the only difference is memory consumption
and speed:

import Data.Array.Diff

main = do

let arr = listArray (1,1000) [1..1000] :: DiffArray Int Int

a = arr ! 1

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23UNSAFE%20OPERATIONS%20AND%20RUNNING%20OVER%
20ARRAY%20ELEMENTS

10 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
DATA-{}ARRAY-{}DIFF.HTML

11 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
DATA-{}ARRAY-{}DIFF.HTML
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arr2 = arr // [(1,37)]

b = arr2 ! 1

print (a,b)

You can use ’seq’ to force evaluation of array elements prior to updating an array:

import Data.Array.Diff

main = do

let arr = listArray (1,1000) [1..1000] :: DiffArray Int Int

a = arr ! 1

b = arr ! 2

arr2 = a ‘seq‘ b ‘seq‘ (arr // [(1,37),(2,64)])

c = arr2 ! 1

print (a,b,c)

66.7 Unboxed arrays ( DATA.ARRAY.UNBOXED12)

In most implementations of lazy evaluation, values are represented at runtime as pointers to either
their value, or code for computing their value. This extra level of indirection, together with any
extra tags needed by the runtime, is known as a box. The default "boxed" arrays consist of many
of these boxes, each of which may compute its value separately. This allows for many neat tricks,
like recursively defining an array’s elements in terms of one another, or only computing the specific
elements of the array which are ever needed. However, for large arrays, it costs a lot in terms of
overhead, and if the entire array is always needed, it can be a waste.

Unboxed arrays are more like arrays in C - they contain just the plain values without this extra level
of indirection, so that, for example, an array of 1024 values of type Int32 will use only 4 kb of
memory. Moreover, indexing of such arrays can be significantly faster.

Of course, unboxed arrays have their own disadvantages. First, unboxed arrays can be made only
of plain values having a fixed size -- Int, Word, Char, Bool, Ptr, Double and others (listed in the
UARRAY CLASS DEFINITION13). You can even implement unboxed arrays yourself for other simple
types, including enumerations. But Integer, String and any other types defined with variable size
cannot be elements of unboxed arrays. Second, without that extra level of indirection, all of the
elements in an unboxed array must be evaluated when the array is evaluated, so you lose the benefits
of lazy evaluation. Indexing the array to read just one element will construct the entire array. This
is not much of a loss if you will eventually need the whole array, but it does prevent recursively
defining the array elements in terms of each other, and may be too expensive if you only ever
need specific values. Nevertheless, unboxed arrays are a very useful optimization instrument, and I
recommend using them as much as possible.

12 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/
DATA-{}ARRAY-{}UNBOXED.HTML

13 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/
DATA-{}ARRAY-{}UNBOXED.HTML#T%3AUARRAY
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All main array types in the library have unboxed counterparts:

Array - UArray (module Data.Array.Unboxed)
IOArray - IOUArray (module Data.Array.IO)
STArray - STUArray (module Data.Array.ST)
DiffArray - DiffUArray (module Data.Array.Diff)

So, basically replacing boxed arrays in your program with unboxed ones is very simple - just add
’U’ to the type signatures, and you are done! Of course, if you change Array to UArray, you also
need to add "Data.Array.Unboxed" to your imports list.

66.8 StorableArray (module DATA.ARRAY.STORABLE15)

A storable array is an IO-mutable array which stores its contents in a contiguous memory block
living in the C heap. Elements are stored according to the class ’Storable’. You can obtain the
pointer to the array contents to manipulate elements from languages like C.

It is similar to ’IOUArray’ (in particular, it implements the same MArray interface) but slower.
The advantage is that it’s compatible with C through the foreign function interface. The memory
addresses of storable arrays are fixed, so you can pass them to C routines.

The pointer to the array contents is obtained by ’withStorableArray’. The idea is similar to
’ForeignPtr’ (used internally here). The pointer should be used only during execution of the ’IO’
action returned by the function passed as argument to ’withStorableArray’.

{-# OPTIONS_GHC -fglasgow-exts #-}
import Data.Array.Storable
import Foreign.Ptr
import Foreign.C.Types

main = do arr <- newArray (1,10) 37 :: IO (StorableArray Int Int)
a <- readArray arr 1
withStorableArray arr

(\ptr -> memset ptr 0 40)
b <- readArray arr 1
print (a,b)

foreign import ccall unsafe "string.h"
memset :: Ptr a -> CInt -> CSize -> IO ()

If you want to use this pointer afterwards, ensure that you call ’touchStorableArray’ AFTER the
last use of the pointer, so that the array will be not freed too early.

Additional comments: GHC 6.6 should make access to ’StorableArray’ as fast as to any other
unboxed arrays. The only difference between ’StorableArray’ and ’UArray’ will be that UArray
lies in relocatable part of GHC heap while ’StorableArray’ lies in non-relocatable part and therefore
keep the fixed address, what allow to pass this address to the C routines and save it in the C data
structures.

15 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
DATA-{}ARRAY-{}STORABLE.HTML
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GHC 6.6 also adds ’unsafeForeignPtrToStorableArray’ operation that allows to use any Ptr as
address of ’StorableArray’ and in particular work with arrays returned by C routines. Example of
using this operation:

import Data.Array.Storable
import Foreign.Marshal.Alloc
import Foreign.Marshal.Array
import Foreign.ForeignPtr

main = do ptr <- mallocArray 10
fptr <- newForeignPtr_ ptr
arr <- unsafeForeignPtrToStorableArray (1,10) fptr :: IO

(StorableArray Int Int)
writeArray arr 1 64
a <- readArray arr 1
print a
free ptr

This example allocs memory for 10 Ints (which emulates array returned by some C function), then
converts returned ’Ptr Int’ to ’ForeignPtr Int’ and ’ForeignPtr Int’ to ’StorableArray Int Int’. It
then writes and reads first element of array. At the end, memory used by array is deallocated by
’free’ which again emulates deallocation by C routines. We can also enable automatic freeing of
allocated block by replacing "newForeignPtr_ptr" with "newForeignPtr finalizerFree ptr". In this
case memory will be automatically freed after last array usage, as for any other Haskell objects.

66.9 The Haskell Array Preprocessor (STPP)

Using mutable arrays in Haskell (IO and ST ones) is not very handy. But there is one tool which
adds syntax sugar and makes using of such arrays very close to that in imperative languages. It is
written by Hal Daume III and you can get it as http://hal3.name/STPP/stpp.tar.gz

Using this tool, you can index array elements in arbitrary complex expressions with just "arr[|i|]"
notation and this preprocessor will automatically convert such syntax forms to appropriate calls to
’readArray’ and ’writeArray’. Multi-dimensional arrays are also supported, with indexing in the
form "arr[|i|][|j|]". See further descriptions at http://hal3.name/STPP/

66.10 ArrayRef library

The ARRAYREF LIBRARY16 reimplements array libraries with the following extensions:

• dynamic (resizable) arrays
• polymorphic unboxed arrays

It also adds SYNTAX SUGAR17 what simplifies arrays usage. Although not so elegant as with STPP,
it’s on other hand implemented entirely inside Haskell language, without any preprocessors.

16 HTTP://HASKELL.ORG/HASKELLWIKI/LIBRARY/ARRAYREF#REIMPLEMENTED_ARRAYS_LIBRARY
17 HTTP://HASKELL.ORG/HASKELLWIKI/LIBRARY/ARRAYREF#SYNTAX_SUGAR_FOR_MUTABLE_

TYPES

453

http://haskell.org/haskellwiki/Library/ArrayRef#Reimplemented_Arrays_library
http://haskell.org/haskellwiki/Library/ArrayRef#Syntax_sugar_for_mutable_types
http://haskell.org/haskellwiki/Library/ArrayRef#Syntax_sugar_for_mutable_types


Arrays

66.11 Unsafe operations and running over array elements

As mentioned above, there are operations that converts between mutable and immutable arrays of
the same type, namely ’freeze’ (mutable� immutable) and ’thaw’ (immutable� mutable). These
copy the entire array. If you are sure that a mutable array will not be modified or that an immutable
array will not be used after the conversion, you can use unsafeFreeze/unsafeThaw instead - these
operations convert array in-place if input and resulting arrays have the same memory representation
(i.e. the same type and boxing). Please note that "unsafe*" operations modifies memory - they
sets/clears flag in array header which tells about array mutability. So these operations can’t be used
together with multi-threaded access to array (using threads or some form of coroutines).

There are also operations that converts unboxed arrays to another element type, namely castIOUAr-
ray and castSTUArray. These operations rely on actual type representation in memory and therefore
there is no any guarantees on their results. In particular, these operations can be used to convert any
unboxable value to the sequence of bytes and vice versa, f.e. it’s used in AltBinary library to serial-
ize floating-point values. Please note that these operations don’t recompute array bounds according
to changed size of elements. You should do it yourself using ’sizeOf’ operation!

While arrays can have any type of indexes, internally any index after bounds checking is converted to
plain Int value (position) and then one of low-level operations, unsafeAt, unsafeRead, unsafeWrite,
is used. You can use these operations yourself in order to outpass bounds checking and make your
program faster. These operations are especially useful if you need to walk through entire array:

-- | Returns a list of all the elements of an array, in the same order

-- as their indices.

elems arr = [ unsafeAt arr i | i <- [0 .. rangeSize (bounds arr)-1] ]

"unsafe*" operations in such loops are really safe because ’i’ loops only through positions of exist-
ing array elements.

66.12 GHC18-specific topics

66.12.1 Parallel arrays (module GHC.PArr)

As we already mentioned, array library supports two array varieties - lazy boxed arrays and strict
unboxed ones. Parallel array implements something intervening - it’s a strict boxed immutable
array. This keeps flexibility of using any data type as array element while makes both creation and
access to such arrays much faster. Array creation implemented as one imperative loop that fills all
array elements, while access to array elements don’t need to check "box". It should be obvious
that parallel arrays are not efficient in cases where calculation of array elements are rather complex
and you will not use most of array elements. One more drawback of practical usage is that parallel
arrays don’t support IArray interface which means that you can’t write generic algorithms which
work both with Array and parallel array constructor.

18 HTTP://EN.WIKIBOOKS.ORG/WIKI/GHC
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Like many GHC extensions, this is described in a paper: AN APPROACH TO FAST ARRAYS IN

HASKELL19, by Manuel M. T. Chakravarty and Gabriele Keller.

You can also look at sources of GHC.PARR20 module, which contains a lot of comments.

Special syntax for parallel arrays is enabled by "ghc -fparr" or "ghci -fparr" which is undocumented
in user manual of GHC 6.4.1.

66.12.2 Welcome to the machine

Array#, MutableArray#, ByteArray#, MutableByteArray#, pinned and moveable byte arrays

GHC heap contains two kinds of objects - some are just byte sequences, other contains pointers
to other objects (so called "boxes"). These segregation allows to find chains of references when
performing garbage collection and update these pointers when memory used by heap is compacted
and objects are moved to new places. Internal (raw) GHC’s type Array# represents a sequence of
object pointers (boxes). There is low-level operation in ST monad which allocates array of specified
size in heap, its type is something like (Int -> ST s Array#). The Array# type is used inside Array
type which represents boxed immutable arrays.

There is a different type for mutable boxed arrays (IOArray/STArray), namely MutableArray#.
Separate type for mutable arrays required because of 2-stage garbage collection mechanism. Inter-
nal representation of Array# and MutableArray# are the same excluding for some flags in header
and this make possible to on-place convert MutableArray# to Array# and vice versa (this is that
unsafeFreeze and unsafeThaw operations do).

Unboxed arrays are represented by the ByteArray# type. It’s just a plain memory area in the heap,
like the C’s array. There are two primitive operations that creates a ByteArray# of specified size -
one allocates memory in normal heap and so this byte array can be moved each time when garbage
collection occurs. This prevents converting of ByteArray# to plain memory pointer that can be used
in C procedures (although it’s still possible to pass current ByteArray# pointer to "unsafe foreign"
procedure if it don’t try to store this pointer somewhere). The second primitive allocates ByteArray#
of specified size in "pinned" heap area, which contains objects with fixed place. Such byte array
will never be moved by GC so it’s address can be used as plain Ptr and shared with C world. First
way to create ByteArray# used inside implementation of all UArray types, second way used in
StorableArray (although StorableArray can also point to data, allocated by C malloc).

There is also MutableByteArray# type what don’t had much difference with ByteArray#, but GHC’s
primitives support only monadic read/write operations for MutableByteArray#, and only pure reads
for ByteArray#, plus unsafeFreeze/unsafeThaw operations that changes appropriate fields in head-
ers of this arrays. This differentiation don’t make much sense except for additional safety checks.

So, pinned MutableByteArray# or C malloced memory used inside StorableArray, unpinned Mu-
tableByteArray# used inside IOUArray and STUArray, and unpinned ByteArray# are used inside
UArray.

Both boxed and unboxed arrays API are almost the same:

19 HTTP://WWW.CSE.UNSW.EDU.AU/~{}CHAK/PAPERS/CK03.HTML
20 HTTP://DARCS.HASKELL.ORG/PACKAGES/BASE/GHC/PARR.HS
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marr <- alloc n - allocates mutable array with given size
arr <- unsafeFreeze marr - converts mutable array to immutable one
marr <- unsafeThaw arr - converts immutable array to mutable one
x <- unsafeRead marr i - monadic reading of value with given
index from mutable array
unsafeWrite marr i x - monadic writing of value with given
index from mutable array
let x = unsafeAt arr i - pure reading of value with given index
from immutable array
(all indexes are counted from 0)

Based on these primitive operations, the arrays library implements indexing with any type and with
any lower bound, bounds checking and all other high-level operations. Operations that creates/up-
dates immutable arrays just creates them as mutable arrays in ST monad, make all required updates
on this array and then use unsafeFreeze before returning array from runST. Operations on IO arrays
are implemented via operations on ST arrays using stToIO operation.

66.12.3 Mutable arrays and GC

GHC implements 2-stage GC which is very fast - minor GC occurs after each 256 kb allocated and
scans only this area (plus recent stack frames) when searching for a "live" data. This solution uses
the fact that usual Haskell data are immutable and therefore any data structures that was created be-
fore previous minor GC can’t point to the data structures created after this GC (due to immutability
data can contain only "backward" references).

But this simplicity breaks when we add to the language mutable boxed references (IORef/STRef)
and arrays (IOArray/STArray). On each GC, including minor ones, each element in mutable data
structures should be scanned because it may be updated since last GC and now point to the data
allocated since last GC.

For programs that contains a lot of data in mutable boxed arrays/references GC times may easily
outweigh useful computation time. Ironically, one of such programs is GHC itself. Solution for
such programs is to add to cmdline option like "+RTS -A10m" which increases size of minor GC
chunks from 256 kb to 10 mb, i.e. makes minor GC 40 times less frequent. You can see effect of
this change using "+RTS -sstderr" option - "%GC time" should significantly decrease.

There is a way to include this option into your executable so it will be used automatically on each
execution - you should just add to your project C source file that contains the following line:

char *ghc_rts_opts = "-A10m";

Of course, you can increase or decrease this value according to your needs.

Increasing "-A" value don’t comes for free - aside from obvious increasing of memory usage, exe-
cution times (of useful code) will also grow. Default "-A" value tuned to be close to modern CPU
cache sizes that means that most of memory references are fall inside the cache. When 10 mb of
memory are allocated before doing GC, this data locality is no more holds. So, increasing "-A" can
either increase or decrease program speed, depending on its nature. Try various settings between 64
kb and 16 mb while running program with "typical" parameters and try to select a best setting for
your concrete program and cpu combination.
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There is also another way to avoid increasing GC times - use either unboxed or immutable arrays.
Also note that immutable arrays are build as mutable ones and then "freezed", so during the con-
struction time GC will also scan their contents.

Hopefully, GHC 6.6 fixed the problem - it remembers what references/arrays was updated since last
GC and scans only them. You can suffer from the old problems only in the case when you use very
large arrays.

Further information:

• RTS OPTIONS TO CONTROL THE GARBAGE COLLECTOR22

• PROBLEM DESCRIPTION BY SIMON MARLOW AND REPORT ABOUT GHC 6.6 IMPROVE-
MENTS IN THIS AREA23

• NOTES ABOUT GHC GARBAGE COLLECTOR24

• PAPERS ABOUT GHC GARBAGE COLLECTOR25

22 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/USERS_GUIDE/RUNTIME-{}CONTROL.
HTML

23 HTTP://HACKAGE.HASKELL.ORG/TRAC/GHC/TICKET/650
24 HTTP://HACKAGE.HASKELL.ORG/TRAC/GHC/WIKI/GARBAGECOLLECTORNOTES
25 HTTP://RESEARCH.MICROSOFT.COM/~{}SIMONPJ/PAPERS/PAPERS.HTML#GC
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67 Maybe

The Maybe data type is a means of being explicit that you are not sure that a function will be
successful when it is executed.

67.1 Motivation

Many languages require you to guess what they will do when a calculation did not finish properly.
For example, an array lookup signature may look like this in pseudocode:

getPosition(Array a, Value v) returns Integer

But what happens if it doesn’t find the item? It could return a null value, or the integer ’-1’ which
would also be an obvious sign that something went wrong. But there’s no way of knowing what
will happen without examining the code for this procedure to see what the programmer chose to do.
In a library without available code this might not even be possible.

The alternative is to explicitly state what the function should return (in this case, Integer), but also
that it might not work as intended &mdash; Maybe Integer. This is the intention of the Maybe
datatype. So in Haskell, we could write the above signature as:

getPosition :: Array -> Value -> Maybe Integer

If the function is successful you want to return the result; otherwise, you want to return an explicit
failure. This could be simulated as a tuple of type (Bool, a) where a is the "actual" return type of
the function. But what would you put in the a slot if it failed? There’s no obvious answer. Besides
which, the Maybe type is easier to use and has a selection of library functions for dealing with
values which may fail to return an explicit answer.

67.2 Definition

The Standard Prelude defines the Maybe type as follows, and more utility functions exist in the
Data.Maybe library.

data Maybe a = Nothing | Just a

The type a is polymorphic and can contain complex types or even other monads (such as IO ()
types).
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67.3 Library functions

The module Data.Maybe, in the standard HIERARCHICAL LIBRARIES1, contains a wealth of func-
tions for working with Maybe values.

67.3.1 Querying

There are two obvious functions to give you information about a Maybe value.

isJust

This returns True if the argument is in the form Just _.

isJust :: Maybe a -> Bool
isJust (Just _) = True
isJust Nothing = False

isNothing

The dual of isJust: returns True if its argument is Nothing.

isNothing :: Maybe a -> Bool
isNothing (Just _) = False
isNothing Nothing = True

67.3.2 Getting out

There are a handful of functions for converting Maybe values to non-Maybe values.

maybe

maybe is a function that takes a default value to use if its argument is Nothing, a function to apply
if its argument is in the form Just _, and a Maybe value.

maybe :: b -> (a -> b) -> Maybe a -> b
maybe _ f (Just x) = f x
maybe z _ Nothing = z

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2F..%2FHIERARCHICAL%20LIBRARIES
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fromMaybe

A frequent pattern is to use the maybe function, but not want to change the value if it was a Just.
That is, call maybe with the second parameter being id. This is precisely fromMaybe.

fromMaybe :: a -> Maybe a -> a
fromMaybe z = maybe z id

fromJust

There are certain occasions when you know a function that ends in a Maybe value will produce a
Just. In these cases, you can use the fromJust function, which just strips off a Just constructor.

fromJust :: Maybe a -> a
fromJust (Just x) = x
fromJust Nothing = error "fromJust: Nothing"

67.3.3 Lists and Maybe

Lists are, in some ways, similar to the Maybe datatype (indeed, this relationship will be further
explored when you learn about monads). As such, there are a couple of functions for converting
between one and the other.

listToMaybe

This function, and the following one, makes a lot of sense when you think about Maybe and list
values in terms of computations (which will be more fully explained in the section on ADVANCED

MONADS2).

With lists, [] represents a failed computation. With Maybe, Nothing does. listToMaybe converts
between the list and Maybe monad. When the parameter (in the list monad) indicated a successful
computation, only the first solution is taken to place in the Maybe value.

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (x:_) = Just x

maybeToList

The obvious opposite of listToMaybe.

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2F..%2FADVANCED%20MONADS
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maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just x) = [x]

67.3.4 Lists manipulation

Finally, there are a couple of functions which are analogues of the normal Prelude list manipulation
functions, but specialised to Maybe values.

Continue on some failures (like ’or’)

catMaybes
Given a list of Maybe values, catMaybes extracts all the values in the form Just _, and strips
off the Just constructors. This is easily defined with a list comprehension, as we showed in the
PATTERN MATCHING CHAPTER3:

catMaybes :: [Maybe a] -> [a]
catMaybes ms = [ x | Just x <- ms ]

mapMaybe
mapMaybe applies a function to a list, and collects the successes. It can be understood as a
composition of functions you already know:

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe f xs = catMaybes (map f xs)

But the actual definition may be more efficient and traverse the list once:

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe _ [] = []
mapMaybe f (x:xs) =
case f x of
Just y -> y : mapMaybe f xs
Nothing -> mapMaybe f xs

Stop on failure

sequence
Sometimes you want to collect the values if and only if all succeeded:

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2F..%2FPATTERN%20MATCHING
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sequence :: [Maybe a] -> Maybe [a]
sequence [] = Just []
sequence (Nothing:xs) = Nothing
sequence (Just x:xs) = case sequence xs of
Just xs’ -> Just (x:xs’)
_ -> Nothing
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68 Maps

The module Data.Map provides the Map datatype, which allows you to store values attached to
specific keys. This is called a lookup table, dictionary or associative array in other languages.

68.1 Motivation

Very often it would be useful to have some kind of data structure that relates a value or list of values
to a specific key. This is often called a dictionary after the real-world example: a real-life dictionary
associates a definition (the value) to each word (the key); we say the dictionary is a map from
words to definitions. A filesystem driver might keep a map from filenames to file information. A
phonebook application might keep a map from contact names to phone numbers. Maps are a very
versatile and useful datatype.

68.1.1 Why not just [(a, b)]?

You may have seen in other chapters that a list of pairs (or ’lookup table’) is often used as a kind
of map, along with the function lookup :: [(a, b)] -> a -> Maybe b. So why not just use
a lookup table all the time? Here are a few reasons:

• Working with maps gives you access to a whole load more useful functions for working with
lookup tables.

• Maps are implemented far more efficiently than a lookup table would be, both in terms of speed
and the amount of memory it takes up.

68.2 Definition

Internally, maps are defined using a complicated datatype called a balanced tree for efficiency rea-
sons, so we don’t give the details here.

68.3 Library functions

The module Data.Map provides an absolute wealth of functions for dealing with Maps, including
setlike operations like unions and intersections. There are so many we don’t include a list here;
instead the reader is deferred to the HIERARCHICAL LIBRARIES DOCUMENTATION1 for Data.Map.

1 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/CONTAINERS/DATA-{}MAP.HTML
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68.4 Example

The following example implements a password database. The user is assumed to be trusted, so is
not authenticated and has access to view or change passwords.

{- A quick note for the over-eager refactorers out there: This is
(somewhat)

intentionally ugly. It doesn’t use the State monad to hold the DB
because it

hasn’t been introduced yet. Perhaps we could use this as an
example of How

Monads Improve Things? -}

module PassDB where

import qualified Data.Map as M
import System.Exit

type UserName = String
type Password = String
type PassDB = M.Map UserName Password
-- PassBD is a map from usernames to passwords

-- | Ask the user for a username and new password, and return the new
PassDB
changePass :: PassDB -> IO PassDB
changePass db = do
putStrLn "Enter a username and new password to change."
putStr "Username: "
un <- getLine
putStrLn "New password: "
pw <- getLine
if un ‘M.member‘ db -- if un is one of the keys of

the map
then return $ M.insert un pw db -- then update the value with the

new password
else do putStrLn $ "Can’t find username ’" ++ un ++ "’ in the

database."
return db

-- | Ask the user for a username, whose password will be displayed.
viewPass :: PassDB -> IO ()
viewPass db = do
putStrLn "Enter a username, whose password will be displayed."
putStr "Username: "
un <- getLine
putStrLn $ case M.lookup un db of

Nothing -> "Can’t find username ’" ++ un ++ "’ in the
database."

Just pw -> pw

-- | The main loop for interacting with the user.
mainLoop :: PassDB -> IO PassDB
mainLoop db = do
putStr "Command [cvq]: "
c <- getChar
putStr "\n"
-- See what they want us to do. If they chose a command other than

’q’, then
-- recurse (i.e. ask the user for the next command). We use the

Maybe datatype
-- to indicate whether to recurse or not: ’Just db’ means do

recurse, and in
-- running the command, the old datbase changed to db. ’Nothing’
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means don’t
-- recurse.
db’ <- case c of

’c’ -> fmap Just $ changePass db
’v’ -> do viewPass db; return (Just db)
’q’ -> return Nothing
_ -> do putStrLn $ "Not a recognised command, ’" ++ [c]

++ "’."
return (Just db)

maybe (return db) mainLoop db’

-- | Parse the file we’ve just read in, by converting it to a list of
lines,
-- then folding down this list, starting with an empty map and
adding the
-- username and password for each line at each stage.
parseMap :: String -> PassDB
parseMap = foldr parseLine M.empty . lines

where parseLine ln map =
let [un, pw] = words ln
in M.insert un pw map

-- | Convert our database to the format we store in the file by first
converting
-- it to a list of pairs, then mapping over this list to put a
space between
-- the username and password
showMap :: PassDB -> String
showMap = unlines . map (\(un, pw) -> un ++ " " ++ pw) . M.toAscList

main :: IO ()
main = do
putStrLn $ "Welcome to PassDB. Enter a command: (c)hange a

password, " ++
"(v)iew a password or (q)uit."

dbFile <- readFile "/etc/passdb"
db’ <- mainLoop (parseMap dbFile)
writeFile "/etc/passdb" (showMap db’)

Exercises:
FIXME: write some exercises
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69 IO

69.1 The IO Library

The IO Library (available by importing the System.IO module) contains many definitions, the
most commonly used of which are listed below:

data IOMode = ReadMode | WriteMode

| AppendMode | ReadWriteMode

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

hGetChar :: Handle -> IO Char

hGetLine :: Handle -> IO String

hGetContents :: Handle -> IO String

getChar :: IO Char

getLine :: IO String

getContents :: IO String

hPutChar :: Handle -> Char -> IO ()

hPutStr :: Handle -> String -> IO ()

hPutStrLn :: Handle -> String -> IO ()

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

{- bracket must be imported from Control.Exception -}

bracket ::

IO a -> (a -> IO b) -> (a -> IO c) -> IO c

Note:

The type FilePath is a type synonym for String. That is, there is no difference between FilePath
and String. So, for instance, the readFile function takes a String (the file to read) and returns
an action that, when run, produces the contents of that file. See the section ../../TYPE DECLARA-
TIONS/1 for more about type synonyms.

Most of these functions are self-explanatory. The openFile and hClose functions open and close a
file, respectively, using the IOMode argument as the mode for opening the file. hIsEOF tests for end-
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of file. hGetChar and hGetLine read a character or line (respectively) from a file. hGetContents
reads the entire file. The getChar, getLine and getContents variants read from standard input.
hPutChar prints a character to a file; hPutStr prints a string; and hPutStrLn prints a string with
a newline character at the end. The variants without the h prefix work on standard output. The
readFile and writeFile functions read and write an entire file without having to open it first.

The bracket function is used to perform actions safely. Consider a function that opens a file,
writes a character to it, and then closes the file. When writing such a function, one needs to be
careful to ensure that, if there were an error at some point, the file is still successfully closed. The
bracket function makes this easy. It takes three arguments: The first is the action to perform at the
beginning. The second is the action to perform at the end, regardless of whether there’s an error or
not. The third is the action to perform in the middle, which might result in an error. For instance,
our character-writing function might look like:

writeChar :: FilePath -> Char -> IO ()

writeChar fp c =

bracket

(openFile fp WriteMode)

hClose

(\h -> hPutChar h c)

This will open the file, write the character and then close the file. However, if writing the character
fails, hClose will still be executed, and the exception will be reraised afterwards. That way, you
don’t need to worry too much about catching the exceptions and about closing all of your handles.

69.2 A File Reading Program

We can write a simple program that allows a user to read and write files. The interface is admittedly
poor, and it does not catch all errors (such as reading a non-existent file). Nevertheless, it should
give a fairly complete example of how to use IO. Enter the following code into "FileRead.hs," and
compile/run:

module Main

where

import System.IO

import Control.Exception

main = doLoop

doLoop = do

putStrLn "Enter a command rFN wFN or q to quit:"

command <- getLine

case command of

’q’:_ -> return ()

’r’:filename -> do putStrLn ("Reading " ++ filename)

doRead filename

doLoop
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’w’:filename -> do putStrLn ("Writing " ++ filename)

doWrite filename

doLoop

_ -> doLoop

doRead filename =

bracket (openFile filename ReadMode) hClose

(\h -> do contents <- hGetContents h

putStrLn "The first 100 chars:"

putStrLn (take 100 contents))

doWrite filename = do

putStrLn "Enter text to go into the file:"

contents <- getLine

bracket (openFile filename WriteMode) hClose

(\h -> hPutStrLn h contents)

What does this program do? First, it issues a short string of instructions and reads a command. It
then performs a case switch on the command and checks first to see if the first character is a ‘q.’ If
it is, it returns a value of unit type.

Note:
The return function is a function that takes a value of type a and returns an action of type IO a.
Thus, the type of return () is IO ().

If the first character of the command wasn’t a ‘q,’ the program checks to see if it was an ’r’ followed
by some string that is bound to the variable filename. It then tells you that it’s reading the file,
does the read and runs doLoop again. The check for ‘w’ is nearly identical. Otherwise, it matches
_, the wildcard character, and loops to doLoop.

The doRead function uses the bracket function to make sure there are no problems reading the file.
It opens a file in ReadMode, reads its contents and prints the first 100 characters (the take function
takes an integer n and a list and returns the first n elements of the list).

The doWrite function asks for some text, reads it from the keyboard, and then writes it to the file
specified.

Note:
Both doRead and doWrite could have been made simpler by using readFile and writeFile, but
they were written in the extended fashion to show how the more complex functions are used.

The only major problem with this program is that it will die if you try to read a file that doesn’t
already exists or if you specify some bad filename like *\bsˆ#_@. You may think that the calls to
bracket in doRead and doWrite should take care of this, but they don’t. They only catch excep-
tions within the main body, not within the startup or shutdown functions (openFile and hClose, in
these cases). We would need to catch exceptions raised by openFile, in order to make this com-
plete. We will do this when we talk about exceptions in more detail in the section on EXCEPTIONS2.

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FIO%20ADVANCED%23EXCEPTIONS
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Exercises:
Write a program that first asks whether the user wants to read from a file, write to a file or quit. If
the user responds quit, the program should exit. If he responds read, the program should ask him
for a file name and print that file to the screen (if the file doesn’t exist, the program may crash). If
he responds write, it should ask him for a file name and then ask him for text to write to the file,
with "." signaling completion. All but the "." should be written to the file.

For example, running this program might produce:

Do you want to [read] a file, [write] a file or [quit]?

read

Enter a file name to read:

foo

...contents of foo...

Do you want to [read] a file, [write] a file or [quit]?

write

Enter a file name to write:

foo

Enter text (dot on a line by itself to end):

this is some

text for

foo

.

Do you want to [read] a file, [write] a file or [quit]?

read

Enter a file name to read:

foo

this is some

text for

foo

Do you want to [read] a file, [write] a file or [quit]?

blech

I don’t understand the command blech.

Do you want to [read] a file, [write] a file or [quit]?

quit

Goodbye!

69.3 Another way of reading files

Sometimes (for example in parsers) we need to open a file from command line, by typing "pro-
gram.exe input.in" . Of course, we could just use "< " to redirect standard input, but we can do it in
more elegant way. We could do this like that:
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module Main where

import IO

import System

import List(isSuffixOf)

parse fname str = str

main::IO()

main = do

arguments <- getArgs

if (length (arguments)==0)

then putStrLn "No input file given.\n Proper way of running

program is: \n program input.in"

else do

let suffix = if List.isSuffixOf ".in" (head arguments)

then "" else ".in"

--Using this trick will allow users to type "program input" as well

handle <- catch (openFile ((head arguments)++suffix)

ReadMode)

(\e -> error $ show e)

readable<- hIsReadable handle

if (not readable)

then error "File is being used by another user or

program"

else do

unparsedString <- hGetContents handle

case parse (head arguments) unparsedString of

{-This is how it would look like, when our parser was based on Parsec

Left err -> error $ show err

Right program -> do

{

outcome <- interprete program ;

case outcome of

Abort -> do

putStrLn "Program aborted"

exitWith $ ExitFailure 1

_ -> do

putStrLn "Input interpreted"

exitWith ExitSuccess

}

But to make this example less complicated I replaced these lines

with:-}

{

putStrLn "Input interpreted";

exitWith ExitSuccess

}
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70 Random Numbers

70.1 Random examples

Here are a handful of uses of random numbers by example

Example: Ten random integer numbers import System.Random

main = do

gen <- newStdGen

let ns = randoms gen :: [Int]

print $ take 10 ns

import System.Random

main = do

gen <- newStdGen

let ns = randoms gen :: [Int]

print $ take 10 ns

The IO action newStdGen, as its name implies, creates a new StdGen pseudorandom number gener-
ator state. This StdGen can be passed to functions which need to generate pseudorandom numbers.

(There also exists a global random number generator which is initialized automatically in a sys-
tem dependent fashion. This generator is maintained in the IO monad and can be accessed with
getStdGen. This is perhaps a library wart, however, as all that you really ever need is newStdGen.)

Alternatively one can get a generator by initializing it with an integer, using mkStdGen:

Example: Ten random floats using mkStdGen import System.Random

randomList :: (Random a) => Int -> [a]

randomList seed = randoms (mkStdGen seed)

main :: IO ()

main = do print $ take 10 (randomList 42 :: [Float])

import System.Random

randomList :: (Random a) => Int -> [a]

randomList seed = randoms (mkStdGen seed)

main :: IO ()

main = do print $ take 10 (randomList 42 :: [Float])

Running this script results in output like this:
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[0.110407025,0.8453985,0.3077821,0.781

38804,0.5242582,0.5196911,0.20084688,0.4794773,0.3240164,6.1566383e-2]

Example: Unsorting a list (imperfectly) import Data.List ( sortBy )

import Data.Ord ( comparing )

import System.Random ( Random, RandomGen, randoms, newStdGen )

main :: IO ()

main =

do gen <- newStdGen

interact $ unlines . unsort gen . lines

unsort :: (RandomGen g) => g -> [x] -> [x]

unsort g es = map snd . sortBy (comparing fst) $ zip rs es

where rs = randoms g :: [Integer]

import Data.List ( sortBy )

import Data.Ord ( comparing )

import System.Random ( Random, RandomGen, randoms, newStdGen )

main :: IO ()

main =

do gen <- newStdGen

interact $ unlines . unsort gen . lines

unsort :: (RandomGen g) => g -> [x] -> [x]

unsort g es = map snd . sortBy (comparing fst) $ zip rs es

where rs = randoms g :: [Integer]

There’s more to random number generation than randoms. You can, for example, use random (sans
’s’) to generate a single random number along with a new StdGen to be used for the next one, as
well as randomR and randomRs which take a parameter for specifying the range. See below for
more ideas.

70.2 The Standard Random Number Generator

The Haskell standard random number functions and types are defined in the Random
module (or System.Random if you use hierarchical modules). The definition is at
http://www.haskell.org/onlinereport/random.html, but its a bit tricky to follow because it uses
classes to make itself more general.

From the standard:

---------------- The RandomGen class ------------------------

class RandomGen g where
genRange :: g -> (Int, Int)
next :: g -> (Int, g)
split :: g -> (g, g)

---------------- A standard instance of RandomGen -----------
data StdGen = ... -- Abstract
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This basically introduces StdGen, the standard random number generator "object". It’s an instance
of the RandomGen class which specifies the operations other pseudorandom number generator li-
braries need to implement to be used with the System.Random library.

If you have r :: StdGen then you can say:

(x, r2) = next r

This gives you a random Int x and a new StdGen r2. The ’next’ function is defined in the Random-
Gen class, and you can apply it to something of type StdGen because StdGen is an instance of the
RandomGen class, as below.

From the Standard:

instance RandomGen StdGen where ...
instance Read StdGen where ...
instance Show StdGen where ...

This also says that you can convert a StdGen to and from a string, which is there as a handy way to
save the state of the generator. (The dots are not Haskell syntax. They simply say that the Standard
does not define an implementation of these instances.)

From the Standard:

mkStdGen :: Int -> StdGen

This is the factory function for StdGen objects. Put in a seed, get out a generator.

The reason that the ’next’ function also returns a new random number generator is that Haskell
is a functional language, so no side effects are allowed. In most languages the random number
generator routine has the hidden side effect of updating the state of the generator ready for the
next call. Haskell can’t do that. So if you want to generate three random numbers you need to say
something like

let
(x1, r2) = next r
(x2, r3) = next r2
(x3, r4) = next r3

The other thing is that the random values (x1, x2, x3) are random integers. To get something in the
range, say, (0,999) you would have to take the modulus yourself, which is silly. There ought to be a
library routine built on this, and indeed there is.

From the Standard:

---------------- The Random class ---------------------------
class Random a where

randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g -> (a, g)
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randomRs :: RandomGen g => (a, a) -> g -> [a]
randoms :: RandomGen g => g -> [a]

randomRIO :: (a,a) -> IO a
randomIO :: IO a

Remember that StdGen is the only instance of type RandomGen (unless you roll your own random
number generator). So you can substitute StdGen for ’g’ in the types above and get this:

randomR :: (a, a) -> StdGen -> (a, StdGen)
random :: StdGen -> (a, StdGen)

randomRs :: (a, a) -> StdGen -> [a]
randoms :: StdGen -> [a]

But remember that this is all inside *another* class declaration "Random". So what this says is that
any instance of Random can use these functions. The instances of Random in the Standard are:

instance Random Integer where ...
instance Random Float where ...
instance Random Double where ...
instance Random Bool where ...
instance Random Char where ...

So for any of these types you can get a random range. You can get a random integer with:

(x1, r2) = randomR (0,999) r

And you can get a random upper case character with

(c2, r3) = randomR (’A’, ’Z’) r2

You can even get a random bit with

(b3, r4) = randomR (False, True) r3

So far so good, but threading the random number state through your entire program like this is
painful, error prone, and generally destroys the nice clean functional properties of your program.

One partial solution is the "split" function in the RandomGen class. It takes one generator and gives
you two generators back. This lets you say something like this:

(r1, r2) = split r
x = foo r1

In this case we are passing r1 down into function foo, which does something random with it and
returns a result "x", and we can then take "r2" as the random number generator for whatever comes
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next. Without "split" we would have to write

(x, r2) = foo r1

But even this is often too clumsy, so you can do it the quick and dirty way by putting the whole
thing in the IO monad. This gives you a standard global random number generator just like any
other language. But because its just like any other language it has to do it in the IO monad.

From the Standard:

---------------- The global random generator ----------------
newStdGen :: IO StdGen
setStdGen :: StdGen -> IO ()
getStdGen :: IO StdGen
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

So you could write:

foo :: IO Int
foo = do

r1 <- getStdGen
let (x, r2) = randomR (0,999) r1
setStdGen r2
return x

This gets the global generator, uses it, and then updates it (otherwise every random number will be
the same). But having to get and update the global generator every time you use it is a pain, so its
more common to use getStdRandom. The argument to this is a function. Compare the type of that
function to that of ’random’ and ’randomR’. They both fit in rather well. To get a random integer in
the IO monad you can say:

x <- getStdRandom $ randomR (1,999)

The ’randomR (1,999)’ has type "StdGen -> (Int, StdGen)", so it fits straight into the argument
required by getStdRandom.

70.3 Using QuickCheck to Generate Random Data

Only being able to do random numbers in a nice straightforward way inside the IO monad is a bit
of a pain. You find that some function deep inside your code needs a random number, and suddenly
you have to rewrite half your program as IO actions instead of nice pure functions, or else have an
StdGen parameter tramp its way down there through all the higher level functions. Something a bit
purer is needed.

If you have read anything about Monads then you might have recognized the pattern I gave above:
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let
(x1, r2) = next r
(x2, r3) = next r2
(x3, r4) = next r3

The job of a monad is to abstract out this pattern, leaving the programmer to write something like:

do -- Not real Haskell
x1 <- random
x2 <- random
x3 <- random

Of course you can do this in the IO monad, but it would be better if random numbers had their own
little monad that specialised in random computations. And it just so happens that such a monad
exists. It lives in the Test.QuickCheck library, and it’s called "Gen". And it does lots of very useful
things with random numbers.

The reason that "Gen" lives in Test.QuickCheck is historical: that is where it was invented. The pur-
pose of QuickCheck is to generate random unit tests to verify properties of your code. (Incidentally
its very good at this, and most Haskell developers use it for testing). See the QUICKCHECK1 on
HaskellWiki for more details. This tutorial will concentrate on using the "Gen" monad for generat-
ing random data.

Most Haskell compilers (including GHC) bundle QuickCheck in with their standard libraries, so
you probably won’t need to install it separately. Just say

import Test.QuickCheck

in your source file.

The "Gen" monad can be thought of as a monad of random computations. As well as generating
random numbers it provides a library of functions that build up complicated values out of simple
ones.

So lets start with a routine to return three random integers between 0 and 999:

randomTriple :: Gen (Integer, Integer, Integer)
randomTriple = do

x1 <- choose (0,999)
x2 <- choose (0,999)
x3 <- choose (0,999)
return (x1, x2, x3)

"choose" is one of the functions from QuickCheck. Its the equivalent to randomR. The type of
"choose" is

1 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/INTRODUCTION_TO_QUICKCHECK
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choose :: Random a => (a, a) -> Gen a

In other words, for any type "a" which is an instance of "Random" (see above), "choose" will map
a range into a generator.

Once you have a "Gen" action you have to execute it. The "generate" function executes an action
and returns the random result. The type is:

generate :: Int -> StdGen -> Gen a -> a

The three arguments are:

1. The "size" of the result. This isn’t used in the example above, but if you were generating a
data structure with a variable number of elements (like a list) then this parameter lets you pass
some notion of the expected size into the generator. We’ll see an example later.

2. A random number generator.
3. The generator action.

So for example:

let
triple = generate 1 (mkStdGen 1) randomTriple

will generate three arbitrary numbers. But note that because the same seed value is used the numbers
will always be the same (which is why I said "arbitrary", not "random"). If you want different
numbers then you have to use a different StdGen argument.

A common pattern in most programming languages is to use a random number generator to choose
between two courses of action:

-- Not Haskell code
r := random (0,1)
if r == 1 then foo else bar

QuickCheck provides a more declaritive way of doing the same thing. If "foo" and "bar" are both
generators returning the same type then you can say:

oneof [foo, bar]

This has an equal chance of returning either "foo" or "bar". If you wanted different odds, say that
there was a 30% chance of "foo" and a 70% chance of "bar" then you could say

frequency [ (30, foo), (70, bar) ]

"oneof" takes a simple list of Gen actions and selects one of them at random. "frequency" does
something similar, but the probability of each item is given by the associated weighting.
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oneof :: [Gen a] -> Gen a
frequency :: [(Int, Gen a)] -> Gen a
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72 Building a standalone application

So you want to build a simple application -- a piece of standalone software -- with Haskell.

72.1 The Main module

The basic requirement behind this is to have a module Main with a main function main
-- thingamie.hs

module Main where

main = do

putStrLn "Bonjour, world!"

Using GHC, you may compile and run this file as follows:
$ ghc --make -o bonjourWorld thingamie.hs

$ ./bonjourWorld

Bonjour, world!

Voilà! You now have a standalone application built in Haskell.

72.2 Other modules?

Invariably your program will grow to be complicated enough that you want to split it across different
files. Here is an example of an application which uses two modules.

-- hello.hs

module Hello where

hello = "Bonjour, world!"

-- thingamie.hs

module Main where

import Hello

main = putStrLn hello

We can compile this fancy new program in the same way. Note that the --make flag to ghc is rather
handy because it tells ghc to automatically detect dependencies in the files you are compiling. That
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is, since thingamie.hs imports a module ’Hello’, ghc will search the haskell files in the current di-
rectory for files that implement Hello and also compile that. If Hello depends on yet other modules,
ghc will automatically detect those dependencies as well.

$ ghc --make -o bonjourWorld thingamie.hs

$ ./bonjourWorld

Bonjour, world!

If you want to search in other places for source files, including a nested structure of files and di-
rectories, you can add the starting point for the dependency search with the -i flag. This flag takes
multiple, colon-separated directory names as its argument.

As a contrived example, the following program has three files all stored in a src/ directory. The
directory structure looks like:

HaskellProgram/

src/

Main.hs

GUI/

Interface.hs

Functions/

Mathematics.hs

The Main module imports its dependencies by searching a path analogous to the module name — so
that import GUI.Interface would search for GUI/Interface (with the appropriate file extension).

To compile this program from within the HaskellProgram directory, invoke ghc with:

$ ghc --make -i src -o sillyprog Main.hs

APPLICATIONS1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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73 Testing

73.1 Quickcheck

Consider the following function:

getList = find 5 where

find 0 = return []

find n = do

ch <- getChar

if ch ‘elem‘ [’a’..’e’] then do

tl <- find (n-1)

return (ch : tl) else

find n

How would we effectively test this function in Haskell? The solution we turn to is refactoring and
QuickCheck.

73.1.1 Keeping things pure

The reason your getList is hard to test, is that the side effecting monadic code is mixed in with the
pure computation, making it difficult to test without moving entirely into a "black box" IO-based
testing model. Such a mixture is not good for reasoning about code.

Let’s untangle that, and then test the referentially transparent parts simply with QuickCheck. We
can take advantage of lazy IO firstly, to avoid all the unpleasant low-level IO handling.

So the first step is to factor out the IO part of the function into a thin "skin" layer:

-- A thin monadic skin layer

getList :: IO [Char]

getList = fmap take5 getContents

-- The actual worker

take5 :: [Char] -> [Char]

take5 = take 5 . filter (‘elem‘ [’a’..’e’])
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73.1.2 Testing with QuickCheck

Now we can test the ’guts’ of the algorithm, the take5 function, in isolation. Let’s use QuickCheck.
First we need an Arbitrary instance for the Char type -- this takes care of generating random Chars
for us to test with. I’ll restrict it to a range of nice chars just for simplicity:

import Data.Char

import Test.QuickCheck

instance Arbitrary Char where

arbitrary = choose (’\32’, ’\128’)

coarbitrary c = variant (ord c ‘rem‘ 4)

Let’s fire up GHCi (or Hugs) and try some generic properties (it’s nice that we can use the
QuickCheck testing framework directly from the Haskell REPL). An easy one first, a [Char] is
equal to itself:

*A> quickCheck ((\s -> s == s) :: [Char] -> Bool)

OK, passed 100 tests.

What just happened? QuickCheck generated 100 random [Char] values, and applied our property,
checking the result was True for all cases. QuickCheck generated the test sets for us!

A more interesting property now: reversing twice is the identity:

*A> quickCheck ((\s -> (reverse.reverse) s == s) :: [Char] -> Bool)

OK, passed 100 tests.

Great!

73.1.3 Testing take5

The first step to testing with QuickCheck is to work out some properties that are true of the function,
for all inputs. That is, we need to find invariants.

A simple invariant might be: ∀s. length(take5 s) = 5

So let’s write that as a QuickCheck property:
\s -> length (take5 s) == 5

Which we can then run in QuickCheck as:
*A> quickCheck (\s -> length (take5 s) == 5)

Falsifiable, after 0 tests:

""
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Ah! QuickCheck caught us out. If the input string contains less than 5 filterable characters,
the resulting string will be no more than 5 characters long. So let’s weaken the property a bit:
∀s. length(take5 s) ≤ 5

That is, take5 returns a string of at most 5 characters long. Let’s test this:
*A> quickCheck (\s -> length (take5 s) <= 5)

OK, passed 100 tests.

Good!

73.1.4 Another property

Another thing to check would be that the correct characters are returned. That is, for all returned
characters, those characters are members of the set [’a’,’b’,’c’,’d’,’e’].

We can specify that as: ∀s.∀e.(e ∈ t ake5 s) ⇒ (e ∈ {a,b,c,d ,e})

And in QuickCheck:
*A> quickCheck (\s -> all (‘elem‘ [’a’..’e’]) (take5 s))

OK, passed 100 tests.

Excellent. So we can have some confidence that the function neither returns strings that are too
long, nor includes invalid characters.

73.1.5 Coverage

One issue with the default QuickCheck configuration, when testing [Char], is that the standard 100
tests isn’t enough for our situation. In fact, QuickCheck never generates a String greater than 5
characters long, when using the supplied Arbitrary instance for Char! We can confirm this:

*A> quickCheck (\s -> length (take5 s) < 5)

OK, passed 100 tests.

QuickCheck wastes its time generating different Chars, when what we really need is longer strings.
One solution to this is to modify QuickCheck’s default configuration to test deeper:

deepCheck p = check (defaultConfig { configMaxTest = 10000}) p

This instructs the system to find at least 10000 test cases before concluding that all is well. Let’s
check that it is generating longer strings:

*A> deepCheck (\s -> length (take5 s) < 5)

Falsifiable, after 125 tests:
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";:iDˆ*NNi˜Y\\RegMob\DEL@krsx/=dcf7kub|EQi\DELD*"

We can check the test data QuickCheck is generating using the ’verboseCheck’ hook. Here, testing
on integers lists:

*A> verboseCheck (\s -> length s < 5)

0: []

1: [0]

2: []

3: []

4: []

5: [1,2,1,1]

6: [2]

7: [-2,4,-4,0,0]

Falsifiable, after 7 tests:

[-2,4,-4,0,0]

73.1.6 More information on QuickCheck

• http://haskell.org/haskellwiki/Introduction_to_QuickCheck
• http://haskell.org/haskellwiki/QuickCheck_as_a_test_set_generator

73.2 HUnit

Sometimes it is easier to give an example for a test than to define one from a general rule. HUnit
provides a unit testing framework which helps you to do just this. You could also abuse QuickCheck
by providing a general rule which just so happens to fit your example; but it’s probably less work in
that case to just use HUnit.

TODO: give an example of HUnit test, and a small tour of it

More details for working with HUnit can be found in its USER’S GUIDE1.

1 HTTP://HUNIT.SOURCEFORGE.NET/HUNIT-{}1.0/GUIDE.HTML
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74 Packaging your software (Cabal)

A guide to the best practice for creating a new Haskell project or program.

74.1 Recommended tools

Almost all new Haskell projects use the following tools. Each is intrinsically useful, but using a set
of common tools also benefits everyone by increasing productivity, and you’re more likely to get
patches.

74.1.1 Revision control

Use DARCS1 unless you have a specific reason not to. It’s written in Haskell, and it’s the standard
for Haskell developers. See the wikibook UNDERSTANDING DARCS2 to get started.

74.1.2 Build system

Use CABAL3. You should read at least the start of section 2 of the CABAL USER’S GUIDE4.

74.1.3 Documentation

For libraries, use HADDOCK5. We recommend using recent versions of haddock (2.8 or above, as
of December 2010).

74.1.4 Testing

Pure code can be tested using QUICKCHECK6 or SMALLCHECK7, impure code with HUNIT8.

1 HTTP://DARCS.NET
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNDERSTANDING%20DARCS
3 HTTP://HASKELL.ORG/CABAL
4 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/CABAL/INDEX.HTML
5 HTTP://HASKELL.ORG/HADDOCK
6 HTTP://WWW.MD.CHALMERS.SE/~{}RJMH/QUICKCHECK/
7 HTTP://WWW.MAIL-{}ARCHIVE.COM/HASKELL@HASKELL.ORG/MSG19215.HTML
8 HTTP://HUNIT.SOURCEFORGE.NET/
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To get started, try HASKELL/TESTING9. For a slightly more advanced introduction, SIMPLE UNIT

TESTING IN HASKELL10 is a blog article about creating a testing framework for QuickCheck using
some Template Haskell.

74.2 Structure of a simple project

The basic structure of a new Haskell project can be adopted from HNOP11, the minimal Haskell
project. It consists of the following files, for the mythical project "haq".

• Haq.hs -- the main haskell source file
• haq.cabal -- the cabal build description
• Setup.hs -- build script itself
• _darcs -- revision control
• README -- info
• LICENSE -- license

You can of course elaborate on this, with subdirectories and multiple modules.

Here is a transcript on how you’d create a minimal darcs-using and cabalised Haskell project, for
the cool new Haskell program "haq", build it, install it and release.

The new tool ’mkcabal’ automates all this for you, but it’s important that you understand all the
parts first.

We will now walk through the creation of the infrastructure for a simple Haskell executable. Advice
for libraries follows after.

74.2.1 Create a directory

Create somewhere for the source:

$ mkdir haq

$ cd haq

74.2.2 Write some Haskell source

Write your program:

$ cat > Haq.hs

--

-- Copyright (c) 2006 Don Stewart - http://www.cse.unsw.edu.au/˜dons

9 Chapter 73 on page 487
10 HTTP://BLOG.CODERSBASE.COM/2006/09/SIMPLE-{}UNIT-{}TESTING-{}IN-{}HASKELL.

HTML

11 HTTP://SEMANTIC.ORG/HNOP/
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-- GPL version 2 or later (see http://www.gnu.org/copyleft/gpl.html)

--

import System.Environment

-- ’main’ runs the main program

main :: IO ()

main = getArgs >>= print . haqify . head

haqify s = "Haq! " ++ s

74.2.3 Stick it in darcs

Place the source under revision control:

$ darcs init

$ darcs add Haq.hs

$ darcs record

addfile ./Haq.hs

Shall I record this change? (1/?) [ynWsfqadjkc], or ? for help: y

hunk ./Haq.hs 1

+--

+-- Copyright (c) 2006 Don Stewart - http://www.cse.unsw.edu.au/˜dons

+-- GPL version 2 or later (see http://www.gnu.org/copyleft/gpl.html)

+--

+import System.Environment

+

+-- | ’main’ runs the main program

+main :: IO ()

+main = getArgs >>= print . haqify . head

+

+haqify s = "Haq! " ++ s

Shall I record this change? (2/?) [ynWsfqadjkc], or ? for help: y

What is the patch name? Import haq source

Do you want to add a long comment? [yn]n

Finished recording patch ’Import haq source’

And we can see that darcs is now running the show:

$ ls

Haq.hs _darcs

74.2.4 Add a build system

Create a .cabal file describing how to build your project:
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$ cat > haq.cabal

Name: haq

Version: 0.0

Synopsis: Super cool mega lambdas

Description: My super cool, indeed, even mega lambdas

will demonstrate a basic project. You will

marvel.

License: GPL

License-file: LICENSE

Author: Don Stewart

Maintainer: Don Stewart <dons@cse.unsw.edu.au>

Build-Depends: base

Executable: haq

Main-is: Haq.hs

(If your package uses other packages, e.g. array, you’ll need to add them to the Build-Depends:
field.) Add a Setup.lhs that will actually do the building:

$ cat > Setup.lhs

#! /usr/bin/env runhaskell

> import Distribution.Simple

> main = defaultMain

Cabal allows either Setup.hs or Setup.lhs; as long as the format is appropriate, it doesn’t matter
which one you choose. But it’s a good idea to always include the #! /usr/bin/env runhaskell
line; because it follows the SHEBANG12 convention, you could execute the Setup.hs directly in
a Unix shell instead of always manually calling runhaskell (assuming the Setup file is marked
executable, of course).

Record your changes:

$ darcs add haq.cabal Setup.lhs

$ darcs record --all

What is the patch name? Add a build system

Do you want to add a long comment? [yn]n

Finished recording patch ’Add a build system’

74.2.5 Build your project

Now build it!

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/WIKI%3ASHEBANG%20%28UNIX%29
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$ runhaskell Setup.lhs configure --prefix=$HOME --user

$ runhaskell Setup.lhs build

$ runhaskell Setup.lhs install

74.2.6 Run it

And now you can run your cool project:
$ haq me

"Haq! me"

You can also run it in-place, avoiding the install phase:
$ dist/build/haq/haq you

"Haq! you"

74.2.7 Build some haddock documentation

Generate some API documentation into dist/doc/*

$ runhaskell Setup.lhs haddock

which generates files in dist/doc/ including:

$ w3m -dump dist/doc/html/haq/Main.html

haq Contents Index

Main

Synopsis

main :: IO ()

Documentation

main :: IO ()

main runs the main program

Produced by Haddock version 0.7

No output? Make sure you have actually installed haddock. It is a separate program, not something
that comes with the Haskell compiler, like Cabal.

74.2.8 Add some automated testing: QuickCheck

We’ll use QuickCheck to specify a simple property of our Haq.hs code. Create a tests module,
Tests.hs, with some QuickCheck boilerplate:
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$ cat > Tests.hs

import Char

import List

import Test.QuickCheck

import Text.Printf

main = mapM_ (\(s,a) -> printf "%-25s: " s >> a) tests

instance Arbitrary Char where

arbitrary = choose (’\0’, ’\128’)

coarbitrary c = variant (ord c ‘rem‘ 4)

Now let’s write a simple property:

$ cat >> Tests.hs

-- reversing twice a finite list, is the same as identity

prop_reversereverse s = (reverse . reverse) s == id s

where _ = s :: [Int]

-- and add this to the tests list

tests = [("reverse.reverse/id", test prop_reversereverse)]

We can now run this test, and have QuickCheck generate the test data:

$ runhaskell Tests.hs

reverse.reverse/id : OK, passed 100 tests.

Let’s add a test for the ’haqify’ function:

-- Dropping the "Haq! " string is the same as identity

prop_haq s = drop (length "Haq! ") (haqify s) == id s

where haqify s = "Haq! " ++ s

tests = [("reverse.reverse/id", test prop_reversereverse)

,("drop.haq/id", test prop_haq)]

and let’s test that:

$ runhaskell Tests.hs

reverse.reverse/id : OK, passed 100 tests.

drop.haq/id : OK, passed 100 tests.

Great!
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74.2.9 Running the test suite from darcs

We can arrange for darcs to run the test suite on every commit:

$ darcs setpref test "runhaskell Tests.hs"

Changing value of test from ” to ’runhaskell Tests.hs’

will run the full set of QuickChecks. (If your test requires it you may need to ensure other things
are built too e.g.: darcs setpref test "alex Tokens.x;happy Grammar.y;runhaskell
Tests.hs").

Let’s commit a new patch:

$ darcs add Tests.hs

$ darcs record --all

What is the patch name? Add testsuite

Do you want to add a long comment? [yn]n

Running test...

reverse.reverse/id : OK, passed 100 tests.

drop.haq/id : OK, passed 100 tests.

Test ran successfully.

Looks like a good patch.

Finished recording patch ’Add testsuite’

Excellent, now patches must pass the test suite before they can be committed.

74.2.10 Tag the stable version, create a tarball, and sell it!

Tag the stable version:

$ darcs tag

What is the version name? 0.0

Finished tagging patch ’TAG 0.0’

Advanced Darcs functionality: lazy get

As your repositories accumulate patches, new users can become annoyed at how long it takes to ac-
complish the initial darcs get. (Some projects, like YI13 or GHC, can have thousands of patches.)
Darcs is quick enough, but downloading thousands of individual patches can still take a while. Isn’t
there some way to make things more efficient?

13 HTTP://EN.WIKIPEDIA.ORG/WIKI/YI%20%28EDITOR%29
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Darcs provides the --lazy option to darcs get. This enables to download only the latest version
of the repository. Patches are later downloaded on demand if needed.

Distribution

When distributing your Haskell program, you have roughly three options:

1. distributing via a Darcs repository
2. distributing a tarball

a) a Darcs tarball
b) a Cabal tarball

With a Darcs repository, if it is public, than you are done. However: perhaps you don’t have a server
with Darcs, or perhaps your computer isn’t set up for people to darcs pull from it. In which case
you’ll need to distribute the source via tarball.

Tarballs via darcs

Darcs provides a command where it will make a compressed tarball, and it will place a copy of all
the files it manages into it. (Note that nothing in _darcs will be included - it’ll just be your source
files, no revision history.)

$ darcs dist -d haq-0.0

Created dist as haq-0.0.tar.gz

And you’re all set up!

Tarballs via Cabal

Since our code is cabalised, we can create a tarball with Cabal directly:

$ runhaskell Setup.lhs sdist

Building source dist for haq-0.0...

Source tarball created: dist/haq-0.0.tar.gz

This has advantages and disadvantages compared to a Darcs-produced tarball. The primary advan-
tage is that Cabal will do more checking of our repository, and more importantly, it’ll ensure that
the tarball has the structure needed by HackageDB and cabal-install.

However, it does have a disadvantage: it packages up only the files needed to build the project. It
will deliberately fail to include other files in the repository, even if they turn out to be necessary at
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some point14. To include other files (such as Test.hs in the above example), we need to add lines
to the cabal file like:

extra-source-files: Tests.hs

If we had them, we could make sure files like AUTHORS or the README get included as well:

data-files: AUTHORS, README

74.2.11 Summary

The following files were created:

$ ls
Haq.hs Tests.hs dist haq.cabal
Setup.lhs _darcs haq-0.0.tar.gz

74.3 Libraries

The process for creating a Haskell library is almost identical. The differences are as follows, for the
hypothetical "ltree" library:

74.3.1 Hierarchical source

The source should live under a directory path that fits into the existing MODULE LAYOUT GUIDE15.
So we would create the following directory structure, for the module Data.LTree:

$ mkdir Data
$ cat > Data/LTree.hs
module Data.LTree where

So our Data.LTree module lives in Data/LTree.hs

74.3.2 The Cabal file

Cabal files for libraries list the publically visible modules, and have no executable section:

14 This is actually a good thing, since it allows us to do things like create an elaborate test suite which doesn’t get
included in the tarball, so users aren’t bothered by it. It also can reveal hidden assumptions and omissions in our
code - perhaps your code was only building and running because of a file accidentally generated.

15 HTTP://WWW.HASKELL.ORG/~{}SIMONMAR/LIB-{}HIERARCHY.HTML
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$ cat ltree.cabal
Name: ltree
Version: 0.1
Description: Lambda tree implementation
License: BSD3
License-file: LICENSE
Author: Don Stewart
Maintainer: dons@cse.unsw.edu.au
Build-Depends: base
Exposed-modules: Data.LTree

We can thus build our library:

$ runhaskell Setup.lhs configure --prefix=$HOME --user
$ runhaskell Setup.lhs build
Preprocessing library ltree-0.1...
Building ltree-0.1...
[1 of 1] Compiling Data.LTree ( Data/LTree.hs,

dist/build/Data/LTree.o )
/usr/bin/ar: creating dist/build/libHSltree-0.1.a

and our library has been created as a object archive. On *nix systems, you should probably add the
--user flag to the configure step (this means you want to update your local package database during
installation). Now install it:

$ runhaskell Setup.lhs install
Installing: /home/dons/lib/ltree-0.1/ghc-6.6 & /home/dons/bin

ltree-0.1...
Registering ltree-0.1...
Reading package info from ".installed-pkg-config" ... done.
Saving old package config file... done.
Writing new package config file... done.

And we’re done! You can use your new library from, for example, ghci:

$ ghci -package ltree
Prelude> :m + Data.LTree
Prelude Data.LTree>

The new library is in scope, and ready to go.

74.3.3 More complex build systems

For larger projects it is useful to have source trees stored in subdirectories. This can be done simply
by creating a directory, for example, "src", into which you will put your src tree.

To have Cabal find this code, you add the following line to your Cabal file:

hs-source-dirs: src
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Cabal can set up to also run configure scripts, along with a range of other features. For more
information consult the CABAL DOCUMENTATION16.

Internal modules

If your library uses internal modules that are not exposed, do not forget to list them in the
other-modules field:

other-modules: My.Own.Module

Failing to do so (as of GHC 6.8.3) may lead to your library deceptively building without errors but
actually being unusable from applications, which would fail at build time with a linker error.

74.4 Automation

A tool to automatically populate a new cabal project is available (beta!):

darcs get http://code.haskell.org/˜dons/code/mkcabal

N.B. This tool does not work in Windows. The Windows version of GHC does not include the
readline package that this tool needs.

Usage is:

$ mkcabal

Project name: haq

What license

["GPL","LGPL","BSD3","BSD4","PublicDomain","AllRightsReserved"]

["BSD3"]:

What kind of project [Executable,Library] [Executable]:

Is this your name? - "Don Stewart " [Y/n]:

Is this your email address? - "<dons@cse.unsw.edu.au>" [Y/n]:

Created Setup.lhs and haq.cabal

$ ls

Haq.hs LICENSE Setup.lhs _darcs dist haq.cabal

which will fill out some stub Cabal files for the project ’haq’.

To create an entirely new project tree:

$ mkcabal --init-project

16 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/CABAL/INDEX.HTML
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Project name: haq

What license

["GPL","LGPL","BSD3","BSD4","PublicDomain","AllRightsReserved"]

["BSD3"]:

What kind of project [Executable,Library] [Executable]:

Is this your name? - "Don Stewart " [Y/n]:

Is this your email address? - "<dons@cse.unsw.edu.au>" [Y/n]:

Created new project directory: haq

$ cd haq

$ ls

Haq.hs LICENSE README Setup.lhs haq.cabal

74.5 Licenses

Code for the common base library package must be BSD licensed or something more Free/Open.
Otherwise, it is entirely up to you as the author.

Choose a licence (inspired by THIS17). Check the licences of things you use, both other Haskell
packages and C libraries, since these may impose conditions you must follow.

Use the same licence as related projects, where possible. The Haskell community is split into 2
camps, roughly, those who release everything under BSD or public domain, and the GPL/LGPLers
(this split roughly mirrors the copyleft/noncopyleft divide in Free software communities_. Some
Haskellers recommend specifically avoiding the LGPL, due to cross module optimisation issues.
Like many licensing questions, this advice is controversial. Several Haskell projects (wxHaskell,
HaXml, etc.) use the LGPL with an extra permissive clause to avoid the cross-module optimisation
problem.

74.6 Releases

It’s important to release your code as stable, tagged tarballs. Don’t just RELY ON DARCS FOR

DISTRIBUTION18.

• darcs dist generates tarballs directly from a darcs repository

For example:

$ cd fps
$ ls
Data LICENSE README Setup.hs TODO _darcs cbits
dist fps.cabal tests

17 HTTP://WWW.DINA.DK/~{}ABRAHAM/RANTS/LICENSE.HTML
18 HTTP://WEB.ARCHIVE.ORG/WEB/20070627103346/HTTP://AWAYREPL.BLOGSPOT.COM/2006/

11/WE-{}DONT-{}DO-{}RELEASES.HTML
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$ darcs dist -d fps-0.8
Created dist as fps-0.8.tar.gz

You can now just post your fps-0.8.tar.gz

You can also have darcs do the equivalent of ’daily snapshots’ for you by using a post-hook.

put the following in _darcs/prefs/defaults:

apply posthook darcs dist
apply run-posthook

Advice:

• Tag each release using darcs tag. For example:

$ darcs tag 0.8
Finished tagging patch ’TAG 0.8’

Then people can darcs get --lazy --tag 0.8, to get just the tagged version (and not the entire
history).

74.7 Hosting

You can host public and private Darcs repositories on http://patch-tag.com/ for free. Otherwise, a
Darcs repository can be published simply by making it available from a web page. Another option
is to host on the Haskell Community Server at http://code.haskell.org/. You can request an account
via http://community.haskell.org/admin/.

74.8 Example

A COMPLETE EXAMPLE19 of writing, packaging and releasing a new Haskell library under this
process has been documented.

74.9 References

19 HTTP://WWW.CSE.UNSW.EDU.AU/~{}DONS/BLOG/2006/12/11#RELEASE-{}A-{}LIBRARY-{}TODAY
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75 Using the Foreign Function Interface (FFI)

Using Haskell is fine, but in the real world there is a large amount of useful libraries in other
languages, especially C. To use these libraries, and let C code use Haskell functions, there is the
Foreign Function Interface (FFI).

75.1 Calling C from Haskell

75.1.1 Marshalling (Type Conversion)

When using C functions, it is necessary to convert Haskell types to the appropriate C types. These
are available in the Foreign.C.Types module; some examples are given in the following table.

Haskell Foreign.C.Types C
Double CDouble double
Char CUChar unsigned char
Int CLong long int

The operation of converting Haskell types into C types is called marshalling (and the opposite,
predictably, unmarshalling). For basic types this is quite straightforward: for floating-point one
uses realToFrac (either way, as e.g. both Double and CDouble are instances of classes Real and
Fractional), for integers fromIntegral, and so on.

B Warning
If you are using GHC previous to 6.12.x, note that the CLDouble type does not really
represent a long double, but is just a synonym for CDouble: never use it, since it will lead to
silent type errors if the C compiler does not also consider long double a synonym for
double. Since 6.12.x CLDouble HAS BEEN REMOVED1, PENDING PROPER

IMPLEMENTATION2.

75.1.2 Calling a pure C function

A pure function implemented in C does not present significant trouble in Haskell. The sin function
of the C standard library is a fine example:
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{-# LANGUAGE ForeignFunctionInterface #-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "math.h sin"

c_sin :: CDouble -> CDouble

First, we specify a GHC extension for the FFI in the first line. We then import the Foreign and
Foreign.C.Types modules, the latter of which contains information about CDouble, the represen-
tation of double-precision floating-point numbers in C.

We then specify that we are importing a foreign function, with a call to C. A "safety level" has to
be specified with the keyword safe (the default) or unsafe. In general, unsafe is more efficient,
and safe is required only for C code that could call back a Haskell function. Since that is a very
particular case, it is actually quite safe to use the unsafe keyword in most cases. Finally, we need
to specify header and function name, separated by a space.

The Haskell function name is then given, in our case we use a standard c_sin, but it could have
been anything. Note that the function signature must be correct—GHC will not check the C header
to confirm that the function actually takes a CDouble and returns another, and writing a wrong one
could have unpredictable results.

It is then possible to generate a wrapper around the function using CDouble so that it looks exactly
like any Haskell function.

haskellSin :: Double -> Double
haskellSin = realToFrac . c_sin . realToFrac

Importing C’s sin is simple because it is a pure function that takes a plain double as input and
returns another as output: things will complicate with impure functions and pointers, which are
ubiquitous in more complicated C libraries.

75.1.3 Impure C Functions

A classic impure C function is rand, for the generation of pseudo-random numbers. Suppose you
do not want to use Haskell’s System.Random.randomIO, for example because you want to replicate
exactly the series of pseudo-random numbers output by some C routine. Then, you could import it
just like sin before:

{-# LANGUAGE ForeignFunctionInterface #-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "stdlib.h rand"

c_rand :: CUInt -- Oops!

If you try this naïve implementation in GHCI, you will notice that c_rand is returning always the
same value:
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> c_rand
1714636915
> c_rand
1714636915

indeed, we have told GHC that it is a pure function, and GHC sees no point in calculating twice the
result of a pure function. Note that GHC did not give any error or warning message.

In order to make GHC understand this is no pure function, we have to use the IO MONAD3:

{-# LANGUAGE ForeignFunctionInterface #-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "stdlib.h rand"

c_rand :: IO CUInt
foreign import ccall "stdlib.h srand"

c_srand :: CUInt -> IO ()

Here, we also imported the srand function, to be able to seed the C pseudo-random generator.

> c_rand
1957747793
> c_rand
424238335
> c_srand 0
> c_rand
1804289383
> c_srand 0
> c_rand
1804289383

75.1.4 Working with C Pointers

The most useful C functions are often those that do complicated calculations with several param-
eters, and with increasing complexity the need of returning control codes arises. This means that
a typical paradigm of C libraries is to give pointers of allocated memory as "targets" in which the
results may be written, while the function itself returns an integer value (typically, if 0, computation
was successful, otherwise there was a problem specified by the number). Another possibility is
that the function will return a pointer to a structure (possibly defined in the implementation, and
therefore unavailable to us).

As a pedagogical example, we consider THE gsl_frexp FUNCTION4 of the GNU SCIENTIFIC

LIBRARY5, a freely available library for scientific computation. It is a simple C function with
prototype:

double gsl_frexp (double x, int * e)

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL%2FUNDERSTANDING%20MONADS%2FIO
4 HTTP://WWW.GNU.ORG/SOFTWARE/GSL/MANUAL/HTML_NODE/ELEMENTARY-{}FUNCTIONS.HTML
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU_SCIENTIFIC_LIBRARY
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The function takes a double x, and it returns its normalised fraction f and integer exponent e so that:

x = f ×2e e ∈Z, 0.5 ≤ f < 1

We interface this C function into Haskell with the following code:

{-# LANGUAGE ForeignFunctionInterface #-}
import Foreign
import Foreign.Ptr
import Foreign.C.Types
foreign import ccall unsafe "gsl/gsl_math.h gsl_frexp"

gsl_frexp :: CDouble -> Ptr CInt -> IO CDouble

The new part is Ptr, which can be used with any instance of the Storable class, among which all
C types, but also several Haskell types.

Notice how the result of the gsl_frexp function is in the IO monad. This is typical when working
with pointers, be they used for input or output (as in this case); we will see shortly what would
happen had we used a simple CDouble for the function.

The frexp function is implemented in pure Haskell code as follows:

frexp :: Double -> (Double, Int)
frexp x = unsafePerformIO $

alloca $ \expptr -> do
f <- gsl_frexp (realToFrac x) expptr
e <- peek expptr
return (realToFrac f, fromIntegral e)

We know that, memory management details aside, the function is pure: that’s why the signature
returns a tuple with f and e outside of the IO monad. Yet, f is provided inside of it: to extract it,
we use the function unsafePerformIO, which extracts values from the IO monad: obviously, it is
legitimate to use it only when we know the function is pure, and we can allow GHC to optimise
accordingly.

To allocate pointers, we use the alloca function, which also takes responsibility for freeing mem-
ory. As an argument, alloca takes a function of type Ptr a -> IO b, and returns the IO b. In
practice, this translates to the following usage pattern with λ functions:

... alloca $ \pointer -> do
c_function( argument, pointer )
result <- peek pointer
return result

The pattern can easily be nested if several pointers are required:

... alloca $ \firstPointer ->
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alloca $ \secondPointer -> do
c_function( argument, firstPointer, secondPointer )
first <- peek firstPointer
second <- peek secondPointer
return (first, second)

Back to our frexp function: in the λ function that is the argument to alloca, the function is
evaluated and the pointer is read immediately afterwards with peek. Here we can understand why
we wanted the imported C function gsl_frexp to return a value in the IO monad: if GHC could
decide when to calculate the quantity f, it would likely decide not to do it until it is necessary: that is
at the last line when return uses it, and after e has been read from an allocated, but yet uninitialised
memory address, which will contain random data. In short, we want gsl_frexp to return a monadic
value because we want to determine the sequence of computations ourselves.

If some other function had required a pointer to provide input instead of storing output, one would
have used the similar poke function to set the pointed value, obviously before evaluating the func-
tion:

... alloca $ \inputPointer ->
alloca $ \outputPointer -> do

poke inputPointer value
c_function( argument, inputPointer, outputPointer )
result <- peek outputPointer
return result

In the final line, the results are arranged in a tuple and returned, after having been converted from C
types.

To test the function, remember to link GHC to the GSL; in GHCI, do:

$ ghci frexp.hs -lgsl

(Note that most systems do not come with the GSL preinstalled, and you may have to download and
install its development packages.)

75.1.5 Working with C Structures

Very often data are returned by C functions in form of structs or pointers to these. In some rare
cases, these structures are returned directly, but more often they are returned as pointers; the return
value is most often an int that indicates the correctness of execution.

We will consider another GSL function, gsl_sf_bessel_Jn_e6. This function provides the regular
cylindrical Bessel function for a given order n, and returns the result as a gsl_sf_result structure
pointer. The structure contains two doubles, one for the result and one for the error. The integer
error code returned by the function can be transformed in a C string by the function gsl_strerror.
The signature of the Haskell function we are looking for is therefore:

6 HTTP://WWW.GNU.ORG/SOFTWARE/GSL/MANUAL/HTML_NODE/REGULAR-{}CYLINDRICAL-{}BESSEL-{}FUNCTIONS.
HTML
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BesselJn :: Int -> Double -> Either String (Double, Double)

where the first argument is the order of the cylindrical Bessel function, the second is the function’s
argument, and the returned value is either an error message or a tuple with result and margin of
error.

Making a New Instance of the Storable class

In order to allocate and read a pointer to a gsl_sf_result structure, it is necessary to make it an
instance of the Storable class.

In order to do that, it is useful to use the hsc2hs program: we create first a Bessel.hsc file,
with a mixed syntax of Haskell and C macros, which is later expanded into Haskell by the command:

$ hsc2hs Bessel.hsc

After that, we simply load the Bessel.hs file in GHC.

This is the first part of file Bessel.hsc:

{-# LANGUAGE ForeignFunctionInterface #-}
module Bessel (besselJn) where
import Foreign
import Foreign.Ptr
import Foreign.C.String
import Foreign.C.Types
#include <gsl/gsl_sf_result.h>
data GslSfResult = GslSfResult { gsl_value :: CDouble, gsl_error ::
CDouble }

instance Storable GslSfResult where
sizeOf _ = (#size gsl_sf_result)
alignment _ = alignment (undefined :: CDouble)
peek ptr = do

value <- (#peek gsl_sf_result, val) ptr
error <- (#peek gsl_sf_result, err) ptr
return GslSfResult { gsl_value = value, gsl_error = error }

poke ptr (GslSfResult value error) = do
(#poke gsl_sf_result, val) ptr value
(#poke gsl_sf_result, err) ptr error

We use the #include directive to make sure hsc2hs knows where to find information about gsl_-
sf_result. We then define a Haskell data structure mirroring the GSL’s, with two CDoubles: this
is the class we make an instance of Storable. Strictly, we need only sizeOf, alignment and peek
for this example; poke is added for completeness.

• sizeOf is obviously fundamental to the allocation process, and is calculated by hsc2hs with the
#size macro.
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• alignment is the size in byte of the DATA STRUCTURE ALIGNMENT7. In general, it should be
the largest alignment of the elements of the structure; in our case, since the two elements are
the same, we simply use CDouble’s. The value of the argument to alignment is inconsequential,
what is important is the type of the argument.

• peek is implemented using a do-block and the #peek macros, as shown. val and err are the
names used for the structure fields in the GSL source code.

• Similarly, poke is implemented with the #poke macro.

Importing the C Functions

foreign import ccall unsafe "gsl/gsl_bessel.h gsl_sf_bessel_Jn_e"
c_besselJn :: CInt -> CDouble -> Ptr GslSfResult -> IO CInt

foreign import ccall unsafe "gsl/gsl_errno.h
gsl_set_error_handler_off"

c_deactivate_gsl_error_handler :: IO ()
foreign import ccall unsafe "gsl/gsl_errno.h gsl_strerror"

c_error_string :: CInt -> IO CString

We import several functions from the GSL libraries: first, the Bessel function itself, which will do
the actual work. Then, we need a particular function, gsl_set_error_handler_off, because the
default GSL error handler will simply crash the program, even if called by Haskell: we, instead,
plan to deal with errors ourselves. The last function is the GSL-wide interpreter that translates error
codes in human-readable C strings.

Implementing the Bessel Function

Finally, we can implement the Haskell version of the GSL cylindrical Bessel function of order
n.

besselJn :: Int -> Double -> Either String (Double, Double)
besselJn n x = unsafePerformIO $

alloca $ \gslSfPtr -> do
c_deactivate_gsl_error_handler
status <- c_besselJn (fromIntegral n) (realToFrac x) gslSfPtr
if status == 0

then do
GslSfResult val err <- peek gslSfPtr
return $ Right (realToFrac val, realToFrac err)

else do
error <- c_error_string status
error_message <- peekCString error
return $ Left ("GSL error: "++error_message)

Again, we use unsafePerformIO because the function is pure, even though its nuts-and-bolts im-
plementation is not. After allocating a pointer to a GSL result structure, we deactivate the GSL error
handler to avoid crashes in case something goes wrong, and finally we can call the GSL function.
At this point, if the status returned by the function is 0, we unmarshal the result and return it as a
tuple. Otherwise, we call the GSL error-string function, and pass the error as a Left result instead.

7 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATA_STRUCTURE_ALIGNMENT
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Examples

Once we are finished writing the Bessel.hsc function, we have to convert it to proper Haskell and
load the produced file:

$ hsc2hs Bessel.hsc
$ ghci Bessel.hs -lgsl

We can then call the Bessel function with several values:

> besselJn 0 10
Right (-0.2459357644513483,1.8116861737200453e-16)
> besselJn 1 0
Right (0.0,0.0)
> besselJn 1000 2
Left "GSL error: underflow"

75.1.6 Advanced Topics

This section contains an advanced example with some more complex features of the FFI. We will
import into Haskell one of the more complicated functions of the GSL, the one used to calculate
THE INTEGRAL OF A FUNCTION BETWEEN TWO GIVEN POINTS WITH AN ADAPTIVE GAUSS-
KRONROD ALGORITHM8. The GSL function is gsl_integration_qag.

This example will illustrate function pointers, export of Haskell functions to C routines, enumera-
tions, and handling pointers of unknown structures.

Available C Functions and Structures

The GSL has three functions which are necessary to integrate a given function with the considered
method:

gsl_integration_workspace * gsl_integration_workspace_alloc (size_t
n);

void gsl_integration_workspace_free (gsl_integration_workspace * w);
int gsl_integration_qag (const gsl_function * f, double a, double b,

double epsabs, double epsrel, size_t limit,
int key, gsl_integration_workspace *

workspace,
double * result, double * abserr);

The first two deal with allocation and deallocation of a "workspace" structure of which we know
nothing (we just pass a pointer around). The actual work is done by the last function, which requires
a pointer to a workspace.

To provide functions, the GSL specifies an appropriate structure for C:

8 HTTP://WWW.GNU.ORG/SOFTWARE/GSL/MANUAL/HTML_NODE/QAG-{}ADAPTIVE-{}INTEGRATION.
HTML
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struct gsl_function
{
double (* function) (double x, void * params);
void * params;

};

The reason for the void pointer is that it is not possible to define λ functions in C: parameters are
therefore passed along with a parameter of unknown type. In Haskell, we do not need the params
element, and will consistently ignore it.

Imports and Inclusions

We start our qag.hsc file with the following:

{-# LANGUAGE ForeignFunctionInterface, EmptyDataDecls #-}
module Qag ( qag,

gauss15,
gauss21,
gauss31,
gauss41,
gauss51,
gauss61 ) where

import Foreign
import Foreign.Ptr
import Foreign.C.Types
import Foreign.C.String
#include <gsl/gsl_math.h>
#include <gsl/gsl_integration.h>
foreign import ccall unsafe "gsl/gsl_errno.h gsl_strerror"

c_error_string :: CInt -> IO CString
foreign import ccall unsafe "gsl/gsl_errno.h
gsl_set_error_handler_off"

c_deactivate_gsl_error_handler :: IO ()

We declare the EmptyDataDecls pragma, which we will use later for the Workspace data type.
Since this file will have a good number of functions that should not be available to the outside
world, we also declare it a module and export only the final function qag and the gauss- flags. We
also include the relevant C headers of the GSL. The import of C functions for error messages and
deactivation of the error handler was described before.

Enumerations

One of the arguments of gsl_integration_qag is key, an integer value that can have values from
1 to 6 and indicates the integration rule. GSL defines a macro for each value, but in Haskell it
is more appropriate to define a type, which we call IntegrationRule. Also, to have its values
automatically defined by hsc2hs, we can use the enum macro:

newtype IntegrationRule = IntegrationRule { rule :: CInt }
#{enum IntegrationRule, IntegrationRule,

gauss15 = GSL_INTEG_GAUSS15,
gauss21 = GSL_INTEG_GAUSS21,
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gauss31 = GSL_INTEG_GAUSS31,
gauss41 = GSL_INTEG_GAUSS41,
gauss51 = GSL_INTEG_GAUSS51,
gauss61 = GSL_INTEG_GAUSS61

}

hsc2hs will search the headers for the macros and give our variables the correct values. The
variables cannot be modified and are essentially constant flags. Since we did not export the
IntegrationRule constructor in the module declaration, but only the gauss flags, it is impossible
for a user to even construct an invalid value. One thing less to worry about!

Haskell Function Target

We can now write down the signature of the function we desire:

qag :: IntegrationRule -- Algorithm type
-> Int -- Step limit
-> Double -- Absolute tolerance
-> Double -- Relative tolerance
-> (Double -> Double) -- Function to integrate
-> Double -- Integration interval start
-> Double -- Integration interval end
-> Either String (Double, Double) -- Result and (absolute) error

estimate

Note how the order of arguments is different from the C version: indeed, since C does not have the
possibility of partial application, the ordering criteria are different than in Haskell.

As in the previous example, we indicate errors with a Either String (Double, Double) result.

Passing Haskell Functions to the C Algorithm

type CFunction = CDouble -> Ptr () -> CDouble
data GslFunction = GslFunction (FunPtr CFunction) (Ptr ())
instance Storable GslFunction where

sizeOf _ = (#size gsl_function)
alignment _ = alignment (undefined :: Ptr ())
peek ptr = do

function <- (#peek gsl_function, function) ptr
return $ GslFunction function nullPtr

poke ptr (GslFunction fun nullPtr) = do
(#poke gsl_function, function) ptr fun

makeCfunction :: (Double -> Double) -> (CDouble -> Ptr () -> CDouble)
makeCfunction f = \x voidpointer -> realToFrac $ f (realToFrac x)
foreign import ccall "wrapper"

makeFunPtr :: CFunction -> IO (FunPtr CFunction)

We define a shorthand type, CFunction, for readability. Note that the void pointer has been trans-
lated to a Ptr (), since we have no intention of using it. Then it is the turn of the gsl_function
structure: no surprises here. Note that the void pointer is always assumed to be null, both in peek
and in poke, and is never really read nor written.
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To make a Haskell Double -> Double function available to the C algorithm, we make two steps:
first, we re-organise the arguments using a λ function in makeCfunction; then, in makeFunPtr, we
take the function with reordered arguments and produce a function pointer that we can pass on to
poke, so we can construct the GslFunction data structure.

Handling Unknown Structures

data Workspace
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_alloc"

c_qag_alloc :: CSize -> IO (Ptr Workspace)
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_free"

c_qag_free :: Ptr Workspace -> IO ()
foreign import ccall safe "gsl/gsl_integration.h gsl_integration_qag"

c_qag :: Ptr GslFunction -- Allocated GSL function structure
-> CDouble -- Start interval
-> CDouble -- End interval
-> CDouble -- Absolute tolerance
-> CDouble -- Relative tolerance
-> CSize -- Maximum number of subintervals
-> CInt -- Type of Gauss-Kronrod rule
-> Ptr Workspace -- GSL integration workspace
-> Ptr CDouble -- Result
-> Ptr CDouble -- Computation error
-> IO CInt -- Exit code

The reason we imported the EmptyDataDecls pragma is this: we are declaring the data structure
Workspace without providing any constructor. This is a way to make sure it will always be handled
as a pointer, and never actually instantiated.

Otherwise, we normally import the allocating and deallocating routines. We can now import the
integration function, since we have all the required pieces (GslFunction and Workspace).

The Complete Function

It is now possible to implement a function with the same functionality as the GSL’s QAG algorithm.

qag gauss steps abstol reltol f a b = unsafePerformIO $ do
c_deactivate_gsl_error_handler
workspacePtr <- c_qag_alloc (fromIntegral steps)
if workspacePtr == nullPtr

then
return $ Left "GSL could not allocate workspace"

else do
fPtr <- makeFunPtr $ makeCfunction f
alloca $ \gsl_f -> do

poke gsl_f (GslFunction fPtr nullPtr)
alloca $ \resultPtr -> do

alloca $ \errorPtr -> do
status <- c_qag gsl_f

(realToFrac a)
(realToFrac b)
(realToFrac abstol)
(realToFrac reltol)
(fromIntegral steps)
(rule gauss)
workspacePtr
resultPtr
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errorPtr
c_qag_free workspacePtr
freeHaskellFunPtr fPtr
if status /= 0

then do
c_errormsg <- c_error_string status
errormsg <- peekCString c_errormsg
return $ Left errormsg

else do
c_result <- peek resultPtr
c_error <- peek errorPtr
let result = realToFrac c_result
let error = realToFrac c_error
return $ Right (result, error)

First and foremost, we deactivate the GSL error handler, that would crash the program instead of
letting us report the error.

We then proceed to allocate the workspace; notice that, if the returned pointer is null, there was an
error (typically, too large size) that has to be reported.

If the workspace was allocated correctly, we convert the given function to a function pointer and
allocate the GslFunction struct, in which we place the function pointer. Allocating memory for
the result and its error margin is the last thing before calling the main routine.

After calling, we have to do some housekeeping and free the memory allocated by the workspace
and the function pointer. Note that it would be possible to skip the bookkeeping using ForeignPtr,
but the work required to get it to work is more than the effort to remember one line of cleanup.

We then proceed to check the return value and return the result, as was done for the Bessel function.

75.1.7 Self-Deallocating Pointers

In the previous example, we manually handled the deallocation of the GSL integration workspace,
a data structure we know nothing about, by calling its C deallocation function. It happens that the
same workspace is used in several integration routines, which we may want to import in Haskell.

Instead of replicating the same allocation/deallocation code each time, which could lead to memory
leaks when someone forgets the deallocation part, we can provide a sort of "smart pointer", which
will deallocate the memory when it is not needed any more. This is called ForeignPtr (do not
confuse with Foreign.Ptr: this one’s qualified name is actually Foreign.ForeignPtr!). The
function handling the deallocation is called the finalizer.

In this section we will write a simple module to allocate GSL workspaces and provide them as
appropriately configured ForeignPtrs, so that users do not have to worry about deallocation.

The module, written in file GSLWorkspace.hs, is as follows:

{-# LANGUAGE ForeignFunctionInterface, EmptyDataDecls #-}
module GSLWorkSpace (Workspace, createWorkspace) where
import Foreign.C.Types
import Foreign.Ptr
import Foreign.ForeignPtr
data Workspace
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_alloc"
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c_ws_alloc :: CSize -> IO (Ptr Workspace)
foreign import ccall unsafe "gsl/gsl_integration.h
&gsl_integration_workspace_free"

c_ws_free :: FunPtr( Ptr Workspace -> IO () )
createWorkspace :: CSize -> IO (Maybe (ForeignPtr Workspace) )
createWorkspace size = do

ptr <- c_ws_alloc size
if ptr /= nullPtr

then do
foreignPtr <- newForeignPtr c_ws_free ptr
return $ Just foreignPtr

else
return Nothing

We first declare our empty data structure Workspace, just like we did in the previous section.

The gsl_integration_workspace_alloc and gsl_integration_workspace_free functions
will no longer be needed in any other file: here, note that the deallocation function is called with an
ampersand ("&"), because we do not actually want the function, but rather a pointer to it to set as a
finalizer.

The workspace creation function returns a IO (Maybe) value, because there is still the possibility
that allocation is unsuccessful and the null pointer is returned. The GSL does not specify what
happens if the deallocation function is called on the null pointer, so for safety we do not set a
finalizer in that case and return IO Nothing; the user code will then have to check for "Just-ness"
of the returned value.

If the pointer produced by the allocation function is non-null, we build a foreign pointer with the
deallocation function, inject into the Maybe and then the IO monad. That’s it, the foreign pointer is
ready for use!

B Warning
This function requires object code to be compiled, so if you load this module with GHCI
(which is an interpreter) you must indicate it:

$ ghci GSLWorkSpace.hs -fobject-code

Or, from within GHCI:

> :set -fobject-code
> :load GSLWorkSpace.hs

The qag.hsc file must now be modified to use the new module; the parts that change are:

{-# LANGUAGE ForeignFunctionInterface #-}
-- [...]
import GSLWorkSpace
import Data.Maybe(isNothing, fromJust)
-- [...]
qag gauss steps abstol reltol f a b = unsafePerformIO $ do

c_deactivate_gsl_error_handler
ws <- createWorkspace (fromIntegral steps)
if isNothing ws

then

517



Using the Foreign Function Interface (FFI)

return $ Left "GSL could not allocate workspace"
else do

withForeignPtr (fromJust ws) $ \workspacePtr -> do
-- [...]

Obviously, we do not need the EmptyDataDecls extension here any more; instead we import the
GSLWorkSpace module, and also a couple of nice-to-have functions from Data.Maybe. We also
remove the foreign declarations of the workspace allocation and deallocation functions.

The most important difference is in the main function, where we (try to) allocate a workspace ws,
test for its Justness, and if everything is fine we use the withForeignPtr function to extract the
workspace pointer. Everything else is the same.

75.2 Calling Haskell from C

Sometimes it is also convenient to call Haskell from C, in order to take advantage of some of
Haskell’s features which are tedious to implement in C, such as lazy evaluation.

We will consider a typical Haskell example, Fibonacci numbers. These are produced in an elegant,
haskellian one-liner as:

fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

Our task is to export the ability to calculate Fibonacci numbers from Haskell to C. However, in
Haskell, we typically use the Integer type, which is unbounded: this cannot be exported to C,
since there is no such corresponding type. To provide a larger range of outputs, we specify that the C
function shall output, whenever the result is beyond the bounds of its integer type, an approximation
in floating-point. If the result is also beyond the range of floating-point, the computation will fail.
The status of the result (whether it can be represented as a C integer, a floating-point type or not at
all) is signalled by the status integer returned by the function. Its desired signature is therefore:

int fib( int index, unsigned long long* result, double* approx )

75.2.1 Haskell Source

The Haskell source code for file fibonacci.hs is:

{-# LANGUAGE ForeignFunctionInterface #-}
module Fibonacci where
import Foreign
import Foreign.C.Types
fibonacci :: (Integral a) => [a]
fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)
foreign export ccall fibonacci_c :: CInt -> Ptr CULLong -> Ptr CDouble
-> IO CInt

fibonacci_c :: CInt -> Ptr CULLong -> Ptr CDouble -> IO CInt
fibonacci_c n intPtr dblPtr
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| badInt && badDouble = return 2
| badInt = do

poke dblPtr dbl_result
return 1

| otherwise = do
poke intPtr (fromIntegral result)
poke dblPtr dbl_result
return 0

where
result = fibonacci !! (fromIntegral n)
dbl_result = realToFrac result
badInt = result > toInteger (maxBound :: CULLong)
badDouble = isInfinite dbl_result

When exporting, we need to wrap our functions in a module (it is a good habit anyway). We have
already seen the Fibonacci infinite list, so let’s focus on the exported function: it takes an argument,
two pointers to the target unsigned long long and double, and returns the status in the IO monad
(since writing on pointers is a side effect).

The function is implemented with input guards, defined in the where clause at the bottom. A
successful computation will return 0, a partially successful 1 (in which we still can use the floating-
point value as an approximation), and a completely unsuccessful one will return 2.

Note that the function does not call alloca, since the pointers are assumed to have been already
allocated by the calling C function.

The Haskell code can then be compiled with GHC:

ghc -c fibonacci.hs

75.2.2 C Source

The compilation of fibonacci.hs has spawned several files, among which fibonacci_stub.h,
which we include in our C code in file fib.c:

#include <stdio.h>
#include <stdlib.h>
#include "fibonacci_stub.h"
int main(int argc, char *argv[]) {

if (argc < 2) {
printf("Usage: %s <number>\n", argv[0]);
return 2;

}
hs_init(&argc, &argv);
const int arg = atoi(argv[1]);
unsigned long long res;
double approx;
const int status = fibonacci_c(arg, &res, &approx);
hs_exit();
switch (status) {
case 0:

printf("F_%d: %llu\n", arg, res);
break;

case 1:
printf("Error: result is out of bounds\n");
printf("Floating-point approximation: %e\n", approx);
break;
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case 2:
printf("Error: result is out of bounds\n");
printf("Floating-point approximation is infinite\n");
break;

default:
printf("Unknown error: %d\n", status);

}
return status;

}

The notable thing is that we need to initialise the Haskell environment with hs_init, which we call
passing it the command-line arguments of main; we also have to shut Haskell down with hs_exit()
when we are done. The rest is fairly standard C code for allocation and error handling.

Note that you have to compile the C code with GHC, not your C compiler!

ghc fib.c fibonacci.o fibonacci_stub.o -o fib

You can then proceed to test the algorithm:

./fib 42
F_42: 267914296
$ ./fib 666
Error: result is out of bounds
Floating-point approximation: 6.859357e+138
$ ./fib 1492
Error: result is out of bounds
Floating-point approximation is infinite
./fib -1
fib: Prelude.(!!): negative index
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76 Generic Programming : Scrap your
boilerplate

The "Scrap your boilerplate" approach, "described" in HTTP://WWW.CS.VU.NL/BOILERPLATE/1, is
a way to allow your data structures to be traversed by so-called "generic" functions: that is, functions
that abstract over the specific data constructors being created or modified, while allowing for the
addition of cases for specific types.

For instance if you want to serialize all the structures in your code, but you want to write only
one serialization function that operates over any instance of the Data.Data.Data class (which can be
derived with -XDeriveDataTypeable).

76.1 Serialization Example

The goal is to convert all our data into a format below:

data Tag = Con String | Val String

76.2 Comparing haskell ASTs

haskell-src-exts parses haskell into a quite complicated syntax tree. Let’s say we want to check if
two source files that are nearly identical.

To start:

1 HTTP://WWW.CS.VU.NL/BOILERPLATE/
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import System.Environment
import Language.Haskell.Exts

main = do
-- parse the filenames given by the first two command line

arguments,
-- proper error handling is left as an exercise
ParseOk moduleA: ParseOk moduleb:_ <- mapM parseFile . take 2 =<<

getArgs

putStrLn $ if moduleA == moduleB
then "Your modules are equal"
else "Your modules differ"

From a bit of testing, it will be apparent that identical files with different names will not be equal
to (==). However, to correct the fact, without resorting to lots of boilerplate, we can use generic
programming:

76.3 TODO

describe using Data.Generics.Twins.gzip*? to write a function to find where there are differences?

Or use it to write a variant of geq that ignores the specific cases that are unimportant (the SrcLoc
elements) (i.e. syb doesn’t allow generic extension... contrast it with other libraries?).

Or just explain this hack (which worked well enough) to run before (==), or geq::

everyWhere (mkT $ \ _ -> SrcLoc "" 0 0) :: Data a => a -> a

Or can we develop this into writing something better than sim_mira (for hs code), found here:
http://www.cs.vu.nl/˜dick/sim.html
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78 Graphical user interfaces (GUI)

Haskell has at least four toolkits for programming a graphical interface:

• WXHASKELL1 - provides a Haskell interface to the wxWidgets toolkit
• GTK2HS2 - provides a Haskell interface to the GTK+ library
• HOC3 (documentation at SOURCEFORGE4) - provides a Haskell to Objective-C binding which

allows users to access to the Cocoa library on MacOS X
• QTHASKELL5 - provides a set of Haskell bindings for the Qt Widget Library from Nokia

In this tutorial, we will focus on the wxHaskell toolkit, as it allows you to produce a native graphical
interface on all platforms that wxWidgets is available on, including Windows, Linux and MacOS
X.

78.1 Getting and running wxHaskell

To install wxHaskell, you’ll need to use GHC6. Then, download the wxHaskell package from
HACKAGE7 using

sudo cabal install wxcore --global
cabal install wx

or the WXHASKELL DOWNLOAD PAGE8 and follow the installation instructions provided on the
wxHaskell download page. Don’t forget to register wxHaskell with GHC, or else it won’t run. To
compile source.hs (which happens to use wxHaskell code), open a command line and type:

ghc -package wx source.hs -o bin

Code for GHCi is similar:

ghci -package wx

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AW%3AWXHASKELL
2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/GTK2HS
3 HTTP://CODE.GOOGLE.COM/P/HOC/
4 HTTP://HOC.SOURCEFORGE.NET/
5 HTTP://QTHASKELL.BERLIOS.DE/
6 HTTP://HASKELL.ORG/GHC/
7 HTTP://HACKAGE.HASKELL.ORG/CGI-{}BIN/HACKAGE-{}SCRIPTS/PACKAGE/WX
8 HTTP://WXHASKELL.SOURCEFORGE.NET/DOWNLOAD.HTML
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You can then load the files from within the GHCi interface. To test if everything works, go to $wx-
HaskellDir/samples/wx ($wxHaskellDir is the directory you installed it in) and load (or compile)
HelloWorld.hs. It should show a window with title "Hello World!", a menu bar with File and About,
and a status bar at the bottom, that says "Welcome to wxHaskell".

If it doesn’t work, you might try to copy the contents of the $wxHaskellDir/lib directory to the ghc
install directory.

78.2 Hello World

Here’s the basic Haskell "Hello World" program:

module Main where

main :: IO ()
main = putStr "Hello World!"

It will compile just fine, but it isn’t really fancy. We want a nice GUI! So how to do this? First,
you must import Graphics.UI.WX. This is the wxHaskell library. Graphics.UI.WXCore has some
more stuff, but we won’t be needing that now.

To start a GUI, use (guess what) start gui. In this case, gui is the name of a function which
we’ll use to build the interface. It must have an IO type. Let’s see what we have:

module Main where

import Graphics.UI.WX

main :: IO ()
main = start gui

gui :: IO ()
gui = do
--GUI stuff

To make a frame, we use frame. Check the type of frame. It’s [Prop (Frame ())] -> IO
(Frame ()). It takes a list of "frame properties" and returns the corresponding frame. We’ll look
deeper into properties later, but a property is typically a combination of an attribute and a value.
What we’re interested in now is the title. This is in the text attribute and has type (Textual w)
=> Attr w String. The most important thing here, is that it’s a String attribute. Here’s how we
code it:

gui :: IO ()
gui = do
frame [text := "Hello World!"]

The operator (:=) takes an attribute and a value, and combines both into a property. Note that
frame returns an IO (Frame ()). You can change the type of gui to IO (Frame ()), but it might
be better just to add return (). Now we have our own GUI consisting of a frame with title "Hello
World!". Its source:
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module Main where

import Graphics.UI.WX

main :: IO ()
main = start gui

gui :: IO ()
gui = do
frame [text := "Hello World!"]
return ()

The result should look like the screenshot. (It might look slightly different on Linux or MacOS X,
on which wxhaskell also runs)

78.3 Controls

{{Info|From here on, its good practice to keep a browser window or tab open with the WXHASKELL

DOCUMENTATION9. It’s also available in $wxHaskellDir/doc/index.html.}}

78.3.1 A text label

Simply a frame doesn’t do much. In this chapter, we’re going to add some more elements.
Let’s start with something simple: a label. wxHaskell has a label, but that’s a layout thing.
We won’t be doing layout until next chapter. What we’re looking for is a staticText. It’s in
Graphics.UI.WX.Controls. As you can see, the staticText function takes a Window as argu-
ment, and a list of properties. Do we have a window? Yup! Look at Graphics.UI.WX.Frame.
There we see that a Frame is merely a type-synonym of a special sort of window. We’ll change the
code in gui so it looks like this:

9 HTTP://WXHASKELL.SOURCEFORGE.NET/DOC/
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Abb. 38: Hello StaticText! (winXP)

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
staticText f [text := "Hello StaticText!"]
return ()

Again, text is an attribute of a staticText object, so this works. Try it!

78.3.2 A button

Now for a little more interaction. A button. We’re not going to add functionality to it until the
chapter about events, but at least something visible will happen when you click on it.

A button is a control, just like staticText. Look it up in Graphics.UI.WX.Controls.

Again, we need a window and a list of properties. We’ll use the frame again. text is also an
attribute of a button:
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Abb. 39: Overlapping button and StaticText (winXP)

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
staticText f [text := "Hello StaticText!"]
button f [text := "Hello Button!"]
return ()

Load it into GHCi (or compile it with GHC) and... hey!? What’s that? The button’s been covered
up by the label! We’re going to fix that next, in the layout chapter.

78.4 Layout

The reason that the label and the button overlap, is that we haven’t set a layout for
our frame yet. Layouts are created using the functions found in the documentation of
Graphics.UI.WXCore.Layout. Note that you don’t have to import Graphics.UI.WXCore to use
layouts.

The documentation says we can turn a member of the widget class into a layout by using the widget
function. Also, windows are a member of the widget class. But, wait a minute... we only have one
window, and that’s the frame! Nope... we have more, look at Graphics.UI.WX.Controls and click
on any occurrence of the word Control. You’ll be taken to Graphics.UI.WXCore.WxcClassTypes

529



Graphical user interfaces (GUI)

and it is here we see that a Control is also a type synonym of a special type of window. We’ll need
to change the code a bit, but here it is.

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
return ()

Now we can use widget st and widget b to create a layout of the staticText and the button.
layout is an attribute of the frame, so we’ll set it here:

Abb. 40: StaticText with layout (winXP)

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
set f [layout := widget st]
return ()

The set function will be covered in the chapter about attributes. Try the code, what’s wrong? This
only displays the staticText, not the button. We need a way to combine the two. We will use layout
combinators for this. row and column look nice. They take an integer and a list of layouts. We can
easily make a list of layouts of the button and the staticText. The integer is the spacing between the
elements of the list. Let’s try something:
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Abb. 41: A row layout (winXP)

Abb. 42: Column layout with a spacing of 25 (winXP)

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
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st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
set f [layout :=

row 0 [widget st, widget b]
]

return ()

Play around with the integer and see what happens, also change row into column. Try to change
the order of the elements in the list to get a feeling of how it works. For fun, try to add widget b
several more times in the list. What happens?

Here are a few exercises to spark your imagination. Remember to use the documentation!

{{Exercises|1=

1. Add a checkbox control. It doesn’t have to do anything yet, just make sure it appears next
to the staticText and the button when using row-layout, or below them when using column
layout. text is also an attribute of the checkbox.

2. Notice that row and column take a list of layouts, and also generates a layout itself. Use
this fact to make your checkbox appear on the left of the staticText and the button, with the
staticText and the button in a column.

3. Can you figure out how the radiobox control works? Take the layout of the previous exercise
and add a radiobox with two (or more) options below the checkbox, staticText and button.
Use the documentation!

4. Use the boxed combinator to create a nice looking border around the four controls, and an-
other one around the staticText and the button. (Note: the boxed combinator might not be
working on MacOS X - you might get widgets that can’t be interacted with. This is likely just
a bug in wxhaskell.)}}

After having completed the exercises, the end result should look like this:
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Abb. 43: Answer to exercises

You could have used different spacing for row and column, or the options of the radiobox are
displayed horizontally.

78.5 Attributes

After all this, you might be wondering things like: "Where did that set function suddenly come
from?", or "How would I know if text is an attribute of something?". Both answers lie in the
attribute system of wxHaskell.

78.5.1 Setting and modifying attributes

In a wxHaskell program, you can set the properties of the widgets in two ways:

1. during creation: f <- frame [ text := "Hello World!" ]
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2. using the set function: set f [ layout := widget st ]

The set function takes two arguments: one of any type w, and the other is a list of properties of w.
In wxHaskell, these will be the widgets and the properties of these widgets. Some properties can
only be set during creation, like the alignment of a textEntry, but you can set most others in any
IO-function in your program, as long as you have a reference to it (the f in set f [stuff]).

Apart from setting properties, you can also get them. This is done with the get function. Here’s a
silly example:

gui :: IO ()
gui = do
f <- frame [ text := "Hello World!" ]
st <- staticText f []
ftext <- get f text
set st [ text := ftext]
set f [ text := ftext ++ " And hello again!" ]

Look at the type signature of get. It’s w -> Attr w a -> IO a. text is a String attribute, so
we have an IO String which we can bind to ftext. The last line edits the text of the frame. Yep,
destructive updates are possible in wxHaskell. We can overwrite the properties using (:=) anytime
with set. This inspires us to write a modify function:

modify :: w -> Attr w a -> (a -> a) -> IO ()
modify w attr f = do
val <- get w attr
set w [ attr := f val ]

First it gets the value, then it sets it again after applying the function. Surely we’re not the first one
to think of that...

And nope, we aren’t. Look at this operator: (:˜). You can use it in set, because it takes an
attribute and a function. The result is a property, in which the original value is modified by the
function. This means we can write:

gui :: IO ()
gui = do
f <- frame [ text := "Hello World!" ]
st <- staticText f []
ftext <- get f text
set st [ text := ftext]
set f [ text :˜ ++ " And hello again!" ]

This is a great place to use anonymous functions with the lambda-notation.

There are two more operators we can use to set or modify properties: (::=) and (::˜). They do
the same as (:=) and (:˜), except a function of type w -> orig is expected, where w is the widget
type, and orig is the original "value" type (a in case of (:=), and a -> a in case of (:˜)). We
won’t be using them now, though, as we’ve only encountered attributes of non-IO types, and the
widget needed in the function is generally only useful in IO-blocks.
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78.5.2 How to find attributes

Now the second question. Where did I read that text is an attribute of all those things? The easy
answer is: in the documentation. Now where in the documentation to look for it?

Let’s see what attributes a button has, so go to Graphics.UI.WX.Controls, and click the link that
says "Button". You’ll see that a Button is a type synonym of a special kind of Control, and a
list of functions that can be used to create a button. After each function is a list of "Instances".
For the normal button function, this is Commanding -- Textual, Literate, Dimensions, Colored,
Visible, Child, Able, Tipped, Identity, Styled, Reactive, Paint. This is the list of classes of which a
button is an instance. Read through the ../CLASS DECLARATIONS/10 chapter. It means that there
are some class-specific functions available for the button. Textual, for example, adds the text and
appendText functions. If a widget is an instance of the Textual class, it means that it has a text
attribute!

Note that while StaticText hasn’t got a list of instances, it’s still a Control, which is a synonym
for some kind of Window, and when looking at the Textual class, it says that Window is an instance
of it. This is an error on the side of the documentation.

Let’s take a look at the attributes of a frame. They can be found in Graphics.UI.WX.Frame.
Another error in the documentation here: It says Frame instantiates HasImage. This was true in
an older version of wxHaskell. It should say Pictured. Apart from that, we have Form, Textual,
Dimensions, Colored, Able and a few more. We’re already seen Textual and Form. Anything
that is an instance of Form has a layout attribute.

Dimensions adds (among others) the clientSize attribute. It’s an attribute of the Size type, which
can be made with sz. Please note that the layout attribute can also change the size. If you want to
use clientSize you should set it after the layout.

Colored adds the color and bgcolor attributes.

Able adds the Boolean enabled attribute. This can be used to enable or disable certain form
elements, which is often displayed as a greyed-out option.

There are lots of other attributes, read through the documentation for each class.

78.6 Events

There are a few classes that deserve special attention. They are the Reactive class and the
Commanding class. As you can see in the documentation of these classes, they don’t add attributes
(of the form Attr w a), but events. The Commanding class adds the command event. We’ll use a
button to demonstrate event handling.

Here’s a simple GUI with a button and a staticText:

10 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FCLASS%20DECLARATIONS%2F
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Abb. 44: Before (winXP)

gui :: IO ()
gui = do
f <- frame [ text := "Event Handling" ]
st <- staticText f [ text := "You haven\’t clicked the button yet."

]
b <- button f [ text := "Click me!" ]
set f [ layout := column 25 [ widget st, widget b ] ]

We want to change the staticText when you press the button. We’ll need the on function:

b <- button f [ text := "Click me!"
, on command := --stuff
]

The type of on: Event w a -> Attr w a. command is of type Event w (IO ()), so we need an
IO-function. This function is called the Event handler. Here’s what we get:

gui :: IO ()
gui = do
f <- frame [ text := "Event Handling" ]
st <- staticText f [ text := "You haven\’t clicked the button yet."

]
b <- button f [ text := "Click me!"

, on command := set st [ text := "You have clicked
the button!" ]

]
set f [ layout := column 25 [ widget st, widget b ] ]

Insert text about event filters here
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79 Databases

79.1 Introduction

Haskell’s most popular database module is HDBC1. HDBC provides an abstraction layer between
Haskell programs and SQL relational databases. This lets you write database code once, in Haskell,
and have it work with a number of backend SQL databases.

HDBC is modeled loosely on PERL’S DBI INTERFACE2, though it has also been influenced by
Python’s DB-API v2, JDBC in Java, and HSQL in Haskell. As DBI requires DBD in Perl, HDBC
requires a driver module beneath it to work. These HDBC backend drivers exist: PostgreSQL,
SQLite, and ODBC (for Windows and Unix/Linux/Mac). MySQL is the most popular open-sourced
database, and there are two drivers for MySQL: HDBC-MYSQL3 (native) and HDBC-ODBC4

(ODBC). MySQL users can use the ODBC driver on any MySQL-supported platform, including
Linux. An advantage of using ODBC is that the syntax of the SQL statement is insulated from the
different kinds of database engines. This increases the portability of the application should you have
to move from one database to another. The same argument for preferring ODBC applies for other
commercial databases, such as Oracle and DB2.

79.2 Installation

79.2.1 SQLite

See HERE5 for more information.

79.2.2 PostgreSQL

See HERE6 for more information.

79.2.3 Native MySQL

The native ODBC-mysql library requires the C MySQL client library to be present.

1 HTTP://GITHUB.COM/JGOERZEN/HDBC/WIKI
2 HTTP://SEARCH.CPAN.ORG/~{}TIMB/DBI/DBI.PM
3 HTTP://HACKAGE.HASKELL.ORG/PACKAGE/HDBC-{}MYSQL
4 HTTP://HACKAGE.HASKELL.ORG/PACKAGE/HDBC-{}ODBC
5 HTTP://GITHUB.COM/JGOERZEN/HDBC/WIKI/FREQUENTLYASKEDQUESTIONS
6 HTTP://GITHUB.COM/JGOERZEN/HDBC/WIKI/FREQUENTLYASKEDQUESTIONS
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You may need to WRAP YOUR DATABASE ACCESSES7 to prevent runtime errors.

79.2.4 ODBC/MySQL

Instruction how to install ODBC/MySQL. It is somewhat involved to make HDBC work with
MySQL via ODBC, especially if you do not have root privilege and have to install everything
in a non-root account.

• If your platform doesn’t already provide an ODBC library (and most do), install Unix-ODBC.
See HERE8 for more information.

• Install MySQL-ODBC Connector. See HERE9 for more information.
• Install Database.HDBC module
• Install Database.HDBC.ODBC module
• Add the mysql driver to odbcinst.ini file (under $ODBC_HOME/etc/) and your data source in

$HOME/.odbc.ini.
• Create a test program

Since the ODBC driver is installed using shared library by default, you will need the following env:

export LD_LIBRARY_PATH=$ODBC_HOME/lib

If you do not like adding an additional env variables, you should try to compile ODBC with static
library option enabled.

The next task is to write a simple test program that connects to the database and print the names of
all your tables, as shown below.

You may need to WRAP YOUR DATABASE ACCESSES10 in order to prevent runtime errors.

module Main where
import Database.HDBC.ODBC
import Database.HDBC
main =
do c <- connectODBC "DSN=PSPDSN"

xs <- getTables c
putStr $ "tables "++(foldr jn "." xs)++"\n"

where jn a b = a++" "++b

7 HTTP://WWW.SERPENTINE.COM/BLOG/2010/09/04/DEALING-{}WITH-{}FRAGILE-{}C-{}LIBRARIES-{}E-{}G-{}MYSQL-{}FROM-{}HASKELL/
8 HTTP://SOURCEFORGE.NET/PROJECTS/UNIXODBC/
9 HTTP://DEV.MYSQL.COM/DOWNLOADS/CONNECTOR/ODBC/
10 HTTP://WWW.SERPENTINE.COM/BLOG/2010/09/04/DEALING-{}WITH-{}FRAGILE-{}C-{}LIBRARIES-{}E-{}G-{}MYSQL-{}FROM-{}HASKELL/
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79.3 General Workflow

79.3.1 Connect and Disconnect

The first step of any database operation is to connect to the target database. This is done via the
driver-specific connect API, which has the type of:

String -> IO Connection

Given a connect string, the connect API will return Connection and put you in the IO monad.

Although most program will garbage collect your connections when they are out of scope or when
the program ends, it is a good practice to disconnect from the database explicitly.

conn->Disconnect

79.3.2 Running Queries

Running a query generally involves the following steps:

• Prepare a statement
• Execute a statement with bind variables
• Fetch the result set (if any)
• Finish the statement

HDBC provides two ways for bind variables and returning result set: [ SqlValue ] and [ Maybe
String ]. You need to use the functions with s prefix when using [ Maybe String ], instead
of [ SqlValue ]. [ SqlValue ] allows you to use strongly typed data if type safety is very
important in your application; otherwise, [ Maybe String ] is more handy when dealing with
lots of database queries. When you use [ Maybe String ], you assume the database driver will
perform automatic data conversion. Be aware there is a performance price for this convenience.

Sometimes, when the query is simple, there are simplified APIs that wrap multiple steps into one.
For example, Run and sRun are wrappers of "prepare and execute". quickQuery is a wrapper of
"prepare, execute, and fetch all rows".
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79.4 Running SQL Statements

79.4.1 Select

79.4.2 Insert

79.4.3 Update

79.4.4 Delete

79.5 Transaction

Database transaction is controlled by commit and rollback. However, be aware some databases
(such as mysql) do not support transaction. Therefore, every query is in its atomic transaction.

HDBC provides withTransaction to allow you automate the transaction control over a group of
queries.

79.6 Calling Procedure

540



80 Web programming

An example web application, using the HAppS framework, is HPASTE1, the Haskell paste bin. Built
around the core Haskell web framework, HAppS, with HaXmL for page generation, and binary/zlib
for state serialisation.

The HTTP AND BROWSER MODULES2 exist, and might be useful.
3

1 HTTP://HPASTE.ORG
2 HTTP://HOMEPAGES.PARADISE.NET.NZ/WARRICKG/HASKELL/HTTP/
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AHASKELL
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81 Working with XML

There are several Haskell libraries for XML work, and additional ones for HTML. For more web-
specific work, you may want to refer to the HASKELL/WEB PROGRAMMING1 chapter.

81.0.1 Libraries for parsing XML

• THE HASKELL XML TOOLBOX (HXT)2 is a collection of tools for parsing XML, aiming at a
more general approach than the other tools.

• HAXML3 is a collection of utilities for parsing, filtering, transforming, and generating XML
documents using Haskell.

• HXML4 is a non-validating, lazy, space efficient parser that can work as a drop-in replacement
for HaXml.

81.0.2 Libraries for generating XML

• HSXML represents XML documents as statically typesafe s-expressions.

81.0.3 Other options

• TAGSOUP5 is a library for parsing unstructured HTML, i.e. it does not assume validity or even
well-formedness of the data.

81.1 Getting acquainted with HXT

In the following, we are going to use the Haskell XML Toolbox for our examples. You should
have a working INSTALLATION OF GHC6, including GHCi, and you should have downloaded and
installed HXT according to THE INSTRUCTIONS7.

With those in place, we are ready to start playing with HXT. Let’s bring the XML parser into scope,
and parse a simple XML-formatted string:

1 Chapter 80 on page 541
2 HTTP://WWW.FH-{}WEDEL.DE/~{}SI/HXMLTOOLBOX/
3 HTTP://WWW.CS.YORK.AC.UK/FP/HAXML/
4 HTTP://WWW.FLIGHTLAB.COM/~{}JOE/HXML/
5 HTTP://WWW.CS.YORK.AC.UK/FP/DARCS/TAGSOUP/TAGSOUP.HTM
6 Chapter 2 on page 3
7 HTTP://WWW.FH-{}WEDEL.DE/~{}SI/HXMLTOOLBOX/#INSTALL
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Prelude> :m + Text.XML.HXT.Parser.XmlParsec
Prelude Text.XML.HXT.Parser.XmlParsec> xread "<foo>abc<bar/>def</foo>"
[NTree (XTag (QN {namePrefix = "", localPart = "foo", namespaceUri =

""}) [])
[NTree (XText "abc") [],NTree (XTag (QN {namePrefix = "", localPart

= "bar",
namespaceUri = ""}) []) [],NTree (XText "def") []]]

We see that HXT represents an XML document as a list of trees, where the nodes can be constructed
as an XTag containing a list of subtrees, or an XText containing a string. With GHCi, we can
explore this in more detail:

Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> :i NTree
data NTree a = NTree a (NTrees a)

-- Defined in
Data.Tree.NTree.TypeDefs
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> :i NTrees
type NTrees a = [NTree a] -- Defined in

Data.Tree.NTree.TypeDefs

As we can see, an NTree is a general tree structure where a node stores its children in a list, and
some more browsing around will tell us that XML documents are trees over an XNode type, defined
as:

data XNode
= XText String
| XCharRef Int
| XEntityRef String
| XCmt String
| XCdata String
| XPi QName XmlTrees
| XTag QName XmlTrees
| XDTD DTDElem Attributes
| XAttr QName
| XError Int String

Returning to our example, we notice that while HXT successfully parsed our input, one might
desire a more lucid presentation for human consumption. Lucky for us, the DOM module supplies
this. Notice that xread returns a list of trees, while the formatting function works on a single tree.

Prelude Text.XML.HXT.Parser.XmlParsec> :m + Text.XML.HXT.DOM
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> putStrLn $ formatXmlTree $ head $ xread

"<foo>abc<bar/>def</foo>"
---XTag "foo"

|
+---XText "abc"
|
+---XTag "bar"
|
+---XText "def"

This representation makes the structure obvious, and it is easy to see the relationship to our input
string. Let’s proceed to extend our XML document with some attributes (taking care to escape the

544



Getting acquainted with HXT

quotes, of course):

Prelude Text.XML.HXT.Parser.XmlParsec> xread "<foo a1=\"my\" b2=\"oh\">abc<bar/>def</foo>"
[NTree (XTag (QN {namePrefix = "", localPart = "foo", namespaceUri =

""}) [NTree (XAttr (QN
{namePrefix = "", localPart = "a1", namespaceUri = ""})) [NTree

(XText "my") []],NTree (XAttr
(QN {namePrefix = "", localPart = "b2", namespaceUri = ""})) [NTree

(XText "oh") []]]) [NTree
(XText "abc") [],NTree (XTag (QN {namePrefix = "", localPart =

"bar", namespaceUri = ""}) [])
[],NTree (XText "def") []]]

Notice that attributes are stored as regular NTree nodes with the XAttr content type, and (of course)
no children. Feel free to pretty-print this expression, as we did above.

For a trivial example of data extraction, consider this small example using XPATH8:

Prelude> :set prompt "> "
> :m + Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.XPath.XPathEval
> let xml = "<foo><a>A</a><c>C</c></foo>"
> let xmltree = head $ xread xml
> let result = getXPath "//a" xmltree
> result
> [NTree (XTag (QN {namePrefix = "", localPart = "a", namespaceUri =

""}) []) [NTree (XText "A") []]]
> :t result
> result :: NTrees XNode

8 HTTP://EN.WIKIPEDIA.ORG/WIKI/XPATH
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82 Using Regular Expressions

Good tutorials where to start

• SERPENTINE.COM1

• REGULAR EXPRESSIONS (HASKELL WIKI)2

Also see HASKELL/PATTERN MATCHING3 (not same as regular expressions in Haskell).

1 HTTP://WWW.SERPENTINE.COM/BLOG/2007/02/27/A-{}HASKELL-{}REGULAR-{}EXPRESSION-{}TUTORIAL/
2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/REGULAR_EXPRESSIONS
3 Chapter 15 on page 107
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