Haskell/Print version

Wikibooks.org

March 18, 2011.

Contents

1 Table Of Contents 1
1.1 HASKELL BASICS 1
1.2 Elementary Haskell 1
1.3 Intermediate Haskell 1
1.4 Monads 1
1.5 Advanced Haskell 1
1.6 Fun with Types 1
1.7 Wider Theory 2
1.8 Haskell Performance 2
1.9 Libraries Reference 2
1.10 General Practices 2
1.11 SpeCiALISED TASKS 2
2 Haskell Basics 3
3 Getting set UP 5
3.1 Installing Haskell 5
3.2 VERY FIRST STEPS 5
4 VARIABLES and FUNCTIONS 7
4.1 Variables 7
4.2 Haskell source files 7
4.3 VARIABLES IN IMPERATIVE LANGUAGES 8
4.4 FUNCTIONS 9
4.5 LOCAL DEFINITIONS (WHERE CLAUSES) 12
4.6 SUMMARY 13
4.7 Notes 13
5 Truth values 15
5.1 EQUALITY AND OTHER COMPARISONS 15
5.2 Boolean values 16
5.3 InFIX OPERATORS 17
5.4 BOOLEAN OPERATIONS 17
5.5 Guards 18
5.6 NOTES 19
6 Type basics 21
6.1 Introduction 21
6.2 USING THE INTERACTIVE : type COMMAND 22
6.3 FUNCTIONAL TYPES 23
6.4 TyPE SIGNATURES IN CODE 26
6.5 NOTES 28
7 LISTS AND TUPLES 29
7.1 LISTS 29
7.2 TUPLES 30
7.3 POLYMORPHIC TYPES 32
7.4 Summary 33
7.5 Notes 33
8 Type basics II 35
8.1 THE Num CLASS 35
8.2 NUMERIC TYPES 36
8.3 CLASSES BEYOND NUMBERS 39
8.4 NOTES 39
9 Next STEPS 41
9.1 CONDITIONAL EXPRESSIONS 41
9.2 Indentation 42
9.3 DEFINING ONE FUNCTION FOR DIFFERENT PARAMETERS 42
9.4 FUNCTION COMPOSITION 43
9.5 LET BINDINGS 43
10 Simple input and output 45
10.1 Actions 45
10.2 ACtions under the microscope 50
10.3 LEARN MORE 52
11 Elementary Haskell 53
12 RECURSION 55
12.1 NUMERIC RECURSION 55
12.2 List-based recursion 57
12.3 Don't GET TOO EXCITED ABOUT RECURSION 58
12.4 SUMMARY 58
12.5 Notes 58
13 More about lists 59
13.1 Constructing lists 59
13.2 MAP 63
13.3 Notes 65
14 LIST PROCESSING 67
14.1 FOLDS 67
14.2 Scans 70
14.3 FILTER 71
14.4 LIST COMPREHENSIONS 72
15 Type declarations 75
15.1 data AND CONSTRUCTOR FUNCTIONS 75
15.2 DECONSTRUCTING TYPES 77
15.3 type FOR MAKING TYPE SYNONYMS 77
16 Pattern matching 79
16.1 What is pattern matching? 79
16.2 Where you can use it 83
16.3 Notes 84
17 Control structures 85
17.1 if EXPRESSIONS 85
17.2 case Expressions 86
17.3 GUARDS 87
17.4 Notes 88
18 More on functions 89
18.1 Private functions - Let and where 89
18.2 Anonymous Functions - Lambdas 90
18.3 Infix Versus Prefix 91
19 Higher order functions and Currying 93
19.1 The Quickest Sorting Algorithm In Town 93
19.2 Now, How Do We Use It? 94
19.3 Tweaking What We Already Have 95
19.4 quickSort, Take Two 95
19.5 But What Did We Gain? 95
19.6 Higher-Order Functions and Types 96
19.7 Currying 97
19.8 Notes 98
20 USiNg GHCi EfFECTIVELY 99
20.1 USER INTERFACE 99
20.2 Programming efficiently 100
20.3 Notes 100
21 Intermediate Haskell 101
22 Modules 103
22.1 MODULES 103
22.2 Importing 103
22.3 Exporting 106
22.4 Notes 106
23 Indentation 107
23.1 ThE GOLDEN RULE OF INDENTATION 107
23.2 A MECHANICAL TRANSLATION 108
23.3 Layout in action 109
23.4 REFERENCES 111
24 More on datatypes 113
24.1 EnUMERATIONS 113
24.2 Named Fields (Record Syntax) 113
24.3 Parameterised Types 116
25 OTHER DATA STRUCTURES 119
25.1 TREES 119
25.2 OTHER DATATYPES 123
25.3 NOTES 127
26 Class declarations 129
26.1 Introduction 129
26.2 DERIVING 130
26.3 CLASs InHERITANCE 131
26.4 Standard Classes 131
27 Classes and types 133
27.1 Classes and Types 133
28 Monads 135
29 Understanding monads 137
29.1 First things first: Why, why, why, do I need Monads? 137
29.2 Introduction 137
29.3 DEFINITION 138
29.4 Notions of Computation 141
29.5 Monad Laws 143
29.6 Monads and Category Theory 144
29.7 FOOTNOTES 145
30 do Notation 147
30.1 Translating the then operator 147
30.2 Translating the bind operator 148
30.3 EXAMPLE: USER-INTERACTIVE PROGRAM 148
30.4 Returning values 149
31 Advanced monads 151
31.1 MONADS as COMPUTATIONS 151
31.2 Further reading 156
32 Additive monads (MonadPlus) 157
32.1 Introduction 157
32.2 EXAMPLE 158
32.3 THE MONADPLUS LaWS 159
32.4 USEFUL FUNCTIONS 159
32.5 Exercises 161
32.6 Relationship with Monoids 162
33 MONADIC PARSER COMBINATORS 165
34 MONAD TRANSFORMERS 167
34.1 Motivation 167
34.2 A Simple Monad Transformer: Maybet 168
34.3 Introduction 170
34.4 IMPLEMENTING TRANSFORMERS 171
34.5 Lifting 173
34.6 THE State monad transformer 175
34.7 ACKNOWLEDGEMENTS 176
35 Practical monads 177
35.1 Parsing monads 177
35.2 GENERIC MONADS 184
35.3 STATEFUL MONADS FOR CONCURRENT APPLICATIONS 186
36 Advanced Haskell 191
37 Arrows 193
37.1 Introduction 193
37.2 proc and the arrow tail 193
37.3 do NOTATION 194
37.4 Monads and arrows 195
38 UNDERSTANDING ARROWS 197
38.1 THE FACTORY AND CONVEYOR BELT METAPHOR 197
38.2 Plethora of robots 197
38.3 Functions are arrows 203
38.4 The arrow notation 204
38.5 Maybe functor 204
38.6 USING ARROWS 204
38.7 Monads can be arrows too 209
38.8 ARrows in practice 210
38.9 See also 210
38.10 References 210
38.11 ACKNOWLEDGEMENTS 210
39 CONTINUATION PASSING STYLE (CPS) 211
39.1 When do you need this? 211
39.2 Starting Simple 211
39.3 USING THE Cont MONAD 212
39.4 callCC 213
39.5 EXAMPLE: A COMPLICATED CONTROL STRUCTURE 216
39.6 EXAMPLE: EXCEPTIONS 217
39.7 EXAMPLE: COROUTINES 217
39.8 Notes 217
40 Mutable objects 219
40.1 The ST and IO monads 219
40.2 State references: STREF and IOREF 219
40.3 Mutable arrays 219
40.4 EXAMPLES 219
41 ZIPPERS 221
41.1 THESEUS AND THE ZIPPER 221
41.2 Differentiation of data types 228
41.3 Notes 235
41.4 See Also 235
42 Applicative Functors 237
42.1 Functors 237
42.2 Applicative Functors 237
42.3 Monads and Applicative Functors 239
42.4 ZipLists 240
42.5 References 241
43 Monoids 243
43.1 InTRODUCTION 243
43.2 EXAMPLES 243
43.3 HOMOMORPHISMS 244
43.4 SEE ALSO 244
44 Concurrency 245
44.1 CONCURRENCY 245
44.2 When do you need it? 245
44.3 EXAMPLE 246
44.4 Software Transactional Memory 246
45 Fun with Types 247
46 POLYMORPHISM BASICS 249
46.1 Parametric Polymorphism 249
46.2 System F 252
46.3 EXAMPLES 253
46.4 Other forms of Polymorphism 253
46.5 Free Theorems 253
46.6 Footnotes 253
46.7 See also 253
47 EXISTENTIALLY QUANTIFIED TYPES 255
47.1 THE forall KEYWORD 255
47.2 EXAMPLE: HETEROGENEOUS LISTS 256
47.3 EXPLAINING THE TERM existential 256
47.4 EXAMPLE: runST 258
47.5 Quantification as a primitive 259
47.6 Notes 259
47.7 FURTHER READING 259
48 AdVanced Type classes 261
48.1 MULTI-PARAMETER TYPE CLASSES 261
48.2 FUNCTIONAL DEPENDENCIES 261
48.3 EXAMPLES 262
49 Phantom types 263
49.1 Phantom types 263
50 GENERALISED ALGEBRAIC DATA-TYPES (GADT) 265
50.1 Introduction 265
50.2 UndERSTANDING GADTs 265
50.3 SUMMARY 269
50.4 EXAMPLES 270
50.5 DISCUSSION 272
50.6 REFERENCES 272
51 Type constructors \& Kinds 273
51.1 Kinds for C++ Users 273
52 Wider Theory 275
53 DENOTATIONAL SEMANTICS 277
53.1 Introduction 277
53.2 Bottom and Partial Functions 279
53.3 Recursive Definitions as Fixed Point Iterations 283
53.4 Strict and Non-Strict Semantics 288
53.5 Algebraic Data Types 291
53.6 Other Selected Topics 299
53.7 FOOTNOTES 301
53.8 EXTERNAL LINKS 302
54 CATEGORY THEORY 303
54.1 Introduction to categories 304
54.2 Functors 307
54.3 MONADS 310
54.4 THE MONAD LAWS AND THEIR IMPORTANCE 312
54.5 Summary 317
54.6 Notes 317
55 The Curry-Howard isomorphism 319
55.1 Introduction 319
55.2 LOGICAL OPERATIONS AND THEIR EQUIVALENTS 321
55.3 AXIOMATIC LOGIC AND THE COMBINATORY CALCULUS 323
55.4 SAMPLE PROOFS 325
55.5 InTUITIONISTIC VS CLASSICAL LOGIC 325
55.6 NOTES 325
56 FIX AND RECURSION 327
56.1 Introducing fix 327
56.2 fix AND FIXED POINTS 328
56.3 RECURSION 329
56.4 THE TYPED LAMBDA CALCULUS 330
56.5 FIX AS A DATA TYPE 331
57 Haskell Performance 333
58 Introduction 335
58.1 EXecution Model 335
58.2 Algorithms \& Data Structures 339
58.3 Parallelism 340
59 Step by Step Examples 343
59.1 TigHT LOOP 343
59.2 CSV Parsing 343
59.3 Space Leak 344
60 GRAPH REDUCTION 345
60.1 Notes and TODOs 345
60.2 Introduction 345
60.3 Evaluating Expressions by Lazy Evaluation 345
60.4 Controlling Space 352
60.5 Reasoning about Time 353
60.6 Implementation of Graph reduction 354
60.7 REFERENCES 354
61 Laziness 355
61.1 Introduction 355
61.2 Thunks and Weak head normal form 355
61.3 LAZY AND STRICT FUNCTIONS 358
61.4 LAZY PATTERN MATCHING 361
61.5 Benefits of nonstrict semantics 362
61.6 COMMON NONSTRICT IDIOMS 363
61.7 Conclusions about Laziness 365
61.8 NOTES 365
61.9 REFERENCES 365
62 STRICTNESS 367
62.1 DIFFERENCE BETWEEN STRICT AND LAZY EVALUATION 367
62.2 Why LaZINESS CAN BE PROBLEMATIC 367
62.3 StRICTNESS ANNOTATIONS 368
62.4 SEQ 368
62.5 REFERENCES 368
63 Algorithm complexity 369
63.1 Optimising 370
64 LIBRARIES REFERENCE 371
65 The Hierarchical Libraries 373
65.1 Haddock Documentation 373
66 LISTS 375
66.1 THEORY 375
66.2 DEFINITION 375
66.3 BASIC LIST USAGE 376
66.4 List UTILITIES 377
67 Arrays 379
67.1 QUick REFERENCE 379
67.2 Immutable arrays (MODULE Data.Array.IArray ${ }^{1}$) 379
67.3 Mutable IO arrays (Module Data.Array.IO ${ }^{2}$) 380
67.4 Mutable arrays in ST monad (MOdUle Data.Array. ST^{3}) 381
67.5 FreEzing and thawing 381
67.6 DifFARRAY (MODULE DATA.ARRAY.DIFF ${ }^{4}$) 382
67.7 Unboxed arrays (Data.Array.Unboxed ${ }^{5}$) 383
67.8 StorableArray (module Data.Array.Storable ${ }^{6}$) 384
67.9 The Haskell Array Preprocessor (STPP) 385
67.10 ARRAYREF LIbrary 385
67.11 UNSAFE OPERATIONS AND RUNNING OVER ARRAY ELEMENTS 386
$67.12 \mathrm{GHC}^{7}$-SPECIFIC TOPICS 386
68 Maybe 391
68.1 Motivation 391
68.2 Definition 391
68.3 LIBRARY FUNCTIONS 392
69 MAPS 397
69.1 Motivation 397
69.2 Definition 397
69.3 Library functions 397
69.4 Example 398
70 IO 401
70.1 The IO Library 401
70.2 A File Reading Program 402
70.3 ANOTHER WAY OF READING FILES 403
71 Random Numbers 405
71.1 Random examples 405
71.2 The Standard Random Number Generator 405
71.3 Using QUickCHECK TO GENERATE RANDOM DATA 408
72 General Practices 413

[^0]73 BUILDING A STANDALONE APPLICATION 415
73.1 The Main module 415
73.2 OTHER MODULES? 415
74 Testing 417
74.1 QUICKCHECK 417
74.2 HUnit 420
75 Packaging your software (CAbAL) 421
75.1 Recommended tools 421
75.2 Structure of a Simple project 422
75.3 Libraries 429
75.4 Automation 431
75.5 Licenses 432
75.6 Releases 432
75.7 Hosting 433
75.8 EXAMPLE 433
75.9 References 433
76 Using the Foreign Function Interface (FFI) 435
76.1 Calling C from Haskell 435
76.2 Calling Haskell from C 448
77 Generic Programming : Scrap your boilerplate 451
77.1 SERIALIZATION EXAMPLE 451
77.2 Comparing haskell ASTs 451
77.3 TODO 452
78 Specialised Tasks 453
79 GRAPHICAL USER INTERFACES (GUI) 455
79.1 Getting and running WXHaskell 455
79.2 Hello World 456
79.3 Controls 457
79.4 LAYOUT 459
79.5 AtTRibutes 463
79.6 Events 465
80 Databases 467
80.1 Introduction 467
80.2 INSTALLATION 467
80.3 GENERAL WORKFLOW 469
80.4 Running SQL Statements 470
80.5 Transaction 470
80.6 Calling Procedure 470
81 WEB PROGRAMMING 471
82 Working with XML 473
82.1 Getting acQuainted with HXT 473
83 Using Regular Expressions 477
84 AUTHORS 479
List of Figures 487

1 Table Of Contents

1.1 Haskell Basics
\{\{Haskell chapter/Haskell Basics|sep= \}\}

1.2 Elementary Haskell

\{\{Haskell chapter/Elementary Haskell|sep= \}\}

1.3 Intermediate Haskell

\{\{Haskell chapter/Intermediate Haskell|sep= \}\}

1.4 Monads

\{\{Haskell chapter/Monads|sep= \}\}

1.5 Advanced Haskell

\{\{Haskell chapter/Advanced Haskell|sep= \}\}

1.6 Fun with Types

\{\{Haskell chapter/Fun with Types|sep= \}\}

1.7 Wider Theory

\{\{Haskell chapter/Wider Theory|sep= \}\}

1.8 Haskell Performance

\{\{Haskell chapter/Haskell Performance|sep= \}\}

1.9 Libraries Reference

\{\{Haskell chapter/Libraries Reference|sep= \}\}

1.10 General Practices

\{\{Haskell chapter/General Practices|sep= \}\}

1.11 Specialised Tasks

\{\{Haskell chapter/Specialised Tasks|sep= \}\}

2 Haskell Basics

3 Getting set up

This chapter will explore how to install the programs you'll need to start coding in Haskell.

3.1 Installing Haskell

Haskell is a programming language, i.e. a language in which humans can express how computers should behave. It's like writing a cooking recipe: you write the recipe and the computer cooks it.

To write Haskell programs, you need a program called a Haskell compiler. A compiler is a program that takes code written in Haskell and translates it into machine code, a second, more primitive language which only computers can understand. Another explanation is that the Haskell compiler will take the recipe you've written in Haskell and create a program from that.

Anyway, to start learning Haskell, download and install the Haskell platform ${ }^{1}$. It will contain the "Glasgow Haskell Compiler", GHC for short, and everything else you need.

3.2 Very first steps

After you have installed the HASKell Platform ${ }^{2}$, it's now time to write your first Haskell code.
For that, you will use the program called GHCi. The 'i' stands for 'interactive'. Depending on your operating system, perform the following steps:

- On Windows: Click Start, then Run, then type 'cmd' and hit Enter, then type ghci and hit Enter once more.
- On MacOS: Open the application "Terminal" found in the "Applications/Utilities" folder, type the letters ghci into the window that appears and hit the Enter key.
- On Linux: Open a terminal and run the ghci program.

You should get output that looks something like the following:

```
    I_\/\ M/__(_)
/ /_\// /_/ / / | | GHC Interactive, version 6.6, for Haskell
98.
/ /_\\/ _ / /__| | http://www.haskell.org/ghc/
\___\/ /_/\___/|_| Type :? for help.
```

1 HTTP://HACKAGE.HASKELL.ORG/PLATFORM/
2 HTTP://HACKAGE.HASKELL.ORG/PLATFORM/

Loading package base ... linking ... done.
Prelude>

The first bit is GHCi's logo. It then informs you it's loading the base package, so you'll have access to most of the built-in functions and modules that come with GHC. Finally, the Prelude> bit is known as the prompt. This is where you enter commands, and GHCi will respond with what they evaluate to.

Now you're ready to write your first Haskell code. In particular, let's try some basic arithmetic:
The operators are similar to what they are in other languages: + is addition, * is multiplication, and ^ is exponentiation (raising to the power of).

Now you know how to use Haskell as a calculator. A key idea of the Haskell language is that it will always be like a calculator, except that it will become really powerful when we calculate not only with numbers, but also with other objects like characters, lists, functions, trees and even other programs.

GHCi is a very powerful development environment. As we progress through the course, we'll learn how we can load source files into GHCi , and evaluate different bits of them.

The next chapter will introduce some of the basic concepts of Haskell. Let's dive into that and have a look at our first Haskell functions.

PT:HASKELL/INSTALAÇÃO E ARITMÉTICA ${ }^{3}$

[^1]
4 Variables and functions

(All the examples in this chapter can be typed into a Haskell source file and evaluated by loading that file into GHC or Hugs.)

4.1 Variables

We've already seen how to use the GHCi program as a calculator. Of course, this is only practical for very short calculations. For longer calculations and for writing Haskell programs, we need to keep track of intermediate results.

Intermediate results are stored in variables. For instance, consider the following calculation
This is the area of a circle with radius 5 . It is very cumbersome to type in the digits of $\pi \approx 3.1416$, or even to remember them at all; in fact, the whole point of programming is to delegate mindless repetition and rote memorization to a machine. That's why Haskell has defined a variable named pi that stores over a dozen digits of π for us.

In other words, the variable pi and its value 3.141592653589793 can be used interchangeably in calculations.

Now, we want to define our own variables to help us in our calculations. This is done in a so called Haskell source file.

4.2 Haskell source files

Create a new file called Varfun. hs in your favorite TEXT EDITOR ${ }^{1}$ (the file ending "hs" stands for Haskell) and paste in the following definition:

```
r = 5.0
```

Make sure that there are no spaces between the first letter and the beginning of the line, because Haskell is a whitespace sensitive language.

Now change into the directory where you saved your file, open up GHCi, and use the :load command in GHCi (: 1 can be used as abbreviation):

Loading a Haskell source file will make all its definitions available in the GHCi prompt.

[^2]If GHCi gives an error, "Could not find module 'Varfun.hs'", you probably forgot to change the directory. Use the : cd command to change the current directory to the directory containing your file "Varfun.hs":

Now you can use the newly defined variable r in your calculations.
So, to calculate the area of a circle of radius 5, we simply define $r=5.0$ and then type in the well-known formula $\pi \cdot r^{2}$ for the area of a circle. There is no need to write the numbers out every time; that's very convenient!

Since this was so much fun, let's add another definition; change the contents of the source file to

```
r = 5
area = pi * r ` 2
```

Save the file and type the :reload (or just :r) command in GHCi to load the new contents
Now we have two variables r and area available

4.3 Variables in imperative languages

If you are already familiar with imperative programming languages like C, you may have noticed that variables in Haskell are quite different from variables as you know them. We now explain why and how.

If you have no programming experience, you are to skip this section and continue reading with Functions ${ }^{2}$.

Unlike in imperative languages, variables in Haskell do not vary. Once defined, their value never changes; they are immutable. For instance, the following code does not work:

```
-- this does not work
r=5
r = 2
```

because it means to define one thing twice, which is silly. The compiler will complain something about "multiple declarations of r ". You may be accustomed to read this as first setting $r=5$ and then changing it to $r=2$, but that's not how Haskell works. Variables in Haskell are more like abbreviations for long expressions, much like in a calculation on paper, than locations in a changing computer memory.

Another example that doesn't work as you'd expect is

```
r = r + 1 -- this does not increment r
```

[^3]Instead of "incrementing the variable r ", this is actually a recursive definition of r in terms of itself. We will explain RECURSION ${ }^{3}$ in detail later on; for now just remember that this snippet of code does something very different from what you might be accustomed to.

This also implies that the order in which you declare different variables does not matter. For example, the following fragments of code do exactly the same thing:

```
y = x * 2
x = 3
```

```
x = 3
```

x = 3
y = x * 2

```
y = x * 2
```

We can write things in any order that we want, there is no notion of "x being declared before y " or the other way round. (This is also why you can't declare something more than once, it would be ambiguous otherwise.)

By now, you will probably look very incredulous and wonder how you can actually do anything at all in Haskell where variables don't change. But trust us; as we hope to show you in the rest of this book, you can write every program under the sun without ever changing a single variable! In fact, variables that don't change make life so much easier because it makes programs much more predictable. It's a key feature of purely functional programming, not a bug.

4.4 Functions

Now, imagine that we have multiple circles with different radii whose areas we want to calculate. For instance, to also calculate the area of another circle with radius 3, we would have to include new variables $r 2$ and area 2^{4} in our source file:

```
r = 5
area = pi*r^2
r2 = 3
area2 = pi*r2^2
```

Clearly, this is not very satisfactory because we are repeating the formula for the area of a circle verbatim; we would prefer to write it down only once and then apply it to different radii. That's exactly what functions allow us to do.

A function is a mapping from an argument value (also called parameter) to a result value. Defining functions in Haskell is simple; it is like defining a variable, except that we take note of the function argument on the left hand side. For instance, the following is the definition of a function area which depends on a argument r

```
area r = pi * r^2
```

[^4]We can plug in different values for the parameter; load this definition into GHCi and try the following

As you can see, we can apply this function to different radii to calculate their area of the corresponding circles.

You should know functions from mathematics already. They are usually written something like

$$
A(r)=\pi \cdot r^{2}
$$

The parameter is enclosed in parentheses and we would talk about $A(5)=78.54$ or $A(3)=28.27$. In Haskell, these parentheses are omitted, the function name and the argument will be separated by just some whitespace. After all, since Haskell is a functional language, we will apply a lot of functions, that's why we better use a very brief notation for that.

Parentheses are still used for grouping, however. For example,

```
area (5+3)
```

means to first calculate $(5+3)=8$ and then calculate the area of that, while

```
area 5 + 3
```

means to calculate area 5 first and add 3 to that.

4.4.1 Evaluation

Let us try to understand what exactly happens when you enter an expression into GHCi. After you press the enter key, GHCi will evaluate the expression you have given. This means that it will replace each function with its definition and calculate the results until a single value is left. For example, the evaluation of area 5 proceeds as follows:

```
    area 5
=> { replace the left-hand side area r = ... by the right-hand
side ... = pi * r^2 }
    pi * 5^2
    { replace pi by its numerical value }
    3.141592653589793 * 5^2
=> { apply exponentiation (`) }
    3.141592653589793 * 25
    { apply multiplication (*) }
    78.53981633974483
```

To apply a function means to replace the left-hand side of its definition by its right-hand side. As a last step, GHCi prints the final result on the screen.

Here are some more functions

```
double x = 2*x
quadruple x = double (double x)
square x = x*x
half x = x / 2
```


\{\{Exercises|1=

- Explain how GHCi evaluates quadruple 5.
- Define a function that subtracts 12 from half its argument. \}\}

4.4.2 Multiple parameters

Functions can also have more than one argument. For example, here is a function for calculating the area of a rectangle given its length and its width:

```
areaRect l w = l * w
```

Another example that calculates the area of a right triangle $\left(A=\frac{b h}{2}\right)$:

```
areaRightTriangle b h = (b * h) / 2
```

As you can see, multiple arguments are separated by spaces. That's also why you sometimes have to use parentheses to group expressions. For instance, to quadruple a value x, you can't write

```
quadruple x = double double x -- wrong
```

because that would mean to apply a function named double to the two arguments double and x. Instead, you have to put parentheses around the argument:

```
quadruple x = double (double x) -- correct
```

Arguments are always passed in the order given. So, areaRtTriangle 39 gives us the area of a triangle with base 3 and height 9, whereas areaRtTriangle 93 gives us the area with the base 9 and height 3.

4.4.3 Remark on combining functions

It goes without saying that you can use functions that you have already defined to define new functions, just like you can use the predefined functions like addition (+) or multiplication (*). For example, to calculate the area of a square, we can reuse our function that calculates the area of a rectangle

```
areaRect l w = l * w
areaSquare s = areaRect s s
```

After all, a square is just a rectangle with equal sides.
This principle may seem innocent enough, but it is really powerful, in particular when we start to calculate with other objects instead of numbers.

4.5 Local definitions (where clauses)

4.5.1 where clauses

When defining a function, it is not uncommon to define intermediate results that are local to the function. For instance, consider Heron's formula ${ }^{5}$ for calculating the area of a triangle with sides a, b and c :

```
heron a b c = sqrt (s*(s-a)*(s-b)*(s-c))
    where
    s=(a+b+c)/2
```

The variable s is half the perimeter of the triangle and it would be tedious to write it out four times in the argument of the square root function sqrt.

It would be wrong to just write the definitions in sequence

```
heron a b c = sqrt (s*(s-a)*(s-b)*(s-c)) -- wrong
s = (a+b+c) / 2
```

because the variables a, b, c are only available in the right-hand side of the function heron, but the definition of s as written here is not part of the right-hand side of heron. To make it part of the right-hand side, we have to use the where keyword.

Note that both the where and the local definitions are indented by 4 spaces, to distinguish them from subsequent definitions. Here another example that shows a mix of local and top-level definitions:

```
areaTriangleTrig a b c = c * height / 2 -- use trigonometry
    where
    cosa = (b^2 + c^2 - a^2) / (2*b*c)
    sina = sqrt (1 - cosa^2)
    height = b*sina
areaTriangleHeron a b c = result -- use Heron's formula
    where
    result = sqrt (s* (s-a)* (s-b)* (s-c))
```

[^5]```
=(a+b+c)/2
```


### 4.5.2 Scope

If you look closely at the previous example, you'll notice that we have used the variable names a , b, ctwice, once for each of the area. . functions. How does that work?
...
Fortunately, the following fragment of code does not contain any unpleasant surprises:
An unpleasant surprise here would have been getting the value 0 because of the let $r=0$ definition getting in the way. That does not happen because when you defined $r$ the second time you are talking about a differentr. This is something that happens in real life as well. How many people do you know that have the name John? What's interesting about people named John is that most of the time, you can talk about "John" to your friends, and depending on the context, your friends will know which John you are referring to. Programming has something similar to context, called scope ${ }^{6}$. We won't explain the technicalities behind scope (at least not now), but Haskell's lexical scope is the magic that lets us define two different $r$ and always get the right one back depending on context.

Thanks to scope, the value of a parameter is strictly what you pass in when you call the function. Informally, we could say the $r$ in let $r=0$ is not the same $r$ as the one inside our defined function area - the $r$ inside area overrides the other r; you can think of it as Haskell picking the most specific version of $r$ there is. If you have many friends all named John, you go with the one which just makes more sense and is specific to the context; similarly, what value of $r$ we get depends on the scope.

### 4.6 Summary

1. Variables store values. In fact, they store any arbitrary Haskell expressions.
2. Variables do not change.
3. Functions help you write reusable code.
4. Functions can accept more than one parameter.

### 4.7 Notes

<references/>
PT:HASKELL/VARIÁVEIS E FUNÇÕES ${ }^{7}$

[^6]
## 5 Truth values

### 5.1 Equality and other comparisons

So far we have seen how to use the equals sign to define variables and functions in Haskell. Writing

```
r = 5
```

will cause occurrences of $r$ to be replaced by 5 in all places where it makes sense to do so according to the scope of the definition. Similarly,

```
f x = x + 3
```

causes occurrences of $f$ followed by a number (which is taken as $f$ 's argument) to be replaced by that number plus three.

In Mathematics, however, the equals sign is also used in a subtly different and equally important way. For instance, consider this simple problem:

When we look at a problem like this one, our immediate concern is not the ability to represent the value 5 as $x+3$, or vice-versa. Instead, we read the $x+3=5$ equation as a proposition, which says that some number $x$ gives 5 as result when added to 3 . Solving the equation means finding which, if any, values of $x$ make that proposition true. In this case, using elementary algebra we can convert the equation into $x=5-3$ and finally to $x=2$, which is the solution we were looking for. The fact that it makes the equation true can be verified by replacing $x$ with 2 in the original equation, leading us to $2+3=5$, which is evidently true.

The ability of comparing values to see if they are equal turns out to be extremely useful in programming. Haskell allows us to write such tests in a very natural way that looks just like an equation. The main difference is that, since the equals sign is already used for defining things, we use a double equals sign, ==. To see it at work, you can start GHCi and enter the proposition we wrote above like this:

GHCi returns "True" lending further confirmation of the fact that $2+3$ is equal to 5 . Of course, 2 is the only value that satisfies the equation $x+3=5$, and therefore we would expect to obtain different results with other numbers.

Nice and coherent. Another thing to point out is that nothing stops us from using our own functions in these tests. Let us try it with the function $f$ we mentioned at the start of the module:

Just as expected, since $f 2$ is just $2+3$.

In addition to tests for equality, we can just as easily compare two numerical values to see which one is larger. Haskell provides a number of tests including: < (less than), > (greater than), <= (less than or equal to) and $>=$ (greater than or equal to), which work in exactly the same way as $==$ (equal to). For a simple application, we could use $<$ alongside the area function from the previous module to see whether a circle of a certain radius would have an area smaller than some value.

### 5.2 Boolean values

At this point, GHCi might look like some kind of oracle, which can tell you if propositions are true or false. That's all fine and dandy, but how could that help us to write programs? And what is actually going on when GHCi "answers" such "questions"?

To understand that, we will start from a different but related question. If we enter an arithmetical expression in GHCi the expression gets evaluated, and the resulting numerical value is displayed on the screen:

If we replace the arithmetical expression with an equality comparison, something similar seems to happen:

But what is that "True" that gets displayed? It certainly does not look like a number. We can think of it is as something that tells us about the veracity of the proposition $2==2$. From that point of view, it makes sense to regard it as a value - except that instead of representing some kind of count, quantity, etc. it stands for the truth of a proposition. Such values are called truth values, or boolean values ${ }^{1}$. Naturally, there are only two possible boolean values - True and False.

### 5.2.1 An introduction to types

When we say True and False are values, we are not just making an analogy. Boolean values have the same status as numerical values in Haskell, and indeed you can manipulate them just as well. One trivial example would be equality tests on truth values:

True is indeed equal to True, and True is not equal to False. Now, quickly: can you answer whether 2 is equal to True?

The correct answer is you can't, no matter if quickly or with hours of reasoning, because the question just does not make sense. It is impossible to compare a number with something that is not a number, or a boolean with something that is not a boolean. Haskell incorporates that notion, and the ugly error message we got is, in essence, stating exactly that. Ignoring all of the obfuscating clutter (which we will get to understand eventually) what the message tells us is that, since there was a number (Num) on the left side of the $==$, some kind of number was expected on the right side. But a boolean value ( BOOl ) is not a number, and so the equality test exploded into flames.

The general concept, therefore, is that values have types, and these types define what we can or cannot do with the values. In this case, for instance, True is a value of type Bool, just like False

[^7](as for the 2 , while there is a well-defined concept of number in Haskell the situation is slightly more complicated, so we will defer the explanations for a little while). Types are a very powerful tool because they provide a way to regulate the behaviour of values with rules which make sense, making it easier to write programs that work correctly. We will come back to the topic of types in many opportunities, starting with the very next module of this book.

### 5.3 Infix operators

What we have seen so far leads us to the conclusion that an equality test like $2==2$ is an expression just like $2+2$, and that it also evaluates to a value in pretty much the same way. That fact is actually given a passing mention on the ugly error message we got on the previous example:
Therefore, when we type $2=2$ in the prompt and GHCi "answers" True it is just evaluating an expression. But there is a deeper truth involved in this process. A hint is provided by the very same error message:

GHCi called 2 the first argument of (==). In the previous module we used the term argument to describe the values we feed a function with so that it evaluates to a result. It turns out that $==$ is just a function, which takes two arguments, namely the left side and the right side of the equality test. The only special thing about it is the syntax: Haskell allows two-argument functions with names composed only of non-alphanumeric characters to be used as infix operators, that is, placed between their arguments. The only caveat is that if you wish to use such a function in the "standard" way (writing the function name before the arguments, as a prefix operator) the function name must be enclosed in parentheses. So the following expressions are completely equivalent:

Writing the expression in this alternative style further drives the point that (==) is a function with two arguments just like areaRect in the previous module was. What's more, the same considerations apply to the other relational operators we mentioned ( $\langle\rangle,,<=,\rangle=$ ) and to the arithmetical operators ( + , *, etc.) - all of them are just functions. This generality is an illustration of one of the strengths of Haskell - there are quite few "special cases", and that helps to keep things simple. In general, we could say that all tangible things in Haskell are either values, variables or functions. ${ }^{2}$

### 5.4 Boolean operations

One nice and useful way of seeing both truth values and infix operators in action are the boolean operations, which allows us to manipulate truth values as in logic propositions. Haskell provides us three basic functions for that purpose:

- (\&\&) performs the and operation. Given two boolean values, it evaluates to True if both the first and the second are True, and to False otherwise.
- (I।) performs the or operation. Given two boolean values, it evaluates to True if either the first or the second are True (or if both are true), and to False otherwise.
- not performs the negation of a boolean value; that is, it converts True to Fal se and vice-versa.

[^8]One relational operator we didn't mention so far in our discussions about comparison of values is the not equal to operator. It is also provided by Haskell as the (/=) function, but if we had to implement it a very natural way of doing so would be:

```
x /= y = not (x == y)
```

Note that it is perfectly legal syntax to write the operators infix, even when defining them.

### 5.5 Guards

Earlier on in this module we proposed two questions about the operations involving truth values: what was actually going on when we used them and how they could help us in the task of writing programs. While we now have a sound initial answer for the first question, the second one could well look a bit nebulous to you at this point, as we did little more than testing one-line expressions here. We will tackle this issue by introducing a feature that relies on boolean values and operations and allows us to write more interesting and useful functions: guards.

To show how guards work, we are going to implement the absolute value function. The absolute value of a number is the number with its sign discarded ${ }^{3}$; so if the number is negative (that is, smaller than zero) the sign is inverted; otherwise it remains unchanged. We could write the definition as:
$|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0 .\end{cases}$
The key feature of the definition is that the actual expression to be used for calculating $|x|$ depends on a set of propositions made about $x$. If $x \geq 0$ we use the first expression, but if $x<0$ we use the second one instead. If we are going to implement the absolute value function in Haskell we need a way to express this decision process. That is exactly what guards help us to do. Using them, the implementation could look like this: ${ }^{4}$

Impressively enough, the above code is almost as readable as the corresponding mathematical definition. In order to see how the guard syntax fits with the rest of the Haskell constructs, let us dissect the components of the definition:

- We start just like in a normal function definition, providing a name for the function, abs, and saying it will take a single parameter, which we will name x .
- Instead of just following with the $=$ and the right-hand side of the definition, we entered a line break, and, following it, the two alternatives, placed in separate lines. ${ }^{5}$ These alternatives

[^9]are the guards proper. An important observation is that the whitespace is not there just for aesthetic reasons, but it is necessary for the code to be parsed correctly.

- Each of the guards begins with a pipe character, ।. After the pipe, we put a expression which evaluates to a boolean (also called a boolean condition or a predicate), which is followed by the rest of the definition - the equals sign and the right-hand side which should be used if the predicate evaluates to True.
- The otherwise deserves some additional explanation. If none of the preceding predicates evaluates to True, the otherwise guard will be deployed by default. In this case, if x is not smaller than it must be greater or equal than zero, so it makes no difference to use $x>=0$ or otherwise as the last predicate.


### 5.5.1 where and guards

where clauses are particularly handy when used with guards. For instance, consider this function, which computes the number of (real) solutions for a QUADRATIC EQUATION ${ }^{6}, a x^{2}+b x+c=0$ :

```
numOfSolutions a b c
 | disc > 0 = 2
 | disc == 0 = 1
 | otherwise = 0
 where
 disc = b^2 - 4*a*c
```

The where definition is within the scope of all of the guards, sparing us from repeating the expression for disc.

### 5.6 Notes

<references/>
[^10]
## 6 Type basics

Types in programming are a way of grouping similar values into categories. In Haskell, the type system is a powerful way of ensuring there are fewer mistakes in your code.

### 6.1 Introduction

Programming deals with different sorts of entities. For example, consider adding two numbers together:
$2+3$
What are 2 and 3 ? We can quite simply describe them as numbers. And what about the plus sign in the middle? That's certainly not a number, but it stands for an operation which we can do with two numbers - namely, addition.

Similarly, consider a program that asks you for your name and then greets you with a "Hello" message. Neither your name nor the word Hello are numbers. What are they then? We might refer to all words and sentences and so forth as text. In fact, it's more normal in programming to use a slightly more esoteric word, that is, String.

Databases illustrate clearly the concept of types. For example, say we had a table in a database to store details about a person's contacts; a kind of personal telephone book. The contents might look like this:

| First Name | Last Name | Telephone number | Address |
| :--- | :--- | :--- | :--- |
| Sherlock | Holmes | 743756 | 221B Baker Street |
| Bob |  |  | London |
|  | Jones | 655523 | 99 Long Road |
|  |  |  | Street Villestown |

The fields in each entry contain values. Sherlock is a value as is 99 Long Road Street Villestown as well as 655523. As we've said, types are a way of categorizing data, so let us see how we could classify the values in this example. The first three fields seem straightforward enough. "First Name" and "Last Name" contain text, so we say that the values are of type String, while "Telephone Number" is clearly a number.

At first glance one may be tempted to classify address as a String. However, the semantics behind an innocent address are quite complex. There are a whole lot of human conventions that dictate how we interpret it. For example, if the beginning of the address text contains a number it is likely the number of the house. If not, then it's probably the name of the house - except if it starts with "PO Box", in which case it's just a postal box address and doesn't indicate where the person lives at all.

Clearly, there's more going on here than just text, as each part of the address has its own meaning. In principle there is nothing wrong with saying addresses are Strings, but when we describe something as a String all that we are saying is that it is a sequence of letters, numbers, etc. Claiming they're of some more specialized type, say, Address, is far more meaningful. If we know something is an Address, we instantly know much more about the piece of data - for instance, that we can interpret it using the "human conventions" that give meaning to addresses.

In retrospect, we might also apply this rationale to the telephone numbers. It could be a good idea to speak in terms of a TelephoneNumber type. Then, if we were to come across some arbitrary sequence of digits which happened to be of type TelephoneNumber we would have access to a lot more information than if it were just a Number - for instance, we could start looking for things such as area and country codes on the initial digits.

Another reason to not consider the telephone numbers as just Numbers is that doing arithmetics with them makes no sense. What is the meaning and expected effect of, say, adding 1 to a TelephoneNumber? It would not allow calling anyone by phone. That's a good reason for using a more specialized type than Number. Also, each digit comprising a telephone number is important; it's not acceptable to lose some of them by rounding it or even by omitting leading zeroes.

### 6.1.1 Why types are useful

So far, it seems that all what we've done was to describe and categorize things, and it may not be obvious why all of this talk would be so important for writing actual programs. Starting with this module, we will explore how Haskell uses types to the programmer's benefit, allowing us to incorporate the semantics behind, say, an address or a telephone number seamlessly in the code.

### 6.2 Using the interactive : type command

The best way to explore how types work in Haskell is from GHCi. The type of any expression can be checked with the immensely useful : type command. Let us test it on the boolean values from the previous module:

Usage of :type is straightforward: enter the command into the prompt followed by whatever you want to find the type of. On the third example, we show an abbreviated version of the command, : $t$, which we will be using from now on. GHCi will then print the type of the expression. The symbol : :, which will appear in a couple other places, can be read as simply "is of type".
: type reveals that truth values in Haskell are of type Bool, as illustrated above for the two possible values, True and False, as well as for a sample expression that will evaluate to one of them. It is worthy to note at this point that boolean values are not just for value comparisons. Bool captures in a very simple way the semantics of a yes/no answer, and so it can be useful to represent any information of such kind - say, whether a name was found in a spreadsheet, or whether a user has toggled an on/off option.

### 6.2.1 Characters and strings

Now let us try : t on something new. Literal characters are entered by enclosing them with single quotation marks. For instance this is a single $H$ letter:

Literal character values, then, have type Char. Single quotation marks, however, only work for individual characters. If we need to enter actual text - that is, a string of characters - we use double quotation marks instead:

Seeing this output, a pertinent question would be "why did we get Char" again? The difference is in the square brackets. [Char] means a number of characters chained together, forming a list. That is what text strings are in Haskell - lists of characters. ${ }^{1}$

## \{\{Exercises|1=

1. Try using : type on the literal value "H" (notice the double quotes). What happens? Why?
2. Try using :type on the literal value 'Hello World' (notice the single quotes). What happens? Why?\}\}

A nice thing to be aware of is that Haskell allows for type synonyms, which work pretty much like synonyms in human languages (words that mean the same thing - say, 'fast' and 'quick'). In Haskell, type synonyms are alternate names for types. For instance, String is defined as a synonym of [Char] , and so we can freely substitute one with the other. Therefore, to say:

```
"Hello World" :: String
```

is also perfectly valid, and in many cases a lot more readable. From here on we'll mostly refer to text values as String, rather than [Char].

### 6.3 Functional types

So far, we have seen how values (strings, booleans, characters, etc.) have types and how these types help us to categorize and describe them. Now, the big twist, and what makes the Haskell's type system truly powerful: Not only values, but functions have types as well ${ }^{2}$. Let's look at some examples to see how that works.

### 6.3.1 Example: not

Consider not, that negates boolean values (changing True to false and vice-versa). To figure out the type of a function we consider two things: the type of values it takes as its input and the type of value it returns. In this example, things are easy. not takes a Bool (the Bool to be negated), and returns a Bool (the negated Bool). The notation for writing that down is:

[^11]You can read this as "not is a function from things of type Bool to things of type Bool". In case you are wondering about using :t on a function...
... it will work just as expected. This description of the type of a function in terms of the types of argument(s) and result is called a type signature.

### 6.3.2 Example: chr and ord

Text presents a problem to computers. Once everything is reduced to its lowest level, all a computer knows how to deal with are 1s and 0s: computers work in binary. As working with binary numbers isn't at all convenient, humans have come up with ways of making computers store text. Every character is first converted to a number, then that number is converted to binary and stored. Hence, a piece of text, which is just a sequence of characters, can be encoded into binary. Normally, we're only interested in how to encode characters into their numerical representations, because the computer generally takes care of the conversion to binary numbers without our intervention.

The easiest way of converting characters to numbers is simply to write all the possible characters down, then number them. For example, we might decide that 'a' corresponds to 1 , then 'b' to 2 , and so on. This is exactly what a thing called the ASCII standard is: 128 of the most commonlyused characters, numbered. Of course, it would be a bore to sit down and look up a character in a big lookup table every time we wanted to encode it, so we've got two functions that can do it for us, chr (pronounced 'char') and ord ${ }^{3}$ :

We already know what Char means. The new type on the signatures above, Int, amounts to integer numbers, and is one of quite a few different types of numbers. ${ }^{4}$ The type signature of chr tells us that it takes an argument of type Int, an integer number, and evaluates to a result of type Char. The converse is the case with ord: It takes things of type Char and returns things of type Int. With the info from the type signatures, it becomes immediately clear which of the functions encodes a character into a numeric code (ord) and which does the decoding back to a character (chr).

To make things more concrete, here are a few examples of function calls to chr and ord. Notice that the two functions aren't available by default; so before trying them in GHCi you need to use the :module Data. Char (or :m Data. Char) command to load the Data.Char module, where they are defined.

### 6.3.3 Functions in more than one argument

The style of type signatures we have been using works fine enough for functions of one argument. But what would be the type of a function like this one?
(As we mentioned above, there's more than one type for numbers, but for now we're going to cheat and pretend that x and y have to be Ints.)

[^12]The general technique for forming the type of a function that accepts more than one argument is simply to write down all the types of the arguments in a row, in order (so in this case x first then $y$ ), then link them all with ->. Finally, add the type of the result to the end of the row and stick a final -> in just before it. ${ }^{5}$ In this example, we have:

```
<!-- There's a problem with using continuing list numbering, , and wiki syntax all together -->

Write down the types of the arguments. We've already said that
 <code>x</code> and <code>y</code> have to be Ints, so it becomes:
<pre>
Int Int
^^x}\mathrm{ is an Int ^^ y is an Int as well
```

</li> Fill in the gaps with ->: Int -> Int
Add in the result type and a final ->. In our case, we're just doing some basic arithmetic so the result remains an Int.

```
Int -> Int -> Int
 ^^ We're returning an Int
 ^^ There's the extra -> that got added in

```


### 6.3.4 Real-World Example: openWindow

As you'll learn in the Practical Haskell section of the course, one popular group of Haskell libraries are the GUI ones. These provide functions for dealing with all the parts of Windows or Linux you're familiar with: opening and closing application windows, moving the mouse around etc. One of the functions from one of these libraries is called openWindow, and you can use it to open a new window in your application. For example, say you're writing a word processor, and the user has clicked on the 'Options' button. You need to open a new window which contains all the options that they can change. Let's look at the type signature for this function ${ }^{6}$ :

Don't panic! Here are a few more types you haven't come across yet. But don't worry, they're quite simple. All three of the types there, WindowTitle, WindowSize and Window are defined by the GUI library that provides openWindow. As we saw when constructing the types above, because there are two arrows, the first two types are the types of the parameters, and the last is the type of the result. WindowTitle holds the title of the window (what appears in the bar at the very top of the window, left of the close/minimize/etc. buttons), and WindowSize specifies how big the window should be. The function then returns a value of type Window which represents the actual window.

[^13]One key point illustrated by this example, as well as the chr/ord one is that, even if you have never seen the function or don't know how it actually works, a type signature can immediately give you a good general idea of what the function is supposed to do. For that reason, a very useful habit to acquire is testing every new function you meet with : $t$. If you start doing so right now you'll not only learn about the standard library Haskell functions quite a bit quicker but also develop a useful kind of intuition. Curiosity pays off :)
$\{\{$ Exercises| Finding types for functions is a basic Haskell skill that you should become very familiar with. What are the types of the following functions?

1. The negate function, which takes an Int and returns that Int with its sign swapped. For example, negate $4=-4$, and negate $(-2)=2$
2. The ( $\& \&$ ) function, pronounced 'and', that takes two Bools and returns a third Bool which is True if both the arguments were, and False otherwise.
3. The (
) function, pronounced 'or', that takes two Bools and returns a third Bool which is True if either of the arguments were, and False otherwise.

For any functions hereafter involving numbers, you can just assume the numbers are Ints.

1. $f x y=\operatorname{not} x \& \& y$
2. $g x=(2 * x-1)^{\wedge} 2$
3. $h x y z=\operatorname{chr}(x-2)\}\}$

### 6.4 Type signatures in code

Now we've explored the basic theory behind types as well as how they apply to Haskell. The key way in which type signatures are used is for annotating functions. For an applied example, let us have a look at a very small module (modules in Haskell are just a neat way of making a library by packing functions for usage in other programs. No need to worry with details now).

This tiny library provides three handy string manipulation functions. uppercase converts a string to uppercase, lowercase to lowercase, and capitalize capitalizes the first letter of every word. Each of these functions takes a String as argument and evaluates to another String. For now, don't worry with how the code actually works, as it is obviously full of features we haven't discussed yet. Anyway - and specially because we don't understand the implementation yet - stating the type for these functions explicitly would make their roles more obvious. Most Haskellers would write the above module using type signatures, like this:

The added signatures inform the type of the functions to the human readers and, crucially, to the compiler/interpreter as well. Note that you can write a single type signature if the two or more functions share the same type (like uppercase and lowercase).

### 6.4.1 Type inference

We just said that type signatures tell the interpreter (or compiler) what the function type is. However, up to this point you wrote perfectly good Haskell code without any signatures, and it has been accepted by GHC/GHCi. That shows that it is not strictly mandatory to add type signatures.

But that doesn't mean that if you don't add them Haskell simply forgets about types altogether! Instead, when you didn't tell Haskell the types of your functions and variables it figured them out through a process called type inference. In essence, the compiler performs inference by starting with the types of things it knows and then working out the types of the rest of the things. Let's see how that works with a general example.
isL is a function that takes an argument $c$ and returns the result of evaluating $c==' 1$ '. If we don't provide a type signature the compiler, in principle, does not know the type of $c$, nor the type of the result. In the expression $c==$ ' $l^{\prime}$, however, it does know that ' 1 ' is a Char. Since $c$ and ' 1 ' are being compared with equality with ( $==$ ) and both arguments of (==) must have the same type ${ }^{7}$, it follows that $c$ must be a Char. Finally, since isL c is the result of $(==)$ it must be a Bool. And thus we have a signature for the function:

And, indeed, if you leave out the type signature the Haskell compiler will discover it through this process. You can verify that by using : t on isL with or without a signature.

So if type signatures are optional why bother with them at all? Here are a few reasons:

- Documentation: type signatures make your code easier to read. With most functions, the name of the function along with the type of the function is sufficient to guess what the function does. Of course, you should always comment your code properly too, but having the types clearly stated helps a lot, too.
- Debugging: if you annotate a function with a type signature and then make a typo in the body of the function which changes the type of a variable the compiler will tell you, at compile-time, that your function is wrong. Leaving off the type signature could have the effect of allowing your function to compile, and the compiler would assign it an erroneous type. You wouldn't know until you ran your program that it was wrong. In fact, since this is such a crucial point we will explore it a bit further.


### 6.4.2 Types prevent errors

The role of types in preventing errors is central to typed languages. When passing expressions around you have to make sure the types match up like they did here. If they don't, you'll get type errors when you try to compile; your program won't typecheck. This is really how types help you to keep your programs bug-free. To take a very trivial example:

Having that line as part of your program will make it fail to compile, because you can't add two strings together! In all likelihood the intention was to use the similar-looking string concatenation operator, which joins two strings together into a single one:

An easy typo to make, but because you use Haskell, it was caught when you tried to compile. You didn't have to wait until you ran the program for the bug to become apparent.

This was only a simple example. However, the idea of types being a system to catch mistakes works on a much larger scale too. In general, when you make a change to your program, you'll change the type of one of the elements. If this change isn't something that you intended, or has

[^14]unforeseen consequences, then it will show up immediately. A lot of Haskell programmers remark that once they have fixed all the type errors in their programs, and their programs compile, that they tend to "just work": run flawlessly at the first time, with only minor problems. Runtime errors, where your program goes wrong when you run it rather than when you compile it, are much rarer in Haskell than in other languages. This is a huge advantage of having a strong type system like Haskell does.

### 6.5 Notes

<references/>

## 7 Lists and tuples

Lists and tuples are the two most fundamental ways of manipulating several values together, by binding them down into a single value.

### 7.1 Lists

Functions are one of the two major building blocks of any Haskell program. The other is the list. So let's switch over to the interpreter and build lists:

The square brackets delimit the list, and individual elements are separated by commas. The only important restriction is that all elements in a list must be of the same type. Trying to define a list with mixed-type elements results in a typical type error:

### 7.1.1 Building lists

In addition to specifying the whole list at once using square brackets and commas, you can build them up piece by piece using the ( $:$ ) operator. This process is often referred to as consing ${ }^{1}$.

When you cons something on to a list (something: someList), what you get back is another list. Therefore you can keep on consing for as long as you wish.

In fact, this is how lists are actually built, by consing all elements to an empty list ([]). The commas-and-brackets notation is just syntactic sugar - a more pleasant way to write code. So $[1,2,3,4,5]$ is exactly equivalent to $1: 2: 3: 4: 5:[]$

You will, however, want to watch out for a potential pitfall in list construction. Whereas something like True: False: [] is perfectly good Haskell, True: False is not.

True:False produces a familiar-looking type error message, which tells us that the cons operator (:) (which is really just a function) expected a list as its second argument but we gave it another Bool instead. (: ) only knows how to stick things onto lists. ${ }^{2}$

## Summarizing:

- The elements of the list must have the same type.
- You can only cons (:) something onto a list.

[^15]
### 7.1.2 Strings are just lists

As we briefly mentioned in the Type Basics module, strings in Haskell are just lists of characters. That means values of type String can be manipulated just like any other list. For instance, instead of entering strings directly as a sequence of characters enclosed in double quotation marks, they may also be constructed through a sequence of Char values, either linked with (:) and terminated by an empty list or using the commas-and-brackets notation.

### 7.1.3 Lists within lists

Lists can contain anything, just as long as they are all of the same type. Well, then, lists are things too, therefore, lists can contain other lists! Try the following in the interpreter:

Lists of lists can be pretty tricky sometimes, because a list of things does not have the same type as a thing all by itself. Let's sort through these implications with a few exercises:

Lists of lists are extremely useful, because they allow you to express some very complicated, structured data (two-dimensional matrices, for example). They are also one of the places where the Haskell type system truly shines. Human programmers, or at least this wikibook co-author, get confused all the time when working with lists of lists, and having restrictions of types often helps in wading through the potential mess.

### 7.2 Tuples

### 7.2.1 A different notion of many

Tuples are another way of storing multiple values in a single value. There are two key differences between tuples and lists:

- They have a fixed number of elements, and so you can't cons to a tuple. Therefore it makes sense to use tuples when you know in advance how many values are to be stored. For example, we might want a type for storing 2D coordinates of a point. We know exactly how many values we need for each point (two - the $x$ and $y$ coordinates), so tuples are applicable.
- The elements of a tuple do not need to be all of the same type. For instance, in a phonebook application we might want to handle the entries by crunching three values into one: the name, phone number and address of each person. In such a case the three values won't have the same type, and so lists wouldn't help - but tuples would.

Let's look at some sample tuples.
The first example is a tuple containing two elements. The first one is True and the second is 1. The next example again has two elements, the first is "Hello world" and the second, False. The third example is a tuple consisting of five elements, the first is 4 (a number), the second 5 (another number), the third "Six" (a string), the fourth True (a boolean value), and the last one 'b' (a character). So the syntax for tuples is: separate the different elements with a comma, and surround the whole thing in parentheses.

A quick note on nomenclature: in general you write $n$-tuple for a tuple of size $n$. 2-tuples (that is, tuples with 2 elements) are normally called 'pairs' and 3-tuples triples. Tuples of greater sizes aren't actually all that common, although, if you were to logically extend the naming system, you'd have 'quadruples', 'quintuples' and so on, hence the general term 'tuple'.

Tuples are also handy when you want to return more than one value from a function. In most languages trying to return two or more things at once means wrapping them up in a special data structure, maybe one that only gets used in that function. In Haskell, you have the alternative of just returning them as a tuple ${ }^{3}$.

### 7.2.2 Getting data out of tuples

In this section, we focus on pairs for simplicity's sake, but also because they are far and away the most commonly used size of tuple.

Okay, so we've seen how we can put values into tuples, simply by using the ( $\mathrm{x}, \mathrm{y}$ ) syntax. How can we get them out again? For example, a typical use of pairs is to store the $(x, y)$ coordinates of a point: imagine you have a chess board, and want to specify a specific square. You could do this by labeling all the rows from 1 to 8 , and similarly with the columns, then letting, say, $(2,5)$ represent the square in row 2 and column 5 . Say we want to define a function for finding all the pieces in a given row. One way of doing this would be to find the coordinates of all the pieces, then look at the row part and see whether it's equal to whatever row we're being asked to examine. This function would need, once it had the coordinate pair ( $x, y$ ) of a piece, to extract the $x$ (the row part). To do that there are two functions, fst and snd, that retrieve ${ }^{4}$ the first and second elements out of a pair, respectively. Let's see some examples:

Note that these functions only work on pairs. Why? Yet again, it has to do with types. Pairs and triples (and quadruples, etc.) have necessarily different types, and fst and snd only accepts pairs as arguments.

The general technique for extracting a component out of a tuple is pattern matching (yep, we'll talk about it in great detail later on, as this is one of the distinctive features of functional languages). Without making things more complicated than they ought to be at this point, let me just show you how I can write a function named first that does the same thing as $f s t$ :

This just says that given a pair ( $\mathrm{x}, \mathrm{y}$ ), first ( $\mathrm{x}, \mathrm{y}$ ) gives you x .

### 7.2.3 Tuples within tuples (and other combinations)

We can apply the same reasoning to tuples about storing lists within lists. Tuples are things too, so you can store tuples with tuples (within tuples up to any arbitrary level of complexity). Likewise, you could also have lists of tuples, tuples of lists, all sorts of combinations along the same lines.

[^16]There is one bit of trickiness to watch out for, however. The type of a tuple is defined not only by its size, but by the types of objects it contains. For example, the tuples ("Hello", 32) and (47, "World") are fundamentally different. One is of type (String, Int), whereas the other is (Int, String). This has implications for building up lists of tuples. We could very well have lists like [("a", 1), ("b", 9) , ("c", 9)], but having a list like [("a", 1), (2, "b"), (9, "c")] is right out. Can you spot the difference?

### 7.3 Polymorphic types

As you may have found out already by playing with : $t$, the type of a list depends on the types of its elements, and is denoted by enclosing it in square brackets:

Therefore, lists of Bool have different types than lists of [Char] (that is, strings), of Int and so on. Since we have seen that functions only accept arguments of the types specified in the type of the function, that leads to some practical complication. For example, imagine a function that finds the length of a list. But since [Int], [Bool] and [String] are different types it seems we would need separate functions for each case - lengthInts : : [Int] -> Int, as well as a lengthBools :: [Bool] -> Int, as well as a lengthStrings :: [String] -> Int, as well as a...

That would be horribly annoying, and frustrating too, because intuitively it would seem that counting how many things there are in a list should be independent of what the things actually are. Fortunately, it does not work like that: there is a single function length, which works on all lists. But how can that possibly work? As usual, checking the type of length provides a good hint that there is something different going on...

The "a" in the square brackets is not a type - remember that type names always start with uppercase letters. Instead, it is a type variable. When Haskell sees a type variable, it allows any type to take its place. This is exactly what we want. In type theory (a branch of mathematics), this is called polymorphism: functions or values with only a single type are called monomorphic, and things that use type variables to admit more than one type are therefore polymorphic.

### 7.3.1 Example: fst and snd

As we saw, you can use the fst and snd functions to extract parts of pairs. By this time you should already be developing the habit of wondering "what type is that function?" about every function you come across. Let's consider the cases of $f$ st and snd. These two functions take a pair as their argument and return one element of this pair. First of all, the type of a pair depends on the type of its elements, just as with lists, so the functions need to be polymorphic. Also it is important to keep in mind that pairs, and tuples in general, don't have to be homogeneous with respect to types; their different parts can be different types. So if we were to say:

```
fst :: (a, a) -> a
```

That would mean fst would only work if the first and second part of the pair given as input had the same type. That illustrates an important aspect to type variables: although they can be
replaced with any type, they have to be replaced with the same type everywhere for consistency. So what is the correct type? Simply:
b is a second type variable, which stands for a type which may or may not be equal to the one which replaces a.

Note that if you knew nothing about $f$ st and snd other than the type signatures you might guess that they return the first and second parts of a pair, respectively. In fact that would not be necessarily true, as all the signatures say is that they just have to return something with the same type of the first and second parts of the pair.

### 7.4 Summary

We have introduced two new notions in this chapter, lists and tuples. To sum up:

1. Lists are defined by square brackets and commas: $[1,2,3]$.

- They can contain anything as long as all the candidate elements of the list are of the same type
- They can also be built by the cons operator, (: ), but you can only cons things onto lists

2. Tuples are defined by parentheses and commas: ("Bob",32)

- They can contain anything, even things of different types
- Their length is encoded in their type. That is, two tuples with different lengths will have different types.

3. Lists and tuples can be combined in any number of ways: lists within lists, tuples with lists, etc.

### 7.5 Notes

```
<references/>
PT:HASKElL/LISTAS E N-UPLAS }\mp@subsup{}{}{5
```

[^17]
## 8 Type basics II

Up to now we have shrewdly avoided number types in our examples. In one exercise, we even went as far as asking you to "pretend" the arguments to (+) had to be an Int. So what are we hiding from?

The main theme of this module will be how numerical types are handled in Haskell. While doing so, we will introduce some important features of the type system. Before diving into the text, though, pause for a moment and consider the following question: what should be the type of the function (+) ? ${ }^{1}$

### 8.1 The Num class

As far as everyday Mathematics is concerned, there are very few restrictions on which kind of numbers we can add together. $2+3$ (two natural numbers), $(-7)+5.12$ (a negative integer and a rational number) $\frac{1}{7}+\pi$ (a rational and an irrational)... all of these are valid - indeed, any two real numbers can be added together. In order to capture such generality in the simplest way possible we would like to have a very general Number type in Haskell, so that the signature of (+) would be simply
(+) :: Number -> Number -> Number

That design, however, does not fit well with the way computers perform arithmetic. While integer numbers in programs can be quite straightforwardly handled as sequences of binary digits in memory, that approach does not work for non-integer real numbers ${ }^{2}$, thus making it necessary a more involved encoding to support them: FLOATING POINT NUMBERS ${ }^{3}$. While floating point provides a reasonable way to deal with real numbers in general, it has some inconveniences (most notably, loss of precision) which make it worthy to keep using the simpler encoding for integer values. We are thus left with at least two different ways of storing numbers, one for integers and another one for general real numbers, which should correspond to different Haskell types. Furthermore, computers are only able to perform operations like ( + ) on a pair of numbers if they are in the same format. That should put an end to our hopes of using a universal Number type or even having (+) working with both integers and floating-point numbers...

[^18]It is easy, however, to see reality is not that bad. We can use (+) with both integers and floating point numbers:

When discussing lists and tuples, we saw that functions can accept arguments of different types if they are made polymorphic. In that spirit, one possible type signature for ( + ) that would account for the facts above would be:

```
(+) :: a -> a -> a
```

$(+)$ would then take two arguments of the same type a (which could be integers or floating-point numbers) and evaluate to a result of type a. There is a problem with that solution, however. As we saw before, the type variable a can stand for any type at all. If (+) really had that type signature we would be able to add up two Bool, or two Char, which would make no sense - and is indeed impossible. Rather, the actual type signature of $(+)$ takes advantage of a language feature that allows us to express the semantic restriction that a can be any type as long as it is a number type:
(+) :: (Num a) => a $\rightarrow$ a $->$ a

Num is a typeclass - a group of types which includes all types which are regarded as numbers ${ }^{4}$. The (Num a) => part of the signature restricts a to number types - or, more accurately, instances of Num.

### 8.2 Numeric types

But what are the actual number types - the instances of Num that a stands for in the signature? The most important numeric types are Int, Integer and Double:

- Int corresponds to the vanilla integer type found in most languages. It has fixed precision, and thus maximum and minimum values (in 32-bit machines the range goes from -2147483648 to 2147483647).
- Integer also is used for integer numbers, but unlike Int it supports arbitrarily large values at the cost of some efficiency.
- Double is the double-precision floating point type, and what you will want to use for real numbers in the overwhelming majority of cases (there is also Float, the single-precision counterpart of Double, which in general is not an attractive option due to the loss of precision).

These types are available by default in Haskell, and are the ones you will generally deal with in everyday tasks.

[^19]
### 8.2.1 Polymorphic guesswork

There is one thing we haven't explained yet, though. If you tried the examples of addition we mentioned at the beginning you know that something like this is perfectly valid:

Here, it seems we are adding two numbers of different types - an integer and a non-integer. Shouldn't the type of ( + ) make that impossible?

To answer that question we have to see what the types of the numbers we entered actually are:
And, lo and behold, ( -7 ) is neither Int or Integer! Rather, it is a polymorphic constant, which can "morph" into any number type if need be. The reason for that becomes clearer when we look at the other number...
5.12 is also a polymorphic constant, but one of the Fractional class, which is more restrictive than Num - every Fractional is a Num, but not every Num is a Fractional (for instance, Ints and Integers are not).

When a Haskell program evaluates $(-7)+5.12$, it must settle for an actual type for the numbers. It does so by performing type inference while accounting for the class specifications. (-7) can be any Num, but there are extra restrictions for 5.12 , so its type will define what ( -7 ) will become. Since there is no other clues to what the types should be, 5.12 will assume the default Fractional type, which is Double; and, consequently, (-7) will become a Double as well, allowing the addition to proceed normally and return a Double ${ }^{5}$.

There is a nice quick test you can do to get a better feel of that process. In a source file, define

```
x = 2
```

then load the file in GHCi and check the type of x . Then, add an y variable

```
x = 2
y=x+3
```

and check the types of x and y . Finally, modify y to

```
x = 2
y = x + 3.1
```

and see what happens with the types of both variables.

[^20]
### 8.2.2 Monomorphic trouble

The sophistication of the numerical types and classes occasionally leads to some complications. Consider, for instance, the common division operator (/). It has the following type signature:

```
(/) :: (Fractional a) => a -> a -> a
```

Restricting a to fractional types is a must because the division of two integer numbers in general will not result in an integer. Nevertheless, we can still write something like
because the literals 4 and 3 are polymorphic constants and therefore assume the type Double at the behest of (/). Suppose, however, we want to divide a number by the length of a list ${ }^{6}$. The obvious thing to do would be using the length function:

Unfortunately, that blows up:
As usual, the problem can be understood by looking at the type signature of length:

```
length :: [a] -> Int
```

The result of length is not a polymorphic constant, but an Int; and since an Int is not a Fractional it can't fit the signature of (/).

There is a handy function which provides a way of escaping from this problem. Before following on with the text, try to guess what it does only from the name and signature:

```
fromIntegral :: (Integral a, Num b) => a -> b
```

fromIntegral takes an argument of some Integral type (like Int or Integer) and makes it a polymorphic constant. By combining it with length we can make the length of the list fit into the signature of (/):

While this complication may look spurious at first, this way of doing things makes it easier to be rigorous when manipulating numbers. If you define a function that takes an Int argument you can be entirely sure that it will never be converted to an Integer or a Double unless you explicitly tell the program to do so (for instance, by using fromIntegral). As a direct consequence of the refinement of the type system, there is a surprising diversity of classes and functions for dealing with numbers in Haskell ${ }^{7}$.

[^21]
### 8.3 Classes beyond numbers

There are many other use cases for typeclasses beyond arithmetic. For example, the type signature of ( $==$ ) is:
(==) :: (Eq a) $\Rightarrow$ a $->$ a $->$ Bool

Like (+) or (/), (==) is a polymorphic function. It compares two values of the same type, which must belong to the class Eq, and returns a Bool. Eq is simply the class of types of values which can be compared for equality, and includes all of the basic non-functional types.

Typeclasses are a very general language feature which adds a lot to the power of the type system. Later in the book we will return to this topic to see how to use them in custom ways, which will allow you to appreciate their usefulness in its fullest extent.

### 8.4 Notes

<references/>

## 9 Next steps

Working with actual source code files instead of typing things into the interpreter makes it convenient to define much more substantial functions than those we've seen up to now. Let's flex some Haskell muscle here and examine the kinds of things we can do with our functions.

### 9.1 Conditional expressions

### 9.1.1 if / then / else

Haskell supports standard conditional expressions. For instance, we could define a function that returns -1 if its argument is less than $0 ; 0$ if its argument is 0 ; and 1 if its argument is greater than 0 . Actually, such a function already exists (called the signum function), but let's define one of our own, what we'll call mySignum.

Note that the parenthesis around " -1 " in the last example are required; if missing, the system will think you are trying to subtract the value " 1 " from the value "mySignum", which is ill-typed.

The if/then/else construct in Haskell looks very similar to that of most other programming languages; however, you must have both a then and an else clause. It evaluates the condition (in this case $\mathrm{x}<0$ ) and, if this evaluates to True, it evaluates the then condition; if the condition evaluated to False, it evaluates the else condition.

You can test this program by editing the file and loading it back into your interpreter. Instead of typing :l Varfun.hs again, you can simply type :reload or just :r to reload the current file. This is usually much faster.

### 9.1.2 case

Haskell, like many other languages, also supports case constructions. These are used when there are multiple values that you want to check against (case expressions are actually quite a bit more powerful than this -- see the ../Pattern matching $/{ }^{1}$ chapter for all of the details).

Suppose we wanted to define a function that had a value of 1 if its argument were 0 ; a value of 5 if its argument were 1 ; a value of 2 if its argument were 2 ; and a value of -1 in all other instances. Writing this function using if statements would be long and very unreadable; so we write it using a case statement as follows (we call this function $f$ ):

In this program, we're defining $f$ to take an argument $x$ and then inspecting the value of $x$. If it matches 0 , the value of $f$ is 1 . If it matches 1 , the value of $f$ is 5 . If it matches 2 , then the value of

[^22]$f$ is 2 ; and if it hasn't matched anything by that point, the value of $f$ is -1 (the underscore can be thought of as a "wildcard" -- it will match anything).

The indentation here is important. Haskell uses a system called "layout" to structure its code (the programming language Python uses a similar system). The layout system allows you to write code without the explicit semicolons and braces that other languages like C and Java require.

### 9.2 Indentation

The general rule for layout is that an open-brace is inserted after the keywords where, let, do and of, and the column position at which the next command appears is remembered. From then on, a semicolon is inserted before every new line that is indented the same amount. If a following line is indented less, a close-brace is inserted. This may sound complicated, but if you follow the general rule of indenting after each of those keywords, you'll never have to remember it (see the ../INDENTATION $/{ }^{2}$ chapter for a more complete discussion of layout).

Some people prefer not to use layout and write the braces and semicolons explicitly. This is perfectly acceptable. In this style, the above function might look like:

```
f x = case x of
 { 0 -> 1 ; 1 -> 5 ; 2 -> 2 ; _ -> -1 }
```

Of course, if you write the braces and semicolons explicitly, you're free to structure the code as you wish. The following is also equally valid:

```
f x =
 case x of { 0 -> 1 ;
 1 -> 5 ; 2 -> 2
 ; _ -> -1 }
```

However, structuring your code like this only serves to make it unreadable (in this case).

### 9.3 Defining one function for different parameters

Functions can also be defined piece-wise, meaning that you can write one version of your function for certain parameters and then another version for other parameters. For instance, the above function $f$ could also be written as:

Just like in the case situation above, order is important. If we had put the last line first, it would have matched every argument, and $f$ would return -1 , regardless of its argument (most compilers will warn you about this, though, saying something about overlapping patterns). If we had not included this last line, $f$ would produce an error if anything other than 0,1 or 2 were applied to it (most compilers will warn you about this, too, saying something about incomplete

[^23]patterns). This style of piece-wise definition is very popular and will be used quite frequently throughout this tutorial. These two definitions of $f$ are actually equivalent -- this piece-wise version is translated into the case expression.

### 9.4 Function composition

More complicated functions can be built from simpler functions using function composition. Function composition is simply taking the result of the application of one function and using that as an argument for another. We've already seen this back in the ../GETTING SET UP/ ${ }^{3}$ chapter, when we wrote $5 * 4+3$. In this, we were evaluating $5 \cdot 4$ and then applying +3 to the result. We can do the same thing with our square and $f$ functions:

The result of each of these function applications is fairly straightforward. The parentheses around the inner function are necessary; otherwise, in the first line, the interpreter would think that you were trying to get the value of square $f$, which has no meaning. Function application like this is fairly standard in most programming languages.

There is another, more mathematical way to express function composition: the (.) enclosed period function. This (.) function is modeled after the (o) operator in mathematics.

The (.) function (called the function composition function), takes two functions and makes them into one. For instance, if we write (square . f), this means that it creates a new function that takes an argument, applies $f$ to that argument and then applies square to the result. Conversely, ( f . square) means that a new function is created that takes an argument, applies square to that argument and then applies $f$ to the result. We can see this by testing it as before:

Here, we must enclose the function composition in parentheses; otherwise, the Haskell compiler will think we're trying to compose square with the value $f 1$ in the first line, which makes no sense since $f 1$ isn't even a function.

### 9.5 Let Bindings

Often we wish to provide local declarations for use in our functions. For instance, if you remember back to your grade school mathematics courses, the following formula is used to find the roots (zeros) of a polynomial of the form $a x^{2}+b x+c$ :

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

We could write the following function to compute the two values of $x$ :

[^24]```
((-b + sqrt (b*b - 4* a*c))
```

Notice that our definition here has a bit of redundancy. It is not quite as nice as the mathematical definition because we have needlessly repeated the code for sqrt ($b * b-4 * a * c$). To remedy this problem, Haskell allows for local bindings. That is, we can create values inside of a function that only that function can see. For instance, we could create a local binding for sqrt ($b * b-4 * a * c$) and call it, say, sdisc (short for square root of discriminant) and then use that in both places where sqrt $(b * b-4 * a * c)$ occurred. We can do this using a let/in declaration:

```
roots a b c =
    let sdisc = sqrt (b*b - 4*a*c)
    in ((-b + sdisc) / (2*a),
        (-b - sdisc) / (2*a))
```

In fact, you can provide multiple declarations inside a let. Just make sure they're indented the same amount, or you will have layout problems:

```
roots a b c =
    let sdisc = sqrt (b*b - 4*a*c)
        twice_a = 2*a
    in ((-b + sdisc) / twice_a,
        (-b - sdisc) / twice_a)
```


10 Simple input and output

So far this tutorial has discussed functions that return values, which is well and good. But how do we write "Hello world"? To give you a first taste of it, here is a small variant of the "Hello world" program:

At the very least, what should be clear is that dealing with input and output (IO) in Haskell is not a lost cause! Functional languages have always had a problem with input and output because IO requires side effects. Functions always have to return the same results for the same arguments. But how can a function "getLine" return the same value every time it is called? Before we give the solution, let's take a step back and think about the difficulties inherent in such a task.

Any IO library should provide a host of functions, containing (at a minimum) operations like:

- print a string to the screen
- read a string from a keyboard
- write data to a file
- read data from a file

There are two issues here. Let's first consider the initial two examples and think about what their types should be. Certainly the first procedure should take a String argument and produce something, but what should it produce? It could produce a unit (), since there is essentially no return value from printing a string. The second operation, similarly, should return a String, but it doesn't seem to require an argument.

We want both of these operations to be functions, but they are by definition not functions. The item that reads a string from the keyboard cannot be a function, as it will not return the same String every time. And if the first function simply returns () every time, then referential transparency tells us we should have no problem with replacing it with a function $f_{-}=()$. But clearly this does not have the desired effect.

10.1 Actions

The breakthrough for solving this problem came when Philip Wadler realized that monads would be a good way to think about IO computations. In fact, monads are able to express much more than just the simple operations described above; we can use them to express a variety of constructions like concurrence, exceptions, IO, non-determinism and much more. Moreover, there is nothing special about them; they can be defined within Haskell with no special handling from the compiler (though compilers often choose to optimize monadic operations). Monads also have a somewhat undeserved reputation of being difficult to understand. So we're going to leave things at that -- knowing simply that IO somehow makes use of monads without necessarily understanding the gory details behind them (they really aren't so gory). So for now, we can forget that monads even exist.

As pointed out before, we cannot think of things like "print a string to the screen" or "read data from a file" as functions, since they are not (in the pure mathematical sense). Therefore, we give them another name: actions. Not only do we give them a special name, we give them a special type. One particularly useful action is putStrLn, which prints a string to the screen. This action has type:

```
putStrLn :: String -> IO ()
```

As expected, putStrLn takes a string argument. What it returns is of type IO (). This means that this function is actually an action (that is what the IO means). Furthermore, when this action is evaluated (or "run") , the result will have type ().

You can probably already guess the type of getLine:

```
getLine :: IO String
```

This means that getLine is an IO action that, when run, will have type String.
The question immediately arises: "how do you 'run' an action?". This is something that is left up to the compiler. You cannot actually run an action yourself; instead, a program is, itself, a single action that is run when the compiled program is executed. Thus, the compiler requires that the main function have type IO (), which means that it is an IO action that returns nothing. The compiled code then executes this action.

However, while you are not allowed to run actions yourself, you are allowed to combine actions. There are two ways to go about this. The one we will focus on in this chapter is the do notation, which provides a convenient means of putting actions together, and allows us to get useful things done in Haskell without having to understand what really happens. Lurking behind the do notation is the more explicit approach using the ($\gg=$) operator, but we will not be ready to cover this until the chapter ../UNDERSTANDING MONADS/ ${ }^{1}$.

Let's consider the following name program:
We can consider the do notation as a way to combine a sequence of actions. Moreover, the <- notation is a way to get the value out of an action. So, in this program, we're sequencing three actions: a putStrLn, a getLine and another putStrLn. The putStrLn action has type String -> IO (), so we provide it a String, and the fully applied action has type IO (). This is something that we are allowed to run as a program.

10.1.1 Left arrow clarifications

<- is optional

While we are allowed to get a value out of certain actions like getLine, we certainly are not obliged to do so. For example, we could very well have written something like this:

[^25]Clearly, that isn't very useful: the whole point of prompting the user for his or her name was so that we could do something with the result. That being said, it is conceivable that one might wish to read a line and completely ignore the result. Omitting the $<-$ will allow for that; the action will happen, but the data won't be stored anywhere.

In order to get the value out of the action, we write name <- getLine, which basically means "run getLine, and put the results in the variable called name."

<- can be used with any action but the last

On the flip side, there are also very few restrictions on which actions can have values obtained from them. Consider the following example, where we put the results of each action into a variable (except the last... more on that later):

The variable x gets the value out of its action, but that isn't very interesting because the action returns the unit value (). So while we could technically get the value out of any action, it isn't always worth it. But wait, what about that last action? Why can't we get a value out of that? Let's see what happens when we try:

This is a much more interesting example, but it requires a somewhat deeper understanding of Haskell than we currently have. Suffice it to say, whenever you use <- to get the value of an action, Haskell is always expecting another action to follow it. So the very last action better not have any <-s.

10.1.2 Controlling actions

Normal Haskell constructions like if/then/else and case/of can be used within the do notation, but you need to be somewhat careful. For instance, in a simple "guess the number" program, we have:

```
doGuessing num = do
    putStrLn "Enter your guess:"
    guess <- getLine
    if (read guess) < num
        then do putStrLn "Too low!"
            doGuessing num
        else if (read guess) > num
            then do putStrLn "Too high!"
                                    doGuessing num
            else do putStrLn "You Win!"
```

If we think about how the if/then/else construction works, it essentially takes three arguments: the condition, the "then" branch, and the "else" branch. The condition needs to have type Bool, and the two branches can have any type, provided that they have the same type. The type of the entire if/then/else construction is then the type of the two branches.

In the outermost comparison, we have (read guess) < num as the condition. This clearly has the correct type. Let's just consider the "then" branch. The code here is:

Here, we are sequencing two actions: putStrLn and doGuessing. The first has type IO (), which is fine. The second also has type IO (), which is fine. The type result of the entire computation is precisely the type of the final computation. Thus, the type of the "then" branch is also IO (). A similar argument shows that the type of the "else" branch is also IO (). This means the type of the entire if/then/else construction is IO (), which is just what we want.

It is incorrect to think to yourself "Well, I already started a do block; I don't need another one," and hence write something like:

```
do if (read guess) < num
    then putStrLn "Too low!"
        doGuessing num
    else ...
```

Here, since we didn't repeat the do, the compiler doesn't know that the putStrLn and doGuessing calls are supposed to be sequenced, and the compiler will think you're trying to call putStrLn with three arguments: the string, the function doGuessing and the integer num. It will certainly complain (though the error may be somewhat difficult to comprehend at this point).

We can write the same doGuessing function using a case statement. To do this, we first introduce the Prelude function compare, which takes two values of the same type (in the Ord class) and returns a value of type Ordering, namely one of GT, LT, EQ, depending on whether the first is greater than, less than or equal to the second.

```
doGuessing num = do
    putStrLn "Enter your guess:"
    guess <- getLine
    case compare (read guess) num of
        LT -> do putStrLn "Too low!"
            doGuessing num
        GT -> do putStrLn "Too high!"
            doGuessing num
        EQ -> putStrLn "You Win!"
```

Here, again, the dos after the ->s are necessary on the first two options, because we are sequencing actions.

If you're used to programming in an imperative language like C or Java, you might think that return will exit you from the current function. This is not so in Haskell. In Haskell, return simply takes a normal value (for instance, one of type Int) and makes it into an action that when evaluated, gives the given value (for the same example, the action would be of type IO Int). In particular, in an imperative language, you might write this function as:

```
void doGuessing(int num) {
    print "Enter your guess:";
    int guess = atoi(readLine());
    if (guess == num) {
    print "You win!";
```

```
    return ();
    }
    // we won't get here if guess == num
    if (guess < num) {
        print "Too low!";
        doGuessing(num);
    } else {
        print "Too high!";
        doGuessing(num);
    }
}
```

Here, because we have the return () in the first if match, we expect the code to exit there (and in most imperative languages, it does). However, the equivalent code in Haskell, which might look something like:

```
doGuessing num = do
    putStrLn "Enter your guess:"
    guess <- getLine
    case compare (read guess) num of
        EQ -> do putStrLn "You win!"
                return ()
    -- we don't expect to get here if guess == num
    if (read guess < num)
        then do print "Too low!";
            doGuessing num
        else do print "Too high!";
            doGuessing num
```

First of all, if you guess correctly, it will first print "You win!," but it won't exit, and it will check whether guess is less than num. Of course it is not, so the else branch is taken, and it will print "Too high!" and then ask you to guess again.

On the other hand, if you guess incorrectly, it will try to evaluate the case statement and get either LT or GT as the result of the compare. In either case, it won't have a pattern that matches, and the program will fail immediately with an exception.

10.2 Actions under the microscope

Actions may look easy up to now, but they are actually a common stumbling block for new Haskellers. If you have run into trouble working with actions, you might consider looking to see if one of your problems or questions matches the cases below. It might be worth skimming this section now, and coming back to it when you actually experience trouble.

10.2.1 Mind your action types

One temptation might be to simplify our program for getting a name and printing it back out. Here is one unsuccessful attempt:

Let us boil the example above down to its simplest form. Would you expect this program to compile?

For the most part, this is the same (attempted) program, except that we've stripped off the superflous "What is your name" prompt as well as the polite "Hello". One trick to understanding this is to reason about it in terms of types. Let us compare:

```
putStrLn :: String -> IO ()
getLine :: IO String
```

We can use the same mental machinery we learned in ../TyPE BASICS/ $/{ }^{2}$ to figure how everything went wrong. Simply put, putStrLn is expecting a String as input. We do not have a String, but something tantalisingly close, an IO String. This represents an action that will give us a String when it's run. To obtain the String that putStrLn wants, we need to run the action, and we do that with the ever-handy left arrow, <-.

Now the name is the String we are looking for and everything is rolling again.

10.2.2 Mind your expression types too

Fine, so we've made a big deal out of the idea that you can't use actions in situations that don't call for them. The converse of this is that you can't use non-actions in situations that DO expect actions. Say we want to greet the user, but this time we're so excited to meet them, we just have to SHOUT their name out:

This is quite similar to the problem we ran into above: we've got a mismatch between something that is expecting an IO type, and something which is not. This time, the cause is our use of the left arrow <-; we're trying to left arrow a value of makeLoud name, which really isn't left arrow material. It's basically the same mismatch we saw in the previous section, except now we're trying to use regular old String (the loud name) as an IO String, which clearly are not the same thing. The latter is an action, something to be run, whereas the former is just an expression minding its own business. Note that we cannot simply use loudName = makeLoud name because a do sequences actions, and loudName = makeLoud name is not an action.

So how do we extricate ourselves from this mess? We have a number of options:

- We could find a way to turn makeLoud into an action, to make it return IO String. But this is not desirable, because the whole point of functional programming is to cleanly separate our side-effecting stuff (actions) from the pure and simple stuff. For example, what if we wanted to use makeLoud from some other, non-IO, function? An IO makeLoud is certainly possible (how?), but missing the point entirely.
- We could use return to promote the loud name into an action, writing something like loudName <- return (makeLoud name). This is slightly better, in that we are at least leaving the makeLoud function itself nice and IO-free, whilst using it in an IO-compatible fashion. But it's still moderately clunky, because by virtue of left arrow, we're implying that there's action to be had -- how exciting! -- only to let our reader down with a somewhat anticlimactic return
- Or we could use a let binding...

[^26]It turns out that Haskell has a special extra-convenient syntax for let bindings in actions. It looks a little like this:

If you're paying attention, you might notice that the let binding above is missing an in. This is because let bindings in do blocks do not require the in keyword. You could very well use it, but then you'd have to make a mess of your do blocks. For what it's worth, the following two blocks of code are equivalent.

sweet

do name <- getLine let loudName = makeLoud name putStrLn ("Hello " ++ loudName ++ "!") putStrLn ("Oh boy! Am I excited to meet you,

unsweet

do name <- getLine

let loudName = makeLoud name
in do putStrLn ("Hello " ++ loudName ++ "!") putStrLn ("Oh boy! Am I excited to meet you, " ++ loudNam

10.3 Learn more

At this point, you should have the fundamentals needed to do some fancier input/output. Here are some IO-related topics you may want to check in parallel with the main track of the course.

- You could continue the sequential track, by learning more about TYPES ${ }^{3}$ and eventually monADS ${ }^{4}$.
- Alternately: you could start learning about building graphical user interfaces in the ../GUI/ ${ }^{5}$ chapter
- For more IO-related functionality, you could also consider learning more about the System.IO Library ${ }^{6}$

[^27]
11 Elementary Haskell

12 Recursion

Recursion is a clever idea which plays a central role in Haskell (and computer science in general): namely, recursion is the idea of using a given function as part of its own definition. A function defined in this way is said to be recursive. It might sound like this always leads to infinite regress, but if done properly it doesn't have to.

Generally speaking, a recursive definition comes in two parts. First, there are one or more base cases which say what to do in simple cases where no recursion is necessary (that is, when the answer can be given straightaway without recursively calling the function being defined). This ensures that the recursion can eventually stop. The recursive case is more general, and defines the function in terms of a 'simpler' call to itself. Let's look at a few examples.

12.1 Numeric recursion

12.1.1 The factorial function

In mathematics, especially combinatorics, there is a function used fairly frequently called the factorial function ${ }^{1}$. It takes a single number as an argument, finds all the numbers between one and this number, and multiplies them all together. For example, the factorial of 6 is $1 \times 2 \times 3 \times$ $4 \times 5 \times 6=720$. This is an interesting function for us, because it is a candidate to be written in a recursive style.

The idea is to look at the factorials of adjacent numbers:
Notice how we've lined things up. You can see here that the factorial of 6 involves the factorial of 5 . In fact, the factorial of 6 is just $6 \times$ (factorial of 5). Let's look at another example:

Indeed, we can see that the factorial of any number is just that number multiplied by the factorial of the number one less than it. There's one exception to this: if we ask for the factorial of 0 , we don't want to multiply 0 by the factorial of -1 In fact, we just say the factorial of 0 is 1 (we define it to be so. It just is, okay? ${ }^{2}$). So, 0 is the base case for the recursion: when we get to 0 we can immediately say that the answer is 1 , without using recursion. We can summarize the definition of the factorial function as follows:

- The factorial of 0 is 1 .
- The factorial of any other number is that number multiplied by the factorial of the number one less than it.

[^28]We can translate this directly into Haskell:
This defines a new function called factorial. The first line says that the factorial of 0 is 1 , and the second one says that the factorial of any other number n is equal to n times the factorial of $n-1$. Note the parentheses around the $n-1$: without them this would have been parsed as (factorial n) - 1 ; function application (applying a function to a value) will happen before anything else does (we say that function application binds more tightly than anything else).

This all seems a little voodoo so far. How does it work? Well, let's look at what happens when you execute factorial 3:

- 3 isn't 0 , so we recur. work out the factorial of 2
- 2 isn't 0 , so we recur.
- 1 isn't 0 , so we recur.
- 0 is 0 , so we return 1 .
- We multiply the current number, 1 , by the result of the recursion, 1 , obtaining $1(1 \times 1)$.
- We multiply the current number, 2 , by the result of the recursion, 1 , obtaining $2(2 \times 1 \times 1)$.
- We multiply the current number, 3 , by the result of the recursion, 2 , obtaining $6(3 \times 2 \times 1 \times 1)$.

We can see how the multiplication 'builds up' through the recursion.
(Note that we end up with the one appearing twice, since the base case is 0 rather than 1 ; but that's okay since multiplying by one has no effect. We could have designed factorial to stop at 1 if we had wanted to, but it's conventional, and often useful, to have the factorial of 0 defined.)

One more thing to note about the recursive definition of factorial: the order of the two declarations (one for factorial 0 and one for factorial n) is important. Haskell decides which function definition to use by starting at the top and picking the first one that matches. In this case, if we had the general case (factorial n) before the 'base case' (factorial 0), then the general n would match anything passed into it -- including 0 . So factorial 0 would match the general n case, the compiler would conclude that factorial 0 equals 0 * factorial (-1), and so on to negative infinity. Definitely not what we want. The lesson here is that one should always list multiple function definitions starting with the most specific and proceeding to the most general.

12.1.2 A quick aside

This section is aimed at people who are used to more imperative-style languages like C and Java.

Loops are the bread and butter of imperative languages. For example, the idiomatic way of writing a factorial function in an imperative language would be to use a for loop, like the following (in C):

This isn't directly possible in Haskell, since changing the value of the variables res and n (a destructive update) would not be allowed. However, you can always translate a loop into an equivalent recursive form. The idea is to make each loop variable in need of updating into a parameter of a recursive function. For example, here is a direct 'translation' of the above loop into Haskell:

The expressions after the vertical bars are called guards, and we'll learn more about them in the section on CONTROL STRUCTURES ${ }^{3}$. For now, you can probably figure out how they work by comparing them to the corresponding C code above.

Obviously this is not the shortest or most elegant way to implement factorial in Haskell (translating directly from an imperative paradigm into Haskell like this rarely is), but it can be nice to know that this sort of translation is always possible.

Another thing to note is that you shouldn't be worried about poor performance through recursion with Haskell. In general, functional programming compilers include a lot of optimization for recursion, including an important one called tail-call optimisation; remember too that Haskell is lazy -- if a calculation isn't needed, it won't be done. We'll learn about these in later chapters.

12.1.3 Other recursive functions

As it turns out, there is nothing particularly special about the factorial function; a great many numeric functions can be defined recursively in a natural way. For example, let's think about multiplication. When you were first introduced to multiplication (remember that moment? :)), it may have been through a process of 'repeated addition'. That is, 5×4 is the same as summing four copies of the number 5 . Of course, summing four copies of 5 is the same as summing three copies, and then adding one more -- that is, $5 \times 4=5 \times 3+5$. This leads us to a natural recursive definition of multiplication:

Stepping back a bit, we can see how numeric recursion fits into the general recursive pattern. The base case for numeric recursion usually consists of one or more specific numbers (often 0 or 1) for which the answer can be immediately given. The recursive case computes the result by recursively calling the function with a smaller argument and using the result in some manner to produce the final answer. The 'smaller argument' used is often one less than the current argument, leading to recursion which 'walks down the number line' (like the examples of factorial and mult above), but it doesn't have to be; the smaller argument could be produced in some other way as well.

12.2 List-based recursion

A lot of functions in Haskell turn out to be recursive, especially those concerning lists. ${ }^{4}$ Consider the length function that finds the length of a list:

Don't worry too much about the syntax; we'll learn more about it in the section on ../Pattern matching $/{ }^{5}$. For now, let's rephrase this code into English to get an idea of how it works. The first line gives the type of length: it takes any sort of list and produces an Int. The next line says that the length of an empty list is 0 . This, of course, is the base case. The final line is the recursive

[^29]case: if a list consists of a first element x and another list xs representing the rest of the list, the length of the list is one more than the length of x.

How about the concatenation function $(++)$, which joins two lists together? (Some examples of usage are also given, as we haven't come across this function so far in this chapter.)

This is a little more complicated than length but not too difficult once you break it down. The type says that $(++)$ takes two lists and produces another. The base case says that concatenating the empty list with a list ys is the same as ys itself. Finally, the recursive case breaks the first list into its head (x) and tail (xs) and says that to concatenate the two lists, concatenate the tail of the first list with the second list, and then tack the head x on the front.

There's a pattern here: with list-based functions, the base case usually involves an empty list, and the recursive case involves passing the tail of the list to our function again, so that the list becomes progressively smaller.

Recursion is used to define nearly all functions to do with lists and numbers. The next time you need a list-based algorithm, start with a case for the empty list and a case for the non-empty list and see if your algorithm is recursive.

12.3 Don't get TOO excited about recursion...

Although it's very important to have a solid understanding of recursion when programming in Haskell, one rarely has to write functions that are explicitly recursive. Instead, there are all sorts of standard library functions which perform recursion for you in various ways, and one usually ends up using those instead. For example, a much simpler way to implement the factorial function is as follows:

Almost seems like cheating, doesn't it? :) This is the version of factorial that most experienced Haskell programmers would write, rather than the explicitly recursive version we started out with. Of course, the product function is using some list recursion behind the scenes ${ }^{6}$, but writing factorial in this way means you, the programmer, don't have to worry about it.

12.4 Summary

Recursion is the practise of using a function you're defining in the body of the function itself. It nearly always comes in two parts: a base case and a recursive case. Recursion is especially useful for dealing with list- and number-based functions.

12.5 Notes

<references />
[^30]
13 More about lists

By now we have already met the basic tools for working with lists. We can build lists up from the cons operator (:) and the empty list [] (see ../LISTS AND TUPLES $/{ }^{1}$ if you are unsure about this); and we can take them apart by using a combination of recursion and pattern matching (as demonstrated IN THE PREvious MODULE ${ }^{2}$). In this and the next chapter we will delve a little deeper into the inner workings and the usage of Haskell lists. In that process, we'll discover a bit of new notation and some characteristically Haskell-ish features like infinite lists and list comprehensions and explore some useful list manipulation functions. But before going into this, let us step back for a moment and put together the things we have already learned about lists.

13.1 Constructing lists

We'll start by writing and analysing a function to double every element of a list of integers. First, we must specify the type declaration for our function. For our purposes here, the function takes a list of integers and evaluates to another list of integers:

```
doubleList :: [Integer] -> [Integer]
```

Then we must write the function definition. As usual in such cases, we will go for a recursive definition:

```
doubleList [] = []
doubleList (n:ns) = (n * 2) : doubleList ns
```


First, let us briefly dissect the definition:

- The base case is for an empty list. In it, the function evaluates to an empty list.
- As for the general case, let us consider the two sides of the equality separately:
- On the left-hand side, the operator (:) is seen playing a special role on dealing with the list passed as argument, splitting it as part of a process called pattern matching. This kind of breaking down always splits a list into its first element (known as the "head") and the rest of the list (known as the "tail"). In this case, the argument passed to doubleList is split into head, n, and tail, $n s,{ }^{3}$ which are then referenced on the right-hand side of the equation.

[^31]- On the right-hand side, doubleList builds up a new list by using (:). The first element of this new list is twice the head of the argument, and the rest of the result is obtained by a recursive call - the application of doubleList to the tail. If the tail happens to be an empty list, the base case will be invoked and recursion stops. ${ }^{4}$

By understanding the recursive definition we can picture what actually happens when we evaluate an expression such as

```
doubleList [1,2,3,4]
```

We can work it out longhand by substituting the argument into the function definition, just like schoolbook algebra:

```
doubleList 1:[2,3,4] = (1*2) : doubleList (2 : [3,4])
    = (1*2) : (2*2) : doubleList (3 : [4])
    =(1*2) : (2*2) : (3*2) : doubleList (4 : [])
    = (1*2) : (2*2) : (3*2) : (4*2) : doubleList []
    =(1*2):(2*2):(3*2): (4*2) : []
    = 2 : 4 : 6 : 8 : []
    =[2, 4, 6, 8]
```

One important thing to notice is that in this longhand evaluation exercise the moment at which we choose to evaluate the multiplications does not affect the result ${ }^{5}$. If we had done them immediately after each recursive call of doubleList it would have made no difference. This reflects an important property of Haskell: it is a "pure" functional programming language. Because evaluation order can never change the result, it is mostly left to the compiler to decide when to actually evaluate things. Haskell is a "lazy" evaluation language, so evaluation is usually deferred until the value is really needed, but the compiler is free to evaluate things sooner if this will improve efficiency. From the programmer's point of view evaluation order rarely matters (except, for instance, in the case of infinite lists, which will be discussed soon).

A function to double a list has quite limited applicability. An obvious improvement would be generalizing it to allow multiplication by any number. Doing so would require a function that takes a multiplicand as well as a list of integers. It could look like this:

```
multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m ( }\textrm{n}:\textrm{ns}\mathrm{ ) = (m*n) : multiplyList m ns
```

This example deploys _, which is used as a "don't care" argument. The multiplicand is not used for the base case, so instead of giving it a name (like m, n or $n s$) it is explicitly thrown away.

[^32]An additional observation about the type declaration. Hiding behind the rather odd syntax is a deep and clever idea. The " $->$ " arrow is actually an operator for types, and is right associative. So if you add in the implied brackets the type definition is actually

```
multiplyList :: Integer -> ( [Integer] -> [Integer] )
```

Think about what this is saying. It means that "multiplyList" doesn't take two arguments. Instead it takes one (an Integer), and then evaluates to a new function. This new function itself takes one argument (a list of Integers) and evaluates to another list of Integers. This process is called "currying", and is a very important technique which will be explored further later in the book.

The new function can be used in a straightforward way:

```
evens = multiplyList 2 [1,2,3,4]
```

or it can do something which, in most other languages, would be an error; this is partial function application and because we're using Haskell, we can write the following neat \& elegant bits of code:

```
doubleList = multiplyList 2
evens = doubleList [1,2,3,4]
```

It may help you to understand if you put the implied brackets in the first definition of "evens":

```
evens = (multiplyList 2) [1,2,3,4]
```

In other words multiplyList 2 evaluates to a new function that is then applied to [1,2,3,4].

13.1.1 Dot Dot Notation

Haskell has a convenient shorthand for specifying a list containing a sequence of integers. Some examples to illustrate it:

```
Code Result
[1..10] [1,2,3,4,5,6,7,8,9,10]
[2,4..10] [2,4,6,8,10]
[5,4..1] [5,4,3,2,1]
[1,3..10] [1,3,5,7,9]
```

The same notation can be used for floating point numbers and characters as well. However, be careful with floating point numbers: rounding errors can cause unexpected things to happen. Try this:

```
[0,0.1 .. 1]
```

Additionally, the notation only works be used for sequences with fixed differences between consecutive elements. For instance, you can't put in

```
[0,1,1,2,3,5,8..100]
```

and expect to get back the rest of the Fibonacci series, or put in the beginning of a geometric sequence like
$[1,3,9,27 . .100]$

13.1.2 Infinite Lists

One of the most mind-bending things about Haskell lists is that they are allowed to be infinite. For example, the following generates the infinite list of integers starting with 1 :

```
[1..]
```

(If you try this in GHCi , remember you can stop an evaluation with Ctrl-c).
Or you could define the same list in a more primitive way by using a recursive function:

```
intsFrom n = n : intsFrom (n+1)
positiveInts = intsFrom 1
```

This works because Haskell uses lazy evaluation: it never actually evaluates more than it needs at any given moment. In most cases an infinite list can be treated just like an ordinary one. The program will only go into an infinite loop when evaluation would actually require all the values in the list. Examples of this include sorting or printing the entire list. However:

```
evens = doubleList [1..]
```

will define "evens" to be the infinite list [2,4,6,8..]. And you can pass "evens" into other functions, and it will all just work. See the exercise 4 below for an example of how to process an infinite list and then take the first few elements of the result.

Infinite lists are quite useful in Haskell. Often it's more convenient to define an infinite list and then take the first few items than to create a finite list. Functions that process two lists in parallel generally stop with the shortest, so making the second one infinite avoids having to find the
length of the first. An infinite list is often a handy alternative to the traditional endless loop at the top level of an interactive program.

13.1.3 head and tail

As an additional note, Prelude (the standard library available by default to all Haskell programs) provides a wrapper for the "(x:xs)" pattern matching splitting of lists through the functions head and tail. Their definitions should look entirely unsurprising:

While at first it might look like there is not much need to resort to head and tail when you could just use pattern matching, the functions prove quite convenient, for instance, when doing function composition.

13.2 map

Because lists are such a fundamental data type in Haskell, there is a large collection of standard functions for list processing, most of them being in Prelude - and thus available by default (there are also additional list processing functions to be found in the Data.List module, but that needn't be an immediate concern of yours). We will close this module by discussing one particularly important function, called map. In the next module, LIST PROCESSING ${ }^{6}$, will pick up from that point and describe some other key list processing tools.

Let us begin by recalling the multiplyList function from a couple of sections ago.

```
multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m (n:ns) = (m*n) : multiplyList m ns
```

This works on a list of integers, multiplying each item by a constant. But Haskell allows us to pass functions around just as easily as we can pass integers. So instead of passing a multiplier m we could pass a function f, like this:

```
mapList1 :: (Integer -> Integer) -> [Integer] -> [Integer]
mapList1 _ [] = []
mapList1 f (n:ns) = (f n) : mapList1 f ns
```

Take a minute to compare the two functions. The difference is in the first parameter. Instead of being just an Integer it is now a function. This function parameter has the type (Integer -> Integer), meaning that it is a function from one integer to another. The second line says that if this is applied to an empty list then the result is itself an empty list, and the third line says that for a non-empty list the result is f applied to the first item in the list, followed by a recursive call to mapList 1 for the rest of the list.

[^33]Remember that (*) has type Integer -> Integer -> Integer. So if we write (2*) then this returns a new function that doubles its argument and has type Integer $->$ Integer. But that is exactly the type of functions that can be passed to mapList1. So now we can write doubleList like this:

```
doubleList = mapList1 (2*)
```

We could also write it like this, making all the arguments explicit:

```
doubleList ns = mapList1 (2*) ns
```

(The two are equivalent because if we pass just one argument to mapListl we get back a new function. The second version is more natural for newcomers to Haskell, but experts often favour the first, known as 'point free' style.)

Obviously this idea is not limited to just integers. We could just as easily write

```
mapListString :: (String -> String) -> [String] -> [String]
mapListString _ [] = []
mapListString f (n:ns) = (f n) : mapListString f ns
```

and have a function that does this for strings. But this is horribly wasteful: the code is exactly the same for both strings and integers. What is needed is a way to say that mapList works for both Integers, Strings, and any other type we might want to put in a list. In fact there is no reason why the input list should be the same type as the output list: we might very well want to convert a list of integers into a list of their string representations, or vice versa. And indeed Haskell provides a way to do this. The Standard Prelude contains the following definition of map:

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = (f x) : map f xs
```

Instead of constant types like String or Integer this definition uses type variables. These start with lower case letters (as opposed to type constants that start with upper case) and otherwise follow the same lexical rules as normal variables. However the convention is to start with "a" and go up the alphabet. Even the most complicated functions rarely get beyond "d".

So what this says is that map takes two parameters:

- A function from a thing of type a to a thing of type b.
- A list of things of type a.

Then it returns a new list containing things of type b, constructed by applying the function to each element of the input list.

13.3 Notes

<references/>

14 List processing

As promised, we'll pick up from where we stopped in the previous module and continue to explore list processing functions. Conceptually, our main concern this time will be three classes of functions, namely folds, scans and filters.

14.1 Folds

A fold applies a function to a list in a way similar to map, but accumulates a single result instead of a list.

Take for example, a function like sum, which might be implemented as follows:
or product:
or concat, which takes a list of lists and joins (concatenates) them into one:
There is a certain pattern of recursion common to all of these examples. This pattern is known as a fold, possibly from the idea that a list is being "folded up" into a single value, or that a function is being "folded between" the elements of the list.

The Standard Prelude defines four fold functions: foldr, fold, foldr1 and foldl1.

14.1.1 foldr

The right-associative foldr folds up a list from the right, that is, it walks from the last to the first element of the list and applies the given function to each of the elements and the accumulator, the initial value of which has to be set:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)
```

The first argument is a function with two arguments, the second is a "zero" value for the accumulator, and the third is the list to be folded.

For example, in sum, f is (+), and acc is 0 , and in concat, f is (++) and acc is []. In many cases, like all of our examples so far, the function passed to a fold will have both its arguments be of the same type, but this is not necessarily the case in general.

What foldr facc xs does is to replace each cons (:) in the list xs with the function f, and the empty list at the end with acc. That is,

```
a : b : c : []
```

becomes

```
f a (f b (f c acc))
```

This is perhaps most elegantly seen by picturing the list data structure as a tree:

| : | f |
| :---: | :---: |
| 11 | 11 |
| a : | a f |
| 1 | 11 |
| b | b f |
| 11 | 11 |
| C [] | C acc |

It is fairly easy to see with this picture that foldr (:) [] is just the identity function on lists (that is, the function which returns its argument unmodified).

14.1.2 foldl

The left-associative foldl processes the list in the opposite direction, starting at the left side with the first element, and proceeding to the last one step by step:

```
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs
```

So brackets in the resulting expression accumulate on the left. Our list above, after being transformed by foldl f z becomes:

```
f (f (f acc a) b) c
```

The corresponding trees look like:

14.1.3 foldrl and foldll

As previously noted, the type declaration for foldr makes it quite possible for the list elements and result to be of different types. For example, "read" is a function that takes a string and converts it into some type (the type system is smart enough to figure out which one). In this case we convert it into a float.

If you substitute the types Float and String for the type variables a and b in the type of foldr you will see that this is type correct.

There is also a variant called foldr1 ("fold - arr - one") which dispenses with an explicit zero by taking the last element of the list instead:

```
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "Prelude.foldr1: empty list"
```

And foldl1 as well:

```
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "Prelude.foldl1: empty list"
```

Note: There is additionally a strict version of foldl1 called foldll' in the Data.List library.
Notice that in this case all the types have to be the same, and that an empty list is an error. These variants are occasionally useful, especially when there is no obvious candidate for z, but you need to be sure that the list is not going to be empty. If in doubt, use foldr or foldl'.

14.1.4 folds and laziness

One good reason that right-associative folds are more natural to use in Haskell than left-associative ones is that right folds can operate on infinite lists, which are not so uncommon in Haskell programming. If the input function f only needs its first parameter to produce the first part of the output, then everything works just fine. However, a left fold must call itself recursively until it reaches the end of the input list; this is inevitable, because the recursive call is not made in an argument to f. Needless to say, this never happens if the input list is infinite and the program will spin endlessly in an infinite loop.

As a toy example of how this can work, consider a function echoes taking a list of integers and producing a list where if the number n occurs in the input list, then n replicated n times will occur in the output list. We will make use of the prelude function replicate: replicate $n \mathrm{x}$ is a list of length n with x the value of every element.

We can write echoes as a foldr quite handily:

```
echoes = foldr (\x xs -> (replicate x x) ++ xs) []
```

(Note: That is very compact thanks to the $\backslash x s x->$ syntax. Instead of defining a function somewhere else and passing it to foldr we provided the definition in situ; x and xs being the arguments and the right-hand side of the definition being what is after the $->$)
or, equally handily, as a foldl:

```
echoes = foldl (\xs x -> xs ++ (replicate x x)) []
```

but only the first definition works on an infinite list like [1..]. Try it! (If you try this in GHCi , remember you can stop an evaluation with Ctrl-c, but you have to be quick and keep an eye on the system monitor or your memory will be consumed in no time and your system will hang.)

As a final example, another thing that you might notice is that map itself is patterned as a fold:

```
map f = foldr (\x xs -> f x : xs) []
```

Folding takes a little time to get used to, but it is a fundamental pattern in functional programming and eventually becomes very natural. Any time you want to traverse a list and build up a result from its members, you likely want a fold.

14.2 Scans

A "scan" is much like a cross between a map and a fold. Folding a list accumulates a single return value, whereas mapping puts each item through a function with no accumulation. A scan does both: it accumulates a value like a fold, but instead of returning a final value it returns a list of all the intermediate values.

The Standard Prelude contains four scan functions:

```
scanl :: (a -> b -> a) -> a -> [b] -> [a]
```

This accumulates the list from the left, and the second argument becomes the first item in the resulting list. So scanl (+) $0[1,2,3]=[0,1,3,6]$

```
scanl1 :: (a -> a -> a) -> [a] -> [a]
```

This is the same as scanl, but uses the first item of the list as a zero parameter. It is what you would typically use if the input and output items are the same type. Notice the difference in the type signatures. scanll (+) $[1,2,3]=[1,3,6]$.

```
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr1 :: (a -> a -> a) -> [a] -> [a]
```

These two functions are the exact counterparts of scanl and scanl1. They accumulate the totals from the right. So:

```
scanr (+) O [1,2,3] = [6,5,3,0]
scanr1 (+) [1,2,3] = [6,5,3]
```


14.3 filter

A very common operation performed on lists is FILTERING ${ }^{1}$, which is generating a new list composed only of elements of the first list that meet a certain condition. One simple example of that would be taking a list of integers and making from it a list which only retains its even numbers.

```
retainEven :: [Int] -> [Int]
retainEven [] = []
retainEven (n:ns) =
-- mod n 2 computes the remainder for the integer division of n by 2,
so if it is zero the number is even
    if (mod n 2) == 0)
        then n : (retainEven ns)
        else retainEven ns
```

That works fine, but it is a slightly verbose solution. It would be nice to have a more concise way to write the filter function. Also, it would certainly be very useful to be able to generalize the filtering operation - that is, make it capable of filtering a list using any boolean condition we'd like. To help us with both of these issues Prelude provides a filter function. filter has the following type signature:

$$
(a \rightarrow B o o l)->[a]->[a]
$$

That means it evaluates to a list when given two arguments, namely an (a -> Bool) function which carries the actual test of the condition for the elements of the list and the list to be filtered. In order to write retainEven using filter, we need to state the condition as an auxiliary (a -> Bool) function, like this one:

```
isEven :: Int -> Bool
isEven n = ((mod n 2) == 0)
```

[^34]And then retainEven becomes simply:

```
retainEven ns = filter isEven ns
```

It can be made even more terse by writing it in point-free style:

```
retainEven = filter isEven
```

This is just like what we demonstrated before for map and the folds. Like filter, those take another function as argument; and using them point-free emphasizes this "functions-of-functions" aspect.

14.4 List comprehensions

An additional tool for list processing is the LIST COMPREHENSION ${ }^{2}$, a powerful, concise and expressive syntactic construct. In their most elementary form, list comprehensions are SYNTACTIC SUGAR ${ }^{3}$ for filtering. So, instead of using the Prelude filter, we could write retainEven like this:

```
retainEven es = [ n | n <- es , isEven n ]
```

This compact syntax may look a bit intimidating at first, but it is simple to break down. One possible way to read it would be:

- (Starting from the middle) Take the list es and draw (the "<-") each of its elements as a value n.
- (After the comma) For each drawn n test the boolean condition isEven n.
- (Before the vertical bar) If (and only if) the boolean condition is satisfied, prepend n to the new list being created (note the square brackets around the whole expression).

Thus if es is equal to $[1,2,3,4]$, then we would get back the list $[2,4]$. 1 and 3 were not drawn because (isEven n) == False .

The real power of list comprehensions, though, comes from the fact they are easily extensible. Firstly, we can use as many tests as we wish (even zero!). Multiple conditions are written as a comma-separated list of expressions (which should evaluate to a Boolean, of course). For a simple example, suppose we want to modify retainEven so that only numbers larger than 100 are retained:

```
retainLargeEvens :: [Int] -> [Int]
retainLargeEvens es = [ n | n <- es , isEven n, n > 100 ]
```

[^35]Writing this function with filter would require explicitly defining a new function to combine the conditions by a logical and ($\& \&)$. List comprehensions can provide a clearer syntax in such cases, particularly if there are several conditions to be tested.

Another useful thing to know is that list comprehensions can be used for defining simple variables as well as functions. For instance:

```
someListOfEvens = [ n | n <- [1..10000], isEven n ]
```

someListOfEvens will be [2,4..10000], as expected.
Furthermore, we are not limited to using n as the element to be prepended when generating a new list. Instead, we could place any expression before the vertical bar (if it is compatible with the type of the list, of course). For instance, if we we wanted to subtract one from every even number, all it would take is:

```
evensMinusOne es = [ n - 1 | n <- es, isEven n ]
```

In effect, that means the list comprehension syntax incorporates the functionality of map as well as of filter. Now that is conciseness! (and in a very readable way despite the terseness)

To further sweeten things, the left arrow notation in list comprehensions can be combined with pattern matching. For example, suppose we had a list of (Int, Int) tuples and we would like to construct a list with the first element of every tuple whose second element is even. Using list comprehensions, we might write it as follows:

```
firstForEvenSeconds :: [(Int, Int)] -> [Int]
firstForEvenSeconds ps = [ fst p | p <- ps, isEven (snd p) ] -- here,
p is for pairs.
```

Patterns (which can be used with tuples as well as with lists) can make what the function is doing more obvious:

```
firstForEvenSeconds ps = [ x | (x,y) <- ps, isEven y ]
```

As in other cases, arbitrary expressions may be used before the I. If we wanted a list with the double of those first elements:

```
doubleOfFirstForEvenSeconds :: [(Int, Int)] -> [Int]
doubleOfFirstForEvenSeconds ps = [ 2 * x | (x,y) <- ps, isEven y ]
```

Note that the function code is actually shorter than its descriptive name.

15 Type declarations

You're not restricted to working with just the types provided by default with the language. Haskell allows you to define new types. Reasons why doing so can be very useful including:

- It allows for code to be written in terms of the problem being solved, making programs easier to design, write and understand.
- It allows for handling related pieces of data together in ways more convenient and meaningful than say, simply putting and getting values from lists or tuples.
- It makes it possible to use two powerful features of Haskell, pattern matching and the type system, to their fullest extent by making them work with your custom types.

How these things are achieved and why they are so important will gradually become clear as you progress on this course.

Haskell has three basic ways to declare a new type:

- The data declaration, which defines new data types.
- The type declaration for type synonyms.
- The newtype declaration, which is a cross between the other two.

In this chapter, we will discuss the most essential way, data. We'll also mention type, which is a convenience feature. You'll find out about newtype later on, but don't worry too much about it; it's there mainly for optimisation.

15.1 data and constructor functions

data is used to define new data types using existing ones as building blocks. Here's a data structure for elements in a simple list of anniversaries:

```
data Anniversary = Birthday String Int Int Int -- name, year,
month, day
    | Wedding String String Int Int Int -- spouse name 1,
spouse name 2, year, month, day
```

A type declaration like this has two effects:

- First, it declares a new data type Anniversary, which can be either a Birthday or a Wedding. A Birthday contains one string and three integers and a Wedding contains two strings and three integers. The definitions of the two possibilities are separated by the vertical bar. The text after the "--" are just comments, explaining to readers of the code what the fields actually mean.
- Moreover, it defines two constructor functions for Anniversary, called, appropriately enough, Birthday and Wedding. These functions provide a way to build a new Anniversary, be it a "Birthday" or a "Wedding".

Types defined by data declarations are often referred to as algebraic data types. We will eventually return to this topic to address the theory behind such a name and the practical implications of said theory.

As usual with Haskell the case of the first letter is important: type names and constructor functions must always start with capital letters. Other than this syntactic detail, constructor functions work pretty much like the "conventional" functions we met so far. In fact, if you use : t in ghci to query the type of, say, Birthday, you'll get:

Meaning it's just a function which takes one String and three Int as arguments and evaluates to an Anniversary. This anniversary will contain the four arguments we passed as specified by the Birthday constructor.

Calling the constructor functions is no different from calling other functions. For example, suppose we have John Smith born on 3rd July 1968:

```
johnSmith :: Anniversary
johnSmith = Birthday "John Smith" 1968 7 3
```

He married Jane Smith on 4th March 1987:

```
smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" 1987 3 4
```

These two anniversaries can, for instance, be put in a list:

```
anniversariesOfJohnSmith :: [Anniversary]
anniversariesOfJohnSmith = [johnSmith, smithWedding]
```

Or you could just as easily have called the constructors straight away when building the list (although the resulting code looks a bit cluttered).

```
anniversariesOfJohnSmith = [Birthday "John Smith" 1968 7 3, Wedding
    "John Smith" "Jane Smith" 1987 3 4]
```


15.2 Deconstructing types

So far we've seen how to define a new type and create values of that type. If the new data types are to be of any use, however, we must have a way to access its contents, that is, the values we used at construction. For instance, one very basic operation with the anniversaries defined above would be extracting the names and dates they contain as a String. Let us see how a function which does that, showAnniversary, could be written and analyse what's going on in it (you'll see that, in the sake of code clarity, we used an auxiliary showDate function but let's ignore it for a moment and focus on showAnniversary).

```
showDate :: Int -> Int -> Int -> String
showDate y m d = show y ++ "-" ++ show m ++ "-" ++ show d
showAnniversary :: Anniversary -> String
showAnniversary (Birthday name year month day) =
    name ++ " born " ++ showDate year month day
showAnniversary (Wedding name1 name2 year month day) =
    name1 ++ " married " ++ name2 ++ " on " ++ showDate year month day
```

This example shows what is truly special about constructor functions: they can also be used to deconstruct the values they build. showAnniversary takes a single argument of type Anniversary. Instead of just providing a name for the argument on the left side of the definition, however, we specify one of the constructor functions and give names to each argument of the constructor - which correspond to the contents of the Anniversary. A more formal way of describing this "giving names" process is to say we are binding variables - "binding" is being used in the sense of assigning a variable to each of the values so that we can refer to them on the right side of the function definition.

For such an approach be able to handle both "Birthday" and "Wedding" Anniversaries we needed to provide two function definitions, one for each constructor. When showAnniversary is called, if the argument is a Birthday Anniversary the first version is used and the variables name, month, date and year are bound to its contents. If the argument is a Wedding Anniversary then the second version is used and the variables are bound in the same way. This process of using a different version of the function depending on the type of constructor used to build the Anniversary is pretty much like what happens when we use a case statement or define a function piece-wise.

An important observation on syntax is that the parentheses around the constructor name and the bound variables are mandatory; otherwise the compiler or interpreter would not take them as a single argument. Also, it is important to have it absolutely clear that the expression inside the parentheses is not a call to the constructor function, even though it may look just like one.

15.3 type for making type synonyms

As mentioned in the introduction of this module, code clarity is one of the motivations for using custom types. In that spirit, it could be nice to make it clear that the Strings in the Anniversary type are being used as names while still being able to manipulate them like ordinary Strings. The type declaration allows us to do that.

```
type Name = String
```

The code above says that a Name is now a synonym for a String. Any function that takes a String will now take a Name as well (and vice-versa: functions that take Name will accept any String). The right hand side of a type declaration can be a more complex type as well. For example, String itself is defined in the standard libraries as

```
type String = [Char]
```

We can do something similar for the list of anniversaries we made use of:

```
type AnniversaryBook = [Anniversary]
```

Since type synonyms are mostly a convenience feature for making the roles of types clearer or providing an alias to, for instance, a complicated list or tuple type, it is largely a matter of personal discretion to decide how they should be deployed. Abuse of synonyms might even, on occasion, make code confusing (for instance, picture a long program using multiple names for common types like Int or String simultaneously, all of course having the same functionality).

Incorporating the suggested type synonyms and the Date type we proposed in the exercise $\left(^{*}\right.$) of the previous section the code we've written so far looks like this:
$((*)$ last chance to try that exercise without looking at the spoilers...)

```
type Name = String
data Anniversary =
    Birthday Name Date
    | Wedding Name Name Date
data Date = Date Int Int Int -- Year, Month, Day
johnSmith :: Anniversary
johnSmith = Birthday "John Smith" (Date 1968 7 3)
smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" (Date 1987 3 4)
type AnniversaryBook = [Anniversary]
anniversariesOfJohnSmith :: AnniversaryBook
anniversariesOfJohnSmith = [johnSmith, smithWedding]
showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d
showAnniversary :: Anniversary -> String
showAnniversary (Birthday name date) =
    name ++ " born " ++ showDate date
showAnniversary (Wedding name1 name2 date) =
    name1 ++ " married " ++ name2 ++ " on " ++ showDate date
```

Even in a simple example like this one, there is a very noticeable gain in terms of simplicity and clarity when compared to what would be needed to do the same task using only Ints, Strings, and corresponding lists.

A final observation on syntax: note that the Date type has a constructor function which is called Date as well. That is perfectly valid and indeed giving the constructor the same name of the type when there is just one constructor is good practice, as a simple way of making the role of the function obvious.

16 Pattern matching

Over the previous modules of this book we occasionally mentioned pattern matching, pointing out some common situations in which it was involved without providing a clear definition. Now that you have some familiarity with the fundamental language constructs, it is a proper time for a more formal discussion of pattern matching. Let us start with a possible one-line definition:

Pattern matching is a convenient way to 'bindvariables to different partsof a given value.

16.1 What is pattern matching?

Actually, you have seen many examples of pattern matching already - it is virtually everywhere. For instance, pick a function definition like that of map:

```
map _ [] = []
map f (x:xs) = f x : map f xs
```

Here there are four different patterns involved, two per equation. Let's explore each one in turn:

- f is a pattern which matches anything at all, and binds the f variable to that something.
- ($\mathrm{x}: \mathrm{xs}$) is a pattern that matches a non-empty list which is formed by something (which gets bound to the x variable) which was cons'd (by the function (:)) onto something else (which gets bound to xs). xs can be an empty list.
- [] is a pattern that matches the empty list. It doesn't bind any variables.
- _ is the pattern which matches anything at all, but doesn't do any binding.

So pattern matching is a way of:

- recognizing values. For instance, when map is called and the second argument matches [] the first definition of map is used instead of the second one.
- binding variables to the recognized values. In this case, the variables f, x and $x s$ are assigned to the values passed as arguments to map when the second definition is used. Not all patterns do binding - for example, _ is used as a "whatever/don't care" wildcard exactly because it doesn't bind variables, and so it is not possible to refer to any value it matches.
- breaking down values into parts, as the ($\mathrm{x}: \mathrm{xs}$) pattern does by assigning two variables to parts (head and tail) of a single argument (the list).

At this point, the process of using a function to break down a value by effectively undoing its effects may look a little bit too magical. It is not, however, a universally deployable technique. For example, one might think of, by analogy to how (:) is used to break down a list, define a function which uses $(++)$ to chop off the first three elements of a list:

```
dropThree ([x,y,z] ++ xs) = xs
```

However, that will not work. The function (++) isn't allowed in patterns, and in fact most other functions that act on lists wouldn't be allowed either. So which functions are allowed?

The one-word answer is constructors - the functions used to build values of algebraic data types. Let us consider a generic example:

```
data Foo = Bar | Baz Int
```

Here Bar and Baz are constructors for the type Foo. And so you can use them for pattern matching Foo values, and bind variables to the Int value contained in a Foo constructed with Baz:

```
f :: Foo -> Int
f Bar = 1
f (Baz x) = x - 1
```

That was exactly what was going on back when we defined showAnniversary and showDate in the Type declarations module. For instance:

```
data Date = Date Int Int Int -- Year, Month, Day
showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d
```

The (Date y m d) pattern in the left-hand side of the showDate definition matches a Date (built with the Date constructor) and binds the variables y, m and d to the contents of the Date value.

As for lists, they are not different from data-defined algebraic data types as far as pattern matching is concerned. In effect, it's like lists were defined with this dat a declaration (note that the following isn't actually valid syntax: lists are in reality deeply ingrained into Haskell):

```
data [a] = [] | a : [a]
```

So the empty list, [], and the (:) function, are in reality constructors of the list datatype, so you can pattern match with them. [] takes no arguments, and therefore no variables are bound when it is used for pattern matching. (:) takes two arguments, the list head and tail, which can then be bound to variables when the pattern is recognized.

Furthermore, since $[x, y, z]$ is just syntactic sugar for $x: y: z:[]$, there is a pattern matching solution for the dropThree problem above:

```
dropThree (_:_:_:xs) = xs
```


16.1.1 Introduction to records

For constructors with many elements, records provide useful syntactical assistance. Briefly, they are a way of naming values in a datatype, using the following syntax:

```
data Foo2 = Bar2 | Baz2 {barNumber::Int, barName::String}
```

Using records allows doing matching and binding only for the variables relevant to the function we're writing, making code much clearer:

```
h :: Foo2 -> Int
h Baz2 {barName=name} = length name
h Bar2 {} = 0
```

Also, the \{\} pattern can be used for matching a constructor regardless of the datatype elements even if you don't use records in the data declaration:

```
data Foo = Bar | Baz Int
g :: Foo -> Bool
g Bar {} = True
g Baz {} = False
```

The function g does not have to be changed if we modify the number or the type of elements of the constructors Bar or Baz.

The record syntax will be covered with more detail later in the book.

16.1.2 As-patterns

Sometimes, when matching a pattern with a value, it may be useful to bind a name also to the whole value being matched. As-patterns allow exactly this: they are of the form var@pattern and have the additional effect to bind the name var to the whole value being matched by pattern.

For instance, the following code snippet:

```
other_map f [] = []
other_map f list@(x:xs) = f x list : other_map f xs
```

creates a variant of map, called other_map, which passes to the parameter function f also the original list. Writing it without as-patterns would have been more cumbersome, because you must recreate the original value, i.e. $\mathrm{x}: \mathrm{xs}$:

```
other_map f [] = []
other_map f (x:xs) = f x (x:xs) : other_map f xs
```

The difference would be more notable with a more complex pattern.

16.1.3 Literal values

A simple piece-wise function definition like this one

```
f :: Int -> Int
f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1
```

is performing pattern matching as well, matching the argument of f with the Int literals 0,1 and 2 . In general, numeric and character literals can be used in pattern matching. They can also be used together with constructors. For instance, this function

```
g :: [Int] -> Bool
g(0:[]) = False
g (0:xs) = True
g_= False
```

will evaluate to False for the [0] list, to True if the list has 0 as first element and a non-empty tail and to False in all other cases. Also, lists with literal elements like [1,2,3], or even "abc" (which is equivalent to [' $a,{ }^{\prime}, b$ ', 'c']) can be used for pattern matching as well, since these forms are only syntactic sugar for the (:) constructor.

It costs nothing to emphasize that the above considerations are only valid for literal values, so the following will not work:

```
k = 1
--again, this won't work as expected
h :: Int -> Bool
h k = True
h _ = False
```


16.1.4 n+k patterns

There is one exception to the rule that you can only pattern match with constructor functions. It is known as $n+k$ patterns, which make it valid Haskell 98 to write something like:

```
pred :: Int -> Int
pred (n+1) = n
```

However, this exception is generally considered unsightly and has now been removed in the Haskell 2010 standard.

16.2 Where you can use it

The short answer is that wherever you can bind variables, you can pattern match. Let's have a look at that more precisely.

16.2.1 Equations

The first place is in the left-hand side of function definition equations, which were the subject of our examples so far.

```
map _ [] = []
map f (x:xs) = f x : map f xs
```

In the map definition we're binding, and doing pattern-matching, on the left hand side of both of these equations.

16.2.2 Let expressions

Let expressions are a way of doing local variable bindings. As such, you can also use pattern matching in them. A simple example:

```
y =
    let
        (x:xs) = map (2*) [1,2,3]
    in x + 5
```

Here, x will be bound to the first element of map $(2 *)[1,2,3] . y$, therefore, will evaluate to $2+5=7$.

16.2.3 Case expressions

Another typical usage of pattern binding is on the left hand side of case branches:

```
describeList :: [a] -> String
describeList list =
    case list of
    [] -> "The list was empty"
    (x:xs) -> "The list wasn't empty: the first element was " ++ show x
++ ", and " ++
    "there were " ++ show (length xs) ++ " more elements in
the list."
```


16.2.4 List comprehensions

After the । in list comprehensions you can pattern match. This is actually extremely useful, and adds a lot to the expressiveness of comprehensions. Let's see how that works with a slightly more sophisticated example. Prelude provides a Maybe type which has the following constructors:

```
data Maybe a = Nothing | Just a
```

It is typically used to hold values resulting from an operation which may or may not succeed, such as a lookup in a list (if the operation succeeds, the Just constructor is used and the value is passed to it; otherwise Nothing is used). The utility function catMaybes (which is available from Data.Maybe library module) takes a list of Maybes (which may contain both "Just" and "Nothing" Maybes), and retrieves the contained values by filtering all the Just x and getting rid of the Just wrappers. Writing it with list comprehensions is very straightforward:

```
catMaybes :: [Maybe a] -> [a]
catMaybes ms = [ x | Just x <- ms ]
```

Another nice thing about using a list comprehension for this task is that if the pattern match fails (that is, it meets a Nothing) it just moves on to the next element in ms, ${ }^{1}$ thus avoiding the need of explicitly handling each constructor with alternate function definitions.

16.2.5 Other places

There are a few other situations in which patterns can be used that we'll meet later on. Here's a list in case you're very eager already:

- where clauses, which are an alternative to let bindings;
- lambdas, which are anonymous function definitions;
- In p <- x assignments in do-blocks, p can be a pattern.
- Similarly, with let bindings in do-blocks, you can pattern match analogously to 'real' let bindings.

16.3 Notes

<references/>
[^36]
17 Control structures

Haskell offers several ways of expressing a choice between different values. This section will describe them all and explain what they are for:

17.1 if Expressions

You have already seen these. The full syntax is:
if <condition> then <true-value> else <false-value>

Here, condition is an expression which evaluates to a boolean. If the <condition> is True then the <true-value> is returned, otherwise the <false-value> is returned. Note that in Haskell if is an expression (which is converted to a value) - and not a statement (which is executed), as usual for imperative languages. A very important consequence of this fact is that in Haskell the else is required. Since if is an expression, it must evaluate to a result, and the else ensures this. For the same reason, the usual indentation is different from imperative languages. If you need to split an if expression across multiple lines then you should indent it like one of these:

```
if <condition>
    then <true-value>
    else <false-value>
if <condition>
    then
        <true-value>
    else
        <false-value>
```

Here is a simple example:

```
message42 :: Integer -> String
```

```
message42 n =
    if n == 42
        then "The Answer is forty two."
        else "The Answer is not forty two."
```


17.2 case Expressions

One interesting way of thinking about case expressions is seeing them as a generalization of if expressions. We could even write a clone of if as a case:

```
alternativeIf :: Bool -> a -> a -> a
alternativeIf cond ifTrue ifFalse =
    case cond of
        True -> ifTrue
        False -> ifFalse
```

First, this checks cond for a pattern match against True. If there is a match, the whole expression will evaluate to ifTrue, otherwise it will evaluate to ifFalse (since a Bool can only be True or False there is no need for a default case). case is more general than if because the pattern matching in which case selection is based allows it to work with expressions which evaluate to values of any type. ${ }^{1}$ In fact, the left hand side of any case branch is just a pattern, so it can also be used for binding:

```
describeString :: String -> String
describeString str =
    case str of
        (x:xs) -> "The first character is: " ++ [x] ++ "; the rest of the
    string is: " ++ xs
        "" -> "This is an empty string."
```

This expression tells you whether str is an empty string or something else. Of course, you could just do this with an if-statement (with a condition of str $==[]$), but using a case binds variables to the head and tail of our list, which is convenient in this instance.

17.2.1 Equations and Case Expressions

Remember you can use multiple equations as an alternative to case expressions. The describeString function above could be written like this:

```
describeString :: String -> String
describeString (x:xs) = "The first character is " ++ [x] ++ "; the
    rest of the string is " ++ xs
describeString "" = "This is the empty string."
```

[^37]Named functions and case expressions at the top level are completely interchangeable. In fact the function definition form shown here is just syntactic sugar for a case expression.

One handy thing about case expressions, and indeed about Haskell control structures in general, is that since they evaluate to values they can go inside other expressions just like an ordinary expression would. For example, this case expression evaluates to a string which is then concatenated with two other strings, all inside a single expression:

```
data Colour = Black | White | RGB Int Int Int
describeColour :: Colour -> String
describeColour c =
    "This colour is "
    ++ case c of
        Black -> "black"
        White -> "white"
        RGB O O 0 -> "black"
        RGB 255 255 255 -> "white"
            -> "freaky, man, sort of in between"
    ++ ", yeah?"
```

Writing this function in an equivalent way using the multiple equations style would need a named function inside something like a let block.

17.3 Guards

As shown, if we have a top-level case expression, we can just give multiple equations for the function instead, which is often neater. Is there an analogue for if expressions? It turns out there is. We use some additional syntax known as "guards". A guard is a boolean condition, like this:

```
describeLetter :: Char -> String
describeLetter c
    | c >= 'a' && c <= ' z' = "Lower case"
    | c >= 'A' && c <= 'Z' = "Upper case"
    | otherwise = "Not a letter"
```

Note the lack of an = before the first \mid. Guards are evaluated in the order they appear. That is, if you have a set up similar to the following:

```
f (pattern1) | predicate1 = w
    predicate2 = x
f (pattern2) | predicate3 = y
    | predicate4 = z
```

Then the input to f will be pattern-matched against pattern1. If it succeeds, then predicate 1 will be evaluated. If this is true, then w is returned. If not, then predicate 2 is evaluated. If this is true, then x is returned. Again, if not, then we jump out of this 'branch' of f and try to pattern match against pattern2, repeating the guards procedure with predicate 3 and predicate4. Unlike the else in if statements, otherwise is not mandatory. Still, if no guards match an error will be produced at
runtime, so it's always a good idea to provide the 'otherwise' guard, even if it is just to handle the "But this can't happen!" case (which normally does happen anyway...).

The otherwise you saw above is actually just a normal value defined in the Standard Prelude as:

```
otherwise :: Bool
otherwise = True
```

This works because of the sequential evaluation described a couple of paragraphs back: if none of the guards previous to your 'otherwise' one are true, then your otherwise will definitely be true and so whatever is on the right-hand side gets returned. It's just nice for readability's sake.

17.4 Notes

<references/>

18 More on functions

As functions are absolutely essential to functional programming, there are some nice features you can use to make using functions easier.

18.1 Private functions - let and where

Remember the sumStr function from the chapter on list processing. It used another function called addStr:

```
addStr :: Float -> String -> Float
addStr x str = x + read str
sumStr :: [String] -> Float
sumStr = foldl addStr 0.0
```

So you could find that

```
addStr 4.3 "23.7"
```

gives 28.0, and

```
sumStr ["1.2", "4.3", "6.0"]
```

gives 11.5 .
But maybe you don't want addStr cluttering up the top level of your program if it is only used as part of the sumStr. Haskell lets you nest declarations in two subtly different ways: either using the let bindings we already know:

```
sumStr =
    let addStr x str = x + read str
    in foldl addStr 0.0
```

or with where clauses, which work in pretty much the same way but come after the expression which use the function.

```
sumStr = foldl addStr 0.0
    where addStr x str = x + read str
```

You can also use let and where in case expression and similar control structures, just as you can in functions:

```
describeColour c =
    "This colour is "
    ++ case c of
        Black -> "black"
        White -> "white"
        RGB red green blue -> "the average of the components is " ++
    show av
            where av = (red + green + blue) `div` 3
    ++ ", yeah?"
```

In this example, the indentation of the where clause sets the scope of the av variable so that it only exists as far as the RGB red green blue case is concerned. Placing it at the same indentation of the cases would make it available for all cases. Here is an example of such an usage with guards:

```
doStuff :: Int -> String
doStuff x
    | x<3 = report "less than three"
    otherwise = report "normal"
    where
        report y = "the input is " ++ y
```


18.2 Anonymous Functions - lambdas

An alternative to creating a private named function like addStr is to create an anonymous function, also known as a lambda function. For example, sumStr could have been defined like this:

```
sumStr = foldl (\x str -> x + read str) 0.0
```

The expression in the parentheses is a lambda function. The backslash is used as the nearest ASCII equivalent to the Greek letter lambda (λ). This example is a lambda function with two arguments, x and str, which evaluates to "x + read str". So, the sumStr presented just above is precisely the same as the one that used addStr in a let binding.

Lambdas are handy for writing one-off functions to be used with maps, folds and their siblings, especially where the function in question is simple. The example above is about as complicated as you'll want them to be - cramming more verbose constructs like conditionals in such a compact syntactic form could get messy.

Since variables are being bound in a lambda expression (to the arguments, just like in a regular function definition), pattern matching can be used in them as well. A trivial example would be redefining head with a lambda:

```
head = (\(x:xs) -> x)
```


18.3 Infix versus Prefix

As we noted previously, you can take an operator and turn it into a function by surrounding it in brackets:

```
2 + 4
(+) 24
```

This is called making the operator prefix: you're using it before its arguments, so it's known as a prefix function. We can now formalise the term 'operator': it's a function which entirely consists of non-alphanumeric characters, and is used infix (normally). You can define your own operators just the same as functions, just don't use any alphanumeric characters. For example, here's the set-difference definition from Data.List:

```
(\\) :: Eq a => [a] -> [a] -> [a]
xs \\ ys = foldl (\zs y -> delete y zs) xs ys
```

Note that aside from just using operators infix, you can define them infix as well. This is a point that most newcomers to Haskell miss. I.e., although one could have written:
$(\backslash \backslash)$ xs ys = foldl ($\backslash \mathrm{zs}$ y \rightarrow delete $y ~ z s) ~ x s ~ y s$

It's more common to define operators infix. However, do note that in type declarations, you have to surround the operators by parentheses.

You can use a variant on this parentheses style for 'sections':

```
(2+) 4
(+4)}
```

These sections are functions in their own right. (2+) has the type Int -> Int, for example, and you can pass sections to other functions, e.g. map (+2) [1..4].

If you have a (prefix) function, and want to use it as an operator, simply surround it by backticks:

```
1 `elem` [1..4]
```

This is called making the function infix: you're using it in between its arguments. It's normally done for readability purposes: 1 'elem' [1..4] reads better than elem 1 [1..4]. You can also define functions infix:

```
elem :: Eq a => a -> [a] -> Bool
x `elem` xs = any (==x) xs
```

But once again notice that in the type signature you have to use the prefix style.
Sections even work with infix functions:

```
(1 `elem`) [1..4]
(`elem` [1..4]) 1
```

You can only make binary functions (those that take two arguments) infix. Think about the functions you use, and see which ones would read better if you used them infix.

19 Higher order functions and Currying

Higher-order functions are functions that take other functions as arguments. We have already met some of them, such as map, so there isn't anything really frightening or unfamiliar about them. They offer a form of abstraction that is unique to the functional programming style. In functional programming languages like Haskell, functions are just like any other value, so it doesn't get any harder to deal with higher-order functions.

Higher order functions have a separate chapter in this book, not because they are particularly difficult -- we've already worked with them, after all -- but because they are powerful enough to draw special attention to them. We will see in this chapter how much we can do if we can pass around functions as values. Generally speaking, it is a good idea to abstract over a functionality whenever we can. Besides, Haskell without higher order functions wouldn't be quite as much fun.

19.1 The Quickest Sorting Algorithm In Town

Don't get too excited, but quickSort is certainly one of the quickest. Have you heard of it? If so, you can skip the following subsection and go straight to the next one:

19.1.1 The Idea Behind quickSort

The idea is very simple. For a big list, we pick an element, and divide the whole list into three parts.
The first part has all elements that should go before that element, the second part consists of all of the elements that are equal to the picked element, the third has the elements that ought to go after that element. And then, of course, we are supposed to concatenate these. What we get is somewhat better, right?

The trick is to note that only the first and the third are yet to be sorted, and for the second, sorting doesn't really make sense (they are all equal!). How to go about sorting the yet-to-be-sorted sublists? Why... apply the same algorithm on them again! By the time the whole process is finished, you get a completely sorted list.

19.1.2 So Let's Get Down To It!

```
-- if the list is empty, we do nothing
-- note that this is the base case for the recursion
quickSort [] = []
-- if there's only one element, no need to sort it
-- actually, the third case takes care of this one pretty well
-- I just wanted you to take it step by step
quickSort [x] = [x]
-- this is the gist of the process
-- we pick the first element as our "pivot", the rest is to be sorted
-- don't forget to include the pivot in the middle part!
quickSort (x : xs) = (quickSort less) ++ (x : equal) ++ (quickSort
more)
```

```
where less = filter (< x) xs
```

where less = filter (< x) xs
equal = filter (== x) xs
equal = filter (== x) xs
more = filter (> x) xs

```
    more = filter (> x) xs
```

And we are done! I suppose if you have met quickSort before, you probably thought recursion was a neat trick but difficult to implement.

19.2 Now, How Do We Use It?

With quickSort at our disposal, sorting any list is a piece of cake. Suppose we have a list of String, maybe from a dictionary, and we want to sort them, we just apply quickSort to the list. For the rest of this chapter, we will use a pseudo-dictionary of words (but a 25,000 word dictionary should do the trick as well):

```
dictionary = ["I", "have", "a", "thing", "for", "Linux"]
```

We get, for quickSort dictionary,

```
["I", "Linux", "a", "for", "have", "thing"]
```

But, what if we wanted to sort them in the descending order? Easy, just reverse the list, reverse (quickSort dictionary) gives us what we want.

But wait! We didn't really sort in the descending order, we sorted (in the ascending order) and reversed it. They may have the same effect, but they are not the same thing!

Besides, you might object that the list you got isn't what you wanted. "a" should certainly be placed before "I". "Linux" should be placed between "have" and "thing". What's the problem here?

The problem is, the way Strings are represented in a typical programming settings is by a list of ASCII characters. ASCII (and almost all other encodings of characters) specifies that the character code for capital letters are less than the small letters. Bummer. So "Z" is less than "a". We should do something about it. Looks like we need a case insensitive quickSort as well. It might come handy some day.

But, there's no way you can blend that into quickSort as it stands. We have work to do.

19.3 Tweaking What We Already Have

What we need to do is to factor out the comparisons quickSort makes. We need to provide quickSort with a function that compares two elements, and gives an Ordering, and as you can imagine, an Ordering is any of LT, EQ, GT.

To sort in the descending order, we supply quickSort with a function that returns the opposite of the usual Ordering. For the case-insensitive sort, we may need to define the function ourselves. By all means, we want to make quickSort applicable to all such functions so that we don't end up writing it over and over again, each time with only minor changes.

$\mathbf{1 9 . 4}$ quickSort, Take Two

Our quickSort will take two things this time: first, the comparison function, and second, the list to sort.

A comparison function will be a function that takes two things, say, x and y, and compares them. If x is less than y (according to the criteria we want to implement by this function), then the value will be LT. If they are equal (well, equal with respect to the comparison, we want "Linux" and "linux" to be equal when we are dealing with the insensitive case), we will have EQ . The remaining case gives us GT (pronounced: greater than, for obvious reasons).

```
-- no matter how we compare two things
-- the first two equations should not change
-- they need to accept the comparison function though
-- but the result doesn't need it
quickSort _ [] = []
quickSort _ [x] = [x]
-- we are in a more general setting now
-- but the changes are worth it!
-- c is the comparison function
quickSort c (x : xs) = (quickSort c less) ++ (x : equal) ++ (quickSort
c more)
        where less = filter (\y -> y `c` x ==
LT) xs
    equal = filter (\y -> y 'c' x ==
EQ) xs
    more = filter (\y -> y 'c' x ==
GT) xs
```

Cool!

19.5 But What Did We Gain?

Reuse. We can reuse quickSort to serve different purposes.

```
-- the usual ordering
-- uses the compare function from the Ord class
usual = compare
-- the descending ordering, note we flip the order of the arguments to
```

```
compare
descending x y = compare y x
-- the case-insensitive version is left as an exercise!
insensitive = ...
-- can you think of anything without making a very big list of all
possible cases?
```

And we are done!
quickSort usual dictionary should, then, give ["I", "Linux", "a", "for", "have", "thing"]
The comparison is just compare from the Ord class. This was our quickSort, before the tweaking.
quickSort descending dictionary now gives ["thing", "have", "for", "a", "Linux", "I"]
And finally, quicksort insensitive dictionary gives ["a", "for", "have", "I", "Linux", "thing"]
Exactly what we wanted!

19.6 Higher-Order Functions and Types

Our quickSort has type (a -> a -> Ordering) -> [a] -> [a].
Most of the time, the type of a higher-order function provides a good guideline about how to use it. A straightforward way of reading the type signature would be, "quickSort takes a function that gives an ordering of as, and a list of as, to give a list of as". It is then natural to guess that the function sorts the list respecting the given ordering function.

Note that the parentheses surrounding a $\rightarrow>$ a Ordering is mandatory. It says that a $->$ a -> Ordering altogether form a single argument, an argument that happens to be a function. What happens if we omit the parentheses? We would get a function of type a $->$ a $->$ Ordering $->$ [a] -> [a], which accepts four arguments instead of the desired two (a -> a -> Ordering and [a]). Furthermore none of the four arguments, neither a nor Ordering nor [a] are functions, so omitting the parentheses would give us something that isn't a higher order function.

Furthermore, it's worth noting that the $->$ operator is right-associative, which means that a $->\mathrm{a}$ -> Ordering -> [a] -> [a] means the same thing as a -> (a -> (Ordering -> ([a] -> [a]))). We really must insist that the $a \rightarrow$ a \rightarrow Ordering be clumped together by writing those parentheses... but wait... if $->$ is right-associative, wouldn't that mean that the correct signature (a -> a -> Ordering) -> [a] -> [a] actually means... (a -> a -> Ordering) -> ([a] -> [a])?

Is that really what we want?
If you think about it, we're trying to build a function that takes two arguments, a function and a list, returning a list. Instead, what this type signature is telling us is that our function takes one argument (a function) and returns another function. That is profoundly odd... but if you're lucky, it might also strike you as being profoundly beautiful. Functions in multiple arguments are fundamentally the same thing as functions that take one argument and give another function back. It's OK if you're not entirely convinced. We'll go into a little bit more detail below and then show how something like this can be turned to our advantage.
$\{\{$ Exercises 1 = The following exercise combines what you have learned about higher order functions, recursion and IO. We are going to recreate what programmers from more popular languages call a "for loop". Implement a function for :: a $\rightarrow(a->$ Bool) $) \rightarrow(a->a) \rightarrow(a \rightarrow$ IO ()) \rightarrow Io () for ip \ddagger job $=-$? ?? ? An example of how this function would be used might be for $1(<10)(+1)$ (print) which prints the numbers 1 to 9 on the screen.

Starting from an initial value i, the for executes job i. It then modifies this value $f i$ and checks to see if the modified value satisfies some condition. If it doesn't, it stops; otherwise, the for loop continues, using the modified $f i$ in place of i.

1. The paragraph above gives an imperative description of the for loop. What would a more functional description be?
2. Implement the for loop in Haskell.
3. Why does Haskell not have a for loop as part of the language, or in the standard library?

Some more challenging exercises you could try

1. What would be a more Haskell-like way of performing a task like 'print the list of numbers from 1 to 10 '? Are there any problems with your solution?
2. Implement a function sequenceIO :: [IO a] -> IO [a]. Given a list of actions, this function runs each of the actions in order and returns all their results as a list.
a) Implement a function mapIO :: (a -> IO b) -> [a] -> IO [b] which given a function of type a $->$ IO b and a list of type [a], runs that action on each item in the list, and returns the results.
This exercise was inspired from a blog post by osfameron. No peeking! \}\}

19.7 Currying

```
I hope you followed the reasoning of the preceding chapter closely
```

enough. If you haven't, you should, so give it another try.
Currying is a technique ${ }^{1}$ that lets you partially apply a multi-parameter
function. When you do that, it remembers those given values, and waits
for the remaining parameters.
Our quickSort takes two parameters, the comparison function, and the
list. We can, by currying, construct variations of quickSort with a
given comparison function. The variation just "remembers" the specific
comparison, so you can apply it to the list, and it will sort the list
using the that comparison function.
descendingSort $=$ quickSort descending
What is the type of descendingSort? quickSort was (a -> a -> Ordering) -> [a] -> [a], and the comparison function descending was a $->$ a $->$ Ordering. Applying quickSort to descending (that is, applying it partially, we haven't specified the list in the definition) we get a function (our descendingSort) for which the first parameter is

[^38]already given, so you can scratch that type out from the type of quickSort, and we are left with a simple [a] -> [a]. So we can apply this one to a list right away!
descendingSort dictionary
gives us

```
["thing", "have", "for", "a", "Linux", "I"]
```

It's rather neat. But is it useful? You bet it is. It is particularly useful as sections, you might notice. Currying often makes Haskell programs very concise. More than that, it often makes your intentions a lot clearer. Remember

```
less = filter (< x) xs
```

from the first version of quickSort? You can read it aloud like "keep those in $x s$ that are less than $x "$. Although $(<x)$ is just a shorthand for $(\backslash y->y<x)$, try reading that aloud!

19.8 Notes

<references/>

20 Using GHCi effectively

GHCi offers several ways to make you work faster. This section will describe them and explain what they are for:

20.1 User interface

20.1.1 Tab completion

Whenever you are typing anything into the GHCi, you can hit Tab and you will be presented with a list of all possible names that start with what you've written so far. And if there is only one way how to continue, the string will be auto-completed. For example fol<Tab> will append letter d, another $<\mathrm{t}\rangle \mathrm{Tab}</ \mathrm{t}>$ will list four functions: fold foldl1 foldr and foldr1. Only functions and other defined objects (e.g. Data types) from modules that are currently imported are offered.

Tab completion works also when you are loading a file with your program into GHCi. After typing :l fi<Tab>, you will be presented with all files that start with "fi" and are present in the current directory (the one you were in when you launched GHCi)

20.1.2 ": commands"

On GHCi command line, commands for the interpreter start with the character ":" (colon).

- :help - prints a list of all available commands
- :load myfile.hs - loads a file "myfile.hs" into GHCi
- :reload - reloads the file that has been loaded last time, so changes are visible from GHCi
- :type haskell expression - prints the type of a given expression, e.g. function that has been defined previously
commands can be abbreviated, writing :l for :load or :r for :reload.

20.2 Programming efficiently

It can be helpful to know how are the built-in function you use implemented. One possibility is to study the source codes, which are available with GHC installation,

20.2.1 Most notable examples

Some operations on lists are slow. If you ever need to do those on big Lists, use Arrays instead. Most importantly, indexing lists takes linear time. That means printing the 100th item in a list (mylist !! 99) takes twice the time printing 50th item does (mylist !! 49). That is caused by the way how lists are implemented, that the !! function has to "drill through" the list one element by one, from the beginning to the one we want to get to. For that reason, use Array, which has constant access time for any element it contains.

20.3 Notes

<references/>

21 Intermediate Haskell

22 Modules

22.1 Modules

Haskell modules are a useful way to group a set of related functionalities into a single package and manage a set of different functions that have the same name. The module definition is the first thing that goes in your Haskell file.
Here is what a basic module definition looks like:
module YourModule where

Note that

1. The name of the module begins with a capital letter
2. Each file contains only one module.

The name of the file must be that of the module but with a .hs file extension. Any dots '.' in the module name are changed for directories. So the module YourModule would be in the file YourModule.hs while a module Foo.Bar would be in the file Foo/Bar.hs or Foo \backslash Bar. hs. Since the module name must begin with a capital letter, the file name must also start with a capital letter.

22.2 Importing

One thing your module can do is import functions from other modules. That is, in between the module declaration and the rest of your code, you may include some import declarations such as

```
-- import only the functions toLower and toUpper from Data.Char
import Data.Char (toLower, toUpper)
-- import everything exported from Data.List
import Data.List
```

```
-- import everything exported from MyModule
import MyModule
```

Imported datatypes are specified by their name, followed by a list of imported constructors in parenthesis. For example:

```
-- import only the Tree data type, and its Node constructor from
Data.Tree
import Data.Tree (Tree(Node))
```

Now what to do if you import some modules, but some of them have overlapping definitions? Or if you import a module, but want to overwrite a function yourself? There are three ways to handle these cases: Qualified imports, hiding definitions and renaming imports.

22.2.1 Qualified imports

Say MyModule and MyOtherModule both have a definition for remove_e, which removes all instances of e from a string. However, MyModule only removes lower-case e's, and MyOtherModule removes both upper and lower case. In this case the following code is ambiguous:

```
-- import everything exported from MyModule
import MyModule
-- import everything exported from MyOtherModule
import MyOtherModule
-- someFunction puts a c in front of the text, and removes all e's
    from the rest
someFunction :: String -> String
someFunction text = 'c' : remove_e text
```

It isn't clear which remove_e is meant! To avoid this, use the qualified keyword:

```
import qualified MyModule
import qualified MyOtherModule
someFunction text = 'c' : MyModule.remove_e text -- Will work, removes
lower case e's
someOtherFunction text = 'c' : MyOtherModule.remove_e text -- Will
work, removes all e's
someIllegalFunction text = 'c' : remove_e text -- Won't work, remove_e
    isn't defined.
```

See the difference? In the latter code snippet, the function remove_e isn't even defined. Instead, we call the functions from the imported modules by prefixing them with the module's name. Note that MyModule. remove_e also works if the qualified keyword isn't included. The difference lies in the fact that remove_e is ambiguously defined in the first case, and undefined in the second case. If we have a remove_e defined in the current module, then using remove_e without any prefix will call this function.

22.2.2 Hiding definitions

Now suppose we want to import both MyModule and MyOtherModule, but we know for sure we want to remove all e's, not just the lower cased ones. It will become really tedious to add MyOtherModule before every call to remove_e. Can't we just not import remove_e from MyModule? The answer is: yes we can.

```
-- Note that I didn't use qualified this time.
import MyModule hiding (remove_e)
import MyOtherModule
someFunction text = 'c' : remove_e text
```

This works. Why? Because of the word hiding on the import line. Followed by it, is a list of functions that shouldn't be imported. Hiding more than one function works like this:

```
import MyModule hiding (remove_e, remove_f)
```

Note that algebraic datatypes and type synonyms cannot be hidden. These are always imported. If you have a datatype defined in more modules, you must use qualified names.

22.2.3 Renaming imports

This is not really a technique to allow for overwriting, but it is often used along with the qualified flag. Imagine:

```
import qualified MyModuleWithAVeryLongModuleName
someFunction text = 'c' : MyModuleWithAVeryLongModuleName.remove_e $
text
```

Especially when using qualified, this gets irritating. What we can do about it, is using the as keyword:

```
import qualified MyModuleWithAVeryLongModuleName as Shorty
someFunction text = 'c' : Shorty.remove_e $ text
```

This allows us to use Shorty instead of MyModuleWithAVeryLongModuleName as prefix for the imported functions. As long as there are no ambiguous definitions, the following is also possible:

```
import MyModule as My
import MyCompletelyDifferentModule as My
```

In this case, both the functions in MyModule and the functions in MyCompletelyDifferentModule can be prefixed with My.

22.3 Exporting

In the examples at the start of this article, the words "import everything exported from MyModule" were used. This raises a question. How can we decide which functions are exported and which stay "internal"? Here’s how:

```
module MyModule (remove_e, add_two) where
add_one blah = blah + 1
remove_e text = filter (/= 'e') text
add_two blah = add_one . add_one $ blah
```

In this case, only remove_e and add_two are exported. While add_two is allowed to make use of add_one, functions in modules that import MyModule cannot use add_one, as it isn't exported.

Datatype export specifications are written quite similarly to import. You name the type, and follow with the list of constructors in parenthesis:

```
module MyModule2 (Tree(Branch, Leaf)) where
data Tree a = Branch {left, right :: Tree a}
    Leaf a
```

In this case, the module declaration could be rewritten "MyModule2 (Tree(..))", declaring that all constructors are exported.
Note: maintaining an export list is good practice not only because it reduces namespace pollution, but also because it enables certain COMPILE-TIME OPTIMIZATIONS ${ }^{1}$ which are unavailable otherwise.

22.4 Notes

In Haskell98, the last standardised version of Haskell, the module system is fairly conservative, but recent common practice consists of employing an hierarchical module system, using periods to section off namespaces.

Mutual recursive modules are possible but need some special treatment. For how to do it in GHC see: http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html\#mutualrecursion

A module may export functions that it imports.
See the Haskell report for more details on the module system:

- http://www.haskell.org/onlinereport/modules.html

Modules ${ }^{2}$

```
HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE/GHC#INLINING
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL
```


23 Indentation

Haskell relies on indentation to reduce the verbosity of your code, but working with the indentation rules can be a bit confusing. The rules may seem many and arbitrary, but the reality of things is that there are only one or two layout rules, and all the seeming complexity and arbitrariness comes from how these rules interact with your code. So to take the frustration out of indentation and layout, the simplest solution is to get a grip on these rules.

23.1 The golden rule of indentation

Whilst the rest of this chapter will discuss in detail Haskell's indentation system, you will do fairly well if you just remember a single rule: Code which is part of some expression should be indented further in than the line containing the beginning of that expression

What does that mean? The easiest example is a let binding group. The equations binding the variables are part of the let expression, and so should be indented further in than the beginning of the binding group: the let keyword. So,

```
let
    x = a
    y = b
```

Although you actually only need to indent by one extra space, it's more normal to place the first line alongside the 'let' and indent the rest to line up:

```
let x = a
    y=b
```

Here are some more examples:

```
do foo
    bar
    baz
where x = a
    y=b
case x of
    p -> foo
    p' -> baz
```

Note that with 'case' it's less common to place the next expression on the same line as the beginning of the expression, as with 'do' and 'where'. Also note we lined up the arrows here: this is purely aesthetic and isn't counted as different layout; only indentation, whitespace beginning on the farleft edge, makes a difference to layout.

Things get more complicated when the beginning of the expression doesn't start at the left-hand edge. In this case, it's safe to just indent further than the line containing the expression's beginning. So,

```
myFunction firstArgument secondArgument = do -- the 'do' doesn't
start at the left-hand edge
    foo -- so indent these
commands more than the beginning of the line containing the 'do'.
    bar
    baz
```

Here are some alternative layouts to the above which would have also worked:

```
myFunction firstArgument secondArgument =
    do foo
        bar
    baz
myFunction firstArgument secondArgument = do foo
                                    bar
                                    baz
```


23.2 A mechanical translation

Did you know that indentation layout is optional? It is entirely possible to write in Haskell as in a "one-dimensional" language like C, using semicolons to separate things and curly braces to group them back. Not only it can be occasionally useful to write code in this style, but also understanding how to convert from one style to the other can help understand the indentation rules. To do so, you need to understand two things: where we need semicolons/braces, and how to get there from layout. The entire layout process can be summed up in three translation rules (plus a fourth one that doesn't come up very often):

1. If you see one of the layout keywords, (let, where, of, do), insert an open curly brace (right before the stuff that follows it)
2. If you see something indented to the SAME level, insert a semicolon
3. If you see something indented LESS, insert a closing curly brace
4. If you see something unexpected in a list, like where, insert a closing brace before instead of a semicolon.

23.3 Layout in action

Wrong

do first thing second thing third thing

Right

do first thing second thing third thing

23.3.1 do within if

What happens if we put a do expression with an if? Well, as we stated above, the keywords if then else, and anything else but the four layout keywords do not affect layout. So things remain exactly the same:

Wrong

if foo then do first thing second thing third thing else do something else

Right

if foo then do first thing second thing third thing else do something else

23.3.2 Indent to the first

Remember that, due to the "golden rule of indentation" described above, although the keyword do tells Haskell to insert a curly brace where the curly braces goes depends not on the do, but the thing that immediately follows it. For example, this weird-looking block of code is totally acceptable:

```
first thing
second thing
third thing
```

As a result, you could also write combined if/do combination like this:

Wrong

if foo then do first thing second thing third thing else do something else

Right

if foo then do first thing second thing third thing else do something else

This is also the reason why you can write things like this

```
main = do
    first thing
    second thing
```

instead of

```
main =
    do first thing
        second thing
```

Both are acceptable

23.3.3 if within do

This is a combination which trips up many Haskell programmers. Why does the following block of code not work?

```
-- why is this bad?
do first thing
    if condition
    then foo
    else bar
    third thing
```

Just to reiterate, the if then else block is not at fault for this problem. Instead, the issue is that the do block notices that the then part is indented to the same column as the if part, so it is not very happy, because from its point of view, it just found a new statement of the block. It is as if you had written the unsugared version on the right:

sweet (layout)

-- why is this bad? do first thing if condition then foo else bar third thing

unsweet

-- still bad, just explicitly so do \{ first thing ; if condition ; then foo ; else bar ; third thing \}

Naturally, the Haskell compiler is confused because it thinks that you never finished writing your if expression, before writing a new statement. The compiler sees that you have written something like if condition; which is clearly bad, because it is unfinished. So, in order to fix this, we need to indent the bottom parts of this if block a little bit inwards

sweet (layout)

-- whew, fixed it! do first thing if condition then foo else bar third thing

unsweet

-- the fixed version without sugar do \{ first
thing ; if condition then foo else bar ; third thing \}

This little bit of indentation prevents the do block from misinterpreting your then as a brand new expression. Of course, you might as well prefer to always add indentation before then and else, even when it is not really necessary. That wouldn't hurt legibility, and would avoid bad surprises like this one.

23.4 References

- The Haskell Report (Lexemes) ${ }^{1}$ - see 2.7 on layout Indentation ${ }^{2}$

[^39]
24 More on datatypes

24.1 Enumerations

One special case of the data declaration is the enumeration. This is simply a data type where none of the constructor functions have any arguments:

```
data Month = January | February | March | April | May | June | July
    | August | September | October | November | December
```

You can mix constructors that do and do not have arguments, but it's only an enumeration if none of the constructors have arguments. For instance,

```
data Colour = Black | Red | Green | Blue | Cyan
    | Yellow | Magenta | White | RGB Int Int Int
```

The last constructor takes three arguments, so Colour is not an enumeration. As you will see further on when we discuss classes and derivation, this distinction is not only conceptual.

Incidentally, the definition of the Bool datatype is:

```
data Bool = False | True
    deriving (Eq, Ord, Enum, Read, Show, Bounded)
```


24.2 Named Fields (Record Syntax)

Consider a datatype whose purpose is to hold configuration settings. Usually when you extract members from this type, you really only care about one or possibly two of the many settings. Moreover, if many of the settings have the same type, you might often find yourself wondering "wait, was this the fourth or fifth element?" One thing you could do would be to write accessor functions. Consider the following made-up configuration type for a terminal program:

```
data Configuration =
    Configuration String -- user name
    String -- local host
    String -- remote host
    Bool -- is guest?
    Bool -- is super user?
```

$$
\begin{array}{cl}
\text { String } & -- \text { current directory } \\
\text { String } & -- \text { home directory } \\
\text { Integer } & -- \text { time connected } \\
\text { deriving (Eq, Show) }
\end{array}
$$

You could then write accessor functions, like (I've only listed a few):

```
getUserName (Configuration un _ _ _ _ _ _ _) = un
getLocalHost (Configuration _ lh _ _ _ _ _ _) = lh
getRemoteHost (Configuration _ _ rh _ _ _ _ _) = rh
getIsGuest (Configuration _ _ _ ig _ _ _ _) = ig
```

You could also write update functions to update a single element. Of course, now if you add an element to the configuration, or remove one, all of these functions now have to take a different number of arguments. This is highly annoying and is an easy place for bugs to slip in. However, there's a solution. We simply give names to the fields in the datatype declaration, as follows:

```
data Configuration =
    Configuration { username :: String,
            localhost :: String,
            remotehost :: String,
    isguest :: Bool,
    issuperuser :: Bool,
    currentdir :: String,
    homedir :: String,
    timeconnected :: Integer
    }
```

This will automatically generate the following accessor functions for us:

```
username :: Configuration -> String
localhost :: Configuration -> String
```

Moreover, it gives us very convenient update methods. Here is a short example for a "post working directory" and "change directory" like functions that work on Configurations:

```
changeDir :: Configuration -> String -> Configuration
changeDir cfg newDir =
    -- make sure the directory exists
    if directoryExists newDir
        then -- change our current directory
            cfg{currentdir = newDir}
```

```
    else error "directory does not exist"
postWorkingDir :: Configuration -> String
    -- retrieve our current directory
postWorkingDir cfg = currentdir cfg
```

So, in general, to update the field x in a datatype y to z, you write $y\{x=z\}$. You can change more than one; each should be separated by commas, for instance, $y\{x=z, a=b, c=d\}$.

24.2.1 It's only sugar

You can of course continue to pattern match against Configurations as you did before. The named fields are simply syntactic sugar; you can still write something like:

```
getUserName (Configuration un _ _ _ _ _ _ _) = un
```

But there is little reason to. Finally, you can pattern match against named fields as in:

```
getHostData (Configuration {localhost=lh,remotehost=rh})
    = (lh,rh)
```

This matches the variable lh against the localhost field on the Configuration and the variable rh against the remotehost field on the Configuration. These matches of course succeed. You could also constrain the matches by putting values instead of variable names in these positions, as you would for standard datatypes.

You can create values of Configuration in the old way as shown in the first definition below, or in the named-field's type, as shown in the second definition below:

```
initCFG =
    Configuration "nobody" "nowhere" "nowhere"
    False False "/" "/" 0
initCFG' =
    Configuration
            { username="nobody",
            localhost="nowhere",
            remotehost="nowhere",
            isguest=False,
            issuperuser=False,
            currentdir="/",
            homedir="/",
            timeconnected=0 }
```

The first way is much shorter, although the second is much more understandable (unless you litter your code with comments).

24.3 Parameterised Types

Parameterised types are similar to "generic" or "template" types in other languages. A parameterised type takes one or more type parameters. For example the Standard Prelude type Maybe is defined as follows:

```
data Maybe a = Nothing | Just a
```

This says that the type Maybe takes a type parameter a. You can use this to declare, for example:

```
lookupBirthday :: [Anniversary] -> String -> Maybe Anniversary
```

The lookupBirthday function takes a list of birthday records and a string and returns a Maybe Anniversary. Typically, our interpretation is that if it finds the name then it will return Just the corresponding record, and otherwise, it will return Nothing.

You can parameterise type and newtype declarations in exactly the same way. Furthermore you can combine parameterised types in arbitrary ways to construct new types.

24.3.1 More than one type parameter

We can also have more than one type parameter. An example of this is the Either type:

```
data Either a b = Left a | Right b
```

For example:

```
eitherExample :: Int -> Either Int String
eitherExample a | even a = Left (a `div` 2)
    | a `mod` 3 == 0 = Right "three"
    | otherwise = Right "neither two nor three"
otherFunction :: Int -> String
otherFunction a = case eitherExample a of
    Left c -> "Even: " ++ show a ++ " = 2*" ++ show c ++ "."
    Right s -> show a ++ " is divisible by " ++ s ++ "."
```

In this example, when you call otherFunction, it'll return a String. If you give it an even number as argument, it'll say so, and give half of it. If you give it anything else, eitherExample will determine if it's divisible by three and pass it through to otherFunction.

24.3.2 Kind Errors

The flexibility of Haskell parameterised types can lead to errors in type declarations that are somewhat like type errors, except that they occur in the type declarations rather than in the program proper. Errors in these "types of types" are known as "kind" errors. You don't program with kinds:
the compiler infers them for itself. But if you get parameterised types wrong then the compiler will report a kind error.

More on datatypes ${ }^{1}$

[^40]
25 Other data structures

25.1 Trees

Now let's look at one of the most important datastructures: Trees. A tree is an example of a recursive datatype. Typically, its definition will look like this:

```
data Tree a = Leaf a | Branch (Tree a) (Tree a)
```

As you can see, it's parameterised, so we can have trees of Ints, trees of Strings, trees of Maybe Ints, even trees of (Int, String) pairs, if you really want. What makes it special is that Tree appears in the definition of itself. We will see how this works by using an already known example: the list.

25.1.1 Lists as Trees

As we have seen in More about Lists ${ }^{1}$ and List Processing ${ }^{2}$, we break lists down into two cases: An empty list (denoted by []), and an element of the specified type, with another list (denoted by ($\mathrm{x}: \mathrm{xs}$)). This gives us valuable insight about the definition of lists:

```
data [a] = [] | (a:[a]) -- Pseudo-Haskell, will not work properly.
```

Which is sometimes written as (for Lisp-inclined people):

```
data List a = Nil | Cons a (List a)
```

As you can see this is also recursive, like the tree we had. Here, the constructor functions are [] and (:). They represent what we have called Leaf and Branch. We can use these in pattern matching, just as we did with the empty list and the ($\mathrm{x}: \mathrm{xs}$):

25.1.2 Maps and Folds

We already know about maps and folds for lists. With our realisation that a list is some sort of tree, we can try to write map and fold functions for our own type Tree. To recap:

[^41]```
data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Show)
data [a] = [] | (:) a [a]
 -- (:) a [a] would be the same as (a:[a]) with prefix instead of
infix notation.
```

We consider map first, then folds.

## Map

Let's take a look at the definition of map for lists:

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xS) = f x : map f xS
```

First, if we were to write treeMap, what would its type be? Defining the function is easier if you have an idea of what its type should be.

We want it to work on a Tree of some type, and it should return another Tree of some type. What treeMap does is applying a function on each element of the tree, so we also need a function. In short:

```
treeMap :: (a -> b) -> Tree a -> Tree b
```

See how this is similar to the list example?
Next, we should start with the easiest case. When talking about a Tree, this is obviously the case of a Leaf. A Leaf only contains a single value, so all we have to do is apply the function to that value and then return a Leaf with the altered value:

```
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
```

Also, this looks a lot like the empty list case with map. Now if we have a Branch, it will include two subtrees; what do we do with them? When looking at the list-map, you can see it uses a call to itself on the tail of the list. We also shall do that with the two subtrees. The complete definition of treeMap is as follows:

```
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Branch left right) = Branch (treeMap f left) (treeMap f
right)
```

We can make this a bit more readable by noting that treeMap $f$ is itself a function with type Tree $a \quad->$ Tree $b$, and what we really need is a recursive definition of treeMap $f$. This gives us the following revised definition:

```
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f = g where
 g (Leaf x) = Leaf (f x)
 g (Branch left right) = Branch (g left) (g right)
```

If you don't understand it just now, re-read it. Especially the use of pattern matching may seem weird at first, but it is essential to the use of datatypes. The most important thing to remember is that pattern matching happens on constructor functions.

If you understand it, read on for folds.

## Fold

Now we've had the treeMap, let's try to write a treeFold. Again let's take a look at the definition of foldr for lists, as it is easier to understand.

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xS)
```

Recall that lists have two constructors:

```
(:) :: a -> [a] -> [a] -- two arguments
[] :: [a] -- zero arguments
```

Thus foldr takes two arguments corresponding to the two constructors:

```
f :: a -> b -> b -- a two-argument function
z :: b -- like a zero-argument function
```

We'll use the same strategy to find a definition for treeFold as we did for treeMap. First, the type. We want treeFold to transform a tree of some type into a value of some other type; so in place of [a] -> b we will have Tree a -> b. How do we specify the transformation? First note that Tree a has two constructors:

```
Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a
```

So treeFold will have two arguments corresponding to the two constructors:

```
fbranch :: b -> b -> b
fleaf :: a -> b
```

Putting it all together we get the following type definition:

```
treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
```

That is, the first argument, of type ( $\mathrm{b}->\mathrm{b}->\mathrm{b}$ ), is a function specifying how to combine subtrees; the second argument, of type $a->b$, is a function specifying what to do with leaves; and the third argument, of type Tree $a$, is the tree we want to "fold".

As with treeMap, we'll avoid repeating the arguments fbranch and fleaf by introducing a local function $g$ :

```
treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where
 -- definition of g goes here
```

The argument $f l e a f$ tells us what to do with Leaf subtrees:

```
g (Leaf x) = fleaf x
```

The argument fbranch tells us how to combine the results of "folding" two subtrees:

```
g (Branch left right) = fbranch (g left) (g right)
```

Our full definition becomes:

```
treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where
 g (Leaf x) = fleaf x
 g (Branch left right) = fbranch (g left) (g right)
```

For examples of how these work, copy the Tree data definition and the treeMap and treeFold functions to a Haskell file, along with the following:

```
tree1 :: Tree Integer
tree1 =
 Branch
 (Branch
 (Branch
 (Leaf 1)
 (Branch (Leaf 2) (Leaf 3)))
 (Branch
 (Leaf 4)
 (Branch (Leaf 5) (Leaf 6))))
 (Branch
 (Branch (Leaf 7) (Leaf 8))
 (Leaf 9))
doubleTree = treeMap (*2) -- doubles each value in tree
sumTree = treeFold (+) id -- sum of the leaf values in tree
fringeTree = treeFold (++) (: []) -- list of the leaves of tree
```

Then load it into your favourite Haskell interpreter, and evaluate:

```
doubleTree tree1
sumTree tree1
fringeTree tree1
```


## Unfolds

Dually it is also possible to write unfolds. UnfoldTree is of type

```
(b -> Either (b,b) a) -> b -> Tree a
```

and can be implemented as

```
unfoldTree f x=case f x of { Right a -> Leaf a ; Left (l,r) -> Branch
(unfoldTree f l, unfoldTree f r) }
```


### 25.2 Other datatypes

map and fold functions can be defined for any kind of data type. In order to generalize the strategy applied for lists and trees, in this final section we will work out a map and a fold for a very strange, intentionally contrived, datatype:

```
data Weird a b =
 First a |
 Second b |
 Third [(a,b)] |
 Fourth (Weird a b)
```

It can be a useful exercise to write the functions as you follow the examples, trying to keep the coding one step ahead of your reading.

### 25.2.1 General Map

Again, we will begin with weirdMap. The first important difference in working with this Weird type is that it has two type parameters. For that reason, we will want the map function to take two functions as arguments, one to be applied on the elements of type a and another for the elements of type b. With that accounted for, we can write the type signature of weirdMap:

```
weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
```

Next step is writing the definitions for weirdMap. The key point is that maps preserve the structure of a datatype, so the function must evaluate to a weird which uses the same constructor
than the one used for the original Weird. For that reason, we need one definition to handle each constructor, and these constructors are used as patterns for writing them. As before, to avoid repeating the weirdMap argument list over and over again a where clause comes in handy. A sketch of the function is below (note we already prepared a template for the list of tuples in Third.

```
weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
 where
 g (First x) = --More to follow
 g (Second y) = --More to follow
 g (Third z) = --More to follow
 g (Fourth w) = --More to follow
```

The first two cases are fairly straightforward, as there is just a single element of a or b type inside the Weird.

```
weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
 where
 g (First x) = First (fa x)
 g (Second y) = Second (fb y)
 g (Third z) = --More to follow
 g (Fourth w) = --More to follow
```

Third is trickier because it contains another data structure (a list) whose elements are themselves data structures (the tuples). So we need to navigate the nested data structures, apply fa and fbon all elements of type $a$ and $b$ inside it and eventually (as a map must preserve structure) produce a list of tuples - [ $(c, d)]$ - to be used with the constructor. The simplest approach might seem to be just breaking down the list inside the Weird and playing with the patterns:

```
g (Third []) = Third []
g (Third ((x,y):zs)) = Third ((fa x, fb y) : ((\(Third z) -> z)
(g (Third zs))))
```

This appears to be written as a typical recursive function for lists. We start by applying the functions of interest to the first element in order to obtain the head of the new list, ( $\mathrm{fa} \mathrm{x}, \mathrm{fb} \mathrm{y}$ ). But to what we will cons it to? As $g$ requires a Weird argument we need to make a Weird using the list tail in order to make the recursive call. But then $g$ will give a Weird and not a list, so we have to retrieve the modified list from that - that's the role of the lambda function. And finally, there is also the empty list base case to be defined as well.

After all of that, we are left with a messy function. Every recursive call of $g$ requires wrapping $x s$ into a Weird, while what we really wanted to do was to build a list with ( $\mathrm{fa} \mathrm{x}, \mathrm{fb} \mathrm{y}$ ) and the modified xs. The problem with this solution is that $g$ can (thanks to pattern matching) act directly on the list head but (due to its type signature) can't be called directly on the list tail. For that reason, it would be better to apply $f a$ and $f b$ without breaking down the list with pattern matching (as far as $g$ is directly concerned, at least). But there was a way to directly modify a list element-by-element...

```
g (Third z) = Third (map (\ (x, y) -> (fa x, fb y)) z)
```

...our good old map function, which modifies all tuples in the list $z$ using a lambda function. In fact, the first attempt at writing the definition looked just like an application of the list map except for the spurious Weird packing and unpacking. We got rid of these by having the pattern splitting of $z$ done by map, which works directly with regular lists. You could find it useful to expand the map definition inside $g$ for seeing a clearer picture of that difference. Finally, you may prefer to write this new version in an alternative, very clean way using list comprehension syntax:

```
g (Third z) = Third [(fa x, fb y) | (x,y) <- z]
```

Adding the Third function, we only have the Fourth left to do:

```
weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
 where
 g (First x) = First (fa x)
 g (Second y) = Second (fb y)
 g (Third z) = Third (map (\(x, y) -> (fa x, fb y)) z)
 g (Fourth w) = --More to follow
```

Dealing with the recursive Fourth constructor is actually really easy. Just apply g recursively!

```
weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g
 where
 g (First x) = First (fa x)
 g (Second y) = Second (fb y)
 g(Third z) = Third (map (\(x, y) -> (fa x, fb y)) z)
 g (Fourth w) = Fourth (g w)
```


### 25.2.2 General Fold

While we were able to define a map by specifying as arguments a function for every separate type, this isn't enough for a fold. For a fold, we'll need a function for every constructor function. This is also the case with lists! Remember the constructors of a list are [] and (:). The $z$ argument in the foldr function corresponds to the [] constructor. The $f$ argument in the foldr function corresponds to the (: ) constructor. The Weird datatype has four constructors, so we need four functions - one for handling the internal structure of the datatype specified by each constructor. Next, we have an argument of the Weird a b type, and finally we want the whole fold function to evaluate to a value of some other, arbitrary, type. Additionally, each individual function we pass to weirdFold must evaluate to the same type weirdFold does. That allows us to make a mock type signature and sketch the definition:

```
weirdFold :: (something1 -> c) -> (something2 -> c) -> (something3 ->
c) -> (something4 -> c) -> Weird a b -> c
weirdFold f1 f2 f3 f4 = g
 where
 g (First x) = --Something of type c here
 g (Second y) = --Something of type c here
```

```
g (Third z) = --Something of type c here
g (Fourth w) = --Something of type c here
```

Now we need to figure out to which types something1, something2, something3 and something4 correspond to. That is done by analysing the constructors, since the functions must take as arguments the elements of the datatype (whose types are specified by the constructor type signature). Again, the types and definitions of the first two functions are easy to find. The third one isn't difficult either, as for the purposes of folding the list of $(a, b)$ tuples is no different from a simple type - unlike in the map example, its internal structure does not concern us now. The fourth constructor, however, is recursive, and we have to watch out. As in the case of weirdMap, we also need to recursively call the $g$ function. This brings us to the following, final, definition:

```
weirdFold :: (a -> c) -> (b -> c) -> ([(a,b)] -> c) -> (c -> c) ->
Weird a b -> c
weirdFold f1 f2 f3 f4 = g
 where
 g (First x) = f1 x
 g (Second y) = f2 y
 g (Third z) = f3 z
 g (Fourth w) = f4 (g w)
```


## Folds on recursive datatypes

As far as folds are concerned Weird was a fairly nice datatype to deal with. Just one recursive constructor, which isn't even nested inside other structures. What would happen if we added a truly complicated fifth constructor?

```
Fifth [Weird a b] a (Weird a a, Maybe (Weird a b))
```

A valid, and tricky, question. In general, the following rules apply:

- A function to be supplied to a fold has the same number of arguments as the corresponding constructor.
- The type of the arguments of such a function match the types of the constructor arguments, except if the constructor is recursive (that is, takes an argument of its own type).
- If a constructor is recursive, any recursive argument of the constructor will correspond to an argument of the type the fold evaluates to. ${ }^{3}$
- If a constructor is recursive, the complete fold function should be (recursively) applied to the recursive constructor arguments.
- If a recursive element appears inside another data structure, the appropriate map function for that data structure should be used to apply the fold function to it.

So $£ 5$ would have the type:

[^42]```
f5 :: [c] -> a -> (Weird a a, Maybe c)
```

as the type of Fifth is:

```
Fifth :: [Weird a b] -> a -> (Weird a a, Maybe (Weird a b)) -> Weird
a b
```

The definition of g for the Fifth constructor will be:

```
g (Fifth list x (waa, mc)) = f5 (map g list) x (waa, maybeMap g
mc)
    where
        maybeMap f Nothing = Nothing
        maybeMap f (Just w) = Just (f w)
```

Now note that nothing strange happens with the Weird a a part. No g gets called. What's up? This is a recursion, right? Well... not really. Weird a a and Weird a b are different types, so it isn't a real recursion. It isn’t guaranteed that, for example, $£ 2$ will work with something of type 'a', where it expects a type ' b '. It can be true for some cases, but not for everything.

Also look at the definition of maybeMap. Verify that it is indeed a map function as:

- It preserves structure.
- Only types are changed.

25.3 Notes

<references/>

OTHER DATA STRUCTURES ${ }^{4}$

[^43]
26 Class declarations

Type classes are a way of ensuring certain operations defined on inputs. For example, if you know a certain type instantiates the class Fractional, then you can find its reciprocal.
Indeed, OO languages use nominal subtyping; Haskell classes use structural subtyping. Haskell classes also are not types, but categories of types. They cannot be used to hold any object fulfilling the interface, but only to parametrize arguments.

26.1 Introduction

Haskell has several numeric types, including Int, Integer and Float. You can add any two numbers of the same type together, but not numbers of different types. You can also compare two numbers of the same type for equality. You can also compare two values of type Bool for equality, but you cannot add them together.

The Haskell type system expresses these rules using classes. A class is a template for types: it specifies the operations that the types must support. A type is said to be an "instance" of a class if it supports these operations.

For instance, here is the definition of the "Eq" class from the Standard Prelude. It defines the == and $/=$ functions.

```
class Eq a where
    (==), (/=) :: a -> a -> Bool
        -- Minimal complete definition:
        -- (==) or (/=)
    x/= y = not (x == y)
    x == y = not (x/=y)
```

This says that a type a is an instance of Eq if it supports these two functions. It also gives default definitions of the functions in terms of each other. This means that if an instance of Eq defines one of these functions then the other one will be defined automatically.

Here is how we declare that a type is an instance of Eq:

```
data Foo = Foo {x :: Integer, str :: String}
instance Eq Foo where
    (F\circO x1 str1) == (FOO x2 str2) = (x1 == x2) && (str1 == str2)
```

There are several things to notice about this:

- The class Eq is defined in the Standard Prelude. This code sample defines the type Foo and then declares it to be an instance of Eq. The three definitions (class, data type and instance) are completely separate and there is no rule about how they are grouped. You could just as easily create a new class Bar and then declare the type Integer to be an instance of it.
- Types and classes are not the same thing. A class is a "template" for types. Again this is unlike most OO languages, where a class is also itself a type.
- The definition of $==$ depends on the fact that Integer and String are also members of Eq. In fact almost all types in Haskell (the most notable exception being functions) are members of Eq.
- You can only declare types to be instances of a class if they were defined with data or newtype. (Type synonyms defined with type are not allowed.)

26.2 Deriving

Since equality tests between values are commonplace, in all likelihood most of the data types you create in any real program should be members of Eq, and for that matter a lot of them will also be members of other Standard Prelude classes such as Ord and Show. This would require large amounts of boilerplate for every new type, so Haskell has a convenient way to declare the "obvious" instance definitions using the keyword deriving. Using it, Foo would be written as:

```
data FOO = FOO {x :: Integer, str :: String}
    deriving (Eq, Ord, Show)
```

This makes Foo an instance of Eq with an automatically generated definition of == exactly equivalent to the one we just wrote, and also makes it an instance of Ord and Show for good measure. If you are only deriving from one class then you can omit the parentheses around its name, e.g.:

```
data FOO = FOO {x :: Integer, str :: String}
    deriving Eq
```

You can only use deriving with a limited set of built-in classes. They are:
Eq : Equality operators $==$ and $/=$
Ord : Comparison operators \ll= >>=. Also min and max.
Enum : For enumerations only. Allows the use of list syntax such as [Blue .. Green].
Bounded : Also for enumerations, but can also be used on types that have only one constructor. Provides minBound and maxBound, the lowest and highest values that the type can take.

Show : Defines the function show (note the letter case of the class and function names) which converts the type to a string. Also defines some other functions that will be described later.

Read : Defines the function read which parses a string into a value of the type. As with Show it also defines some other functions as well.

The precise rules for deriving the relevant functions are given in the language report. However they can generally be relied upon to be the "right thing" for most cases. The types of elements inside the data type must also be instances of the class you are deriving.

This provision of special "magic" function synthesis for a limited set of predefined classes goes against the general Haskell philosophy that "built in things are not special". However it does save a lot of typing. Experimental work with Template Haskell is looking at how this magic (or something like it) can be extended to all classes.

26.3 Class Inheritance

Classes can inherit from other classes. For example, here is the definition of the class Ord from the Standard Prelude, for types that have comparison operators:

```
class (Eq a) => Ord a where
    compare :: a -> a -> Ordering
    (<), (<=), (>=), (>) :: a -> a -> Bool
    max, min :: a -> a -> a
```

The actual definition is rather longer and includes default implementations for most of the functions. The point here is that Ord inherits from Eq. This is indicated by the $=>$ symbol in the first line. It says that in order for a type to be an instance of Ord it must also be an instance of Eq, and hence must also implement the $==$ and $/=$ operations.

A class can inherit from several other classes: just put all the ancestor classes in the parentheses before the =>. Strictly speaking those parentheses can be omitted for a single ancestor, but including them acts as a visual prompt that this is not the class being defined and hence makes for easier reading.

26.4 Standard Classes

This diagram, copied from the Haskell Report, shows the relationships between the classes and types in the Standard Prelude. The names in bold are the classes. The non-bold text is the types that are instances of each class. The $(->)$ refers to functions and the [] refers to lists.

Abb. 1

CLASS DECLARATIONS ${ }^{1}$

[^44]
27 Classes and types

27.1 Classes and Types

27.1.1 Simple Type Constraints

So far we have seen how to declare classes, how to declare types, and how to declare that types are instances of classes. But there is something missing. How do we declare the type of a simple arithmetic function?

```
plus x y = x + y
```

Obviously x and y must be of the same type because you can't add different types of numbers together. So how about:

```
plus :: a -> a -> a
```

which says that plus takes two values and returns a new value, and all three values are of the same type. But there is a problem: the arguments to plus need to be of a type that supports addition. Instances of the class Num support addition, so we need to limit the type signature to just that class. The syntax for this is:

```
plus :: (Num a) => a -> a -> a
```

This says that the type of the arguments to plus must be an instance of Num, which is what we want.
You can put several limits into a type signature like this:

```
foo :: (Num a, Show a, Show b) => a -> a -> b -> String
foo x y t =
    show x ++ " plus " ++ show y ++ " is " ++ show (x+y) ++ ". " ++
show t
```

This says that the arguments x and y must be of the same type, and that type must be an instance of both Num and Show. Furthermore the final argument t must be of some (possibly different) type that is also an instance of Show.

You can omit the parentheses for a single constraint, but they are required for multiple constraints. Actually it is common practice to put even single constraints in parentheses because it makes things easier to read.

27.1.2 More Type Constraints

You can put a type constraint in almost any type declaration. The only exception is a type synonym declaration. The following is not legal:

```
type (Num a) => Foo a = a -> a -> a
```

But you can say:

```
data (Num a) => Foo a = F1 a | F2 Integer
```

This declares a type Foo with two constructors. F1 takes any numeric type, while F2 takes an integer.
You can also use type parameters in newtype and instance declarations. Class inheritance (see the previous section) also uses the same syntax.

Classes and TYpes ${ }^{1}$

[^45]28 Monads

29 Understanding monads

29.1 First things first: Why, why, why, do I need Monads?

Monads, classically, are used for a very important thing: when the program you are building is logically ordered such that you will think, "first, do this, then, do that, then, do that other thing".

For example, in parsing, you might want to say, "first, check that it's a IF keyword. if so, then look for an expression, then look for a THEN keyword, then look for a statement, then look for an ELSE keyword, then look for a statement".

For another example, you might want to say, "first, write 'Hello rodney, welcome back to HaskHack!', then write a newline, then write our prompt ' $>$ ', then get a keyboard press".

For a third example, you might want to say, "first, try to find some entity, then try to find some other entity, and finally, combine both of those entities (and if we succeeded, return Just 'that entity', but if any step failed, return Nothing)".

All three examples are very different: the first involves reading from a stream of input tokens, the next involves interacting with the user, and the third involves attempting (and possibly failing) to perform some operation. However there is a single common factor: each of them involves doing something in sequence. It's that sequencing that is the heart of the term "monad".

Now, one very important thing about monads is that while most of the time the order in which you write "do this then do that" means that "this" really does occur before "that" in execution time, it is not necessarily so. Some monads may be able to arrange to have "that" occur, in execution time, before "this", or may not specify it at all; what matters more is that conceptually, you, the programmer, want to think of it in that very specific order (in some cases the difference between order-of-specification from order-of-execution may be advantageous, <insert example here>).

Monads are extremely general. They only need to provide three things: how to say "do this then do that", how to say "do this" (and optionally, to say "do this but if something bad happens, FAIL!"), and how to say "I have 'do this then do that', now run it".

29.2 Introduction

Monads are a very useful concept in Haskell, but also a relatively difficult one for newcomers. Since they have so many applications, people have often explained them from a particular point of view, which can make it confusing to understand monads in their full generality.

Historically, monads were first introduced into Haskell as a way to perform input/output. After all, lazy evaluation means that the order of evaluation is rather unpredictable, whereas a determined execution order is crucial for things like reading and writing files. Hence, a method for specifying
a determined sequence of operations was needed and monads are exactly the right abstraction for that.

But monads are by no means limited to input/output, they can model any imperative language. The choice of monad determines the semantics of this language, i.e., whether it supports exceptions, state, non-determinism, continuations, coroutines and so on. Indeed, in Haskell all of these constructs are not a built-in part of the language, but rather defined by standard libraries! Because of this, monadic values are sometimes also referred to as "actions" or "computations". In general, an action can produce a result of a certain type, called the result type of the action; however, it is up to the monad to establish if this has to always happen. For instance, throwing an exception implies returning no value, while a non-deterministic computation produces not just one value, but a list of them.

The present chapter introduces the basic notions with the example of the Maybe monad, the simplest monad for handling exceptions. Beginning Haskell programmers will probably also want to understand the 10 monad and then broaden their scope to the many other monads and the effects they represent; this chapter provides the corresponding hyperlinks.

29.3 Definition

A monad is defined by three things:

- a way to produce types of "actions" from the types of their result; formally, a TYPE CONSTRUCTOR ${ }^{1} \mathrm{M}$,
- a way to produce actions which simply produce a value; formally a function named return:

```
return :: a -> M a
```

From the type, we can read that return produces an action with "result type" a, and as we will see later, the action will have to return exactly the parameter of return, without doing anything else (not even to the control flow). ${ }^{2}$

- and a way to chain "actions" together, while allowing the result of an action to be used for the second action; formally, an operator ($\gg=$), which is pronounced "bind":

```
(>>=) :: M a -> ( a -> M b ) -> M b
```

From the type, we can read that this operator takes an action producing a value of type a and a function consuming a value of type a and producing an action with return type b. Its result is a simple action with return type b - we can already guess that this resulting action will probably feed the result of the first action into the second function.

[^46]They are also required to obey THREE LAWS ${ }^{3}$ that will be explained later on - for now, it suffices to say that our explanation of the meaning of return and ($\gg=$) would not be valid without these laws.

Let's give an example: the Maybe monad, which allows implementing a very simple form of exceptions (more powerful exceptions are also supported). The type constructor is $M=$ Maybe so that return and (>>=) have types

```
return :: a -> Maybe a
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
```

They are implemented as

```
return x = Just x
(>>=) m g = case m of
    Nothing -> Nothing
    Just x -> g x
```

and our task is to explain how and why this definition is useful.

29.3.1 Motivation: Maybe

To see the usefulness of (>>=) and the Maybe monad, consider the following example: imagine a family database that provides two functions

```
father :: Person -> Maybe Person
mother :: Person -> Maybe Person
```

that look up the name of someone's father/mother or return Nothing if they are not stored in the database. With these, we can query various grandparents. For instance, the following function looks up the maternal grandfather:

```
    maternalGrandfather :: Person -> Maybe Person
    maternalGrandfather p =
    case mother p of
        Nothing -> Nothing
        Just m -> father m -- mother's
father
```

Or consider a function that checks whether both grandfathers are in the database:

```
bothGrandfathers :: Person -> Maybe (Person, Person)
bothGrandfathers p =
    case father p of
```

[^47]```
Nothing -> Nothing
 Just f ->
 case father f of
 Nothing -> Nothing
 Just gf -> -- found first
 case mother p of
 Nothing -> Nothing
 Just m ->
 case father m of
 Nothing -> Nothing
 Just gm -> -- found
 Just (gf, gm)
```

grandfather
second one

What a mouthful! Every single query might fail by returning Nothing and the whole functions must fail with Nothing if that happens.

But clearly, there has to be a better way than repeating the case of Nothing again and again! Indeed, and that's what the Maybe monad is set out to do. For instance, the function retrieving the maternal grandfather has exactly the same structure as the ( $\gg=$ ) operator, and we can rewrite it as

```
maternalGrandfather p = mother p >>= father
```

With the help of lambda expressions and return, we can rewrite the mouthful of two grandfathers as well:

```
bothGrandfathers p =
 father p >>=
 (\f -> father f >>=
 \\gf -> mother p >>=
 (\m -> father m >>=
 (\gm -> return (gf,gm)))))
```

While these nested lambda expressions may look confusing to you, the thing to take away here is that ( $\gg=$ ) eliminates any mention of Nothing, shifting the focus back to the interesting part of the code. The next chapter will also explain a way to express the same algorithm in a nicerlooking notation, where this sequence of actions looks a bit like a sequence of statements of a more conventional language.

### 29.3.2 Type class

In Haskell, the type class Monad is used to implement monads. It is defined in the module and part of the

```
class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
```

```
(>>) :: m a -> m b -> m b
fail :: String -> m a
```

Aside from return and bind, it defines two additional functions (>>) and fail.
The operator (>>) called "then" is a mere convenience and commonly implemented as

```
m >> n = m >>= _ -> n
```

It is used for sequencing two monadic actions when the second does not care about the result of the first, which is common for monads like $I 0$.

```
printSomethingTwice :: String -> IO ()
printSomethingTwice str = putStrLn str >> putStrLn str
```

The function fail handles pattern match failures in do NOTATION ${ }^{4}$. It's an unfortunate technical necessity and doesn't really have to do anything with monads. You are advised to not use fail directly in your code.

### 29.3.3 Is my Monad a Functor?

In case you forgot, a functor is a type to which we can apply the fmap function, which is analogous to the map function for lists.
According to CATEGORY THEORY ${ }^{5}$, all monads are by definition functors too. However, GHC thinks it different, and the Monad class has actually nothing to do with the Functor class. This will likely change in future versions of Haskell, so that every Monad will have its own fmap; until then, you will have to make two separate instances of your monads (as Monad and as Functor) if you want to use a monad as a functor.

### 29.4 Notions of Computation

While you probably agree now that (>>=) and return are very handy for removing boilerplate code that crops up when using Maybe, there is still the question of why this works and what this is all about.

To answer this, we shall write the example with the two grandpas in a very suggestive style:

```
 bothGrandfathers p = do {
 f <- father p; -- assign the result of father p to
the variable f
 gf <- father f; -- similar
```

[^48]```
    m <- mother p; --- ...
    return (gf,gm); -- return result pair
    }
```

If this looks like a code snippet of an imperative programming language to you, that's because it is. In particular, this imperative language supports exceptions: father and mother are functions that might fail to produce results, i.e. raise an exception, and when that happens, the whole do-block will fail, i.e. terminate with an exception.

In other words, the expression father p, which has type Maybe Person, is interpreted as a statement of an imperative language that returns a Person as result. This is true for all monads: a value of type M a is interpreted as a statement of an imperative language that returns a value of type a as result; and the semantics of this language are determined by the monad M. TODO: diagram, picture?

Now, the bind operator ($\gg=$) is simply a function version of the semicolon. Just like a let expression can be written as a function application,

| let $x=$ foo in bar corresponds to $\quad(\backslash x \rightarrow$ bar $)$ foo |
| :--- | :--- | :--- |

an assignment and semicolon can be written as the bind operator:

```
x<- foo; bar corresponds to foo >>= (\x -> bar)
```

The return function lifts a value a to a full-fledged statement M a of the imperative language.
Different semantics of the imperative language correspond to different monads. The following table shows the classic selection that every Haskell programmer should know. Also, if the idea behind monads is still unclear to you, studying each of the following examples in the order suggested will not only give you a well-rounded toolbox but also help you understand the common abstraction behind them.

| Semantics
 Exception (anonymous) | Monad
 Maybe |
| :--- | :--- |
| Exception (with error de-
 scription)
 Global state | Error |
| Input/Output | State |
| Nondeterminism | IO |
| [] (lists) | |

Wikibook chapter
Haskell/Understanding MONADS/MAYBE ${ }^{6}$
HASKELL/UNDERSTANDING MONADS/ERROR ${ }^{7}$
HASKELL/UNDERSTANDING MONADS/STATE ${ }^{8}$
HASKELL/UNDERSTANDING MONADS/IO ${ }^{9}$
HASKELL/UNDERSTANDING MONADS/LIST ${ }^{10}$

```
HTTP://EN.wIKIbOOKS.ORG/wIKI/HASKELL/UNDERSTANDINGMONADS/MAYbE
HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/ERROR
HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/STATE
HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/IO
HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/LIST
```


Semantics

Environment

Logger

Monad

Reader

Writer

Wikibook chapter

HASKELL/UNDERSTANDING
MONADS/READER ${ }^{11}$
HASKELL/UNDERSTANDING MONADS/WRITER ${ }^{12}$

Furthermore, the semantics do not only occur in isolation but can also be mixed and matched. This gives rise to MONAD TRANSFORMERS ${ }^{13}$.

Some monads, like MONADIC PARSER COMBINATORS ${ }^{14}$ have loosened their correspondence to an imperative language.

29.5 Monad Laws

We can't just allow any junky implementation of ($\gg=$) and return if we want to interpret them as the primitive building blocks of an imperative language. For that, an implementation has to obey the following three laws:

```
m >>= return = m -- right unit
return x >>= f = f x -- left unit
(m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity
```

In Haskell, every instance of the Monad type class is expected to obey them.

29.5.1 Return as neutral element

The behavior of return is specified by the left and right unit laws. They state that return doesn't perform any computation, it just collects values. For instance,

```
maternalGrandfather p = do {
    m <- mother p;
    gm <- father m;
    return gm;
    }
```

is exactly the same as

```
maternalGrandfather p = do {
    m <- mother p;
    father m;
```

[^49]by virtue of the right unit law.
These two laws are in analogy to the laws for the neutral element of a MONOID ${ }^{15}$.

29.5.2 Associativity of bind

The law of associativity makes sure that - just like the semicolon - the bind operator ($\gg=$) only cares about the order of computations, not about their nesting, e.g. the following is equivalent:

```
bothGrandfathers p =
    (father p >>= father) >>=
        (\gf >> (mother p >>= father) >>=
            (\gm >> return (gf,gm) ))
```

Again, this law is analogous to the associativity of a MONOID ${ }^{16}$, although it looks a bit different due to the lambda expression $(\backslash x->f x \gg=g)$. There is the alternative formulation as

```
(f >=> g) >=> h = f >=> (g >=> h)
```

where ($>=>$) is the equivalent of function composition (.) for monads and defined as

```
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
f >=> g = \x m f x >>= g
```

The associativity of the then operator (\gg) is a special case:

```
(m >> n) >> O = m >> (n >> 0)
```


29.6 Monads and Category Theory

Monads originally come from a branch of mathematics called CATEGORY THEORY ${ }^{17}$. Fortunately, it is entirely unnecessary to understand category theory in order to understand and use monads in Haskell. However, the Category Theoretical definition of monads uses a slightly different presentation. When translated into Haskell, this presentation gives a different, but equivalent definition of a monad which may be useful to understand.

[^50]So far, we have defined monads in terms of >>= and return, but there's also an alternative definition that starts with monads as functors with two additional combinators

```
fmap :: (a -> b) -> M a -> M b -- functor
return :: a -> M a
join :: M (M a) -> M a
```

A functor M can be thought of as container, so that M a "contains" values of type a.
Under this interpretation, the functions behave as follows:

- fmap applies a given function to every element in a container
- return packages an element into a container,
- join takes a container of containers and turns them into a single container.

With these functions, the bind combinator is defined as follows:

```
m >>= g = join (fmap g m)
```

Likewise, we could give a definition of fmap and join in terms of $\gg=$:

```
fmap f x = x >>= (return . f)
join x = x >>= id
```

For more information on this point of view, see also the WIKIBOOK CHAPTER ON CATEGORY THEORY ${ }^{18}$.

29.7 Footnotes

<references/>
UNDERSTANDING MONADS ${ }^{19}$

[^51]
30 do Notation

The do notation is a different way of writing monadic code; it is especially useful with the IO monad, since that monad does not allow to extract pure values from it by design; in contrast, you can extract pure values from Maybe or lists using pattern matching or appropriate functions.

30.1 Translating the then operator

The (>>) (then) operator is easy to translate between do notation and plain code, so we will see it first. For example, suppose we have a chain of monads like the following one:

```
putStr "Hello" >>
putStr " " >>
putStr "world!" >>
putStr "\n"
```

We can rewrite it in do notation as follows:

```
do putStr "Hello"
    putStr " "
    putStr "world!"
    putStr "\n"
```

This sequence of instructions is very similar to what you would see in any imperative language such as C .

Since the do notation is used especially with input-output, monads are often called actions in this context; an action could be writing to a file, opening a network connection or asking the user for input. The general way we translate these actions from the do notation to standard Haskell code is:

```
do action
    other_action
    yet_another_action
```

which becomes

```
action >>
do other_action
    yet_another_action
```

and so on until the do block is empty.

30.2 Translating the bind operator

The (>>=) is a bit more difficult to translate from and to do notation, essentially because it involves passing a value downstream in the binding sequence. These values can be stored using the $<-$ notation, and used downstream in the do block.

```
do result <- action
    another_result <- another_action
    (action_based_on_previous_results result another_result)
```

This is translated back into monadic code substituting:

```
action >>= f
where f result = do another_result <- another_action
    (action_based_on_previous_results result
another_result)
    f _ = fail "..."
```

In words, the action brought outside of the do block is bound to a function, which is defined to take an argument (to make it easy to identify it, we named result just like in the complete do block). If the pattern matching is unsuccessful, the monad's implementation of fail will be called.

Notice that the variables left of the <- in the do block have been extracted from the monad, so if action produces e.g. a IO String, the type of result will be String.

30.3 Example: user-interactive program

Consider this simple program that asks the user for his or her first and last names:

```
nameDo :: IO ()
nameDo = do putStr "What is your first name? "
    first <- getLine
    putStr "And your last name? "
    last <- getLine
    let full = first++" "++last
    putStrLn ("Pleased to meet you, "++full++"!")
```

The code in do notation is quite readable, and it is easy to see where it is going to. The <- notation makes it possible to store first and last names as if they were pure variables, though they never can be in reality: function getLine is not pure because it can give a different result every time it is run (in fact, it would be of very little help if it did not).

If we were to translate the code into standard monadic code, the result would be:

```
name :: IO ()
name = putStr "What is your first name? " >>
    getLine >>= f
    where
    f first = putStr "And your last name? " >>
        getLine >>= g
        where
        g last = putStrLn ("Pleased to meet you,
"++full++"!")
    where
    full = first++" "++last
```

The advantage of the do notation should now be apparent: the code in nameDo is much more readable, and does not run off the right edge of the screen.
The indentation increase is mainly caused by where clauses related to (>>=) operators, and by the fact that we cannot simply extract a value from the IO monad but must define new functions instead, and take advantage of pattern matching. This explains why the do notation is so popular when dealing with the $I 0$ monad, which is often used to obtain values (user input, reading files, etc.) that cannot, by construction, be taken out of the monad.

30.4 Returning values

The last statement in a do notation is the result of the do block. In the previous example, the result was of the type IO (), that is an empty value in the IO monad.

Suppose that we want to rewrite the example, but returning a IO String with the acquired name. All we need to do is add a return instruction:

```
nameReturn :: IO String
nameReturn = do putStr "What is your first name? "
    first <- getLine
    putStr "And your last name? "
    last <- getLine
    let full = first++" "++last
    putStrLn ("Pleased to meet you, "++full++"!")
    return full
```

This example will "return" the full name as a string inside the 10 monad, which can then be utilized downstream. This kind of code is probably the reason it is so easy to misunderstand the nature of return: it does not only share a name with C's keyword, it seems to have the same function here.
However, check this code now:

```
nameReturn' = do putStr "What is your first name? "
    first <- getLine
    putStr "And your last name? "
    last <- getLine
    let full = first++" "++last
    putStrLn ("Pleased to meet you, "++full++"!")
    return full
```

```
putStrLn "I am not finished yet!"
```

The last string will be printed out, meaning that a return is not a final statement interrupting the flow, as it is in C and other languages. Indeed, the type of nameReturn' is IO (), meaning that the IO String created by the return full instruction has been completely removed: the result of the do block is now the result of the final putStrLn action, which is exactly IO ().

The do Notation ${ }^{1}$

[^52]
31 Advanced monads

This chapter follows on from ../UnDERSTANDING MONADS $/{ }^{1}$, and explains a few more of the more advanced concepts.

31.1 Monads as computations

31.1.1 The concept

A metaphor we explored in the last chapter was that of monads as containers. That is, we looked at what monads are in terms of their structure. What was touched on but not fully explored is why we use monads. After all, monads structurally can be very simple, so why bother at all?

The secret is in the view that each monad represents a different type of computation. Here, and in the rest of this chapter, a 'computation' is simply a function call: we're computing the result of this function. In a minute, we'll give some examples to explain what we mean by this, but first, let's re-interpret our basic monadic operators:

$\gg=$

The >>= operator is used to sequence two monadic computations. That means it combines them so that when the combined computation is run, the first computation will run and its output will be fed into the second which will then run using (or dependent upon) that value.

```
return
```

return x, in computation-speak, is simply a computation that, when run, will produce the result x as-is, but in its own (the computation's) specific way. The meaning of the latter phrase will become clearer when we look at State below.

So how does the computations analogy work in practice? Let's look at some examples.

31.1.2 The Maybe monad

Computations in the Maybe monad (that is, function calls which result in a type wrapped up in a Maybe) represent computations that might fail. The easiest example is with lookup tables. A lookup table is a table which relates keys to values. You look up a value by knowing its key and

[^53]using the lookup table. For example, you might have a lookup table of contact names as keys to their phone numbers as the values in a phonebook application. One way of implementing lookup tables in Haskell is to use a list of pairs: [(a, b)]. Here a is the type of the keys, and b the type of the values. Here's how the phonebook lookup table might look:

```
phonebook :: [(String, String)]
phonebook = [ ("Bob", "01788 665242"),
    ("Fred", "01624 556442"),
    ("Alice", "01889 985333"),
    ("Jane", "01732 187565") ]
```

The most common thing you might do with a lookup table is look up values! However, this computation might fail. Everything's fine if we try to look up one of "Bob", "Fred", "Alice" or "Jane" in our phonebook, but what if we were to look up "Zoe"? Zoe isn't in our phonebook, so the lookup has failed. Hence, the Haskell function to look up a value from the table is a Maybe computation:

```
lookup :: Eq a => a -- a key
    -> [(a, b)] -- the lookup table to use
    -> Maybe b -- the result of the lookup
```

Lets explore some of the results from lookup:

```
Prelude> lookup "Bob" phonebook
Just "01788 665242"
Prelude> lookup "Jane" phonebook
Just "01732 187565"
Prelude> lookup "Zoe" phonebook
Nothing
```

Now let's expand this into using the full power of the monadic interface. Say, we're now working for the government, and once we have a phone number from our contact, we want to look up this phone number in a big, government-sized lookup table to find out the registration number of their car. This, of course, will be another Maybe-computation. But if they're not in our phonebook, we certainly won't be able to look up their registration number in the governmental database! So what we need is a function that will take the results from the first computation, and put it into the second lookup, but only if we didn't get Nothing the first time around. If we did indeed get Nothing from the first computation, or if we get Nothing from the second computation, our final result should be Nothing.

```
comb :: Maybe a -> (a -> Maybe b) -> Maybe b
comb Nothing _ = Nothing
comb (Just x) \overline{f}=f x
```

Observant readers may have guessed where we're going with this one. That's right, comb is just $\gg=$, but restricted to Maybe-computations. So we can chain our computations together:

```
getRegistrationNumber :: String -- their name
    -> Maybe String -- their registration number
getRegistrationNumber name =
    lookup name phonebook >>=
        (\number -> lookup number governmentalDatabase)
```

If we then wanted to use the result from the governmental database lookup in a third lookup (say we want to look up their registration number to see if they owe any car tax), then we could extend our getRegistrationNumber function:

```
getTaxOwed :: String -- their name
    -> Maybe Double -- the amount of tax they owe
getTaxOwed name =
    lookup name phonebook >>=
        (\number -> lookup number governmentalDatabase) >>=
            (\registration >> lookup registration taxDatabase)
```

Or, using the do-block style:

```
getTaxOwed name = do
    number <- lookup name phonebook
    registration <- lookup number governmentalDatabase
    lookup registration taxDatabase
```

Let's just pause here and think about what would happen if we got a Nothing anywhere. Trying to use $\gg=$ to combine a Nothing from one computation with another function will result in the Nothing being carried on and the second function ignored (refer to our definition of comb above if you're not sure). That is, a Nothing at any stage in the large computation will result in a Nothing overall, regardless of the other functions! Thus we say that the structure of the Maybe monad propagates failures.

An important thing to note is that we're not by any means restricted to lookups! There are many, many functions whose results could fail and therefore use Maybe. You've probably written one or two yourself. Any computations in Maybe can be combined in this way.

Summary

The important features of the Maybe monad are that:

1. It represents computations that could fail.
2. It propagates failure.

31.1.3 The List monad

Computations that are in the list monad (that is, they end in a type [a]) represent computations with zero or more valid answers. For example, say we are modelling the game of noughts and crosses (known as tic-tac-toe in some parts of the world). An interesting (if somewhat contrived) problem might be to find all the possible ways the game could progress: find the possible states of the board 3 turns later, given a certain board configuration (i.e. a game in progress).

Here is the instance declaration for the list monad:

```
instance Monad [] where
    return a = [a]
    xS >>= f = concat (map f xs)
```

As monads are only really useful when we're chaining computations together, let's go into more detail on our example. The problem can be boiled down to the following steps:

1. Find the list of possible board configurations for the next turn.
2. Repeat the computation for each of these configurations: replace each configuration, call it C, with the list of possible configurations of the turn after C.
3. We will now have a list of lists (each sublist representing the turns after a previous configuration), so in order to be able to repeat this process, we need to collapse this list of lists into a single list.

This structure should look similar to the monadic instance declaration above. Here's how it might look, without using the list monad:

```
getNextConfigs :: Board -> [Board]
getNextConfigs = undefined -- details not important
```

```
tick :: [Board] -> [Board]
tick bds = concatMap getNextConfigs bds
```

```
find3rdConfig :: Board -> [Board]
find3rdConfig bd = tick $ tick $ tick [bd]
```

(concatMap is a handy function for when you need to concat the results of a map: concatMap f $\mathrm{xs}=$ concat $(\mathrm{map} \mathrm{f} \mathrm{xs})$.) Alternatively, we could define this with the list monad:

```
find3rdConfig :: Board -> [Board]
find3rdConfig bd0 = do
    bd1 <- getNextConfigs bd0
    bd2 <- getNextConfigs bd1
    bd3 <- getNextConfigs bd2
    return bd3
```


List comprehensions

An interesting thing to note is how similar list comprehensions and the list monad are. For example, the classic function to find Pythagorean triples:

```
pythags = [ (x,y, z) | z <- [1..], x <- [1..z], y<- [x..z], x^2 +
y^2 == z^2 ]
```

This can be directly translated to the list monad:

```
import Control.Monad (guard)
pythags = do
    z <- [1..]
    x<- [1..z]
    y <- [x..z]
    guard (x^2 + y^2 == z^2)
    return (x, y, z)
```

The only non-trivial element here is guard. This is explained in the next module, ADDITIVE MONADS^{2}.

31.1.4 The State monad

The State monad actually makes a lot more sense when viewed as a computation, rather than a container. Computations in State represents computations that depend on and modify some internal state. For example, say you were writing a program to model the ThREE BODY PROBLEM ${ }^{3}$. The internal state would be the positions, masses and velocities of all three bodies. Then a function, to, say, get the acceleration of a specific body would need to reference this state as part of its calculations.

The other important aspect of computations in State is that they can modify the internal state. Again, in the three-body problem, you could write a function that, given an acceleration for a specific body, updates its position.

The State monad is quite different from the Maybe and the list monads, in that it doesn't represent the result of a computation, but rather a certain property of the computation itself.

What we do is model computations that depend on some internal state as functions which take a state parameter. For example, if you had a function f : : String -> Int -> Bool, and we want to modify it to make it depend on some internal state of type s, then the function becomes $f:$: String -> Int -> s \rightarrow Bool. To allow the function to change the internal state, the function returns a pair of (return value, new state). So our function becomes f : : String -> Int -> s -> (Bool, s)

It should be clear that this method is a bit cumbersome. However, the types aren't the worst of it: what would happen if we wanted to run two stateful computations, call them f and g, one after another, passing the result of f into g ? The second would need to be passed the new state from running the first computation, so we end up 'threading the state':

```
fThenG :: (s -> (a, s)) -> (a -> s -> (b, s)) -> s -> (b, s)
fThenG f g s =
    let (v, S' ) = f s -- run f with our initial state s.
        (v', s')}=g\mp@code{v s' -- run g with the new state s' and the result
of f, v.
    in (v', s') -- return the latest state and the result of
g
```

[^54]All this 'plumbing' can be nicely hidden by using the State monad. The type constructor State takes two type parameters: the type of its environment (internal state), and the type of its output. (Even though the new state comes last in the result pair, the state type must come first in the type parameters, since the 'real' monad is bound to some particular type of state but lets the result type vary.) So State s a indicates a stateful computation which depends on, and can modify, some internal state of type s, and has a result of type a. How is it defined? Well, simply as a function that takes some state and returns a pair of (value, new state):

```
newtype State s a = State (s -> (a, s))
```

The above example of $f T h e n G$ is, in fact, the definition of $\gg=$ for the State monad, which you probably remember from the first monads chapter.

31.1.5 The meaning of return

We mentioned right at the start that return x was the computation that 'did nothing' and just returned x . This idea only really starts to take on any meaning in monads with side-effects, like State. That is, computations in State have the opportunity to change the outcome of later computations by modifying the internal state. It's a similar situation with IO (because, of course, IO is just a special case of State).
return x doesn't do this. A computation produced by return generally won't have any sideeffects. The monad law $<\mathrm{tt}>$ return $\mathrm{x} \gg=\mathrm{f}==\mathrm{f} \mathrm{x}<\mathrm{tt}>$ basically guarantees this, for most uses of the term 'side-effect'.

31.2 Further reading

- A tour of the Haskell Monad functions ${ }^{4}$ by Henk-Jan van Tuyl
- All About monads ${ }^{5}$ by Jeff Newbern explains well the concept of monads as computations, using good examples. It also has a section outlining all the major monads, explains each one in terms of this computational view, and gives a full example.
- Monads ${ }^{6}$ by Eugene Kirpichov attempts to give a broader and more intuitive understanding of monads by giving non-trivial examples of them
ADVANCED MONADS ${ }^{7}$

[^55]
32 Additive monads (MonadPlus)

MonadPlus is a typeclass whose instances are monads which represent a number of computations.

32.1 Introduction

You may have noticed, whilst studying monads, that the Maybe and list monads are quite similar, in that they both represent the number of results a computation can have. That is, you use Maybe when you want to indicate that a computation can fail somehow (i.e. it can have 0 or 1 result), and you use the list monad when you want to indicate a computation could have many valid answers (i.e. it could have 0 results -- a failure -- or many results).

Given two computations in one of these monads, it might be interesting to amalgamate these: find all the valid solutions. I.e. given two lists of valid solutions, to find all of the valid solutions, you simply concatenate the lists together. It's also useful, especially when working with folds, to require a 'zero results' value (i.e. failure). For lists, the empty list represents zero results.

We combine these two features into a typeclass:

```
class Monad m => MonadPlus m where
    mzero :: m a
    mplus :: m a -> m a -> m a
```

Here are the two instance declarations for Maybe and the list monad:

```
instance MonadPlus [] where
    mzero = []
    mplus = (++)
instance MonadPlus Maybe where
    mzero = Nothing
    Nothing `mplus` Nothing = Nothing -- 0 solutions + 0 solutions = 0
solutions
    Just x `mplus` Nothing = Just x -- 1 solution + 0 solutions = 1
```

```
solution
    Nothing 'mplus' Just x = Just x -- 0 solutions + 1 solution = 1
solution
    Just x 'mplus' Just y = Just x -- 1 solution + 1 solution = 2
solutions,
    -- but as Maybe can only have up
to one
    -- solution, we disregard the
second one.
```

Also, if you import Control.Monad.Error, then (Either e) becomes an instance:

```
instance (Error e) => MonadPlus (Either e) where
    mzero = Left noMsg
    Left _ 'mplus` n = n
    Right x `mplus` _ = Right x
```

Remember that (Either e) is similar to Maybe in that it represents computations that can fail, but it allows the failing computations to include an error message. Typically, Left s means a failed computation with error message s, and Right x means a successful computation with result x.

32.2 Example

A traditional way of parsing an input is to write functions which consume it, one character at a time. That is, they take an input string, then chop off ('consume') some characters from the front if they satisfy certain criteria (for example, you could write a function which consumes one uppercase character). However, if the characters on the front of the string don't satisfy these criteria, the parsers have failed, and therefore they make a valid candidate for a Maybe.

Here we use mplus to run two parsers in parallel. That is, we use the result of the first one if it succeeds, but if not, we use the result of the second. If that too fails, then our whole parser returns Nothing.

```
-- | Consume a digit in the input, and return the digit that was
parsed. We use
-- a do-block so that if the pattern match fails at any point, fail
of the
    the Maybe monad (i.e. Nothing) is returned.
digit :: Int -> String -> Maybe Int
digit i s | i > 9 || i < 0 = Nothing
            | otherwise = do
    let (c:__) = s
    if read [c] == i then Just i else Nothing
-- | Consume a binary character in the input (i.e. either a 0 or an
1)
binChar :: String -> Maybe Int
binChar s = digit 0 s 'mplus` digit 1 s
```


32.3 The MonadPlus laws

Instances of MonadPlus are required to fulfill several rules, just as instances of Monad are required to fulfill the three monad laws. Unfortunately, these laws aren't set in stone anywhere and aren't fully agreed on. The most essential are that mzero and mplus form a monoid, i.e.:

```
mzero 'mplus'm = m
m 'mplus` mzero = m
m 'mplus' (n `mplus' o) = (m `mplus` n) `mplus` o
```

The Haddock documentation ${ }^{1}$ for Control.Monad quotes additional laws:

```
mzero >>= f = mzero
m >> mzero = mzero
```

And the HASKELLWIKI PAGE ${ }^{2}$ cites another (with controversy):

```
(m `mplus` n) >>= k = (m >>= k) `mplus` ( }\textrm{n}>>=k
```

There are even more sets of laws available, and therefore you'll sometimes see monads like IO being used as a MonadPlus. All About Monads ${ }^{3}$ and the Haskell Wiki page ${ }^{4}$ for MonadPlus have more information on this. TODO: should that information be copied here?

32.4 Useful functions

Beyond the basic mplus and mzero themselves, there are a few functions you should know about:

32.4.1 msum

A very common task when working with instances of MonadPlus is to take a list of the monad, e.g. [Maybe a] or [[a]], and fold down the list with mplus. msum fulfills this role:

```
msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero
```

A nice way of thinking about this is that it generalises the list-specific concat operation. Indeed, for lists, the two are equivalent. For Maybe it finds the first Just x in the list, or returns Nothing if there aren't any.

```
1 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/CONTROL-{}MONAD.HTML#
    T%3AMONADPLUS
2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/MONADPLUS
3 HTTP://WWW.HASKELL.ORG/ALL_ABOUT_MONADS/HTML/LAWS.HTML#ZERO
4 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/MONADPLUS
```


32.4.2 guard

This is a very nice function which you have almost certainly used before, without knowing about it. It's used in list comprehensions, as we saw in the previous chapter. List comprehensions can be decomposed into the list monad, as we saw:

```
pythags = [ (x, y, z) | z <- [1..], x <- [1..z], y <- [x..z], x^2 +
y^2 == z^2 ]
```

The previous can be considered syntactic sugar for:

```
pythags = do
    z <- [1..]
    x <- [1..z]
    y<- [x..z]
    guard (x^2 + y^2 == z^2)
    return (x, y, z)
```

guard looks like this:

```
guard :: MonadPlus m => Bool -> m ()
guard True = return ()
guard False = mzero
```

Concretely, guard will reduce a do-block to mzero if its predicate is False. By the very first law stated in the 'MonadPlus laws' section above, an mzero on the left-hand side of an >>= operation will produce mzero again. As do-blocks are decomposed to lots of expressions joined up by >>=, an mzero at any point will cause the entire do-block to become mzero.

To further illustrate that, we will examine guard in the special case of the list monad, extending on the pythags function above. First, here is guard defined for the list monad:

```
guard :: Bool -> [()]
guard True = [()]
guard False = []
```

guard blocks off a route. For example, in pythags, we want to block off all the routes (or combinations of x, y and z) where $x^{\wedge} 2+y^{\wedge} 2==z^{\wedge} 2$ is False. Let's look at the expansion of the above do-block to see how it works:

```
pythags =
    [1..] >>= \z ->
    [1..z] >>= \x ->
    [x..z] >>= \y ->
    guard (x^2 + y^2 == z^2) >>= \_- ->
    return (x, y, z)
```

Replacing >>= and return with their definitions for the list monad (and using some let-bindings to make things prettier), we obtain:

```
pythags =
    let ret x y z = [(x, y, z)]
        gd z x y = concatMap (\_ -> ret x y z) (guard $ x^2 + y^2 ==
z^2)
    doY z x = concatMap (gd z x) [x..z]
    doX z = concatMap (doY z ) [1..z]
    doZ = concatMap (doX ) [1..]
    in doz
```

Remember that guard returns the empty list in the case of its argument being False. Mapping across the empty list produces the empty list, no matter what function you pass in. So the empty list produced by the call to guard in the binding of gd will cause gd to be the empty list, and therefore ret to be the empty list.

To understand why this matters, think about list-computations as a tree. With our Pythagorean triple algorithm, we need a branch starting from the top for every choice of z, then a branch from each of these branches for every value of x, then from each of these, a branch for every value of y. So the tree looks like this:

```
start
|
...
z 1 2 3
    | |___
    llllll
    | |__ | I___ I__ |
    | | | | | | | | | |
y 1 1 2 2 1 2 3 2 3 3
```

Each combination of x, y and z represents a route through the tree. Once all the functions have been applied, each branch is concatenated together, starting from the bottom. Any route where our predicate doesn't hold evaluates to an empty list, and so has no impact on this concat operation.

32.5 Exercises

 Prove the MonadPlus laws for Maybe and the list monad. We could augment our above parser to involve a parser for any character:

```
-- | Consume a given character in the input, and return the character
we
-- just consumed, paired with rest of the string. We use a do-block
so that
-- if the pattern match fails at any point, fail of the Maybe monad
(i.e.
-- Nothing) is returned.
char :: Char -> String -> Maybe (Char, String)
char c s = do
```

```
let (c':s') = s
if c == c' then Just (c, s') else Nothing
```

It would then be possible to write a hexChar function which parses any valid hexidecimal character (0-9 or a-f). Try writing this function (hint: map digit [0..9] : : [String -> Maybe Int]). More to come...

32.6 Relationship with Monoids

TODO: is this at all useful? --- I really thought so. Gave me some idea about Monoids. It's really lacking in documentation (Random Haskell newbie) (If you don't know anything about the Monoid data structure, then don't worry about this section. It's just a bit of a muse.)

Monoids are a data structure with two operations defined: an identity (or 'zero') and a binary operation (or 'plus'), which satisfy some axioms.

```
class Monoid m where
    mempty :: m
    mappend :: m -> m -> m
```

For example, lists form a simple monoid:

```
instance Monoid [a] where
    mempty = []
    mappend = (++)
```

Note the usage of [a], not [], in the instance declaration. Monoids are not necessarily 'containers' of anything. For example, the integers (or indeed even the naturals) form two possible monoids:

```
newtype AdditiveInt = AI Int
newtype MultiplicativeInt = MI Int
instance Monoid AdditiveInt where
    mempty = AI 0
    AI x `mappend` AI y = AI (x + y)
instance Monoid MultiplicativeInt where
    mempty = MI 1
    MI x `mappend` MI y = MI (x * y)
```

(A nice use of the latter is to keep track of probabilities.)
Monoids, then, look very similar to MonadPlus instances. Both feature concepts of a zero and plus, and indeed MonadPlus can be a subclass of Monoid (the following is not Haskell 98, but works with-fglasgow-exts):

```
instance MonadPlus m => Monoid (m a) where
    mempty = mzero
    mappend = mplus
```

However, they work at different levels. As noted, there is no requirement for monoids to be any kind of container. More formally, monoids have kind *, but instances of MonadPlus, as they're Monads, have kind * $->$ *.

MonadPlus ${ }^{5}$

[^56]
33 Monadic parser combinators

Monads provide a clean means of embedding a domain specific parsing language directly into Haskell without the need for external tools or code generators.

- Functional Pearls: Monadic Parsing in Haskell ${ }^{1}$
- Practical Monads: Parsing Monads ${ }^{2}$ which shows an example using Parsec ${ }^{3}$, a popular, efficient monadic recursive descent parser library
BBG 4

[^57]
34 Monad transformers

By this point you should have grasped the concept of monad, and what different monads are used for: IO for impure functions, Maybe for values that can be there or not, and so on. A common practical problem is that, sometimes, you would like to have a monad with several of these characteristic at once. Indeed you can use things like IO (Maybe a), but then you have to start doing pattern matching within do blocks to extract the values you want: the point of monads was also to get rid of that.

Enter monad transformers: these are special types that, when applied to a monad, generate a new, combined monad, that shares the behaviour of both.

34.1 Motivation

Consider a common real-life problem for IT staff worldwide: to get their users to select passwords that are not easy to guess. A typical strategy is to force the user to enter a password with a minimum length, and at least one letter, one number and similar irritating requirements.

A Haskell function to acquire a password from a user could look like:

```
getPassword :: IO (Maybe String)
getPassword = do s <- getLine
    if isValid s then return $ Just s
        else return Nothing
```

We need the IO monad because the function will not return always the same result, and the Maybe monad because we intend to return Nothing in case the password does not pass some test.

For the isValid function, you can use whatever you want; as an example, consider:

```
isValid :: String -> Bool
isValid s = length s >= 8 && any isAlpha S && any isNumber s && any
isPunctuation s
```

The true motivation for monad transformers is not only to make it easier to write getPassword (which it nevertheless does), but rather to simplify all the code instances in which we use it:

```
askPassword :: IO ()
askPassword = do putStrLn "Insert your new password:"
    maybe_value <- getPassword
    if isJust maybe_value
        then do putStrLn "Storing in database..."
```

```
other stuff, including 'else'
```

We need one line to generate the maybe_value variable, and then we have to do some further checking to figure out whether our password is OK or not.

With monad combinators, we will be able to extract the password in one go, without any pattern matching. The gains for our simple example may seem small, but will scale up for more complex ones.

34.2 A Simple Monad Transformer: MaybeT

To simplify the code for the getPassword function and the code that uses it, we will define a monad transformer that gives the IO monad some characteristics of the Maybe monad; we will call it MaybeT, following the convention that monad transformers have a " T " appended to the name of the monad whose characteristics they provide.

Maybe T is essentially a wrapper around m (Maybe a), where m can be any monad (for our particular case, we are interested in IO):

```
newtype (Monad m) => MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
```

using the accessor function runMaybe T we can access the underlying representation.
Monad transformers are monads themselves, so we need to make Maybet m an instance of the Monad class:
instance Monad $m=>$ Monad (Maybet m) where
return = MaybeT . return . Just
return is implemented by Just, which injects into the Maybe monad, a generic return that injects into m (whatever it is), and the MaybeT constructor. It would also have been possible (though arguably less readable) to write return = MaybeT . return . return.

```
x >>= f = MaybeT $ do maybe_value <- runMaybeT x
    case maybe_value of
            Nothing -> return Nothing
            Just value -> runMaybeT $ f value
```

The bind operator, which is the most important code snippet to understand how the transformer works, extracts the Maybe value in the do block, and based on whether it is a Nothing or Just value it returns accordingly either m Nothing or m (Just value), wrapped in the MaybeT constructor.

You may wonder why we are using the Maybet constructor before the do block, when inside it we use the accessor runMaybet: however, the do block must be in the monad, not in MaybeT m, since for the latter we have not yet defined the bind operator.

Technically, this is all we need; however, it is convenient to make MaybeT an instance of a few other classes:

```
instance Monad m => MonadPlus (MaybeT m) where
    mzero = MaybeT $ return Nothing
    mplus x y = MaybeT $ do maybe_value <- runMaybeT x
        case maybe_value of
            Nothing -> runMaybeT y
            Just value -> runMaybeT x
instance MonadTrans MaybeT where
    lift = MaybeT . (liftM Just)
```

The latter class, MonadTrans, implements the lift function, which is very useful to take functions from the m monad and bring them into the Maybet m monad, so that we can use them in do blocks inside the MaybeT m monad.

34.2.1 Application to Password Example

After having done all this, here is how the previous example of password management looks like:

```
getValidPassword :: MaybeT IO String
getValidPassword = do s <- lift getLine
    guard (isValid s)
    return s
askPassword :: MaybeT IO ()
askPassword = do lift $ putStrLn "Insert your new password:"
    value <- getValidPassword
    lift $ putStrLn "Storing in database..."
```

The code is now simpler, especially in the user function askPassword, and what is most important in that we do not need to manually check whether the result is Nothing or Just: the bind operator takes care of it for us.

Note how we use lift to bring functions getLine and putStrLn into the MaybeT IO monad. Also, since Maybet IO is an instance of MonadPlus, checking for password validity can be taken care of by a guard statement, which will return mzero (i.e. IO Nothing) in case of a bad password.

Incidentally, it also becomes very easy to ask the user ad infinitum for a valid password:

```
askPassword :: MaybeT IO ()
askPassword = do lift $ putStrLn "Insert your new password:"
    value <- msum $ repeat getValidPassword
    lift $ putStrLn "Storing in database..."
```


34.3 Introduction

</div> Monad transformers are special variants of standard monads that facilitate the combining of monads. For example, <code>ReaderT Env IO a<code> is a computation which can read from some environment of type Env, can do some IO and returns a type a. Their type constructors are parameterized over a monad type constructor, and they produce combined monadic types. In this tutorial, we will assume that you understand the internal mechanics of the monad abstraction, what makes monads "tick". If, for instance, you are not comfortable with the bind operator (>>=), we would recommend that you first read UndERSTANDING MONADS ${ }^{1}$.

34.3.1 Transformers are cousins

A useful way to look at transformers is as cousins of some base monad. For example, the monad ListT is a cousin of its base monad List. Monad transformers are typically implemented almost exactly the same way that their cousins are, only more complicated because they are trying to thread some inner monad through.

The standard monads of the monad template library all have transformer versions which are defined consistently with their non-transformer versions. However, it is not the case that all monad transformers apply the same transformation. We have seen that the Cont T transformer turns continuations of the form $(a->r)->r$ into continuations of the form $(a->m r)->m r$. The StateT transformer is different. It turns state transformer functions of the form $s->(a, s)$ into state transformer functions of the form $s->m(a, s)$. In general, there is no magic formula to create a transformer version of a monad \— the form of each transformer depends on what makes sense in the context of its non-transformer type.

| Standard Monad | Transformer Version | Original Type | Combined Type |
| :---: | :---: | :---: | :---: |
| Error | ErrorT | Either e a | m (Either e a) |
| State | StateT | s-> (a, s) | s-> m (a, s) |
| Reader | ReaderT | r -> a | r $->\mathrm{ma}$ |
| Writer | WriterT | (a, w) | $m(a, w)$ |
| Cont | ContT | (a -> r) -> r | (a ${ }^{\text {a }}$ m r) $->$ |

In the table above, most of the transformers FooT differ from their base monad Foo by the wrapping of the result type (right-hand side of the $->$ for function kinds, or the whole type for non-function types) in the threaded monad (m). The Cont monad has two "results" in its type (it maps functions to values), and so Cont T wraps both in the threaded monad. In other words, the commonality between all these transformers is like so, with some abuse of syntax:

Original Kind

```
    *
* -> *
(* -> *) -> *
```


Combined Kind

m *

* $->m$ *
(* $->m^{*}$) $->m^{*}$

[^58]
34.4 Implementing transformers

The key to understanding how monad transformers work is understanding how they implement the bind ($\gg=$) operator. You'll notice that this implementation very closely resembles that of their standard, non-transformer cousins.

34.4.1 Transformer type constructors

Type constructors play a fundamental role in Haskell's monad support. Recall that Reader rais the type of values of type a within a Reader monad with environment of type r. The type constructor Reader r is an instance of the Monad class, and the runReader :: Reader ramer a function performs a computation in the Reader monad and returns the result of type a.

A transformer version of the Reader monad, called ReaderT, exists which adds a monad type constructor as an addition parameter. Readert $r m$ a is the type of values of the combined monad in which Reader is the base monad and m is the inner monad.
 $->m$ a function performs a computation in the combined monad and returns a result of type m a.

34.4.2 The Maybe transformer

We begin by defining the data type for the Maybe transformer. Our Maybet constructor takes a single argument. Since transformers have the same data as their non-transformer cousins, we will use the newt ype keyword. We could very well have chosen to use data, but that introduces needless overhead.

```
newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
```

This might seem a little off-putting at first, but it's actually simpler than it looks. The constructor for MaybeT takes a single argument, of type m (Maybe a). That is all. We use some syntactic sugar so that you can see MaybeT as a record, and access the value of this single argument by calling runMaybeT. One trick to understanding this is to see monad transformers as sandwiches: the bottom slice of the sandwich is the base monad (in this case, Maybe). The filling is the inner monad, m. And the top slice is the monad transformer MaybeT. The purpose of the runMaybeT function is simply to remove this top slice from the sandwich. What is the type of runMaybet? It is (MaybeT m a) -> m (Maybe a).

As we mentioned in the beginning of this tutorial, monad transformers are monads too. Here is a partial implementation of the Maybet monad. To understand this implementation, it really helps to know how its simpler cousin Maybe works. For comparison's sake, we put the two monad implementations side by side

Maybe

```
instance Monad Maybe where
```

instance Monad Maybe where
b_v >>= f = case b_v of
b_v >>= f = case b_v of
Nothing -> Nothing
Nothing -> Nothing
Just v -> f v

```
    Just v -> f v
```


MaybeT

```
instance (Monad m) => Monad (MaybeT m) where
tmb_v >>= f =
    MaybeT $ runMaybeT tmb_v
        >>= \b_v -> case b_v of
                            Nothing -> return Nothing
                            Just v -> runMaybeT $ f v
```

You'll notice that the MaybeT implementation looks a lot like the Maybe implementation of bind, with the exception that MaybeT is doing a lot of extra work. This extra work consists of unpacking the two extra layers of monadic sandwich (note the convention tmb to reflect the sandwich layers) and packing them up. If you really want to cut into the meat of this, read on. If you think you've understood up to here, why not try the following exercises:

Dissecting the bind operator

So what's going on here? You can think of this as working in three phases: first we remove the sandwich layer by layer, and then we apply a function to the data, and finally we pack the new value into a new sandwich

Unpacking the sandwich: Let us ignore the MaybeT constructor for now, but note that everything that's going on after the $\$$ is happening within the monad and not the MaybeT monad!

1. The first step is to remove the top slice of the sandwich by calling runMaybeT tmb_v
2. We use the bind operator ($\gg=$) to remove the second layer of the sandwich -- remember that we are working in the confines of the m monad.
3. Finally, we use case and pattern matching to strip off the bottom layer of the sandwich, leaving behind the actual data with which we are working

Packing the sandwich back up:

- If the bottom layer was Nothing, we simply return Nothing (which gives us a 2-layer sandwich). This value then goes to the MaybeT constructor at the very beginning of this function, which adds the top layer and gives us back a full sandwich.
- If the bottom layer was Just v (note how we have pattern-matched that bottom slice of monad off): we apply the function f to it. But now we have a problem: applying f to v gives a full three-layer sandwich, which would be absolutely perfect except for the fact that we're now going to apply the MaybeT constructor to it and get a type clash! So how do we avoid this? By first running runMaybeT to peel the top slice off so that the MaybeT constructor is happy when you try to add it back on.

34.4.3 The List transformer

Just as with the Maybe transformer, we create a datatype with a constructor that takes one argument:

```
newtype ListT m a = ListT { runListT :: m [a] }
```

The implementation of the ListT monad is also strikingly similar to its cousin, the List monad. We do exactly the same things for List, but with a little extra support to operate within the inner monad m, and to pack and unpack the monadic sandwich ListT - m - List.

List

```
instance Monad [] where
    b_v >>= f =
    let x = map f b_v
    in concat x
```


ListT

```
instance (Monad m) => Monad (ListT m) where
    tmb_v >>= f =
    ListT $ runListT tmb_v
    >>= \b_v -> mapM (runListT . f) b_v
    >>= \x -> return (concat x)
```


34.5 Lifting

FIXME: insert introduction

34.5.1 liftM

We begin with a notion which, strictly speaking, isn't about monad transformers. One small and surprisingly useful function in the standard library is liftM, which as the API states, is meant for lifting non-monadic functions into monadic ones. Let's take a look at that type:

```
liftM :: Monad m => (a1 -> r) -> m al -> m r
```

So let's see here, it takes a function (a1 -> r), takes a monad with an a1 in it, applies that function to the a1, and returns the result. In my opinion, the best way to understand this function is to see how it is used. The following pieces of code all mean the same thing.

```
do notation
liftM
do foo <- someMonadicThing
return (myFn foo)
liftM myFn someMonadicThing
liftM as an operator
```

myFn 'liftM` someMonadicThing

```
```

```
myFn 'liftM` someMonadicThing
```

```

What made the light bulb go off for me is this third example, where we use liftM as an operator. liftM is just a monadic version of ( \(\$\) )!

\section*{non monadic}
myFn \$ aNonMonadicThing

\section*{monadic}

\subsection*{34.5.2 lift}

When using combined monads created by the monad transformers, we avoid having to explicitly manage the inner monad types, resulting in clearer, simpler code. Instead of creating additional do-blocks within the computation to manipulate values in the inner monad type, we can use lifting operations to bring functions from the inner monad into the combined monad.

Recall the liftM family of functions which are used to lift non-monadic functions into a monad. Each monad transformer provides a lift function that is used to lift a monadic computation into a combined monad.

The MonadTrans class is defined in
and provides the single function lift. The lift function lifts a monadic computation in the inner monad into the combined monad.
```

class MonadTrans t where
lift :: (Monad m) => m a -> t m a

```

Monads which provide optimized support for lifting IO operations are defined as members of the MonadIO class, which defines the liftIO function.
```

class (Monad m) => MonadIO m where
liftIO :: IO a -> m a

```

\subsection*{34.5.3 Using lift}

\subsection*{34.5.4 Implementing lift}

Implementing lift is usually pretty straightforward. Consider the transformer MaybeT:
```

instance MonadTrans MaybeT where
lift mon = MaybeT (mon >>= return . Just)

```

We begin with a monadic value (of the inner monad), the middle layer, if you prefer the monadic sandwich analogy. Using the bind operator and a type constructor for the base monad, we slip the bottom slice (the base monad) under the middle layer. Finally we place the top slice of our sandwich by using the constructor MaybeT. So using the lift function, we have transformed a lowly piece of sandwich filling into a bona-fide three-layer monadic sandwich.

As with our implementation of the Monad class, the bind operator is working within the confines of the inner monad.

\subsection*{34.6 The State monad transformer}

Previously, we have pored over the implementation of two very simple monad transformers, Maybet and ListT. We then took a short detour to talk about lifting a monad into its transformer variant. Here, we will bring the two ideas together by taking a detailed look at the implementation of one of the more interesting transformers in the standard library, StateT. Studying this transformer will build insight into the transformer mechanism that you can call upon when using monad transformers in your code. You might want to review the section on the STATE MONAD \({ }^{2}\) before continuing.

Just as the State monad was built upon the definition newtype State \(s\) a \(=\) State \{ runState \(:: \quad(s->(a, s))\}\) the StateT transformer is built upon the definition
```

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }

```

State \(s\) is an instance of both the Monad class and the MonadState s class, so
StateT s m should also be members of the Monad and MonadState s classes. Furthermore, if \(m\) is an instance of MonadPlus,

StateT s m should also be a member of MonadPlus.
To define StateT s m as a Monad instance:

\section*{State}

\section*{StateT}
```

newtype State s a = State { runState :: (s -> (a,
instance Monad (State s) where
return a = State \$ \s -> (a,s)
(State x) >>= f = State \$ \s ->
let (v, s') = x s
in runState (f v) s'

```
```

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }

```
newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }
instance (Monad m) => Monad (StateT s m) where
instance (Monad m) => Monad (StateT s m) where
    return a = StateT $ \s -> return (a,s)
    return a = StateT $ \s -> return (a,s)
    (StateT x) >>= f = StateT $ \s -> do
    (StateT x) >>= f = StateT $ \s -> do
    (v, s') <- x s -- get new value and state
    (v, s') <- x s -- get new value and state
    runStateT (f v) s' -- pass them to f
```

 runStateT (f v) s' -- pass them to f
    ```

Our definition of return makes use of the return function of the inner monad, and the binding operator uses a do-block to perform a computation in the inner monad.

We also want to declare all combined monads that use the StateT transformer to be instances of the MonadState class, so we will have to give definitions for get and put:
```

instance (Monad m) => MonadState s (StateT s m) where
get = StateT \$ \s -> return (s,s)
put s = StateT \$ _ -> return ((),s)

```

Finally, we want to declare all combined monads in which StateT is used with an instance of MonadPlus to be instances of MonadPlus:
```

instance (MonadPlus m) => MonadPlus (StateT s m) where

```

\footnotetext{
2 htTP://En.WIKIbOOKS.ORG/WIKI/HASKELL/ADVANCEDMONADS\#TheStatemonad
}
```

mzero = StateT \$\s -> mzero
(StateT x1) `mplus` (StateT x2) = StateT \$ \s -> (x1 s) `mplus` (x2
s)

```

The final step to make our monad transformer fully integrated with Haskell's monad classes is to make StateT \(s\) an instance of the MonadTrans class by providing a lift function:
```

instance MonadTrans (StateT s) where

```
lift c \(=\) StateT \(\$ \backslash s\)-> c >>= ( \(\backslash \mathrm{x}\)-> return \((\mathrm{x}, \mathrm{s})\) )

The lift function creates a StateT state transformation function that binds the computation in the inner monad to a function that packages the result with the input state. The result is that, if for instance we apply StateT to the List monad, a function that returns a list (i.e., a computation in the List monad) can be lifted into StateT s [], where it becomes a function that returns a StateT ( \(s \rightarrow>[(a, s)])\). That is, the lifted computation produces <em>multiple</em> (value,state) pairs from its input state. The effect of this is to "fork" the computation in StateT, creating a different branch of the computation for each value in the list returned by the lifted function. Of course, applying StateT to a different monad will produce different semantics for the lift function.

\subsection*{34.7 Acknowledgements}

This module uses a large amount of text from All About Monads with permission from its author Jeff Newbern.

MONAD TRANSFORMERS \({ }^{3}\)

\footnotetext{
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL
}

\section*{35 Practical monads}

\subsection*{35.1 Parsing monads}

In the beginner's track of this book, we saw how monads were used for IO. We've also started working more extensively with some of the more rudimentary monads like Maybe, List or State. Now let's try using monads for something quintessentially "practical". Let's try writing a very simple parser. We'll be using the Parsec \({ }^{1}\) library, which comes with GHC but may need to be downloaded separately if you're using another compiler.

Start by adding this line to the import section:
```

import System
import Text.ParserCombinators.Parsec hiding (spaces)

```

This makes the Parsec library functions and getArgs available to us, except the "spaces" function, whose name conflicts with a function that we'll be defining later.

Now, we'll define a parser that recognizes one of the symbols allowed in Scheme identifiers:
```

symbol :: Parser Char
symbol = oneOf "!\$%\&|*+-/:<=>?@^_~"

```

This is another example of a monad: in this case, the "extra information" that is being hidden is all the info about position in the input stream, backtracking record, first and follow sets, etc. Parsec takes care of all of that for us. We need only use the Parsec library function \(\mathrm{ONEOF}^{2}\), and it'll recognize a single one of any of the characters in the string passed to it. Parsec provides a number of pre-built parsers: for example, LETTER \({ }^{3}\) and DIGIT \(^{4}\) are library functions. And as you're about to see, you can compose primitive parsers into more sophisticated productions.

Let's define a function to call our parser and handle any possible errors:
```

readExpr :: String -> String
readExpr input = case parse symbol "lisp" input of
Left err -> "No match: " ++ show err
Right val -> "Found value"

```
```

HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML
HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#ONEOF
HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#LETTER
HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#DIGIT

```

As you can see from the type signature, readExpr is a function ( \(->\) ) from a String to a String. We name the parameter input, and pass it, along with the symbol action we defined above and the name of the parser ("lisp"), to the Parsec function PARSE \({ }^{5}\).

Parse can return either the parsed value or an error, so we need to handle the error case. Following typical Haskell convention, Parsec returns an EITHER \({ }^{6}\) data type, using the Left constructor to indicate an error and the Right one for a normal value.

We use a case...of construction to match the result of parse against these alternatives. If we get a Left value (error), then we bind the error itself to err and return "No match" with the string representation of the error. If we get a Right value, we bind it to val, ignore it, and return the string "Found value".

The case...of construction is an example of pattern matching, which we will see in much greater detail [evaluator1.html\#primitiveval later on].

Finally, we need to change our main function to call readExpr and print out the result:
```

main :: IO ()
main = do args <- getArgs
putStrLn (readExpr (args !! 0))

```

To compile and run this, you need to specify "-package parsec" on the command line, or else there will be link errors. For example:
```

debian:/home/jdtang/haskell_tutorial/code\# ghc -package parsec -o
simple_parser [../code/listing3.1.hs listing3.1.hs]
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser \$
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser a
No match: "lisp" (line 1, column 1):
unexpected "a"

```

\subsection*{35.1.1 Whitespace}

Next, we'll add a series of improvements to our parser that'll let it recognize progressively more complicated expressions. The current parser chokes if there's whitespace preceding our symbol:
```

debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser " %"
No match: "lisp" (line 1, column 1):
unexpected " "

```

Let's fix that, so that we ignore whitespace.
First, lets define a parser that recognizes any number of whitespace characters. Incidentally, this is why we included the "hiding (spaces)" clause when we imported Parsec: there's already a function

\footnotetext{
5 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC. HTML\#PARSE
6 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/STANDARD-\{\}PRELUDE.HTML\#\PROTECT\T1 textdoluar \(\}\) tEIther
}
" SPACES \(^{7}\) " in that library, but it doesn't quite do what we want it to. (For that matter, there's also a parser called LEXEME \(^{8}\) that does exactly what we want, but we'll ignore that for pedagogical purposes.)
```

spaces :: Parser ()
spaces = skipMany1 space

```

Just as functions can be passed to functions, so can actions. Here we pass the Parser action SPACE \({ }^{9}\) to the Parser action SKIPMANY1 \({ }^{10}\), to get a Parser that will recognize one or more spaces.

Now, let's edit our parse function so that it uses this new parser. Changes are in red:
```

readExpr input = case parse (spaces >> symbol) "lisp" input of
Left err -> "No match: " ++ show err
Right val -> "Found value"

```

We touched briefly on the \(\gg\) ("bind") operator in lesson 2, where we mentioned that it was used behind the scenes to combine the lines of a do-block. Here, we use it explicitly to combine our whitespace and symbol parsers. However, bind has completely different semantics in the Parser and IO monads. In the Parser monad, bind means "Attempt to match the first parser, then attempt to match the second with the remaining input, and fail if either fails." In general, bind will have wildly different effects in different monads; it's intended as a general way to structure computations, and so needs to be general enough to accommodate all the different types of computations. Read the documentation for the monad to figure out precisely what it does.

Compile and run this code. Note that since we defined spaces in terms of skipMany1, it will no longer recognize a plain old single character. Instead you have to precede a symbol with some whitespace. We'll see how this is useful shortly:
```

debian:/home/jdtang/haskell_tutorial/code\# ghc -package parsec -o
simple_parser [../code/listing3.2.hs listing3.2.hs]
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser " %"
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser %
No match: "lisp" (line 1, column 1):
unexpected "%"
expecting space
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser " abc"
No match: "lisp" (line 1, column 4):
unexpected "a"
expecting space

```

\footnotetext{
7 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#SPACES
8 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#LEXEME
9 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC. HTML\#SPACE
10 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#
SKIPMANY1
}

\subsection*{35.1.2 Return Values}

Right now, the parser doesn't do much of anything - it just tells us whether a given string can be recognized or not. Generally, we want something more out of our parsers: we want them to convert the input into a data structure that we can traverse easily. In this section, we learn how to define a data type, and how to modify our parser so that it returns this data type.

First, we need to define a data type that can hold any Lisp value:
```

data LispVal = Atom String
| List [LispVal]
| DottedList [LispVal] LispVal
| Number Integer
| String String
| Bool Bool

```

This is an example of an algebraic data type: it defines a set of possible values that a variable of type LispVal can hold. Each alternative (called a constructor and separated by I) contains a tag for the constructor along with the type of data that that constructor can hold. In this example, a LispVal can be:
1. An Atom, which stores a String naming the atom
2. A List, which stores a list of other LispVals (Haskell lists are denoted by brackets)
3. A DottedList, representing the Scheme form (ab.c). This stores a list of all elements but the last, and then stores the last element as another field
4. A Number, containing a Haskell Integer
5. A String, containing a Haskell String
6. A Bool, containing a Haskell boolean value

Constructors and types have different namespaces, so you can have both a constructor named String and a type named String. Both types and constructor tags always begin with capital letters.

Next, let's add a few more parsing functions to create values of these types. A string is a double quote mark, followed by any number of non-quote characters, followed by a closing quote mark:
```

parseString :: Parser LispVal
parseString = do char '"'
x <- many (noneOf "\"")
char '"'
return \$ String x

```

We're back to using the do-notation instead of the >> operator. This is because we'll be retrieving the value of our parse (returned by MANY \({ }^{11}\) ( NONEOF \({ }^{12}\) " \(\backslash " "\) )) and manipulating it, interleaving some other parse operations in the meantime. In general, use \(\gg\) if the actions don't return a value, \(\gg=\) if you'll be immediately passing that value into the next action, and do-notation otherwise.

Once we've finished the parse and have the Haskell String returned from many, we apply the String constructor (from our LispVal data type) to turn it into a LispVal. Every constructor in an algebraic

\footnotetext{
11 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#MANY
12 httP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#NONEOF
}
data type also acts like a function that turns its arguments into a value of its type. It also serves as a pattern that can be used in the left-hand side of a pattern-matching expression; we saw an example of this in [\#symbols Lesson 3.1] when we matched our parser result against the two constructors in the Either data type.

We then apply the built-in function RETURN \({ }^{13}\) to lift our LispVal into the Parser monad. Remember, each line of a do-block must have the same type, but the result of our String constructor is just a plain old LispVal. Return lets us wrap that up in a Parser action that consumes no input but returns it as the inner value. Thus, the whole parseString action will have type Parser LispVal.

The \(\$\) operator is infix function application: it's the same as if we'd written return (String \(x\) ), but \(\$\) is right-associative, letting us eliminate some parentheses. Since \(\$\) is an operator, you can do anything with it that you'd normally do to a function: pass it around, partially apply it, etc. In this respect, it functions like the Lisp function APPLY \({ }^{14}\).

Now let's move on to Scheme variables. An ATOM \({ }^{15}\) is a letter or symbol, followed by any number of letters, digits, or symbols:
```

parseAtom :: Parser LispVal
parseAtom = do first <- letter <|> symbol
rest <- many (letter <|> digit <|> symbol)
let atom = [first] ++ rest
return \$ case atom of
"\#t" -> Bool True
"\#f" -> Bool False
otherwise -> Atom atom

```

Here, we introduce another Parsec combinator, the choice operator \(<>^{16}\). This tries the first parser, then if it fails, tries the second. If either succeeds, then it returns the value returned by that parser. The first parser must fail before it consumes any input: we'll see later how to implement backtracking.

Once we've read the first character and the rest of the atom, we need to put them together. The "let" statement defines a new variable "atom". We use the list concatenation operator ++ for this. Recall that first is just a single character, so we convert it into a singleton list by putting brackets around it. If we'd wanted to create a list containing many elements, we need only separate them by commas.

Then we use a case statement to determine which LispVal to create and return, matching against the literal strings for true and false. The otherwise alternative is a readability trick: it binds a variable named otherwise, whose value we ignore, and then always returns the value of atom.

Finally, we create one more parser, for numbers. This shows one more way of dealing with monadic values:

\footnotetext{
13 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/STANDARD-\{\}PRELUDE.HTML\#\PROTECT\T1 TEXTDOLLAR\{\}tMONAD
14 HTTP://WWW.SChEMERS.ORG/Documents/StAndARDS/R5RS/HTML/R5RS-\{\}Z-\{\}H-\{\}9.HTML\# \%_SEC_6.4
15 http://www.schemers.org/Documents/Standards/R5RS/HTML/r5RS-\{\}Z-\{\}H-\{\}5.html\# \%_SEC_2.1
16 http://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#OR
}
```

parseNumber :: Parser LispVal
parseNumber = liftM (Number . read) \$ many1 digit

```

It's easiest to read this backwards, since both function application (\$) and function composition (.) associate to the right. The parsec combinator MANY1 \({ }^{17}\) matches one or more of its argument, so here we're matching one or more digits. We'd like to construct a number LispVal from the resulting string, but we have a few type mismatches. First, we use the built-in function READ \({ }^{18}\) to convert that string into a number. Then we pass the result to Number to get a LispVal. The function composition operator "." creates a function that applies its right argument and then passes the result to the left argument, so we use that to combine the two function applications.

Unfortunately, the result of many1 digit is actually a Parser LispVal, so our combined Number . read still can't operate on it. We need a way to tell it to just operate on the value inside the monad, giving us back a Parser LispVal. The standard function liftM does exactly that, so we apply liftM to our Number . read function, and then apply the result of that to our Parser.

We also have to import the Monad module up at the top of our program to get access to liftM:
```

import Monad

```

This style of programming - relying heavily on function composition, function application, and passing functions to functions - is very common in Haskell code. It often lets you express very complicated algorithms in a single line, breaking down intermediate steps into other functions that can be combined in various ways. Unfortunately, it means that you often have to read Haskell code from right-to-left and keep careful track of the types. We'll be seeing many more examples throughout the rest of the tutorial, so hopefully you'll get pretty comfortable with it.

Let's create a parser that accepts either a string, a number, or an atom:
```

parseExpr :: Parser LispVal
parseExpr = parseAtom
<|> parseString
<|> parseNumber

```

And edit readExpr so it calls our new parser:
```

readExpr :: String -> String
readExpr input = case parse parseExpr "lisp" input of
ueft err -> "No match: " ++ show err
Right _ -> "Found value"

```
```

HTTP://WWW.CS.UU.NL/~{}DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#MANY1
HTTP://WWW.HASKELL.ORG/ONLINEREPORT/STANDARD-{}PRELUDE.HTML\#\PROTECT\T1\
TEXTDOLLAR{}VREAD

```

Compile and run this code, and you'll notice that it accepts any number, string, or symbol, but not other strings:
```

debian:/home/jdtang/haskell_tutorial/code\# ghc -package parsec -o
simple_parser [.../code/listing3.3.hs listing3.3.hs]
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "\"this is
a string\""
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser 25 Found
value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser symbol
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser (symbol)
bash: syntax error near unexpected token 'symbol'
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "(symbol)"
No match: "lisp" (line 1, column 1):
unexpected "("
expecting letter, "\"" or digit

```

\subsection*{35.1.3 Recursive Parsers: Adding lists, dotted lists, and quoted datums}

Next, we add a few more parser actions to our interpreter. Start with the parenthesized lists that make Lisp famous:
```

parseList :: Parser LispVal
parseList = liftM List \$ sepBy parseExpr spaces

```

This works analogously to parseNumber, first parsing a series of expressions separated by whitespace (sepBy parseExpr spaces) and then apply the List constructor to it within the Parser monad. Note too that we can pass parseExpr to SEPBY \({ }^{19}\), even though it's an action we wrote ourselves.

The dotted-list parser is somewhat more complex, but still uses only concepts that we're already familiar with:
```

parseDottedList :: Parser LispVal
parseDottedList = do
head <- endBy parseExpr spaces
tail <- char '.' >> spaces >> parseExpr
return \$ DottedList head tail

```

Note how we can sequence together a series of Parser actions with \(\gg\) and then use the whole sequence on the right hand side of a do-statement. The expression char '.' >> spaces returns a Parser (), then combining that with parseExpr gives a Parser LispVal, exactly the type we need for the do-block.

Next, let's add support for the single-quote syntactic sugar of Scheme:

\footnotetext{
19 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC. HTML\#SEPBY
}
```

parseQuoted :: Parser LispVal parseQuoted = do char '\" x <- parseExpr return \$ List [Atom
"quote", x]

```

Most of this is fairly familiar stuff: it reads a single quote character, reads an expression and binds it to \(x\), and then returns (quote \(x\) ), to use Scheme notation. The Atom constructor works like an ordinary function: you pass it the String you're encapsulating, and it gives you back a LispVal. You can do anything with this LispVal that you normally could, like put it in a list.

Finally, edit our definition of parseExpr to include our new parsers:
```

parseExpr :: Parser LispVal
parseExpr = parseAtom
<|> parseString
<|> parseNumber
<|> parseQuoted <|> do char '(' x <- (try parseList) <|> parseDottedList char ')' return x

```

This illustrates one last feature of Parsec: backtracking. parseList and parseDottedList recognize identical strings up to the dot; this breaks the requirement that a choice alternative may not consume any input before failing. The \(T R Y^{20}\) combinator attempts to run the specified parser, but if it fails, it backs up to the previous state. This lets you use it in a choice alternative without interfering with the other alternative.

Compile and run this code:
```

debian:/home/jdtang/haskell_tutorial/code\# ghc -package parsec -o
simple_parser [../code/listing3.4.hs listing3.4.hs]
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "(a test)"
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "(a
(nested) test)" Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "(a
(dotted . list) test)"
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "(a
'(quoted (dotted. list)) test)"
Found value
debian:/home/jdtang/haskell_tutorial/code\# ./simple_parser "(a
'(imbalanced parens)"
No match: "lisp" (line 1, column 24):
unexpected end of input
expecting space or ")"

```

Note that by referring to parseExpr within our parsers, we can nest them arbitrarily deep. Thus, we get a full Lisp reader with only a few definitions. That's the power of recursion.

\subsection*{35.2 Generic monads}

Write me: The idea is that this section can show some of the benefits of not tying yourself to one single monad, but writing your code for any arbitrary monad m. Maybe

\footnotetext{
20 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/DOWNLOAD/PARSEC/PARSEC.HTML\#TRY
}
run with the idea of having some elementary monad, and then deciding it's not good enough, so replacing it with a fancier one... and then deciding you need to go even further and just plug in a monad transformer

For instance: Using the Identity Monad:
```

module Identity(Id(Id)) where
newtype Id a = Id a
instance Monad Id where
(>>=) (Id x) f = f x
return = Id
instance (Show a) => Show (Id a) where
show (Id x) = show x

```

In another File
```

import Identity
type M = Id
my_fib :: Integer -> M Integer
my_fib = my_fib_acc 0 1
my_fib_acc :: Integer -> Integer -> Integer -> M Integer
my_fib_acc _ fn1 1 = return fn1
my_fib_acc fn2 _ 0 = return fn2
my_fib_acc fn2 fn1 n_rem = do
val <- my_fib_acc fn1 (fn2+fn1) (n_rem - 1)
return val

```

Doesn't seem to accomplish much, but It allows to you add debugging facilities to a part of your program on the fly. As long as you've used return instead of explicit Id constructors, then you can drop in the following monad:
```

module PMD (Pmd(Pmd)) where --PMD = Poor Man's Debugging, Now
available for haskell
import IO
newtype Pmd a = Pmd (a, IO ())
instance Monad Pmd where
(>>=) (Pmd (x, prt)) f = let (Pmd (v, prt')) = f x
in Pmd (v, prt >> prt')
return x = Pmd (x, return ())
instance (Show a) => Show (Pmd a) where
show (Pmd (x, _)) = show x

```

If we wanted to debug our Fibonacci program above, We could modify it as follows:
```

import Identity
import PMD
import IO
type M = Pmd

```
```

...
my_fib_acc :: Integer -> Integer -> Integer -> M Integer
my_fib_acc _ fn1 1 = return fn1
my_fib_acc fn2 _ 0 = return fn2
my_fib_acc fn2 fn1 n_rem =
val <- my_fib_acc fn1 (fn2+fn1) (n_rem - 1)
Pmd (val, putStrLn (show fn1))

```

All we had to change is the lines where we wanted to print something for debugging, and add some code wherever you extracted the value from the Id Monad to execute the resulting IO () you've returned. Something like
```

main :: IO ()
main = do
let (Id f25) = my_fib 25
putStrLn ("f25 is: " ++ show f25)

```
for the Id Monad vs.
```

main :: IO ()
main = do
let (Pmd (f25, prt)) = my_fib 25
prt
putStrLn ("f25 is: " ++ show f25)

```

For the Pmd Monad. Notice that we didn't have to touch any of the functions that we weren't debugging.

\subsection*{35.3 Stateful monads for concurrent applications}

You're going to have to know about MONAD TRANSFORMERS \({ }^{21}\) before you can do these things. Although the example came up because of CONCURRENCY \({ }^{22}\), if you realize a TVar is a mutable variable of some kind, why this example came up might make some sense to you.

This is a little trick that I find makes writing stateful concurrent applications easier, especially for network applications. Lets look at an imaginary stateful server.

Each currently connected client has a thread allowing the client to update the state.
The server also has a main logic thread which also transforms the state.
So you want to allow the client to update the state of the program
It's sometimes really simple and easy to expose the whole state of the program in a TVar, but I find this can get really messy, especially when the definition of the state changes!

Also it can be very annoying if you have to do anything conditional.
So to help tidy things up ( Say your state is called World )

\footnotetext{
21 HTTP://EN.WIKIBOOKS.ORG/WIKI/../MONADTRANSFORMERS
22 HTTP://EN.WIKIBOOKS.ORG/WIKI/../CONCURRENCY
}

\subsection*{35.3.1 Make a monad over state}

First, make a monad over the World type
```

import Control.Monad.State.Lazy

```
-- heres yer monad
-- it can liftIO too
type WorldM
    = StateT World IO
```

data World =
World { objects :: [WorldObject] }

```

Now you can write some accessors in WorldM
```

-- maybe you have a bunch of objects each with a unique id
import Data.Unique
import Data.Maybe
import Prelude hiding (id)

```
```

data WorldObject =
WorldObject { id :: Unique }

```
```

-- check Control.Monad.State.Lazy if you are confused about get and
put
addObject :: WorldObject -> WorldM ()
addObject wO = do
wst <- get
put \$ World \$ wO : (objects wst)

```
```

-- presuming unique id
getObject :: Unique -> WorldM (Maybe WorldObject)
getObject id1 = do
wst <- get
return \$ listToMaybe \$ filter (\ wO -> id wO == id1)
(objects wst)

```
now heres a type representing a change to the World
```

data WorldChange = NewObj WorldObject
UpdateObj WorldObject | -- use the unique ids as
replace match
RemoveObj Unique -- delete obj with named id

```

What it looks like all there's left to do is to
```

type ChangeBucket = TVar [WorldChange]

```
```

mainLoop :: ChangeBucket -> WorldM ()
mainLoop cB =

```
```

-- do some stuff
-- it's probably fun
-- using your cheeky wee WorldM accessors
mainLoop cB -- recurse on the shared variable

```

Remember, your main thread is a transformer of World and IO so it can run 'atomically' and read the changeBucket.

Now, presuming you have a function that can incorporate a WorldChange into the existing WorldM your 'wait-for-client-input' thread can communicate with the main thread of the program, and it doesn't look too nasty.

\subsection*{35.3.2 Make the external changes to the state monadic themselves}

However! Since all the state inside your main thread is now hidden from the rest of the program and you communicate through a one way channel --- data goes from the client to the server, but the mainLoop keeps its state a secret --- your client thread is never going to be able to make conditional choices about the environment - the client thread runs in IO but the main thread runs in WorldM.

So the REAL type of your shared variable is
```

type ChangeBucket =
TVar [WorldM (Maybe WorldChange)]

```

This can be generated from the client-input thread, but you'll be able to include conditional statements inside the code, which is only evaluated against the state when it is run from your main thread

It all sounds a little random, but it's made my life a lot easier. Heres some real working code, based on this idea
- this takes commands from a client, and attempts change the object representing the client inside the game's state
- the output from this function is then written to a ChangeBucket ( using the ChangeBucket definition in this section, above ) and run inside the DState of the game's main loop.
( you might want to mentally substitute DState for WorldM )
```

-- cmd is a command generated from parsing network input
mkChange :: Unique -> Command -> DState (Maybe WorldChange)
mkChange oid cmd = do
mp <- getObject oid -- this is maybe an object, as per the
getObject definition earlier in the article
-- enter the maybe monad
return \$ do p <- mp -- if its Nothing, the rest will be nothing
case cmd of
-- but it might be something
Disconnect ->
Just \$ Remove0bject oid
Move x y ->
Just \$ UpdateObject \$ DO (oid)

```
```

(name p)
(speed p)
(netclient p)
(pos p)
[(x,y)]
(method p)

```

\section*{A note and some more ideas.}

Another design might just have
```

type ChangeBucket = TVar [WorldM ()]

```

And so just update the game world as they are run. I have other uses for the WorldM ( Maybe Change ) type.

So I conclude - All I have are my monads and my word so go use your monads imaginatively and write some computer games;)

36 Advanced Haskell

\section*{37 Arrows}

\subsection*{37.1 Introduction}

Arrows are a generalization of monads: every monad gives rise to an arrow, but not all arrows give rise to monads. They serve much the same purpose as monads -- providing a common structure for libraries -- but are more general. In particular they allow notions of computation that may be partially static (independent of the input) or may take multiple inputs. If your application works fine with monads, you might as well stick with them. But if you're using a structure that's very like a monad, but isn't one, maybe it's an arrow.

\section*{37.2 proc and the arrow tail}

Let's begin by getting to grips with the arrows notation. We'll work with the simplest possible arrow there is (the function) and build some toy programs strictly in the aims of getting acquainted with the syntax.

Fire up your text editor and create a Haskell file, say toyArrows.hs:
```

{-\# LANGUAGE Arrows \#-}
import Control.Arrow (returnA)
idA :: a -> a
idA = proc a -> returnA -< a
plusOne :: Int -> Int
plusOne = proc a -> returnA -< (a+1)

```

These are our first two arrows. The first is the identity function in arrow form, and second, slightly more exciting, is an arrow that adds one to its input. Load this up in GHCi, using the -XArrows extension and see what happens.
```

% ghci -XArrows toyArrows.hs
/-\/\ /\/ - (a)
/ _ \/\ /\/ __(_)
/ /_\// /_/ / / | | GHC Interactive, version 6.4.1, for Haskell
98.
/ /_
/ __ / /___ | http://www.haskell.org/ghc/
___/\/ /_/____/|_| Type :? for help.
Loading package base-1.0 ... linking ... done.
Compiling Main (toyArrows.hs, interpreted)
Ok, modules loaded: Main.
*Main> idA 3
3
*Main> idA "foo"
"foo"
*Main> plusOne 3
4
*Main> plusOne 100
101

```

Thrilling indeed. Up to now, we have seen three new constructs in the arrow notation:
- the keyword proc
- -<
- the imported function returnA

Now that we know how to add one to a value, let's try something twice as difficult: adding TWO:
```

plusOne = proc a -> returnA -< (a+1)
plusTwo = proc a -> plusOne -< (a+1)

```

One simple approach is to feed \((a+1)\) as input into the plusOne arrow. Note the similarity between plusOne and plusTwo. You should notice that there is a basic pattern here which goes a little something like this: proc FOO -> SOME_ARROW -< (SOMETHING_WITH_FOO)

\section*{37.3 do notation}

Our current implementation of plusTwo is rather disappointing actually... shouldn't it just be plusOne twice? We can do better, but to do so, we need to introduce the do notation:
```

plusTwoBis =
proc a -> do b <- plusOne -< a
plusOne -< b

```

Now try this out in GHCi:
```

Prelude> :r
Compiling Main (toyArrows.hs, interpreted)
Ok, modules loaded: Main.
*Main> plusTwoBis 5
7

```

You can use this do notation to build up sequences as long as you would like:
```

plusFive =
proc a -> do b <- plusOne -< a
c <- plusOne -< b
d <- plusOne -< c
e <- plusOne -< d
plusOne -< e

```

\subsection*{37.4 Monads and arrows}

FIXME: I'm no longer sure, but I believe the intention here was to show what the difference is having this proc notation instead to just a regular chain of dos

\section*{38 Understanding arrows}

We have permission to import material from the HASKELL ARROWS PAGE \({ }^{1}\). See the talk page for details.

\subsection*{38.1 The factory and conveyor belt metaphor}

In this tutorial, we shall present arrows from the perspective of stream processors, using the factory metaphor from the MONADS MODULE \({ }^{2}\) as a support. Let's get our hands dirty right away.

You are a factory owner, and as before you own a set of processing machines. Processing machines are just a metaphor for functions; they accept some input and produce some output. Your goal is to combine these processing machines so that they can perform richer, and more complicated tasks. Monads allow you to combine these machines in a pipeline. Arrows allow you to combine them in more interesting ways. The result of this is that you can perform certain tasks in a less complicated and more efficient manner.

In a monadic factory, we took the approach of wrapping the outputs of our machines in containers. The arrow factory takes a completely different route: rather than wrapping the outputs in containers, we wrap the machines themselves. More specifically, in an arrow factory, we attach a pair of conveyor belts to each machine, one for the input and one for the output.

So given a function of type \(b->c\), we can construct an equivalent \(a\) arrow by attaching \(a b\) and \(c\) conveyor belt to the machine. The equivalent arrow is of type a \(b c\), which we can pronounce as an arrow a from b to c .

\subsection*{38.2 Plethora of robots}

We mentioned earlier that arrows give you more ways to combine machines together than monads did. Indeed, the arrow type class provides six distinct robots (compared to the two you get with monads).

\subsection*{38.2.1 arr}

The simplest robot is arr with the type signature arr : : (b -> c) -> a b c. In other words, the arr robot takes a processing machine of type \(b->c\), and adds conveyor belts to form an a arrow from b to c.

\footnotetext{
1 HTTP://WWW.HASKELL.ORG/ARROWS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/../UNDERSTANDINGMONADS
}


Abb. 2: the arr robot

\subsection*{38.2.2 (>>>)}

The next, and probably the most important, robot is \((\ggg)\). This is basically the arrow equivalent to the monadic bind robot ( \(\gg=\) ). The arrow version of bind ( \(\ggg\) ) puts two arrows into a sequence. That is, it connects the output conveyor belt of the first arrow to the input conveyor belt of the second one.


Abb. 3: the (>>>) robot

What we get out of this is a new arrow. One consideration to make, though is what input and output types our arrows may take. Since we're connecting output and the input conveyor belts of the first and second arrows, the second arrow must accept the same kind of input as what the first arrow outputs. If the first arrow is of type a b c, the second arrow must be of type a \(c \mathrm{~d}\). Here is the same diagram as above, but with things on the conveyor belts to help you see the issue with types.


Abb. 4: running the combined arrow

\subsection*{38.2.3 first}

Up to now, our arrows can only do the same things that monads can. Here is where things get interesting! The arrows type class provides functions which allow arrows to work with pairs of input. As we will see later on, this leads us to be able to express parallel computation in a very succinct manner. The first of these functions, naturally enough, is first.

If you are skimming this tutorial, it is probably a good idea to slow down at least in this section, because the first robot is one of the things that makes arrows truly useful.


Abb. 5: The first robot

Given an arrow \(f\), the first robot attaches some conveyor belts and extra machinery to form a new, more complicated arrow. The machines that bookend the input arrow split the input pairs into their component parts, and put them back together. The idea behind this is that the first part of every pair is fed into the \(f\), whilst the second part is passed through on an empty conveyor belt. When
everything is put back together, we have same pairs that we fed in, except that the first part of every pair has been replaced by an equivalent output from \(f\).


Abb. 6: The combined arrow from the first robot

Now the question we need to ask ourselves is that of types. Say that the input tuples are of type \((b, d)\) and the input arrow is of type \(a b c\) (that is, it is an arrow from \(b\) to \(c\) ). What is the type of the output? Well, the arrow converts all bs into cs , so when everything is put back together, the type of the output must be ( \(c, d\) ).

\subsection*{38.2.4 second}

If you understand the first robot, the second robot is a piece of cake. It does the same exact thing, except that it feeds the second part of every input pair into the given arrow \(f\) instead of the first part.


Abb. 7: the second robot with things running

What makes the second robot interesting is that it can be derived from the previous robots! Strictly speaking, the only robots you need for arrows are arr, (>>>) and first. The rest can be had "for free".
\{\{Exercises
1. Write a function to swap two components of a tuple.
2. Combine this helper function with the robots arr, (>>>) and first to implement the second robot \(\}\)

\subsection*{38.2.5 ***}

One of the selling points of arrows is that you can use them to express parallel computation. The \((* * *)\) robot is just the right tool for the job. Given two arrows, \(f\) and \(g\), the ( \({ }^{* * * \text { ) combines them }}\) into a new arrow using the same bookend-machines we saw in the previous two robots


Abb. 8: The (***) robot.

Conceptually, this isn't very much different from the robots first and second. As before, our new arrow accepts pairs of inputs. It splits them up, sends them on to separate conveyor belts, and puts them back together. The only difference here is that, rather than having one arrow and one empty conveyor belt, we have two distinct arrows. But why not?


Abb. 9: The \(\left({ }^{* * *)}\right.\) robot: running the combined arrow

\section*{\{ \{Exercises}
1. What is the type of the \((* * *)\) robot?
2. Given the (>>>), first and second robots, implement the (***) robot.\}\}

\subsection*{38.2.6 \& \& \&}

The final robot in the Arrow class is very similar to the ( \(* * *\) ) robot, except that the resulting arrow accepts a single input and not a pair. Yet, the rest of the machine is exactly the same. How can we work with two arrows, when we only have one input to give them?


Abb. 10: The \(\& \& \&\) robot

The answer is simple: we clone the input and feed a copy into each machine!


Abb. 11: The \(\& \& \&\) robot: the resulting arrow with inputs

\subsection*{38.3 Functions are arrows}

Now that we have presented the 6 arrow robots, we would like to make sure that you have a more solid grasp of them by walking through a simple implementations of the Arrow class. As in the monadic world, there are many different types of arrows. What is the simplest one you can think of? Functions.

Put concretely, the type constructor for functions (->) is an instance of Arrow
```

instance Arrow (->) where
arr f = f
f >>> g = g . f
first f}=\(x,y) -> (f x, y

```

Now let's examine this in detail:
- arr - Converting a function into an arrow is trivial. In fact, the function already is an arrow.
- (>>>) - we want to feed the output of the first function into the input of the second function. This is nothing more than function composition.
- first - this is a little more elaborate. Given a function \(f\), we return a function which accepts a pair of inputs \((\mathrm{x}, \mathrm{y})\), and runs f on x , leaving y untouched.

And that, strictly speaking, is all we need to have a complete arrow, but the arrow typeclass also allows you to make up your own definition of the other three robots, so let's have a go at that:
```

first f = \(x,y) -> (f x, y) -- for comparison's sake
second f = \(x,y) -> (x, f y) -- like first
f *** g = \(x,y) -> (f x, g y) -- takes two arrows, and not just
one
f \&\&\& g = \x -> (f x, g x) -- feed the same input into both
functions

```

And that's it! Nothing could be simpler.
Note that this is not the official instance of functions as arrows. You should take a look at the HASKELL LIbrary \({ }^{3}\) if you want the real deal.

\subsection*{38.4 The arrow notation}

In the introductory ../ARROWS/ \({ }^{4}\) chapter, we introduced the proc and \(-<\) notation. How does this tie in with all the arrow robots we just presented? Sadly, it's a little bit less straightforward than do-notation, but let's have a look.

Stephen's Arrow Tutorial \({ }^{5}\) I've written a tutorial that covers arrow notation. How might we integrate it into this page?

\subsection*{38.5 Maybe functor}

It turns out that any monad can be made into arrow. We'll go into that later on, but for now, FIXME: transition
(This seems inconsistent with Typeclassopedia p19? google for typeclassopedia )

\subsection*{38.6 Using arrows}

At this point in the tutorial, you should have a strong enough grasp of the arrow machinery that we can start to meaningfully tackle the question of what arrows are good for.

\subsection*{38.6.1 Stream processing}

\subsection*{38.6.2 Avoiding leaks}

Arrows were originally motivated by an efficient parser design found by Swierstra \& Duponcheel \({ }^{6}\). To describe the benefits of their design, let's examine exactly how monadic parsers work.

If you want to parse a single word, you end up with several monadic parsers stacked end to end. Taking Parsec as an example, the parser string "word" can also be viewed as
```

word = do char 'W' >> char 'o' >> char 'r' >> char 'd'

```

\footnotetext{
3 httP://DARCS. HASKELL.ORG/PACKAGES/BASE/CONTROL/ARROW. HS
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/../ARROWS/
5 htip://En.WIKIbooks.org/wIkI/HASkELL/StephensArrowTutorial
6 Swierstra, Duponcheel. Deterministic, error correcting parser combinators. HTTP://CITESEERX.IST.PSU.EDU/VIEWDOC/SUMMARY?DOI=10.1.1.29.2760 ^\{HTTP://CITESEERX.IST. PSU.EDU/VIEWDOC/SUMMARY?DOI=10.1.1.29.2760\}
}
```

return "word"

```

Each character is tried in order, if "worg" is the input, then the first three parsers will succeed, and the last one will fail, making the entire string "word" parser fail.

If you want to parse one of two options, you create a new parser for each and they are tried in order. The first one must fail and then the next will be tried with the same input.
```

ab = do char 'a' <|> char 'b' <|> char 'c'

```

To parse "c" successfully, both 'a' and 'b' must have been tried.
```

one = do char 'o' >> char 'n' >> char 'e'
return "one"
two = do char 't' >> char 'w' >> char 'o'
return "two"
three = do char 't' >> char 'h' >> char 'r' >> char 'e' >> char 'e'
return "three"
nums = do one <|> two <|> three

```

With these three parsers, you can't know that the string "four" will fail the parser nums until the last parser has failed.

If one of the options can consume much of the input but will fail, you still must descend down the chain of parsers until the final parser fails. All of the input that can possibly be consumed by later parsers must be retained in memory in case one of them does consume it. That can lead to much more space usage than you would naively expect, this is often called a space leak.

The general pattern of monadic parsers is that each option must fail or one option must succeed.

\section*{So what's better?}

Swierstra \& Duponcheel (1996) noticed that a smarter parser could immediately fail upon seeing the very first character. For example, in the nums parser above, the choice of first letter parsers was limited to either the letter 'o' for "one" or the letter 't' for both "two" and "three". This smarter parser would also be able to garbage collect input sooner because it could look ahead to see if any other parsers might be able to consume the input, and drop input that could not be consumed. This new parser is a lot like the monadic parsers with the major difference that it exports static information. It's like a monad, but it also tells you what it can parse.

There's one major problem. This doesn't fit into the monadic interface. Monads are (a -> m b), they're based around functions only. There's no way to attach static information. You have only one choice, throw in some input, and see if it passes or fails.

The monadic interface has been touted as a general purpose tool in the functional programming community, so finding that there was some particularly useful code that just couldn't fit into that
interface was something of a setback. This is where Arrows come in. John Hughes's Generalising monads to arrows proposed the arrows abstraction as new, more flexible tool.

\section*{Static and dynamic parsers}

Let us examine Swierstra \& Duponcheel's parser in greater detail, from the perspective of arrows. The parser has two components: a fast, static parser which tells us if the input is worth trying to parse; and a slow, dynamic parser which does the actual parsing work.
```

data Parser s a b = P (StaticParser s) (DynamicParser s a b)
data StaticParser s = SP Bool [s]
newtype DynamicParser s a b = DP ((a,[s]) -> (b,[s]))

```

The static parser consists of a flag, which tells us if the parser can accept the empty input, and a list of possible starting characters. For example, the static parser for a single character would be as follows:
```

spCharA :: Char -> StaticParser Char
spCharA c = SP False [c]

```

It does not accept the empty string (False) and the list of possible starting characters consists only of c.

The dynamic parser needs a little more dissecting: what we see is a function that goes from ( \(a,[s]\) ) to \((b,[s])\). It is useful to think in terms of sequencing two parsers : Each parser consumes the result of the previous parser (a), along with the remaining bits of input stream ([s]), it does something with a to produce its own result \(b\), consumes a bit of string and returns that. Ooof. So, as an example of this in action, consider a dynamic parser (Int,String) -> (Int, String), where the Int represents a count of the characters parsed so far. The table belows shows what would happen if we sequence a few of them together and set them loose on the string "cake" :
\begin{tabular}{lll} 
& result & remaining \\
before & 0 & cake \\
after first parser & 1 & ake \\
after second parser & 2 & ke \\
after third parser & 3 & e
\end{tabular}

So the point here is that a dynamic parser has two jobs: it does something to the output of the previous parser (informally, a -> b), and it consumes a bit of the input string, (informally, [s] \(\rightarrow[s])\), hence the type \(\operatorname{DP}((a,[s])->(b,[s]))\). Now, in the case of a dynamic parser for a single character, the first job is trivial. We ignore the output of the previous parser. We return the character we have parsed. And we consume one character off the stream :
```

dpCharA :: Char -> DynamicParser Char Char Char
dpCharA c = DP (\(_,x:xs) -> (c,xs))

```

This might lead you to ask a few questions. For instance, what's the point of accepting the output of the previous parser if we're just going to ignore it? The best answer we can give right now is "wait and see". If you're comfortable with monads, consider the bind operator ( \(\gg=\) ). While bind is immensely useful by itself, sometimes, when sequencing two monadic computations together, we like to ignore the output of the first computation by using the anonymous bind (>>). This is the same situation here. We've got an interesting little bit of power on our hands, but we're not going to use it quite yet.

The next question, then, shouldn't the dynamic parser be making sure that the current character off the stream matches the character to be parsed? Shouldn't \(x==c\) be checked for? No. And in fact, this is part of the point; the work is not necessary because the check would already have been performed by the static parser.

Anyway, let us put this together. Here is our \(\mathrm{S}+\mathrm{D}\) style parser for a single character:
```

charA :: Char -> Parser Char Char Char
charA c = P (SP False [c]) (DP (\(_,x:xs) -> (c,xs)))

```

\section*{Arrow combinators (robots)}

Up to this point, we have explored two somewhat independent trains of thought. On the one hand, we've taken a look at some arrow machinery, the combinators/robots from above, although we don't exactly know what it's for. On the other hand, we have introduced a type of parser using the Arrow class. We know that the goal is to avoid space leaks and that it somehow involves separating a fast static parser from its slow dynamic part, but we don't really understand how that ties in to all this arrow machinery. In this section, we will attempt to address both of these gaps in our knowledge and merge our twin trains of thought into one. We're going to implement the Arrow class for Parser s, and by doing so, give you a glimpse of what makes arrows useful. So let's get started:
```

instance Arrow (Parser s) where

```


Abb. 12

One of the simplest things we can do is to convert an arbitrary function into a parsing arrow. We're going to use "parse" in the loose sense of the term: our resulting arrow accepts the empty string, and only the empty string (its set of first characters is []). Its sole job is take the output of the previous parsing arrow and do something with it. Otherwise, it does not consume any input.
```

arr f = P (SP True []) (DP (\(b,s) -> (f b,s))

```


Abb. 13

Likewise, the first combinator is relatively straightforward. Recall the conveyor belts from above. Given a parser, we want to produce a new parser that accepts a pair of inputs ( \(\mathrm{b}, \mathrm{d}\) ). The first part of the input \(b\), is what we actually want to parse. The second part is passed through completely untouched:
```

first (P sp (DP p)) = (P sp (DP (\((b,d),s) -> let (c, s') = p (b,s)
in ((c,d), s'))))

```


Abb. 14

On the other hand, the implementation of (>>>) requires a little more thought. We want to take two parsers, and returns a combined parser incorporating the static and dynamic parsers of both arguments:
```

(P (SP empty1 start1) (DP p1)) >>>
(P (SP empty2 start2) (DP p2)) =
P (SP (empty1 \&\& empty2)
(if not empty1 then start1 else start1 'union' start2))
(DP (p2.p1))

```

Combining the dynamic parsers is easy enough; we just do function composition. Putting the static parsers together requires a little bit of thought. First of all, the combined parser can only accept the empty string if both parsers do. Fair enough, now how about the starting symbols? Well, the parsers are supposed to be in a sequence, so the starting symbols of the second parser shouldn't really matter. If life were simple, the starting symbols of the combined parser would only be start1. Alas, life is NOT simple, because parsers could very well accept the empty input. If the first parser accepts
the empty input, then we have to account for this possibility by accepting the starting symbols from both the first and the second parsers.

\section*{So what do arrows buy us in all this?}

If you look back at our Parser type and blank out the static parser section, you might notice that this looks a lot like the arrow instance for functions.
```

arr f = \ (b, s) -> (f b, s)
first p = \((b, d), s) ->
let (c, s') = p (b, s)
in ((c, d), s'))
p1 >>> p2 = p2 . p1

```

There's the odd s variable out for the ride, which makes the definitions look a little strange, but you can roughly see the outline of the conveyor belts and computing machines. Actually, what you see here is roughly the arrow instance for the State monad (let \(f:: b->c, p:: b->\) State \(s c\) and . actually be <=<.

That's fine, but we could have done that with bind in classic monadic style, and first would have just been an odd helper function that you could have easily pattern matched. But remember, our Parser type is not just the dynamic parser; it also contains the static parser.
```

arr f = SP True []
first sp = sp
(SP empty1 start1) >>> (SP empty2 start2) = (SP (empty1 \&\& empty2)
(if not empty1 then start1 else start1 'union' start2))

```

This is not at all a function, it's just pushing around some data types. But the arrow metaphor works for it too, and we wrap it up with the same names. And when we combine the two types, we get a two-for-one deal; the static parser data structure goes along for the ride along with the dynamic parser. The Arrow interface lets us transparently simultaneously compose and manipulate the two parsers as a unit, which we can then run as a traditional, unified function.

\subsection*{38.7 Monads can be arrows too}

\section*{The real flexibility with arrows comes with the ones that aren't monads, otherwise it's just a clunkier syntax -- Philippa Cowderoy}

It turns out that all monads can be made into arrows. Here's a central quote from the original arrows papers: <blockquote \(>\) Just as we think of a monadic type \(m\) a as representing a 'computation delivering an a '; so we think of an arrow type a bc, (that is, the application of the parameterised type \(a\) to the two parameters \(b\) and \(c\) ) as representing 'a computation with input of type \(b\) delivering a c'; arrows make the dependence on input explicit.</blockquote>

One way to look at arrows is the way the English language allows you to noun a verb, for example, "I had a chat with them" versus "I chatted with them." Arrows are much like that, they turn a function from \(a\) to \(b\) into a value. This value is a first class transformation from \(a \operatorname{to} b\).

\subsection*{38.8 Arrows in practice}

Arrows are a relatively new abstraction, but they already found a number of uses in the Haskell world
- Hughes’ arrow-style parsers were first described in his 2000 paper, but a usable implementation wasn't available until May 2005. Einar Karttunen wrote an implementation called PArrows that approaches the features of standard Haskell parser combinator library, Parsec.
- The Fudgets library for building graphical interfaces FIXME: complete this paragraph
- Yampa - FIXME: talk briefly about Yampa
- The Haskell XML Toolbox ( \(\mathrm{HXT}^{7}\) ) uses arrows for processing XML. There is a Wiki page in the Haskell Wiki with a somewhat Gentle Introduction to HXT \({ }^{8}\).

\subsection*{38.9 See also}
- Generalising Monads to Arrows - John Hughes
- http://www.haskell.org/arrows/biblio.html

\subsection*{38.10 References}
<references />

\subsection*{38.11 Acknowledgements}

This module uses text from An Introduction to Arrows by Shae Erisson, originally written for The Monad.Reader 4

\footnotetext{
7 HTTP://WWW.FH-\{\}WEDEL.DE/~\{\}SI/HXMLTOOLBOX/INDEX.HTML
8 HTTP://WWW. HASKELL. ORG/HASKELLWIKI/HXT
}

\section*{39 Continuation passing style (CPS)}

Continuation Passing Style is a format for expressions such that no function ever returns, instead they pass control onto a continuation. Conceptually a continuation is what happens next, for example the continuation for x in \((\mathrm{x}+1) * 2\) is add one then multiply by two.

\subsection*{39.1 When do you need this?}

Classically, continuations have been used primarily to dramatically alter the control flow of a program. For example, returning early from a procedure can be implemented with continuations. Exceptions and failure can also be signaled using continuations - pass in a continuation for success, another continuation for fail, and simply invoke the appropriate continuation. If your function-that-can-fail itself calls another function-that-can-fail, you create a new success continuation, but pass the fail continuation you got.

Also, continuations allow you to "suspend" a computation, returning to that computation at another time. They can be used to implement simple forms of concurrency (notably, one Haskell implementation, Hugs, uses continuations to implement cooperative concurrency). Other control flows are possible.

In Haskell, continuations can be used in a similar fashion, for implementing interesting behavior in some monads. (Note that there are usually other techniques for this available, too, especially in tandem with laziness) They can be used to improve performance by eliminating certain constructionpattern matching sequences (i.e. a function returns a complex structure which the caller will at some point deconstruct), though a sufficiently smart compiler "should" be able to eliminate this.

\subsection*{39.2 Starting simple}

To begin with, we're going to explore two simple examples which illustrate what CPS and continuations are. Firstly a 'first order' example (meaning there are no higher order functions in to CPS transform), then a higher order one.

\subsection*{39.2.1 square}

And the same function pythagoras, written in CPS looks like this:
How the pythagoras'cps example operates is:
1. square x and throw the result into the ( x 'squared -> ...) continuation
2. square \(y\) and throw the result into the ( y'squared \(->\)...) continuation
3. add \(x\) 'squared and y'squared and throw the result into the (\sum'of'squares \(->\)...) continuation
4. throw the sum'of'squares into the toplevel/program continuation

And one can try it out:
```

*Main> pythagoras'cps 3 4 print
2 5

```

\subsection*{39.2.2 thrice}
```

*Main> thrice tail "foobar"

```
"bar"

Now the first thing to do, to CPS convert thrice, is compute the type of the CPSd form. We can see that \(f:: \quad 0->0\), so in the CPSd version, \(f^{\prime} \mathrm{cps}:: \quad 0 \rightarrow(0->r)\)-> \(r\), and the
 we have the new type, that can help direct you how to write the function.

\subsection*{39.3 Using the Cont monad}

By now, you should be used to the (meta-)pattern that whenever we find a pattern we like (here the pattern is using continuations), but it makes our code a little ugly, we use a monad to encapsulate the 'plumbing'. Indeed, there is a monad for modelling computations which use CPS.

Removing the newtype and record cruft, we obtain that Cont r a expands to ( \(\mathrm{a}->\mathrm{r}\) ) \(->\). So how does this fit with our idea of continuations we presented above? Well, remember that a function in CPS basically took an extra parameter which represented 'what to do next'. So, here, the type of Cont r a expands to be an extra function (the continuation), which is a function from things of type a (what the result of the function would have been, if we were returning it normally instead of throwing it into the continuation), to things of type \(r\), which becomes the final result type of our function.
*Main> runCont (pythagoras'cont 3 4) print 25

Every function that returns a Cont-value actually takes an extra parameter, which is the continuation. Using return simply throws its argument into the continuation.

How does the Cont implementation of (>>=) work, then? It's easiest to see it at work:
The Monad instance for (Cont r ) is given below:
```

instance Monad (Cont r) where
return n = Cont (\k > k n)
m >>= f = Cont (\k -> runCont m (\a -> runCont (f a) k))

```

So return n is a Cont-value that throws n straight away into whatever continuation it is applied to. \(m \gg=f\) is a Cont-value that runs \(m\) with the continuation \(\backslash a->f a k\), which maybe, receive the result of computation inside \(m\) (the result is bound to a), then applies that result to \(f\) to get another Cont-value. This is then called with the continuation we got at the top level (the continuation is bound to \(k\) ); in essence \(m \gg=f\) is a Cont-value that takes the result from \(m\), applies it to \(f\), then throws that into the continuation.

\section*{39.4 callCC}

By now you should be fairly confident using the basic notions of continuations and Cont, so we're going to skip ahead to the next big concept in continuation-land. This is a function called callcc, which is short for 'call with current continuation'. We'll start with an easy example.

We pass a function to callcC that accepts one parameter that is in turn a function. This function ( \(k\) in our example) is our tangible continuation: we can see here we're throwing a value (in this case, \(n\)
\({ }^{2}\) ) into our continuation. We can see that the callCC version is equivalent to the return version stated above because we stated that return n is just a Cont-value that throws n into whatever continuation that it is given. Here, we use callCC to bring the continuation 'into scope', and immediately throw a value into it, just like using return.

However, these versions look remarkably similar, so why should we bother using callCC at all? The power lies in that we now have precise control of exactly when we call our continuation, and with what values. Let's explore some of the surprising power that gives us.

\subsection*{39.4.1 Deciding when to use \(k\)}

We mentioned above that the point of using callCC in the first place was that it gave us extra power over what we threw into our continuation, and when. The following example shows how we might want to use this extra flexibility.
foo is a slightly pathological function that computes the square of its input and adds three; if the result of this computation is greater than 20 , then we return from the function immediately, throwing the String value "over twenty" into the continuation that is passed to foo. If not, then we subtract four from our previous computation, show it, and throw it into the computation. If you're used to imperative languages, you can think of \(k\) like the 'return' statement that immediately exits the function. Of course, the advantages of an expressive language like Haskell are that \(k\) is just an ordinary first-class function, so you can pass it to other functions like when, or store it in a Reader, etc.

Naturally, you can embed calls to callCC within do-blocks:
When you call k with a value, the entire callCC call takes that value. In other words, k is a bit like a 'goto' statement in other languages: when we call \(k\) in our example, it pops the execution
out to where you first called callCC, the msg <- callCC \$ ... line. No more of the argument to callCC (the inner do-block) is executed. Hence the following example contains a useless line:
bar will always return 5 , and never 25 , because we pop out of bar before getting to the return 25 line.

\subsection*{39.4.2 A note on typing}

Why do we exit using return rather than \(k\) the second time within the foo example? It's to do with types. Firstly, we need to think about the type of \(k\). We mentioned that we can throw something into k , and nothing after that call will get run (unless k is run conditionally, like when wrapped in a when). So the return type of \(k\) doesn't matter; we can never do anything with the result of running \(k\). Actually, \(k\) never compute the continuation argument of return Cont-value of \(k\). We say, therefore, that the type of \(k\) is:
```

k : : a -> Cont r b

```

Inside <code>Cont \(\mathrm{r} \mathrm{b}</ \mathrm{b}>\), because k never computes that continuation, type b which is the parameter type of that continuation can be anything independent of type a. We universally quantify the return type of k . This is possible for the aforementioned reasons, and the reason it's advantageous is that we can do whatever we want with the result of computation inside \(k\). In our above code, we use it as part of a when construct:
```

when :: Monad m => Bool -> m () -> m ()

```

As soon as the compiler sees \(k\) being used in this when, it infers that we want a () argument type of the continuation taking from the return value of \(k\). The return Cont-value of \(k\) has type Cont \(r\) (). This argument type \(b\) is independent of the argument type a of \(k .{ }^{1}\). The return Cont-value of \(k\) doesn't use the continuation which is argument of this Cont-value itself, it use the continuation which is argument of return Cont-value of the callcC. So that callCC has return type Cont r String. Because the final expression in inner do-block has type Cont \(r\) String, the inner doblock has type Cont \(r\) String. There are two possible execution routes: either the condition for the when succeeds, \(k\) doesn't use continuation providing by the inner do-block which finally takes the continuation which is argument of return Cont-value of the callcc, \(k\) uses directly the continuation which is argument of return Cont-value of the callCC, expressions inside do-block after \(k\) will totally not be used, because Haskell is lazy, unused expressions will not be executed. If the condition fails, the when returns return () which use the continuation providing by the inner do-block, so execution passes on.

If you didn't follow any of that, just make sure you use return at the end of a do-block inside a call to callcc, not \(k\).

\footnotetext{
1 Type a infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas always have monomorphic types. See Polymorphism ^\{Kapitel 46 auf Seite 249\}.
}

\subsection*{39.4.3 The type of callc}

We've deliberately broken a trend here: normally when we've introduced a function, we've given its type straight away, but in this case we haven't. The reason is simple: the type is rather horrendously complex, and it doesn't immediately give insight into what the function does, or how it works. Nevertheless, you should be familiar with it, so now you've hopefully understood the function itself, here's it's type:
```

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

```

This seems like a really weird type to begin with, so let's use a contrived example.
```

callCC \$ \k -> k 5

```

You pass a function to callcc. This in turn takes a parameter, \(k\), which is another function. \(k\), as we remarked above, has the type:
```

k :: a -> Cont r b

```

The entire argument to callCC, then, is a function that takes something of the above type and returns Cont \(r t\), where \(t\) is whatever the type of the argument to \(k\) was. So, callCC's argument has type:
```

(a -> Cont r b) -> Cont r a

```

Finally, callCC is therefore a function which takes that argument and returns its result. So the type of callcC is:
```

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

```

\subsection*{39.4.4 The implementation of callCC}

So far we have looked at the use of callCC and its type. This just leaves its implementation, which is:
```

callCC f = Cont \$ \k -> runCont (f (\a -> Cont \$ _ -> k a)) k

```

This code is far from obvious. However, the amazing fact is that the implementations for callCC \(f\), return \(n\) and \(m \gg=f\) can all be produced automatically from their type signatures - Lennart Augustsson's Djinn HTTP://LAMBDA-THE-ULTIMATE.ORG/NODE/1178 \(8^{2}\) is a program that will do this for you. See

\footnotetext{
2 HTTP://LAMBDA- \{ \} THE-\{\}ULTIMATE.ORG/NODE/1178
}

Phil Gossart's Google tech talk: HTTP://VIDEO.GOOGLE.COM/VIDEOPLAY?DOCID=\(4851250372422374791^{3}\) for background on the theory behind Djinn; and Dan Piponi's article: HTTP://WWW.HASKELL.ORG/SITEWIKI/IMAGES/1/14/TMR-ISSUE6.PDF \({ }^{4}\) which uses Djinn in deriving Continuation Passing Style.

\subsection*{39.5 Example: a complicated control structure}

This example was originally taken from the 'The Continuation monad' section of the All about MONADS TUTORIAL \({ }^{5}\), used with permission.
Because it isn't initially clear what's going on, especially regarding the usage of callcc, we will explore this somewhat.

\subsection*{39.5.1 Analysis of the example}

Firstly, we can see that fun is a function that takes an integer \(n\). We basically implement a control structure using Cont and callCC that does different things based on the range that \(n\) falls in, as explained with the comment at the top of the function. Let's dive into the analysis of how it works.
1. Firstly, the ('runCont'id) at the top just means that we run the Cont block that follows with a final continuation of id. This is necessary as the result type of fun doesn't mention Cont.
2. We bind str to the result of the following callCC do-block:
a) If n is less than 10 , we exit straight away, just showing n .
b) If not, we proceed. We construct a list, \(n s\), of digits of \(n\) 'div' 2.
c) \(\mathrm{n}^{\prime}\) (an Int) gets bound to the result of the following inner callCC do-block.
i. If length \(\mathrm{ns}<3\), i.e., if \(n\) 'div' 2 has less than 3 digits, we pop out of this inner do-block with the number of digits as the result.
ii. If \(n\) 'div' 2 has less than 5 digits, we pop out of the inner do-block returning the original \(n\).
iii. If \(n\) 'div' 2 has less than 7 digits, we pop out of both the inner and outer doblocks, with the result of the digits of \(n\) 'div' 2 in reverse order (a String).
iv. Otherwise, we end the inner do-block, returning the sum of the digits of \(n\) 'div' 2.
d) We end this do-block, returning the String " ( \(n s=X\) ) Y", where \(X\) is ns, the digits of \(n\) 'div' 2, and Y is the result from the inner do-block, \(n\) '.
3. Finally, we return out of the entire function, with our result being the string "Answer: Z", where Z is the string we got from the callCC do-block.

\footnotetext{
3 HTTP://VIDEO.GOOGLE.COM/VIDEOPLAY?DOCID=-\{\}4851250372422374791
HTTP://WWW.HASKELL.ORG/SITEWIKI/IMAGES/1/14/TMR-\{\}ISSUE6.PDF
HTTP://WWW.HASKELL.ORG/ALL_ABOUT_MONADS/HTML/INDEX.HTML
}

\subsection*{39.6 Example: exceptions}

One use of continuations is to model exceptions. To do this, we hold on to two continuations: one that takes us out to the handler in case of an exception, and one that takes us to the post-handler code in case of a success. Here's a simple function that takes two numbers and does integer division on them, failing when the denominator is zero.

How does it work? We use two nested calls to callCc. The first labels a continuation that will be used when there's no problem. The second labels a continuation that will be used when we wish to throw an exception. If the denominator isn't 0 , x ' \(\mathrm{div}^{\prime} \mathrm{y}\) is thrown into the ok continuation, so the execution pops right back out to the top level of divExcpt. If, however, we were passed a zero denominator, we throw an error message into the not 0 k continuation, which pops us out to the inner do-block, and that string gets assigned to err and given to handler.

A more general approach to handling exceptions can be seen with the following function. Pass a computation as the first parameter (which should be a function taking a continuation to the error handler) and an error handler as the second parameter. This example takes advantage of the generic MonadCont class which covers both Cont and Cont T by default, plus any other continuation classes the user has defined.

For an example using try, see the following program.

\subsection*{39.7 Example: coroutines}

\subsection*{39.8 Notes}
<references />

\section*{40 Mutable objects}

As one of the key strengths of Haskell is its purity: all side-effects are encapsulated in a MONAD \({ }^{1}\). This makes reasoning about programs much easier, but many practical programming tasks require manipulating state and using imperative structures. This chapter will discuss advanced programming techniques for using imperative constructs, such as references and mutable arrays, without compromising (too much) purity.

\subsection*{40.1 The ST and IO monads}

Recall the The State Monad \({ }^{2}\) and The IO monad \({ }^{3}\) from the chapter on Monads. These are two methods of structuring imperative effects. Both references and arrays can live in state monads or the IO monad, so which one is more appropriate for what, and how does one use them?

\subsection*{40.2 State references: STRef and IORef}

\subsection*{40.3 Mutable arrays}

\subsection*{40.4 Examples}
```

import Control.Monad.ST
import Data.STRef
import Data.Map (Map)
import qualified Data.Map as M

```

\footnotetext{
1 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/MONADS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/MONADS\#THE_STATE_MONAD
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/MONADS\#THE_. 28I.290_MONAD
}
```

import Data.Monoid(Monoid(..))
memo :: (Ord a) => (a -> b) -> ST s (a -> ST s b)
memo f = do m <- newMemo
return (withMemo m f)
newtype Memo s a b = Memo (STRef s (Map a b))
newMemo :: (Ord a) => ST s (Memo s a b)
newMemo = Memo 'fmap' newSTRef mempty
withMemo :: (Ord a) => Memo s a b -> (a -> b) -> (a -> ST s b)
withMemo (Memo r) f a = do m <- readSTRef r
case M.lookup a m of
Just b -> return b
Nothing -> do let b = f a
writeSTRef r (M.insert a b
m)
return b

```

\section*{41 Zippers}

\subsection*{41.1 Theseus and the Zipper}

\subsection*{41.1.1 The Labyrinth}
"Theseus, we have to do something" said Homer, chief marketing officer of Ancient Geeks Inc.. Theseus put the Minotaur action figure \({ }^{\mathrm{TM}}\) back onto the shelf and nodded. "Today's children are no longer interested in the ancient myths, they prefer modern heroes like Spiderman or Sponge Bob." Heroes. Theseus knew well how much he had been a hero in the labyrinth back then on Crete \({ }^{1}\). But those "modern heroes" did not even try to appear realistic. What made them so successful? Anyway, if the pending sales problems could not be resolved, the shareholders would certainly arrange a passage over the Styx for Ancient Geeks Inc.
"Heureka! Theseus, I have an idea: we implement your story with the Minotaur as a computer game! What do you say?" Homer was right. There had been several books, epic (and chart breaking) songs, a mandatory movie trilogy and uncountable Theseus \& the Minotaur \({ }^{\mathrm{TM}}\) gimmicks, but a computer game was missing. "Perfect, then. Now, Theseus, your task is to implement the game".

A true hero, Theseus chose Haskell as the language to implement the company's redeeming product in. Of course, exploring the labyrinth of the Minotaur was to become one of the game's highlights. He pondered: "We have a two-dimensional labyrinth whose corridors can point in many directions. Of course, we can abstract from the detailed lengths and angles: for the purpose of finding the way out, we only need to know how the path forks. To keep things easy, we model the labyrinth as a tree. This way, the two branches of a fork cannot join again when walking deeper and the player cannot go round in circles. But I think there is enough opportunity to get lost; and this way, if the player is patient enough, he can explore the entire labyrinth with the left-hand rule."
```

data Node a = DeadEnd a
| Passage a (Node a)
| Fork a (Node a) (Node a)

```

\footnotetext{
1 Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American, February 1991, page 137.
}


Abb. 15: An example labyrinth and its representation as tree.

Theseus made the nodes of the labyrinth carry an extra parameter of type a. Later on, it may hold game relevant information like the coordinates of the spot a node designates, the ambience around it, a list of game items that lie on the floor, or a list of monsters wandering in that section of the labyrinth. We assume that two helper functions
```

get :: Node a -> a
put :: a -> Node a -> Node a

```
retrieve and change the value of type a stored in the first argument of every constructor of Node a. \(\{\) Exercises \(\mid 1=\)
1. Implement get and put. One case for get is
get (Passage x _) = x.
2. To get a concrete example, write down the labyrinth shown in the picture as a value of type Node (Int, Int). The extra parameter (Int, Int) holds the cartesian coordinates of a node.\}\}
"Mh, how to represent the player's current position in the labyrinth? The player can explore deeper by choosing left or right branches, like in"
```

turnRight :: Node a -> Maybe (Node a)
turnRight (Fork _ l r) = Just r
turnRight _ = Nothing

```
"But replacing the current top of the labyrinth with the corresponding sub-labyrinth this way is not an option, because he cannot go back then." He pondered. "Ah, we can apply Ariadne's trick with the thread for going back. We simply represent the player's position by the list of branches his
thread takes, the labyrinth always remains the same."
```

data Branch = KeepStraightOn
| TurnLeft
| TurnRight
type Thread = [Branch]

```


Abb. 16: Representation of the player's position by Ariadne's thread.
"For example, a thread [TurnRight, KeepStraightOn] means that the player took the right branch at the entrance and then went straight down a Passage to reach its current position. With the thread, the player can now explore the labyrinth by extending or shortening it. For instance, the function turnRight extends the thread by appending the TurnRight to it."
```

turnRight :: Thread -> Thread
turnRight t = t ++ [TurnRight]

```
"To access the extra data, i.e. the game relevant items and such, we simply follow the thread into the labyrinth."
```

retrieve :: Thread -> Node a -> a
retrieve [] n = get n
retrieve (KeepStraightOn:bs) (Passage _ n) = retrieve bs n
retrieve (TurnLeft :bs) (Fork _ l r) = retrieve bs l
retrieve (TurnRight :bs) (Fork _ l r) = retrieve bs r

```

Theseus' satisfaction over this solution did not last long. "Unfortunately, if we want to extend the path or go back a step, we have to change the last element of the list. We could store the list in reverse, but even then, we have to follow the thread again and again to access the data in the labyrinth at the player's position. Both actions take time proportional to the length of the thread and for large labyrinths, this will be too long. Isn't there another way?"

\subsection*{41.1.2 Ariadne's Zipper}

While Theseus was a skillful warrior, he did not train much in the art of programming and could not find a satisfying solution. After intense but fruitless cogitation, he decided to call his former love Ariadne to ask her for advice. After all, it was she who had the idea with the thread.

Our hero immediately recognized the voice. "Hello Ariadne, it's Theseus." An uneasy silence paused the conversation. Theseus remembered well that he had abandoned her on the island of Naxos and knew that she would not appreciate his call. But Ancient Geeks Inc. was on the road to Hades and he had no choice. "Uhm, darling, ... how are you?" Ariadne retorted an icy response,
"Well, I uhm ... I need some help with a programming problem. I'm programming a new Theseus \& the Minotaur \({ }^{\text {TM }}\) computer game." She jeered,
"Ariadne, please, I beg of you, Ancient Geeks Inc. is on the brink of insolvency. The game is our last hope!" After a pause, she came to a decision.

Theseus turned pale. But what could he do? The situation was desperate enough, so he agreed but only after negotiating Ariadne's share to a tenth.

After Theseus told Ariadne of the labyrinth representation he had in mind, she could immediately give advice,
"Huh? What does the problem have to do with my fly?"
"Ah."
"I know for myself that I want fast updates, but how do I code it?"
"But then, the problem is how to go back, because all those sub-labyrinths get lost that the player did not choose to branch into."

Ariadne savored Theseus' puzzlement but quickly continued before he could complain that he already used Ariadne's thread,
```

type Zipper a = (Thread a, Node a)

```


Abb. 17: The zipper is a pair of Ariadne's thread and the current sub-labyrinth that the player stands on top. The main thread is colored red and has sub-labyrinths attached to it, such that the whole labyrinth can be reconstructed from the pair.

Theseus didn't say anything.
```

data Branch a = KeepStraightOn a
| TurnLeft a (Node a)
| TurnRight a (Node a)
type Thread a = [Branch a]

```

Theseus interrupts, "Wait, how would I implement this behavior as a function turnRight? And what about the first argument of type a for TurnRight? Ah, I see. We not only need to glue the branch that would get lost, but also the extra data of the Fork because it would otherwise get lost as well. So, we can generate a new branch by a preliminary"
```

branchRight (Fork x l r) = TurnRight x l

```
"Now, we have to somehow extend the existing thread with it."
"Aha, this makes extending and going back take only constant time, not time proportional to the length as in my previous version. So the final version of turnRight is"
```

turnRight :: Zipper a -> Maybe (Zipper a)
turnRight (t, Fork x l r) = Just (TurnRight x l : t, r)
turnRight _ = Nothing

```


Abb. 18: Taking the right subtree from the entrance. Of course, the thread is initially empty. Note that the thread runs backwards, i.e. the topmost segment is the most recent.
"That was not too difficult. So let's continue with keepStraighton for going down a passage. This is even easier than choosing a branch as we only need to keep the extra data:"
```

keepStraightOn :: Zipper a -> Maybe (Zipper a)
keepStraightOn (t, Passage x n) = Just (KeepStraightOn x : t, n)
keepStraightOn _ = Nothing

```


Abb. 19: Now going down a passage.

Pleased, he continued, "But the interesting part is to go back, of course. Let's see..."
```

back :: Zipper a -> Maybe (Zipper a)
back ([] , _) = Nothing
back (KeepStraightOn x : t , n) = Just (t, Passage x n)
back (TurnLeft x r : t , l) = Just (t, Fork x l r)
back (TurnRight x l : t , r) = Just (t, Fork x l r)

```
"If the thread is empty, we're already at the entrance of the labyrinth and cannot go back. In all other cases, we have to wind up the thread. And thanks to the attachments to the thread, we can actually reconstruct the sub-labyrinth we came from." Ariadne remarked,

Heureka! That was the solution Theseus sought and Ancient Geeks Inc. should prevail, even if partially sold to Ariadne Consulting. But one question remained: "Why is it called zipper?"
"'Ariadne's pearl necklace'," he articulated disdainfully. "As if your thread was any help back then on Crete."
she replied. "Bah, I need no thread," he defied the fact that he actually did need the thread to program the game. Much to his surprise, she agreed,


Abb. 20: Grab the focus with your finger, lift it in the air and the hanging branches will form new tree with your finger at the top, ready to be structured by an algebraic data type.
"Ah." He didn't need Ariadne's thread but he needed Ariadne to tell him? That was too much. "Thank you, Ariadne, good bye." She did not hide her smirk as he could not see it anyway through the phone.

Half a year later, Theseus stopped in front of a shop window, defying the cold rain that tried to creep under his buttoned up anorak. Blinking letters announced
"Spider-Man: lost in the Web"
- find your way through the labyrinth of threads -
the great computer game by Ancient Geeks Inc.
He cursed the day when he called Ariadne and sold her a part of the company. Was it she who contrived the unfriendly takeover by WineOS Corp., led by Ariadne's husband Dionysus? Theseus watched the raindrops finding their way down the glass window. After the production line was
changed, nobody would produce Theseus and the Minotaur \({ }^{\mathrm{TM}}\) merchandise anymore. He sighed. His time, the time of heroes, was over. Now came the super-heroes.

\subsection*{41.2 Differentiation of data types}

The previous section has presented the zipper, a way to augment a tree-like data structure Node a with a finger that can focus on the different subtrees. While we constructed a zipper for a particular data structure Node a, the construction can be easily adapted to different tree data structures by hand.

\subsection*{41.2.1 Mechanical Differentiation}

But there is also an entirely mechanical way to derive the zipper of any (suitably regular) data type. Surprisingly, 'derive' is to be taken literally, for the zipper can be obtained by the derivative of the data type, a discovery first described by Conor McBride \({ }^{2}\). The subsequent section is going to explicate this truly wonderful mathematical gem.

For a systematic construction, we need to calculate with types. The basics of structural calculations with types are outlined in a separate chapter ../Generic Programming \(/{ }^{\beta}\) and we will heavily rely on this material.

Let's look at some examples to see what their zippers have in common and how they hint differentiation. The type of binary tree is the fixed point of the recursive equation
\[
\text { Tree } 2=1+\text { Tree } 2 \times \text { Tree } 2
\]

When walking down the tree, we iteratively choose to enter the left or the right subtree and then glue the not-entered subtree to Ariadne's thread. Thus, the branches of our thread have the type
\[
\text { Branch } 2=\text { Tree } 2+\text { Tree } 2 \cong 2 \times \text { Tree } 2
\]

Similarly, the thread for a ternary tree
\[
\text { Tree } 3=1+\text { Tree } 3 \times \text { Tree } 3 \times \text { Tree } 3
\]
has branches of type

\footnotetext{
2 Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online. PDF \({ }^{\wedge}\) \{http://strictlypositive.org/diff.pde\}
3 htip://en.wikibooks.org/wiki/../GenericProgramming/
}

\section*{Branch3 \(=3 \times\) Tree \(3 \times\) Tree 3}
because at every step, we can choose between three subtrees and have to store the two subtrees we don't enter. Isn't this strikingly similar to the derivatives \(\frac{d}{d x} x^{2}=2 \times x\) and \(\frac{d}{d x} x^{3}=3 \times x^{2}\) ?

The key to the mystery is the notion of the one-hole context of a data structure. Imagine a data structure parameterised over a type \(X\), like the type of trees Tree \(X\). If we were to remove one of the items of this type \(X\) from the structure and somehow mark the now empty position, we obtain a structure with a marked hole. The result is called "one-hole context" and inserting an item of type \(X\) into the hole gives back a completely filled Tree \(X\). The hole acts as a distinguished position, a focus. The figures illustrate this.


Abb. 21: Removing a value of type \(X\) from a Tree \(X\) leaves a hole at that position.


Abb. 22: A more abstract illustration of plugging \(X\) into a one-hole context.

Of course, we are interested in the type to give to a one-hole context, i.e. how to represent it in Haskell. The problem is how to efficiently mark the focus. But as we will see, finding a representation for one-hole contexts by induction on the structure of the type we want to take the one-hole context of automatically leads to an efficient data type \({ }^{4}\). So, given a data structure \(F X\) with a functor \(F\) and an argument type \(X\), we want to calculate the type \(\partial F X\) of one-hole contexts from the structure of \(F\). As our choice of notation \(\partial F\) already reveals, the rules for constructing one-hole contexts of sums, products and compositions are exactly Leibniz' rules for differentiation.

\section*{One-hole context}
\(\left(\partial\right.\) Const \(\left._{A}\right) X\)

\section*{Illustration}
\[
=0</ m a t H>
\]
\(\mid\) Thereisno \(<\) math \(>X\) in \(A=\) Const \(_{A} X\), so the type of its one-hole contexts must be empty.

\footnotetext{
4 This phenomenon already shows up with generic tries.
}


Of course, the function plug that fills a hole has the type \((\partial F X) \times X \rightarrow F X\).
So far, the syntax \(\partial\) denotes the differentiation of functors, i.e. of a kind of type functions with one argument. But there is also a handy expression oriented notation \(\partial_{X}\) slightly more suitable for calculation. The subscript indicates the variable with respect to which we want to differentiate. In general, we have
\[
(\partial F) X=\partial_{X}(F X)
\]

An example is
\[
\partial(I d \times I d) X=\partial_{X}(X \times X)=1 \times X+X \times 1 \cong 2 \times X
\]

Of course, \(\partial_{X}\) is just point-wise whereas \(\partial\) is point-free style.

\subsection*{41.2.2 Zippers via Differentiation}

The above rules enable us to construct zippers for recursive data types \(\mu F:=\mu X . F X\) where \(F\) is a polynomial functor. A zipper is a focus on a particular subtree, i.e. substructure of type \(\mu F\) inside a large tree of the same type. As in the previous chapter, it can be represented by the subtree we want to focus at and the thread, that is the context in which the subtree resides
\[
\text { Zipper }_{F}=\mu F \times \text { Context }_{F}
\]

Now, the context is a series of steps each of which chooses a particular subtree \(\mu F\) among those in \(F \mu F\). Thus, the unchosen subtrees are collected together by the one-hole context \(\partial F(\mu F)\). The hole of this context comes from removing the subtree we've chosen to enter. Putting things together, we have
\[
\operatorname{Context}_{F}=\operatorname{List}(\partial F(\mu F))
\]
or equivalently
\[
\text { Context }_{F}=1+\partial F(\mu F) \times \text { Context }_{F}
\]

To illustrate how a concrete calculation proceeds, let's systematically construct the zipper for our labyrinth data type
```

data Node a = DeadEnd a
Passage a (Node a)
| Fork a (Node a) (Node a)

```

This recursive type is the fixed point
\[
\text { Node } A=\mu X . \operatorname{NodeF}_{A} X
\]
of the functor
\[
\operatorname{NodeF}_{A} X=A+A \times X+A \times X \times X
\]

In other words, we have

\section*{\(\operatorname{Node} A \cong \operatorname{NodeF}_{A}(\operatorname{Node} A) \cong A+A \times \operatorname{Node} A+A \times \operatorname{Node} A \times \operatorname{Node} A\)}

The derivative reads
\[
\partial_{X}\left(\operatorname{NodeF}_{A} X\right) \cong A+2 \times A \times X
\]
and we get
\[
\partial \operatorname{NodeF}_{A}(\operatorname{Node} A) \cong A+2 \times A \times \text { Node } A
\]

Thus, the context reads
\[
\operatorname{Context}_{\text {NodeF }} \cong \operatorname{List}\left(\partial \operatorname{NodeF}_{A}(\operatorname{Node} A)\right) \cong \operatorname{List}(A+2 \times A \times(\operatorname{Node} A))
\]

Comparing with
```

data Branch a = KeepStraightOn a
| TurnLeft a (Node a)
| TurnRight a (Node a)
data Thread a = [Branch a]

```
we see that both are exactly the same as expected!

\subsection*{41.2.3 Differentation of Fixed Point}

There is more to data types than sums and products, we also have a fixed point operator with no direct correspondence in calculus. Consequently, the table is missing a rule of differentiation, namely how to differentiate fixed points \(\mu F X=\mu Y . F X Y\) :
\[
\partial_{X}(\mu F X)=?
\]

As its formulation involves the chain rule in two variables, we delegate it to the exercises. Instead, we will calculate it for our concrete example type Node A:
\[
\begin{aligned}
\partial_{A}(\text { Node } A)= & \partial_{A}(A+A \times \text { Node } A+A \times \text { Node } A \times \text { Node } A) \\
& \quad 1+\text { Node } A+\text { Node } A \times \text { Node } A \\
& +\partial_{A}(\text { Node } A) \times(A+2 \times A \times \text { Node } A) .
\end{aligned}
\]

Of course, expanding \(\partial_{A}(\) Node \(A)\) further is of no use, but we can see this as a fixed point equation and arrive at
\[
\partial_{A}(\text { Node } A)=\mu X . T A+S A \times X
\]
with the abbreviations
\[
T A=1+\operatorname{Node} A+\operatorname{Node} A \times \operatorname{Node} A
\]
and
\[
S A=A+2 \times A \times \operatorname{Node} A
\]

The recursive type is like a list with element types \(S A\), only that the empty list is replaced by a base case of type \(T\) A. But given that the list is finite, we can replace the base case with 1 and pull \(T A\) out of the list:
\[
\partial_{A}(\operatorname{Node} A) \cong T A \times(\mu X .1+S A \times X)=T A \times \operatorname{List}(S A)
\]

Comparing with the zipper we derived in the last paragraph, we see that the list type is our context
\[
\operatorname{List}(S A) \cong \text { Context }_{\text {NodeF }}
\]
and that
\[
A \times T A \cong \text { Node } A
\]

In the end, we have
\[
\text { Zipper }_{\text {NodeF }} \cong \partial_{A}(\text { Node } A) \times A
\]

Thus, differentiating our concrete example Node \(A\) with respect to \(A\) yields the zipper up to an \(A\) !

\subsection*{41.2.4 Differentation with respect to functions of the argument}

When finding the type of a one-hole context one does \(d f(x) / d x\). It is entirely possible to solve expressions like \(d f(x) / d g(x)\). For example, solving \(d x^{\wedge} 4 / d x^{\wedge} 2\) gives \(2 x^{\wedge} 2\), a two-hole context of a 4-tuple. The derivation is as follows let \(u=x^{\wedge} 2 d x^{\wedge} 4 / d x^{\wedge} 2=d^{\wedge} 2 / d u=2 u=2 x^{\wedge} 2\).

\subsection*{41.2.5 Zippers vs Contexts}

In general however, zippers and one-hole contexts denote different things. The zipper is a focus on arbitrary subtrees whereas a one-hole context can only focus on the argument of a type constructor. Take for example the data type
```

data Tree a = Leaf a | Bin (Tree a) (Tree a)

```
which is the fixed point
\[
\text { Tree } A=\mu X . A+X \times X
\]

The zipper can focus on subtrees whose top is Bin or Leaf but the hole of one-hole context of Tree A may only focus a Leafs because this is where the items of type \(A\) reside. The derivative of Node \(A\) only turned out to be the zipper because every top of a subtree is always decorated with an \(A\).

\subsection*{41.2.6 Conclusion}

We close this section by asking how it may happen that rules from calculus appear in a discrete setting. Currently, nobody knows. But at least, there is a discrete notion of linear, namely in the sense of "exactly once". The key feature of the function that plugs an item of type \(X\) into the hole of a one-hole context is the fact that the item is used exactly once, i.e. linearly. We may think of the plugging map as having type
\[
\partial_{X} F X \rightarrow(X \multimap F X)
\]
where \(A \multimap B\) denotes a linear function, one that does not duplicate or ignore its argument like in linear logic. In a sense, the one-hole context is a representation of the function space \(X \multimap F X\), which can be thought of being a linear approximation to \(X \rightarrow F X\).

\subsection*{41.3 Notes}
<references/>

\subsection*{41.4 See Also}

\section*{Zipper (Data structure) \({ }^{5}\)}
- ZiPPER \({ }^{6}\) on the haskell.org wiki
- Generic Zipper and its applications \({ }^{7}\)
- Zipper-based file server/OS \({ }^{8}\)
- Scrap Your Zippers: A Generic Zipper for Heterogeneous Types \({ }^{9}\)

\footnotetext{
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZIPPER(DATASTRUCTURE)
6 HTTP://WWW. HASKELL.ORG/HASKELLWIKI/ZIPPER
7 htip://OKMIJ.ORG/FTP/COMPUTATION/CONTINUATIONS.HTML\#ZIPPER
8 HTTP://OKMIJ.ORG/FTP/COMPUTATION/CONTINUATIONS.HTML\#ZIPPER一\{\}FS
9 HTTP://WWW.CS.INDIANA.EDU/~\{\}ADAMSMD/PAPERS/SCRAP_YOUR_ZIPPERS/
}

\section*{42 Applicative Functors}

Applicative functors are functors with some extra properties, the most important one is that it allows you to apply functions inside the functor (hence the name) to other values. First we do a quick recap of functors, next we will see the applicative functors, and for what structure they are used. After that, we'll see that we can get an applicative functor out of every monad, and then we'll see an example of an applicative functor that is not a monad, but still very useful.

\subsection*{42.1 Functors}

Functors, or instances of the typeclass Functor, are some of the most often used structures in Haskell. Typically, they are structures that "can be mapped over". Here is the class definition of Functor:
```

class Functor f where
fmap :: (a -> b) -> f a -> f b

```

The most well-known functor is the list, where fmap corresponds to map. Another example is Maybe:
```

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

```

Typically, for all tree-like structures you can write an instance of Functor.

\subsection*{42.2 Applicative Functors}

Applicative functors are functors with extra properties: you can apply functions inside a functor to values that can be inside the functor or not. We will first look at the definition, then at some instances of applicative functors and their most important use.

\subsection*{42.2.1 Definition}
```

class (Functor f) => Applicative f where
pure :: a -> f a
(\langle*\rangle) :: f (a -> b) -> f a -> f b

```

The pure function lifts any value inside the functor. \((\langle *\rangle)\) changes a function inside the functor to a function over values of the functor. The functor should satisfy some laws:
```

pure id <*> v = v -- Identity
pure (.) <*> u <*> v <*> w = u <*> (v <*> w) -- Composition
pure f <*> pure x = pure (f x) -- Homomorphism
u <*> pure y = pure (\$ y) <*> u -- Interchange

```

And the Functor instance should satisfy the following law:
```

fmap f x = pure f <*> x
-- Fmap

```

\subsection*{42.2.2 Instances}

As we have seen the Functor instance of Maybe, let's try to make it Applicative as well.
The definition of pure is easy. It is Just. Now the definition of \((\langle *\rangle)\). If any of the two arguments is Nothing, the result should be Nothing. Otherwise, we extract the function and its argument from the two Just values, and return Just the function applied to its argument:
```

instance Applicative Maybe where
pure = Just
(Just f) <*> (Just x) = Just (f x)
<*> = Nothing

```

\subsection*{42.2.3 Using Applicative Functors}

The use of (<*>) may not be immediately clear, so let us look at some example that you may have come across yourself.

Suppose we have the following function:
```

f :: Int -> Int -> Int
f x y = 2 * x + y

```

But instead of Ints, we want to apply this function to values of type Maybe Int. Because you've seen this problem before, you decide to write a function fmap2:
```

fmap2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
fmap2 f (Just x) (Just y) = Just (f x y)
fmap2 _ _ _ = Nothing

```

You are happy for a while, but then you find that \(f\) really needs another Int argument. But now, fmap2 isn't sufficient anymore. You need another function to accommodate for this extra parameter:
```

fmap3 :: (a -> b -> c -> d) -> Maybe a -> Maybe b -> Maybe c ->
Maybe d
fmap3 f (Just x) (Just y) (Just z) = Just (f x y z)
fmap3 _ _ _ _ Nothing

```

This is all good as such, but what if f suddenly needs 4 arguments, or 5 , or 10 ?
Here is where \((\langle *\rangle)\) comes in. Look at what happens if you write fmap \(f\) :
```

f :: (a -> b -> c)
fmap :: Functor f => (d -> e) -> f d -> f e
fmap f :: Functor f => f a -> f (b -> c) -- Identify d with a,
and e with (b -> c)

```

Now the use of \((\langle *\rangle)\) becomes clear. Once we have the final \(f(b->c)\), we can use it to get a ( f b \(->\mathrm{f}\) c). And indeed:
```

fmap2 f a b = f 'fmap' a <*> b
fmap3 f a b c = f 'fmap' a <*> b <*> c
fmap4 f a b c d = f 'fmap' a <*> b <*> c <*> d

```

To make it look more pretty, the
library defines \((\langle \$\rangle)\) as a synonym of fmap. The ultimate result is that the code is much cleaner to read and easier to adapt and reuse.
```

fmap2 f a b = f <$> a <*> b
fmap3 f a b c=f <$> a <*> b <*> c
fmap4 f a b c d = f <\$> a <*> b <*> c <*> d

```

Anytime you feel the need to define different higher order functions to accommodate for functionarguments with a different number of arguments, think about how defining a proper instance of Applicative can make your life easier.

Of course,
provides the above functions as convenience, under the names of liftA to liftA3.

\subsection*{42.3 Monads and Applicative Functors}

The type of pure may look familiar. Indeed, if you change its typeclass restriction from:
```

Applicative f => a -> f a

```
to
```

Monad m => a -> m a

```
it has exactly the same type as return.
As a matter of fact, every instance of Monad can also be made an instance of Applicative. Here are the definitions that can be used:
```

pure = return
(<*>) = ap

```

Here, ap is defined as:
```

ap f a = do
f' <- f
a'<- a
return (f' a')

```

It is also defined in

\subsection*{42.4 ZipLists}

Let's come back now to the idea that Applicative can make life easier. Perhaps the best known example of this are the different zipWithN functions of
. It looks exactly like the kind of pattern that an applicative functor would be useful for.
For technical reasons, we can not define a Applicative instance for [], as it already has one defined. This instance does something completely different. fs <*> xs takes all functions from fs and applies them to all values in xs. To remedy this, we create a wrapper:
```

newtype ZipList a = ZipList [a]
instance Functor ZipList where
fmap f (ZipList xs) = ZipList (map f xs)

```

To make this an instance of Applicative with the expected behaviour, we shall first look at the definition of \((\langle *\rangle)\), as it follows quite straightforward from what we want to do. The ( \(\langle *\rangle\) ) operator takes a list of functions and a list of values, and it should apply the functions to the values in a pairwise way. This sounds a lot like zipWith (\$), we just need to add the ZipList wrapper:
```

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList \$ zipWith (\$) fs xs
pure = undefined

```

Now we only need to define pure. If we define it like this:
```

pure x = ZipList [x]

```
it won't satisfy the Identity law, pure id <*> v = v, since v can contain more than one element, and zipWith only returns a list of the smaller of the two input sizes. Since we don't know how many elements v has, the safest way is to let pure return a list of infinite elements. Now our instance declaration is complete:
```

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList (zipWith (\$) fs xs
pure x = ZipList (repeat x)

```

\subsection*{42.5 References}

\section*{43 Monoids}

\subsection*{43.1 Introduction}

A monoid is any data type which has a "zero" value and a binary "append" operation satisfying certain laws. For example, in a list, the "zero" is [], while the "append" is ++ .
In Haskell's Monoid TYPE CLASS \({ }^{1}\), the "zero" is called mzero while the "append" is called mappend.
An example instance for integers might be
```

instance Monoid Integer where
mzero=0
mappend= (+)

```

A monoid must satisfy this law:
```

forall }\textrm{x},\mathrm{ mappend mzero }\textrm{x}=\mathrm{ mappend }\textrm{x}\mathrm{ mzero }=\textrm{x

```

Sigfpe: BLOG POST \({ }^{2}\) INTUITION ON ASSOCIATIVITY \({ }^{3}\)

\section*{MANY MONOID RELATED LINKs \({ }^{4}\)}

\subsection*{43.2 Examples}

USAGE IN CABAL \({ }^{5}\) HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-CAFE/2009JANUARY/053626.HTML \({ }^{6}\) HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-CAFE/2009JANUARY/053721. HTML \(^{7}\). "Package databases are monoids. Configuration files are monoids. Command line flags and sets of command line flags are monoids. Package build information is a monoid."

\footnotetext{
1 Kapitel 26 auf Seite 129
2 htte://SIGFPE.BLOGSPOT.COM/2009/01/HASKELL-\{\}MONOIDS-\{\}AND-\{\}THEIR-\{\}USES. HTML
3 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-\{\}CAFE/2009-\{\}JANUARY/053798. HTML
4 HTTP://GROUPS.GOOGLE.COM/GROUP/BAHASKELL/BROWSE_THREAD/THREAD/
4CF0164263E0FD6B/42b621F5A4DA6019
5 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-\{\}CAFE/2009-\{\}JANUARY/053602. HTML
6 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-\{\}CAFE/2009-\{\}JANUARY/053626. HTML
7 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL- \{ \}CAFE/2009-\{\}JANUARY/053721. HTML
}

USAGE IN XMONAD \({ }^{8}\). "xmonad configuration hooks are monoidal".
FingerTrees \({ }^{9}\).

\subsection*{43.3 Homomorphisms}

A function \(f: \quad A->B\) between two monoids \(A\) and \(B\) is called a homomorphism if it preserves the monoid structure
```

f empty = empty
f (x 'mappend' y) = f x `mappend' f y

```

For example, length is a homomorphism between ([],++) and (Int,+)
```

length [] = 0
length (xs ++ ys) = length x + length y

```

Google Protocol Buffers example \({ }^{10}\). The property that
```

MyMessage message;
message.ParseFromString(str1 + str2);

```
is equivalent to
```

MyMessage message, message2;
message.ParseFromString(str1);
message2.ParseFromString(str2);
message.MergeFrom(message2);

```
means that parse is a homomorphism:
```

parse :: String -> Message
parse [] = mempty
parse (xs ++ ys) = parse xs 'merge' parse ys

```

Well, not quite because parse can fail, but more or less.

\subsection*{43.4 See also}
```

8 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL- {}CAFE/2009-{}JANUARY/053603. HTML
9 HTTP://WWW.HASKELL.ORG/PIPERMAIL/HASKELL-{}CAFE/2009-{}JANUARY/053689.HTML
10 httP://wWW.NABBLE.Com/Re%3A-{}Comments-{}from-{}OCAmL-{}HACKER-{}BRIAN-{}HuRt-{}P21496412.
HTML

```

\section*{44 Concurrency}

\subsection*{44.1 Concurrency}

Concurrency in Haskell is mostly done with Haskell threads. Haskell threads are user-space threads that are implemented in the runtime. Haskell threads are much more efficient in terms of both time and space than Operating System threads. Apart from traditional synchronization primitives like semaphores, Haskell offers Software Transactional Memory which greatly simplifies concurrent access to shared memory.

The modules for concurrency are Control.Concurrent.* and Control.Monad.STM.

\subsection*{44.2 When do you need it?}

Perhaps more important than when is when not. Concurrency in Haskell is not used to utilize multiple processor cores; you need another thing, "parallelism", for that. Instead, concurrency is used for when a single core must divide its attention between various things, typically IO.

For example, consider a simple "static" webserver (i.e. serves only static content such as images). Ideally, such a webserver should consume few processing resources; instead, it must be able to transfer data as fast as possible. The bottleneck should be I/O, where you can throw more hardware at the problem. So you must be able to efficiently utilize a single processor core among several connections.

In a C version of such a webserver, you'd use a big loop centered around select () on each connection and on the listening socket. Each open connection would have an attached data structure specifying the state of that connection (i.e. receiving the HTTP header, parsing it, sending the file). Such a big loop would be difficult and error-prone to code by hand. However, using Concurrent Haskell, you would be able to write a much smaller loop concentrating solely on the listening socket, which would spawn a new "thread" for each accepted connection. You can then write a new
"thread" in the IO monad which, in sequence, receives the HTTP header, parses it, and sends the file.

Internally, the Haskell compiler will then convert the spawning of the thread to an allocation of a small structure specifying the state of the "thread", congruent to the data structure you would have defined in C. It will then convert the various threads into a single big loop. Thus, while you write as if each thread is independent, internally the compiler will convert it to a big loop centered around select () or whatever alternative is best on your system.

\subsection*{44.3 Example}

\subsection*{44.4 Software Transactional Memory}

Software Transactional Memory (STM) is a mechanism that allows transactions on memory similar to database transactions. It greatly simplifies access to shared resources when programming in a multithreaded environment. By using STM, you no longer have to rely on locking.

To use STM, you have to include Control.Monad.STM. To change into the STM-Monad the atomically function is used. STM offers different primitives (TVar, TMVar, TChan and TArray) that can be used for communication.

The following example shows how to use a TChan to communicate between two threads. The channel is created in the main function and handed over to the reader/writerThread functions. The readerThread waits on the TChan for new input and prints it. The writerThread writes some Intvalues to the channel and terminates.

45 Fun with Types

\section*{46 Polymorphism basics}

\subsection*{46.1 Parametric Polymorphism}

Section goal = short, enables reader to read code (ParseP) with \&forall; and use libraries (ST) without horror. Question TALK:HASKELL/THE_CURRY-HOWARD_ISOMORPHISM\#POLYMORPHIC TYPES \({ }^{1}\) would be solved by this section.

Link to the following paper: Luca Cardelli: On Understanding Types, Data Abstraction, AND POLYMORPHISM \({ }^{2}\).

\subsection*{46.1.1 forall a}

As you may know, a polymorphic function is a function that works for many different types. For instance,
length :: [a] -> Int
can calculate the length of any list, be it a string String = [Char] or a list of integers [Int]. The type variable a indicates that length accepts any element type. Other examples of polymorphic functions are
```

fst :: (a, b) -> a
snd :: (a, b) -> b
map :: (a -> b) -> [a] -> [b]

```

Type variables always begin in lowercase whereas concrete types like Int or String always start with an uppercase letter, that's how we can tell them apart.

There is a more explicit way to indicate that a can be any type
```

length :: forall a. [a] -> Int

```

\footnotetext{
1 htip://En.wIKIbooks.org/wiki/TALK:HASKELL/The_Curry-Howard_isomorphism\# POLYMORPHICTYPES
2 HTTP://LUCACARDELLI.NAME/PAPERS/ONUNDERSTANDING.A4.PDF
}

In other words, "for all types a, the function length takes a list of elements of type a and returns an integer". You should think of the old signature as an abbreviation for the new one with the forall \({ }^{3}\). That is, the compiler will internally insert any missing forall for you. Another example: the types signature for fst is really a shorthand for
```

fst :: forall a. forall b. (a,b) -> a

```
or equivalently
```

fst :: forall a b. (a,b) -> a

```

Similarly, the type of map is really
```

map :: forall a b. (a -> b) -> [a] -> [b]

```

The idea that something is applicable to every type or holds for everything is called UNIVERSAL QUANTIFICATION \({ }^{4}\). In mathematical logic, the symbol \&forall; \({ }^{5}\) (an upside-down A, read as "forall") is commonly used for that, it is called the universal quantifier.

\subsection*{46.1.2 Higher rank types}

With explicit forall, it now becomes possible to write functions that expect polymorphic arguments, like for instance
```

foo :: (forall a. a -> a) -> (Char,Bool)
foo f = (f 'c', f True)

```

Here, f is a polymorphic function, it can be applied to anything. In particular, foo can apply it to both the character ' c ' and the boolean True.

It is not possible to write a function like foo in Haskell98, the type checker will complain that \(f\) may only be applied to values of either the type Char or the type Bool and reject the definition. The closest we could come to the type signature of foo would be
```

bar :: (a -> a) -> (Char, Bool)

```

\footnotetext{
3 Note that the keyword forall is not part of the Haskell 98 standard, but any of the language extensions ScopedTypeVariables, Rank2Types or RankNTypes will enable it in the compiler. A future Haskell standard will incorporate one of these.
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIVERSALQUANTIFICATION
5 The UnicodeSyntax extension allows you to use the symbol \&forall; instead of the forall keyword in your Haskell source code.
}
which is the same as
```

bar :: forall a. ((a -> a) -> (Char, Bool))

```

But this is very different from foo. The forall at the outermost level means that bar promises to work with any argument \(f\) as long as \(f\) has the shape a \(->\) a for some type a unknown to bar. Contrast this with foo, where it's the argument \(f\) who promises to be of shape a \(->\) a for all types \(a\) at the same time, and it's foo who makes use of that promise by choosing both a Char and a = Bool.

Concerning nomenclature, simple polymorphic functions like bar are said to have a rank-1 type while the type foo is classified as rank-2 type. In general, a rank-n type is a function that has at least one rank-(n-1) argument but no arguments of even higher rank.

The theoretical basis for higher rank types is System \(\mathbf{F}^{\mathbf{6}}\), also known as the second-order lambda calculus. We will detail it in the section System \(\mathrm{F}^{7}\) in order to better understand the meaning of forall and its placement like in foo and bar.

Haskell98 is based on the Hindley-Milner \({ }^{8}\) type system, which is a restriction of System F and does not support forall and rank-2 types or types of even higher rank. You have to enable the RankNTypes \({ }^{9}\) language extension to make use of the full power of System F.

But of course, there is a good reason that Haskell98 does not support higher rank types: type inference for the full System F is undecidable, the programmer would have to write down all type signatures himself. Thus, the early versions of Haskell have adopted the Hindley-Milner type system which only offers simple polymorphic function but enables complete type inference in return. Recent advances in research have reduced the burden of writing type signatures and made rank-n types practical in current Haskell compilers.

\subsection*{46.1.3 runST}

For the practical Haskell programmer, the \(\mathrm{ST}_{\mathrm{MONAD}}{ }^{10}\) is probably the first example of a rank-2 type in the wild. Similar to the IO monad, it offers mutable references
```

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a >> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

```
and mutable arrays. The type variable s represents the state that is being manipulated. But unlike IO, these stateful computations can be used in pure code. In particular, the function
```

HTTP://En.WIKIPEDIA.ORG/WIKI/SYSTEmF
HTTP://EN.WIKIBOOKS.ORG/WIKI/\#SYSTEMF
HTTP://EN.WIKIPEDIA.ORG/WIKI/HINDLEY-MILNER
Or enable just Rank2Types if you only want to use rank-2 types
HTTP://WWW.HASKELL.ORG/HASKELLWIKI/MONAD/ST

```
```

runST :: (forall s. ST s a) -> a

```
sets up the initial state, runs the computation, discards the state and returns the result. As you can see, it has a rank-2 type. Why?

The point is that mutable references should be local to one runST. For instance,
```

v = runST (newSTRef "abc")
foo = runST (readVar v)

```
is wrong because a mutable reference created in the context of one runST is used again in a second runST. In other words, the result type a in (forall s. ST s a) -> a may not be a reference like STRef \(s\) String in the case of v. But the rank-2 type guarantees exactly that! Because the argument must be polymorphic in \(s\), it has to return one and the same type a for all states \(s\); the result a may not depend on the state. Thus, the unwanted code snippet above contains a type error and the compiler will reject it.

You can find a more detailed explanation of the ST monad in the original paper LAZY FUNCTIONAL State Threads \({ }^{11,12 .}\)

\subsection*{46.1.4 Impredicativity}
- predicative \(=\) type variables instantiated to monotypes. impredicative \(=\) also polytypes. Example: length [id :: forall a . a -> a] or Just (id :: forall a. a -> a). Subtly different from higher-rank.
- relation of polymorphic types by their generality, i.e. 'isInstanceOf'.
- HASKELL-CAFE: RANKNTYpES SHORT EXPLANATION. \({ }^{13}\)

\subsection*{46.2 System F}

Section goal \(=\) a little bit lambda calculus foundation to prevent brain damage from implicit type parameter passing.
- System F = Basis for all this \&forall;-stuff.
- Explicit type applications i.e. map Int (+1) \([1,2,3]\). \&forall; similar to the function arrow ->.
- Terms depend on types. \(\operatorname{Big} \Lambda\) for type arguments, small \(\lambda\) for value arguments.

\footnotetext{
11 HTTP://WWW.DCS.GLA.AC.UK/FP/PAPERS/LAZY-\{\}FUNCTIONAL-\{\}STATE-\{\}THREADS.PS.Z 12

13 HTTP://THREAD.GMANE.ORG/GMANE.COMP.LANG.HASKELL.CAFE/40508/FOCUS=40610
}

\subsection*{46.3 Examples}

Section goal \(=\) enable reader to judge whether to use data structures with \&forall; in his own code.
- Church numerals, Encoding of arbitrary recursive types (positivity conditions): \&forall x. (F x -> x) -> x
- Continuations, Pattern-matching: maybe, either and foldr
I.e. \&forall; can be put to good use for implementing data types in Haskell.

\subsection*{46.4 Other forms of Polymorphism}

Section goal = contrast polymorphism in OOP and stuff. how type classes fit in.
- ad-hoc polymorphism = different behavior depending on type s. => Haskell type classes.
- parametric polymorphism = ignorant of the type actually used. \(=>\) \&forall;
- subtyping

\subsection*{46.5 Free Theorems}

Secion goal \(=\) enable reader to come up with free theorems. no need to prove them, intuition is enough.
- free theorems for parametric polymorphism.

\subsection*{46.6 Footnotes}
<references/>

\subsection*{46.7 See also}
- Luca Cardelli. On Understanding Types, Data Abstraction, and Polymorphism \({ }^{14}\).

\footnotetext{
14 htip://LuCACARDELLI.NAME/PAPERS/OnUndERSTANDING.A4.PDF
}

\section*{47 Existentially quantified types}

Existential types, or 'existentials' for short, are a way of 'squashing' a group of types into one, single type.
Firstly, a note to those of you following along at home: existentials are part of GHC's type system extensions. They aren't part of Haskell98, and as such you'll have to either compile any code that contains them with an extra command-line parameter of -XExistentialQuantification, or put \{-\# LANGUAGE ExistentialQuantification \#-\} at the top of your sources that use existentials.

\subsection*{47.1 The forall keyword}

The forall keyword is used to explicitly bring type variables into scope. For example, consider something you've innocuously seen written a hundred times so far:

But what are these \(a\) and \(b\) ? Well, they're type variables, you answer. The compiler sees that they begin with a lowercase letter and as such allows any type to fill that role. Another way of putting this is that those variables are 'universally quantified'. If you've studied formal logic, you will have undoubtedly come across the quantifiers: 'for all' (or \(\forall\) ) and 'exists' (or \(\exists\) ). They 'quantify' whatever comes after them: for example, \(\exists x\) means that whatever follows is true for at least one value of \(x . \forall x\) means that what follows is true for every \(x\) you could imagine. For example, \(\forall x, x^{2} \geq 0\) and \(\exists x, x^{3}=27\).

The forall keyword quantifies types in a similar way. We would rewrite map's type as follows:
So we see that for any \(a\) and \(b\) we can imagine, map takes the type ( a -> b) -> [a] -> [b]. For example, we might choose \(a=\) Int and \(b=\) String. Then it's valid to say that map has the type (Int -> String) -> [Int] -> [String]. We are instantiating the general type of map to a more specific type.

However, in Haskell, as we know, any use of a lowercase type implicitly begins with a forall keyword, so the two type declarations for map are equivalent, as are the declarations below:

What makes life really interesting is that you can override this default behaviour by explicitly telling Haskell where the forall keyword goes. One use of this is for building existentially quantified types, also known as existential types, or simply existentials. But wait... isn't forall the universal quantifier? How do you get an existential type out of that? We look at this in a later section. However, first, let's dive right into the deep end by seeing an example of the power of existential types in action.

\subsection*{47.2 Example: heterogeneous lists}

The premise behind Haskell's typeclass system is grouping types that all share a common property. So if you know a type instantiates some class C, you know certain things about that type. For example, Int instantiates Eq, so we know that elements of Int can be compared for equality.

Suppose we have a group of values, and we don't know if they are all the same type, but we do know they all instantiate some class, i.e. we know all the values have a certain property. It might be useful to throw all these values into a list. We can't do this normally because lists are homogeneous with respect to types: they can only contain a single type. However, existential types allow us to loosen this requirement by defining a 'type hider' or 'type box':

We won't explain precisely what we mean by that datatype definition, but its meaning should be clear to your intuition. The important thing is that we're calling the constructor on three values of different types, and we place them all into a list, so we must end up with the same type for each one. Essentially this is because our use of the forall keyword gives our constructor the type \(S B:\) : forall \(s\). Show \(s=>s\) ShowBox. If we were now writing a function to which we intend to pass heteroList, we couldn't apply any functions like not to the values inside the SB because they might not be Bools. But we do know something about each of the elements: they can be converted to a string via show. In fact, that's pretty much the only thing we know about them.

Let's expand on this a bit more. In the definition of show for ShowBox - the line marked with (*) see the comment in the text below - we don't know the type of s. But as we mentioned, we do know that the type is an instance of Show due to the constraint on the SB constructor. Therefore, it's legal to use the function show on \(s\), as seen in the right-hand side of the function definition.

As for \(f\), recall the type of print:
As we just declared ShowBox an instance of Show, we can print the values in the list.

\subsection*{47.3 Explaining the term existential}

Let's get back to the question we asked ourselves a couple of sections back. Why are we calling these existential types if forall is the universal quantifier?

Firstly, forall really does mean 'for all'. One way of thinking about types is as sets of values with that type, for example, Bool is the set \(\{\) True, False, \&perp; \} (remember that bottom, \&perp;, is a member of every type!), Integer is the set of integers (and bottom), String is the set of all possible strings (and bottom), and so on. forall serves as an intersection over those sets. For example, forall a. a is the intersection over all types, which must be \(\{\& p e r p ;\}\), that is, the type (i.e. set) whose only value (i.e. element) is bottom. Why? Think about it: how many of the elements of Bool appear in, for example, String? Bottom is the only value common to all types.

A few more examples:
1. [forall a. a] is the type of a list whose elements all have the type forall a. a, i.e. a list of bottoms.
2. [forall a. Show a => a] is the type of a list whose elements all have the type forall a. Show a \(\quad\). \(a\). The Show class constraint limits the sets you intersect over (here we're
only intersecting over instances of Show), but \(\perp\) is still the only value common to all these types, so this too is a list of bottoms.
3. [forall a. Num a => a]. Again, the list where each element is a member of all types that instantiate Num. This could involve numeric literals, which have the type forall a. Num a => a, as well as bottom.
4. forall a. [a] is the type of the list whose elements have some (the same) type a, which can be assumed to be any type at all by a callee (and therefore this too is a list of bottoms).

We see that most intersections over types just lead to combinations of bottoms in some ways, because types don't have a lot of values in common.

Recall that in the last section, we developed a heterogeneous list using a 'type hider'. Ideally, we'd like the type of a heterogeneous list to be [exists a. a], i.e. the list where all elements have type exists a. a. This 'exists' keyword (which isn't present in Haskell) is, as you may guess, a union of types, so that [exists a. a] is the type of a list where all elements could take any type at all (and the types of different elements needn't be the same).

But we got almost the same behaviour above using datatypes. Let's declare one.
This means that:
So we can pass any type we want to MkT and it'll convert it into a T . So what happens when we deconstruct a MkT value?

As we've just stated, x could be of any type. That means it's a member of some arbitrary type, so has the type x :: exists a. a. In other words, our declaration for T is isomorphic to the following one:

And suddenly we have existential types. Now we can make a heterogeneous list:
Of course, when we pattern match on heteroList we can't do anything with its elements \({ }^{1}\), as all we know is that they have some arbitrary type. However, if we are to introduce class constraints:

Which is isomorphic to:
Again the class constraint serves to limit the types we're unioning over, so that now we know the values inside a \(\mathrm{MkT}^{\prime}\) are elements of some arbitrary type which instantiates Show. The implication of this is that we can apply show to a value of type exists a. Show a => a. It doesn't matter exactly which type it turns out to be.

To summarise, the interaction of the universal quantifier with datatypes produces existential types. As most interesting applications of forall-involving types use this interaction, we label such types 'existential'. Whenever you want existential types, you must wrap them up in a datatype constructor, they can't exist "out in the open" like with [exists a. a].

\footnotetext{
1 Actually, we can apply them to functions whose type is forall a. a \(->R\), for some arbitrary \(R\), as these accept values of any type as a parameter. Examples of such functions: id, const \(k\) for any k, seq. So technically, we can't do anything useful with its elements, except reduce them to WHNF.
}

\subsection*{47.4 Example: runST}

One monad that you may not have come across so far is the ST monad. This is essentially the State monad on steroids: it has a much more complicated structure and involves some more advanced topics. It was originally written to provide Haskell with IO. As we mentioned in the ../UnderSTANDING MONADS \(/{ }^{2}\) chapter, IO is basically just a State monad with an environment of all the information about the real world. In fact, inside GHC at least, ST is used, and the environment is a type called RealWorld.

To get out of the State monad, you can use runState. The analogous function for ST is called runST, and it has a rather particular type:

This is actually an example of a more complicated language feature called rank-2 polymorphism, which we don't go into detail here. It's important to notice that there is no parameter for the initial state. Indeed, ST uses a different notion of state to State; while State allows you to get and put the current state, ST provides an interface to references. You create references, which have type STRef, with newSTRef :: a \(\rightarrow\) ST \(s\) (STRef \(s\) a), providing an initial value, then you can use readSTRef :: STRef s a -> ST s a and writeSTRef :: STRef s a -> a -> ST s () to manipulate them. As such, the internal environment of a ST computation is not one specific value, but a mapping from references to values. Therefore, you don't need to provide an initial state to runST, as the initial state is just the empty mapping containing no references.

However, things aren't quite as simple as this. What stops you creating a reference in one ST computation, then using it in another? We don't want to allow this because (for reasons of threadsafety) no ST computation should be allowed to assume that the initial internal environment contains any specific references. More concretely, we want the following code to be invalid:

What would prevent this? The effect of the rank-2 polymorphism in runST's type is to constrain the scope of the type variable \(<\) code \(>s<\) code \(>\) to be within the first parameter. In other words, if the type variable \(s\) appears in the first parameter it cannot also appear in the second. Let's take a look at how exactly this is done. Say we have some code like the following:

The compiler tries to fit the types together:
The importance of the forall in the first bracket is that we can change the name of the \(s\). That is, we could write:

This makes sense: in mathematics, saying \(\forall x . x>5\) is precisely the same as saying \(\forall y \cdot y>5\); you're just giving the variable a different label. However, we have a problem with our above code. Notice that as the forall does not scope over the return type of runST, we don't rename the s there as well. But suddenly, we've got a type mismatch! The result type of the ST computation in the first parameter must match the result type of runST, but now it doesn't!

The key feature of the existential is that it allows the compiler to generalise the type of the state in the first parameter, and so the result type cannot depend on it. This neatly sidesteps our dependence problems, and 'compartmentalises' each call to runST into its own little heap, with references not being able to be shared between different calls.

\footnotetext{
2 HTTP://En.WIKIBOOKS.ORG/WIKI/../UNDERSTANDINGMONADS /
}

\subsection*{47.5 Quantification as a primitive}

Universal quantification is useful for defining data types that aren't already defined. Suppose there was no such thing as pairs built into haskell. Quantification could be used to define them.
```

newtype Pair a b=Pair (forall c. (a->b->c)->c)

```

\subsection*{47.6 Notes}
<references />

\subsection*{47.7 Further reading}
- GHC's user guide contains USEFUL INFORMATION \({ }^{3}\) on existentials, including the various limitations placed on them (which you should know about).
- Lazy Functional State Threads \({ }^{4}\), by Simon Peyton-Jones and John Launchbury, is a paper which explains more fully the ideas behind ST.

\footnotetext{
3 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/USERS_GUIDE/DATA-\{\}TYPE-\{\}EXTENSIONS. HTML\#EXISTENTIAL-\{\}QUANTIFICATION
4 HTTP://CITESEER.IST.PSU.EDU/LAUNCHBURY94LAZY. HTML
}

\section*{48 Advanced type classes}

Type classes may seem innocuous, but research on the subject has resulted in several advancements and generalisations which make them a very powerful tool.

\subsection*{48.1 Multi-parameter type classes}

Multi-parameter type classes are a generalisation of the single parameter TYPE CLASSES \({ }^{1}\), and are supported by some Haskell implementations.

Suppose we wanted to create a 'Collection' type class that could be used with a variety of concrete data types, and supports two operations -- 'insert' for adding elements, and 'member' for testing membership. A first attempt might look like this:

This won't compile, however. The problem is that the 'e' type variable in the Collection operations comes from nowhere -- there is nothing in the type of an instance of Collection that will tell us what the 'e' actually is, so we can never define implementations of these methods. Multi-parameter type classes solve this by allowing us to put 'e' into the type of the class. Here is an example that compiles and can be used:

\subsection*{48.2 Functional dependencies}

A problem with the above example is that, in this case, we have extra information that the compiler doesn't know, which can lead to false ambiguities and over-generalised function signatures. In this case, we can see intuitively that the type of the collection will always determine the type of the element it contains - so if \(c\) is [a], then e will be \(a\). If \(c\) is Hashmap \(a\), then \(e\) will be \(a\). (The reverse is not true: many different collection types can hold the same element type, so knowing the element type was e.g. Int, would not tell you the collection type).

In order to tell the compiler this information, we add a functional dependency, changing the class declaration to

A functional dependency is a constraint that we can place on type class parameters. Here, the extra | c -> e should be read 'c uniquely identifies e', meaning for a given \(c\), there will only be one e. You can have more than one functional dependency in a class -- for example you could have c -> e, e -> c in the above case. And you can have more than two parameters in multi-parameter classes.

\footnotetext{
1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CLASS_DECLARATIONS
}

\subsection*{48.3 Examples}

\subsection*{48.3.1 Matrices and vectors}

Suppose you want to implement some code to perform simple linear algebra:
You want these to behave as much like numbers as possible. So you might start by overloading Haskell's Num class:

The problem comes when you want to start multiplying quantities. You really need a multiplication function which overloads to different types:

How do we specify a type class which allows all these possibilities?
We could try this:
That, however, isn't really what we want. As it stands, even a simple expression like this has an ambiguous type unless you supply an additional type declaration on the intermediate expression:

After all, nothing is stopping someone from coming along later and adding another instance:
The problem is that c shouldn't really be a free type variable. When you know the types of the things that you're multiplying, the result type should be determined from that information alone.

You can express this by specifying a functional dependency:
This tells Haskell that c is uniquely determined from a and b .

\section*{49 Phantom types}

Phantom types are a way to embed a language with a stronger type system than Haskell's.

\subsection*{49.1 Phantom types}

An ordinary type
```

data T = TI Int | TS String
plus :: T -> T -> T
concat :: T -> T -> T

```
its phantom type version
```

data T a = TI Int | TS String

```

Nothing's changed - just a new argument a that we don't touch. But magic!
```

plus :: T Int -> T Int -> T Int
concat :: T String -> T String -> T String

```

Now we can enforce a little bit more!
This is useful if you want to increase the type-safety of your code, but not impose additional runtime overhead:
```

-- Peano numbers at the type level.
data Zero = Zero
data Succ a = Succ a
-- Example: 3 can be modeled as the type
-- Succ (Succ (Succ Zero)))
data Vector n a = Vector [a] deriving (Eq, Show)
vector2d :: Vector (Succ (Succ Zero)) Int
vector2d = Vector [1,2]
vector3d :: Vector (Succ (Succ (Succ Zero))) Int
vector3d = Vector [1,2,3]
-- vector2d == vector3d raises a type error
-- at compile-time:

```
-- Couldn't match expected type 'Zero'
-- against inferred type 'Succ Zero'
-- Expected type: Vector (Succ (Succ Zero)) Int
-- Inferred type: Vector (Succ (Succ (Succ Zero))) Int
-- In the second argument of '(==)', namely 'vector3d'
-- In the expression: vector2d == vector3d
-- while vector2d == Vector \([1,2,3]\) works

\section*{50 Generalised algebraic data-types (GADT)}

\author{
ERRORMAP \({ }^{1}\)
}

\subsection*{50.1 Introduction}

Generalized Algebraic Datatypes are, as the name suggests, a generalization of Algebraic Data Types that you are already familiar with. Basically, they allow you to explicitly write down the types of the constructors. In this chapter, you'll learn why this is useful and how to declare your own.

We begin with an example of building a simple embedded domain specific language (EDSL) for simple arithmetical expressions, which is put on a sounder footing with GADTs. This is followed by a review of the syntax for GADTs, with simpler illustrations, and a different application to construct a safe list type for which the equivalent of head [] fails to typecheck and thus does not give the usual runtime error: *** Exception: Prelude.head: empty list.

\subsection*{50.2 Understanding GADTs}

So, what are GADTs and what are they useful for? GADTs are mainly used to implement domain specific languages and this section will introduce them with a corresponding example.

\subsection*{50.2.1 Arithmetic expressions}

Let's consider a small language for arithmetic expressions, given by the data type
```

data Expr = I Int -- integer constants
Add Expr Expr -- add two expressions
| Mul Expr Expr -- multiply two expressions

```

In other words, this data type corresponds to the abstract syntax tree, an arithmetic term like \((5+1) * 7\) would be represented as (I 5 `Add' I 1) `Mul` I 7 :: Expr.
Given the abstract syntax tree, we would like to do something with it; we want to compile it, optimize it and so on. For starters, let's write an evaluation function that takes an expressions and calculates the integer value it represents. The definition is straightforward:

\footnotetext{
1 HTTP://EN.WIKIPEDIA.ORG/WIKI/ERRORMAP
}
```

eval :: Expr -> Int
eval (I n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

```

\subsection*{50.2.2 Extending the language}

Now, imagine that we would like to extend our language with other types than just integers. For instance, let's say we want to represent equality tests, so we need booleans as well. We augment the 'Expr' type to become
```

data Expr = I Int
| Bool -- boolean constants
| Add Expr Expr
| Mul Expr Expr
| Eq Expr Expr -- equality test

```

The term <code>5+1 ==7<code> would be represented as (I 5 `Add` I 1) `Eq` I 7.
As before, we want to write a function eval to evaluate expressions. But this time, expressions can now represent either integers or booleans and we have to capture that in the return type
```

eval :: Expr -> Either Int Bool

```

The first two cases are straightforward
```

eval (I n) = Left n
eval (B b) = Right b

```
but now we get in trouble. We would like to write
```

eval (Add e1 e2) = eval e1 + eval e2 -- ???

```
but this doesn't type check: the addition function + expects two integer arguments, but eval e1 is of type Either Int Bool and we'd have extract the Int from that.

Even worse, what happens if e1 actually represents a boolean? The following is a valid expression
```

B True `Add` I 5 :: Expr

```
but clearly, it doesn't make any sense; we can't add booleans to integers! In other words, evaluation may return integers or booleans, but it may also fail because the expression makes no sense. We have to incorporate that in the return type:
```

eval :: Expr -> Maybe (Either Int Bool)

```

Now, we could write this function just fine, but that would still be unsatisfactory, because what we really want to do is to have Haskell's type system rule out any invalid expressions; we don't want to check types ourselves while deconstructing the abstract syntax tree.

Exercise: Despite our goal, it may still be instructional to implement the eval function; do this.

\subsection*{50.2.3 Phantom types}

The so-called phantom types are the first step towards our goal. The technique is to augment the Expr with a type variable, so that it becomes
```

data Expr a = I Int
B Bool
| Add (Expr a) (Expr a)
Mul (Expr a) (Expr a)
| Eq (Expr a) (Expr a)

```

Note that an expression Expr a does not contain a value a at all; that's why a is called a phantom type, it's just a dummy variable. Compare that with, say, a list [a] which does contain a bunch of a's.

The key idea is that we're going to use a to track the type of the expression for us. Instead of making the constructor
```

Add :: Expr a -> Expr a -> Expr a

```
available to users of our small language, we are only going to provide a smart constructor with a more restricted type
```

add :: Expr Int -> Expr Int -> Expr Int
add = Add

```

The implementation is the same, but the types are different. Doing this with the other constructors as well,
```

i :: Int -> Expr Int
i = I
b :: Bool -> Expr Bool
b}=

```
the previously problematic expression
```

b True `add` i 5

```
no longer type checks! After all, the first arguments has the type Expr Bool while add expects an Expr Int. In other words, the phantom type a marks the intended type of the expression. By only exporting the smart constructors, the user cannot create expressions with incorrect types.

As before, we want to implement an evaluation function. With our new marker a, we might hope to give it the type
```

eval :: Expr a -> a

```
and implement the first case like this
```

eval (I n) = n

```

But alas, this does not work: how would the compiler know that encountering the constructor I means that \(a=\) Int? Granted, this will be case for all the expression that were created by users of our language because they are only allowed to use the smart constructors. But internally, an expression like
```

I 5 :: Expr String

```
is still valid. In fact, as you can see, a doesn't even have to be Int or Bool, it could be anything.
What we need is a way to restrict the return types of the constructors proper, and that's exactly what generalized data types do.

\subsection*{50.2.4 GADTs}

The obvious notation for restricting the type of a constructor is to write down its type, and that's exactly how GADTs are defined:
```

data Expr a where
I :: Int -> Expr Int
B :: Bool -> Expr Bool
Add :: Expr Int -> Expr Int -> Expr Int
Mul :: Expr Int -> Expr Int -> Expr Int
Eq :: Expr Int -> Expr Int -> Expr Bool

```

In other words, we simply list the type signatures of all the constructors. In particular, the marker type a is specialised to Int or Bool according to our needs, just like we would have done with smart constructors.

And the great thing about GADTs is that we now can implement an evaluation function that takes advantage of the type marker:
```

eval :: Expr a -> a
eval (I n) = n
eval (B b) = b

```
```

eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Eq e1 e2) = eval e1 == eval e2

```

In particular, in the first case
```

eval (I n) = n

```
the compiler is now able infer that \(a=\) Int when we encounter a constructor \(I\) and that it is legal to return the <code>n :: Int<code>; similarly for the other cases.

To summarise, GADTs allows us to restrict the return types of constructors and thus enable us to take advantage of Haskell's type system for our domain specific languages. Thus, we can implement more languages and their implementation becomes simpler.

\subsection*{50.3 Summary}

\subsection*{50.3.1 Syntax}

Here a quick summary of how the syntax for declaring GADTs works.
First, consider the following ordinary algebraic datatypes: the familiar List and Maybe types, and a simple tree type, RoseTree:
\begin{tabular}{ll} 
Maybe & \begin{tabular}{l} 
List \\
data List a = Nil \(\mid\) Cons a
\end{tabular} \\
data Maybe a = Nothing \(\mid\) & \begin{tabular}{l} 
(List a)
\end{tabular} \\
Just a
\end{tabular}

\section*{Rose Tree}
data RoseTree \(\mathrm{a}=\) RoseTree
a [RoseTree a]
Just a

Remember that the constructors introduced by these declarations can be used both for pattern matches to deconstruct values and as functions to construct values. (Nothing and Nil are functions with "zero arguments".) We can ask what the types of the latter are:
\begin{tabular}{lll} 
Maybe & List & Rose Tree \\
& \(>: t\) Nil Nil \(::\) List \(a>: t\) & \(>: t\) RoseTree RoseTree \(::\) \\
\(>:\) Nothing Nothing \(::\) & Cons Cons \(::\) a \(->\) List a - & a -> [RoseTree a] -> Rose- \\
Maybe a \(>:\) Just Just \(::\) a & \(>\) List a & Tree a \\
\(->\) Maybe a & &
\end{tabular}

It is clear that this type information about the constructors for Maybe, List and RoseTree respectively is equivalent to the information we gave to the compiler when declaring the datatype in the first place. In other words, it's also conceivable to declare a datatype by simply listing the types of all of its constructors, and that's exactly what the GADT syntax does:
\(\left.\begin{array}{lll}\text { Maybe } & \text { List } & \begin{array}{l}\text { Rose Tree }\end{array} \\
\text { data List a where Nil }:: \text { List } \\
\text { data RoseTree a where }\end{array}\right]\)\begin{tabular}{lll} 
data Maybe a where Noth- & a Cons \(::\) a \(->\) List a \(->\) List & RoseTree \(::\) a \(->\) [RoseTree \\
ing :: Maybe a Just \(::\) a \(->\) & a & a] \(->\) RoseTree a \\
Maybe a & &
\end{tabular}

This syntax is made available by the language option \{-\#LANGUAGE GADTs \#-\}. It should be familiar to you in that it closely resembles the syntax type class declarations. It's also easy to remember if you already like to think of constructors as just being functions. Each constructor is just defined by a type signature.

\subsection*{50.3.2 New possibilities}

Note that when we asked the GHCi for the types of Nothing and Just it returned Maybe a and a -> Maybe a as the types. In these and the other cases, the type of the final output of the function associated with a constructor is the type we were initially defining - Maybe a, List a or RoseTree a. In general, in standard Haskell, the constructor functions for FOO a have Foo a as their final return type. If the new syntax were to be strictly equivalent to the old, we would have to place this restriction on its use for valid type declarations.

So what do GADTs add for us? The ability to control exactly what kind of Foo you return. With GADTs, a constructor for Foo a is not obliged to return Foo a; it can return any Foo blah that you can think of. In the code sample below, for instance, the GadtedFoo constructor returns a GadtedFoo Int even though it is for the type GadtedFoo x.

But note that you can only push the generalization so far... if the datatype you are declaring is a Foo, the constructor functions must return some kind of Foo or another. Returning anything else simply wouldn't work

\subsection*{50.4 Examples}

\subsection*{50.4.1 Safe Lists}

Prerequisite: We assume in this section that you know how a List tends to be represented in functional languages
Note: The examples in this article additionally require the extensions EmptyDataDecls and KindSignatures to be enabled

We've now gotten a glimpse of the extra control given to us by the GADT syntax. The only thing new is that you can control exactly what kind of data structure you return. Now, what can we use it for? Consider the humble Haskell list. What happens when you invoke head []? Haskell blows up. Have you ever wished you could have a magical version of head that only accepts lists with at least one element, lists on which it will never blow up?

To begin with, let's define a new type, SafeList x y. The idea is to have something similar to normal Haskell lists [ \(x\) ], but with a little extra information in the type. This extra information (the
type variable \(y\) ) tells us whether or not the list is empty. Empty lists are represented as SafeList \(x\) Empty, whereas non-empty lists are represented as SafeList x NonEmpty.
```

-- we have to define these types
data Empty
data NonEmpty
-- the idea is that you can have either
-- SafeList a Empty
-- or SafeList a NonEmpty
data SafeList a b where
-- to be implemented

```

Since we have this extra information, we can now define a function safeHead on only the nonempty lists! Calling safeHead on an empty list would simply refuse to type-check.
safeHead :: SafeList a NonEmpty -> a

So now that we know what we want, safeHead, how do we actually go about getting it? The answer is GADT. The key is that we take advantage of the GADT feature to return two different list-of-a types, SafeList a Empty for the Nil constructor, and SafeList a NonEmpty for the Cons constructor:
```

data SafeList a b where
Nil :: SafeList a Empty
Cons :: a -> SafeList a b -> SafeList a NonEmpty

```

This wouldn't have been possible without GADT, because all of our constructors would have been required to return the same type of list; whereas with GADT we can now return different types of lists with different constructors. Anyway, let's put this all together, along with the actual definition of SafeHead:

Copy this listing into a file and load in ghci -fglasgow-exts. You should notice the following difference, calling safeHead on a non-empty and an empty-list respectively:

This complaint is a good thing: it means that we can now ensure during compile-time if we're calling safeHead on an appropriate list. However, this is a potential pitfall that you'll want to look out for.

Consider the following function. What do you think its type is?
Now try loading the example up in GHCi. You'll notice the following complaint:
By liberalizing the type of a Cons, we are able to use it to construct both safe and unsafe lists. The functions that operate on the lists must carry the safety constraint (we can create type declarations to make this easy for clients to our module).

\subsection*{50.4.2 A simple expression evaluator}

Insert the example used in Wobbly Types paper... I thought that was quite pedagogical This is already covered in the first part of the tutorial.

\subsection*{50.5 Discussion}

More examples, thoughts
From FOSDEM 2006, I vaguely recall that there is some relationship between GADT and the below... what?

\subsection*{50.5.1 Phantom types}

See ../Phantom types \(/{ }^{2}\).

\subsection*{50.5.2 Existential types}

If you like ../EXISTENTIALLY QUANTIFIED TYPES/ \({ }^{3}\), you'd probably want to notice that they are now subsumbed by GADTs. As the GHC manual says, the following two type declarations give you the same thing.
```

data TE a = forall b. MkTE b (b->a)
data TG a where { MkTG :: b -> (b->a) -> TG a }

```

Heterogeneous lists are accomplished with GADTs like this:
```

data TE2 = forall b. Show b => MkTE2 [b]
data TG2 where
MkTG2 :: Show b => [b] -> TG2

```

\subsection*{50.5.3 Witness types}

\subsection*{50.6 References}
```

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/../PHANTOMTYPES/
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/../EXISTENTIALLYQUANTIFIEDTYPES/

```

\section*{51 Type constructors \& Kinds}

\subsection*{51.1 Kinds for C++ users}
- * is any concrete type, including functions. These all have kind *:
```

type MyType = Int
type MyFuncType = Int -> Int
myFunc :: Int -> Int

```
```

typedef int MyType;
typedef int (*MyFuncType)(int);
int MyFunc(int a);

```
- * \(->\) * is a template that takes one type argument. It is like a function from types to types: you plug a type in and the result is a type. Confusion can arise from the two uses of MyData (although you can give them different names if you wish) - the first is a type constructor, the second is a data constructor. These are equivalent to a class template and a constructor respectively in \(\mathrm{C}++\). Context resolves the ambiguity - where Haskell expects a type (e.g. in a type signature) MyData is a type constructor, where a value, it is a data constructor.
```

data MyData t -- type constructor with kind * -> *
= MyData t -- data constructor with type a -> MyData a
*Main> :k MyData
MyData :: * -> *
*Main> :t MyData
MyData :: a -> MyData a
template <typename t> class MyData
{
t member;
};

```
- * \(->{ }^{*}{ }_{-} \boldsymbol{*}^{*}\) is a template that takes two type arguments
```

data MyData t1 t2 = MyData t1 t2

```
```

template <typename t1, typename t2> class MyData
{
t1 member1;
t2 member2;
MyData(t1 m1, t2 m2) : member1(m1), member2(m2) { }
};

```
- \(\left.\left(*_{->}\right)^{*}\right)->\) is a template that takes one template argument of kind (* -> *)
```

data MyData tmpl = MyData (tmpl Int)

```
```

template <template <typename t> tmpl> class MyData
{
tmpl<int> memberl;
MyData(tmpl<int> m) : member1(m) { }
};

```

\section*{52 Wider Theory}

\section*{53 Denotational semantics}

\subsection*{53.1 Introduction}

This chapter explains how to formalize the meaning of Haskell programs, the denotational semantics. It may seem to be nit-picking to formally specify that the program square \(x=x^{*} x\) means the same as the mathematical square function that maps each number to its square, but what about the meaning of a program like \(f x=f(x+1)\) that loops forever? In the following, we will exemplify the approach first taken by Scott and Strachey to this question and obtain a foundation to reason about the correctness of functional programs in general and recursive definitions in particular. Of course, we will concentrate on those topics needed to understand Haskell programs \({ }^{1}\).

Another aim of this chapter is to illustrate the notions strict and lazy that capture the idea that a function needs or needs not to evaluate its argument. This is a basic ingredient to predict the course of evaluation of Haskell programs and hence of primary interest to the programmer. Interestingly, these notions can be formulated concisely with denotational semantics alone, no reference to an execution model is necessary. They will be put to good use in Graph Reduction \({ }^{2}\), but it is this chapter that will familiarize the reader with the denotational definition and involved notions such as \&perp; ("Bottom"). The reader only interested in strictness may wish to poke around in section Bottom and Partial Functions \({ }^{3}\) and quickly head over to Strict and Non-Strict Semantics \({ }^{4}\).

\subsection*{53.1.1 What are Denotational Semantics and what are they for?}

What does a Haskell program mean? This question is answered by the denotational semantics of Haskell. In general, the denotational semantics of a programming language map each of its programs to a mathematical object (denotation), that represents the meaning of the program in question. As an example, the mathematical object for the Haskell programs \(10,9+1,2 * 5\) and sum \([1 . .4]\) can be represented by the integer 10 . We say that all those programs denote the integer 10 . The collection of such mathematical objects is called the semantic domain.

The mapping from program codes to a semantic domain is commonly written down with double square brackets ("Oxford brackets") around program code. For example,
\[
[[2 * 5]]=10
\]

\footnotetext{
1 In fact, there are no written down and complete denotational semantics of Haskell. This would be a tedious task void of additional insight and we happily embrace the folklore and common sense semantics.
2 Kapitel 60 auf Seite 345
3 hTtP://En.wIKIBOOKS.ORG/wIKI/\#BOTTOMANDPARTIALFUNCTIONS
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#STRICTANDNON-STRICTSEMANTICS
}

Denotations are compositional, i.e. the meaning of a program like \(1+9\) only depends on the meaning of its constituents:
\[
[[a+b]]=[[a]]+[[b]] .
\]

The same notation is used for types, i.e.
\[
[[\text { Integer }]]=\mathbb{Z}
\]

For simplicity however, we will silently identify expressions with their semantic objects in subsequent chapters and use this notation only when clarification is needed.

It is one of the key properties of purely functional languages like Haskell that a direct mathematical interpretation like " \(1+9\) denotes 10 " carries over to functions, too: in essence, the denotation of a program of type Integer \(\rightarrow\) Integer is a mathematical function \(\mathbb{Z} \rightarrow \mathbb{Z}\) between integers. While we will see that this expression needs refinement generally, to include non-termination, the situation for imperative languages is clearly worse: a procedure with that type denotes something that changes the state of a machine in possibly unintended ways. Imperative languages are tightly tied to operational semantics which describes their way of execution on a machine. It is possible to define a denotational semantics for imperative programs and to use it to reason about such programs, but the semantics often has operational nature and sometimes must be extended in comparison to the denotational semantics for functional languages. \({ }^{5}\) In contrast, the meaning of purely functional languages is by default completely independent from their way of execution. The Haskell98 standard even goes as far as to specify only Haskell's non-strict denotational semantics, leaving open how to implement them.

In the end, denotational semantics enables us to develop formal proofs that programs indeed do what we want them to do mathematically. Ironically, for proving program properties in day-to-day Haskell, one can use EQUATIONAL REASONING \({ }^{6}\), which transforms programs into equivalent ones without seeing much of the underlying mathematical objects we are concentrating on in this chapter. But the denotational semantics actually show up whenever we have to reason about non-terminating programs, for instance in Infinite Lists \({ }^{7}\).

Of course, because they only state what a program is, denotational semantics cannot answer questions about how long a program takes or how much memory it eats; this is governed by the evaluation strategy which dictates how the computer calculates the normal form of an expression. On the other hand, the implementation has to respect the semantics, and to a certain extent, it is the semantics that determine how Haskell programs must be evaluated on a machine. We will elaborate on this in Strict and Non-Strict Semantics \({ }^{8}\).

\footnotetext{
5 Monads are one of the most successful ways to give denotational semantics to imperative programs. See also Haskell/Advanced monads ^\{Kapitel 31 auf Seite 151\(\}\).
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/EQUATIONALREASONING
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#RECURSIVEDATATYPESANDINFINITELISTS
8 HTTP://En.WIKIBOOKS.ORG/WIKI/\#StRICTANDNON-STRICTSEMANTICS
}

\subsection*{53.1.2 What to choose as Semantic Domain?}

We are now looking for suitable mathematical objects that we can attribute to every Haskell program. In case of the example \(10,2 * 5\) and sum [1..4], it is clear that all expressions should denote the integer 10 . Generalizing, every value x of type Integer is likely to be an element of the set \(\mathbb{Z}\). The same can be done with values of type Bool. For functions like \(f:\) : Integer -> Integer, we can appeal to the mathematical definition of "function" as a set of (argument,value)-pairs, its graph.

But interpreting functions as their graph was too quick, because it does not work well with recursive definitions. Consider the definition
```

shaves :: Integer -> Integer -> Bool
'shaves' 1 = True
2 'shaves' 2 = False
0 'shaves' }\textrm{x}=\mathrm{ not (x 'shaves' }\textrm{x}\mathrm{)
_ `shaves' _ = False

```

We can think of 0,1 and 2 as being male persons with long beards and the question is who shaves whom. Person 1 shaves himself, but 2 gets shaved by the barber 0 because evaluating the third equation yields 0 'shaves ` \(2==\) True. In general, the third line says that the barber 0 shaves all persons that do not shave themselves.
What about the barber himself, is 0 'shaves ' 0 true or not? If it is, then the third equation says that it is not. If it is not, then the third equation says that it is. Puzzled, we see that we just cannot attribute True or False to 0 'shaves' 0 , the graph we use as interpretation for the function shaves must have an empty spot. We realize that our semantic objects must be able to incorporate partial functions, functions that are undefined for some arguments.

It is well known that this famous example gave rise to serious foundational problems in set theory. It's an example of an impredicative definition, a definition which uses itself, a logical circle. Unfortunately for recursive definitions, the circle is not the problem but the feature.

\subsection*{53.2 Bottom and Partial Functions}

\subsection*{53.2.1 \&perp; Bottom}

To define partial functions, we introduce a special value \(\perp\), named bottom and commonly written _ I _ in typewriter font. We say that \(\perp\) is the completely "undefined" value or function. Every basic data type like Integer or () contains one \(\perp\) besides their usual elements. So the possible values of type Integer are
\[
\perp, 0, \pm 1, \pm 2, \pm 3, \ldots
\]

Adding \(\perp\) to the set of values is also called lifting. This is often depicted by a subscript like in \(\mathbb{Z}_{\perp}\). While this is the correct notation for the mathematical set "lifted integers", we prefer to talk
about "values of type Integer". We do this because \(\mathbb{Z}_{\perp}\) suggests that there are "real" integers \(\mathbb{Z}\), but inside Haskell, the "integers" are Integer.

As another example, the type () with only one element actually has two inhabitants:
\[
\perp,()
\]

For now, we will stick to programming with Integers. Arbitrary algebraic data types will be treated in section Algebraic Data Types \({ }^{9}\) as strict and non-strict languages diverge on how these include \(\perp\).

In Haskell, the expression undefined denotes \(\perp\). With its help, one can indeed verify some semantic properties of actual Haskell programs. undefined has the polymorphic type forall a . a which of course can be specialized to undefined : : Integer, undefined : : (), undefined : : Integer -> Integer and so on. In the Haskell Prelude, it is defined as
```

undefined = error "Prelude.undefined"

```

As a side note, it follows from The CURRY-HOwARD ISOMORPHISM \({ }^{10}\) that any value of the polymorphic type forall a . a must denote \(\perp\).

\subsection*{53.2.2 Partial Functions and the Semantic Approximation Order}

Now, \(\perp\) (bottom type) gives us the possibility to denote partial functions:
\[
f(n)= \begin{cases}1 & \text { if } n \text { is } 0 \\ -2 & \text { if } n \text { is } 1 \\ \perp & \text { else }\end{cases}
\]

Here, \(f(n)\) yields well defined values for \(n=0\) and \(n=1\) but gives \(\perp\) for all other \(n\). Note that the type \(\perp\) is universal, as \(\perp\) has no value: the function \(\perp\) : : Integer \(->\) Integer is given by
\[
\perp(n)=\perp
\]
for all
\(n\)
where the \(\perp\) on the right hand side denotes a value of type Integer.
To formalize, partial functions say, of type Integer -> Integer are at least mathematical mappings from the lifted integers \(\mathbb{Z}_{\perp}=\{\perp, 0, \pm 1, \pm 2, \pm 3, \ldots\}\) to the lifted integers. But this is not enough, since it does not acknowledge the special role of \(\perp\). For example, the definition

\footnotetext{
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#ALGEBRAICDATATYPES
10 Kapitel 55 auf Seite 319
}
\[
g(n)= \begin{cases}1 & \text { if } n \text { is } \perp \\ \perp & \text { else }\end{cases}
\]
looks counterintuitive, and, in fact, is wrong. Why does \(g(\perp)\) yield a defined value whereas \(g(1)\) is undefined? The intuition is that every partial function \(g\) should yield more defined answers for more defined arguments. To formalize, we can say that every concrete number is more defined than \(\perp\) :
\[
\perp \sqsubset 1, \perp \sqsubset 2, \ldots
\]

Here, \(a \sqsubset b\) denotes that \(b\) is more defined than \(a\). Likewise, \(a \sqsubseteq b\) will denote that either \(b\) is more defined than \(a\) or both are equal (and so have the same definedness). \(\sqsubset\) is also called the semantic approximation order because we can approximate defined values by less defined ones thus interpreting "more defined" as "approximating better". Of course, \(\perp\) is designed to be the least element of a data type, we always have that \(\perp \sqsubset x\) for all \(x\), except the case when \(x\) happens to denote \(\perp\) itself:
\[
\forall x \neq \perp \quad \perp \sqsubset x
\]

As no number is more defined than another, the mathematical relation \(\sqsubset\) is false for any pair of numbers:
\(1 \sqsubset 1\)
does not hold.
neither
\(1 \sqsubset 2\)
nor
\(2 \sqsubset 1\)
hold.

This is contrasted to ordinary order predicate \(\leq\), which can compare any two numbers. A quick way to remember this is the sentence: " 1 and 2 are different in terms of information content but are equal in terms of information quantity". That's another reason why we use a different symbol: \(\sqsubseteq\).
neither
\(1 \sqsubseteq 2\)
nor
\(2 \sqsubseteq 1\)
hold,
but
\(1 \sqsubseteq 1\)
holds.

One says that \(\subseteq\) specifies a partial order and that the values of type Integer form a partially ordered set (poset for short). A partial order is characterized by the following three laws
- Reflexivity, everything is just as defined as itself: \(x \sqsubseteq x\) for all \(x\)
- Transitivity: if \(x \sqsubseteq y\) and \(y \sqsubseteq z\), then \(x \sqsubseteq z\)
- Antisymmetry: if both \(x \sqsubseteq y\) and \(y \sqsubseteq x\) hold, then \(x\) and \(y\) must be equal: \(x=y\).

We can depict the order \(\subseteq\) on the values of type Integer by the following graph


Abb. 25
where every link between two nodes specifies that the one above is more defined than the one below. Because there is only one level (excluding \(\perp\) ), one says that Integer is a flat domain. The picture also explains the name of \(\perp\) : it's called bottom because it always sits at the bottom.

\subsection*{53.2.3 Monotonicity}

Our intuition about partial functions now can be formulated as following: every partial function \(f\) is a monotone mapping between partially ordered sets. More defined arguments will yield more defined values:
\[
x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)
\]

In particular, a function \(h\) with \(h(\perp)=1\) is constant: \(h(n)=1\) for all \(n\). Note that here it is crucial that \(1 \sqsubseteq 2\) etc. don't hold.

Translated to Haskell, monotonicity means that we cannot use \(\perp\) as a condition, i.e. we cannot pattern match on \(\perp\), or its equivalent undefined. Otherwise, the example \(g\) from above could be expressed as a Haskell program. As we shall see later, \(\perp\) also denotes non-terminating programs, so that the inability to observe \(\perp\) inside Haskell is related to the halting problem.

Of course, the notion of more defined than can be extended to partial functions by saying that a function is more defined than another if it is so at every possible argument:
\[
f \sqsubseteq g \text { if } \forall x . f(x) \sqsubseteq g(x)
\]

Thus, the partial functions also form a poset, with the undefined function \(\perp(x)=\perp\) being the least element.

\subsection*{53.3 Recursive Definitions as Fixed Point Iterations}

\subsection*{53.3.1 Approximations of the Factorial Function}

Now that we have a means to describe partial functions, we can give an interpretation to recursive definitions. Lets take the prominent example of the factorial function \(f(n)=n\) ! whose recursive definition is
\[
f(n)=\text { if } n==0 \text { then } 1 \text { else } n \cdot f(n-1)
\]

Although we saw that interpreting this directly as a set description may lead to problems, we intuitively know that in order to calculate \(f(n)\) for every given \(n\) we have to iterate the right hand side. This iteration can be formalized as follows: we calculate a sequence of functions \(f_{k}\) with the property that each one consists of the right hand side applied to the previous one, that is
\[
f_{k+1}(n)=\text { if } n==0 \text { then } 1 \text { else } n \cdot f_{k}(n-1)
\]

We start with the undefined function \(f_{0}(n)=\perp\), and the resulting sequence of partial functions reads:
\[
f_{1}(n)=\left\{\begin{array}{ll}
1 & \text { if } n \text { is } 0 \\
\perp & \text { else }
\end{array}, f_{2}(n)=\left\{\begin{array}{ll}
1 & \text { if } n \text { is } 0 \\
1 & \text { if } n \text { is } 1 \\
\perp & \text { else }
\end{array}, f_{3}(n)= \begin{cases}1 & \text { if } n \text { is } 0 \\
1 & \text { if } n \text { is } 1 \\
2 & \text { if } n \text { is } 2 \\
\perp & \text { else }\end{cases}\right.\right.
\]
and so on. Clearly,
\[
\perp=f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots
\]
and we expect that the sequence converges to the factorial function.
The iteration follows the well known scheme of a fixed point iteration
\[
x_{0}, g\left(x_{0}\right), g\left(g\left(x_{0}\right)\right), g\left(g\left(g\left(x_{0}\right)\right)\right), \ldots
\]

In our case, \(x_{0}\) is a function and \(g\) is a functional, a mapping between functions. We have
\[
\begin{gathered}
x_{0}=\perp \\
\text { and } \\
g(x)=n \mapsto \text { if } n==0 \text { then } 1 \text { else } n * x(n-1)
\end{gathered}
\]

If we start with \(x_{0}=\perp\), the iteration will yield increasingly defined approximations to the factorial function
\[
\perp \sqsubseteq g(\perp) \sqsubseteq g(g(\perp)) \sqsubseteq g(g(g(\perp))) \sqsubseteq \ldots
\]
(Proof that the sequence increases: The first inequality \(\perp \subseteq g(\perp)\) follows from the fact that \(\perp\) is less defined than anything else. The second inequality follows from the first one by applying \(g\) to both sides and noting that \(g\) is monotone. The third follows from the second in the same fashion and so on.)

It is very illustrative to formulate this iteration scheme in Haskell. As functionals are just ordinary higher order functions, we have
```

g :: (Integer -> Integer) -> (Integer -> Integer)
g x = \n -> if n == 0 then 1 else n * x (n-1)
x0 :: Integer -> Integer
x0 = undefined
(f0:f1:f2:f3:f4:fs) = iterate g x0

```

We can now evaluate the functions \(f 0, f 1, \ldots\) at sample arguments and see whether they yield undefined or not:
```

> f3 0
1
> f3 1
> f3 2
2
> f3 5
*** Exception: Prelude.undefined
> map f3 [0..]
[1,1,2,*** Exception: Prelude.undefined
> map f4 [0..]
[1,1,2,6,*** Exception: Prelude.undefined
> map f1 [0..]
[1,*** Exception: Prelude.undefined

```

Of course, we cannot use this to check whether f4 is really undefined for all arguments.

\subsection*{53.3.2 Convergence}

To the mathematician, the question whether this sequence of approximations converges is still to be answered. For that, we say that a poset is a directed complete partial order (dcpo) iff every monotone sequence \(x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots\) (also called chain) has a least upper bound (supremum)
\[
\sup _{\sqsubseteq}\left\{x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots\right\}=x
\]

If that's the case for the semantic approximation order, we clearly can be sure that monotone sequence of functions approximating the factorial function indeed has a limit. For our denotational semantics, we will only meet dcpos which have a least element \(\perp\) which are called complete partial orders (cpo).

The Integers clearly form a (d)cpo, because the monotone sequences consisting of more than one element must be of the form
\[
\perp \sqsubseteq \cdots \sqsubseteq \perp \sqsubseteq n \sqsubseteq n \sqsubseteq \cdots \sqsubseteq n
\]
where \(n\) is an ordinary number. Thus, \(n\) is already the least upper bound.
For functions Integer \(\rightarrow\) Integer, this argument fails because monotone sequences may be of infinite length. But because Integer is a (d)cpo, we know that for every point \(n\), there is a least upper bound
\[
\sup _{\sqsubseteq}\left\{\perp=f_{0}(n) \sqsubseteq f_{1}(n) \sqsubseteq f_{2}(n) \sqsubseteq \ldots\right\}=: f(n)
\]

As the semantic approximation order is defined point-wise, the function \(f\) is the supremum we looked for.

These have been the last touches for our aim to transform the impredicative definition of the factorial function into a well defined construction. Of course, it remains to be shown that \(f(n)\) actually yields a defined value for every \(n\), but this is not hard and far more reasonable than a completely ill-formed definition.

\subsection*{53.3.3 Bottom includes Non-Termination}

It is instructive to try our newly gained insight into recursive definitions on an example that does not terminate:
\[
f(n)=f(n+1)
\]

The approximating sequence reads
\[
f_{0}=\perp, f_{1}=\perp, \ldots
\]
and consists only of \(\perp\). Clearly, the resulting limit is \(\perp\) again. From an operational point of view, a machine executing this program will loop indefinitely. We thus see that \(\perp\) may also denote a non-terminating function or value. Hence, given the halting problem, pattern matching on \(\perp\) in Haskell is impossible.

\subsection*{53.3.4 Interpretation as Least Fixed Point}

Earlier, we called the approximating sequence an example of the well known "fixed point iteration" scheme. And of course, the definition of the factorial function \(f\) can also be thought as the specification of a fixed point of the functional \(g\) :
\[
f=g(f)=n \mapsto \text { if } n==0 \text { then } 1 \text { else } n \cdot f(n-1)
\]

However, there might be multiple fixed points. For instance, there are several \(f\) which fulfill the specification
\[
f=n \mapsto \text { if } n==0 \text { then } 1 \text { else } f(n+1)
\]

Of course, when executing such a program, the machine will loop forever on \(f(1)\) or \(f(2)\) and thus not produce any valuable information about the value of \(f(1)\). This corresponds to choosing the least defined fixed point as semantic object \(f\) and this is indeed a canonical choice. Thus, we say that
\[
f=g(f)
\]
defines the least fixed point \(f\) of \(g\). Clearly, least is with respect to our semantic approximation order \(\sqsubseteq\).

The existence of a least fixed point is guaranteed by our iterative construction if we add the condition that \(g\) must be continuous (sometimes also called "chain continuous"). That simply means that \(g\) respects suprema of monotone sequences:
\[
\sup _{\sqsubseteq}\left\{g\left(x_{0}\right) \sqsubseteq g\left(x_{1}\right) \sqsubseteq \ldots\right\}=g\left(\sup _{\sqsubseteq}\left\{x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots\right\}\right)
\]

We can then argue that with
\[
f=\sup _{\sqsubseteq}\left\{x_{0} \sqsubseteq g\left(x_{0}\right) \sqsubseteq g\left(g\left(x_{0}\right)\right) \sqsubseteq \ldots\right\}
\]
we have
\[
\begin{aligned}
g(f) & =g\left(\sup _{\sqsubseteq}\left\{x_{0} \sqsubseteq g\left(x_{0}\right) \sqsubseteq g\left(g\left(x_{0}\right)\right) \sqsubseteq \ldots\right\}\right) \\
& =\sup _{\sqsubseteq}\left\{g\left(x_{0}\right) \sqsubseteq g\left(g\left(x_{0}\right)\right) \sqsubseteq \ldots\right\} \\
& =\sup _{\sqsubseteq}\left\{x_{0} \sqsubseteq g\left(x_{0}\right) \sqsubseteq g\left(g\left(x_{0}\right)\right) \sqsubseteq \ldots\right\} \\
& =f
\end{aligned}
\]
and the iteration limit is indeed a fixed point of \(g\). You may also want to convince yourself that the fixed point iteration yields the least fixed point possible.

By the way, how do we know that each Haskell function we write down indeed is continuous? Just as with monotonicity, this has to be enforced by the programming language. Admittedly, these properties can somewhat be enforced or broken at will, so the question feels a bit void. But intuitively, monotonicity is guaranteed by not allowing pattern matches on \(\perp\). For continuity, we note that for an arbitrary type a, every simple function a \(->\) Integer is automatically continuous because the monotone sequences of Integer's are of finite length. Any infinite chain of values of type a gets mapped to a finite chain of Integers and respect for suprema becomes a consequence of monotonicity. Thus, all functions of the special case Integer -> Integer must be continuous. For functionals like \(g:\) (Integer \(\rightarrow\) Integer) \(\rightarrow\) (Integer -> Integer), the continuity then materializes due to currying, as the type is isomorphic to :: ((Integer -> Integer), Integer) -> Integer and we can take \(a=(\) (Integer -> Integer), Integer).

In Haskell, the fixed interpretation of the factorial function can be coded as
```

factorial = fix g

```
with the help of the fixed point combinator
```

fix :: (a -> a) -> a.

```

We can define it by
```

fix f = let x = f x in x

```
which leaves us somewhat puzzled because when expanding factorial, the result is not anything different from how we would have defined the factorial function in Haskell in the first place. But of course, the construction this whole section was about is not at all present when running a real Haskell program. It's just a means to put the mathematical interpretation a Haskell programs to a firm ground. Yet it is very nice that we can explore these semantics in Haskell itself with the help of undefined.

\subsection*{53.4 Strict and Non-Strict Semantics}

After having elaborated on the denotational semantics of Haskell programs, we will drop the mathematical function notation \(f(n)\) for semantic objects in favor of their now equivalent Haskell notation f n .

\subsection*{53.4.1 Strict Functions}

A function \(f\) with one argument is called strict, if and only if
```

f ⊥ = ⊥.

```

Here are some examples of strict functions
```

id }x=
succ }x=x+
power2 0 = 1
power2 n = 2 * power2 (n-1)

```
and there is nothing unexpected about them. But why are they strict? It is instructive to prove that these functions are indeed strict. For id, this follows from the definition. For succ, we have to ponder whether \(\&\) perp; +1 is \(\&\) perp; or not. If it was not, then we should for example have \&perp; \(+1=2\) or more general \&perp; \(+1=k\) for some concrete number \(k\). We remember that every function is monotone, so we should have for example
\[
2=\& \text { perp; }+1 \sqsubseteq 4+1=5
\]
as \&perp; ᄃ4. But neither of \(2 \subseteq 5,2=5\) nor 2 コ 5 is valid so that \(k\) cannot be 2 . In general, we obtain the contradiction
\[
k=\text { \&perp; }+1 \sqsubseteq k+1=k+1 .
\]
and thus the only possible choice is
```

succ ⊥ = ⊥ + 1 = ⊥

```
and succ is strict.

\subsection*{53.4.2 Non-Strict and Strict Languages}

Searching for non-strict functions, it happens that there is only one prototype of a non-strict function of type Integer -> Integer:
```

one x = 1

```

Its variants are const \(\mathrm{x}=k\) for every concrete number \(k\). Why are these the only ones possible? Remember that one \(n\) can be no less defined than one \&perp; As Integer is a flat domain, both must be equal.

Why is one non-strict? To see that it is, we use a Haskell interpreter and try
```

> one (undefined :: Integer)
1

```
which is not \&perp;. This is reasonable as one completely ignores its argument. When interpreting \&perp; in an operational sense as "non-termination", one may say that the non-strictness of one means that it does not force its argument to be evaluated and therefore avoids the infinite loop when evaluating the argument \&perp;. But one might as well say that every function must evaluate its arguments before computing the result which means that one \&perp; should be \&perp;, too. That is, if the program computing the argument does not halt, one should not halt as well. \({ }^{11}\) It shows up that one can choose freely this or the other design for a functional programming language. One says that the language is strict or non-strict depending on whether functions are strict or non-strict by default. The choice for Haskell is non-strict. In contrast, the functional languages ML and Lisp choose strict semantics.

\subsection*{53.4.3 Functions with several Arguments}

The notion of strictness extends to functions with several variables. For example, a function \(f\) of two arguments is strict in the second argument if and only if
\[
f \times \text { xperp; }=\& p e r p ;
\]
for every x . But for multiple arguments, mixed forms where the strictness depends on the given value of the other arguments, are much more common. An example is the conditional

\footnotetext{
11 Strictness as premature evaluation of function arguments is elaborated in the chapter Graph Reduction ^\{HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/GRAPhREDUCTION\}.
}
```

cond b x y = if b then x else y

```

We see that it is strict in y depending on whether the test \(b\) is True or False:
```

cond True x ⊥ = x
cond False x ⊥ = ⊥

```
and likewise for x . Apparently, cond is certainly \&perp; if both x and y are, but not necessarily when at least one of them is defined. This behavior is called joint strictness.

Clearly, cond behaves like the if-then-else statement where it is crucial not to evaluate both the then and the else branches:
```

if null xs then 'a' else head xs
if n == 0 then 1 else 5 / n

```

Here, the else part is \&perp; when the condition is met. Thus, in a non-strict language, we have the possibility to wrap primitive control statements such as if-then-else into functions like cond. This way, we can define our own control operators. In a strict language, this is not possible as both branches will be evaluated when calling cond which makes it rather useless. This is a glimpse of the general observation that non-strictness offers more flexibility for code reuse than strictness. See the chapter LAZINESS \({ }^{12,13}\) for more on this subject.

\subsection*{53.4.4 Not all Functions in Strict Languages are Strict}

\section*{This section is wrong.}

It is important to note that even in a strict language, not all functions are strict. The choice whether to have strictness and non-strictness by default only applies to certain argument data types. Argument types that solely contain data like Integer, (Bool, Integer) or Either String [ Integer] impose strictness, but functions are not necessarily strict in function types like Integer -> Bool. Thus, in a hypothetical strict language with Haskell-like syntax, we would have the interpreter session
```

!> let const1 _ = 1
!> const1 (undefined :: Integer)
!!! Exception: Prelude.undefined
!> const1 (undefined :: Integer -> Bool)
1

```

Why are strict languages not strict in arguments of function type? If they were, fixed point iteration would crumble to dust! Remember the fixed point iteration

13 The term Laziness comes from the fact that the prevalent implementation technique for non-strict languages is called lazy evaluation
\[
\perp \sqsubseteq g(\perp) \sqsubseteq g(g(\perp)) \ldots
\]
for a functional \(g:\) : (Integer \(->\) Integer) -> (Integer \(->\) Integer). If \(g\) would be strict, the sequence would read
\[
\perp \subseteq \perp \subseteq \perp \subseteq \ldots
\]
which obviously converges to a useless \(\perp\). It is crucial that \(g\) makes the argument function more defined. This means that \(g\) must not be strict in its argument to yield a useful fixed point.

As a side note, the fact that things must be non-strict in function types can be used to recover some non-strict behavior in strict languages. One simply replaces a data type like Integer with () -> Integer where () denotes the well known singleton type. It is clear that every such function has the only possible argument () (besides \&perp;) and therefore corresponds to a single integer. But operations may be non-strict in arguments of type () -> Integer.

\subsection*{53.5 Algebraic Data Types}

After treating the motivation case of partial functions between Integers, we now want to extend the scope of denotational semantics to arbitrary algebraic data types in Haskell.

A word about nomenclature: the collection of semantic objects for a particular type is usually called a domain. This term is more a generic name than a particular definition and we decide that our domains are cpos (complete partial orders), that is sets of values together with a relation more defined that obeys some conditions to allow fixed point iteration. Usually, one adds additional conditions to the cpos that ensure that the values of our domains can be represented in some finite way on a computer and thereby avoiding to ponder the twisted ways of uncountable infinite sets. But as we are not going to prove general domain theoretic theorems, the conditions will just happen to hold by construction.

\subsection*{53.5.1 Constructors}

Let's take the example types
```

data Bool = True | False
data Maybe a = Just a | Nothing

```

Here, True, False and Nothing are nullary constructors whereas Just is an unary constructor. The inhabitants of Bool form the following domain:

\section*{True False \\ }

Abb. 26

Remember that \& perp; is added as least element to the set of values True and False, we say that the type is lifted \({ }^{14}\). A domain whose poset diagram consists of only one level is called a flat domain. We already know that Integer is a flat domain as well, it's just that the level above \&perp; has an infinite number of elements.

What are the possible inhabitants of Maybe Bool? They are
```

⊥, Nothing, Just ⊥, Just True, Just False

```

So the general rule is to insert all possible values into the unary (binary, ternary, ...) constructors as usual but without forgetting \&perp;. Concerning the partial order, we remember the condition that the constructors should be monotone just as any other functions. Hence, the partial order looks as follows

\footnotetext{
14 The term lifted is somewhat overloaded, see also Unboxed Types ^\{HTTP://EN.WIKIBOOKS.ORG/WIKI/ \#UnboxedTypes \}.
}

\section*{Just True Just False}


\section*{Nothing Just \(\perp\)}


Abb. 27

But there is something to ponder: why isn't Just \&perp; = \&perp; ? I mean "Just undefined" is as undefined as "undefined"! The answer is that this depends on whether the language is strict or non-strict. In a strict language, all constructors are strict by default, i.e. Just \&perp; = \&perp; and the diagram would reduce to

\section*{Nothing Just True Just False \\  \\ }

Abb. 28

As a consequence, all domains of a strict language are flat.
But in a non-strict language like Haskell, constructors are non-strict by default and Just \&perp; is a new element different from \&perp;, because we can write a function that reacts differently to them:
```

f (Just _) = 4
f Nothing = 7

```

As \(f\) ignores the contents of the Just constructor, \(f\) (Just \&perp; ) is 4 but \(f\) \&perp; is \&perp; (intuitively, if f is passed \&perp;, it will not be possible to tell whether to take the Just branch or the Nothing branch, and so \&perp; will be returned).

This gives rise to non-flat domains as depicted in the former graph. What should these be of use for? In the context of Graph Reduction \({ }^{15}\), we may also think of \&perp; as an unevaluated expression. Thus, a value \(\mathrm{x}=\) Just \&perp; may tell us that a computation (say a lookup) succeeded and is not Nothing, but that the true value has not been evaluated yet. If we are only interested in whether x succeeded or not, this actually saves us from the unnecessary work to calculate whether \(x\) is Just True or Just False as would be the case in a flat domain. The full impact of non-flat domains will be explored in the chapter LAZINESS \({ }^{16}\), but one prominent example are infinite lists treated in section Recursive Data Types and Infinite Lists \({ }^{17}\).

\subsection*{53.5.2 Pattern Matching}

In the section Strict FUnCtions \({ }^{18}\), we proved that some functions are strict by inspecting their results on different inputs and insisting on monotonicity. However, in the light of algebraic data types, there can only be one source of strictness in real life Haskell: pattern matching, i.e. case expressions. The general rule is that pattern matching on a constructor of a data-type will force the function to be strict, i.e. matching \&perp; against a constructor always gives \&perp; For illustration, consider
```

const1 _ = 1

```
```

const1' True = 1
const1' False = 1

```

The first function const 1 is non-strict whereas the const \(1^{\prime}\) is strict because it decides whether the argument is True or False although its result doesn't depend on that. Pattern matching in function arguments is equivalent to case-expressions
```

const1' x = case x of
True -> 1
False -> 1

```
which similarly impose strictness on x : if the argument to the case expression denotes \&perp; the while case will denote \&perp;, too. However, the argument for case expressions may be more involved as in

\footnotetext{
15 htip://En.WIKIBOOKS.ORG/WIKI/HASKELL/GRAPhREDUCTION
Kapitel 61 auf Seite 355
HTTP://EN.WIKIBOOKS.ORG/WIKI/\#RECURSIVEDATATYPESANDINFINITELISTS
HTTP://EN.WIKIBOOKS.ORG/WIKI/\#STRICTFUNCTIONS
}
```

foo k table = case lookup ("Foo." ++ k) table of
Nothing -> ...
Just x -> ...

```
and it can be difficult to track what this means for the strictness of foo.
An example for multiple pattern matches in the equational style is the logical or:
```

or True _ = True
or _True = True
or _ _ = False

```

Note that equations are matched from top to bottom. The first equation for or matches the first argument against True, so or is strict in its first argument. The same equation also tells us that or True x is non-strict in x . If the first argument is False, then the second will be matched against True and or False x is strict in x . Note that while wildcards are a general sign of nonstrictness, this depends on their position with respect to the pattern matches against constructors. \(\{\) Exercises \(\mid 1=\)
1. Give an equivalent discussion for the logical and
2. Can the logical "excluded or" (xor) be non-strict in one of its arguments if we know the other?\}\}

There is another form of pattern matching, namely irrefutable patterns marked with a tilde ~. Their use is demonstrated by
```

f ~(Just x) = 1
f Nothing = 2

```

An irrefutable pattern always succeeds (hence the name) resulting in \(f \& p e r p ;=1\). But when changing the definition of \(f\) to
```

f ~(Just x) = x + 1
f Nothing = 2 -- this line may as well be left away

```
we have
```

f ⊥ = ⊥ + 1 = ⊥
f (Just 1) = 1 + 1 = 2

```

If the argument matches the pattern, \(x\) will be bound to the corresponding value. Otherwise, any variable like x will be bound to \&perp;

By default, let and where bindings are non-strict, too:
```

foo key map = let Just x = lookup key map in ...

```
is equivalent to
foo key map = case (lookup key map) of ~ (Just x) \(->\ldots\)

\subsection*{53.5.3 Recursive Data Types and Infinite Lists}

The case of recursive data structures is not very different from the base case. Consider a list of unit values
```

data List = [] | () : List

```

Though this seems like a simple type, there is a surprisingly complicated number of ways you can fit \(\perp\) in here and there, and therefore the corresponding graph is complicated. The bottom of this graph is shown below. An ellipsis indicates that the graph continues along this direction. A red ellipse behind an element indicates that this is the end of a chain; the element is in normal form.


Abb. 29
and so on. But now, there are also chains of infinite length like
\[
\text { \&perp; } \sqsubseteq(): \& p e r p ; ~ ᄃ():(): \& p e r p ; \sqsubseteq \ldots
\]

This causes us some trouble as we noted in section CONVERGENCE \({ }^{19}\) that every monotone sequence must have a least upper bound. This is only possible if we allow for infinite lists. Infinite lists (sometimes also called streams) turn out to be very useful and their manifold use cases are treated in full detail in chapter LAZINESS \({ }^{20}\). Here, we will show what their denotational semantics should be and how to reason about them. Note that while the following discussion is restricted to lists only, it easily generalizes to arbitrary recursive data structures like trees.

\footnotetext{
19 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#CONVERGENCE
20 Kapitel 61 auf Seite 355
}

In the following, we will switch back to the standard list type
```

data [a] = [] | a : [a]

```
to close the syntactic gap to practical programming with infinite lists in Haskell. \{\{Exercises \(11=\)
1. Draw the non-flat domain corresponding [Bool].
2. How is the graphic to be changed for [Integer]?\}\}

Calculating with infinite lists is best shown by example. For that, we need an infinite list
```

ones :: [Integer]
ones = 1 : ones

```

When applying the fixed point iteration to this recursive definition, we see that ones ought to be the supremum of
```

⊥ ᄃ 1:⊥ ᄃ 1:1:⊥ ᄃ 1:1:1:⊥ ᄃ...,

```
that is an infinite list of 1 . Let's try to understand what take 2 ones should be. With the definition of take
```

take 0 _ = []
take n (x:xs) = x : take (n-1) xs
take n [] = []

```
we can apply take to elements of the approximating sequence of ones:
```

take 2 ⊥ ==> ⊥
take 2 (1:⊥) ==> 1 : take 1 ⊥ ==> 1 : ⊥
take 2 (1:1:⊥) ==> 1 : take 1 (1:⊥) ==> 1: 1: take 0
⊥
==> 1 : 1 : []

```

We see that take 2 (1:1:1:\&perp; ) and so on must be the same as take 2 (1:1:\&perp; ) = \(1: 1\) : [] because \(1: 1:[]\) is fully defined. Taking the supremum on both the sequence of input lists and the resulting sequence of output lists, we can conclude
```

take 2 ones = 1:1:[]

```

Thus, taking the first two elements of ones behaves exactly as expected.
Generalizing from the example, we see that reasoning about infinite lists involves considering the approximating sequence and passing to the supremum, the truly infinite list. Still, we did not give it a firm ground. The solution is to identify the infinite list with the whole chain itself and to formally add it as a new element to our domain: the infinite list is the sequence of its approximations. Of course, any infinite list like ones can compactly depicted as
```

ones = 1 : 1 : 1 : 1 : ...

```
what simply means that
```

ones = (⊥ ᄃ 1:⊥ \sqsubseteq 1:1:⊥ \sqsubseteq ...)

```

\section*{\{ \(\{\) Exercises 1 =}
1. Of course, there are more interesting infinite lists than ones. Can you write recursive definition in Haskell for
a) the natural numbers nats \(=1: 2: 3: 4: \ldots\)
b) a cycle like cycle123 = 1:2:3: 1:2:3: ...
2. Look at the Prelude functions repeat and iterate and try to solve the previous exercise with their help.
3. Use the example from the text to find the value the expression drop 3 nats denotes.
4. Assume that the work in a strict setting, i.e. that the domain of [Integer] is flat. What does the domain look like? What about infinite lists? What value does ones denote?\}\}

What about the puzzle of how a computer can calculate with infinite lists? It takes an infinite amount of time, after all? Well, this is true. But the trick is that the computer may well finish in a finite amount of time if it only considers a finite part of the infinite list. So, infinite lists should be thought of as potentially infinite lists. In general, intermediate results take the form of infinite lists whereas the final value is finite. It is one of the benefits of denotational semantics that one treat the intermediate infinite data structures as truly infinite when reasoning about program correctness.

As a last note, the construction of a recursive domain can be done by a fixed point iteration similar to recursive definition for functions. Yet, the problem of infinite chains has to be tackled explicitly. See the literature in EXTERNAL LINKS \({ }^{21}\) for a formal construction.

\subsection*{53.5.4 Haskell specialities: Strictness Annotations and Newtypes}

Haskell offers a way to change the default non-strict behavior of data type constructors by strictness annotations. In a data declaration like
```

data Maybe' a = Just' !a | Nothing'

```
an exclamation point! before an argument of the constructor specifies that he should be strict in this argument. Hence we have Just' \&perp; = \&perp; in our example. Further information may be found in chapter Strictness \({ }^{22}\).

In some cases, one wants to rename a data type, like in

\footnotetext{
21 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#EXTERNALLINKS
22 Kapitel 62 auf Seite 367
}
```

data Couldbe a = Couldbe (Maybe a)

```

However, Couldbe a contains both the elements \&perp; and Couldbe \&perp; With the help of a newtype definition
```

newtype Couldbe a = Couldbe (Maybe a)

```
we can arrange that Couldbe a is semantically equal to Maybe a, but different during type checking. In particular, the constructor Couldbe is strict. Yet, this definition is subtly different from
```

data Couldbe' a = Couldbe' !(Maybe a)

```

To explain how, consider the functions
```

f (Couldbe m) = 42
f' (Couldbe' m) = 42

```

Here, \(\mathrm{f}^{\prime}\) \&perp; will cause the pattern match on the constructor Couldbe' fail with the effect that \(\mathrm{f}^{\prime}\) \&perp; = \&perp; But for the newtype, the match on Couldbe will never fail, we get \(f\) \&perp; \(=42\). In a sense, the difference can be stated as:
- for the strict case, Couldbe' \&perp; is a synonym for \&perp;
- for the newtype, \&perp; is a synonym for Couldbe \&perp;
with the agreement that a pattern match on \&perp; fails and that a match on Constructor \& perp; does not.

Newtypes may also be used to define recursive types. An example is the alternate definition of the list type [a]
```

newtype List a = In (Maybe (a, List a))

```

Again, the point is that the constructor In does not introduce an additional lifting with \& perp;.

\subsection*{53.6 Other Selected Topics}

\subsection*{53.6.1 Abstract Interpretation and Strictness Analysis}

As lazy evaluation means a constant computational overhead, a Haskell compiler may want to discover where inherent non-strictness is not needed at all which allows it to drop the overhead at these particular places. To that extent, the compiler performs strictness analysis just like we proved in
some functions to be strict section Strict Functions \({ }^{23}\). Of course, details of strictness depending on the exact values of arguments like in our example cond are out of scope (this is in general undecidable). But the compiler may try to find approximate strictness information and this works in many common cases like power2.

Now, abstract interpretation is a formidable idea to reason about strictness: ..
For more about strictness analysis, see the RESEARCH PAPERS ABOUT STRICTNESS ANALYSIS ON THE HASKELL WIKI \({ }^{24}\).

\subsection*{53.6.2 Interpretation as Powersets}

So far, we have introduced \&perp; and the semantic approximation order \(\sqsubseteq\) abstractly by specifying their properties. However, both as well as any inhabitants of a data type like Just \&perp; can be interpreted as ordinary sets. This is called the powerset construction. NOTE: i'm not sure whether this is really true. Someone how knows, please correct this.

The idea is to think of \&perp; as the set of all possible values and that a computation retrieves more information this by choosing a subset. In a sense, the denotation of a value starts its life as the set of all values which will be reduced by computations until there remains a set with a single element only.

As an example, consider Bool where the domain looks like
```

{True} {False}
\
\ /
⊥ = {True, False}

```

The values True and False are encoded as the singleton sets \{True\} and \{False\} and \&perp; is the set of all possible values.

Another example is Maybe Bool:
```

{Just True} {Just False}
\/
{Nothing} {Just True, Just False}
\ /
⊥ = {Nothing, Just True, Just False}

```

We see that the semantic approximation order is equivalent to set inclusion, but with arguments switched:
\[
x \sqsubseteq y \Longleftrightarrow x \supseteq y
\]

\footnotetext{
23 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#STRICTFUNCTIONS
24 HTTP://HASKELL.ORG/HASKELLWIKI/RESEARCH_PAPERS/COMPILATION\#STRICTNESS
}

This approach can be used to give a semantics to exceptions in Haskell \({ }^{25}\).

\subsection*{53.6.3 Naïve Sets are unsuited for Recursive Data Types}

In section NaïVe Sets are unsuited for Recursive Definitions \({ }^{26}\), we argued that taking simple sets as denotation for types doesn't work well with partial functions. In the light of recursive data types, things become even worse as John C. Reynolds showed in his paper Polymorphism is not set-theoretic \({ }^{27}\).

Reynolds actually considers the recursive type
```

newtype U = In ((U -> Bool) -> Bool)

```

Interpreting Bool as the set \(\{\) True, False \} and the function type \(A->B\) as the set of functions from \(A\) to \(B\), the type \(U\) cannot denote a set. This is because ( \(A \rightarrow B\) Bool) is the set of subsets (powerset) of A which, due to a diagonal argument analogous to Cantor's argument that there are "more" real numbers than natural ones, always has a bigger cardinality than A. Thus, ( U -> Bool) -> Bool has an even bigger cardinality than \(U\) and there is no way for it to be isomorphic to \(U\). Hence, the set \(U\) must not exist, a contradiction.

In our world of partial functions, this argument fails. Here, an element of \(U\) is given by a sequence of approximations taken from the sequence of domains
```

⊥, (⊥ -> Bool) -> Bool, (((⊥ -> Bool) -> Bool) -> Bool) ->
Bool and so on

```
where \&perp; denotes the domain with the single inhabitant \&perp;. While the author of this text admittedly has no clue on what such a thing should mean, the constructor gives a perfectly well defined object for \(U\). We see that the type ( \(U\)-> Bool) -> Bool merely consists of shifted approximating sequences which means that it is isomorphic to \(U\).

As a last note, Reynolds actually constructs an equivalent of \(U\) in the second order polymorphic lambda calcus. There, it happens that all terms have a normal form, i.e. there are only total functions when we do not include a primitive recursion operator fix \(:\) : ( \(\mathrm{a}->\mathrm{a})\)-> a. Thus, there is no true need for partial functions and \&perp;, yet a naïve set theoretic semantics fails. We can only speculate that this has to do with the fact that not every mathematical function is computable. In particular, the set of computable functions A \(\rightarrow\) Bool should not have a bigger cardinality than A.

\subsection*{53.7 Footnotes}
<references/>

\footnotetext{
25 S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics for imprecise exceptions. \(\{\) http://RESEARCh.microsoft.com/~\{\}Simonpu/Papers/imprecise-\{\}exn.htm In Programming Languages Design and Implementation. ACM press, May 1999.
26 htte://En.wIKIBOOKS.ORG/wIKI/\#NAÏVESETSAREUNSUITEDFORRECURSIVEDEFINITIONS
27 John C. Reynolds. Polymorphism is not set-theoretic. INRIA Rapports de Recherche No. 296. May 1984.
}

\subsection*{53.8 External Links}

DEnotational semantics \({ }^{28}\)
Online books about Denotational Semantics
- \{ \{cite book
```

|title=Denotational Semantics. A Methodology for Language Development
| last=Schmidt|first=David A.
|publisher=Allyn and Bacon
| year=1986
|url=http://www.cis.ksu.edu/~ schmidt/text/densem.html
}}

```

\section*{54 Category theory}

This article attempts to give an overview of category theory, in so far as it applies to Haskell. To this end, Haskell code will be given alongside the mathematical definitions. Absolute rigour is not followed; in its place, we seek to give the reader an intuitive feel for what the concepts of category theory are and how they relate to Haskell.

\subsection*{54.1 Introduction to categories}


Abb. 30: A simple category, with three objects \(A, B\) and \(C\), three identity morphisms \(i d_{A}, i d_{B}\) and \(i d_{C}\), and two other morphisms \(f: C \rightarrow B\) and \(g: A \rightarrow B\). The third element (the specification of how to compose the morphisms) is not shown.

A category is, in essence, a simple collection. It has three components:
- A collection of objects.
- A collection of morphisms, each of which ties two objects (a source object and a target ob\(j e c t)\) together. (These are sometimes called arrows, but we avoid that term here as it has other connotations in Haskell.) If \(f\) is a morphism with source object \(A\) and target object \(B\), we write \(f: A \rightarrow B\).
- A notion of composition of these morphisms. If \(h\) is the composition of morphisms \(f\) and \(g\), we write \(h=f \circ g\).

Lots of things form categories. For example, Set is the category of all sets with morphisms as standard functions and composition being standard function composition. (Category names are often typeset in bold face.) Grp is the category of all groups with morphisms as functions that preserve group operations (the group homomorphisms), i.e. for any two groups \(G\) with operation * and \(H\) with operation , a function \(f: G \rightarrow H\) is a morphism in Grp iff:
\[
f(u * v)=f(u) \cdot f(\nu)
\]

It may seem that morphisms are always functions, but this needn't be the case. For example, any partial order \((P, \leq)\) defines a category where the objects are the elements of \(P\), and there is a morphism between any two objects \(A\) and \(B\) iff \(A \leq B\). Moreover, there are allowed to be multiple morphisms with the same source and target objects; using the Set example, sin and cos are both functions with source object \(\mathbb{R}\) and target object \([-1,1]\), but they're most certainly not the same morphism!

\subsection*{54.1.1 Category laws}

There are three laws that categories need to follow. Firstly, and most simply, the composition of morphisms needs to be associative. Symbolically,
\[
f \circ(g \circ h)=(f \circ g) \circ h
\]

Secondly, the category needs to be closed under the composition operation. So if \(f: B \rightarrow C\) and \(g: A \rightarrow B\), then there must be some morphism \(h: A \rightarrow C\) in the category such that \(h=f \circ g\). We can see how this works using the following category:


Abb. 31
\(f\) and \(g\) are both morphisms so we must be able to compose them and get another morphism in the category. So which is the morphism \(f \circ g\) ? The only option is \(i d_{A}\). Similarly, we see that \(g \circ f=i d_{B}\).

Lastly, given a category \(C\) there needs to be for every object A an identity' morphism, \(i d_{A}: A \rightarrow A\) that is an identity of composition with other morphisms. Put precisely, for every morphism \(g: A \rightarrow\) \(B\) :
\[
g \circ i d_{A}=i d_{B} \circ g=g
\]

\subsection*{54.1.2 Hask, the Haskell category}

The main category we'll be concerning ourselves with in this article is Hask, the category of Haskell types and Haskell functions as morphisms, using (.) for composition: a function \(f:\) : A -> B for types A and B is a morphism in Hask. We can check the first and second law easily: we know (.) is an associative function, and clearly, for any \(f\) and \(g, f . g\) is another function. In Hask, the identity morphism is id, and we have trivially:
\[
i d . \quad f=f . \quad i d=f
\]
\({ }^{1}\) This isn't an exact translation of the law above, though; we're missing subscripts. The function id in Haskell is polymorphic - it can take many different types for its domain and range, or, in category-speak, can have many different source and target objects. But morphisms in category theory are by definition monomorphic - each morphism has one specific source object and one specific target object. A polymorphic Haskell function can be made monomorphic by specifying its type (instantiating with a monomorphic type), so it would be more precise if we said that the identity morphism from Hask on a type \(A\) is (id : : A \(\rightarrow\) A). With this in mind, the above law would be rewritten as:
```

(id :: B -> B) . f = f . (id :: A -> A) = f

```

However, for simplicity, we will ignore this distinction when the meaning is clear.

\footnotetext{
1 Actually, there is a subtlety here: because (.) is a lazy function, if \(f\) is undefined, we have that id . \(f=\_{-}\) -> _ \(\|_{\text {. }}\). Now, while this may seem equivalent to _ \(\|_{-}\)for all intents and purposes, you can actually tell them apart using the strictifying function seq, meaning that the last category law is broken. We can define a new strict composition function, f.! \(\quad \mathrm{g}=(() \quad. \$!\quad\) f) \(\$!\quad \mathrm{g}\), that makes Hask a category. We proceed by using the normal (.), though, and attribute any discrepancies to the fact that seq breaks an awful lot of the nice language properties anyway.
}

\subsection*{54.2 Functors}


Abb. 33: A functor between two categories, \(\mathbf{C}\) and \(\mathbf{D}\). Of note is that the objects \(A\) and \(B\) both get mapped to the same object in \(\mathbf{D}\), and that therefore \(g\) becomes a morphism with the same source and target object (but isn't necessarily an identity), and \(i d_{A}\) and \(i d_{B}\) become the same morphism. The arrows showing the mapping of objects are shown in a dotted, pale olive. The arrows showing the mapping of morphisms are shown in a dotted, pale blue.

So we have some categories which have objects and morphisms that relate our objects together. The next Big Topic in category theory is the functor, which relates categories together. A functor is essentially a transformation between categories, so given categories \(C\) and \(D\), a functor \(F: C \rightarrow D\) :
- Maps any object \(A\) in \(C\) to \(F(A)\), in \(D\).
- Maps morphisms \(f: A \rightarrow B\) in \(C\) to \(F(f): F(A) \rightarrow F(B)\) in \(D\).

One of the canonical examples of a functor is the forgetful functor Grp \(\rightarrow\) Set which maps groups to their underlying sets and group morphisms to the functions which behave the same but are defined on sets instead of groups. Another example is the power set functor Set \(\rightarrow\) Set which maps sets to their power sets and maps functions \(f: X \rightarrow Y\) to functions \(\mathscr{P}(X) \rightarrow \mathscr{P}(Y)\) which take inputs \(U \subset X\) and return \(f(U)\), the image of \(U\) under \(f\), defined by \(f(U)=\{f(u): u \in U\}\). For any category \(C\), we can define a functor known as the identity functor on \(C\), or \(1_{C}: C \rightarrow C\), that just maps objects to themselves and morphisms to themselves. This will turn out to be useful in the MONAD LAWS \({ }^{2}\) section later on.

Once again there are a few axioms that functors have to obey. Firstly, given an identity morphism \(i d_{A}\) on an object \(A, F\left(i d_{A}\right)\) must be the identity morphism on \(F(A)\), i.e.:

\footnotetext{
2 htip://En.WIKIBOOKS.ORG/WIKI/\#THEMONADLAWSANDTHEIRIMPORTANCE
}
\[
F\left(i d_{A}\right)=i d_{F(A)}
\]

Secondly functors must distribute over morphism composition, i.e.
\[
F(f \circ g)=F(f) \circ F(g)
\]

\subsection*{54.2.1 Functors on Hask}

The Functor typeclass you will probably have seen in Haskell does in fact tie in with the categorical notion of a functor. Remember that a functor has two parts: it maps objects in one category to objects in another and morphisms in the first category to morphisms in the second. Functors in Haskell are from Hask to func, where func is the subcategory of Hask defined on just that functor's types. E.g. the list functor goes from Hask to Lst, where Lst is the category containing only list types, that is, [T] for any type \(T\). The morphisms in Lst are functions defined on list types, that is, functions [T] -> [U] for types T, U. How does this tie into the Haskell typeclass Functor? Recall its definition:
```

class Functor (f :: * -> *) where
fmap :: (a -> b) -> (f a -> f b)

```

Let's have a sample instance, too:
```

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

```

Here's the key part: the type constructor Maybe takes any type \(T\) to a new type, Maybe T. Also, fmap restricted to Maybe types takes a function a \(->\mathrm{b}\) to a function Maybe a \(->\) Maybe b. But that's it! We've defined two parts, something that takes objects in Hask to objects in another category (that of Maybe types and functions defined on Maybe types), and something that takes morphisms in Hask to morphisms in this category. So Maybe is a functor.

A useful intuition regarding Haskell functors is that they represent types that can be mapped over. This could be a list or a Maybe, but also more complicated structures like trees. A function that does some mapping could be written using fmap, then any functor structure could be passed into this function. E.g. you could write a generic function that covers all of Data.List.map, Data.Map.map, Data.Array.IArray.amap, and so on.

What about the functor axioms? The polymorphic function id takes the place of \(i d_{A}\) for any \(A\), so the first law states:
```

fmap id = id

```

With our above intuition in mind, this states that mapping over a structure doing nothing to each element is equivalent to doing nothing overall. Secondly, morphism composition is just (.), so
```

fmap (f . g) = fmap f . fmap g

```

This second law is very useful in practice. Picturing the functor as a list or similar container, the right-hand side is a two-pass algorithm: we map over the structure, performing \(g\), then map over it again, performing \(f\). The functor axioms guarantee we can transform this into a single-pass algorithm that performs f . g. This is a process known as fusion.

\subsection*{54.2.2 Translating categorical concepts into Haskell}

Functors provide a good example of how category theory gets translated into Haskell. The key points to remember are that:
- We work in the category Hask and its subcategories.
- Objects are types.
- Morphisms are functions.
- Things that take a type and return another type are type constructors.
- Things that take a function and return another function are higher-order functions.
- Typeclasses, along with the polymorphism they provide, make a nice way of capturing the fact that in category theory things are often defined over a number of objects at once.

\subsection*{54.3 Monads}


Abb. 34: unit and join, the two morphisms that must exist for every object for a given monad.

Monads are obviously an extremely important concept in Haskell, and in fact they originally came from category theory. A monad is a special type of functor, from a category to that same category, that supports some additional structure. So, down to definitions. A monad is a functor \(M: C \rightarrow C\), along with two morphisms \({ }^{3}\) for every object \(X\) in \(C\) :
- unit \({ }_{X}^{M}: X \rightarrow M(X)\)
- join \(_{X}^{M}: M(M(X)) \rightarrow M(X)\)

When the monad under discussion is obvious, we'll leave out the \(M\) superscript for these functions and just talk about unit \(X_{X}\) and join \(_{X}\) for some \(X\).

\footnotetext{
3 Experienced category theorists will notice that we're simplifying things a bit here; instead of presenting unit and join as natural transformations, we treat them explicitly as morphisms, and require naturality as extra axioms alongside the the standard monad Laws^\{http://en.wikibooks.org/wiki/\#Themonadlaws \} (laws 3 and 4). The reasoning is simplicity; we are not trying to teach category theory as a whole, simply give a categorical background to some of the structures in Haskell. You may also notice that we are giving these morphisms names suggestive of their Haskell analogues, because the names \(\eta\) and \(\mu\) don't provide much intuition.
}

Let's see how this translates to the Haskell typeclass Monad, then.
```

class Functor m => Monad m where
return :: a -> m a
(>>=) ::m a -> (a -> m b) -> m b

```

The class constraint of Functor \(m\) ensures that we already have the functor structure: a mapping of objects and of morphisms. return is the (polymorphic) analogue to \(u_{n i t_{X}}\) for any \(X\). But we have a problem. Although return's type looks quite similar to that of unit, the other function, ( \(\gg=\) ), often called bind, bears no resemblance to join. There is however another monad function, join : : Monad \(m=>m\) ( \(m\) a) \(\rightarrow m\) a, that looks quite similar. Indeed, we can recover join and (>>=) from each other:
```

join :: Monad m => m (m a) -> m a
join x = x >>= id
(>>=) :: Monad m => m a -> (a m m b) -> m b
x >>= f = join (fmap f x)

```

So specifying a monad's return, fmap, and join is equivalent to specifying its return and (>>=). It just turns out that the normal way of defining a monad in category theory is to give unit and join, whereas Haskell programmers like to give return and ( \(\gg=)_{.}^{4}\) Often, the categorical way makes more sense. Any time you have some kind of structure \(M\) and a natural way of taking any object \(X\) into \(M(X)\), as well as a way of taking \(M(M(X)\) ) into \(M(X)\), you probably have a monad. We can see this in the following example section.

\subsection*{54.3.1 Example: the powerset functor is also a monad}

The power set functor \(P\) : Set \(\rightarrow\) Set described above forms a monad. For any set \(S\) you have a unit \(_{S}(x)=\{x\}\), mapping elements to their singleton set. Note that each of these singleton sets are trivially a subset of \(S\), so units returns elements of the powerset of \(S\), as is required. Also, you can define a function join \(_{S}\) as follows: we receive an input \(L \in \mathscr{P}(\mathscr{P}(S))\). This is:
- A member of the powerset of the powerset of \(S\).
- So a member of the set of all subsets of the set of all subsets of \(S\).
- So a set of subsets of \(S\)

We then return the union of these subsets, giving another subset of \(S\). Symbolically,
\[
\operatorname{join}_{S}(L)=\bigcup L
\]

\footnotetext{
4 This is perhaps due to the fact that Haskell programmers like to think of monads as a way of sequencing computations with a common feature, whereas in category theory the container aspect of the various structures is emphasised. join pertains naturally to containers (squashing two layers of a container down into one), but (>>=) is the natural sequencing operation (do something, feeding its results into something else).
}

Hence \(P\) is a monad \({ }^{5}\).
In fact, \(P\) is almost equivalent to the list monad; with the exception that we're talking lists instead of sets, they're almost the same. Compare:

\section*{Function type \\ Function type}

Def-
i-
ni-
tion
Given a set \(S\) and a morphism \(f: A \rightarrow B\) :
Given a type \(T\) and a func B
\(P(f): \mathscr{P}(A) \rightarrow \mathscr{P}(B)\)
\((P(f))(S)=\) \(\{f(a)\) :
\(a \in\)
S\}
fmap f : : [A] -> [B
units \(_{S}: S \rightarrow \mathscr{P}(S)\)
unit \(_{S}(x)=\)
return :: T -> [T]
\(\{x\}\)
\[
\text { join }_{S}: \mathscr{P}(\mathscr{P}(S)) \rightarrow \mathscr{P}(S)
\]
\(\operatorname{join}_{S}(L)=\)
join :: [[T]] -> [T \(\cup L\)

\subsection*{54.4 The monad laws and their importance}

Just as functors had to obey certain axioms in order to be called functors, monads have a few of their own. We'll first list them, then translate to Haskell, then see why they're important.

Given a monad \(M: C \rightarrow C\) and a morphism \(f: A \rightarrow B\) for \(A, B \in C\),
1. join \(\circ M(\) join \()=\) join \(\circ\) join
2. join \(\circ M(\) unit \()=\) join \(\circ\) unit \(=\) id
3. unit \(\circ f=M(f) \circ\) unit

\footnotetext{
5 If you can prove that certain laws hold, which we'll explore in the next section.
}

\section*{4. join \(\circ M(M(f))=M(f) \circ\) join}

By now, the Haskell translations should be hopefully self-explanatory:
1. join . fmap join = join . join
2. join . fmap return \(=\) join . return \(=i d\)
3. return . \(f=f m a p f\). return
4. join . fmap (fmap f) = fmap f . join
(Remember that fmap is the part of a functor that acts on morphisms.) These laws seem a bit impenetrable at first, though. What on earth do these laws mean, and why should they be true for monads? Let's explore the laws.

\subsection*{54.4.1 The first law}
```

join . fmap join = join . join

```


Abb. 35: A demonstration of the first law for lists. Remember that join is concat and fmap is map in the list monad.

In order to understand this law, we'll first use the example of lists. The first law mentions two functions, join . fmap join (the left-hand side) and join . join (the right-hand side). What will the types of these functions be? Remembering that join's type is [ [a] ] -> [a] (we're talking just about lists for now), the types are both [ \(\mathrm{A}^{6}\) ] -> [a] (the fact that they're the same is handy; after all, we're trying to show they're completely the same function!). So we have a list of list of lists. The left-hand side, then, performs fmap join on this 3-layered list, then uses join on the result. fmap is just the familiar map for lists, so we first map across each of the list of lists inside the top-level list, concatenating them down into a list each. So afterward, we have a list of lists, which we then run through join. In summary, we 'enter' the top level, collapse the second and third levels down, then collapse this new level with the top level.

\footnotetext{
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/[A
}

What about the right-hand side? We first run join on our list of list of lists. Although this is three layers, and you normally apply a two-layered list to join, this will still work, because a \(\left[A^{7}\right]\) is just \([[b]]\), where \(b=[a]\), so in a sense, \(a\) three-layered list is just a two layered list, but rather than the last layer being 'flat', it is composed of another list. So if we apply our list of lists (of lists) to join, it will flatten those outer two layers into one. As the second layer wasn't flat but instead contained a third layer, we will still end up with a list of lists, which the other join flattens. Summing up, the left-hand side will flatten the inner two layers into a new layer, then flatten this with the outermost layer. The right-hand side will flatten the outer two layers, then flatten this with the innermost layer. These two operations should be equivalent. It's sort of like a law of associativity for join.
Maybe is also a monad, with
```

return :: a -> Maybe a
return x = Just x
join :: Maybe (Maybe a) -> Maybe a
join Nothing = Nothing
join (Just Nothing) = Nothing
join (Just (Just x)) = Just x

```

So if we had a three-layered Maybe (i.e., it could be Nothing, Just Nothing, Just (Just Nothing) or Just (Just (Just x)) , the first law says that collapsing the inner two layers first, then that with the outer layer is exactly the same as collapsing the outer layers first, then that with the innermost layer.

\subsection*{54.4.2 The second law}
join . fmap return = join . return = id
What about the second law, then? Again, we'll start with the example of lists. Both functions mentioned in the second law are functions [a] -> [a]. The left-hand side expresses a function that maps over the list, turning each element x into its singleton list \([\mathrm{x}\) ], so that at the end we're left with a list of singleton lists. This two-layered list is flattened down into a single-layer list again using the join. The right hand side, however, takes the entire list \([x, y, z, \ldots]\), turns it into the singleton list of lists \([[x, y, z, \ldots]]\), then flattens the two layers down into one again. This law is less obvious to state quickly, but it essentially says that applying return to a monadic value, then joining the result should have the same effect whether you perform the return from inside the top layer or from outside it.

\subsection*{54.4.3 The third and fourth laws}
```

return . f = fmap f . return
join . fmap (fmap f) = fmap f . join

```

The last two laws express more self evident fact about how we expect monads to behave. The easiest way to see how they are true is to expand them to use the expanded form:

\footnotetext{
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/[A
}
1. \(\backslash x\)-> return (f \(x)=\backslash x\) fmap \(f\) (return \(x\) )
2. \(\backslash x \rightarrow\) join (fmap (fmap f) \(x\) ) \(=\backslash x\) fmap \(f(j o i n x)\)

\subsection*{54.4.4 Application to do-blocks}

Well, we have intuitive statements about the laws that a monad must support, but why is that important? The answer becomes obvious when we consider do-blocks. Recall that a do-block is just syntactic sugar for a combination of statements involving (>>=) as witnessed by the usual translation:
```

do {x } --> x
do { let { y = v }; x } --> let y = v in do { x }
do {v <- y; x } --> y >>= \v -> do {x }
do {y; x } --> y >>= _ -> do { x }

```

Also notice that we can prove what are normally quoted as the monad laws using return and (>>=) from our above laws (the proofs are a little heavy in some cases, feel free to skip them if you want to):
```


return x >>= f = f x. Proof: return x >>= f
= join (fmap f (return x)) -- By the definition of (>>=)
= join (return (f x)) -- By law 3
= (join . return) (f x)
= id (f x) -- By law 2
= f x
```
\(m \gg=\) return \(=m\). Proof: \(m \gg=\) return \(=\) join (fmap return \(m\) ) -- By the definition of \((\gg=)=\) (join . fmap return) \(\mathrm{m}=\mathrm{id} \mathrm{m}-\) - By law \(2=\mathrm{m}\)
```
(m >>= f) >>= g = m >>= (\x -> f x >>= g). Proof (recall that fmap f . fmap g =
fmap (f . g)):(m >>= f) >>= g = (join (fmap f m)) >>= g -- By the definition of (>>=) =
join (fmap g (join (fmap f m))) -- By the definition of (>>=) = (join . fmap g) (join (fmap f m)) =
(join . fmap g . join) (fmap f m) = (join . join . fmap (fmap g)) (fmap f m) -- By law 4 = (join .
join . fmap (fmap g) . fmap f) m = (join . join . fmap (fmap g . f)) m -- By the distributive law of
functors = (join . join . fmap (\x -> fmap g (f x))) m = (join . fmap join . fmap (lx -> fmap g (f x)))
m -- By law 1 = (join . fmap (join . (lx -> fmap g (f x)))) m -- By the distributive law of functors =
(join. fmap (\x -> join (fmap g(f x)))) m= (join. fmap (\x -> f x >>= g)) m -- By the definition of
(>>=) = join (fmap (\x -> f x >>=g) m)=m>>=(\x -> f x >>=g) -- By the definition of (>>=)

```

These new monad laws, using return and (>>=), can be translated into do-block notation.

\section*{Points-free style}
```

return x >>= f = f x
m >>= return = m

```

\section*{Do-block style}
```

do { v <- return x; f v } = do { f
x }
do { v <- m; return v } = do { m }

```

\section*{Points-free style}
\[
\begin{aligned}
& (m \gg=f) \gg=g=m \gg=(\backslash x->f x \\
& \gg=g)
\end{aligned}
\]

\section*{Do-block style}
do \(\{\mathrm{y}<-\mathrm{do}\{\mathrm{x}<-\mathrm{m} ; \mathrm{f} \mathrm{x}\} ; \mathrm{g} \mathrm{y}\}=\) do \(\{\mathrm{x}<-\) \(\mathrm{m} ; \mathrm{y}<-\mathrm{fx} ; \mathrm{g} \mathrm{y}\}\)

The monad laws are now common-sense statements about how do-blocks should function. If one of these laws were invalidated, users would become confused, as you couldn't be able to manipulate things within the do-blocks as would be expected. The monad laws are, in essence, usability guidelines.

\subsection*{54.5 Summary}

We've come a long way in this chapter. We've looked at what categories are and how they apply to Haskell. We've introduced the basic concepts of category theory including functors, as well as some more advanced topics like monads, and seen how they're crucial to idiomatic Haskell. We haven't covered some of the basic category theory that wasn't needed for our aims, like natural transformations, but have instead provided an intuitive feel for the categorical grounding behind Haskell's structures.

\subsection*{54.6 Notes}
<references />
CATEGORY THEORY \({ }^{8}\)

\footnotetext{
8 HTTP://En.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL
}

\section*{55 The Curry-Howard isomorphism}

The Curry-Howard isomorphism is a striking relationship connecting two seemingly unrelated areas of mathematics \&mdash; type theory and structural logic.

\subsection*{55.1 Introduction}

The Curry-Howard isomorphism, hereafter referred to as simply C-H, tells us that in order to prove any mathematical theorem, all we have to do is construct a certain type which reflects the nature of that theorem, then find a value that has that type. This seems extremely weird at first: what do types have to do with theorems? However, as we shall see, the two are very closely related. A quick note before we begin: for these introductory paragraphs, we ignore the existence of expressions like error and undefined whose DENOTATIONAL SEMANTICS \({ }^{1}\) are. These have an extremely important role, but we will consider them separately in due time. We also ignore functions that bypass the type system like unsafeCoerce\#.

We can build incredibly complicated types using Haskell's HIGHER-ORDER FUNCTIONS \({ }^{2}\) feature. We might want to ask the question: given an arbitrary type, under what conditions does there exist a value with that type (we say the type is inhabited)? A first guess might be 'all the time', but this quickly breaks down under examples. For example, there is no function with type \(a->b\), because we have no way of turning something of type a into something of a completely different type b (unless we know in advance which types a and b are, in which case we're talking about a monomorphic function, such as ord :: Char -> Int).

Incredibly, it turns out that a type is only inhabited when it corresponds to a true theorem in mathematical logic. But what is the nature of this correspondence? What does a type like \(a \rightarrow b\) mean in the context of logic?

\subsection*{55.1.1 A crash course in formal logic}

We need some background on formal logic before we can begin to explore its relationship to type theory. This is a very brief introduction; for a wider grounding we recommend you consult an introductory textbook on the subject matter.

In everyday language we use a lot of 'If... then...' sentences. For example, 'If the weather is nice today, then we'll walk into town'. These kinds of statements also crop up in mathematics; we can say things like 'If \(x\) is positive, then it has a (real) square root'. Formal logic is a way of translating these statements from loose, woolly, ambiguous English into precise symbolism. We use the \(\rightarrow\)

\footnotetext{
1 Kapitel 53 auf Seite 277
2 Kapitel 19 auf Seite 93
}
sign (read as 'implies') to indicate that something is true if something else is true. For example, our earlier statement could be recast as 'The weather is nice today \(\rightarrow\) we'll walk into town', which means that it is true that we'll walk into town if it is true that the weather is nice, which is just the same as the 'If... then...' version we used earlier. We'll often use letters to stand for entire statements, so for example if \(W\) is the statement 'the weather is nice', and \(T\) is the statement 'we'll walk into town', then our example becomes simply \(W \rightarrow T\).

Notice the crafty way we phrased our definition of \(\rightarrow . P \rightarrow Q\) means that if \(P\) is true, then \(Q\) is true. But if \(Q\) is some statement that is always true, no matter what the circumstances \&mdash; like 'the sun is hot' \&mdash; then it doesn't matter what \(P\) is. \(P\) could even be a false statement, \(Q\) would still be true if \(P\) were true, so \(P \rightarrow Q\) would still hold. The fact that \(Q\) would be true if \(P\) isn't true is a whole different matter; we're not asking that question when we say \(P \rightarrow Q\). So \(\rightarrow\) doesn't really represent any kind of cause-effect relationship; things like 'the sky is pink \(\rightarrow\) the sun is hot' are still valid statements. \({ }^{3}\)

Other things that crop up lots in both everyday language and mathematics are things called conjunctions and disjunctions. The former represent statements involving an 'and', the latter statements involving an 'or'. We could represent the statement 'I will buy this magazine if it's in stock and I have enough money' by the symbolism \((M \wedge S) \rightarrow B\), where \(M=\) 'I have enough money', \(S=\) 'The magazine is in stock', \(B=\) 'I will buy the magazine'. Essentially, one can just read the symbol \(\wedge\) as 'and'. Similarly, one can read the symbol \(\vee\) as 'or', so that the statement 'I will either walk or get the train to work' could be represented as \(W \vee T\), where \(W=\) 'I will walk to work', and \(T=\) 'I will get the train to work'.

Using these symbols, and a few more which will be introduced as we go, we can produce arbitrarily complicated symbol strings. There are two classes of these symbol strings: those that represent true statements, often called the theorems; and those which represent false statements, called the nontheorems. Note that whether a symbol string is a theorem or nontheorem depends on what the letters stand for, so \(P \vee Q\) is a theorem if, for example, \(P\) represents the statement 'It is daytime' and \(Q\) represents the statement 'It is night time' (ignoring exceptions like twilight), but it would be a nontheorem if \(P\) were 'Trees are blue' and \(Q\) were 'All birds can fly'. We'll often call a symbol string a proposition if we don't know whether it's a theorem or not.

There are many more subtleties to the subject of logic (including the fact that when we say 'If you eat your dinner you'll get dessert' we actually mean 'If and only if you eat your dinner will you get dessert'). If this is a subject that interests you, there are many textbooks around that comprehensively cover the subject.

\subsection*{55.1.2 Propositions are types}

So, given a type \(a->b\), what does that mean in terms of symbolistic logic? Handily, it simply means that \(a \rightarrow b\). Of course, this only makes sense if a and b are types which can further be

\footnotetext{
3 Another way of looking at this is that we're trying to define our logical operator \(\rightarrow\) such that it captures our intuition of the "if... then" construct in natural language. So we want statements like for all all naturals \(x\), " \(x\) is even" \(\rightarrow\) " \(x+1\) is odd" to be true. I.e. that implication must hold when we substitute \(x\) for any natural including, say, 5 . But " 5 is even" and " 6 is odd" are both false, so we must have that False \(\rightarrow\) False is true. Similarly by considering the statement for all naturals \(x>3, " x\) is prime" \(\rightarrow\) " \(x+1\) is not prime", we must have that False \(\rightarrow\) True is true. And obviously True \(\rightarrow\) True must be true, and True \(\rightarrow\) False is false. So we have that \(x \rightarrow y\) unless \(x\) is true and \(y\) false.
}
interpreted in our symbolistic logic. This is the essence of C-H. Furthermore, as we mentioned before, \(a \rightarrow b\) is a theorem if and only if \(a->b\) is an inhabited type.

Let's see this using one of the simplest of Haskell functions. const has the type a -> b -> a. Translated into logic, we have that \(a \rightarrow b \rightarrow a\). This must be a theorem, as the type a \(->\mathrm{b}\)-> a is inhabited by the value const. Now, another way of expressing \(a \rightarrow b\) is that 'If we assume \(a\) is true, then \(b\) must be true.' So \(a \rightarrow b \rightarrow a\) means that if we assume \(a\) is true, then if we further assume that \(b\) is true, then we can conclude \(a\). This is of course a theorem; we assumed \(a\), so \(a\) is true under our assumptions.

\subsection*{55.1.3 The problem with}

We've mentioned that a type corresponds to a theorem if that type is inhabited. However, in Haskell, every type is inhabited by the value undefined. Indeed, more generally, anything with type forall a. a, a value with denotational semantics of, is a problem. in type theory corresponds to inconsistency in logic; we can prove any theorem using Haskell types because every type is inhabited. Therefore, Haskell's type system actually corresponds to an inconsistent logic system. However, if we work with a limited subset of Haskell's type system, and in particular disallow polymorphic types, we have a consistent logic system we can do some cool stuff in. Hereafter it is assumed we are working in such a type system.

Now that we have the basics of C-H, we can begin to unpack a little more the relationship between types and propositions.

\subsection*{55.2 Logical operations and their equivalents}

The essence of symbolic logic is a set of propositions, such as \(P\) and \(Q\), and different ways of combining these propositions such as \(Q \rightarrow P\) or \(P \vee Q\). These ways of combining propositions can be thought of as operations on propositions. By C-H, propositions correspond to types, so we should have that the \(\mathrm{C}-\mathrm{H}\) equivalents of these proposition combinators are type operations, more normally known as type constructors. We've already seen an example of this: the implication operator \(\rightarrow\) in logic corresponds to the type constructor \((->)\). The rest of this section proceeds to explore the rest of the proposition combinators and explain their correspondence.

\subsection*{55.2.1 Conjunction and Disjunction}

In order for \(A \wedge B\) to be a theorem, both \(A\) and \(B\) must be theorems. So a proof for \(A \wedge B\) amounts to proving both \(A\) and \(B\). Remember that to prove a proposition \(A\) we find a value of type \(A\), where \(A\) and A are C-H correspondents. So in this instance we wish to find a value that contains two subvalues: the first whose type corresponds to \(A\), and the second whose type corresponds to \(B\). This sounds remarkably like a pair. Indeed, we represent the symbol string \(A \wedge B\) by (a, b), where a corresponds to \(A\) and b corresponds to \(B\).
Disjunction is opposite to conjunction. In order for \(A \vee B\) to be a theorem, either \(A\) or \(B\) must be a theorem. Again, we search for a value which contains either a value of type \(A\) or a value of type \(B\). This is Either. Either A B is the type which corresponds to the proposition \(A \vee B\).

\subsection*{55.2.2 Falsity}

It is occasionally useful to represent a false statement in our logic system. By definition, a false statement is one that can't be proven. So we're looking for a type which isn't inhabited. Although none of these types exist in the default libraries (don't get confused with the () type, which has precisely one value), we can define one, if we turn on the -fglasgow-exts flag in GHC:
```

data Void

```

The effect of omitting the constructors means that Void is an uninhabited type. So the Void type corresponds to a nontheorem in our logic. There are a few handy corollaries here:
<ol>
(Void, A) and (A, Void) are both uninhabited types for any type A, corresponding to the fact that \(F \wedge A\) and \(A \wedge F\) are both nontheorems if \(F\) is a nontheorem.

Either Void A and Either A Void are essentially the same as A for any type A, \({ }^{4}\) corresponding to the fact that \(F \vee A\) and \(A \vee F\), where \(F\) is a nontheorem, are theorems only if \(A\) is a theorem.

Any type that corresponds to a nontheorem can be replaced with Void. This is because any nontheorem-type must be uninhabited, so replacing it with Void everywhere doesn't change anything. Void is really equivalent to any nontheorem type \({ }^{5}\).
\(<\mathrm{p}>\) As we remarked in the first section, the implication \(P \rightarrow Q\) is true if \(Q\) is true, regardless of the truth value of \(P\). So we should be able to find a term with type Void \(\rightarrow\) a. In fact one does exist, but it's somewhat complicated to explain: the answer is the empty function. We can define a function \(f:\) A \(\rightarrow\) B as a (probably infinite) set of pairs whose first element is an element of A (the domain) and second element is \(f\) 's output on this term, an element of \(B\) (the range). For example, the successor function on the naturals is represented as \(\{(0,1),(1,2),(2,3), \ldots\}\). Note that in order to be a (total and well-defined) function, we must have precisely one pair (a, \(f\) a) for each term a with type A. \(</\) p>
\(<p>\) The empty function, let's call it empty is represented in this way by the empty set. But as we must have a pair for each element of the domain, and there no pairs in our representation, the domain type must be empty, i.e. Void. What about the range type? empty never produces any output, so there are no restrictions placed on the range type. Thus, it is valid to assume that the range type has any type, so we can say empty : : forall a. Void -> a. Unfortunately, it's not possible to write this function in Haskell; we'd ideally like to write something like:</p>
empty :: Void -> a
<p>And stop there, but this is illegal Haskell. The closest we can come is the following:</p>
empty :: Void -> a empty _= undefined
<p>Another reasonable way (also disallowed in Haskell) would be to write:</p>
empty \(x=\) case \(x\) of \(\}\)

\footnotetext{
4 Technically, the types Either Void A and A are isomorphic. Seeing as you can't have a value of type Void, every value in Either Void A must be a Right-tagged value, so the transformation just strips the Right constructors.
5 Again, the technical statement is that Void is isomorphic to any type which is a nontheorem.
}
\(<\mathrm{p}>\) The case statement is perfectly well formed since it handles every possible value of \(\mathrm{x} .</ \mathrm{p}>\)
\(<\mathrm{p}>\) Note that this is perfectly safe, since the right-hand side of this function can never be reached (since we have nothing to pass it). So, the conclusion of all this is that Void -> a is an inhabited type, just as \(P \rightarrow Q\) is true if \(P\) is false. \(</ \mathrm{p}>\)
</ol>

\subsection*{55.2.3 Negation}

The \(\neg\) operation in logic turns theorems into nontheorems and vice versa: if \(A\) is a theorem then \(\neg A\) is a nontheorem; if \(A\) is a nontheorem then \(\neg A\) is a theorem. How can we represent this in Haskell? The answer's a sneaky one. We define a type synonym:
```

type Not a = a -> Void

```

So for a type A, Not A is just A -> Void. How does this work? Well, if A was a theorem-type, then A -> Void must be uninhabited: there's no way any function could return any value, because the return type, Void has no values (The function has to provide values for all inhabitants of A)! On the other hand, if A was a nontheorem, then A can be replaced with Void as we explored in the last section. Then the function id : : Void \(\rightarrow\) Void is an inhabitant of Not A, so Not A is a theorem as required (The function doesn't have to provide any values, since there are no inhabitants in its domain. Nevertheless it's a function - with an empty graph).

\subsection*{55.3 Axiomatic logic and the combinatory calculus}

So far we've only used some very basic features from Haskell's type system. Indeed, most of the features of logic we've mentioned can be explored using a very basic 'programming language', the combinator calculus. To fully appreciate how closely C-H ties together these two areas of mathematics, we need to axiomatise both our discussion of formal logic and our discussion of programming languages.

\subsection*{55.3.1 Axiomatic logic}

We start with two axioms about how the \(\rightarrow\) operation should behave (from now on, we assume that \(\rightarrow\) is a right-associative function, i.e. \(A \rightarrow B \rightarrow C\) means \(A \rightarrow(B \rightarrow C)\) ):
1. \(A \rightarrow B \rightarrow A\)
2. \((A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow A \rightarrow C\)

The first axiom says that given any two propositions \(A\) and \(B\), if we assume both \(A\) and \(B\), we know that \(A\) is true. The second says that if \(A\) implies that \(B\) implies \(C\) (or equivalently, if \(C\) is true whenever \(A\) and \(B\) are true), and \(A\) itself implies \(B\), then knowing \(A\) is true would be enough to conclude that \(C\) is true. This may seem complicated, but a bit of thought reveals it to be common sense. Imagine we have a collection of boxes of various colours, some with wheels, some with lids, such that all the red boxes with wheels also have lids, and all the red boxes have wheels. Pick one box. Let \(A=\)
'The box under consideration is red', \(B=\) 'The box under consideration has wheels', \(C=\) 'The box under consideration has a lid'. Then the second law tells us that, as \(A \rightarrow B \rightarrow C\) (all red boxes with wheels also have lids), and \(A \rightarrow B\) (all red boxes have wheels), then if \(A\) (if the box is red), then \(C\) must be true (the box has a lid).

We also allow one inference law, called modus ponens:
1. If \(A \rightarrow B\), and \(A\), then \(B\).

This law allows us to create new theorems given old one. It should be fairly obvious; it is essentially the definition of what \(\rightarrow\) means. This small basis provides a simple enough logic system which is expressive enough to cover most of our discussions. Here's a sample proof of the law \(A \rightarrow A\) in our system:

Firstly, we know the two axioms to be theorems:
- \(A \rightarrow B \rightarrow A\)
- \((A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow A \rightarrow C\)

You'll notice that the left-hand side of the second axiom looks a bit like the first axiom. The second axiom guarantees that if we know that \(A \rightarrow B \rightarrow C\), then we can conclude \((A \rightarrow B) \rightarrow A \rightarrow C\). In this case, if we let \(C\) be the same proposition as \(A\), then we have that if \(A \rightarrow B \rightarrow A\), then \((A \rightarrow B) \rightarrow\) \(A \rightarrow A\). But we already know \(A \rightarrow B \rightarrow A\), that was the first axiom. Therefore, we have that \((A \rightarrow\) \(B) \rightarrow A \rightarrow A\) is a theorem. If we further let \(B\) be the proposition \(C \rightarrow A\), for some other proposition \(C\), then we have that if \(A \rightarrow C \rightarrow A\), then \(A \rightarrow A\). But, again, we know that \(A \rightarrow C \rightarrow A\) (it's the first axiom again), so \(A \rightarrow A\), as we wanted.

This example demonstrates that given some simple axioms and a simple way to make new theorems from old, we can derive more complicated theorems. It may take a while to get there \&mdash; here we had several lines of reasoning to prove just that the obvious statement \(A \rightarrow A\) is a theorem! \&mdash; but we get there in the end. This kind of formalisation is attractive because we have essentially defined a very simple system, and it is very easy to study how that system works.

\subsection*{55.3.2 Combinator calculus}

The LAMBDA CALCULUS \({ }^{6}\) is a way of defining a simple programming language from a very simple basis. If you haven't already read the chapter that was just linked to, we recommend you read at least the introductory sections on the untyped version of the calculus. Here's a refresher in case you're feeling dusty. A lambda term is one of three things:
- A value, \(v\).
- A lambda abstraction \(\lambda x\).t, where \(t\) is another lambda term.
- An application ( \(t_{1} t_{2}\) ), where \(t_{1}\) and \(t_{2}\) are lambda terms.

There is one reduction law, too, called beta-reduction:
- \(\left(\left(\lambda x . t_{1}\right) t_{2}\right) \rightarrow t_{1}\left[x:=t_{2}\right]\), where \(t_{1}\left[x:=t_{2}\right]\) means \(t_{1}\) with all the free occurrences of \(x\) replaced with \(t_{2}\).

\footnotetext{
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/LAMBDACALCULUS
}

As mentioned in the LAmbDa Calculus \({ }^{7}\) article, the difficulty comes when trying to pin down the notion of a free occurrence of an identifier. The combinator calculus was invented by the American mathematician Haskell Curry (after whom a certain programming language is named) because of these difficulties. There are many variants on the basic combinator calculus, but we consider one of the simplest here. We start with two so-called combinators:
- \(\mathbf{K}\) takes two values and returns the first. In the lambda calculus, \(\mathbf{K}=\lambda x y . x\).
- S takes a binary function, a unary function and a value, and applies that value and the value passed into the unary function to the binary function. again, in the lambda calculus: \(\mathbf{S}=\lambda x y z . x z(y z)\).

The first function you should recognise as const. The second is more complicated, it is the monadic function ap in the ( \((->)\) e) monad (which is essentially Reader). These two combinators form a complete basis for the entire lambda calculus. Every lambda calculus program can be written using just these two functions.

\subsection*{55.4 Sample proofs}

\subsection*{55.5 Intuitionistic vs classical logic}

So far, all of the results we have proved are theorems of intuitionistic logic. Let's see what happens when we try to prove the basic theorem of classical logic, Not Not A \(\rightarrow\) A. Recall that this translates as ( (A -> Void) -> Void) -> A. So, given a function of type (A -> Void) -> Void we need a function of type A. Now a function of type (A -> Void) -> Void exists precisely if type A \(\rightarrow>\) Void is uninhabited, or in other words if type A is inhabited. So we need a function which takes any inhabited type, and returns an element of that type. Although it is simple enough to do this on a computer - we need only find the "simplest" or "first" inhabitant of each type - there is no way to do this using standard lambda-calculus or combinator techniques. So we see that this result cannot be proved using these two techniques, and hence that the underlying logic is intuitionistic rather than classical.

Instead, consider a traditional error handling function which calls throw when an error occurs, transferring computation to catch. The throw function cancels any return value from the original function, so it has type A -> Void, where A is the type of its arguments. The catch function then takes the throw function as its argument, and, if the throw triggers (i.e. returns a void) will return the argument of the throw function. So the type of catch is ( (A -> Void) -> Void) -> A. \({ }^{8}\)

\subsection*{55.6 Notes}

\author{
<references />
}

\footnotetext{
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/LAMBDACALCULUS
8 This argument is taken from Dan Piponi . Adventures in Classical Land Adventures in Classical Land . The Monad Reader, ERRORMAP
}

\section*{56 fix and recursion}

The fix function is a particularly weird-looking function when you first see it. However, it is useful for one main theoretical reason: introducing it into the (typed) lambda calculus as a primitive allows you to define recursive functions.

\subsection*{56.1 Introducing \(f i x\)}

Let's have the definition of \(f i x\) before we go any further:
```

fix :: (a -> a) -> a
fix f = f (fix f)

```

This immediately seems quite magical. Surely fix \(f\) will yield an infinite application stream of f : \(\mathrm{f}(\mathrm{f}(\mathrm{f}(\ldots \quad)))\) ? The resolution to this is our good friend, lazy evaluation. Essentially, this sequence of applications of \(f\) will converge to a value if (and only if) \(f\) is a lazy function. Let's see some examples:

We first import the Control.Monad.Fix module to bring fix into scope (this is also available in the Data.Function). Then we try some examples. Since the definition of fix is so simple, let's expand our examples to explain what happens:
```

 fix (2+)
 =2 + (fix (2+))
= 2 + (2 + fix (2+))
= 4 + (fix (2+))
= 4 + (2 + fix (2+))
= 6 + fix (2+)
= ...

```

It's clear that this will never converge to any value. Let's expand the next example:
```

fix (const "hello")
= const "hello" (fix (const "hello"))
= "hello"

```

This is quite different: we can see after one expansion of the definition of fix that because const ignores its second argument, the evaluation concludes. The evaluation for the last example is a little different, but we can proceed similarly:
```

fix (1:)
= 1 : fix (1:)
= 1 : (1 : fix (1:))
= 1 : (1 : (1 : fix (1:)))

```

Although this similarly looks like it'll never converge to a value, keep in mind that when you type fix (1:) into GHCi, what it's really doing is applying show to that. So we should look at how show (fix (1:)) evaluates (for simplicity, we'll pretend show on lists doesn't put commas between items):
```

show (fix (1:))
= "[" ++ map show (fix (1:)) ++ "]"
= "[" ++ map show (1 : fix (1:)) ++ "]"
= "[" ++ "1" ++ map show (fix (1:)) ++ "]"
= "[" ++ "1" ++ "1" ++ map show (fix (1:)) ++ "]"

```

So although the map show (fix (1:)) will never terminate, it does produce output: GHCi can print the beginning of the string, " [" ++ "1" ++ "1", and continue to print more as map show (fix (1:)) produces more. This is lazy evaluation at work: the printing function doesn't need to consume its entire input string before beginning to print, it does so as soon as it can start.

\section*{56.2 fix and fixed points}

A fixed point of a function \(f\) is a value a such that \(f a==a\). For example, 0 is a fixed point of the function (*3) since \(0 * 3==0\). This is where the name of fix comes from: it finds the least-defined fixed point of a function. (We'll come to what "least defined" means in a minute.) Notice that for both of our examples above that converge, this is readily seen:
```

const "hello" "hello" -> "hello"
(1:) [1,1,..] -> [1,1,...]

```

And since there's no number \(x\) such that \(2+x==x\), it also makes sense that \(f i x(2+)\) diverges.
In fact, it's obvious from the definition of fix that it finds a fixed point. All we need to do is write the equation for fix the other way around:
```

f (fix f) = fix f

```

Which is precisely the definition of a fixed point! So it seems that fix should always find a fixed point. But sometimes fix seems to fail at this, as sometimes it diverges. We can repair this property, however, if we bring in some DENOTATIONAL SEMANTICS \({ }^{1}\). Every Haskell type actually include a special value called bottom, written. So the values with type, for example, Int include, in fact, as well as \(1,2,3\) etc.. Divergent computations are denoted by a value of, i.e., we have that fix \((2+)=\).

\footnotetext{
1 Kapitel 53 auf Seite 277
}

The special value undefined is also denoted by this. Now we can understand how fix finds fixed points of functions like (2+):

So feeding undefined (i.e., ) to \((2+)\) gives us undefined back. So is a fixed point of \((2+)\) !
In the case of \((2+)\), it is the only fixed point. However, there are other functions \(f\) with several fixed points for which fix f still diverges: fix (*3) diverges, but we remarked above that 0 is a fixed point of that function. This is where the "least-defined" clause comes in. Types in Haskell have a PARTIAL ORDER \({ }^{2}\) on them called definedness. In any type, is the least-defined value (hence the name "bottom"). For simple types like Int, the only pairs in the partial order are 1, 2 and so on. We do not have \(m \quad n\) for any non-bottom Ints \(m\), \(n\). Similar comments apply to other simple types like Bool and (). For "layered" values such as lists or Maybe, the picture is more complicated, and we refer to the chapter on DENOTATIONAL SEMANTICS \({ }^{3}\).

So since is the least-defined value for all types and fix finds the least-defined fixed point, if \(f=\) , we will have fix \(f=\) (and the converse is also true). If you've read the denotational semantics article, you will recognise this as the criterion for a strict function: \(f i x f\) diverges if and only if \(f\) is strict.

\subsection*{56.3 Recursion}

If you've come across examples of fix on the internet, or on the \#HASKELL IRC CHANNEL \({ }^{4}\), the chances are that you've seen examples involving fix and recursion. Here's a classic example:

Here we have used fix to "encode" the factorial function: note that (if we regard fix as a language primitive) our second definition of fact doesn't involve recursion at all. In a language like the typed lambda calculus that doesn't feature recursion, we can introduce fix in to write recursive functions in this way. Here are some more examples:

So how does this work? Let's first approach it from a denotational point of view with our fact function. For brevity let's define:
```

fact' rec n = if n == 0 then 1 else n * rec (n-1)

```

So that we're computing fix fact' 5. fix will find a fixed point of fact', i.e. the function \(f\) such that \(f==\) fact' \(f\). But let's expand what this means:
```

f = fact' f
= \n -> if n == 0 then 1 else n * f (n-1)

```

All we did was substitute rec for \(f\) in the definition of fact'. But this looks exactly like a recursive definition of a factorial function! fix feeds fact' itself as its first parameter in order to create a recursive function out of a higher-order function.

\footnotetext{
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARTIAL_ORDER
Kapitel 53 auf Seite 277
HTTP://WWW. HASKELL.ORG/HASKELLWIKI/IRC_CHANNEL
}

We can also consider things from a more operational point of view. Let's actually expand the definition of fix fact':
```

 fix fact'
 = fact' (fix fact')
=(\rec n -> if n == 0 then 1 else n * rec (n-1)) (fix fact')
= \n -> if n == 0 then 1 else n * fix fact' (n-1)
= \n -> if n == 0 then 1 else n * fact' (fix fact') (n-1)
= \n -> if n == 0 then 1
else n * (\rec n' -> if n' == 0 then 1 else n' * rec (n'-1))
(fix fact') (n-1)
= \n -> if n == 0 then 1
else n * (if n-1 == 0 then 1 else (n-1) * fix fact' (n-2))
= \n -> if n == 0 then 1
else n * (if n-1 == 0 then 1
else (n-1) * (if n-2 == 0 then 1
else (n-2) * fix fact' (n-3)))
= ...

```

Notice that the use of fix allows us to keep "unravelling" the definition of fact': every time we hit the else clause, we product another copy of fact' via the evaluation rule fix fact' \(=\) fact' (fix fact'), which functions as the next call in the recursion chain. Eventually we hit the then clause and bottom out of this chain.

\subsection*{56.4 The typed lambda calculus}

In this section we'll expand upon a point mentioned a few times in the previous section: how fix allows us to encode recursion in the typed lambda calculus. It presumes you've already met the typed lambda calculus. Recall that in the lambda calculus, there is no let clause or top-level bindings. Every program is a simple tree of lambda abstractions, applications and literals. Let's say we want to write a fact function. Assuming we have a type called Nat for the natural numbers, we'd start out something like the following:
```

n:Nat. if iszero n then 1 else n * <blank> (n-1)

```

The problem is, how do we fill in the <blank>? We don't have a name for our function, so we can't call it recursively. The only way to bind names to terms is to use a lambda abstraction, so let's give that a go:
```

(f:Nat->Nat. n:Nat. if iszero n then 1 else n * f (n-1))
(m:Nat. if iszero m}\mathrm{ then 1 else m*<blank> (m-1))

```

This expands to:
```

n:Nat. if iszero n then 1
else n * (if iszero n-1 then 1 else (n-1) * <blank> (n-2))

```

We still have \(\mathrm{a}<\mathrm{bl}\) ank>. We could try to add one more layer in:
```

(f:Nat->Nat. n:Nat. if iszero n then 1 else n * f (n-1)
((g:Nat->Nat. m:Nat. if iszero n' then 1 else n' * g (m-1))
(p:Nat. if iszero p then 1 else p * <blank> (p-1))))
->
n:Nat. if iszero n then 1
else n * (if iszero n-1 then 1
else (n-1) * (if iszero n-2 then 1 else (n-2) *
<blank> (n-3)))

```

It's pretty clear we're never going to be able to get rid of this <blank>, no matter how many levels of naming we add in. Never, that is, unless we use fix, which, in essence, provides an object from which we can always unravel one more layer of recursion and still have what we started off:
```

fix (f:Nat->Nat. n:Nat. if iszero n then 1 else n * f (n-1))

```

This is a perfect factorial function in the typed lambda calculus plus fix.
fix is actually slightly more interesting than that in the context of the typed lambda calculus: if we introduce it into the language, then every type becomes inhabited, because given some concrete type T , the following expression has type T :
```

fix (x:T. x)

```

This, in Haskell-speak, is fix id, which is denotationally. So we see that as soon as we introduce fix to the typed lambda calculus, the property that every well-typed term reduces to a value is lost.

\subsection*{56.5 Fix as a data type}

It is also possible to make a fix data type.
There are three ways of defining it.
```

newtype Fix f=Fix (f (Fix f))

```
and
```

newtype Mu f=Mu (forall a.(f a->a)->a)
data Nu f=forall a.Nu a (a->f a)

```

Mu and Nu help generalize folds, unfolds and refolds.
```

fold :: (f a -> a) -> Mu f -> a
fold g (Mu f)=f g
unfold :: (a -> f a) -> a -> Nu f

```
```

unfold f x=Nu x f
refold :: (a -> f a) -> (g a-> a) -> Mu f -> Nu g
refold f g=unfold g . fold f

```

Mu and Nu are restricted versions of Fix. Mu is used for making inductive noninfinite data and Nu is used for making coinductive infinite data. Eg)
```

newpoint Stream a=Stream (Nu ((,) a)) -- forsome b. (b,b-> (a,b))
newpoint Void a=Void (Mu ((,) a)) -- forall b.((a,b) ->b) ->b

```

Unlike the fix point function the fix point types do not lead to bottom. In the following code Bot is perfectly defined. It is equivalent to the unit type ().
```

newtype Id a=Id a
newtype Bot=Bot (Fix Id) -- equals newtype Bot=Bot Bot
-- There is only one allowable term. Bot \$ Bot \$ Bot \$ Bot ..,

```

The Fix data type cannot model all forms of recursion. Take for instance this nonregular data type.
```

data Node a=Two a a|Three a a a
data FingerTree a=U a|Up (FingerTree (Node a))

```

It is not easy to implement this using Fix.
Fix and recursion \({ }^{5}\)

\footnotetext{
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL
}

\section*{57 Haskell Performance}

\section*{58 Introduction}

\subsection*{58.1 Execution Model}

\subsection*{58.1.1 Introducing Lazy Evaluation}

Programming is not only about writing programs that work but also about programs that require little memory and time to execute on a computer. While both time and memory use are relatively straightforward to predict in an imperative programming language or in strict functional languages like LISP or ML, things are different here. In Haskell, expressions are evaluated on demand. For instance, the expression
```

head (map (2 *) [1 .. 10])

```
will be evaluated as follows
```

⇒ head (map (2 *) (1 : [2 .. 10]))
([1 .. 10])
⇒ head (2 * 1 : map (2 *) [2 .. 10]) (map)
⇒ 2 * 1 (head)
⇒ 2 (*)

```

The function head demands only the first element of the list and consequently, the remaining part map \((2 *) \quad[2 \ldots 10]\) of the list is never evaluated. Since this strategy only performs as much evaluation as necessary, it's called lazy evaluation. The chapter ../GRAPH REDUCTION/ \({ }^{1}\) will present it in detail.

While lazy evaluation is the commonly employed implementation technique for Haskell, the LANGUAGE STANDARD \({ }^{2}\) only specifies that Haskell has non-strict DENOTATIONAL SEMANTICS \({ }^{3}\) without fixing a particular execution model. A function \(f\) with one argument is said to be strict if it doesn't terminate or yields an error whenever the evaluation of its argument will loop forever or is otherwise undefined. Writing \&perp; for the "result" of an infinite loop, the definition for strictness is

\section*{A function \(f\) is called strict if \(f\) \&perp; = \&perp; .}

For example, trying to add 1 to a number that loops forever will still loop forever, so \(\&\) perp; +1 \(=\) \&perp; and the addition function ( +1 ) is strict. The function head is also strict since the first element of a list won't be available if the whole list is undefined. But it may well be that the first
```

HTTP://EN.WIKIBOOKS.ORG/WIKI/ .. /GRAPHREDUCTION/
HTTP://WWW.HASKELL.ORG/ONLINEREPORT/
HTTP://EN.WIKIBOOKS.ORG/WIKI/ . . /DENOTATIONALSEMANTICS

```
element is well-defined while the remaining list is not. In this case, we have
```

head (x : ⊥) = x

```

This equation means that head does not evaluate the remaining list, otherwise it would loop as well. Thus, such purely algebraic strictness properties are a great help for reasoning about execution time and memory. In strict languages like LISP or ML, we would always have head (x:\&perp; ) = \&perp; , whereas Haskell being "non-strict" means that we can write functions which are not strict, like the above property of head or the simplest example (const 1) \&perp; \(=1\). With the help of the constant undefined from the
, we can even explore strictness interactively
```

head (1 : undefined)
1
head undefined
*** Exception: Prelude.undefined

```

Strictness and \&perp; will be used thorough these chapters. ../GRAPH REDUCTION/ \({ }^{4}\) presents further introductory examples and the denotational point of view is elaborated in ../DENOTATIONAL SEMANTICS \(/{ }^{5}\).

\subsection*{58.1.2 Example: fold}

The best way to get a first feeling for lazy evaluation is to study an example. Therefore, we will consider some prototypical use case of <code>foldr<code> and its variants. The needed basics for studying the time and space complexity of programs are recapped in chapter ../ALGORITHM COMPLEXITY/ \({ }^{6}\).

\section*{Time}

Consider the following function isPrime that examines whether a number is a prime number or not
```

isPrime n = not \$ any (`divides` n) [2..n-1]
d 'divides' n = n `mod` d == 0
any p = or . map p
or = foldr (||) False

```

The helper function any from the Haskell
checks whether there is at least one element in the list that satisfies some property p. For isPrime, the property is "being a divisor of \(n\) ".

\footnotetext{
4 HTTP://En.WIKIBOOKS.ORG/WIKI/../GRAPhREDUCTION/
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/../DENOTATIONALSEMANTICS/
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/../ALGORITHMCOMPLEXITY/
}

The amount of time it takes to evaluate an expression is of course measured by the number of reduction steps. If n is a prime number, the above algorithm will examine the full list of numbers from 2 to \(\mathrm{n}-1\) and thus has a worst-case running time of \(O(n)\) reductions. However, if n is not a prime number, we do not need to loop through every one of these numbers, we can stop as soon as we found one divisor and report \(n\) as being composite. The joy of lazy evaluation is that this behavior is already built-in into the logical disjunction ||!
```

isPrime 42
⇒ not \$ any ('divides' 42) [2..41]
⇒ not (or (map (`divides' 42) [2..41])) ⇒ not (or ((42 `mod` 2 == 0) : map (`divides' 42)
[3..41]))
⇒ not ((42 'mod' 2 == 0) || or (map ('divides' 42)
[3..41]))
⇒ not (True || or (map ('divides' 42)
[3..41]))
⇒ not True
⇒ False

```

The function returns False after seeing that 42 is even, || does not look at its second argument when the first one determines the result to be True. In other words, we have the following strictness property
```

True || ⊥ = True

```

Of course, the above algorithm can be implemented with a custom loop. But the crux of lazy evaluation is that we could formulate the algorithm in a transparent way by reusing the standard foldr and still get early bail-out. Put differently, lazy evaluation is about formulating fast algorithms in a modular way. An extreme example is to use infinite data structures to efficiently modularize generate \(\&\) prune - algorithms. This and many other neat techniques with lazy evaluation will be detailed in the chapter ../LAZINESS \(/{ }^{7}\).

It's neither feasible nor necessary to perform a detailed graph reduction to analyze execution time. Shortcuts are available, like non-strictness or the fact that lazy evaluation will always take fewer reduction steps than eager evaluation. They will be presented in ../GRAPH REDUCTION \(/{ }^{8}\).

\section*{Space}

While execution time is modeled by the number of reduction steps, memory usage is modeled by the size of an expression during evaluation. Unfortunately, it's harder to predict and deviating from the normal course lazy evaluation by more strictness can ameliorate it. More details in ../GRAPH REDUCTION \(/{ }^{9}\). Here, we will present the prototypical example for unexpected space behavior.

\footnotetext{
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/../LAZINESS /
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/../GRAPHREDUCTION/
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/../GRAPHREDUCTION/
}

Naively summing a huge number of integers
```

> foldr (+) 0 [1..1000000]
*** Exception: stack overflow

```
produces a stack overflow. What happens? The evaluation proceeds as follows
```

foldr (+) 0 [1..1000000]
⇒ 1+(foldr (+) 0 [2..1000000])
⇒ 1+(2+(foldr (+) 0 [3..1000000]))
⇒ 1+(2+(3+(foldr (+) 0 [4..1000000]))

```
and so on. We see that the expression grows larger and larger, needing more and more memory. In this case, the memory is allocated on the stack for performing the pending additions after the recursive calls to foldr return. At some point, the memory needed exceeds the maximum possible stack size raising the "stack overflow" error. Don't worry whether it's stack or heap, the thing to keep in mind is that the size of the expression corresponds to the memory used and we see that in general, evaluating foldr (+) 0 [1..n] needs \(O(n)\) memory.

But it should be possible to do it in \(O(1)\) space by keeping an accumulated sum of numbers seen so far, exploiting that + is associative. (Some readers may notice that this means to make the function tail recursive.) This is what foldl does:
```

foldl (+) 0 [1..n]
⇒ foldl (+) (0+1) [2..n]
⇒ foldl (+) ((0+1)+2) [3..n]
⇒ foldl (+) (((0+1)+2)+3) [4..n]

```

But much to our horror, the accumulated sum will not be reduced any further! It will grow on the heap until the end of the list is reached
```

⇒ ... ⇒ foldl (+) ((((0+1)+2)+3)+...) []
⇒ ((((0+1)+2)+3)+...)

```
and subsequent reduction of this huge unevaluated sum will fail with a stack overflow, too. (So, just introducing an accumulating parameter doesn't make it tail recursive.)

The problem is that the unevaluated sum is an overly large representation for a single integer and it's cheaper to evaluate it eagerly. This is what foldl' does:
```

foldl' f z [] = z
foldl' f z (x:xS) = z 'seq` foldl' f (f z x) xS

```

Here, evaluating \(a\) 'seq \({ }^{\text {' }} \mathrm{b}\) will reduce \(a\) to WEAK HEAD NORMAL FORM \({ }^{10}\) before proceeding with the reduction of \(b\). With this, the sum proceeds as

\footnotetext{
10 hTtP://En.WIKIBOOKS.ORG/WIKI/../GRAPHREDUCTION\#WEAKHEADNORMALFORM
}
```

foldl' (+) 0 [1..n]
⇒ foldl' (+) (0+1) [2..n]
⇒ foldl' (+) (1+2) [3..n]
⇒ foldl' (+) (3+3) [4..n]
⇒ foldl' (+) (6+4) [5..n]
⇒ ...

```
in constant space.
For more details and examples, read the chapter ../GRAPH REDUCTION/ \({ }^{11}\).

\subsection*{58.1.3 Low-level Overhead}

Compared to eager evaluation, lazy evaluation adds a considerable overhead, even integers or characters have to be stored as pointers since they might be \&perp;. An array of 1-byte characters is several times more compact than a String = [Char] of similar length. With strictness annotations, unboxed types and automatic strictness analysis, the overhead can be reduced. The Haskell wiki is a good resource HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE \({ }^{12}\) concerning these low-level details, the wikibook currently doesn't cover them.

\subsection*{58.2 Algorithms \& Data Structures}

\subsection*{58.2.1 Algorithms}

While this wikibook is not a general book on algorithms, there are many techniques of writing efficient programs unique to functional programming. The chapter ../ALGORITHM COMPLEXITY/ \({ }^{13}\) recaps the big-O notation and presents a few examples from practice.

In ../LAZINESS/ \({ }^{14}\), the focus is on exploiting lazy evaluation to write efficient algorithms in a modular way.

A common theme of ../PROGRAM DERIVATION/ \({ }^{15}\) and ../EQUATIONAL REASONING/ \({ }^{16}\) is to derive an efficient program from a specification by applying and proving equations like
```

map f . reverse = reverse . map f
filter p . map f = map f . filter (p . f)

```

This quest has given rise to a gemstone, namely a purely algebraic approach to dynamic programming which will be introduced in some chapter with a good name.
```

11 hTTP://En.WIKIBOOKS.ORG/WIKI/../GRAPHREDUCTION/
1 HTTP://WWW. HASKELL.ORG/HASKELLWIKI/PERFORMANCE
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/../ALGORITHMCOMPLEXITY/
HTTP://EN.WIKIBOOKS.ORG/WIKI/../LAZINESS/
HTTP://EN.WIKIBOOKS.ORG/WIKI/../PROGRAMDERIVATION/
HTTP://EN.WIKIBOOKS.ORG/WIKI/../EQUATIONALREASONING/

```

Another equational technique known as fusion or deforestation aims to remove intermediate data structures in function compositions. For instance, the composition on the left hand side of
```

map f. map g=map (f.g)

```
constructs and deconstructs an intermediate list whereas the right hand side is a single pass over the list. The general theme here is to fuse constructor-deconstructor pairs like
```

case (Just y) of { Just x -> f x; Nothing -> ...; } = f y

```

This will be detailed in some chapter with a good name.

\subsection*{58.2.2 Data structures}

Choosing the right data structure is key to success. While lists are common and can lead surprisingly far, they are more a kind of materialized loops than a classical data structure with fast access and updates. Many languages have special support for particular data structures of that kind like arrays in C, hash tables in Perl or lists in LISP. Natively, Haskell favors any kind of tree. But thanks to parametric polymorphism and type classes, any abstract type like balanced binary trees is easy to use and reuse! The chapter ../DATA STRUCTURES/ \({ }^{17}\) details the natural choices of data structures for common problems.

Because Haskell is purely functional, data structures share the common trait of being persistent. This means that older version of a data structure are still available like in
```

foo set = (newset, set)
where newset = insert "bar" set

```

Compared to that, the default in imperative languages is ephemeral, i.e. data is updated in place and old versions are overridden. For example, arrays are ephemeral. That's why they are either immutable or require monads to use in Haskell. Fortunately, many ephemeral structures like queues or heaps have persistent counterparts and the chapter ../DATA STRUCTURES/ \({ }^{18}\) will also gently introduce some design principles in that direction, for instance concerning amortization.

\subsection*{58.3 Parallelism}

The goal of parallelism is to run an algorithm on multiple cores / computers in parallel for faster results. Because Haskell doesn't impose an execution order thanks to its purity, it is well-suited for formulating parallel algorithms.

Currently, parallelism in Haskell is still a research topic and subject to experimentation. There are combinators for controlling the execution order

\footnotetext{
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/../DATASTRUCTURES/
18 HTTP://EN.WIKIBOOKS.ORG/WIKI/../DATASTRUCTURES/
}
, but they are rather fine-grained. Research on a less ambitious but more practical alternative DATA Parallel Haskell \({ }^{19}\) is ongoing.

The chapter ../PARALLELISM/ \({ }^{20}\) is not yet written but is intended to be a gentle introduction to parallel algorithms and current possibilities in Haskell.

\footnotetext{
19 HTTP://HASKELL.ORG/HASKELLWIKI/GHC/DATA_PARALLEL_HASKELL
20 HTTP://EN.WIKIBOOKS.ORG/WIKI/../PARALLELISM/
}

\section*{59 Step by Step Examples}

Goal: Explain optimizations step by step with examples that actually happened.

\subsection*{59.1 Tight loop}
dons: Write Haskell as fast as C: Exploiting strictness, LaZiness and RecurSION. \({ }^{1}\)

\subsection*{59.2 CSV Parsing}

HASKELL-CAFE: ANOTHER NEWbIE PERFORMANCE QUESTION \({ }^{2}\) I hope he doesn't mind if I post his code here, I still have to ask him. -- APFE \(\lambda_{\text {MUS }}{ }^{3}\) 08:46, 18 May 2008 (UTC)
```

type CSV = [[String]]
main = do
args <- getArgs
file <- readFile (head args)
writeFile (head args ++ "2") (processFile (args !!
1) file)
processFile s = writeCSV . doInteraction s . readCSV
doInteraction line csv = insertLine (show line) (length csv - 1) cSv
writeCSV = (\x -> x ++ "\n") . concat . intersperse "\n" .
(map (concat . intersperse "," . (map show)))
insertLine line pos csv = (take pos csv) ++ [readCSVLine line] ++ drop
pos CSV
readCSVLine = read . (\x -> "["++x++"]")
readCSV = map readCSVLine . lines

```

I think there was another cvs parsing thread on the mailing list which I deemed appropriate, but I can't remember.

\footnotetext{
1 HTTP://CGI.CSE.UNSW.EDU.AU/~\{\}DONS/BLOG/2008/05/16\#FAST
2 HTTP://THREAD.GMANE.ORG/GMANE.COMP.LANG.HASKELL.CAFE/40114
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:APFELMUS
}

\subsection*{59.3 Space Leak}
jkff asked about some code in \#haskell which was analyzing a logfile. Basically, it was building a histogram
```

foldl' (\m (x,y) -> insertWith' x (\[y] ys -> y:ys) [y] m) M.empty
[(ByteString.copy foo, ByteString.copy bar) | (foo,bar) <- map
(match regex) lines]

```

The input was a 1GB logfile and the program blew the available memory mainly because the ByteString. copy weren't forced and the whole file lingered around in memory.

\section*{60 Graph reduction}

\subsection*{60.1 Notes and TODOs}
- TODO: Pour lazy evaluation explanation from ../LAZINEss/ \(/{ }^{1}\) into this mold.
- TODO: better section names.
- TODO: ponder the graphical representation of graphs.
- No grapical representation, do it with let . . in. Pro: Reduction are easiest to perform in that way anyway. Cons: no graphic.
- ASCII art / line art similar to the one in Bird\&Wadler? Pro: displays only the relevant parts truly as graph, easy to perform on paper. Cons: Ugly, no large graphs with that.
- Full blown graphs with @-nodes? Pro: look graphy. Cons: nobody needs to know @-nodes in order to understand graph reduction. Can be explained in the implementation section.
- Graphs without @-nodes. Pro: easy to understand. Cons: what about currying?
- ! Keep this chapter short. The sooner the reader knows how to evaluate Haskell programs by hand, the better.
- First sections closely follow Bird\&Wadler

\subsection*{60.2 Introduction}

Programming is not only about writing correct programs, answered by denotational semantics, but also about writing fast ones that require little memory. For that, we need to know how they're executed on a machine, commonly given by operational semantics. This chapter explains how Haskell programs are commonly executed on a real computer and thus serves as foundation for analyzing time and space usage. Note that the Haskell standard deliberately does <em>not</em> give operational semantics, implementations are free to choose their own. But so far, every implementation of Haskell more or less closely follows the execution model of <em>lazy evaluation</em>.

In the following, we will detail lazy evaluation and subsequently use this execution model to explain and exemplify the reasoning about time and memory complexity of Haskell programs.

\subsection*{60.3 Evaluating Expressions by Lazy Evaluation}

\subsection*{60.3.1 Reductions}

Executing a functional program, i.e. evaluating an expression, means to repeatedly apply function definitions until all function applications have been expanded. Take for example the expression

\footnotetext{
1 HTTP://EN.WIKIBOOKS.ORG/WIKI/../LAZINESS/
}
pythagoras 34 together with the definitions
```

 square x = x * x
 pythagoras x y = square x + square y

```

One possible sequence of such reductions is
```

```
pythagoras 3 4
```

```
pythagoras 3 4
    &rArr; square 3 + square 4 (pythagoras)
    &rArr; square 3 + square 4 (pythagoras)
    &rArr; (3*3) + square 4 (square)
    &rArr; (3*3) + square 4 (square)
    &rArr; 9 + square 4 (*)
    &rArr; 9 + square 4 (*)
    &rArr; 9 + (4*4) (square)
    &rArr; 9 + (4*4) (square)
    &rArr; 9 + 16 (*)
    &rArr; 9 + 16 (*)
    &rArr; 25
```

```
    &rArr; 25
```

```

Every reduction replaces a subexpression, called reducible expression or redex for short, with an equivalent one, either by appealing to a function definition like for square or by using a built-in function like (+). An expression without redexes is said to be in normal form. Of course, execution stops once reaching a normal form which thus is the result of the computation.

Clearly, the fewer reductions that have to be performed, the faster the program runs. We cannot expect each reduction step to take the same amount of time because its implementation on real hardware looks very different, but in terms of asymptotic complexity, this number of reductions is an accurate measure.

\subsection*{60.3.2 Reduction Strategies}

There are many possible reduction sequences and the number of reductions may depend on the order in which reductions are performed. Take for example the expression fst (square 3, square 4). One systematic possibility is to evaluate all function arguments before applying the function definition
```

fst (square 3, square 4)
⇒ fst (3*3, square 4) (square)
⇒ fst (9 , square 4) (*)
\&Arr; fst (9 , 4*4) (square)
⇒ fst (9, 16) (*)
⇒ 9 (fst)

```

This is called an innermost reduction strategy and an innermost redex is a redex that has no other redex as subexpression inside.

Another systematic possibility is to apply all function definitions first and only then evaluate arguments:
```

fst (square 3, square 4)
⇒ square 3 (fst)
⇒ 3*3 (square)
⇒ 9 (*)

```
which is named outermost reduction and always reduces outermost redexes that are not inside another redex. Here, the outermost reduction uses fewer reduction steps than the innermost reduction. Why? Because the function fst doesn't need the second component of the pair and the reduction of square 4 was superflous.

\subsection*{60.3.3 Termination}

For some expressions like
```

loop = 1 + loop

```
no reduction sequence may terminate and program execution enters a neverending loop, those expressions do not have a normal form. But there are also expressions where some reduction sequences terminate and some do not, an example being
```

fst (42, loop)
⇒ 42 (fst)
fst (42, loop)
⇒ fst (42,1+loop) (loop)
⇒ fst (42,1+(1+loop)) (loop)
⇒ ...

```

The first reduction sequence is outermost reduction and the second is innermost reduction which tries in vain to evaluate the loop even though it is ignored by fst anyway. The ability to evaluate function arguments only when needed is what makes outermost optimal when it comes to termination:

Theorem (Church Rosser II): If there is one terminating reduction, then outermost reduction will terminate, too.

\subsection*{60.3.4 Graph Reduction}

Despite the ability to discard arguments, outermost reduction doesn't always take fewer reduction steps than innermost reduction:
```

square (1+2)
⇒ (1+2)*(1+2) (square)
⇒ (1+2)*3 (+)
⇒ 3*3 (+)
⇒ 9 (*)

```

Here, the argument \((1+2)\) is duplicated and subsequently reduced twice. But because it is one and the same argument, the solution is to share the reduction \((1+2) \& r A r r ; 3\) with all other incarnations of this argument. This can be achieved by representing expressions as <em>graphs</em>. For example,
```

↓

```
\&loz; * \&loz; (1+2)
represents the expression \((1+2) *(1+2)\). Now, the outermost graph reduction of square \((1+2)\) proceeds as follows
```

square (1+2)
⇒ (square)
| | ↓ (1+2)
rArr; (+)
| | ↓
◊ * ◊ 3
⇒ 9
(*)

```
and the work has been shared. In other words, outermost graph reduction now reduces every argument at most once. For this reason, it always takes fewer reduction steps than the innermost reduction, a fact we will prove when REASONING ABOUT TIME \({ }^{2}\).

Sharing of expressions is also introduced with let and where constructs. For instance, consider HERON'S FORMULA \({ }^{3}\) for the area of a triangle with sides \(a, b\) and \(c\) :
```

area a b c = let s = (a+b+c)/2 in
sqrt (s*(s-a)* (s-b)* (s-c))

```

Instantiating this to an equilateral triangle will reduce as
```

area 1 1 1
⇒ (area)
sqrt (◊*(◊-a)*(◊-b)*(◊-c)) ((1+1+1)/2)
⇒ (+),(+),(/)
| | | | ↓
sqrt (◊*(◊-a)*(◊-b)*(◊-c)) 1.5
⇒
⇒
0.433012702

```
which is \(\sqrt{3} / 4\). Put differently, let-bindings simply give names to nodes in the graph. In fact, one can dispense entirely with a graphical notation and solely rely on let to mark sharing and express a graph structure. \({ }^{4}\)

Any implementation of Haskell is in some form based on outermost graph reduction which thus provides a good model for reasoning about the asympotic complexity of time and memory alloca-

\footnotetext{
HTTP://EN.WIKIBOOKS.ORG/WIKI/\#REASONINGABOUTTIME
htte://En.WIKIPEDIA.ORG/WIKI/HERON'SFORMULA
\(4 \quad\{\) \{cite journal | author = John Maraist, Martin Odersky, and Philip Wadler \(\mid\) year \(=1998 \mid\) month \(=\) May \(\mid\) title \(=\) The call-by-need lambda calculus \(\mid\) journal \(=\) Journal of Functional Programming \(\mid\) volume \(=8 \mid\) issue \(=3 \mid\) pages \(=\) 257-317 | url = http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html\#need-journal \}\}
}
tion. The number of reduction steps to reach normal form corresponds to the execution time and the size of the terms in the graph corresponds to the memory used.

\subsection*{60.3.5 Pattern Matching}

So far, our description of outermost graph reduction is still underspecified when it comes to pattern matching and data constructors. Explaining these points will enable the reader to trace most cases of the reduction strategy that is commonly the base for implementing non-strict functional languages like Haskell. It is called call-by-need or lazy evaluation in allusion to the fact that it "lazily" postpones the reduction of function arguments to the last possible moment. Of course, the remaining details are covered in subsequent chapters.

To see how pattern matching needs specification, consider for example the boolean disjunction
```

or True y = True
or False y = y

```
and the expression
```

or (1==1) loop

```
with a non-terminating loop \(=\) not loop. The following reduction sequence
```

or (1==1) loop
⇒ or (1==1) (not loop) (loop)
⇒ or (1==1) (not (not loop)) (loop)
⇒ ...

```
only reduces outermost redexes and therefore is an outermost reduction. But
```

or (1==1) loop
⇒ or True loop (or)
⇒ True

```
makes much more sense. Of course, we just want to apply the definition of or and are only reducing arguments to decide which equation to choose. This intention is captured by the following rules for pattern matching in Haskell:
- Left hand sides are matched from top to bottom
- When matching a left hand side, arguments are matched from left to right
- Evaluate arguments only as much as needed to decide whether they match or not.

Thus, for our example or ( \(1==1\) ) loop, we have to reduce the first argument to either True or False, then evaluate the second to match a variable y pattern and then expand the matching function definition. As the match against a variable always succeeds, the second argument will not be reduced at all. It is the second reduction section above that reproduces this behavior.

With these preparations, the reader should now be able to evaluate most Haskell expressions. Here are some random encounters to test this ability:

\subsection*{60.3.6 Higher Order Functions}

The remaining point to clarify is the reduction of higher order functions and currying. For instance, consider the definitions
```

id x = x
a = id (+1) 41

```
```

twice f = f . f
b = twice (+1) (13*3)

```
where both id and twice are only defined with one argument. The solution is to see multiple arguments as subsequent applications to one argument, this is called currying
```

a = (id (+1)) 41
b = (twice (+1)) (13*3)

```

To reduce an arbitrary application expression \(_{1}\) expression \(_{2}\), call-by-need first reduce expression \(_{1}\) until this becomes a function whose definition can be unfolded with the argument expression \({ }_{2}\). Hence, the reduction sequences are
```

a
⇒ (id (+1)) 41 (a)
⇒ (+1) 41 (id)
⇒ 42 (+)
b
⇒ (twice (+1)) (13*3) (b)
⇒ ((+1).(+1)) (13*3) (twice)
⇒ (+1) ((+1) (13*3)) (.)
⇒ (+1) ((+1) 39) (*)
⇒ (+1) 40 (+)
⇒ 41 (+)

```

Admittedly, the description is a bit vague and the next section will detail a way to state it clearly.
While it may seem that pattern matching is the workhorse of time intensive computations and higher order functions are only for capturing the essence of an algorithm, functions are indeed useful as data structures. One example are difference lists ([a] -> [a]) that permit concatenation in \(O(1)\) time, another is the representation of a stream by a fold. In fact, all data structures are represented as functions in the pure lambda calculus, the root of all functional programming languages.

Exercises! Or not? Diff-Lists Best done with foldl (++) but this requires knowledge of the fold example. Oh, where do we introduce the foldl VS. foldr example at all? Hm, Bird\&Wadler sneak in an extra section "Meet again with fold" for the (++) example at the end of "Controlling reduction order and space requirements" :-/ The complexity of \((++)\) is explained when arguing about reverse.

\subsection*{60.3.7 Weak Head Normal Form}

To formulate precisely how lazy evaluation chooses its reduction sequence, it is best to abandon equational function definitions and replace them with an expression-oriented approach. In other words, our goal is to translate function definitions like \(f(x: x s)=\ldots\) into the form \(f=\) expression. This can be done with two primitives, namely case-expressions and lambda abstractions.

In their primitive form, case-expressions only allow the discrimination of the outermost constructor. For instance, the primitive case-expression for lists has the form
```

case expression of
[] -> ...
x:xS -> ...

```

Lambda abstractions are functions of one parameter, so that the following two definitions are equivalent
```

f x = expression
f = \x -> expression

```

Here is a translation of the definition of zip
```

zip :: [a] -> [a] -> [(a,a)]
zip [] ys = []
zip xs [] = []
zip (x:x\mp@subsup{s}{}{\prime})}(y:y\mp@subsup{s}{}{\prime})=(x,y):zip xs' ys

```
to case-expressions and lambda-abstractions:
```

zip = \xs -> \ys ->
case xs of
[] -> []
x:xs' ->
case ys of
[] -> []
y:ys' -> (x,y):zip xs' ys'

```

Assuming that all definitions have been translated to those primitives, every redex now has the form of either
- a function application ( \(\backslash\) variable->expression \({ }_{1}\) ) expression \({ }_{2}\)
- or a case-expression case expression of \{ ... \}
<em>lazy evaluation</em>.
Weak Head Normal Form:An expression is in weak head normal form, iff it is either
- a constructor (eventually applied to arguments) like True, Just (square 42) or (:) 1
- a built-in function applied to too few arguments (perhaps none) like (+) 2 or sqrt.
- or a lambda abstraction \(\backslash \mathrm{x}\)-> expression.
functions types cannot be pattern matched anyway, but the devious seq can evaluate them to WHNF nonetheless. "weak" = no reduction under lambdas. "head" = first the function application, then the arguments.

\subsection*{60.3.8 Strict and Non-strict Functions}

A non-strict function doesn't need its argument. A strict function needs its argument in WHNF, as long as we do not distinguish between different forms of non-termination ( \(\mathrm{f}=100 \mathrm{p}\) doesn't need its argument, for example).

\subsection*{60.4 Controlling Space}

NOTE: The chapter ../STRICTNESS \({ }^{5}\) is intended to elaborate on the stuff here.
NOTE: The notion of strict function is to be introduced before this section.
Now's the time for the space-eating fold example:
foldl (+) 0 [1..10]
Introduce seq and \(\$!\) that can force an expression to WHNF. => foldl'.
Tricky space leak example:
( \(x\) xs -> head xs + last xs) [1..n] ( \(\backslash x s\)-> last xs + head xs) [1..n]
The first version runs on \(O(1)\) space. The second in \(O(n)\).

\subsection*{60.4.1 Sharing and CSE}

NOTE: overlaps with section about time. Hm, make an extra memoization section?
How to share
foo \(x y=--s\) is not shared foo \(x=\mid y->s+y\) where \(s=\) expensive \(x--s\) is shared
"Lambda-lifting", "Full laziness". The compiler should not do full laziness.
A classic and important example for the trade between space and time:
sublists [] \(={ }^{6}\) sublists (x:xs) = sublists \(x s++\) map ( \(x\) :) (sublists \(x s\) ) sublists \({ }^{\prime}(x: x s)=\) let \(y s=\) sublists' \(x s\) in ys ++ map ( \(x\) :) ys

That's why the compiler should not do common subexpression elimination as optimization. (Does GHC?).

\footnotetext{
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/../STRICTNESS
6 Kapitel ?? auf Seite? ?
}

\subsection*{60.4.2 Tail recursion}

NOTE: Does this belong to the space section? I think so, it's about stack space.
Tail recursion in Haskell looks different.

\subsection*{60.5 Reasoning about Time}

Note: introducing strictness before the upper time bound saves some hassle with explanation?

\subsection*{60.5.1 Lazy eval < Eager eval}

When reasoning about execution time, naively performing graph reduction by hand to get a clue on what's going is most often infeasible. In fact, the order of evaluation taken by lazy evaluation is difficult to predict by humans, it is much easier to trace the path of eager evaluation where arguments are reduced to normal form before being supplied to a function. But knowing that lazy evaluation always performs less reduction steps than eager evaluation (present the proof!), we can easily get an upper bound for the number of reductions by pretending that our function is evaluated eagerly.

Example: or \(=\) foldr (||) False isPrime \(n=\) not \(\$\) or \(\$\) map ( \(k->n ' \bmod ^{\prime} k==0\) ) [2..n-1]
=> eager evaluation always takes n steps, lazy won't take more than that. But it will actually take fewer.

\subsection*{60.5.2 Throwing away arguments}

Time bound exact for functions that examine their argument to normal form anyway. The property that a function needs its argument can concisely be captured by denotational semantics:
f \&perp; = \&perp;
Argument in WHNF only, though. Operationally: non-termination -> non-termination. (this is an approximation only, though because f anything = \&perp; doesn't "need" its argument). Nonstrict functions don't need their argument and eager time bound is not sharp. But the information whether a function is strict or not can already be used to great benefit in the analysis.
isPrime \(n=\) not \(\$\) or \(\$\left(n^{\prime} \bmod ^{\prime} 2=0\right):\left(n^{\prime} \bmod ‘ 3==0\right): . .\).
It's enough to know or True \&perp; = True.
Other examples:
- foldr (:) [] vs. foldl (flip (:)) [] with \&perp;.
- Can head . mergesort be analyzed only with \&perp;? In any case, this example is too involed and belongs to ../ LAZINESS \({ }^{7}\).

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/../LAZINESS

\subsection*{60.5.3 Persistence \& Amortisation}

NOTE: this section is better left to a data structures chapter because the subsections above cover most of the cases a programmer not focussing on data structures / amortization will encounter.

Persistence \(=\) no updates in place, older versions are still there. Amortisation \(=\) distribute unequal running times across a sequence of operations. Both don't go well together in a strict setting. Lazy evaluation can reconcile them. Debit invariants. Example: incrementing numbers in binary representation.

\subsection*{60.6 Implementation of Graph reduction}

Small talk about G-machines and such. Main definition:
closure \(=\) thunk \(=\) code/data pair on the heap. What do they do? Consider \((\lambda x . \lambda y . x+y) 2\). This is a function that returns a function, namely \(\lambda y .2+y\) in this case. But when you want to compile code, it's prohibitive to actually perform the substitution in memory and replace all occurrences of \(x\) by 2. So, you return a closure that consists of the function code \(\lambda y \cdot x+y\) and an environment \(\{x=2\}\) that assigns values to the free variables appearing in there.

GHC (?, most Haskell implementations?) avoid free variables completely and use supercombinators. In other words, they're supplied as extra-parameters and the observation that lambdaexpressions with too few parameters don't need to be reduced since their WHNF is not very different.

Note that these terms are technical terms for implementation stuff, lazy evaluation happily lives without them. Don't use them in any of the sections above.

\subsection*{60.7 References}
<references/>
- \{ \{cite book
```

|title=Introduction to Functional Programming using Haskell
|last=Bird|first=Richard
|publisher=Prentice Hall
| year=1998
|id=ISBN 0-13-484346-0
}}

```
- \{ \{cite book
```

|title=The Implementation of Functional Programming Languages
|last=Peyton-Jones|first=Simon
|publisher=Prentice Hall
| year=1987
|url=http://research.microsoft.com/~ simonpj/papers/slpj-book-1987/
}}

```

\section*{61 Laziness}

\subsection*{61.1 Introduction}

By now you are aware that Haskell uses lazy evaluation in the sense that nothing is evaluated until necessary. The problem is what exactly does "until necessary" mean? In this chapter, we will see how lazy evaluation works (how little black magic there is), what exactly it means for functional programming, and how to make the best use of it. But first, let's consider the reasons and implications of lazy evaluation. At first glance, it is tempting to think that lazy evaluation is meant to make programs more efficient. After all, what can be more efficient than not doing anything? This is only true in a superficial sense. In practice, laziness often introduces an overhead that leads programmers to hunt for places where they can make their code more strict. The real benefit of laziness is not merely that it makes things efficient, but that it makes the right things'efficient enough. Lazy evaluation allows us to write simple, elegant code which would simply not be practical in a strict environment.

\subsection*{61.1.1 Nonstrictness versus Laziness}

There is a slight difference between laziness and nonstrictness. Nonstrict semantics refers to a given property of Haskell programs that you can rely on: nothing will be evaluated until it is needed. Lazy evaluation is how you implement nonstrictness, using a device called thunks which we explain in the next section. However, these two concepts are so closely linked that it is beneficial to explain them both together: a knowledge of thunks is useful for understanding nonstrictness, and the semantics of nonstrictness explains why you use lazy evaluation in the first place. As such, we introduce the concepts simultaneously and make no particular effort to keep them from intertwining, with the exception of getting the terminology right.

\subsection*{61.2 Thunks and Weak head normal form}

There are two principles you need to understand to get how programs execute in Haskell. First, we have the property of nonstrictness: we evaluate as little as possible for as long as possible. Second, Haskell values are highly layered; 'evaluating' a Haskell value could mean evaluating down to any one of these layers. To see what this means, let's walk through a few examples using a pair.
```

let (x, y) = (length [1..5], reverse "olleh") in ...

```
(We'll assume that in the 'in' part, we use x and y somewhere. Otherwise, we're not forced to evaluate the let-binding at all; the right-hand side could have been undefined and it would still
work if the 'in' part doesn't mention x or y . This assumption will remain for all the examples in this section.) What do we know about x ? Looking at it we can see it's pretty obvious x is 5 and y "hello"</code>, but remember the first principle: we don't want to evaluate the calls to length and reverse until we're forced to. So okay, we can say that x and y are both thunks: that is, they are unevaluated values with a recipe that explains how to evaluate them. For example, for x this recipe says 'Evaluate length [1..5]'. However, we are actually doing some pattern matching on the left hand side. What would happen if we removed that?
```

let z = (length [1..5], reverse "olleh") in ...

```

Although it's still pretty obvious to us that z is a pair, the compiler sees that we're not trying to deconstruct the value on the right-hand side of the ' \(=\) ' sign at all, so it doesn't really care what's there. It lets \(z\) be a thunk on its own. Later on, when we try to use \(z\), we'll probably need one or both of the components, so we'll have to evaluate \(z\), but for now, it can be a thunk.

Above, we said Haskell values were layered. We can see that at work if we pattern match on \(z\) :
```

let z = (length [1..5], reverse "olleh")
(n, s) = z
in ...

```

After the first line has been executed, z is simply a thunk. We know nothing about the sort of value it is because we haven't been asked to find out yet. In the second line, however, we pattern match on \(z\) using a pair pattern. The compiler thinks 'I better make sure that pattern does indeed match \(z\), and in order to do that, I need to make sure \(z\) is a pair.' Be careful, though. We're not as of yet doing anything with the component parts (the calls to length and reverse), so they can remain unevaluated. In other words, z , which was just a thunk, gets evaluated to something like (*thunk*, *thunk*), and \(n\) and \(s\) become thunks which, when evaluated, will be the component parts of the original z .

Let's try a slightly more complicated pattern match:
```

let z = (length [1..5], reverse "olleh")
(n,s) = z
'h':ss = s
in ...

```


Abb. 36: Evaluating the value (4, [1, 2]) step by step. The first stage is completely unevaluated; all subsequent forms are in WHNF, and the last one is also in normal form.

The pattern match on the second component of z causes some evaluation. The compiler wishes to check that the ' h ' : ss pattern matches the second component of the pair. So, it:
- Evaluates the top level of \(s\) to ensure it's a cons cell: \(s=\) *thunk* : *thunk*. (If s had been an empty list we would encounter an pattern match failure error at this point.)
- Evaluates the first thunk it just revealed to make sure it's 'h': s = 'h' : *thunk*
- The rest of the list stays unevaluated, and ss becomes a thunk which, when evaluated, will be the rest of this list.

So it seems that we can 'partially evaluate' (most) Haskell values. Also, there is some sense of the minimum amount of evaluation we can do. For example, if we have a pair thunk, then the minimum amount of evaluation takes us to the pair constructor with two unevaluated components: (*thunk*, *thunk*). If we have a list, the minimum amount of evaluation takes us either to a cons cell *thunk* : *thunk* or an empty list []. Note that in the second case, no more
evaluation can be performed on the value; it is said to be in normal form. If we are at any of the intermediate steps so that we've performed at least some evaluation on a value, it is in weak head normal form (WHNF). (There is also a 'head normal form', but it's not used in Haskell.) Fully evaluating something in WHNF reduces it to something in normal form; if at some point we needed to, say, print \(z\) out to the user, we'd need to fully evaluate it, including those calls to length and reverse, to (5, "hello"), where it is in normal form. Performing any degree of evaluation on a value is sometimes called forcing that value.

Note that for some values there is only one. For example, you can't partially evaluate an integer. It's either a thunk or it's in normal form. Furthermore, if we have a constructor with strict components (annotated with an exclamation mark, as with data MaybeS a = NothingS | JustS !a), these components become evaluated as soon as we evaluate the level above. I.e. we can never have JustS *thunk*, as soon as we get to this level the strictness annotation on the component of JustS forces us to evaluate the component part.

So in this section we've explored the basics of laziness. We've seen that nothing gets evaluated until it is needed (in fact the only place that Haskell values get evaluated is in pattern matches, and inside certain primitive IO functions), and that this principle even applies to evaluating values - we do the minimum amount of work on a value that we need to compute our result.

\subsection*{61.3 Lazy and strict functions}

Functions can be lazy or strict 'in an argument'. Most functions need to do something with their arguments, and this will involve evaluating these arguments to different levels. For example, length needs to evaluate only the cons cells in the argument you give it, not the contents of those cons cells - length *thunk* might evaluate to something like length (*thunk* : *thunk* : *thunk* : []), which in turn evaluates to 3 . Others need to evaluate their arguments fully, like (length . show). If you had length \$ show *thunk*, there's no way you can do anything other than evaluate that thunk to normal form.

So some functions evaluate their arguments more fully than others. Given two functions of one parameter, \(f\) and \(g\), we say \(f\) is stricter than \(g\) if \(f x\) evaluates \(x\) to a deeper level than \(g x\). Often we only care about WHNF, so a function that evaluates its argument to at least WHNF is called strict and one that performs no evaluation is lazy. What about functions of more than one parameter? Well, we can talk about functions being strict in one parameter, but lazy in another. For example, given a function like the following:
```

f x y = length \$ show x

```

Clearly we need to perform no evaluation on \(y\), but we need to evaluate x fully to normal form, so f is strict in its first parameter but lazy in its second.

TODO: explain that it's also about how much of the input we need to consume before we can start producing output. E.g. foldr (:) [] and foldl (flip (:)) [] both evaluate their arguments to the same level of strictness, but foldr can start producing values straight away, whereas foldl needs to evaluate cons cells all the way to the end before it starts anything.

\subsection*{61.3.1 Black-box strictness analysis}

\section*{Strict function}


\section*{Lazy function}


\section*{No error}


Abb. 37: If \(f\) returns an error when passed undefined, it must be strict. Otherwise, it's lazy.

Imagine we're given some function \(f\) which takes a single parameter. We're not allowed to look at its source code, but we want to know whether \(f\) is strict or not. How might we do this? Probably the easiest way is to use the standard Prelude value undefined. Forcing undefined to any level of evaluation will halt our program and print an error, so all of these print errors:
```

let (x, y) = undefined in }
length undefined
head undefined
JustS undefined -- Using MaybeS as defined in the last section

```

So if a function is strict, passing it undefined will result in an error. Were the function lazy, passing it undefined will print no error and we can carry on as normal. For example, none of the following produce errors:
```

let (x, y) = (4, undefined) in x
length [undefined, undefined, undefined]
head (4 : undefined)
Just undefined

```

So we can say that \(f\) is a strict function if, and only if, \(f\) unde \(f i n e d\) results in an error being printed and the halting of our program.

\subsection*{61.3.2 In the context of nonstrict semantics}

What we've presented so far makes sense until you start to think about functions like id. Is id strict? Our gut reaction is probably to say "No! It doesn't evaluate its argument, therefore its lazy". However, let's apply our black-box strictness analysis from the last section to id. Clearly, id undefined is going to print an error and halt our program, so shouldn't we say that id is strict? The reason for this mixup is that Haskell's nonstrict semantics makes the whole issue a bit murkier.

Nothing gets evaluated if it doesn't need to be, according to nonstrictness. In the following code, will length undefined be evaluated?
```

[4, 10, length undefined, 12]

```

If you type this into GHCi, it seems so, because you'll get an error printed. However, our question was something of a trick one; it doesn't make sense to say whether a value gets evaluated, unless we're doing something to this value. Think about it: if we type in head [1, 2, 3] into GHCi, the only reason we have to do any evaluation whatsoever is because GHCi has to print us out the result. Typing [4, 10, length undefined, 12] again requires GHCi to print that list back to us, so it must evaluate it to normal form. In your average Haskell program, nothing at all will be evaluated until we come to perform the IO in main. So it makes no sense to say whether something is evaluated or not unless we know what it's being passed to, one level up.

So when we say "Does \(f x\) force \(x\) ?" what we really mean is "Given that we're forcing \(f x\), does \(x\) get forced as a result?". Now we can turn our attention back to id. If we force id \(x\) to normal form, then x will be forced to normal form, so we conclude that id is strict. id itself doesn't evaluate its argument, it just hands it on to the caller who will. One way to see this is in the following code:
```

-- We evaluate the right-hand of the let-binding to WHNF by
pattern-matching
-- against it.
let (x, y) = undefined in x -- Error, because we force undefined.
let (x, y) = id undefined in x -- Error, because we force undefined.

```
id doesn't "stop" the forcing, so it is strict. Contrast this to a clearly lazy function, const \((3,4)\) :
```

let (x, y) = undefined in x -- Error, because we force undefined.
let (x, y) = const (3,4) undefined -- No error, because const (3, 4)
is lazy.

```

\subsection*{61.3.3 The denotational view on things}

If you're familiar with denotational semantics (perhaps you've read the WIKIBOOK CHAPTER \({ }^{1}\) on it?), then the strictness of a function can be summed up very succinctly:
\[
f \perp=\perp \quad \Leftrightarrow \quad f \text { is strict }
\]

Assuming that you say that everything with type forall a. a, including undefined, error "any string", throw and so on, has denotation \&perp;.

\subsection*{61.4 Lazy pattern matching}

You might have seen pattern matches like the following in Haskell sources.
The question is: what does the tilde sign ( \({ }^{( }\)) mean in the above pattern match? \({ }^{\sim}\) makes a lazy pattern or irrefutable pattern. Normally, if you pattern match using a constructor as part of the pattern, you have to evaluate any argument passed into that function to make sure it matches the pattern. For example, if you had a function like the above, the third argument would be evaluated when you call the function to make sure the value matches the pattern. (Note that the first and second arguments won't be evaluated, because the patterns \(f\) and \(g\) match anything. Also it's worth noting that the components of the tuple won't be evaluated: just the 'top level'. Try let \(f\) (Just x) \(=1\) in \(f\) (Just undefined) to see the this.)

However, prepending a pattern with a tilde sign delays the evaluation of the value until the component parts are actually used. But you run the risk that the value might not match the pattern you're telling the compiler 'Trust me, I know it'll work out'. (If it turns out it doesn't match the pattern, you get a runtime error.) To illustrate the difference:
In the first example, the value is evaluated because it has to match the tuple pattern. You evaluate undefined and get undefined, which stops the proceedings. In the latter example, you don't bother evaluating the parameter until it's needed, which turns out to be never, so it doesn't matter you passed it undefined. To bring the discussion around in a circle back to ( \({ }^{* * *)}\) :
If the pattern weren't irrefutable, the example would have failed.

\subsection*{61.4.1 When does it make sense to use lazy patterns?}

Essentially, when you only have the single constructor for the type, e.g. tuples. Multiple equations won't work nicely with irrefutable patterns. To see this, let's examine what would happen were we to make head have an irrefutable pattern:

The fact we're using one of these patterns tells us not to evaluate even the top level of the argument until absolutely necessary, so we don't know whether it's an empty list or a cons cell. As we're using an irrefutable pattern for the first equation, this will match, and the function will always return undefined.

\footnotetext{
1 Kapitel 53 auf Seite 277
}

\subsection*{61.5 Benefits of nonstrict semantics}

We've been explaining lazy evaluation so far, how nonstrict semantics are actually implemented in terms of thunks. But why is Haskell a nonstrict language in the first place? What advantages are there? In this section, we give some of the benefits of nonstrictness.

\subsection*{61.5.1 Separation of concerns without time penality}

Lazy evaluation encourages a kind of "what you see is what you get" mentality when it comes to coding. For example, let's say you wanted to find the lowest three numbers in a long list. In Haskell this is achieved extremely naturally: take 3 (sort xs). However that code in a strict language would be a very bad idea! It would involve computing the entire sorted list, then chopping off all but the first three elements. However, with lazy evaluation we stop once we've sorted the list up to the third element, so this natural definition turns out to be efficient, too (depending on the implementation of sort).

To give a second example, the function ISINFIXOF \({ }^{2}\) from Data.List allows you to see if one string is a substring of another string. It's easily definable as:
```

isInfixOf :: Eq a => [a] -> [a] -> Bool
isInfixOf x y = any (isPrefixOf x) (tails y)

```

Again, this would be suicide in a strict language as to compute all the tails of a list would be very time-consuming. However here we only compute as many as is necessary: once we've found one that x is a prefix of we can stop and return True once away, "shortcutting" the rest of the work. In fact there is a further advantage: we can use an infinite list for \(y\). So, for example, finding out whether a given list is a sequence of consecutive natural numbers is easy: isInfix0f xs [1..]. FIXME: this doesn't work because if xs is NOT a sequence of consecutive natural numbers, the function isInfixOf will run endlessly. ENDFIXME
There are many more examples along these lines. \({ }^{3}\) So we can write code that looks and feels natural but doesn't actually incur any time penalty. As one of the highest aims of programming is to write code that is maintainable and clear, this is a big bonus!

However, as always in Computer Science (and in life), a tradeoff exists (in particular, a space-time tradeoff). Using a thunk instead of a plain Int, for a trivial calculation like 2+2, can be a waste. For more examples, see the page on ../STRICTNESS \({ }^{4}\).

\subsection*{61.5.2 Improved code reuse}

\author{
TODO: integrate in. \\ Maybe the above TODO talks about the above section, doesn't it?
}

2 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-\{\}LIST.HTML\#V\% 3AISINFIXOF
3 In general expressions like prune . generate, where generate produces a list of items and prune cuts them down, will be much more efficient in a nonstrict language.
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/../STRICTNESS

Often code reuse is far better.
To show an example, we take again (but in more detail) IS InFIXOF \({ }^{5}\) from Data.List. Let's look at the full definition

Where any, isPrefix0f and tails are the functions taken from the Data.List library. This function determines if its first parameter, \(x\) occurs as a subsequence of its second, \(y\); when applied on String's (i.e. [Char]), it checks if \(x\) is a substring of \(y\). Read in a strict way, it forms the list of all the tails of \(y\), then checks them all to see if any of them have \(x\) as a prefix. In a strict language, writing this function this way (relying on the already-written programs any, isPrefix0f, and tails) would be silly, because it would be far slower than it needed to be. You'd end up doing direct recursion again, or in an imperative language, a couple of nested loops. You might be able to get some use out of isPrefix0f, but you certainly wouldn't use tails. You might be able to write a usable shortcutting any, but it would be more work, since you wouldn't want to use foldr to do it.

Now, in a lazy language, all the shortcutting is done for you. You don't end up rewriting foldr to shortcut when you find a solution, or rewriting the recursion done in tails so that it will stop early again. You can reuse standard library code better. Laziness isn't just a constant-factor speed thing, it makes a qualitative impact on the code which is reasonable to write. In fact, it's commonplace to define infinite structures, and then only use as much as is needed, rather than having to mix up the logic of constructing the data structure with code that determines whether any part is needed. Code modularity is increased, as laziness gives you more ways to chop up your code into small pieces, each of which does a simple task of generating, filtering, or otherwise manipulating data.

Why Functional Programming Matters \({ }^{6}\) - largely focuses on examples where laziness is crucial, and provides a strong argument for lazy evaluation being the default.

\subsection*{61.5.3 Infinite data structures}

\section*{Examples:}
fibs = 1:1:zipWith (+) fibs (tail fibs) "rock-scissors-paper" example from Bird\&Wadler prune . generate

Infinite data structures usually tie a knot, too, but the Sci-Fi-Explanation of that is better left to the next section. One could move the next section before this one but I think that infinite data structures are simpler than tying general knots

\subsection*{61.6 Common nonstrict idioms}

\subsection*{61.6.1 Tying the knot}

\section*{More practical examples? repMin}

\footnotetext{
5 http://hASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-\{\}LIST. HTML\#V\% 3AISInfixOf
6 HTTP://WWW.MD.CHALMERS.SE/~\{\}RJMH/PAPERS/WHYFP.HTML
}

Sci-Fi-Explanation: "You can borrow things from the future as long as you don't try to change them". Advanced: the "Blueprint"-technique. Examples: the one from the haskellwiki, the one from the mailing list.

At first a pure functional language seems to have a problem with circular data structures. Suppose I have a data type like this:
```

data Foo a = Foo {value :: a, next :: Foo a}

```

If I want to create two objects "x" and " \(y\) " where "x" contains a reference to " \(y\) " and " \(y\) " contains a reference to " \(x\) " then in a conventional language this is straightforward: create the objects and then set the relevant fields to point to each other:
```

_- Not Haskell code
x := new Foo;
y := new Foo;
x.value := 1;
x.next := y;
y.value := 2
y.next := x;

```

In Haskell this kind of modification is not allowed. So instead we depend on lazy evaluation:
```

circularFoo :: Foo Int
circularFoo = x
where
x = Foo 1 y
y = Foo 2 x

```

This depends on the fact that the "Foo" constructor is a function, and like most functions it gets evaluated lazily. Only when one of the fields is required does it get evaluated.

It may help to understand what happens behind the scenes here. When a lazy value is created, for example by a call to "Foo", the compiler generates an internal data structure called a "thunk" containing the function call and arguments. When the value of the function is demanded the function is called, as you would expect. But then the thunk data structure is replaced with the return value. Thus anything else that refers to that value gets it straight away without the need to call the function.
(Note that the Haskell language standard makes no mention of thunks: they are an implementation mechanism. From the mathematical point of view this is a straightforward example of mutual recursion)

So when I call "circularFoo" the result "x" is actually a thunk. One of the arguments is a reference to a second thunk representing " \(y\) ". This in turn has a reference back to the thunk representing "x". If I then use the value "next \(x\) " this forces the " \(x\) " thunk to be evaluated and returns me a reference to the " \(y\) " thunk. If I use the value "next \$ next \(x\) " then I force the evaluation of both thunks. So now both thunks have been replaced with the actual "Foo" structures, referring to each other. Which is what we wanted.

This is most often applied with constructor functions, but it isn't limited just to constructors. You can just as readily write:
```

x = f y
y = g x

```

The same logic applies.

\subsection*{61.6.2 Memoization, Sharing and Dynamic Programming}

Dynamic programming with immutable arrays. DP with other finite maps, Hinze's paper "Trouble shared is Trouble halved". Let-floating \(\backslash \mathrm{x}->\) let \(\mathrm{z}=\mathrm{foo} \mathrm{x}\) in \(\backslash \mathrm{y}\)-> ... .

\subsection*{61.7 Conclusions about laziness}

Move conclusions to the introduction?
- Can make qualitative improvements to performance!
- Can hurt performance in some other cases.
- Makes code simpler.
- Makes hard problems conceivable.
- Allows for separation of concerns with regard to generating and processing data.

\subsection*{61.8 Notes}
<references />

\subsection*{61.9 References}
- Laziness on the Haskell wiki \({ }^{7}\)
- Lazy evaluation tutorial on the Haskell wiki \({ }^{8}\)

\footnotetext{
7 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE/LAZINESS
8 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/HASKELL/LAZY_EVALUATION
}

\section*{62 Strictness}

\subsection*{62.1 Difference between strict and lazy evaluation}

Strict evaluation, or eager evaluation, is an evaluation strategy where expressions are evaluated as soon as they are bound to a variable. For example, with strict evaluation, when \(x=3 * 7\) is read, \(3 * 7\) is immediately computed and 21 is bound to \(x\). Conversely, with LAZY Evaluation \({ }^{1}\) values are only computed when they are needed. In the example \(\mathrm{x}=3 * 7,3 * 7\) isn't evaluated until it's needed, like if you needed to output the value of x .

\subsection*{62.2 Why laziness can be problematic}

Lazy evaluation often involves objects called thunks. A thunk is a placeholder object, specifying not the data itself, but rather how to compute that data. An entity can be replaced with a thunk to compute that entity. When an entity is copied, whether or not it is a thunk doesn't matter - it's copied as is (on most implementations, a pointer to the data is created). When an entity is evaluated, it is first checked if it is thunk; if it's a thunk, then it is executed, otherwise the actual data is returned. It is by the magic of thunks that laziness can be implemented.

Generally, in the implementation the thunk is really just a pointer to a piece of (usually static) code, plus another pointer to the data the code should work on. If the entity computed by the thunk is larger than the pointer to the code and the associated data, then a thunk wins out in memory usage. But if the entity computed by the thunk is smaller, the thunk ends up using more memory.

As an example, consider an infinite length list generated using the expression iterate (+1) 0 . The size of the list is infinite, but the code is just an add instruction, and the two pieces of data, 1 and 0 , are just two Integers. In this case, the thunk representing that list takes much less memory than the actual list, which would take infinite memory.

\footnotetext{
1 Kapitel 61 auf Seite 355
}

However, as another example consider the number generated using the expression \(4 * 13+2\). The value of that number is 54 , but in thunk form it is a multiply, an add, and three numbers. In such a case, the thunk loses in terms of memory.

Often, the second case above will consume so much memory that it will consume the entire heap and force the garbage collector. This can slow down the execution of the program significantly. And that, in fact, is the main reason why laziness can be problematic.

Additionally, if the resulting value is used, no computation is saved; instead, a slight overhead (of a constanct factor) for building the thunk is paid. However, this overhead is not something the programmer should deal with most of the times; more important factors must be considered and may give a much bigger improvements; additionally, optimizing Haskell compilers like GHC can perform 'strictness analysis' and remove that slight overhead.

\subsection*{62.3 Strictness annotations}

\section*{62.4 seq}

\subsection*{62.4.1 DeepSeq}

\subsection*{62.5 References}
- Strictness on the Haskell wiki \({ }^{2}\)

\footnotetext{
2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/PERFORMANCE/STRICTNESS
}

\section*{63 Algorithm complexity}

Complexity Theory is the study of how long a program will take to run, depending on the size of its input. There are many good introductory books to complexity theory and the basics are explained in any good algorithms book. I'll keep the discussion here to a minimum.

The idea is to say how well a program scales with more data. If you have a program that runs quickly on very small amounts of data but chokes on huge amounts of data, it's not very useful (unless you know you'll only be working with small amounts of data, of course). Consider the following Haskell function to return the sum of the elements in a list:
```

sum [] = 0
sum (x:xs) = x + sum xs

```

How long does it take this function to complete? That's a very difficult question; it would depend on all sorts of things: your processor speed, your amount of memory, the exact way in which the addition is carried out, the length of the list, how many other programs are running on your computer, and so on. This is far too much to deal with, so we need to invent a simpler model. The model we use is sort of an arbitrary "machine step." So the question is "how many machine steps will it take for this program to complete?" In this case, it only depends on the length of the input list.

If the input list is of length 0 , the function will take either 0 or 1 or 2 or some very small number of machine steps, depending exactly on how you count them (perhaps 1 step to do the pattern matching and 1 more to return the value 0 ). What if the list is of length 1 ? Well, it would take however much time the list of length 0 would take, plus a few more steps for doing the first (and only element).

If the input list is of length \(n\), it will take however many steps an empty list would take (call this value \(y\) ) and then, for each element it would take a certain number of steps to do the addition and the recursive call (call this number \(x\) ). Then, the total time this function will take is \(n x+y\) since it needs to do those additions \(n\) many times. These \(x\) and \(y\) values are called constant values, since they are independent of \(n\), and actually dependent only on exactly how we define a machine step, so we really don't want to consider them all that important. Therefore, we say that the complexity
of this sum function is \(\mathscr{O}(n)\) (read "order \(n "\) ). Basically saying something is \(\mathscr{O}(n)\) means that for some constant factors \(x\) and \(y\), the function takes \(n x+y\) machine steps to complete.

Consider the following sorting algorithm for lists (commonly called "insertion sort"):
```

sort [] = []
sort [x] = [x]
sort (x:xs) = insert (sort xs)
where insert [] = [x]
insert (y:ys) | x <= y = x : y : ys
| otherwise = y : insert ys

```

The way this algorithm works is as follow: if we want to sort an empty list or a list of just one element, we return them as they are, as they are already sorted. Otherwise, we have a list of the form \(\mathrm{x}: \mathrm{xs}\). In this case, we sort xs and then want to insert x in the appropriate location. That's what the insert function does. It traverses the now-sorted tail and inserts \(x\) wherever it naturally fits.

Let's analyze how long this function takes to complete. Suppose it takes \(f(n)\) stepts to sort a list of length \(n\). Then, in order to sort a list of n-many elements, we first have to sort the tail of the list first, which takes \(f(n-1)\) time. Then, we have to insert x into this new list. If x has to go at the end, this will take \(\mathscr{O}(n-1)=\mathscr{O}(n)\) steps. Putting all of this together, we see that we have to do \(\mathscr{O}(n)\) amount of work \(\mathscr{O}(n)\) many times, which means that the entire complexity of this sorting algorithm is \(\mathscr{O}\left(n^{2}\right)\). Here, the squared is not a constant value, so we cannot throw it out.

What does this mean? Simply that for really long lists, the sum function won't take very long, but that the sort function will take quite some time. Of course there are algorithms that run much more slowly than simply \(\mathscr{O}\left(n^{2}\right)\) and there are ones that run more quickly than \(\mathscr{O}(n)\). (Also note that a \(\mathscr{O}\left(n^{2}\right)\) algorithm may actually be much faster than a \(\mathscr{O}(n)\) algorithm in practice, if it takes much less time to perform a single step of the \(\mathscr{O}\left(n^{2}\right)\) algorithm.)

Consider the random access functions for lists and arrays. In the worst case, accessing an arbitrary element in a list of length \(n\) will take \(\mathscr{O}(n)\) time (think about accessing the last element). However with arrays, you can access any element immediately, which is said to be in constant time, or \(\mathscr{O}(1)\), which is basically as fast an any algorithm can go.

There's much more in complexity theory than this, but this should be enough to allow you to understand all the discussions in this tutorial. Just keep in mind that \(\mathscr{O}(1)\) is faster than \(\mathscr{O}(n)\) is faster than \(\mathscr{O}\left(n^{2}\right)\), etc.

\subsection*{63.1 Optimising}

\subsection*{63.1.1 Profiling}

64 Libraries Reference

\section*{65 The Hierarchical Libraries}

Haskell has a rich and growing set of function libraries. They fall into several groups:
- The Standard Prelude (often referred to as just "the Prelude") is defined in the Haskell 98 standard and imported automatically to every module you write. This defines standard types such as strings, lists and numbers and the basic functions on them, such as arithmetic, map and foldr
- The Standard Libraries are also defined in the Haskell 98 standard, but you have to import them when you need them. The reference manuals for these libraries are at http://www.haskell.org/onlinereport/
- Since 1998 the Standard Libraries have been gradually extended, and the resulting de-facto standard is known as the Base libraries. The same set is available for both HUGS and GHC.
- Other libraries may be included with your compiler, or can be installed using the Cabal mechanism.

When Haskell 98 was standardised modules were given a flat namespace. This has proved inadequate and a hierarchical namespace has been added by allowing dots in module names. For backward compatibility the standard libraries can still be accessed by their non-hierarchical names, so the modules List and Data. List both refer to the standard list library.

For details of how to import libraries into your program, see Modules and LIBRARIES \({ }^{1}\). For an explanation of the Cabal system for packaging Haskell software see ../PACKAGING \({ }^{2}\).

\subsection*{65.1 Haddock Documentation}

Library reference documentation is generally produced using the Haddock tool. The libraries shipped with GHC are documented using this mechanism. You can view the documentation at http://www.haskell.org/ghc/docs/latest/html/libraries/index.html, and if you have installed GHC then there should also be a local copy.

Haddock produces hyperlinked documentation, so every time you see a function, type or class name you can click on it to get to the definition. The sheer wealth of libraries available can be intimidating, so this tutorial will point out the highlights.

One thing worth noting with Haddock is that types and classes are cross-referenced by instance. So for example in the DATA.MAYBE \({ }^{3}\) library the Maybe data type is listed as an instance of Ord:

\footnotetext{
1 hTTP://En.WIKIBOOKS.ORG/WIKI/../MODULES
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/../PACKAGING
HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-\{\}MAYBE. HTML
}
```

Ord a => Ord (Maybe a)

```

This means that if you declare a type Foo is an instance of Ord then the type Maybe Foo will automatically be an instance of Ord as well. If you click on the word ord in the document then you will be taken to the definiton of the Ord class and its (very long) list of instances. The instance for Maybe will be down there as well.

CATEGORY:HASKELL \({ }^{4}\)

\footnotetext{
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL
}

\section*{66 Lists}

The List datatype (see DATA.List \({ }^{1}\) ) is the fundamental data structure in Haskell — this is the basic building-block of data storage and manipulation. In computer science terms it is a singly-linked list. In the hierarchical library system the List module is stored in Data. List; but this module only contains utility functions. The definition of list itself is integral to the Haskell language.

\subsection*{66.1 Theory}

A singly-linked list is a set of values in a defined order. The list can only be traversed in one direction (i.e., you cannot move back and forth through the list like tape in a cassette machine).

The list of the first 5 positive integers is written as
```

[1, 2, 3, 4, 5]

```

We can move through this list, examining and changing values, from left to right, but not in the other direction. This means that the list
```

[5, 4, 3, 2, 1]

```
is not just a trivial change in perspective from the previous list, but the result of significant computation \((O(n)\) in the length of the list).

\subsection*{66.2 Definition}

The polymorphic list datatype can be defined with the following recursive definition:
```

data [a] = []
| a : [a]

```

The "base case" for this definition is [], the empty list. In order to put something into this list, we use the (:) constructor

\footnotetext{
1 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/DATA-\{\}LIST. HTML
}
```

emptyList = []
oneElem = 1:[]

```

The (:) (pronounced cons) is right-associative, so that creating multi-element lists can be done like
```

manyElems = 1:2:3:4:5:[]

```
or even just
```

manyElems' = [1,2,3,4,5]

```

\subsection*{66.3 Basic list usage}

\subsection*{66.3.1 Prepending}

It's easy to hard-code lists without cons, but run-time list creation will use cons. For example, to push an argument onto a simulated stack, we would use:
```

push :: Arg -> [Arg] -> [Arg]
push arg stack = arg:stack

```

\subsection*{66.3.2 Pattern-matching}

If we want to examine the top of the stack, we would typically use a peek function. We can try pattern-matching for this.
```

peek :: [Arg] -> Maybe Arg
peek [] = Nothing
peek (a:as) = Just a

```

The a before the cons in the pattern matches the head of the list. The as matches the tail of the list. Since we don't actually want the tail (and it's not referenced anywhere else in the code), we can tell the compiler this explicitly, by using a wild-card match, in the form of an underscore:
```

peek (a:_) = Just a

```

\subsection*{66.4 List utilities}

FIXME: is this not covered in the chapter on LIST MANIPULATION \({ }^{2}\) ?

\subsection*{66.4.1 Maps}

\subsection*{66.4.2 Folds, unfolds and scans}
66.4.3 Length, head, tail etc.

\footnotetext{
2 Kapitel 14 auf Seite 67
}

\section*{67 Arrays}

Haskell'98 supports just one array constructor type, namely ARRAY \({ }^{1}\), which gives you immutable boxed arrays. "Immutable" means that these arrays, like any other pure functional data structure, have contents fixed at construction time. You can't modify them, only query. There are "modification" operations, but they just return new arrays and don't modify the original one. This makes it possible to use Arrays in pure functional code along with lists. "Boxed" means that array elements are just ordinary Haskell (lazy) values, which are evaluated on demand, and can even contain bottom (undefined) value. You can learn how to use these arrays at http://haskell.org/tutorial/arrays.html and I'd recommend that you read this before proceeding to the rest of this page

Nowadays the main Haskell compilers, GHC and Hugs, ship with the same set of Hierarchical LIbrARIES \({ }^{2}\), and these libraries contain a new implementation of arrays which is backward compatible with the Haskell' 98 one, but which has far more features. Suffice it to say that these libraries support 9 types of array constructors: Array, UArray, IOArray, IOUArray, STArray, STUArray, DiffArray, DiffUArray and StorableArray. It is no wonder that the array libraries are a source of so much confusion for new Haskellers. However, they are actually very simple - each provides just one of two interfaces, and one of these you already know.

\subsection*{67.1 Quick reference}
\begin{tabular}{llll} 
& Immutable & IO monad & ST monad \\
& instance IArray & instance MArray & instance MArray \\
Standard & a e & a e IO & a ST \\
Unboxed & Array & IOArray & STArray \\
& DiffArray & & \\
& UArray & IOUArray & STUArray \\
& DiffUArray & StorableArray &
\end{tabular}

\subsection*{67.2 Immutable arrays (module Data.Array.IARRAy \({ }^{3}\) )}

The first interface provided by the new array library, is defined by the typeclass IArray (which stands for "immutable array" and defined in the module DATA.ARRAY.IARRAY \({ }^{4}\) ) and defines the same

\footnotetext{
1 HTTP://HASKELL.ORG/ONLINEREPORT/ARRAY. HTML
2 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/INDEX.HTML
3 htte://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/
DAtA- \{ \} Array- \{ \} IARRAy. html
4 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/
DAtA- \(\}\) ArRAy- \(\}\) IARRAY. HTML
}
operations that were defined for Array in Haskell ' 98 . Here's a simple example of its use that prints \((37,64)\) :
```

import Data.Array
buildPair :: (Int, Int)
buildPair = let arr = listArray (1,10) (repeat 37) :: Array Int Int
arr' = arr // [(1, 64)]
in (arr ! 1, arr' ! 1)
main = print buildPair

```

The big difference is that it is now a typeclass and there are 4 array type constructors, each of which implements this interface: Array, UArray, DiffArray, and DiffUArray. We will later describe the differences between them and the cases when these other types are preferable to use instead of the good old Array. Also note that to use Array type constructor together with other new array types, you need to import Data.Array.IArray module instead of Data.Array.

\subsection*{67.3 Mutable IO arrays (module Data.Array.IO \({ }^{5}\) )}

The second interface is defined by the type class MArray (which stands for "mutable array" and is defined in the module Data.Array.MArray \({ }^{6}\) ) and contains operations to update array elements in-place. Mutable arrays are very similar to IORefs, only they contain multiple values. Type constructors for mutable arrays are IOArray and IOUArray and operations which create, update and query these arrays all belong to the IO monad:
```

import Data.Array.IO
main = do arr <- newArray (1,10) 37 :: IO (IOArray Int Int)
a <- readArray arr 1
writeArray arr 1 64
b <- readArray arr 1
print (a,b)

```

This program creates an array of 10 elements with all values initially set to 37 . Then it reads the first element of the array. After that, the program modifies the first element of the array and then reads it again. The type declaration in the second line is necessary because our little program doesn't provide enough context to allow the compiler to determine the concrete type of arr.

\footnotetext{
5 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/ DAtA- \{ \} Array- \{ \} IO. html
6 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/ DAtA- \{ \}ARRAY- \{ \}MARRAY. HTML
}

\subsection*{67.4 Mutable arrays in ST monad (module Data.Array.ST \({ }^{7}\) )}

In the same way that IORef has its more general cousin STRef, IOArray has a more general version STArray (and similarly, IOUArray is parodied by STUArray). These array types allow one to work with mutable arrays in the ST monad:
```

import Control.Monad.ST
import Data.Array.ST
buildPair = do arr <- newArray (1,10) 37 :: ST s (STArray s Int Int)
a <- readArray arr 1
writeArray arr 1 64
b <- readArray arr 1
return (a,b)
main = print \$ runST buildPair

```

Believe it or not, now you know all that is needed to use any array type. Unless you are interested in speed issues, just use Array, IOArray and STArray where appropriate. The following topics are almost exclusively about selecting the proper array type to make programs run faster.

\subsection*{67.5 Freezing and thawing}

Haskell allows conversion between immutable and mutable arrays with the freeze and thaw functions:
```

freeze :: (Ix i, MArray a e m, IArray b e) => a i e -> m (b i e)
thaw :: (Ix i, IArray a e, MArray b e m) => a i e -> m (b i e)

```

For instance, the following converts an Array into an STArray, alters it, and then converts it back:
```

import Data.Array
import Control.Monad.ST
import Data.Array.ST
buildPair :: (Int, Int)
buildPair = let arr = listArray (1,10) (repeat 37) :: Array Int Int
arr' = modifyAsST arr
in (arr ! 1, arr' ! 1)
modifyAsST :: Array Int Int -> Array Int Int
modifyAsST arr = runST \$ do starr <- thaw arr
compute starr
newarr <- freeze starr
return newarr
compute :: STArray s Int Int -> ST s ()

```

\footnotetext{
7 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/
    DAtA- \{ \} Array- \(\}\) ST. HTML
}
```

compute arr = do writeArray arr 1 64

```
main \(=\) print buildPair

Freezing and thawing both copy the entire array. If you want to use the same memory locations before and after freezing or thawing but can allow some access restrictions, see the section UNSAFE OPERATIONS AND RUNNING OVER ARRAY ELEMENTS \({ }^{9}\).

\subsection*{67.6 DiffArray (module Data.Array.DifF \({ }^{10}\) )}

As we already stated, the update operation on immutable arrays (IArray) just creates a new copy of the array, which is very inefficient, but it is a pure operation which can be used in pure functions. On the other hand, updates on mutable arrays (MArray) are efficient but can be done only in monadic code. DiffArray combines the best of both worlds - it supports the IArray interface and therefore can be used in a purely functional way, but internally it uses the efficient update of MArrays.

How does this trick work? DiffArray has a pure external interface, but internally it is represented as a reference to an IOArray.

When the '//' operator is applied to a diff array, its contents are physically updated in place. The old array silently changes its representation without changing the visible behavior: it stores a link to the new current array along with the difference to be applied to get the old contents.

So if a diff array is used in a single-threaded style, that is, after ' \(/ /\) ' application the old version is no longer used, then a ! i takes \(O(1)\) time and a // d takes \(O(n)\) time. Accessing elements of older versions gradually becomes slower.

Updating an array which is not current makes a physical copy. The resulting array is unlinked from the old family. So you can obtain a version which is guaranteed to be current and thus has fast element access by performing the "identity update", old // [].

The library provides two "differential" array constructors - DiffArray, made internally from IOArray, and DiffUArray, based on IOUArray. If you really need to, you can construct new "differential" array types from any 'MArray' types living in the 'IO' monad. See the MODULE DOCUMENTATION \({ }^{11}\) for further details.

Usage of DiffArray doesn't differ from that of Array, the only difference is memory consumption and speed:
```

import Data.Array.Diff
main = do
let arr = listArray (1,1000) [1..1000] :: DiffArray Int Int
a = arr ! 1
arr2 = arr // [(1,37)]

```
```

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#UnSAFEOPERATIONSANDRUNNINGOVERARRAYELEMENTS

```
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#UnSAFEOPERATIONSANDRUNNINGOVERARRAYELEMENTS
10 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
10 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
    DAtA- \{\}ARRAY-\{\}DIfF. HtmL
    DAtA- \{\}ARRAY-\{\}DIfF. HtmL
11 HTTP://WWW. HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
11 HTTP://WWW. HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
    DAtA- \{\}ARRAY-\{\}DIfF. HTML
```

 DAtA- \{\}ARRAY-\{\}DIfF. HTML
    ```
```

 b = arr2 ! 1
 print (a,b)

```

You can use 'seq' to force evaluation of array elements prior to updating an array:
```

import Data.Array.Diff
main = do
let arr = listArray (1,1000) [1..1000] :: DiffArray Int Int
a = arr ! 1
b = arr ! 2
arr2 = a `seq` b `seq` (arr // [(1,37), (2,64)])
c = arr2 ! 1
print (a,b,c)

```

\subsection*{67.7 Unboxed arrays ( Data.Array.Unboxed \({ }^{12}\) )}

In most implementations of lazy evaluation, values are represented at runtime as pointers to either their value, or code for computing their value. This extra level of indirection, together with any extra tags needed by the runtime, is known as a box. The default "boxed" arrays consist of many of these boxes, each of which may compute its value separately. This allows for many neat tricks, like recursively defining an array's elements in terms of one another, or only computing the specific elements of the array which are ever needed. However, for large arrays, it costs a lot in terms of overhead, and if the entire array is always needed, it can be a waste.

Unboxed arrays are more like arrays in C - they contain just the plain values without this extra level of indirection, so that, for example, an array of 1024 values of type Int 32 will use only 4 kb of memory. Moreover, indexing of such arrays can be significantly faster.

Of course, unboxed arrays have their own disadvantages. First, unboxed arrays can be made only of plain values having a fixed size -- Int, Word, Char, Bool, Ptr, Double and others (listed in the UARRAY CLASS DEFINITION \({ }^{13}\) ). You can even implement unboxed arrays yourself for other simple types, including enumerations. But Integer, String and any other types defined with variable size cannot be elements of unboxed arrays. Second, without that extra level of indirection, all of the elements in an unboxed array must be evaluated when the array is evaluated, so you lose the benefits of lazy evaluation. Indexing the array to read just one element will construct the entire array. This is not much of a loss if you will eventually need the whole array, but it does prevent recursively defining the array elements in terms of each other, and may be too expensive if you only ever need specific values. Nevertheless, unboxed arrays are a very useful optimization instrument, and I recommend using them as much as possible.

\footnotetext{
12 httP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/ Data-\{\}Array-\{\}Unboxed. html
13 HTTP://WWW. HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/ DAtA- \{ \} Array- \{ \}Unboxed. html\#t\%3AUARray
}

All main array types in the library have unboxed counterparts:
```

Array - UArray (module Data.Array.Unboxed)
IOArray - IOUArray (module Data.Array.IO)
STArray - STUArray (module Data.Array.ST)
DiffArray - DiffUArray (module Data.Array.Diff)

```

So, basically replacing boxed arrays in your program with unboxed ones is very simple - just add 'U' to the type signatures, and you are done! Of course, if you change Array to UArray, you also need to add "Data.Array.Unboxed" to your imports list.

\subsection*{67.8 StorableArray (module Data.Array.Storable \({ }^{15}\) )}

A storable array is an IO-mutable array which stores its contents in a contiguous memory block living in the C heap. Elements are stored according to the class 'Storable'. You can obtain the pointer to the array contents to manipulate elements from languages like C .

It is similar to 'IOUArray' (in particular, it implements the same MArray interface) but slower. The advantage is that it's compatible with C through the foreign function interface. The memory addresses of storable arrays are fixed, so you can pass them to C routines.

The pointer to the array contents is obtained by 'withStorableArray'. The idea is similar to 'ForeignPtr' (used internally here). The pointer should be used only during execution of the 'IO' action returned by the function passed as argument to 'withStorableArray'.
```

{-\# OPTIONS_GHC -fglasgow-exts \#-}
import Data.Array.Storable
import Foreign.Ptr
import Foreign.C.Types
main = do arr <- newArray (1,10) 37 :: IO (StorableArray Int Int)
a <- readArray arr 1
withStorableArray arr
(\ptr >> memset ptr 0 40)
b <- readArray arr 1
print (a,b)
foreign import ccall unsafe "string.h"
memset :: Ptr a -> CInt -> CSize -> IO ()

```

If you want to use this pointer afterwards, ensure that you call 'touchStorableArray' AFTER the last use of the pointer, so that the array will be not freed too early.

Additional comments: GHC 6.6 should make access to 'StorableArray' as fast as to any other unboxed arrays. The only difference between 'StorableArray' and 'UArray' will be that UArray lies in relocatable part of GHC heap while 'StorableArray' lies in non-relocatable part and therefore keep the fixed address, what allow to pass this address to the C routines and save it in the C data structures.

\footnotetext{
15 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/
DAta- \{ \}ARRAY- \{\}Storable. html
}

GHC 6.6 also adds 'unsafeForeignPtrToStorableArray' operation that allows to use any Ptr as address of 'StorableArray' and in particular work with arrays returned by C routines. Example of using this operation:
```

import Data.Array.Storable
import Foreign.Marshal.Alloc
import Foreign.Marshal.Array
import Foreign.ForeignPtr
main = do ptr <- mallocArray 10
fptr <- newForeignPtr_ ptr
arr <- unsafeForeignPtrToStorableArray (1,10) fptr :: IO
(StorableArray Int Int)
writeArray arr 1 64
a <- readArray arr 1
print a
free ptr

```

This example allocs memory for 10 Ints (which emulates array returned by some C function), then converts returned 'Ptr Int' to 'ForeignPtr Int' and 'ForeignPtr Int' to 'StorableArray Int Int'. It then writes and reads first element of array. At the end, memory used by array is deallocated by 'free' which again emulates deallocation by C routines. We can also enable automatic freeing of allocated block by replacing "newForeignPtr_ptr" with "newForeignPtr finalizerFree ptr". In this case memory will be automatically freed after last array usage, as for any other Haskell objects.

\subsection*{67.9 The Haskell Array Preprocessor (STPP)}

Using mutable arrays in Haskell (IO and ST ones) is not very handy. But there is one tool which adds syntax sugar and makes using of such arrays very close to that in imperative languages. It is written by Hal Daume III and you can get it as http://hal3.name/STPP/stpp.tar.gz

Using this tool, you can index array elements in arbitrary complex expressions with just "arr[lil]" notation and this preprocessor will automatically convert such syntax forms to appropriate calls to 'readArray' and 'writeArray'. Multi-dimensional arrays are also supported, with indexing in the form "arr[|i|][|j|]". See further descriptions at http://hal3.name/STPP/

\subsection*{67.10 ArrayRef library}

The Array Ref Library \({ }^{16}\) reimplements array libraries with the following extensions:
- dynamic (resizable) arrays
- polymorphic unboxed arrays

It also adds SYNTAX SUGAR \({ }^{17}\) what simplifies arrays usage. Although not so elegant as with STPP, it's on other hand implemented entirely inside Haskell language, without any preprocessors.

\footnotetext{
16 htip://hASKELL.ORG/HASKELLWIKI/LIBRARy/ARRAYREF\#REIMPLEMENTED_ARRAYS_LIBRARY
17 HTTP://HASKELL.ORG/HASKELLWIKI/LIBRARY/ARRAYREF\#SYNTAX_SUGAR_FOR_MUTABLE_ tyPES
}

\subsection*{67.11 Unsafe operations and running over array elements}

As mentioned above, there are operations that converts between mutable and immutable arrays of the same type, namely 'freeze' (mutable \(\rightarrow\) immutable) and 'thaw' (immutable \(\rightarrow\) mutable). These copy the entire array. If you are sure that a mutable array will not be modified or that an immutable array will not be used after the conversion, you can use unsafeFreeze/unsafeThaw instead - these operations convert array in-place if input and resulting arrays have the same memory representation (i.e. the same type and boxing). Please note that "unsafe*" operations modifies memory - they sets/clears flag in array header which tells about array mutability. So these operations can't be used together with multi-threaded access to array (using threads or some form of coroutines).

There are also operations that converts unboxed arrays to another element type, namely castIOUArray and castSTUArray. These operations rely on actual type representation in memory and therefore there is no any guarantees on their results. In particular, these operations can be used to convert any unboxable value to the sequence of bytes and vice versa, f.e. it's used in AltBinary library to serialize floating-point values. Please note that these operations don't recompute array bounds according to changed size of elements. You should do it yourself using 'sizeOf' operation!

While arrays can have any type of indexes, internally any index after bounds checking is converted to plain Int value (position) and then one of low-level operations, unsafeAt, unsafeRead, unsafeWrite, is used. You can use these operations yourself in order to outpass bounds checking and make your program faster. These operations are especially useful if you need to walk through entire array:
```

-- | Returns a list of all the elements of an array, in the same order
-- as their indices.
elems arr = [unsafeAt arr i | i <- [0 .. rangeSize (bounds arr)-1]]

```
"unsafe*" operations in such loops are really safe because 'i' loops only through positions of existing array elements.

\subsection*{67.12 GHC \(^{18}\)-specific topics}

\subsection*{67.12.1 Parallel arrays (module GHC.PArr)}

As we already mentioned, array library supports two array varieties - lazy boxed arrays and strict unboxed ones. Parallel array implements something intervening - it's a strict boxed immutable array. This keeps flexibility of using any data type as array element while makes both creation and access to such arrays much faster. Array creation implemented as one imperative loop that fills all array elements, while access to array elements don't need to check "box". It should be obvious that parallel arrays are not efficient in cases where calculation of array elements are rather complex and you will not use most of array elements. One more drawback of practical usage is that parallel arrays don't support IArray interface which means that you can't write generic algorithms which work both with Array and parallel array constructor.

\footnotetext{
18 HTTP://EN.WIKIBOOKS.ORG/WIKI/GHC
}

Like many GHC extensions, this is described in a paper: An Approach to Fast Arrays in HASKELL \({ }^{19}\), by Manuel M. T. Chakravarty and Gabriele Keller.

You can also look at sources of GHC.PARR \({ }^{20}\) module, which contains a lot of comments.
Special syntax for parallel arrays is enabled by "ghc -fparr" or "ghci -fparr" which is undocumented in user manual of GHC 6.4.1.

\subsection*{67.12.2 Welcome to the machine}

\section*{Array\#, MutableArray\#, ByteArray\#, MutableByteArray\#, pinned and moveable byte arrays}

GHC heap contains two kinds of objects - some are just byte sequences, other contains pointers to other objects (so called "boxes"). These segregation allows to find chains of references when performing garbage collection and update these pointers when memory used by heap is compacted and objects are moved to new places. Internal (raw) GHC's type Array\# represents a sequence of object pointers (boxes). There is low-level operation in ST monad which allocates array of specified size in heap, its type is something like (Int -> ST s Array\#). The Array\# type is used inside Array type which represents boxed immutable arrays.

There is a different type for mutable boxed arrays (IOArray/STArray), namely MutableArray\#. Separate type for mutable arrays required because of 2-stage garbage collection mechanism. Internal representation of Array\# and MutableArray\# are the same excluding for some flags in header and this make possible to on-place convert MutableArray\# to Array\# and vice versa (this is that unsafeFreeze and unsafeThaw operations do).

Unboxed arrays are represented by the ByteArray\# type. It's just a plain memory area in the heap, like the C's array. There are two primitive operations that creates a ByteArray\# of specified size one allocates memory in normal heap and so this byte array can be moved each time when garbage collection occurs. This prevents converting of ByteArray\# to plain memory pointer that can be used in C procedures (although it's still possible to pass current ByteArray\# pointer to "unsafe foreign" procedure if it don't try to store this pointer somewhere). The second primitive allocates ByteArray\# of specified size in "pinned" heap area, which contains objects with fixed place. Such byte array will never be moved by GC so it's address can be used as plain Ptr and shared with C world. First way to create ByteArray\# used inside implementation of all UArray types, second way used in StorableArray (although StorableArray can also point to data, allocated by C malloc).

There is also MutableByteArray\# type what don't had much difference with ByteArray\#, but GHC's primitives support only monadic read/write operations for MutableByteArray\#, and only pure reads for ByteArray\#, plus unsafeFreeze/unsafeThaw operations that changes appropriate fields in headers of this arrays. This differentiation don't make much sense except for additional safety checks.

So, pinned MutableByteArray\# or C malloced memory used inside StorableArray, unpinned MutableByteArray\# used inside IOUArray and STUArray, and unpinned ByteArray\# are used inside UArray.

Both boxed and unboxed arrays API are almost the same:

\footnotetext{
19 HTTP://WWW.CSE.UNSW.EDU.AU/~\{\}CHAK/PAPERS/CK03.HTML
20 hTtP://DARCS. HASKELL.ORG/PACKAGES/BASE/GHC/PARR. HS
}
```

marr <- alloc n - allocates mutable array with given size
arr <- unsafeFreeze marr - converts mutable array to immutable one
marr <- unsafeThaw arr - converts immutable array to mutable one
x <- unsafeRead marr i - monadic reading of value with given
index from mutable array
unsafeWrite marr i x - monadic writing of value with given
index from mutable array
let x = unsafeAt arr i - pure reading of value with given index
from immutable array
(all indexes are counted from 0)

```

Based on these primitive operations, the arrays library implements indexing with any type and with any lower bound, bounds checking and all other high-level operations. Operations that creates/updates immutable arrays just creates them as mutable arrays in ST monad, make all required updates on this array and then use unsafeFreeze before returning array from runST. Operations on IO arrays are implemented via operations on ST arrays using stToIO operation.

\subsection*{67.12.3 Mutable arrays and GC}

GHC implements 2-stage GC which is very fast - minor GC occurs after each 256 kb allocated and scans only this area (plus recent stack frames) when searching for a "live" data. This solution uses the fact that usual Haskell data are immutable and therefore any data structures that was created before previous minor GC can't point to the data structures created after this GC (due to immutability data can contain only "backward" references).

But this simplicity breaks when we add to the language mutable boxed references (IORef/STRef) and arrays (IOArray/STArray). On each GC, including minor ones, each element in mutable data structures should be scanned because it may be updated since last GC and now point to the data allocated since last GC.

For programs that contains a lot of data in mutable boxed arrays/references GC times may easily outweigh useful computation time. Ironically, one of such programs is GHC itself. Solution for such programs is to add to cmdline option like "+RTS -A10m" which increases size of minor GC chunks from 256 kb to 10 mb , i.e. makes minor GC 40 times less frequent. You can see effect of this change using "+RTS -sstderr" option - "\%GC time" should significantly decrease.

There is a way to include this option into your executable so it will be used automatically on each execution - you should just add to your project C source file that contains the following line:
```

char *ghc_rts_opts = "-A10m";

```

Of course, you can increase or decrease this value according to your needs.
Increasing "-A" value don't comes for free - aside from obvious increasing of memory usage, execution times (of useful code) will also grow. Default "-A" value tuned to be close to modern CPU cache sizes that means that most of memory references are fall inside the cache. When 10 mb of memory are allocated before doing GC, this data locality is no more holds. So, increasing "-A" can either increase or decrease program speed, depending on its nature. Try various settings between 64 kb and 16 mb while running program with "typical" parameters and try to select a best setting for your concrete program and cpu combination.

There is also another way to avoid increasing GC times - use either unboxed or immutable arrays. Also note that immutable arrays are build as mutable ones and then "freezed", so during the construction time GC will also scan their contents.
Hopefully, GHC 6.6 fixed the problem - it remembers what references/arrays was updated since last GC and scans only them. You can suffer from the old problems only in the case when you use very large arrays.
Further information:
- RTS options to control the garbage collector \({ }^{22}\)
- Problem description by Simon Marlow and report about GHC 6.6 improvements in this area \({ }^{23}\)
- Notes about GHC garbage collector \({ }^{24}\)
- Papers about GHC garbage collector \({ }^{25}\)

\footnotetext{
22 HTTP://WWW. HASKELL.ORG/GHC/DOCS/LATEST/HTML/USERS_GUIDE/RUNTIME-\{\}CONTROL. HTML
23 HTTP://HACKAGE. HASKELL.ORG/TRAC/GHC/TICKET/650
24 httr://hackage. HASKELL.ORG/tRAC/GHC/WIKI/GARBAGECOLLECTORNOTES
25 HTTP://RESEARCH.MICROSOFT.COM/~\{\}SIMONPJ/PAPERS/PAPERS. HTML\#GC
}

\section*{68 Maybe}

The Maybe data type is a means of being explicit that you are not sure that a function will be successful when it is executed.

\subsection*{68.1 Motivation}

Many languages require you to guess what they will do when a calculation did not finish properly. For example, an array lookup signature may look like this in pseudocode:
```

getPosition(Array a, Value v) returns Integer

```

But what happens if it doesn't find the item? It could return a null value, or the integer '-1' which would also be an obvious sign that something went wrong. But there's no way of knowing what will happen without examining the code for this procedure to see what the programmer chose to do. In a library without available code this might not even be possible.

The alternative is to explicitly state what the function should return (in this case, Integer), but also that it might not work as intended \&mdash; Maybe Integer. This is the intention of the Maybe datatype. So in Haskell, we could write the above signature as:
```

getPosition :: Array -> Value -> Maybe Integer

```

If the function is successful you want to return the result; otherwise, you want to return an explicit failure. This could be simulated as a tuple of type (Bool, \(a\) ) where \(a\) is the "actual" return type of the function. But what would you put in the \(a\) slot if it failed? There's no obvious answer. Besides which, the Maybe type is easier to use and has a selection of library functions for dealing with values which may fail to return an explicit answer.

\subsection*{68.2 Definition}

The Standard Prelude defines the Maybe type as follows, and more utility functions exist in the Data.Maybe library.
```

data Maybe a = Nothing | Just a

```

The type \(a\) is polymorphic and can contain complex types or even other monads (such as IO () types).

\subsection*{68.3 Library functions}

The module Data.Maybe, in the standard HIERARCHICAL LIBRARIES \({ }^{1}\), contains a wealth of functions for working with Maybe values.

\subsection*{68.3.1 Querying}

There are two obvious functions to give you information about a Maybe value.
isJust

This returns True if the argument is in the form Just
```

isJust :: Maybe a -> Bool
isJust (Just _) = True
isJust Nothing = False

```
isNothing

The dual of is Just: returns True if its argument is Nothing.
```

isNothing :: Maybe a -> Bool
isNothing (Just _) = False
isNothing Nothing = True

```

\subsection*{68.3.2 Getting out}

There are a handful of functions for converting Maybe values to non-Maybe values.
maybe
maybe is a function that takes a default value to use if its argument is Nothing, a function to apply if its argument is in the form Just _, and a Maybe value.
```

maybe :: b -> (a -> b) -> Maybe a -> b
maybe _ f (Just x) = f x
maybe z _ Nothing = z

```

\footnotetext{
1 HTTP://EN.WIKIBOOKS.ORG/WIKI/../../HIERARCHICALLIBRARIES
}

\section*{fromMaybe}

A frequent pattern is to use the maybe function, but not want to change the value if it was a Just. That is, call maybe with the second parameter being id. This is precisely fromMaybe.
```

fromMaybe :: a -> Maybe a -> a
fromMaybe z = maybe z id

```

\section*{fromJust}

There are certain occasions when you know a function that ends in a Maybe value will produce a Just. In these cases, you can use the fromJust function, which just strips off a Just constructor.
```

fromJust :: Maybe a -> a
fromJust (Just x) = x
fromJust Nothing = error "fromJust: Nothing"

```

\subsection*{68.3.3 Lists and Maybe}

Lists are, in some ways, similar to the Maybe datatype (indeed, this relationship will be further explored when you learn about monads). As such, there are a couple of functions for converting between one and the other.

\section*{listToMaybe}

This function, and the following one, makes a lot of sense when you think about Maybe and list values in terms of computations (which will be more fully explained in the section on ADVANCED MONADS \({ }^{2}\) ).

With lists, [] represents a failed computation. With Maybe, Nothing does. listToMaybe converts between the list and Maybe monad. When the parameter (in the list monad) indicated a successful computation, only the first solution is taken to place in the Maybe value.
```

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (x:_) = Just x

```
maybeToList

The obvious opposite of listToMaybe.

\footnotetext{
2 hTTP://En.WIKIBOOKS.ORG/WIKI/../../ADVANCEDMONADS
}
```

maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just x) = [x]

```

\subsection*{68.3.4 Lists manipulation}

Finally, there are a couple of functions which are analogues of the normal Prelude list manipulation functions, but specialised to Maybe values.

\section*{Continue on some failures (like 'or')}

\section*{catMaybes}

Given a list of Maybe values, catMaybes extracts all the values in the form Just _, and strips off the Just constructors. This is easily defined with a list comprehension, as we showed in the PATTERN MATCHING CHAPTER \({ }^{3}\) :
```

catMaybes :: [Maybe a] -> [a]
catMaybes ms = [x | Just x <- ms]

```
```

mapMaybe
mapMaybe applies a function to a list, and collects the successes. It can be understood as a
composition of functions you already know:

```
```

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe f xs = catMaybes (map f xs)

```

But the actual definition may be more efficient and traverse the list once:
```

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe _ [] = []
mapMaybe f (x:xs) =
case f x of
Just y -> y : mapMaybe f xs
Nothing -> mapMaybe f xs

```

\section*{Stop on failure}
sequence
Sometimes you want to collect the values if and only if all succeeded:

\footnotetext{
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/../../PATTERNMATCHING
}
```

sequence :: [Maybe a] -> Maybe [a]
sequence [] = Just []
sequence (Nothing:xs) = Nothing
sequence (Just x:xs) = case sequence xs of
Just x\mp@subsup{S}{}{\prime} -> Just (x:x\mp@subsup{S}{}{\prime})
-> Nothing

```

\section*{69 Maps}

The module Data.Map provides the Map datatype, which allows you to store values attached to specific keys. This is called a lookup table, dictionary or associative array in other languages.

\subsection*{69.1 Motivation}

Very often it would be useful to have some kind of data structure that relates a value or list of values to a specific key. This is often called a dictionary after the real-world example: a real-life dictionary associates a definition (the value) to each word (the key); we say the dictionary is a map from words to definitions. A filesystem driver might keep a map from filenames to file information. A phonebook application might keep a map from contact names to phone numbers. Maps are a very versatile and useful datatype.

\subsection*{69.1.1 Why not just \([(\mathrm{a}, \mathrm{b})]\) ?}

You may have seen in other chapters that a list of pairs (or 'lookup table') is often used as a kind of map, along with the function lookup : : [(a, b)] -> a -> Maybe b. So why not just use a lookup table all the time? Here are a few reasons:
- Working with maps gives you access to a whole load more useful functions for working with lookup tables.
- Maps are implemented far more efficiently than a lookup table would be, both in terms of speed and the amount of memory it takes up.

\subsection*{69.2 Definition}

Internally, maps are defined using a complicated datatype called a balanced tree for efficiency reasons, so we don't give the details here.

\subsection*{69.3 Library functions}

The module Data.Map provides an absolute wealth of functions for dealing with Maps, including setlike operations like unions and intersections. There are so many we don't include a list here; instead the reader is deferred to the HIERARCHICAL LIBRARIES DOCUMENTATION \({ }^{1}\) for Data.Map.

\footnotetext{
1 HTTP://HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/CONTAINERS/DATA-\{\}MAP. HTML
}

\subsection*{69.4 Example}

The following example implements a password database. The user is assumed to be trusted, so is not authenticated and has access to view or change passwords.
```

{- A quick note for the over-eager refactorers out there: This is
(somewhat)
intentionally ugly. It doesn't use the State monad to hold the DB
because it
hasn't been introduced yet. Perhaps we could use this as an
example of How
Monads Improve Things? -}
module PassDB where
import qualified Data.Map as M
import System.Exit
type UserName = String
type Password = String
type PassDB = M.Map UserName Password
-- PassBD is a map from usernames to passwords
-- | Ask the user for a username and new password, and return the new
PassDB
changePass :: PassDB -> IO PassDB
changePass db = do
putStrLn "Enter a username and new password to change."
putStr "Username: "
un <- getLine
putStrLn "New password: "
pw <- getLine
if un 'M.member' db -- if un is one of the keys of
the map
then return \$ M.insert un pw db -- then update the value with the
new password
else do putStrLn \$ "Can't find username '" ++ un ++ "' in the
database."
return db
-- | Ask the user for a username, whose password will be displayed.
viewPass :: PassDB -> IO ()
viewPass db = do
putStrLn "Enter a username, whose password will be displayed."
putStr "Username: "
un <- getLine
putStrLn \$ case M.lookup un db of
Nothing -> "Can't find username '" ++ un ++ "' in the
database."
Just pw -> pw
-- | The main loop for interacting with the user.
mainLoop :: PassDB -> IO PassDB
mainLoop db = do
putStr "Command [cvq]: "
c <- getChar
putStr "\n"
-- See what they want us to do. If they chose a command other than
'q', then
-- recurse (i.e. ask the user for the next command). We use the
Maybe datatype
-- to indicate whether to recurse or not: 'Just db' means do
recurse, and in
-- running the command, the old datbase changed to db. 'Nothing'

```
```

means don't
-- recurse.
db' <- case c of
'c' -> fmap Just \$ changePass db
'v' -> do viewPass db; return (Just db)
'q' -> return Nothing
- -> do putStrLn \$ "Not a recognised command, '" ++ [c]
++ "'."
return (Just db)
maybe (return db) mainLoop db'
-- | Parse the file we've just read in, by converting it to a list of
lines,
-- then folding down this list, starting with an empty map and
adding the
-- username and password for each line at each stage.
parseMap :: String -> PassDB
parseMap = foldr parseLine M.empty . lines
where parseLine ln map =
let [un, pw] = words ln
in M.insert un pw map
-- | Convert our database to the format we store in the file by first converting
-- it to a list of pairs, then mapping over this list to put a
space between
-- the username and password
showMap :: PassDB -> String
showMap = unlines . map ($\backslash(\mathrm{un}, \mathrm{pw})$-> un ++ " " ++ pw) . M.toAscList
main :: IO ()
main = do
putStrLn \$ "Welcome to PassDB. Enter a command: (c)hange a
password, " ++
"(v) iew a password or (q)uit."
dbFile <- readFile "/etc/passdb"
db' <- mainLoop (parseMap dbFile)
writeFile "/etc/passdb" (showMap db')

```

\section*{70 IO}

\subsection*{70.1 The IO Library}

The IO Library (available by importing the System. IO module) contains many definitions, the most commonly used of which are listed below:
```

data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode
openFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO ()
hIsEOF :: Handle -> IO Bool
hGetChar :: Handle -> IO Char
hGetLine :: Handle -> IO String
hGetContents :: Handle -> IO String
getChar :: IO Char
getLine :: IO String
getContents :: IO String
hPutChar :: Handle -> Char -> IO ()
hPutStr :: Handle -> String -> IO ()
hPutStrLn :: Handle -> String -> IO ()
putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
{- bracket must be imported from Control.Exception -}
bracket ::
IO a -> (a -> IO b) -> (a -> IO c) -> IO c

```

Most of these functions are self-explanatory. The openFile and hClose functions open and close a file, respectively, using the IOMode argument as the mode for opening the file. hISEOF tests for endof file. hGetChar and hGetLine read a character or line (respectively) from a file. hGetContents reads the entire file. The getChar, getLine and getContents variants read from standard input. hPutChar prints a character to a file; hPutStr prints a string; and hPutStrLn prints a string with a newline character at the end. The variants without the \(h\) prefix work on standard output. The readFile and writeFile functions read and write an entire file without having to open it first.

The bracket function is used to perform actions safely. Consider a function that opens a file, writes a character to it, and then closes the file. When writing such a function, one needs to be careful to ensure that, if there were an error at some point, the file is still successfully closed. The
bracket function makes this easy. It takes three arguments: The first is the action to perform at the beginning. The second is the action to perform at the end, regardless of whether there's an error or not. The third is the action to perform in the middle, which might result in an error. For instance, our character-writing function might look like:
```

writeChar :: FilePath -> Char -> IO ()
writeChar fp c =
bracket
(openFile fp WriteMode)
hClose
(\h -> hPutChar h c)

```

This will open the file, write the character and then close the file. However, if writing the character fails, hClose will still be executed, and the exception will be reraised afterwards. That way, you don't need to worry too much about catching the exceptions and about closing all of your handles.

\subsection*{70.2 A File Reading Program}

We can write a simple program that allows a user to read and write files. The interface is admittedly poor, and it does not catch all errors (such as reading a non-existent file). Nevertheless, it should give a fairly complete example of how to use IO. Enter the following code into "FileRead.hs," and compile/run:
```

module Main
where
import System.IO
import Control.Exception
main = doLoop
doLoop = do
putStrLn "Enter a command rFN wFN or q to quit:"
command <- getLine
case command of
'q':_ -> return ()
'r':filename -> do putStrLn ("Reading " ++ filename)
doRead filename
doLoop
'w':filename -> do putStrLn ("Writing " ++ filename)
doWrite filename
doLoop
_
-> doLoop
doRead filename =
bracket (openFile filename ReadMode) hClose
(\h -> do contents <- hGetContents h
putStrLn "The first 100 chars:"
putStrLn (take 100 contents))

```
```

doWrite filename = do
putStrLn "Enter text to go into the file:"
contents <- getLine
bracket (openFile filename WriteMode) hClose
(\h -> hPutStrLn h contents)

```

What does this program do? First, it issues a short string of instructions and reads a command. It then performs a case switch on the command and checks first to see if the first character is a 'q.' If it is, it returns a value of unit type.

If the first character of the command wasn't a ' \(q\),' the program checks to see if it was an 'r' followed by some string that is bound to the variable filename. It then tells you that it's reading the file, does the read and runs doLoop again. The check for ' \(w\) ' is nearly identical. Otherwise, it matches _, the wildcard character, and loops to doLoop.

The doRead function uses the bracket function to make sure there are no problems reading the file. It opens a file in ReadMode, reads its contents and prints the first 100 characters (the take function takes an integer \(n\) and a list and returns the first \(n\) elements of the list).

The doWrite function asks for some text, reads it from the keyboard, and then writes it to the file specified.

The only major problem with this program is that it will die if you try to read a file that doesn't already exists or if you specify some bad filename like *\bs^\#_@. You may think that the calls to bracket in doRead and doWrite should take care of this, but they don't. They only catch exceptions within the main body, not within the startup or shutdown functions (openFile and hClose, in these cases). We would need to catch exceptions raised by openFile, in order to make this complete. We will do this when we talk about exceptions in more detail in the section on EXCEPTIONS \({ }^{1}\).

\subsection*{70.3 Another way of reading files}

Sometimes (for example in parsers) we need to open a file from command line, by typing "program.exe input.in". Of course, we could just use " \(<\) " to redirect standard input, but we can do it in more elegant way. We could do this like that:
```

module Main where
import IO
import System
import List(isSuffixOf)
parse fname str = str
main::IO()
main = do
arguments <- getArgs
if (length (arguments)==0)
then putStrLn "No input file given.\n Proper way of running

```
1 HTTP://EN.WIKIBOOKS.ORG/WIKI/../IOADVANCED\#EXCEPTIONS
```

program is: \n program input.in"
else do
let suffix = if List.isSuffixOf ".in" (head arguments)
then "" else ".in"
--Using this trick will allow users to type "program input" as well
handle <- catch (openFile ((head arguments)++suffix)
ReadMode)
(\e -> error \$ show e)
readable<- hIsReadable handle
if (not readable)
then error "File is being used by another user or
program"
else do
unparsedString <- hGetContents handle
case parse (head arguments) unparsedString of
{-This is how it would look like, when our parser was based on Parsec
Left err -> error \$ show err
Right program -> do
{
outcome <- interprete program ;
case outcome of
Abort -> do
putStrLn "Program aborted"
exitWith \$ ExitFailure 1
_ -> do
putStrLn "Input interpreted"
exitWith ExitSuccess
}

```

But to make this example less complicated I replaced these lines with:-\}
\{
                                    putStrLn "Input interpreted";
                                    exitWith ExitSuccess

\section*{71 Random Numbers}

\subsection*{71.1 Random examples}

Here are a handful of uses of random numbers by example
The IO action newStdGen, as its name implies, creates a new StdGen pseudorandom number generator state. This StdGen can be passed to functions which need to generate pseudorandom numbers.
(There also exists a global random number generator which is initialized automatically in a system dependent fashion. This generator is maintained in the IO monad and can be accessed with getStdGen. This is perhaps a library wart, however, as all that you really ever need is newStdGen.)

Alternatively one can get a generator by initializing it with an integer, using mkStdGen:
Running this script results in output like this:
```

[0.110407025,0.8453985,0.3077821,0.781
38804,0.5242582,0.5196911,0.20084688,0.4794773,0.3240164,6.1566383e-2]

```

There's more to random number generation than randoms. You can, for example, use random (sans 's') to generate a single random number along with a new StdGen to be used for the next one, as well as randomR and randomRs which take a parameter for specifying the range. See below for more ideas.

\subsection*{71.2 The Standard Random Number Generator}

The Haskell standard random number functions and types are defined in the Random module (or System.Random if you use hierarchical modules). The definition is at http://www.haskell.org/onlinereport/random.html, but its a bit tricky to follow because it uses classes to make itself more general.

From the standard:
```

---------------- The RandomGen class
class RandomGen g where
genRange :: g -> (Int, Int)
next :: g -> (Int, g)
split :: g -> (g, g)
---------------- A standard instance of RandomGen
data StdGen = ... -- Abstract

```

This basically introduces StdGen, the standard random number generator "object". It's an instance of the RandomGen class which specifies the operations other pseudorandom number generator libraries need to implement to be used with the System.Random library.

If you have r :: StdGen then you can say:
```

(x, r2) = next r

```

This gives you a random Int \(x\) and a new StdGen r2. The 'next' function is defined in the RandomGen class, and you can apply it to something of type StdGen because StdGen is an instance of the RandomGen class, as below.

From the Standard:
```

instance RandomGen StdGen where ...
instance Read StdGen where ...
instance Show StdGen where ...

```

This also says that you can convert a StdGen to and from a string, which is there as a handy way to save the state of the generator. (The dots are not Haskell syntax. They simply say that the Standard does not define an implementation of these instances.)

From the Standard:
```

mkStdGen :: Int -> StdGen

```

This is the factory function for StdGen objects. Put in a seed, get out a generator.
The reason that the 'next' function also returns a new random number generator is that Haskell is a functional language, so no side effects are allowed. In most languages the random number generator routine has the hidden side effect of updating the state of the generator ready for the next call. Haskell can't do that. So if you want to generate three random numbers you need to say something like
```

let
(x1, r2) = next r
(x2, r3) = next r2
(x3, r4) = next r3

```

The other thing is that the random values ( \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3\) ) are random integers. To get something in the range, say, \((0,999)\) you would have to take the modulus yourself, which is silly. There ought to be a library routine built on this, and indeed there is.

From the Standard:
```

---------------- The Random class
class Random a where
randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g >> (a, g)

```
```

randomRs :: RandomGen g => (a, a) -> g -> [a]
randoms :: RandomGen g => g -> [a]
randomRIO :: (a,a) -> IO a
randomIO :: IO a

```

Remember that StdGen is the only instance of type RandomGen (unless you roll your own random number generator). So you can substitute StdGen for 'g' in the types above and get this:
```

randomR :: (a, a) -> StdGen -> (a, StdGen)
random :: StdGen -> (a, StdGen)

```
```

randomRs :: (a, a) -> StdGen -> [a]
randoms :: StdGen -> [a]

```

But remember that this is all inside *another* class declaration "Random". So what this says is that any instance of Random can use these functions. The instances of Random in the Standard are:
```

instance Random Integer where ..
instance Random Float where ...
instance Random Double where ...
instance Random Bool where ...
instance Random Char where...

```

So for any of these types you can get a random range. You can get a random integer with:
```

(x1, r2) = randomR (0,999) r

```

And you can get a random upper case character with
```

(c2, r3) = randomR ('A', 'Z') r2

```

You can even get a random bit with
```

(b3, r4) = randomR (False, True) r3

```

So far so good, but threading the random number state through your entire program like this is painful, error prone, and generally destroys the nice clean functional properties of your program.

One partial solution is the "split" function in the RandomGen class. It takes one generator and gives you two generators back. This lets you say something like this:
```

(r1, r2) = split r
x = foo r1

```

In this case we are passing rl down into function foo, which does something random with it and returns a result " x ", and we can then take " r 2 " as the random number generator for whatever comes
next. Without "split" we would have to write
```

(x, r2) = foo r1

```

But even this is often too clumsy, so you can do it the quick and dirty way by putting the whole thing in the IO monad. This gives you a standard global random number generator just like any other language. But because its just like any other language it has to do it in the IO monad.

From the Standard:
```

---------------- The global random generator
newStdGen :: IO StdGen
setStdGen :: StdGen -> IO ()
getStdGen :: IO StdGen
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

```

So you could write:
```

foo :: IO Int
foo = do
r1 <- getStdGen
let (x, r2) = randomR (0,999) r1
setStdGen r2
return x

```

This gets the global generator, uses it, and then updates it (otherwise every random number will be the same). But having to get and update the global generator every time you use it is a pain, so its more common to use getStdRandom. The argument to this is a function. Compare the type of that function to that of 'random' and 'randomR'. They both fit in rather well. To get a random integer in the IO monad you can say:
```

x <- getStdRandom \$ randomR (1,999)

```

The 'randomR \((1,999)\) ' has type "StdGen \(->\) (Int, StdGen)", so it fits straight into the argument required by getStdRandom.

\subsection*{71.3 Using QuickCheck to Generate Random Data}

Only being able to do random numbers in a nice straightforward way inside the IO monad is a bit of a pain. You find that some function deep inside your code needs a random number, and suddenly you have to rewrite half your program as IO actions instead of nice pure functions, or else have an StdGen parameter tramp its way down there through all the higher level functions. Something a bit purer is needed.

If you have read anything about Monads then you might have recognized the pattern I gave above:
```

let
(x1, r2) = next r
(x2, r3) = next r2
(x3,r4) = next r3

```

The job of a monad is to abstract out this pattern, leaving the programmer to write something like:
```

do -- Not real Haskell
x1 <- random
x2 <- random
x3 <- random

```

Of course you can do this in the IO monad, but it would be better if random numbers had their own little monad that specialised in random computations. And it just so happens that such a monad exists. It lives in the Test.QuickCheck library, and it's called "Gen". And it does lots of very useful things with random numbers.

The reason that "Gen" lives in Test.QuickCheck is historical: that is where it was invented. The purpose of QuickCheck is to generate random unit tests to verify properties of your code. (Incidentally its very good at this, and most Haskell developers use it for testing). See the QuickCheck \({ }^{1}\) on HaskellWiki for more details. This tutorial will concentrate on using the "Gen" monad for generating random data.

Most Haskell compilers (including GHC) bundle QuickCheck in with their standard libraries, so you probably won't need to install it separately. Just say
```

import Test.QuickCheck

```
in your source file.
The "Gen" monad can be thought of as a monad of random computations. As well as generating random numbers it provides a library of functions that build up complicated values out of simple ones.

So lets start with a routine to return three random integers between 0 and 999:
```

randomTriple :: Gen (Integer, Integer, Integer)
randomTriple = do
x1 <- choose (0,999)
x2 <- choose (0,999)
x3 <- choose (0,999)
return (x1, x2, x3)

```
"choose" is one of the functions from QuickCheck. Its the equivalent to randomR. The type of "choose" is

\footnotetext{
1 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/INTRODUCTION_TO_QUICKCHECK
}
```

choose :: Random a => (a, a) -> Gen a

```

In other words, for any type "a" which is an instance of "Random" (see above), "choose" will map a range into a generator.

Once you have a "Gen" action you have to execute it. The "generate" function executes an action and returns the random result. The type is:
```

generate :: Int -> StdGen -> Gen a -> a

```

The three arguments are:
1. The "size" of the result. This isn't used in the example above, but if you were generating a data structure with a variable number of elements (like a list) then this parameter lets you pass some notion of the expected size into the generator. We'll see an example later.
2. A random number generator.
3. The generator action.

\section*{So for example:}
```

let
triple = generate 1 (mkStdGen 1) randomTriple

```
will generate three arbitrary numbers. But note that because the same seed value is used the numbers will always be the same (which is why I said "arbitrary", not "random"). If you want different numbers then you have to use a different StdGen argument.

A common pattern in most programming languages is to use a random number generator to choose between two courses of action:
```

-- Not Haskell code
r := random (0,1)
if r == 1 then foo else bar

```

QuickCheck provides a more declaritive way of doing the same thing. If "foo" and "bar" are both generators returning the same type then you can say:
```

oneof [foo, bar]

```

This has an equal chance of returning either "foo" or "bar". If you wanted different odds, say that there was a \(30 \%\) chance of "foo" and a \(70 \%\) chance of "bar" then you could say
```

frequency [(30, foo), (70, bar)]

```
"oneof" takes a simple list of Gen actions and selects one of them at random. "frequency" does something similar, but the probability of each item is given by the associated weighting.
```

oneof :: [Gen a] -> Gen a
frequency :: [(Int, Gen a)] -> Gen a

```

\section*{72 General Practices}

\section*{73 Building a standalone application}

So you want to build a simple application -- a piece of standalone software -- with Haskell.

\subsection*{73.1 The Main module}

The basic requirement behind this is to have a module Main with a main function main
```

-- thingamie.hs
module Main where
main = do
putStrLn "Bonjour, world!"

```

Using GHC, you may compile and run this file as follows:
```

\$ ghc --make -o bonjourWorld thingamie.hs
\$./bonjourWorld
Bonjour, world!

```

Voilà! You now have a standalone application built in Haskell.

\subsection*{73.2 Other modules?}

Invariably your program will grow to be complicated enough that you want to split it across different files. Here is an example of an application which uses two modules.
```

-- hello.hs
module Hello where
hello = "Bonjour, world!"

```
-- thingamie.hs
module Main where
import Hello
main \(=\) putStrLn hello

We can compile this fancy new program in the same way. Note that the --make flag to ghc is rather handy because it tells ghc to automatically detect dependencies in the files you are compiling. That
is, since thingamie.hs imports a module 'Hello', ghe will search the haskell files in the current directory for files that implement Hello and also compile that. If Hello depends on yet other modules, ghc will automatically detect those dependencies as well.
```

\$ ghc --make -o bonjourWorld thingamie.hs
\$./bonjourWorld
Bonjour, world!

```

If you want to search in other places for source files, including a nested structure of files and directories, you can add the starting point for the dependency search with the -i flag. This flag takes multiple, colon-separated directory names as its argument.

As a contrived example, the following program has three files all stored in a src/ directory. The directory structure looks like:
```

HaskellProgram/
src/
Main.hs
GUI/
Interface.hs
Functions/
Mathematics.hs

```

The Main module imports its dependencies by searching a path analogous to the module name - so that import GUI.Interface would search for GUI/Interface (with the appropriate file extension).

To compile this program from within the HaskellProgram directory, invoke ghc with:

> \$ ghc --make -i src -o sillyprog Main.hs

Applications \({ }^{1}\)

\footnotetext{
1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL
}

\section*{74 Testing}

\subsection*{74.1 Quickcheck}

Consider the following function:
```

getList = find 5 where
find 0 = return []
find n = do
ch <- getChar
if ch 'elem' ['a'..'e'] then do
tl <- find (n-1)
return (ch : tl) else
find n

```

How would we effectively test this function in Haskell? The solution we turn to is refactoring and QuickCheck.

\subsection*{74.1.1 Keeping things pure}

The reason your getList is hard to test, is that the side effecting monadic code is mixed in with the pure computation, making it difficult to test without moving entirely into a "black box" IO-based testing model. Such a mixture is not good for reasoning about code.

Let's untangle that, and then test the referentially transparent parts simply with QuickCheck. We can take advantage of lazy IO firstly, to avoid all the unpleasant low-level IO handling.

So the first step is to factor out the IO part of the function into a thin "skin" layer:
```

-- A thin monadic skin layer
getList :: IO [Char]
getList = fmap take5 getContents
-- The actual worker
take5 :: [Char] -> [Char]
take5 = take 5 . filter (`elem' ['a'..'e'])

```

\subsection*{74.1.2 Testing with QuickCheck}

Now we can test the 'guts' of the algorithm, the take5 function, in isolation. Let's use QuickCheck. First we need an Arbitrary instance for the Char type -- this takes care of generating random Chars for us to test with. I'll restrict it to a range of nice chars just for simplicity:
```

import Data.Char
import Test.QuickCheck
instance Arbitrary Char where
arbitrary = choose ('\32', '\128')
coarbitrary c = variant (ord c 'rem' 4)

```

Let's fire up GHCi (or Hugs) and try some generic properties (it's nice that we can use the QuickCheck testing framework directly from the Haskell REPL). An easy one first, a [Char] is equal to itself:
*A> quickCheck ((\s -> s == s) :: [Char] -> Bool)
OK, passed 100 tests.

What just happened? QuickCheck generated 100 random [Char] values, and applied our property, checking the result was True for all cases. QuickCheck generated the test sets for us!

A more interesting property now: reversing twice is the identity:
```

*A> quickCheck ((\s -> (reverse.reverse) s == s) :: [Char] -> Bool)
OK, passed 100 tests.

```

Great!

\subsection*{74.1.3 Testing take5}

The first step to testing with QuickCheck is to work out some properties that are true of the function, for all inputs. That is, we need to find invariants.

A simple invariant might be: \(\forall s\). length \((\) take5 \(s)=5\)
So let's write that as a QuickCheck property:
```

\s -> length (take5 s) == 5

```

Which we can then run in QuickCheck as:
```

*A> quickCheck (\s -> length (take5 s) == 5)
Falsifiable, after 0 tests:

```
""

Ah! QuickCheck caught us out. If the input string contains less than 5 filterable characters, the resulting string will be no more than 5 characters long. So let's weaken the property a bit: \(\forall\) s. length \((\) take \(5 s) \leq 5\)

That is, take 5 returns a string of at most 5 characters long. Let's test this:
```

*A> quickCheck (\s -> length (take5 s) <= 5)
OK, passed 100 tests.

```

Good!

\subsection*{74.1.4 Another property}

Another thing to check would be that the correct characters are returned. That is, for all returned characters, those characters are members of the set ['a','b',' '',' \(\left.d^{\prime},{ }^{\prime} e^{\prime}\right]\).

We can specify that as: \(\forall s . \forall e .(e \in \operatorname{take5} s) \Rightarrow(e \in\{a, b, c, d, e\})\)

\section*{And in QuickCheck:}
```

*A> quickCheck (\s -> all (`elem' ['a'..'e']) (take5 s))

```
OK, passed 100 tests.

Excellent. So we can have some confidence that the function neither returns strings that are too long, nor includes invalid characters.

\subsection*{74.1.5 Coverage}

One issue with the default QuickCheck configuration, when testing [Char], is that the standard 100 tests isn't enough for our situation. In fact, QuickCheck never generates a String greater than 5 characters long, when using the supplied Arbitrary instance for Char! We can confirm this:
```

*A> quickCheck (\s -> length (take5 s) < 5)
OK, passed 100 tests.

```

QuickCheck wastes its time generating different Chars, when what we really need is longer strings. One solution to this is to modify QuickCheck's default configuration to test deeper:
deepCheck p = check (defaultConfig \{ configMaxTest = 10000\}) p

This instructs the system to find at least 10000 test cases before concluding that all is well. Let's check that it is generating longer strings:
```

*A> deepCheck (\s -> length (take5 s) < 5)
Falsifiable, after 125 tests:

```
```

";:iD^*NNi~Y
RegMob\DEL@krsx/=dcf7kub|EQi\DELD*"

```

We can check the test data QuickCheck is generating using the 'verboseCheck' hook. Here, testing on integers lists:
```

*A> verboseCheck (\s -> length s < 5)
0: []
1: [0]
2: []
3: []
4: []
5: [1,2,1,1]
6: [2]
7: [-2,4,-4,0,0]
Falsifiable, after 7 tests:
[-2,4,-4,0,0]

```

\subsection*{74.1.6 More information on QuickCheck}
- http://haskell.org/haskellwiki/Introduction_to_QuickCheck
- http://haskell.org/haskellwiki/QuickCheck_as_a_test_set_generator

\subsection*{74.2 HUnit}

Sometimes it is easier to give an example for a test than to define one from a general rule. HUnit provides a unit testing framework which helps you to do just this. You could also abuse QuickCheck by providing a general rule which just so happens to fit your example; but it's probably less work in that case to just use HUnit.

\section*{TODO: give an example of HUnit test, and a small tour of it}

More details for working with HUnit can be found in its USER'S GUIDE \({ }^{1}\).

\footnotetext{
1 HTTP://HUNIT.SOURCEFORGE.NET/HUNIT-\{\}1.0/GUIDE.HTML
}

\section*{75 Packaging your software (Cabal)}

A guide to the best practice for creating a new Haskell project or program.

\subsection*{75.1 Recommended tools}

Almost all new Haskell projects use the following tools. Each is intrinsically useful, but using a set of common tools also benefits everyone by increasing productivity, and you're more likely to get patches.

\subsection*{75.1.1 Revision control}

Use DARCS \({ }^{1}\) unless you have a specific reason not to. It's written in Haskell, and it's the standard for Haskell developers. See the wikibook Understanding Darcs \({ }^{2}\) to get started.

\subsection*{75.1.2 Build system}

Use CABAL \({ }^{3}\). You should read at least the start of section 2 of the CABAL USER'S GUIDE \({ }^{4}\).

\subsection*{75.1.3 Documentation}

For libraries, use HADDOCK \({ }^{5}\). We recommend using recent versions of haddock ( 2.8 or above, as of December 2010).

\subsection*{75.1.4 Testing}

Pure code can be tested using QuickCheck \({ }^{6}\) or SmallCheck \(^{7}\), impure code with HUnit \({ }^{8}\).
```

HTTP://DARCS.NET
HTTP://EN.WIKIBOOKS.ORG/WIKI/UNDERSTANDINGDARCS
HTTP://HASKELL.ORG/CABAL
HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/CABAL/INDEX.HTML
HTTP://HASKELL.ORG/HADDOCK
HTTP://WWW.MD.CHALMERS.SE/~{}RJMH/QUICKCHECK/
HTTP://WWW.MAIL-{}ARCHIVE.COM/HASKELL@HASKELL.ORG/MSG19215.HTML
HTTP://HUNIT.SOURCEFORGE.NET/

```

To get started, try Haskell/Testing \({ }^{9}\). For a slightly more advanced introduction, Simple Unit Testing in HASKELL \({ }^{10}\) is a blog article about creating a testing framework for QuickCheck using some Template Haskell.

\subsection*{75.2 Structure of a simple project}

The basic structure of a new Haskell project can be adopted from HNOP \({ }^{11}\), the minimal Haskell project. It consists of the following files, for the mythical project "haq".
- Haq.hs -- the main haskell source file
- haq.cabal -- the cabal build description
- Setup.hs -- build script itself
- _darcs -- revision control
- README -- info
- LICENSE -- license

You can of course elaborate on this, with subdirectories and multiple modules.
Here is a transcript on how you'd create a minimal darcs-using and cabalised Haskell project, for the cool new Haskell program "haq", build it, install it and release.

The new tool 'mkcabal' automates all this for you, but it's important that you understand all the parts first.

We will now walk through the creation of the infrastructure for a simple Haskell executable. Advice for libraries follows after.

\subsection*{75.2.1 Create a directory}

Create somewhere for the source:
```

\$ mkdir haq

```
\$ cd haq

\subsection*{75.2.2 Write some Haskell source}

Write your program:
```

\$ cat > Haq.hs
-- Copyright (c) 2006 Don Stewart - http://www.cse.unsw.edu.au/~dons

```

\footnotetext{
\(9 \quad\) Kapitel 74 auf Seite 417
10 htte://blog.codersbase.com/2006/09/SIMPLe-\{\}unit-\{\}TESting-\{\}In-\{\}HASKELL. HTML
11 HTTP://SEMANTIC.ORG/HNOP/
}
```

-- GPL version 2 or later (see http://www.gnu.org/copyleft/gpl.html)
import System.Environment
-- 'main' runs the main program
main :: IO ()
main = getArgs >>= print . haqify . head
haqify s = "Haq! " ++ s

```

\subsection*{75.2.3 Stick it in darcs}

Place the source under revision control:
```

\$ darcs init
\$ darcs add Haq.hs
\$ darcs record
addfile ./Haq.hs
Shall I record this change? (1/?) [ynWsfqadjkc], or ? for help: y
hunk ./Haq.hs 1
+--
+-- Copyright (c) }2006\mathrm{ Don Stewart - http://www.cse.unsw.edu.au/ ~dons
+-- GPL version 2 or later (see http://www.gnu.org/copyleft/gpl.html)
+--
+import System.Environment
+
+-- | 'main' runs the main program
tmain :: IO ()
+main = getArgs >>= print . haqify . head
+
+haqify s = "Haq! " ++ s
Shall I record this change? (2/?) [ynWsfqadjkc], or ? for help: y
What is the patch name? Import haq source
Do you want to add a long comment? [yn]n
Finished recording patch 'Import haq source'

```

And we can see that darcs is now running the show:
```

\$ ls
Haq.hs _darcs

```

\subsection*{75.2.4 Add a build system}

Create a .cabal file describing how to build your project:
```

\$ cat > haq.cabal
Name: haq
Version: 0.0
Synopsis: Super cool mega lambdas
Description: My super cool, indeed, even mega lambdas
will demonstrate a basic project. You will
marvel.
License: GPI
License-file: LICENSE
Author: Don Stewart
Maintainer: Don Stewart dons@cse.unsw.edu.au
Build-Depends: base
Executable: haq
Main-is: Haq.hs

```
(If your package uses other packages, e.g. array, you'll need to add them to the Build-Depends: field.) Add a Setup. Ihs that will actually do the building:
```

\$ cat > Setup.lhs
\#! /usr/bin/env runhaskell
> import Distribution.Simple
> main = defaultMain

```

Cabal allows either Setup. hs or Setup. Ihs; as long as the format is appropriate, it doesn't matter which one you choose. But it's a good idea to always include the \#! /usr/bin/env runhaskell line; because it follows the SHEBANG \({ }^{12}\) convention, you could execute the Setup.hs directly in a Unix shell instead of always manually calling runhaskell (assuming the Setup file is marked executable, of course).

Record your changes:
```

\$ darcs add haq.cabal Setup.lhs
\$ darcs record --all
What is the patch name? Add a build system
Do you want to add a long comment? [yn]n
Finished recording patch 'Add a build system'

```

\subsection*{75.2.5 Build your project}

Now build it!

\footnotetext{
12 HTTP://EN.WIKIBOOKS.ORG/WIKI/WIKI:SHEBANG(UNIX)
}
```

\$ runhaskell Setup.lhs configure --prefix=\$HOME --user
\$ runhaskell Setup.lhs build
\$ runhaskell Setup.lhs install

```

\subsection*{75.2.6 Run it}

And now you can run your cool project:
\$ haq me
"Haq! me"

You can also run it in-place, avoiding the install phase:
\$ dist/build/haq/haq you
"Haq! you"

\subsection*{75.2.7 Build some haddock documentation}

Generate some API documentation into dist/doc/*
\$ runhaskell Setup.lhs haddock
which generates files in dist/doc/ including:
```

\$ w3m -dump dist/doc/html/haq/Main.html
haq Contents Index
Main
Synopsis
main :: IO ()
Documentation
main :: IO ()
main runs the main program
Produced by Haddock version 0.7

```

No output? Make sure you have actually installed haddock. It is a separate program, not something that comes with the Haskell compiler, like Cabal.

\subsection*{75.2.8 Add some automated testing: QuickCheck}

We'll use QuickCheck to specify a simple property of our Haq.hs code. Create a tests module, Tests.hs, with some QuickCheck boilerplate:
```

\$ cat > Tests.hs
import Char
import List
import Test.QuickCheck
import Text.Printf
main = mapM_ (\(s,a) -> printf "%-25s: " s >> a) tests
instance Arbitrary Char where
arbitrary = choose ('\0', '\128')
coarbitrary c = variant (ord c 'rem' 4)

```

Now let's write a simple property:
```

\$ cat >> Tests.hs
-- reversing twice a finite list, is the same as identity
prop_reversereverse s = (reverse . reverse) s == id s
where _ = s :: [Int]
-- and add this to the tests list
tests = [("reverse.reverse/id", test prop_reversereverse)]

```

We can now run this test, and have QuickCheck generate the test data:
```

\$ runhaskell Tests.hs
reverse.reverse/id : OK, passed 100 tests.

```

Let's add a test for the 'haqify' function:
```

-- Dropping the "Haq! " string is the same as identity
prop_haq s = drop (length "Haq! ") (haqify s) == id s
where haqify s = "Haq! " ++ s
tests = [("reverse.reverse/id", test prop_reversereverse)
,("drop.haq/id", test prop_haq)]

```
and let's test that:
\$ runhaskell Tests.hs
reverse.reverse/id : OK, passed 100 tests.
drop.haq/id : OK, passed 100 tests.

\section*{Great!}

\subsection*{75.2.9 Running the test suite from darcs}

We can arrange for darcs to run the test suite on every commit:
```

\$ darcs setpref test "runhaskell Tests.hs"
Changing value of test from " to 'runhaskell Tests.hs'

```
will run the full set of QuickChecks. (If your test requires it you may need to ensure other things are built too e.g.: darcs setpref test "alex Tokens.x;happy Grammar.y; runhaskell Tests.hs").

Let's commit a new patch:
```

\$ darcs add Tests.hs
\$ darcs record --all
What is the patch name? Add testsuite
Do you want to add a long comment? [yn]n
Running test...
reverse.reverse/id : OK, passed 100 tests.
drop.haq/id : OK, passed 100 tests.
Test ran successfully.
Looks like a good patch.
Finished recording patch 'Add testsuite'

```

Excellent, now patches must pass the test suite before they can be committed.

\subsection*{75.2.10 Tag the stable version, create a tarball, and sell it!}

Tag the stable version:
```

\$ darcs tag
What is the version name? 0.0
Finished tagging patch 'TAG 0.0'

```

\section*{Advanced Darcs functionality: lazy get}

As your repositories accumulate patches, new users can become annoyed at how long it takes to accomplish the initial darcs get. (Some projects, like \(\mathrm{YI}^{13}\) or GHC , can have thousands of patches.) Darcs is quick enough, but downloading thousands of individual patches can still take a while. Isn't there some way to make things more efficient?

\footnotetext{
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/YI (EDITOR)
}

Darcs provides the --lazy option to darcs get. This enables to download only the latest version of the repository. Patches are later downloaded on demand if needed.

\section*{Distribution}

When distributing your Haskell program, you have roughly three options:
1. distributing via a Darcs repository
2. distributing a tarball
a) a Darcs tarball
b) a Cabal tarball

With a Darcs repository, if it is public, than you are done. However: perhaps you don't have a server with Darcs, or perhaps your computer isn't set up for people to darcs pull from it. In which case you'll need to distribute the source via tarball.

\section*{Tarballs via darcs}

Darcs provides a command where it will make a compressed tarball, and it will place a copy of all the files it manages into it. (Note that nothing in _darcs will be included - it'll just be your source files, no revision history.)
```

\$ darcs dist -d haq-0.0
Created dist as haq-0.0.tar.gz

```

And you're all set up!

\section*{Tarballs via Cabal}

Since our code is cabalised, we can create a tarball with Cabal directly:
```

\$ runhaskell Setup.lhs sdist
Building source dist for haq-0.0...
Source tarball created: dist/haq-0.0.tar.gz

```

This has advantages and disadvantages compared to a Darcs-produced tarball. The primary advantage is that Cabal will do more checking of our repository, and more importantly, it'll ensure that the tarball has the structure needed by HackageDB and cabal-install.

However, it does have a disadvantage: it packages up only the files needed to build the project. It will deliberately fail to include other files in the repository, even if they turn out to be necessary at
some point \({ }^{14}\). To include other files (such as Test.hs in the above example), we need to add lines to the cabal file like:
extra-source-files: Tests.hs

If we had them, we could make sure files like AUTHORS or the README get included as well:
data-files: AUTHORS, README

\subsection*{75.2.11 Summary}

The following files were created:
\begin{tabular}{|lll|}
\hline \begin{tabular}{lll} 
\$ ls \\
Haq.hs \\
Setup.lhs
\end{tabular} & \begin{tabular}{l} 
Tests.hs \\
_darcs
\end{tabular} & \begin{tabular}{l} 
dist \\
haq-0.0.tar.gz
\end{tabular}
\end{tabular} haq.cabal

\subsection*{75.3 Libraries}

The process for creating a Haskell library is almost identical. The differences are as follows, for the hypothetical "ltree" library:

\subsection*{75.3.1 Hierarchical source}

The source should live under a directory path that fits into the existing module layout guide \({ }^{15}\). So we would create the following directory structure, for the module Data.LTree:
```

\$ mkdir Data
\$ cat > Data/LTree.hs
module Data.LTree where

```

So our Data.LTree module lives in Data/LTree.hs

\subsection*{75.3.2 The Cabal file}

Cabal files for libraries list the publically visible modules, and have no executable section:

\footnotetext{
14 This is actually a good thing, since it allows us to do things like create an elaborate test suite which doesn't get included in the tarball, so users aren't bothered by it. It also can reveal hidden assumptions and omissions in our code - perhaps your code was only building and running because of a file accidentally generated.
15 HTTP://WWW.HASKELL.ORG/~\{\}SIMONMAR/LIB-\{\}HIERARCHY.HTML
}
```

\$ cat ltree.cabal
Name: ltree
Version: 0.1
Description: Lambda tree implementation
License: BSD3
License-file: LICENSE
Author: Don Stewart
Maintainer: dons@cse.unsw.edu.au
Build-Depends: base
Exposed-modules: Data.LTree

```

We can thus build our library:
```

\$ runhaskell Setup.lhs configure --prefix=\$HOME --user
\$ runhaskell Setup.lhs build
Preprocessing library ltree-0.1...
Building ltree-0.1...
[1 of 1] Compiling Data.LTree (Data/LTree.hs,
dist/build/Data/LTree.o)
/usr/bin/ar: creating dist/build/libHSltree-0.1.a

```
and our library has been created as a object archive. On *nix systems, you should probably add the --user flag to the configure step (this means you want to update your local package database during installation). Now install it:
```

 $ runhaskell Setup.lhs install
 Installing: /home/dons/lib/ltree-0.1/ghc-6.6 & /home/dons/bin
 ltree-0.1...
Registering ltree-0.1...
Reading package info from ".installed-pkg-config" ... done.
Saving old package config file... done.
Writing new package config file... done.

```

And we're done! You can use your new library from, for example, ghci:
```

\$ ghci -package ltree
Prelude> :m + Data.LTree
Prelude Data.LTree>

```

The new library is in scope, and ready to go.

\subsection*{75.3.3 More complex build systems}

For larger projects it is useful to have source trees stored in subdirectories. This can be done simply by creating a directory, for example, "src", into which you will put your src tree.

To have Cabal find this code, you add the following line to your Cabal file:
```

hs-source-dirs: src

```

Cabal can set up to also run configure scripts, along with a range of other features. For more information consult the CABAL DOCUMENTATION \({ }^{16}\).

\section*{Internal modules}

If your library uses internal modules that are not exposed, do not forget to list them in the other-modules field:
```

other-modules: My.Own.Module

```

Failing to do so (as of GHC 6.8.3) may lead to your library deceptively building without errors but actually being unusable from applications, which would fail at build time with a linker error.

\subsection*{75.4 Automation}

A tool to automatically populate a new cabal project is available (beta!):
```

darcs get http://code.haskell.org/~dons/code/mkcabal

```
N.B. This tool does not work in Windows. The Windows version of GHC does not include the readline package that this tool needs.

Usage is:
```

\$ mkcabal
Project name: haq
What license
["GPL","LGPL","BSD3","BSD4","PublicDomain","AllRightsReserved"]
["BSD3"]:
What kind of project [Executable,Library] [Executable]:
Is this your name? - "Don Stewart " [Y/n]:
Is this your email address? - "dons@cse.unsw.edu.au" [Y/n]:
Created Setup.1hs and haq.cabal
\$ ls
Haq.hs LICENSE Setup.lhs _darcs dist haq.cabal

```
which will fill out some stub Cabal files for the project 'haq'.
To create an entirely new project tree:
```

\$ mkcabal --init-project

```

\footnotetext{
16 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/CABAL/INDEX.HTML
}
```

Project name: haq
What license
["GPL","LGPL","BSD3","BSD4","PublicDomain", "AllRightsReserved"]
["BSD3"]:
What kind of project [Executable,Library] [Executable]:
Is this your name? - "Don Stewart " [Y/n]:
Is this your email address? - "dons@cse.unsw.edu.au" [Y/n]:
Created new project directory: haq
\$ cd haq
\$ ls
Haq.hs LICENSE README Setup.lhs haq.cabal

```

\subsection*{75.5 Licenses}

Code for the common base library package must be BSD licensed or something more Free/Open. Otherwise, it is entirely up to you as the author.

Choose a licence (inspired by THIS \({ }^{17}\) ). Check the licences of things you use, both other Haskell packages and C libraries, since these may impose conditions you must follow.

Use the same licence as related projects, where possible. The Haskell community is split into 2 camps, roughly, those who release everything under BSD or public domain, and the GPL/LGPLers (this split roughly mirrors the copyleft/noncopyleft divide in Free software communities_. Some Haskellers recommend specifically avoiding the LGPL, due to cross module optimisation issues. Like many licensing questions, this advice is controversial. Several Haskell projects (wxHaskell, HaXml , etc.) use the LGPL with an extra permissive clause to avoid the cross-module optimisation problem.

\subsection*{75.6 Releases}

It's important to release your code as stable, tagged tarballs. Don't just RELY ON DARCS FOR DISTRIBUTION \({ }^{18}\).
- darcs dist generates tarballs directly from a darcs repository

For example:
```

\$ cd fps
\$ ls
Data LICENSE README Setup.hs TODO _darcs cbits
dist fps.cabal tests

```

\footnotetext{
HTTP://WWW.DINA.DK/~\{\}ABRAHAM/RANTS/LICENSE.HTML
18 http://WEB.ARCHIVE.ORG/WEB/20070627103346/HTTP://AWAYREPL.BLOGSPOT.COM/2006/ 11/WE-\{\}DONT-\{\}DO-\{\}RELEASES.HTML
}
```

\$ darcs dist -d fps-0.8
Created dist as fps-0.8.tar.gz

```

You can now just post your fps-0.8.tar.gz
You can also have darcs do the equivalent of 'daily snapshots' for you by using a post-hook.
put the following in _darcs/prefs/defaults:
```

apply posthook darcs dist
apply run-posthook

```

Advice:
- Tag each release using darcs tag. For example:
```

\$ darcs tag 0.8
Finished tagging patch 'TAG 0.8'

```

Then people can darcs get --lazy --tag 0.8 , to get just the tagged version (and not the entire history).

\subsection*{75.7 Hosting}

You can host public and private Darcs repositories on http://patch-tag.com/ for free. Otherwise, a Darcs repository can be published simply by making it available from a web page. Another option is to host on the Haskell Community Server at http://code.haskell.org/. You can request an account via http://community.haskell.org/admin/.

\subsection*{75.8 Example}

A COMPLETE EXAMPLE \({ }^{19}\) of writing, packaging and releasing a new Haskell library under this process has been documented.

\subsection*{75.9 References}

\footnotetext{
19 HTTP://WWW.CSE.UNSW.EDU.AU/~\{\}DONS/BLOG/2006/12/11\#RELEASE-\{\}A-\{\}LIBRARY-\{\}TODAY
}

\section*{76 Using the Foreign Function Interface (FFI)}

Using Haskell is fine, but in the real world there is a large amount of useful libraries in other languages, especially C. To use these libraries, and let C code use Haskell functions, there is the Foreign Function Interface (FFI).

\subsection*{76.1 Calling C from Haskell}

\subsection*{76.1.1 Marshalling (Type Conversion)}

When using C functions, it is necessary to convert Haskell types to the appropriate C types. These are available in the Foreign.C.Types module; some examples are given in the following table.
\begin{tabular}{lll} 
Haskell & Foreign.C.Types & C \\
Double & CDouble & double \\
Char & CUChar & unsigned char \\
Int & CLong & long int
\end{tabular}

The operation of converting Haskell types into C types is called marshalling (and the opposite, predictably, unmarshalling). For basic types this is quite straightforward: for floating-point one uses realToFrac (either way, as e.g. both Double and CDouble are instances of classes Real and Fractional), for integers fromIntegral, and so on.

\subsection*{76.1.2 Calling a pure C function}

A pure function implemented in C does not present significant trouble in Haskell. The sin function of the C standard library is a fine example:
```

{-\# LANGUAGE ForeignFunctionInterface \#-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "math.h sin"
c_sin :: CDouble -> CDouble

```

First, we specify a GHC extension for the FFI in the first line. We then import the Foreign and Foreign.C.Types modules, the latter of which contains information about CDouble, the representation of double-precision floating-point numbers in C.

We then specify that we are importing a foreign function, with a call to C. A "safety level" has to be specified with the keyword safe (the default) or unsafe. In general, unsafe is more efficient, and safe is required only for \(C\) code that could call back a Haskell function. Since that is a very particular case, it is actually quite safe to use the unsafe keyword in most cases. Finally, we need to specify header and function name, separated by a space.

The Haskell function name is then given, in our case we use a standard c_sin, but it could have been anything. Note that the function signature must be correct-GHC will not check the C header to confirm that the function actually takes a CDouble and returns another, and writing a wrong one could have unpredictable results.

It is then possible to generate a wrapper around the function using CDouble so that it looks exactly like any Haskell function.
```

haskellSin :: Double -> Double
haskellSin = realToFrac . c_sin . realToFrac

```

Importing C's sin is simple because it is a pure function that takes a plain double as input and returns another as output: things will complicate with impure functions and pointers, which are ubiquitous in more complicated C libraries.

\subsection*{76.1.3 Impure C Functions}

A classic impure C function is rand, for the generation of pseudo-random numbers. Suppose you do not want to use Haskell's System. Random.randomIO, for example because you want to replicate exactly the series of pseudo-random numbers output by some \(C\) routine. Then, you could import it just like sin before:
```

{-\# LANGUAGE ForeignFunctionInterface \#-}
import Foreign
import Foreign.c.Types
foreign import ccall unsafe "stdlib.h rand"
c_rand :: CUInt -- Oops!

```

If you try this naïve implementation in GHCI, you will notice that c_rand is returning always the same value:
```

> c_rand
1714636915
> c_rand
1714636915

```
indeed, we have told GHC that it is a pure function, and GHC sees no point in calculating twice the result of a pure function. Note that GHC did not give any error or warning message.

In order to make GHC understand this is no pure function, we have to use the IO MONAD \({ }^{1}\) :

\footnotetext{
1 HTTP://En.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/IO
}
```

{-\# LANGUAGE ForeignFunctionInterface \#-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "stdlib.h rand"
c_rand :: IO CUInt
foreign import ccall "stdlib.h srand"
c_srand :: CUInt -> IO ()

```

Here, we also imported the srand function, to be able to seed the C pseudo-random generator.
```

> c_rand
1957747793
> c_rand
424238335
> c_srand 0
> c_rand
1804289383
> c_srand 0
> c_rand
1804289383

```

\subsection*{76.1.4 Working with C Pointers}

The most useful C functions are often those that do complicated calculations with several parameters, and with increasing complexity the need of returning control codes arises. This means that a typical paradigm of C libraries is to give pointers of allocated memory as "targets" in which the results may be written, while the function itself returns an integer value (typically, if 0, computation was successful, otherwise there was a problem specified by the number). Another possibility is that the function will return a pointer to a structure (possibly defined in the implementation, and therefore unavailable to us).

As a pedagogical example, we consider THE gsl_frexp FUNCTION \({ }^{2}\) of the GNU SCIENTIFIC LIbrary \(^{3}\), a freely available library for scientific computation. It is a simple C function with prototype:
```

double gsl_frexp (double x, int * e)

```

The function takes a double \(x\), and it returns its normalised fraction \(f\) and integer exponent \(e\) so that:
\[
x=f \times 2^{e} \quad e \in \mathbb{Z}, \quad 0.5 \leq f<1
\]

We interface this C function into Haskell with the following code:
```

{-\# LANGUAGE ForeignFunctionInterface \#-}

```

\footnotetext{
2 HTTP://WWW.GNU.ORG/SOFTWARE/GSL/MANUAL/HTML_NODE/ELEMENTARY-\{\}FUNCTIONS.HTML
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU_SCIENTIFIC_LIBRARY
}
```

import Foreign
import Foreign.Ptr
import Foreign.C.Types
foreign import ccall unsafe "gsl/gsl_math.h gsl_frexp"
gsl_frexp :: CDouble -> Ptr CInt -> IO CDouble

```

The new part is Ptr, which can be used with any instance of the Storable class, among which all C types, but also several Haskell types.

Notice how the result of the gsl_frexp function is in the IO monad. This is typical when working with pointers, be they used for input or output (as in this case); we will see shortly what would happen had we used a simple CDouble for the function.

The frexp function is implemented in pure Haskell code as follows:
```

frexp :: Double -> (Double, Int)
frexp x = unsafePerformIO \$
alloca \$ lexpptr -> do
f <- gsl_frexp (realToFrac x) expptr
e <- peek expptr
return (realToFrac f, fromIntegral e)

```

We know that, memory management details aside, the function is pure: that's why the signature returns a tuple with \(f\) and \(e\) outside of the IO monad. Yet, \(f\) is provided inside of it: to extract it, we use the function unsafePerformIO, which extracts values from the 10 monad: obviously, it is legitimate to use it only when we know the function is pure, and we can allow GHC to optimise accordingly.

To allocate pointers, we use the alloca function, which also takes responsibility for freeing memory. As an argument, alloca takes a function of type Ptr a \(\rightarrow\) IO b, and returns the IO b. In practice, this translates to the following usage pattern with \(\lambda\) functions:
```

... alloca \$ \pointer -> do
c_function(argument, pointer)
result <- peek pointer
return result

```

The pattern can easily be nested if several pointers are required:
```

... alloca \$ \firstPointer ->
alloca \$ \secondPointer -> do
c_function(argument, firstPointer, secondPointer)
first <- peek firstPointer
second <- peek secondPointer
return (first, second)

```

Back to our frexp function: in the \(\lambda\) function that is the argument to alloca, the function is evaluated and the pointer is read immediately afterwards with peek. Here we can understand why we wanted the imported \(C\) function gsl_frexp to return a value in the IO monad: if GHC could decide when to calculate the quantity \(f\), it would likely decide not to do it until it is necessary: that is
at the last line when return uses it, and after \(e\) has been read from an allocated, but yet uninitialised memory address, which will contain random data. In short, we want gsl_frexp to return a monadic value because we want to determine the sequence of computations ourselves.

If some other function had required a pointer to provide input instead of storing output, one would have used the similar poke function to set the pointed value, obviously before evaluating the function:
```

... alloca \$ \inputPointer ->
alloca \$ \outputPointer -> do
poke inputPointer value
c_function(argument, inputPointer, outputPointer)
result <- peek outputPointer
return result

```

In the final line, the results are arranged in a tuple and returned, after having been converted from C types.

To test the function, remember to link GHC to the GSL; in GHCI, do:
```

\$ ghci frexp.hs -lgsl

```
(Note that most systems do not come with the GSL preinstalled, and you may have to download and install its development packages.)

\subsection*{76.1.5 Working with C Structures}

Very often data are returned by C functions in form of structs or pointers to these. In some rare cases, these structures are returned directly, but more often they are returned as pointers; the return value is most often an int that indicates the correctness of execution.

We will consider another GSL function, gsl_sf_bessel_Jn_e \({ }^{4}\). This function provides the regular cylindrical Bessel function for a given order \(n\), and returns the result as a gsl_sf_result structure pointer. The structure contains two doubles, one for the result and one for the error. The integer error code returned by the function can be transformed in a C string by the function gsl_strerror. The signature of the Haskell function we are looking for is therefore:
```

BesselJn :: Int -> Double -> Either String (Double, Double)

```
where the first argument is the order of the cylindrical Bessel function, the second is the function's argument, and the returned value is either an error message or a tuple with result and margin of error.

\footnotetext{
4 HTTP://WWW.GNU.ORG/SOFTWARE/GSL/MANUAL/HTML_NODE/REGULAR-\{\}CYLINDRICAL-\{\}BESSEL-\{\}FUNCTIONS. HTML
}

\section*{Making a New Instance of the Storable class}

In order to allocate and read a pointer to a \(g s l_{\text {_sf_result structure, it is necessary to make it an }}\) instance of the Storable class.

In order to do that, it is useful to use the hsc2hs program: we create first a Bessel.hsc file, with a mixed syntax of Haskell and C macros, which is later expanded into Haskell by the command:
```

\$ hsc2hs Bessel.hsc

```

After that, we simply load the Bessel.hs file in GHC.
This is the first part of file Bessel.hsc:
```

{-\# LANGUAGE ForeignFunctionInterface \#-}
module Bessel (besselJn) where
import Foreign
import Foreign.Ptr
import Foreign.C.String
import Foreign.C.Types
\#include <gsl/gsl_sf_result.h>
data GslSfResult = GslSfResult { gsl_value :: CDouble, gsl_error ::
CDouble }
instance Storable GslSfResult where
sizeOf _ = (\#size gsl_sf_result)
alignment _ = alignment (undefined :: CDouble)
peek ptr = do
value <- (\#peek gsl_sf_result, val) ptr
error <- (\#peek gsl_sf_result, err) ptr
return GslSfResult { gsl_value = value, gsl_error = error }
poke ptr (GslSfResult value error) = do
(\#poke gsl_sf_result, val) ptr value
(\#poke gsl_sf_result, err) ptr error

```

We use the \#include directive to make sure hsc2hs knows where to find information about gsl_sf_result. We then define a Haskell data structure mirroring the GSL's, with two CDoubles: this is the class we make an instance of Storable. Strictly, we need only sizeOf, alignment and peek for this example; poke is added for completeness.
- sizeOf is obviously fundamental to the allocation process, and is calculated by hsc2hs with the \#size macro.
- alignment is the size in byte of the DATA STRUCTURE ALIGNMENT \({ }^{5}\). In general, it should be the largest alignment of the elements of the structure; in our case, since the two elements are the same, we simply use CDouble's. The value of the argument to alignment is inconsequential, what is important is the type of the argument.
- peek is implemented using a do-block and the \#peek macros, as shown. val and err are the names used for the structure fields in the GSL source code.
- Similarly, poke is implemented with the \#poke macro.

\footnotetext{
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATA_STRUCTURE_ALIGNMENT
}

\section*{Importing the C Functions}
```

foreign import ccall unsafe "gsl/gsl_bessel.h gsl_sf_bessel_Jn_e"
c_besselJn :: CInt -> CDouble -> Ptr GslSfResult -> IO CInt
foreign import ccall unsafe "gsl/gsl_errno.h
gsl_set_error_handler_off"
c_deactivate_gsl_error_handler :: IO ()
foreign import ccall unsafe "gsl/gsl_errno.h gsl_strerror"
c_error_string :: CInt -> IO CString

```

We import several functions from the GSL libraries: first, the Bessel function itself, which will do the actual work. Then, we need a particular function, gsl_set_error_handler_off, because the default GSL error handler will simply crash the program, even if called by Haskell: we, instead, plan to deal with errors ourselves. The last function is the GSL-wide interpreter that translates error codes in human-readable C strings.

\section*{Implementing the Bessel Function}

Finally, we can implement the Haskell version of the GSL cylindrical Bessel function of order \(n\).
```

besselJn :: Int -> Double -> Either String (Double, Double)
besselJn n x = unsafePerformIO \$
alloca \$ \gslSfPtr -> do
c_deactivate_gsl_error_handler
status <- c_besselJn (fromIntegral n) (realToFrac x) gslSfPtr
if status == 0
then do
GslSfResult val err <- peek gslSfPtr
return \$ Right (realToFrac val, realToFrac err)
else do
error <- c_error_string status
error_message <- peekCString error
return \$ Left ("GSL error: "++error_message)

```

Again, we use unsafePerformIo because the function is pure, even though its nuts-and-bolts implementation is not. After allocating a pointer to a GSL result structure, we deactivate the GSL error handler to avoid crashes in case something goes wrong, and finally we can call the GSL function. At this point, if the status returned by the function is 0 , we unmarshal the result and return it as a tuple. Otherwise, we call the GSL error-string function, and pass the error as a Left result instead.

\section*{Examples}

Once we are finished writing the Bessel.hsc function, we have to convert it to proper Haskell and load the produced file:
```

hsc2hs Bessel.hsc
\$ ghci Bessel.hs -lgsl

```

We can then call the Bessel function with several values:
```

> besselJn 0 10
Right (-0.2459357644513483,1.8116861737200453e-16)
> besselJn 1 0
Right (0.0,0.0)
> besselJn 1000 2
Left "GSL error: underflow"

```

\subsection*{76.1.6 Advanced Topics}

This section contains an advanced example with some more complex features of the FFI. We will import into Haskell one of the more complicated functions of the GSL, the one used to calculate THE INTEGRAL OF A FUNCTION BETWEEN TWO GIVEN POINTS WITH AN ADAPTIVE GAUSSKRONROD ALGORITHM \({ }^{6}\). The GSL function is gsl_integration_qag.

This example will illustrate function pointers, export of Haskell functions to C routines, enumerations, and handling pointers of unknown structures.

\section*{Available C Functions and Structures}

The GSL has three functions which are necessary to integrate a given function with the considered method:
```

gsl_integration_workspace * gsl_integration_workspace_alloc (size_t
n);
void gsl_integration_workspace_free (gsl_integration_workspace * w);
int gsl_integration_qag (const gsl_function * f, double a, double b,
double epsabs, double epsrel, size_t limit,
int key, gsl_integration_workspace *
workspace,
double * result, double * abserr);

```

The first two deal with allocation and deallocation of a "workspace" structure of which we know nothing (we just pass a pointer around). The actual work is done by the last function, which requires a pointer to a workspace.

To provide functions, the GSL specifies an appropriate structure for C :
```

struct gsl_function
{
double (* function) (double x, void * params);
void * params;
};

```

\footnotetext{
6 HTTP://WWW.GNU.ORG/SOFTWARE/GSL/MANUAL/HTML_NODE/QAG-\{\}ADAPTIVE-\{\}INTEGRATION. HTML
}

The reason for the void pointer is that it is not possible to define \(\lambda\) functions in C : parameters are therefore passed along with a parameter of unknown type. In Haskell, we do not need the params element, and will consistently ignore it.

\section*{Imports and Inclusions}

We start our qag. hsc file with the following:
```

{-\# LANGUAGE ForeignFunctionInterface, EmptyDataDecls \#-}
module Qag (qag,
gauss15,
gauss21,
gauss31,
gauss41,
gauss51,
gauss61) where
import Foreign
import Foreign.Ptr
import Foreign.C.Types
import Foreign.C.String
\#include <gsl/gsl_math.h>
\#include <gsl/gsl_integration.h>
foreign import ccall unsafe "gsl/gsl_errno.h gsl_strerror"
c_error_string :: CInt -> IO CString
foreign import ccall unsafe "gsl/gsl_errno.h
gsl_set_error_handler_off"
c_deactivate_gsl_error_handler :: IO ()

```

We declare the EmptyDataDecls pragma, which we will use later for the Workspace data type. Since this file will have a good number of functions that should not be available to the outside world, we also declare it a module and export only the final function qag and the gauss- flags. We also include the relevant C headers of the GSL. The import of C functions for error messages and deactivation of the error handler was described before.

\section*{Enumerations}

One of the arguments of gsl_integration_qag is key, an integer value that can have values from 1 to 6 and indicates the integration rule. GSL defines a macro for each value, but in Haskell it is more appropriate to define a type, which we call IntegrationRule. Also, to have its values automatically defined by hsc2hs, we can use the enum macro:
```

newtype IntegrationRule = IntegrationRule { rule :: CInt }
\#{enum IntegrationRule, IntegrationRule,
gauss15 = GSL_INTEG_GAUSS15,
gauss21 = GSL_INTEG_GAUSS21,
gauss31 = GSL_INTEG_GAUSS31,
gauss41 = GSL_INTEG_GAUSS41,
gauss51 = GSL_INTEG_GAUSS51,
gauss61 = GSL_INTEG_GAUSS61
}

```
hsc2hs will search the headers for the macros and give our variables the correct values. The variables cannot be modified and are essentially constant flags. Since we did not export the IntegrationRule constructor in the module declaration, but only the gauss flags, it is impossible for a user to even construct an invalid value. One thing less to worry about!

\section*{Haskell Function Target}

We can now write down the signature of the function we desire:
```

qag :: IntegrationRule
-> Int
-> Double -- Absolute tolerance
-> Double -- Relative tolerance
-> (Double -> Double) -- Function to integrate
-> Double -- Integration interval start
-> Double -- Integration interval end
-> Either String (Double, Double) -- Result and (absolute) error
estimate

```

Note how the order of arguments is different from the C version: indeed, since C does not have the possibility of partial application, the ordering criteria are different than in Haskell.

As in the previous example, we indicate errors with a Either String (Double, Double) result.

\section*{Passing Haskell Functions to the C Algorithm}
```

type CFunction = CDouble -> Ptr () -> CDouble
data GslFunction = GslFunction (FunPtr CFunction) (Ptr ())
instance Storable GslFunction where
sizeOf _ = (\#size gsl_function)
alignment _ = alignment (undefined :: Ptr ())
peek ptr = do
function <- (\#peek gsl_function, function) ptr
return \$ GslFunction function nullPtr
poke ptr (GslFunction fun nullPtr) = do
(\#poke gsl_function, function) ptr fun
makeCfunction :: (Double -> Double) -> (CDouble -> Ptr () -> CDouble)
makeCfunction f = \x voidpointer -> realToFrac \$ f (realToFrac x)
foreign import ccall "wrapper"
makeFunPtr :: CFunction -> IO (FunPtr CFunction)

```

We define a shorthand type, CFunction, for readability. Note that the void pointer has been translated to a Ptr (), since we have no intention of using it. Then it is the turn of the gsl_function structure: no surprises here. Note that the void pointer is always assumed to be null, both in peek and in poke, and is never really read nor written.

To make a Haskell Double -> Double function available to the C algorithm, we make two steps: first, we re-organise the arguments using a \(\lambda\) function in makeCfunction; then, in makeFunPtr, we
take the function with reordered arguments and produce a function pointer that we can pass on to poke, so we can construct the GslFunction data structure.

\section*{Handling Unknown Structures}
```

data Workspace
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_alloc"
c_qag_alloc :: CSize -> IO (Ptr Workspace)
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_free"
c_qag_free :: Ptr Workspace -> IO ()
foreign import ccall safe "gsl/gsl_integration.h gsl_integration_qag"
c_qag :: Ptr GslFunction -- Allocated GSL function structure
-> CDouble -- Start interval
-> CDouble -- End interval
-> CDouble -- Absolute tolerance
-> CDouble -- Relative tolerance
-> CSize -- Maximum number of subintervals
-> CInt -- Type of Gauss-Kronrod rule
-> Ptr Workspace -- GSL integration workspace
-> Ptr CDouble -- Result
-> Ptr CDouble -- Computation error
-> IO CInt -- Exit code

```

The reason we imported the EmptyDataDecls pragma is this: we are declaring the data structure Workspace without providing any constructor. This is a way to make sure it will always be handled as a pointer, and never actually instantiated.

Otherwise, we normally import the allocating and deallocating routines. We can now import the integration function, since we have all the required pieces (GslFunction and Workspace).

\section*{The Complete Function}

It is now possible to implement a function with the same functionality as the GSL's QAG algorithm.
```

qag gauss steps abstol reltol f a b = unsafePerformiO \$ do
c_deactivate_gsl_error_handler
workspacePtr <- c_qag_alloc (fromIntegral steps)
if workspacePtr == nullPtr
then
return \$ Left "GSL could not allocate workspace"
else do
fPtr <- makeFunPtr \$ makeCfunction f
alloca \$ \gsl_f -> do
poke gsl_f (GslFunction fPtr nullPtr)
alloca \$ \resultPtr -> do
alloca \$ \errorPtr -> do
status <- c_qag gsl_f
(realToFrac a)
(realToFrac b)
(realToFrac abstol)
(realToFrac reltol)
(fromIntegral steps)
(rule gauss)
workspacePtr
resultPtr
errorPtr
c_qag_free workspacePtr
freeHaskellFunPtr fPtr

```
```

if status /= 0
then do
c_errormsg <- c_error_string status
errormsg <- peekCString c_errormsg
return \$ Left errormsg
else do
c_result <- peek resultPtr
c_error <- peek errorPtr
let result = realToFrac c_result
let error = realToFrac c_error
return \$ Right (result, error)

```

First and foremost, we deactivate the GSL error handler, that would crash the program instead of letting us report the error.

We then proceed to allocate the workspace; notice that, if the returned pointer is null, there was an error (typically, too large size) that has to be reported.

If the workspace was allocated correctly, we convert the given function to a function pointer and allocate the GslFunction struct, in which we place the function pointer. Allocating memory for the result and its error margin is the last thing before calling the main routine.

After calling, we have to do some housekeeping and free the memory allocated by the workspace and the function pointer. Note that it would be possible to skip the bookkeeping using ForeignPtr, but the work required to get it to work is more than the effort to remember one line of cleanup.

We then proceed to check the return value and return the result, as was done for the Bessel function.

\subsection*{76.1.7 Self-Deallocating Pointers}

In the previous example, we manually handled the deallocation of the GSL integration workspace, a data structure we know nothing about, by calling its C deallocation function. It happens that the same workspace is used in several integration routines, which we may want to import in Haskell.

Instead of replicating the same allocation/deallocation code each time, which could lead to memory leaks when someone forgets the deallocation part, we can provide a sort of "smart pointer", which will deallocate the memory when it is not needed any more. This is called ForeignPtr (do not confuse with Foreign.Ptr: this one's qualified name is actually Foreign.ForeignPtr!). The function handling the deallocation is called the finalizer.

In this section we will write a simple module to allocate GSL workspaces and provide them as appropriately configured ForeignPtrs, so that users do not have to worry about deallocation.

The module, written in file GSLWorkspace. hs , is as follows:
```

{-\# LANGUAGE ForeignFunctionInterface, EmptyDataDecls \#-}
module GSLWorkSpace (Workspace, createWorkspace) where
import Foreign.C.Types
import Foreign.Ptr
import Foreign.ForeignPtr
data Workspace
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_alloc"
c_ws_alloc :: CSize -> IO (Ptr Workspace)
foreign import ccall unsafe "gsl/gsl_integration.h
\&gsl_integration_workspace_free"

```
c_ws_free : : FunPtr( Ptr Workspace -> IO () )
createWorkspace : : CSize -> IO (Maybe (ForeignPtr Workspace) )
createWorkspace size = do
ptr <- c_ws_alloc size
if ptr /= nullPtr
then do
foreignPtr <- newForeignPtr c_ws_free ptr
return \$ Just foreignPtr
else
return Nothing

We first declare our empty data structure Workspace, just like we did in the previous section.
The gsl_integration_workspace_alloc and gsl_integration_workspace_free functions will no longer be needed in any other file: here, note that the deallocation function is called with an ampersand ("\&"), because we do not actually want the function, but rather a pointer to it to set as a finalizer.

The workspace creation function returns a IO (Maybe) value, because there is still the possibility that allocation is unsuccessful and the null pointer is returned. The GSL does not specify what happens if the deallocation function is called on the null pointer, so for safety we do not set a finalizer in that case and return IO Nothing; the user code will then have to check for "Just-ness" of the returned value.

If the pointer produced by the allocation function is non-null, we build a foreign pointer with the deallocation function, inject into the Maybe and then the IO monad. That's it, the foreign pointer is ready for use!

The qag. hsc file must now be modified to use the new module; the parts that change are:
```

{-\# LANGUAGE ForeignFunctionInterface \#-}
-- [...]
import GSLWorkSpace
import Data.Maybe(isNothing, fromJust)
-- [...]
qag gauss steps abstol reltol f a b = unsafePerformIO \$ do
c_deactivate_gsl_error_handler
ws <- createWorkspace (fromIntegral steps)
if isNothing ws
then
return \$ Left "GSL could not allocate workspace"
else do
withForeignPtr (fromJust ws) \$ \workspacePtr -> do
-- [...]

```

Obviously, we do not need the EmptyDataDecls extension here any more; instead we import the GSLWorkSpace module, and also a couple of nice-to-have functions from Data.Maybe. We also remove the foreign declarations of the workspace allocation and deallocation functions.

The most important difference is in the main function, where we (try to) allocate a workspace ws, test for its Justness, and if everything is fine we use the withForeignPtr function to extract the workspace pointer. Everything else is the same.

\subsection*{76.2 Calling Haskell from C}

Sometimes it is also convenient to call Haskell from C, in order to take advantage of some of Haskell's features which are tedious to implement in C, such as lazy evaluation.

We will consider a typical Haskell example, Fibonacci numbers. These are produced in an elegant, haskellian one-liner as:
```

fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

```

Our task is to export the ability to calculate Fibonacci numbers from Haskell to C. However, in Haskell, we typically use the Integer type, which is unbounded: this cannot be exported to C, since there is no such corresponding type. To provide a larger range of outputs, we specify that the \(C\) function shall output, whenever the result is beyond the bounds of its integer type, an approximation in floating-point. If the result is also beyond the range of floating-point, the computation will fail. The status of the result (whether it can be represented as a C integer, a floating-point type or not at all) is signalled by the status integer returned by the function. Its desired signature is therefore:
```

int fib(int index, unsigned long long* result, double* approx)

```

\subsection*{76.2.1 Haskell Source}

The Haskell source code for file fibonacci.hs is:
```

{-\# LANGUAGE ForeignFunctionInterface \#-}
module Fibonacci where
import Foreign
import Foreign.C.Types
fibonacci :: (Integral a) => [a]
fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)
foreign export ccall fibonacci_c :: CInt >> Ptr CULLong -> Ptr CDouble
-> IO CInt
fibonacci_c :: CInt -> Ptr CULLong -> Ptr CDouble -> IO CInt
fibonacci_c n intPtr dblPtr
| badInt \&\& badDouble = return 2
| badInt = do
poke dblPtr dbl_result
return 1
| otherwise = do
poke intPtr (fromIntegral result)
poke dblPtr dbl_result
return 0
where
result = fibonacci !! (fromIntegral n)
dbl_result = realToFrac result
badInt = result > toInteger (maxBound :: CULLong)
badDouble = isInfinite dbl_result

```

When exporting, we need to wrap our functions in a module (it is a good habit anyway). We have already seen the Fibonacci infinite list, so let's focus on the exported function: it takes an argument,
two pointers to the target unsigned long long and double, and returns the status in the IO monad (since writing on pointers is a side effect).

The function is implemented with input guards, defined in the where clause at the bottom. A successful computation will return 0 , a partially successful 1 (in which we still can use the floatingpoint value as an approximation), and a completely unsuccessful one will return 2.

Note that the function does not call alloca, since the pointers are assumed to have been already allocated by the calling C function.

The Haskell code can then be compiled with GHC:
```

ghc -c fibonacci.hs

```

\subsection*{76.2.2 C Source}

The compilation of fibonacci.hs has spawned several files, among which fibonacci_stub.h, which we include in our \(C\) code in file fib. \(c\) :
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "fibonacci_stub.h"
int main(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: %s <number>\n", argv[0]);
return 2;
}
hs_init(\&argc, \&argv);
const int arg = atoi(argv[1]);
unsigned long long res;
double approx;
const int status = fibonacci_c(arg, \&res, \&approx);
hs_exit();
switch (status) {
case 0:
printf("F_%d: %llu\n", arg, res);
break;
case 1:
printf("Error: result is out of bounds\n");
printf("Floating-point approximation: %e\n", approx);
break;
case 2:
printf("Error: result is out of bounds\n");
printf("Floating-point approximation is infinite\n");
break;
default:
printf("Unknown error: %d\n", status);
}
return status;
}

```

The notable thing is that we need to initialise the Haskell environment with hs_init, which we call passing it the command-line arguments of main; we also have to shut Haskell down with hs_exit () when we are done. The rest is fairly standard C code for allocation and error handling.

Note that you have to compile the C code with GHC, not your C compiler!
```

ghc fib.c fibonacci.o fibonacci_stub.o -o fib

```

You can then proceed to test the algorithm:
```

./fib 42
F_42: 267914296
\$./fib 666
Error: result is out of bounds
Floating-point approximation: 6.859357e+138
\$./fib }149
Error: result is out of bounds
Floating-point approximation is infinite
./fib -1
fib: Prelude.(!!): negative index

```

\section*{77 Generic Programming : Scrap your boilerplate}

The "Scrap your boilerplate" approach, "described" in HTTP://WWW.CS.VU.NL/BOILERPLATE/ \({ }^{1}\), is a way to allow your data structures to be traversed by so-called "generic" functions: that is, functions that abstract over the specific data constructors being created or modified, while allowing for the addition of cases for specific types.

For instance if you want to serialize all the structures in your code, but you want to write only one serialization function that operates over any instance of the Data.Data.Data class (which can be derived with -XDeriveDataTypeable).

\subsection*{77.1 Serialization Example}

The goal is to convert all our data into a format below:
```

data Tag = Con String | Val String

```

\subsection*{77.2 Comparing haskell ASTs}
haskell-src-exts parses haskell into a quite complicated syntax tree. Let's say we want to check if two source files that are nearly identical.

To start:

\footnotetext{
1 HTTP://WWW.CS.VU.NL/BOILERPLATE/
}
```

import System.Environment
import Language.Haskell.Exts

```
```

main = do
-- parse the filenames given by the first two command line
arguments,
-- proper error handling is left as an exercise
ParseOk moduleA: ParseOk moduleb:_ <- mapM parseFile . take 2 =<<
getArgs
putStrLn \$ if moduleA == moduleB
then "Your modules are equal"
else "Your modules differ"

```

From a bit of testing, it will be apparent that identical files with different names will not be equal to (==). However, to correct the fact, without resorting to lots of boilerplate, we can use generic programming:

\subsection*{77.3 TODO}
describe using Data.Generics.Twins.gzip*? to write a function to find where there are differences?
Or use it to write a variant of geq that ignores the specific cases that are unimportant (the SrcLoc elements) (i.e. syb doesn't allow generic extension... contrast it with other libraries?).

Or just explain this hack (which worked well enough) to run before (==), or geq::
```

everyWhere (mkT \$ _ -> SrcLoc "" 0 0) :: Data a => a -> a

```

Or can we develop this into writing something better than sim_mira (for hs code), found here: http://www.cs.vu.nl//dick/sim.html

78 Specialised Tasks

\section*{79 Graphical user interfaces (GUI)}

Haskell has at least four toolkits for programming a graphical interface:
- wXHASKELL \({ }^{1}\) - provides a Haskell interface to the wxWidgets toolkit
- GTK2 \(\mathrm{Hs}^{2}\) - provides a Haskell interface to the GTK+ library
- \(\operatorname{HOC}^{3}\) (documentation at SOURCEFORGE \({ }^{4}\) ) - provides a Haskell to Objective-C binding which allows users to access to the Cocoa library on MacOS X
- QtHaskell \({ }^{5}\) - provides a set of Haskell bindings for the Qt Widget Library from Nokia

In this tutorial, we will focus on the wxHaskell toolkit, as it allows you to produce a native graphical interface on all platforms that wxWidgets is available on, including Windows, Linux and MacOS X.

\subsection*{79.1 Getting and running wxHaskell}

To install wxHaskell, you'll need to use \(\mathrm{GHC}^{6}\). Then, download the wxHaskell package from HACKAGE \({ }^{7}\) using
```

sudo cabal install wxcore --global
cabal install wx

```
or the WXHASKELL DOWNLOAD PAGE \({ }^{8}\) and follow the installation instructions provided on the wxHaskell download page. Don't forget to register wxHaskell with GHC, or else it won't run. To compile source.hs (which happens to use wxHaskell code), open a command line and type:
```

ghc -package wx source.hs -o bin

```

Code for GHCi is similar:
```

ghci -package wx

```
```

HTTP://EN.WIKIBOOKS.ORG/WIKI/:W:WXHASKELL
HTTP://WWW.HASKELL.ORG/HASKELLWIKI/GTK2HS
HTTP://CODE.GOOGLE.COM/P/HOC/
HTTP://HOC.SOURCEFORGE.NET/
HTTP://QTHASKELL.BERLIOS.DE/
HTTP://HASKELL.ORG/GHC/
HTTP://HACKAGE.HASKELL.ORG/CGI-{}BIN/HACKAGE-{}SCRIPTS/PACKAGE/WX
HTTP://WXHASKELL.SOURCEFORGE.NET/DOWNLOAD.HTML

```

You can then load the files from within the GHCi interface. To test if everything works, go to \$wxHaskellDir/samples/wx (\$wxHaskellDir is the directory you installed it in) and load (or compile) HelloWorld.hs. It should show a window with title "Hello World!", a menu bar with File and About, and a status bar at the bottom, that says "Welcome to wxHaskell".

If it doesn't work, you might try to copy the contents of the \$wxHaskellDir/lib directory to the ghc install directory.

\subsection*{79.2 Hello World}

Here's the basic Haskell "Hello World" program:
```

module Main where
main :: IO ()
main = putStr "Hello World!"

```

It will compile just fine, but it isn't really fancy. We want a nice GUI! So how to do this? First, you must import Graphics.UI.WX. This is the wxHaskell library. Graphics.UI.WXCore has some more stuff, but we won't be needing that now.

To start a GUI, use (guess what) start gui. In this case, gui is the name of a function which we'll use to build the interface. It must have an IO type. Let's see what we have:
```

module Main where
import Graphics.UI.WX
main :: IO ()
main = start gui
gui :: IO ()
gui = do
--GUI stuff

```

To make a frame, we use frame. Check the type of frame. It's [Prop (Frame ())] -> IO (Frame ()). It takes a list of "frame properties" and returns the corresponding frame. We'll look deeper into properties later, but a property is typically a combination of an attribute and a value. What we're interested in now is the title. This is in the text attribute and has type (Textual w) \(\Rightarrow\) Attr \(w\) String. The most important thing here, is that it's a String attribute. Here's how we code it:
```

gui :: IO ()
gui = do
frame [text := "Hello World!"]

```

The operator \((:=)\) takes an attribute and a value, and combines both into a property. Note that frame returns an IO (Frame ()). You can change the type of gui to IO (Frame ()), but it might be better just to add return (). Now we have our own GUI consisting of a frame with title "Hello World!". Its source:
```

module Main where
import Graphics.UI.WX
main :: IO ()
main = start gui
gui :: IO ()
gui = do
frame [text := "Hello World!"]
return ()

```

The result should look like the screenshot. (It might look slightly different on Linux or MacOS X, on which wxhaskell also runs)

\subsection*{79.3 Controls}
\{ \{InfolFrom here on, its good practice to keep a browser window or tab open with the WXHASKELL DOCUMENTATION \({ }^{9}\). It's also available in \$wxHaskellDir/doc/index.html.\}\}

\subsection*{79.3.1 A text label}

Simply a frame doesn't do much. In this chapter, we're going to add some more elements. Let's start with something simple: a label. wxHaskell has a label, but that's a layout thing. We won't be doing layout until next chapter. What we're looking for is a staticText. It's in Graphics.UI.WX. Controls. As you can see, the staticText function takes a Window as argument, and a list of properties. Do we have a window? Yup! Look at Graphics.UI.WX.Frame. There we see that a Frame is merely a type-synonym of a special sort of window. We'll change the code in gui so it looks like this:

\footnotetext{
9 HTTP://WXHASKELL.SOURCEFORGE.NET/DOC/
}
\begin{tabular}{|c|c|}
\hline \multirow[t]{15}{*}{Hello World! Hello StaticText!} & [回区 \\
\hline & -0x \\
\hline & \\
\hline
\end{tabular}

Abb. 38: Hello StaticText! (winXP)
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
staticText f [text := "Hello StaticText!"]
return ()

```

Again, text is an attribute of a staticText object, so this works. Try it!

\subsection*{79.3.2 A button}

Now for a little more interaction. A button. We're not going to add functionality to it until the chapter about events, but at least something visible will happen when you click on it.

A button is a control, just like staticText. Look it up in Graphics.UI.WX. Controls.
Again, we need a window and a list of properties. We'll use the frame again. text is also an attribute of a button:


Abb. 39: Overlapping button and StaticText (winXP)
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
staticText f [text := "Hello StaticText!"]
button f [text := "Hello Button!"]
return ()

```

Load it into GHCi (or compile it with GHC) and... hey!? What's that? The button's been covered up by the label! We're going to fix that next, in the layout chapter.

\subsection*{79.4 Layout}

The reason that the label and the button overlap, is that we haven't set a layout for our frame yet. Layouts are created using the functions found in the documentation of Graphics.UI.WXCore. Layout. Note that you don't have to import Graphics.UI.WXCore to use layouts.

The documentation says we can turn a member of the widget class into a layout by using the widget function. Also, windows are a member of the widget class. But, wait a minute... we only have one window, and that's the frame! Nope... we have more, look at Graphics.UI.WX. Controls and click on any occurrence of the word Control. You'll be taken to Graphics.UI.WXCore.WxcClassTypes
and it is here we see that a Control is also a type synonym of a special type of window. We'll need to change the code a bit, but here it is.
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
return ()

```

Now we can use widget st and widget b to create a layout of the staticText and the button. layout is an attribute of the frame, so we'll set it here:

Abb. 40: StaticText with layout (winXP)
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
set f [layout := widget st]
return ()

```

The set function will be covered in the chapter about attributes. Try the code, what's wrong? This only displays the staticText, not the button. We need a way to combine the two. We will use layout combinators for this. row and column look nice. They take an integer and a list of layouts. We can easily make a list of layouts of the button and the staticText. The integer is the spacing between the elements of the list. Let's try something:


Abb. 41: A row layout (winXP)


Abb. 42: Column layout with a spacing of 25 (winXP)
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]

```
```

st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
set f [layout :=
row 0 [widget st, widget b]
]
return ()

```

Play around with the integer and see what happens, also change row into column. Try to change the order of the elements in the list to get a feeling of how it works. For fun, try to add widget b several more times in the list. What happens?

Here are a few exercises to spark your imagination. Remember to use the documentation!

\section*{\{ \(\{\) Exercises \(\mid 1=\)}
1. Add a checkbox control. It doesn't have to do anything yet, just make sure it appears next to the staticText and the button when using row-layout, or below them when using column layout. text is also an attribute of the checkbox.
2. Notice that row and column take a list of layouts, and also generates a layout itself. Use this fact to make your checkbox appear on the left of the staticText and the button, with the staticText and the button in a column.
3. Can you figure out how the radiobox control works? Take the layout of the previous exercise and add a radiobox with two (or more) options below the checkbox, staticText and button. Use the documentation!
4. Use the boxed combinator to create a nice looking border around the four controls, and another one around the staticText and the button. (Note: the boxed combinator might not be working on MacOS X - you might get widgets that can't be interacted with. This is likely just a bug in wxhaskell.) \}\}

After having completed the exercises, the end result should look like this:


Abb. 43: Answer to exercises

You could have used different spacing for row and column, or the options of the radiobox are displayed horizontally.

\subsection*{79.5 Attributes}

After all this, you might be wondering things like: "Where did that set function suddenly come from?", or "How would \(I\) know if text is an attribute of something?". Both answers lie in the attribute system of wxHaskell.

\subsection*{79.5.1 Setting and modifying attributes}

In a wxHaskell program, you can set the properties of the widgets in two ways:
1. during creation: \(f<-\) frame [ text := "Hello World!" ]

\section*{2. using the set function: set \(f\) [layout := widget st ]}

The set function takes two arguments: one of any type w , and the other is a list of properties of w . In wxHaskell, these will be the widgets and the properties of these widgets. Some properties can only be set during creation, like the alignment of a textEntry, but you can set most others in any IO-function in your program, as long as you have a reference to it (the f in set \(\mathbf{f}\) [stuff]).

Apart from setting properties, you can also get them. This is done with the get function. Here's a silly example:
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
st <- staticText f []
ftext <- get f text
set st [text := ftext]
set f [text := ftext ++ " And hello again!"]

```

Look at the type signature of get. It's w \(\rightarrow\) Attr w a \(\rightarrow\) IO a. text is a String attribute, so we have an IO String which we can bind to ftext. The last line edits the text of the frame. Yep, destructive updates are possible in wxHaskell. We can overwrite the properties using ( \(:=\) ) anytime with set. This inspires us to write a modify function:
```

modify :: w -> Attr w a -> (a -> a) -> IO ()
modify w attr f = do
val <- get w attr
set w [attr := f val]

```

First it gets the value, then it sets it again after applying the function. Surely we're not the first one to think of that...

And nope, we aren't. Look at this operator: (: ~). You can use it in set, because it takes an attribute and a function. The result is a property, in which the original value is modified by the function. This means we can write:
```

gui :: IO ()
gui = do
f <- frame [text := "Hello World!"]
st <- staticText f []
ftext <- get f text
set st [text := ftext]
set f [text :~ ++ " And hello again!"]

```

This is a great place to use anonymous functions with the lambda-notation.
There are two more operators we can use to set or modify properties: (: :=) and (: : \()^{\sim}\). They do the same as \((:=)\) and \(\left(:^{\sim}\right)\), except a function of type \(w->\) orig is expected, where \(w\) is the widget type, and orig is the original "value" type (a in case of \((:=)\), and a \(\rightarrow\) a in case of (: ~) ). We won't be using them now, though, as we've only encountered attributes of non-IO types, and the widget needed in the function is generally only useful in IO-blocks.

\subsection*{79.5.2 How to find attributes}

Now the second question. Where did I read that text is an attribute of all those things? The easy answer is: in the documentation. Now where in the documentation to look for it?

Let's see what attributes a button has, so go to Graphics.UI.WX.Controls, and click the link that says "Button". You'll see that a Button is a type synonym of a special kind of Control, and a list of functions that can be used to create a button. After each function is a list of "Instances". For the normal button function, this is Commanding -- Textual, Literate, Dimensions, Colored, Visible, Child, Able, Tipped, Identity, Styled, Reactive, Paint. This is the list of classes of which a button is an instance. Read through the ../Class declarations/ \(/{ }^{10}\) chapter. It means that there are some class-specific functions available for the button. Textual, for example, adds the text and appendText functions. If a widget is an instance of the Textual class, it means that it has a text attribute!

Note that while StaticText hasn't got a list of instances, it's still a Control, which is a synonym for some kind of Window, and when looking at the Textual class, it says that Window is an instance of it. This is an error on the side of the documentation.

Let's take a look at the attributes of a frame. They can be found in Graphics.UI.WX.Frame. Another error in the documentation here: It says Frame instantiates Has Image. This was true in an older version of wxHaskell. It should say Pictured. Apart from that, we have Form, Textual, Dimensions, Colored, Able and a few more. We're already seen Textual and Form. Anything that is an instance of Form has a layout attribute.

Dimensions adds (among others) the clientSize attribute. It's an attribute of the Size type, which can be made with sz. Please note that the layout attribute can also change the size. If you want to use clientSize you should set it after the layout.

Colored adds the color and bgcolor attributes.
Able adds the Boolean enabled attribute. This can be used to enable or disable certain form elements, which is often displayed as a greyed-out option.

There are lots of other attributes, read through the documentation for each class.

\subsection*{79.6 Events}

There are a few classes that deserve special attention. They are the Reactive class and the Commanding class. As you can see in the documentation of these classes, they don't add attributes (of the form Attr w a), but events. The Commanding class adds the command event. We'll use a button to demonstrate event handling.

Here's a simple GUI with a button and a staticText:

\footnotetext{
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/../CLASSDECLARATIONS /
}


\section*{Abb. 44: Before (winXP)}
```

gui :: IO ()
gui = do
f <- frame [text := "Event Handling"]
st <- staticText f [text := "You haven\'t clicked the button yet."
]
b <- button f [text := "Click me!"]
set f [layout := column 25 [widget st, widget b]]

```

We want to change the staticText when you press the button. We'll need the on function:
```

b <- button f [text := "Click me!"
, on command := --stuff
]

```

The type of on: Event w a -> Attr w a. command is of type Event w (IO ()), so we need an IO-function. This function is called the Event handler. Here's what we get:
```

gui :: IO ()
gui = do
f <- frame [text := "Event Handling"]
st <- staticText f [text := "You haven\'t clicked the button yet."
]
b <- button f [text := "Click me!"
the button!"]
set f [layout := column 25 [widget st, widget b]]

```

\section*{Insert text about event filters here}

\section*{80 Databases}

\subsection*{80.1 Introduction}

Haskell's most popular database module is \(\mathrm{HDBC}^{1}\). HDBC provides an abstraction layer between Haskell programs and SQL relational databases. This lets you write database code once, in Haskell, and have it work with a number of backend SQL databases.

HDBC is modeled loosely on PERL's DBI INTERFACE \({ }^{2}\), though it has also been influenced by Python's DB-API v2, JDBC in Java, and HSQL in Haskell. As DBI requires DBD in Perl, HDBC requires a driver module beneath it to work. These HDBC backend drivers exist: PostgreSQL, SQLite, and ODBC (for Windows and Unix/Linux/Mac). MySQL is the most popular open-sourced database, and there are two drivers for MySQL: HDBC-MYSQL \({ }^{3}\) (native) and HDBC-ODBC \({ }^{4}\) (ODBC). MySQL users can use the ODBC driver on any MySQL-supported platform, including Linux. An advantage of using ODBC is that the syntax of the SQL statement is insulated from the different kinds of database engines. This increases the portability of the application should you have to move from one database to another. The same argument for preferring ODBC applies for other commercial databases, such as Oracle and DB2.

\subsection*{80.2 Installation}

\subsection*{80.2.1 SQLite}

See HERE \(^{5}\) for more information.

\subsection*{80.2.2 PostgreSQL}

See \(\operatorname{HERE}^{6}\) for more information.

\subsection*{80.2.3 Native MySQL}

The native ODBC-mysql library requires the C MySQL client library to be present.
```

HTTP://GITHUB.COM/JGOERZEN/HDBC/WIKI
HTTP://SEARCH.CPAN.ORG/~{}TIMB/DBI/DBI.PM
HTTP://HACKAGE.HASKELL.ORG/PACKAGE/HDBC- {}MYSQL
HTTP://HACKAGE.HASKELL.ORG/PACKAGE/HDBC-{}ODBC
HTTP://GITHUB.COM/JGOERZEN/HDBC/WIKI/FREQUENTLYASKEDQUESTIONS
HTTP://GITHUB.COM/JGOERZEN/HDBC/WIKI/FREQUENTLYASKEDQUESTIONS

```

You may need to WRAP YOUR DATABASE ACCESSES \({ }^{7}\) to prevent runtime errors.

\subsection*{80.2.4 ODBC/MySQL}

Instruction how to install ODBC/MySQL. It is somewhat involved to make HDBC work with MySQL via ODBC, especially if you do not have root privilege and have to install everything in a non-root account.
- If your platform doesn't already provide an ODBC library (and most do), install Unix-ODBC. See \(\mathrm{HERE}^{8}\) for more information.
- Install MySQL-ODBC Connector. See HERE \(^{9}\) for more information.
- Install Database.HDBC module
- Install Database.HDBC.ODBC module
- Add the mysql driver to odbcinst.ini file (under \$ODBC_HOME/etc/) and your data source in \$HOME/.odbc.ini.
- Create a test program

Since the ODBC driver is installed using shared library by default, you will need the following env:
```

export LD_LIBRARY_PATH=\$ODBC_HOME/lib

```

If you do not like adding an additional env variables, you should try to compile ODBC with static library option enabled.

The next task is to write a simple test program that connects to the database and print the names of all your tables, as shown below.

You may need to WRAP YOUR DATABASE ACCESSES \({ }^{10}\) in order to prevent runtime errors.
```

module Main where
import Database.HDBC.ODBC
import Database.HDBC
main =
do c <- connectODBC "DSN=PSPDSN"
xs <- getTables c
putStr \$ "tables "++(foldr jn "." xs)++"\n"
where jn a b = a++" "++b

```

\footnotetext{
7 HTTP://WWW.SERPENTINE.COM/BLOG/2010/09/04/DEALING-\{\}WITH-\{\}FRAGILE-\{\}C-\{\}LIBRARIES-\{\}E-\{\}G-
8 HTTP://SOURCEFORGE.NET/PROJECTS/UNIXODBC/
9 HTTP://DEV.MYSQL.COM/DOWNLOADS/CONNECTOR/ODBC/
10 HTTP://WWW.SERPENTINE.COM/BLOG/2010/09/04/DEALING-\{\}WITH-\{\}FRAGILE-\{\}C-\{\}LIBRARIES-\{\}E-\{\}G
}

\subsection*{80.3 General Workflow}

\subsection*{80.3.1 Connect and Disconnect}

The first step of any database operation is to connect to the target database. This is done via the driver-specific connect API, which has the type of:
```

String -> IO Connection

```

Given a connect string, the connect API will return Connection and put you in the IO monad.
Although most program will garbage collect your connections when they are out of scope or when the program ends, it is a good practice to disconnect from the database explicitly.

\subsection*{80.3.2 Running Queries}

Running a query generally involves the following steps:
- Prepare a statement
- Execute a statement with bind variables
- Fetch the result set (if any)
- Finish the statement

HDBC provides two ways for bind variables and returning result set: [ SqlValue ] and [ Maybe String ]. You need to use the functions with s prefix when using [ Maybe String ], instead of [ SqlValue ]. [ SqlValue ] allows you to use strongly typed data if type safety is very important in your application; otherwise, [ Maybe String ] is more handy when dealing with lots of database queries. When you use [ Maybe String ], you assume the database driver will perform automatic data conversion. Be aware there is a performance price for this convenience.

Sometimes, when the query is simple, there are simplified APIs that wrap multiple steps into one. For example, Run and sRun are wrappers of "prepare and execute". quickQuery is a wrapper of "prepare, execute, and fetch all rows".

\subsection*{80.4 Running SQL Statements}

\subsection*{80.4.1 Select}
80.4.2 Insert

\subsection*{80.4.3 Update}

\subsection*{80.4.4 Delete}

\subsection*{80.5 Transaction}

Database transaction is controlled by commit and rollback. However, be aware some databases (such as mysql) do not support transaction. Therefore, every query is in its atomic transaction.
HDBC provides withTransaction to allow you automate the transaction control over a group of queries.

\subsection*{80.6 Calling Procedure}

\section*{81 Web programming}

An example web application, using the HAppS framework, is HPASTE \({ }^{1}\), the Haskell paste bin. Built around the core Haskell web framework, HAppS, with HaXmL for page generation, and binary/zlib for state serialisation.
The HTTP and Browser modules \({ }^{2}\) exist, and might be useful.

\footnotetext{
1 HTTP://HPASTE.ORG
2 HTTP://HOMEPAGES.PARADISE.NET.NZ/WARRICKG/HASKELL/HTTP/
}

\section*{82 Working with XML}

There are several Haskell libraries for XML work, and additional ones for HTML. For more webspecific work, you may want to refer to the HASKELL/WEB PROGRAMMING \({ }^{1}\) chapter.

\subsection*{82.0.1 Libraries for parsing XML}
- The Haskell XML Toolbox (HXt) \({ }^{2}\) is a collection of tools for parsing XML, aiming at a more general approach than the other tools.
- HAXML \({ }^{3}\) is a collection of utilities for parsing, filtering, transforming, and generating XML documents using Haskell.
- HXML \({ }^{4}\) is a non-validating, lazy, space efficient parser that can work as a drop-in replacement for HaXml .

\subsection*{82.0.2 Libraries for generating XML}
- HSXML represents XML documents as statically typesafe s-expressions.

\subsection*{82.0.3 Other options}
- TAGSOUP \({ }^{5}\) is a library for parsing unstructured HTML, i.e. it does not assume validity or even well-formedness of the data.

\subsection*{82.1 Getting acquainted with HXT}

In the following, we are going to use the Haskell XML Toolbox for our examples. You should have a working INSTALLATION OF \(\mathrm{GHC}^{6}\), including GHCi , and you should have downloaded and installed HXT according to THE INSTRUCTIONS \({ }^{7}\).

With those in place, we are ready to start playing with HXT. Let's bring the XML parser into scope, and parse a simple XML-formatted string:
```

Kapitel }81\mathrm{ auf Seite 471
HTTP://WWW.FH-{}WEDEL.DE/~{}SI/HXMLTOOLBOX/
HTTP://WWW.CS.YORK.AC.UK/FP/HAXML/
HTTP://WWW.FLIGHTLAB.COM/~{}JOE/HXML/
HTTP://WWW.CS.YORK.AC.UK/FP/DARCS/TAGSOUP/TAGSOUP.HTM
Kapitel }3\mathrm{ auf Seite 5
HTTP://WWW.FH-{}WEDEL.DE/~{}SI/HXMLTOOLBOX/\#INSTALL

```
```

Prelude> :m + Text.XML.HXT.Parser.XmIParsec
Prelude Text.XML.HXT.Parser.XmlParsec> xread "<foo>abc<bar/>def</foo>"
[NTree (XTag (QN {namePrefix = "", localPart = "foo", namespaceUri =
""}) [])
[NTree (XText "abc") [],NTree (XTag (QN {namePrefix = "", localPart
= "bar",
namespaceUri = ""}) []) [],NTree (XText "def") []]]

```

We see that HXT represents an XML document as a list of trees, where the nodes can be constructed as an XTag containing a list of subtrees, or an XText containing a string. With GHCi, we can explore this in more detail:
```

Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> :i NTree
data NTree a = NTree a (NTrees a)
-- Defined in
Data.Tree.NTree.TypeDefs
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> :iNTrees
type NTrees a = [NTree a] -- Defined in
Data.Tree.NTree.TypeDefs

```

As we can see, an NTree is a general tree structure where a node stores its children in a list, and some more browsing around will tell us that XML documents are trees over an XNode type, defined as:
```

data XNode
= XText String
| XCharRef Int
XEntityRef String
| XCmt String
XCdata String
| XPi QName XmlTrees
| XTag QName XmlTrees
XDTD DTDElem Attributes
XAttr QName
| XError Int String

```

Returning to our example, we notice that while HXT successfully parsed our input, one might desire a more lucid presentation for human consumption. Lucky for us, the DOM module supplies this. Notice that xread returns a list of trees, while the formatting function works on a single tree.
```

Prelude Text.XML.HXT.Parser.XmlParsec> :m + Text.XML.HXT.DOM
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> putStrLn \$ formatXmlTree \$ head \$ xread
"<foo>abc<bar/>def</foo>"
---XTag "foo"
|
+---XText "abc"
|
+---XTag "bar"
|
+---XText "def"

```

This representation makes the structure obvious, and it is easy to see the relationship to our input string. Let's proceed to extend our XML document with some attributes (taking care to escape the
quotes, of course):
```

Prelude Text.XML.HXT.Parser.XmlParsec> xread "<foo al=\"my\"b2=\"oh\">abc<bar/>def</foo>"
[NTree (XTag (QN {namePrefix = "", localPart = "foo", namespaceUri =
""}) [NTree (XAttr (QN
{namePrefix = "", localPart = "a1", namespaceUri = ""})) [NTree
(XText "my") []],NTree (XAttr
(QN {namePrefix = "", localPart = "b2", namespaceUri = ""})) [NTree
(XText "oh") []]]) [NTree
(XText "abc") [],NTree (XTag (QN {namePrefix = "", localPart =
"bar", namespaceUri = ""}) [])
[],NTree (XText "def") []]]

```

Notice that attributes are stored as regular NTree nodes with the XAttr content type, and (of course) no children. Feel free to pretty-print this expression, as we did above.
For a trivial example of data extraction, consider this small example using XPATH \({ }^{8}\) :
```

Prelude> :set prompt "> "
> :m + Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.XPath.XPathEval
> let xml = "<foo><a>A<c>C<//c></foo>"
> let xmltree = head \$ xread xml
> let result = getXPath "//a" xmltree
> result
> [NTree (XTag (QN {namePrefix = "", localPart = "a", namespaceUri =
""}) []) [NTree (XText "A") []]]
> :t result
> result :: NTrees XNode

```

\section*{83 Using Regular Expressions}

Good tutorials where to start
- SERPENTINE.COM \({ }^{1}\)
- Regular Expressions (Haskell Wiki) \({ }^{2}\)

Also see HASKELL/PATtERN MATCHING \({ }^{3}\) (not same as regular expressions in Haskell).

\footnotetext{
1 htte://www.SERPENTINE.COM/BLOG/2007/02/27/A-\{\}HASKELL-\{\}REGULAR-\{\}EXPRESSION-\{\}TUTORIAL/
2 HTTP://WWW.HASKELL.ORG/HASKELLWIKI/REGULAR_EXPRESSIONS
3 Kapitel 16 auf Seite 79
}

\section*{84 Authors}

\author{
Edits User \\ 1 Aaronsteers \({ }^{1}\) \\ 1 Abdelazer \({ }^{2}\) \\ 6 Acangiano \(^{3}\) \\ 1 AdRiley \({ }^{4}\) \\ 1 Adrianneumann \({ }^{5}\) \\ 6 Adrignola \({ }^{6}\) \\ 1 Ahersen \({ }^{7}\) \\ 3 Albmont \({ }^{8}\) \\ 5 Alexey Feldgendler \({ }^{9}\) \\ 2 Almkglor \({ }^{10}\) \\ 20 Amire80 \({ }^{11}\) \\ 1 Ammon \({ }^{12}\) \\ 1 Anders Kaseorg \({ }^{13}\) \\ 1 Andrewufrank \({ }^{14}\) \\ 1 Apalamarchuk \({ }^{15}\) \\ 185 Apfelmus \({ }^{16}\) \\ 1 Augustss \({ }^{17}\) \\ 1 Avalez \({ }^{18}\) \\ 21 Avicennasis \({ }^{19}\) \\ 1 AvijJa \({ }^{20}\) \\ \(1 \mathrm{AxA}^{21}\)
}

\footnotetext{
1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AARONSTEERS HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ABDELAZER HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ACANGIANO HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRILEY HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIANNEUMANN HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIGNOLA HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AHERSEN HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALBMONT HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEXEY_FELDGENDLER HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALMKGLOR HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AMIRE80 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AMMON HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANDERS_KASEORG HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANDREWUFRANK HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:APALAMARCHUK HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:APFELMUS HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AUGUSTSS HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVALEZ HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVICENNASIS HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVIJJA HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AXA
}
\begin{tabular}{rl}
6 & AXNICHO \(^{22}\) \\
1 & B7J0C \(^{23}\) \\
8 & BCW \(^{24}\) \\
2 & BART MASSEY \(^{25}\) \\
2 & BARTOSZ \(^{26}\) \\
1 & BASVANDIJK \(^{27}\) \\
1 & BEKTUR \(^{28}\) \\
6 & BEN STANDEVEN \(^{29}\) \\
2 & BHATHAWAY \(^{30}\) \\
1 & BLACKMEPH \(^{31}\) \\
2 & BLACKH \(^{32}\) \\
16 & BLAISORBLADE \(^{33}\) \\
1 & BOS \(^{34}\) \\
14 & BYORGEY \(^{35}\) \\
2 & CALVINS \(^{36}\) \\
8 & CANADADUANE \(^{37}\) \\
11 & CATAMORPHISM \(^{38}\) \\
1 & CATOFAX \(^{39}\) \\
1 & CDUNN2001 \(^{40}\) \\
5 & CHESHIRE \(^{41}\) \\
9 & CHIEF SEQUOYA \(^{42}\) \\
1 & CHRIS FORNO \(^{43}\) \\
1 & CHRISKUKLEWICZ \(^{44}\) \\
4 & CLJ \(^{45}\) \\
2 & CODEISPOETRY \(^{46}\)
\end{tabular}

\footnotetext{
22 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AXNICHO
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:B7J0C
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BCW HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BART_MASSEY
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BARTOSZ
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BASVANDIJK
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEKTUR
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEN_STANDEVEN
http://En.WIKIbOOKS.ORG/W/INDEX.PHP?TITLE=USER:BHATHAWAY
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLACKMEPH
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLACKH
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BLAISORBLADE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOS
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BYORGEY
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CALVINS
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CANADADUANE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CATAMORPHISM
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CATOFAX
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CDUNN2001
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHESHIRE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHIEF_SEQUOYA
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRIS_FORNO
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRISKUKLEWICZ
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLJ
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CODEISPOETRY
}
```

 1 COMMONSDELINKER }\mp@subsup{}{}{47
 1 Ctnd 48
 1 Damien Cassou }\mp@subsup{}{}{49
 1 DANIEl5Ko }\mp@subsup{}{}{50
 1 DANIELSCHOEPE 51
 261 DAVIDHOUSE }5
1 DHERINGTON }\mp@subsup{}{}{53
4 DIDDYMUS { } ^ { 5 4 }
1 DinO55
10 DIRK HÜnNIGER }\mp@subsup{}{}{56
3 DPORTER }\mp@subsup{}{}{57
3 DTEREI }\mp@subsup{}{}{58
1 DukEDAVE }\mp@subsup{}{}{59
257 DUPLODE }\mp@subsup{}{}{60
3 EdWARD Z. YANG }\mp@subsup{}{}{61
1 Eihjia}\mp@subsup{}{}{62
1 EmreSevinc}\mp@subsup{}{}{63
3 ERICH}\mp@subsup{}{}{64
2 ERIKFK }\mp@subsup{}{}{65
2 EvanCARROLL}\mp@subsup{}{}{66
3 Felix C. Stegermman }\mp@subsup{}{}{67
F Froth }\mp@subsup{}{}{68
1 FSHAHRIAR }\mp@subsup{}{}{69
13 GPHILIP}\mp@subsup{}{}{70
1 GDWEBER }\mp@subsup{}{}{71

```
```

47 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COMMONSDELINKER
48 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CTND
49 HTTP://En.wIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAMIEN_CASSOU
50 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANIEL5KO
51 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANIELSCHOEPE
52 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDHOUSE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DHERINGTON
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIDDYMUS
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DINO
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_HüNNIGER
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DPORTER
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DTEREI
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DUKEDAVE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DUPLODE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EDWARD_Z._YANG
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EIHJIA
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EMRESEVINC
HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:ERICH
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ERIKFK
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EVANCARROLL
HTTP://En.WIKIbOOKS.ORG/W/INDEX.PHP?TITLE=USER:FELIX_C._StEGERMAN
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FROTH
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FSHAHRIAR
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GPHILIP
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GDWEBER

```
\begin{tabular}{rl}
1 & GERYMATE \(^{72}\) \\
2 & GH \(^{73}\) \\
1 & GHOSTZART \(^{74}\) \\
1 & GOOGL \(^{75}\) \\
1 & GRACENOTES \(^{76}\) \\
2 & GREENRD \(^{77}\) \\
53 & GWERN \(^{78}\) \\
2 & HAIRY DUDE \(^{79}\) \\
1 & HAJHOUSE \(^{80}\) \\
17 & HATHAL \(^{81}\) \\
1 & HENRYLAXEN \(^{82}\) \\
1 & HERBYTHYME \(^{83}\) \\
1 & HUWPUWYNYTY \(^{84}\) \\
12 & IHOPE127 \(^{85}\) \\
4 & IMMANUEL.NORMANN \(^{86}\) \\
3 & INDIL \(^{87}\) \\
2 & ITHIKA \(^{88}\) \\
1 & IVARTJ \(^{89}\) \\
2 & JAGRAHAM \(^{90}\) \\
1 & JAMES.H.SAUNDERS \(^{91}\) \\
1 & JAS \(^{92}\) \\
2 & JBALINT \(^{93}\) \\
1 & JBOLDEN \(^{93} 15^{94}\) \\
4 & JDGILBEY \(^{95}\) \\
6 & JEFFWHEELER \(^{96}\)
\end{tabular}

\footnotetext{
72 http://En.WIKIBOOKS.ORG/W/INDEX.PhP?tITLE=USER:GERYMATE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GH
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GHOSTZART
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOOGL
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRACENOTES
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREENRD
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GWERN
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAIRY_DUDE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAJHOUSE
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HATHAL
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HENRYLAXEN
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERBYTHYME
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HUWPUWYNYTY
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IHOPE127
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IMMANUEL.NORMANN
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INDIL
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ITHIKA
htte://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IVARTJ
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAGRAHAM
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMES.H.SAUNDERS
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAS
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JBALINT
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JBOLDEN1517
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JDGILBEY
HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JEFFWHEELER
}
```

 38 JGUK}\mp@subsup{}{}{97
 3 JJINUX }\mp@subsup{}{}{98
 3 JlEEDEV }\mp@subsup{}{}{99
 J JoEE92100
 15 JSNX }\mp@subsup{}{}{101
 3 KETIL }\mp@subsup{}{}{102
 1 Kiexek'103
 941 KOWEY }\mp@subsup{}{}{104
1 LINOPOLUS }\mp@subsup{}{}{105
LUNGZENO}\mp@subsup{}{}{106
12 LUSUM }\mp@subsup{}{}{107
1 MARSCH }\mp@subsup{}{}{108
3 MARKY1991'09
17 MARUDUBSHINKI }\mp@subsup{}{}{110
1 Mattcox }\mp@subsup{}{}{111
1 Mgm7734}\mp@subsup{}{}{112
2 ~ M i c h a E l ~ M i c e l i ~ ' 1 3 ~
1 MIKEYO}\mp@subsup{}{}{114
2 \mp@code { M o k e n d a l l ~ } { } ^ { 1 1 5 }
9 ~ M s o u t h ~ ' 1 1 6 ~
5 \mp@code { M V A N I E R ~ } { } ^ { 1 1 7 }
NABETSE }\mp@subsup{}{}{118
NATTFODD }\mp@subsup{}{}{119
2 NEODYMION }\mp@subsup{}{}{120
O ODDRON }\mp@subsup{}{}{121

```
```

97 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JGUK
98 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JJINUX
99 HTTP://EN.WIKIbOOKS.ORG/W/INDEX.PHP?TITLE=USER:JLEEDEV
100 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOEE92
101 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JSNX
102 htTP://En.wIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:KETIL
103 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KIEłEK
104 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KOWEY
105 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LINOPOLUS
106 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LUNGZENO
107 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LUSUM
108 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARSCH
109 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARKY1991
110 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARUDUBSHINKI
ll1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTCOX
112 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MGM7734
113 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAEL_MICELI
114 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKEYO
115 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MOKENDALI
116 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSOUTH
117 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MVANIER
118 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NABETSE
119 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NATTFODD
120 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEODYMION
121 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ODDRON

```
\begin{tabular}{rl}
2 & OLIGOMOUS \(^{122}\) \\
1 & Ondra \(^{123}\) \\
6 & ORZETTO \(^{124}\) \\
2 & OXRYLY \(^{125}\) \\
2 & PANDAMITTENS \(^{126}\) \\
11 & PANIC \(^{12 K^{127}}\) \\
1 & PAOLINO \(^{128}\) \\
67 & PAULJOHNSON \(^{129}\) \\
4 & PhYSIS \(^{130}\) \\
1 & PINGVENO \(^{131}\) \\
5 & PIOJO \(^{132}\) \\
1 & POLYPUS74 \(^{133}\) \\
1 & PSEAFIELD \(^{134}\) \\
1 & PSHOOK \(^{135}\) \\
1 & PUNKOUTER \(^{136}\) \\
2 & PUPENO \(^{137}\) \\
4 & PUREJADEKID \(^{138}\) \\
5 & QENY \(^{139}\) \\
1 & QWERTYUS \(^{140}\) \\
1 & RAVICHANDAR84 \(^{141}\) \\
1 & RECENT RUNES \(^{142}\) \\
1 & REEDMB \(^{143}\) \\
1 & RENICK \(^{144}\) \\
2 & REVENCE27 \(^{145}\) \\
1 & ROBERT MATTHEWS \(^{146}\)
\end{tabular}

\footnotetext{
122 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OLIGOMOUS
123 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ONDRA
124 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORZETTO
125 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OXRYLY
126 http://En.wikibooks.org/w/Index.PhP?title=User:PAndaMittens
127 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC2K4
128 htte://En.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PAOLINO
129 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PAULJOHNSON
130 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHYSIS
131 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PINGVENO
132 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIOJO
133 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POLYPUS 74
134 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PSEAFIELD
135 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PSHOOK
136 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PUNKOUTER
137 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PUPENO
138 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PUREJADEKID
139 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QENY
140 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QWERTYUS
141 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVICHANDAR84
142 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECENT_RUNES
143 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REEDMB
144 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RENICK
145 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REVENCE27
146 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROBERT_MATTHEWS
}
```

1 RoelVanDijk }\mp@subsup{}{}{147
3 9 RUDIS { } ^ { 1 4 8 }
1 RYK}\mp@subsup{}{}{149
1 SQL }\mp@subsup{}{}{150
1 SALAH.KHAIRY }\mp@subsup{}{}{151
2 SANYAM }\mp@subsup{}{}{152
1 SCHOENFINKEL }\mp@subsup{}{}{153
1 SCVALEX }\mp@subsup{}{}{154
1 Sebastian Goll }\mp@subsup{}{}{155
1 SHENME }\mp@subsup{}{}{156
19 SIMONMICHAEL }\mp@subsup{}{}{157
1 SITESWAPPER }\mp@subsup{}{}{158
5 SNARIUS }\mp@subsup{}{}{159
2 SNOYBERG }\mp@subsup{}{}{160
1 SomE1 }\mp@subsup{}{}{161
3 SpOOKYLUKEY }\mp@subsup{}{}{162
STE }\mp@subsup{}{}{163
2 StELOKim}\mp@subsup{}{}{164
1 StEREOTYPE441165
13 STEVELIHN }\mp@subsup{}{}{166
STUHACKING }\mp@subsup{}{}{167
7 STW }\mp@subsup{}{}{168
1 SumANT.NK}\mp@subsup{}{}{169
8 SVICK}\mp@subsup{}{}{170
1 SWIFT }\mp@subsup{}{}{171

```
```

147 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROELVANDIJK
148 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RUDIS
149 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RYK
150 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SQL
151 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SALAH.KHAIRY
152 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SANYAM
153 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCHOENFINKEL
154 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCVALEX
155 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SEBASTIAN_GOLL
156 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHENME
157 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIMONMICHAEL
158 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SITESWAPPER
159 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SNARIUS
160 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SNOYBERG
161 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SOME1
162 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPOOKYLUKEY
163 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STE
164 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STELOKIM
165 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STEREOTYPE441
166 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STEVELIHN
167 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STUHACKING
168 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STW
169 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUMANT.NK
170 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SVICK
171 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SWIFT

```
1 TAYLOR561 \({ }^{172}\)
63 TCHAKKAZULU \({ }^{173}\)TEVAL \({ }^{174}\)
4 TheJoshwolfe \({ }^{175}\)
3 TittoAssini \({ }^{176}\)
1 Tobias Bergemann \({ }^{177}\)
11 Toby Bartels \({ }^{178}\)
Trannart \({ }^{179}\)
1 Trinithis \({ }^{180}\)1 TRZKRIL \({ }^{181}\)
27 UCHCHWHASH \({ }^{182}\)
4 VAN DER HOORN \({ }^{183}\)
2 VESAL \({ }^{184}\)
1 WALKIE \({ }^{185}\)
3 WAPCAPLET \({ }^{186}\)
1 Will48 \({ }^{187}\)
13 WillNESS \({ }^{188}\)
1 Withinfocus \({ }^{189}\)
1 ZOONFAFER \({ }^{190}\)
\(1 \mathrm{ZR} 40^{191}\)
```

172 htTP://En.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:TAYLOR561
173 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TCHAKKAZULU
174 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TEVAL
175 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THEJOSHWOLFE
176 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TITTOASSINI
177 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?tITLE=USER:TOBIAS_BERGEMANN
178 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOBY_BARTELS
179 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TRANNART
180 HTTP://EN.WIKIBOOKS.ORG/w/INDEX.PHP?TITLE=USER:TRINITHIS
181 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TRZKRIL
182 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UCHCHWHASH
183 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAN_DER_HOORN
184 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VESAL
185 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WALKIE
186 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WAPCAPLET
187 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILL48
188 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILLNESS
189 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WITHINFOCUS
190 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZOONFAFER
191 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZR40

```

\section*{List of Figures}
- GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html
- cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://creativecommons.org/licenses/by-sa/3.0/
- cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://creativecommons.org/licenses/by-sa/2.5/
- cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://creativecommons.org/licenses/by-sa/2.0/
- cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://creativecommons.org/licenses/by-sa/1.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License http://creativecommons.org/licenses/by/2.0/deed.en
- cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.org/licenses/by/2.5/deed.en
- cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/deed.en
- GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt
- PD: This image is in the public domain.
- ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
- EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
- LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de
- CFR: Copyright free use.
- EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php
\begin{tabular}{|c|c|c|}
\hline 1 & & \\
\hline 2 & & cc-by-sa-2.5 \\
\hline 3 & & cc-by-sa-2.5 \\
\hline 4 & & cc-by-sa-2.5 \\
\hline 5 & & cc-by-sa-2.5 \\
\hline 6 & & cc-by-sa-2.5 \\
\hline 7 & & cc-by-sa-2.5 \\
\hline 8 & & cc-by-sa-2.5 \\
\hline 9 & & cc-by-sa-2.5 \\
\hline 10 & & cc-by-sa-2.5 \\
\hline 11 & & cc-by-sa-2.5 \\
\hline 12 & & cc-by-sa-2.5 \\
\hline 13 & & cc-by-sa-2.5 \\
\hline 14 & & cc-by-sa-2.5 \\
\hline 15 & & \\
\hline 16 & & \\
\hline 17 & & \\
\hline 18 & & \\
\hline 19 & & \\
\hline 20 & & \\
\hline 21 & & \\
\hline 22 & & \\
\hline 23 & & \\
\hline 24 & & \\
\hline 25 & & PD \\
\hline 26 & & PD \\
\hline 27 & & PD \\
\hline 28 & & PD \\
\hline 29 & & PD \\
\hline 30 & & PD \\
\hline 31 & & PD \\
\hline 32 & & PD \\
\hline 33 & & PD \\
\hline 34 & & PD \\
\hline 35 & & PD \\
\hline 36 & DAVIDHOUSE \({ }^{192}\) & GFDL \\
\hline 37 & DAVIDHOUSE \({ }^{193}\) & GFDL \\
\hline 38 & Tchakkazulu & PD \\
\hline 39 & Tchakkazulu & PD \\
\hline 40 & Tchakkazulu & PD \\
\hline 41 & Tchakkazulu & PD \\
\hline 42 & Tchakkazulu & PD \\
\hline 43 & Tchakkazulu & PD \\
\hline 44 & Tchakkazulu & PD \\
\hline
\end{tabular}

192 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:DAVIDHOUSE
193 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:DAVIDHOUSE```


[^0]:    1 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/ DAtA- \{\}ARRAy- \{\} IARrAy. html
    2 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/ DAtA- \{\}ARray-\{\}IO. html
    3 htip://www.haskell.org/ghc/Docs/LATEST/HTML/LIBRARIES/ARRAY/ DATA- \{ \} Array- $\}$ ST. HTML
    4 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/ DAtA-\{\}ARRAy-\{\}DIff. H tmi
    5 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/ARRAY/ Data- \{\}ARRAy-\{\}Unboxed. html
    6 HTTP://WWW.HASKELL.ORG/GHC/DOCS/LATEST/HTML/LIBRARIES/BASE/ DAta-\{\}ARRAy-\{\}Storable.html
    7 HTTP://EN.WIKIBOOKS.ORG/WIKI/GHC

[^1]:    3 HTTP://PT.WIKIBOOKS.ORG/WIKI/HASKELL/INSTALAÇ~AOEARITMÉTICA

[^2]:    1 hTTP://EN.WIKIPEDIA.ORG/WIKI/TEXTEDITOR

[^3]:    2 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#FUNCTIONS

[^4]:    3 HTTP://EN.WIKIBOOKS.ORG/WIKI/../RECURSION
    4 As you can see, the names of variables may also contain numbers. Variables must begin with a lowercase letter, but for the rest, any string consisting of letter, numbers, underscore ( $\_$) or tick (') is allowed.

[^5]:    5 HTTP://EN.WIKIPEDIA.ORG/WIKI/HERON'SFORMULA

[^6]:    6 HTTP://EN.WIKIPEDIA.ORG/WIKI/SCOPE (PROGRAMMING)
    7 HTTP://PT.WIKIBOOKS.ORG/WIKI/HASKELL/VARIÁVEISEFUNÇ~OES

[^7]:    1 The term is a tribute to the mathematician and philosopher GEORGE BOOLE^\{HTTP://EN.WIKIPEDIA.ORG/ WIKI/GEORGEBOOLE\} .

[^8]:    2 In case you found this statement to be quite bold, don't worry - we will go even further in due course.

[^9]:    3 Technically, that just covers how to get the absolute value of a real number, but let's ignore this detail for now.
    4 abs is also provided by Haskell, so in a real-world situation you don't need to worry about providing an implementation yourself.</tt>
    5 We could have joined the lines and written everything in a single line, but in this case it would be a lot less readable.

[^10]:    6 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUADRATICEQUATION

[^11]:    1 Lists, be they of characters or of other things, are very important entities in Haskell, and we will cover them in more detail in a little while.
    2 The deeper truth is that functions are values, just like all the others.

[^12]:    3 This isn't quite what chr and ord do, but that description fits our purposes well, and it's close enough.
    4 In fact, it is not even the only type for integers! We will meet its relatives in a short while.

[^13]:    5 This method might seem just a trivial hack by now, but actually there are very deep reasons behind it, which we'll cover in the chapter on Currying ^\{http://En.wikibooks.org/wiki/.. /HIGHER-ORDERFUNCTIONSANDCURRYING\}.
    6 This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.

[^14]:    7 As we discussed in "Truth values". That fact is actually stated by the type signature of (==) - if you are curious you can check it, although you will have to wait a little bit more for a full explanation of the notation used in it.

[^15]:    1 You might object that that isn't even a proper word. Well, it isn't. LISP programmers invented the verb "to cons" to refer to this specific task of appending an element to the front of a list. "cons" happens to be a mnemonic for "constructor". Later on we will see why that makes sense.
    2 At this point you might be justified in seeing types as an annoying thing. In a way they are, but more often than not they are actually a lifesaver. In any case, when you are programming in Haskell and something blows up, you'll probably want to think "type error".

[^16]:    3 An alternative interpretation of that would be that tuples are, indeed, as a primitive kind of data structure. But we digress.
    4 Or, more technically, which project. In math-speak, a function that gets some data out of a structure is called a projection.

[^17]:    5 HTTP://PT.WIKIBOOKS.ORG/WIKI/HASKELL/LISTASEN-UPLAS

[^18]:    1 If you followed our recommendations in "Type basics" chances are you have already seen the rather exotic answer by testing with : $t$... if that is the case, consider the following analysis as a path to understanding the meaning of that signature.
    2 One of the reasons being that between any two real numbers there are infinite real numbers - and that can't be directly mapped into a representation in memory no matter what we do.
    3 http://en.wikipedia.org/wiki/Floatingpoint

[^19]:    4 That is a very loose definition, but will suffice until we are ready to discuss typeclasses in more detail.

[^20]:    5 For seasoned programmers: This appears to have the same effect of what programs in C (and many other languages) would manage with an implicit cast - in which case the integer literal would be silently converted to a double. The difference is that in C the conversion is done behind your back, while in Haskell it only occurs if the variable/literal is explicitly made a polymorphic constant. The difference will become clearer shortly, when we show a counter-example.

[^21]:    6 A reasonable scenario - think of computing an average of the values in a list.
    7 A more descriptive overview of the main ones will be made in a module which is currently under development.

[^22]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/../PATTERNMATCHING/

[^23]:    2 hTTP://EN.WIKIBOOKS.ORG/WIKI/../INDENTATION/

[^24]:    3 HTTP://EN.WIKIBOOKS.ORG/WIKI/../GETTINGSETUP/

[^25]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/../UNDERSTANDINGMONADS /

[^26]:    2 http://EN.WIKIBOOKS.ORG/WIKI/../TYPEBASICS/

[^27]:    3 HTTP://EN.WIKIBOOKS.ORG/WIKI/../TYPEDECLARATIONS/
    4 HTTP://EN.WIKIBOOKS.ORG/WIKI/../UNDERSTANDINGMONADS/
    HTTP://EN.WIKIBOOKS.ORG/WIKI/../GUI/
    htte://En.WIKIbOOKS.ORG/WIKI/../HIERARCHICALLIBRARIES/IO

[^28]:    1 In mathematics, $n$ ! normally means the factorial of $n$, but that syntax is impossible in Haskell, so we don't use it here.
    2 Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents an EMPTY PRODUCT^\{HTTP://EN.WIKIPEDIA.ORG/WIKI/EMPTYPRODUCT\}.

[^29]:    3 Kapitel 17 auf Seite 85
    4 This is no coincidence; without mutable variables, recursion is the only way to implement control structures. This might sound like a limitation until you get used to it (it isn't, really).
    5 HTTP://EN.WIKIBOOKS.ORG/WIKI/../PATTERNMATCHING/

[^30]:    6 Actually, it's using a function called foldl, which actually does the recursion.

[^31]:    HTTP://EN.WIKIBOOKS.ORG/WIKI/../LISTSANDTUPLES/
    HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/RECURSION\#LIST-BASEDRECURSION
    it costs nothing to use the opportunity to mention the naming convention we are adopting in (n:ns) is motivated by the fact that if the list head is an element " $n$ " then the list tail is likely to contain several other "ns".

[^32]:    4 In fact, the splitting with (:) doesn't apply to empty lists - for starters, they have no elements, and therefore no head to be split.
    5 unless one of them is an error or nontermination: we'll get to that later

[^33]:    6 Kapitel 14 auf Seite 67

[^34]:    1 HTTP://EN.WIKIPEDIA.ORG/WIKI/FILTER(MATHEMATICS)

[^35]:    2 HTTP://EN.WIKIPEDIA.ORG/WIKI/LISTCOMPREHENSION
    3 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNTACTICSUGAR

[^36]:    1 Advanced note for the curious: More formally, as list comprehensions are just the list monad, a failed pattern match invokes fail, which is the empty list in this case, and so gets ignored.

[^37]:    1 Again, this is quite different from what happens in most imperative languages, in which switch/case statements are restricted to equality tests, often only on integral primitive types.

[^38]:    1 named after the outstanding logician Haskell Brooks Curry, the same guy after whom the language is named.

[^39]:    1 HTTP://WWW.HASKELL.ORG/ONLINEREPORT/LEXEMES.HTML\#SECT2.7
    2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^40]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELI

[^41]:    1 Kapitel 13 auf Seite 59
    2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/LIST_PROCESSING

[^42]:    3 This sort of recursiveness, in which the function used for folding can take the result of another fold as an argument, is what confers the folds of data structures such as lists and trees their "accumulating" functionality.

[^43]:    4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELI

[^44]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^45]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^46]:    1 http://En.wIKIbooks.org/wIKI/HASKELL/MOREONDATATYPES\#PARAMETERISEDTyPES
    2 In imperative languages like C or Java, the return keyword, unrelated to the Haskell return function, causes the containing function to return to its caller. This does not happen in Haskell - return has no effect on the control flow, so don't confound these two.

[^47]:    3 HTTP://EN.WIKIBOOKS.ORG/WIKI/\#MONADLAWS

[^48]:    4 Kapitel 30 auf Seite 147
    hTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORYTHEORY

[^49]:    11 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/READER
    2 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/UNDERSTANDINGMONADS/WRITER
    3 Kapitel 34 auf Seite 167
    4 Kapitel 33 auf Seite 165

[^50]:    15 Kapitel 43 auf Seite 243
    16 Kapitel 43 auf Seite 243
    17 Kapitel 54 auf Seite 303

[^51]:    18 HTTP://EN.WIKIBOOKS.ORG/WIKI/HASKELL/CATEGORYTHEORY\#MONADS
    19 htTP://En.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^52]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^53]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/../UNDERSTANDINGMONADS/

[^54]:    2 HTTP://EN.WIKIBOOKS.ORG/WIKI/../MONADPLUS
    3 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREEBODYPROBLEM\#THREE-BODYPROBLEM

[^55]:    4 htip://members.chello.nl/hJgtuyl/tourdemonad. html
    5 HTTP://WWW.HASKELL.ORG/ALL_ABOUT_MONADS/HTML/INDEX.HTML
    6 HTTP://SPBHUG.FOLDING-\{\}MAPS.ORG/WIKI/MONADSEN
    7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^56]:    5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELI

[^57]:    1 HTTP://WWW.CS.NOTT.AC.UK/~\{\}GMH/PEARL.PDF
    2 htip://En.wIKIbooks.org/wiki/HASKELL/PRACTICAL_MONADS\#PARSING_MONADS
    3 HTTP://RESEARCH.MICROSOFT.COM/USERS/DAAN/PARSEC.HTML
    HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:HASKELL

[^58]:    1 HTTP://EN.WIKIBOOKS.ORG/WIKI/.. /UNDERSTANDINGMONADS

