Introduction to Physical Chemistry — Lecture 7

I. LECTURE OVERVIEW

In this lecture, we will review the four laws of thermo-
dynamics. We will then go on to define the concept of free
energy, and derive a set of relationships between thermo-
dynamic variables known as the Maxwell relations. We
conclude by using the Maxwell relations to compute var-
ious thermodynamic relationships in various contexts.

II. THE LAWS OF THERMODYNAMICS

In the last lecture, you learned about the existence of
another thermodynamic state function S, the entropy.
We then went on to show that S may be defined by the
differential expression, dS = (§Q)/T")rev, which is the sec-
ond law of thermodynamics.

We are therefore ready to state all the laws of thermo-
dynamics. They are:

1. The Zeroth Law of Thermodynamics: If sys-
tem A is in thermal equilibrium with system B, and
system B is in thermal equilibrium with system C,
then system A is in thermal equilibrium with system

C.

2. The First Law of Thermodynamics: dU =
6Q —0W , where SW > 0 signifies that work is done
by the system on the surroundings.

3. The Second Law of Thermodynamics: There
is a state function, called the entropy, that is de-
fined by the relationship dS = (0Q/T)rev-

4. The Third Law of Thermodynamics: The en-
tropy of a perfect crystal at 0 K is 0.

The Zeroth Law is called the Zeroth Law and not the
First Law, because it was formulated after the other three
laws. As discussed in the notes of Lecture 1, the Zeroth
Law is necessary in order to construct a thermometer (I
gave an explanation why in Lecture 2, but I will give a
better and more complete explanation at the end of this
lecture).

Basically, people were implicitly assuming the Zeroth
Law without being aware of it, and only noticed this until
after the first three laws were formulated. Because the
zeroth law was regarded as more fundamental than the
other three, it was decided to place it before the First
Law, hence it was called the Zeroth Law. The Zeroth
Law is proved in Appendix B of the last lecture, using
the statistical-mechanical definition of entropy.

The First Law and Second Laws have been introduced
already. I will simply point out that the Second Law is
true by definition. Hopefully, this was clear from the pre-
vious lecture, where we explored the probabilistic basis

for entropy. In any event, another way to state the Sec-
ond Law is via T' = (OU/JS)v, but since this is simply
the statistical mechanical definition of T', we see that the
Second Law is true by definition.

Regarding the Third Law, this simply allows us to pick
a reference point where an absolute value of entropy can
be assigned. The law dS = (6Q/T)ye, only allows us to
compute changes in entropy. The Third Law says that at
0 K a perfect crystal has no entropy. This makes sense,
since an object at 0 K cannot give off heat energy (other-
wise it would get colder, which contradicts the definition
of 0 K), and hence has no internal energy. In the language
of quantum mechanics, we say that the system is in its
ground state. In terms of degeneracies, by default there
is only one way to distribute O internal energy among
the various degrees of freedom of the system, so from
statistical mechanics we get S = kIlnQ2 =kInl = 0.

III. THE HELMHOLTZ AND GIBBS FREE
ENERGIES

Now that we have constructed the entropy, we can
define two more very important state functions: The
Helmholtz Free Energy, denoted A, and the Gibss Free
Energy, denoted G. The Helmholtz and Gibbs free ener-
gies are defined as,

A=U-TS
G=H-TS (1)

We will see later on in the course that the Helmholtz
and Gibbs free energies are very important state func-
tions when attempting to compute the equilibrium states
of systems. We will see why in a moment.

Starting with the First Law for reversible processes, we
have

dU = TdS — PdV (2)

Note that this equation is somewhat inconvenient to work
with, because changes in U, i.e. dU, is dependent on
changes in S, i.e. dS. Experimentally, it is much easier
to directly measure changes in 7', V', and P.

The enthalphy H = U + PV, hence if U changes to
U +dU, P changes to P+dP, and V changes to V 4dV,
then,

H+dH = U+dU+ (P+dP)(V +dV)

U+ dU + PV + VdP + PdV + dPdV
U+ PV +dU + VdP + PdV

H +TdS — PdV + VdP + PdV

= H+TdS+VdP (3)



where we ignored the term dPdV because it is the prod-
uct of two infinitesimals, and therefore infinitely smaller
than the other terms. Since dH = H +dH — H, we have,

dH = TdS + VdP (4)

Note that, in this formulation, changes in H depend on
changes in S, as is the case for U. However, changes in H
also depend on changes in P, while for U the additional
dependence is on V.

For the Helmholtz and Gibbs free energies, following a
similar derivation to the one used for H, we get,

dA = —SdT — PdV
dG = —SdT + VdP (5)

Note that for A, the dependence is now directly on T
and V', while for G the dependence is directly on T and
P. Therefore, it is often much easier to work with these
variables than U or H. In particular, a process that
occurs reversibly at constant 7" and V must satisfy dA =
0, while a process that occurs reversibly at constant T
and P must satisfy dG = 0. These conditions will allow
us to develop criteria for phase and chemical equilibria
later in the course.

IV. THE MAXWELL RELATIONS

We will now derive a very powerful set of relation-
ships among the thermodynamic variables known as the
Mazwell Relations. We will then use the Maxwell rela-
tions to compute specific thermodynamic properties of
materials.

To begin, consider a function f(z,y). Under very gen-
eral conditions, we can show that when taking the mixed
partials of f, it does not matter in what order the deriva-
tives are taken. That is, we have that,
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Now, applying this principle to the various thermody-
namic variables defined in the previous section, we note
the following:
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Now, from the differential expressions for U, H, A and
G derived in the previous section, we also have the fol-
lowing;:
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Putting everything together gives us the Maxwell re-
lations,
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V. USING THE MAXWELL RELATIONS TO
DERIVE THERMODYNAMIC RELATIONSHIPS

The Maxwell relations are an incredibly useful set of
relationships between thermodynamic variables, because
they connect seemingly unrelated changes between var-
ious thermodynamic properties of a system. We illus-
trate the power of the Maxwell relations by computing
(0U/9V)r for a material.

A. Computing (0U/0V)r

The First Law of Thermodynamics for a reversible pro-
cess states that dU = T'dS — PdV, which implicitly takes
the internal energy U to be a function of S and V. How-
ever, S is hard to measure, and so we would like to have
an expression for U as a function of T" and V. Writing
U =U(T,V), we then have the differential form,

ou ou
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dU = (55)vdT + (557)rdV (10)
The first term, (OU/OT)y, we are familiar with. It
is simply the heat capacity Cy (= nCy, where n is



the number of moles in the system). The second term,
(0U/OV)r, measures the dependence of a system’s inter-
nal energy on volume, assuming the temperature is held
constant. Intuitively, then, this quantity should provide
a measure of the strength of the interparticle interac-
tions in a material. The reason for this is that changing
V' essentially corresponds to changing the average dis-
tance between the particles of the system. Therefore, if
U changes, this means that there must be interparticle
forces whose average strength is affected by the change
in interparticle distance. In short, if U changes due to
a change in V, then this is due to the change in the in-
ternal potential energy of the system (remember, internal
energy in general consists of both the kinetic energy of
the random particle motions, as well as the potential en-
ergy due to interparticle interactions. This was discussed
in Lecture 4. Up until now, though, we have been mainly
dealing with ideal gases, for which there is no potential
energy contribution to the internal energy).

To explicitly relate (OU/OV)r to easily measurable
thermodynamic properties, let us consider S as a func-
tion of T and V', so S = S(T,V). Then,
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From the First Law of Thermodynamics, we then have,
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This is where the Maxwell relations come in. We use
the 7th Maxwell relation, namely,
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Note that the right-hand side of this equation is in prin-
ciple experimentally measurable, since it involves P, T,
and V. We could choose to stop here, but we would like
to massage this expression further.
Define the coefficient of thermal expansivity, denoted
«, of a material by,
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Note that « measures the fractional change of molar
volume with temperature. To determine «, one varies
the temperature of a material at constant pressure, and
plots V as a function of T. From this, (0V /0T)p may
be computed, and from this o may be computed.
Now, define the coefficient of compressibility, denoted
K, of a material by,
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The reason for the sign is that we would like  to be
positive, so we need to correct for the fact that volume
decreases as pressure increases.

To express (OP/0T)y in terms of a and &, let us con-
sider V as a function of T', P, so that,

av = (g—;)pdT + (Z%)po =Vadl — VkdP (17)

Now, consider an infinitesimal change in dT" and dP that
leaves V unchanged, so that dV = 0. Then this gives,
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Since this expression was obtained under constant vol-
ume conditions, we obtain,
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Therefore, if we know «, k, and P, we can compute
(OU/OV ).

B. Proof that the internal energy of an ideal gas
only depends on T

For an ideal gas, PV = RT = V = RT/P. Therefore,
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and so the internal energy of an ideal gas only depends
onT.



C. (0U/0V)r for a van der Waals gas

We can illustrate how (OU/OV)r is connected to inter-
molecular interactions by computing it for an equation of
state that takes such interactions into account.

For a van der Waals gas, we have,
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Here, it is easier to compute (OU/0V ) by computing
(OP/0T)y directly, instead of going through « and s
first. We have,
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which is the internal pressure of the gas. Therefore, the
dependence of the internal energy on volume is exactly
connected to the strength of the interparticle interac-
tions.

VI. WHY DO WE NEED A ZEROTH LAW?

It may be somewhat confusing why a Zeroth Law of
Thermodynamics is needed at all, given that it is directly
obtainable from the definition of temperature. How-
ever, we need to remember that the definition of tem-
perature that we saw in Lecture 6 only came with the
development of statistical mechanics. When thermody-
namics was starting out as a new branch of science, the
connection between the various thermodynamic variables
and the microscopic properties of a material wasn’t yet
known. So the connection between entropy and probabil-
ity was not known either. Therefore, the physical basis
for the existence of a concept such as temperature was
not fully understood. This led to all kinds of paradoxes
such as Maxwell’s demon, and attempts to construct per-
petual motion machines. These were largely unresolved
until the advent of Statistical Mechanics in the 19} cen-
tury and then Information Theory in the first half of the
90th century. I will bring up these issues later in the
course, if time permits.

Of course, with the statistical mechanical approach,
temperature is a concept that emerges naturally, and, as

can be seen from the proof in Appendix B of Lecture 6,
the Zeroth Law is easy to prove, and therefore may be
regarded as unnecessary to state.

However, let us go back in time, and imagine that we
are living before we knew about the statistical basis for
temperature. All we have is a vague notion of “hot” and
“cold,” and the observation that “heat” (whatever that
is), always flows from a “hot” object to a “cold” one. To
quantify this notion of “hot” or “cold,” we would like to
assign a number that measures the “hotness” or “cold-
ness” of an object, and we choose to call this number
the temperature. We would like to choose the numbers
so that heat will always flow from a region of higher tem-
perature to a region of lower temperature.

So, let’s take some object in a well-defined state, and
assign it a temperature. Let us label this object A, and its
temperature T4. Now, suppose we have another object,
called object B, and we touch it to object A. We notice
that there is no heat flow between the two objects, so we
say that object B has the same temperature as object A.
So, now we assign object B, in its particular state, to have
temperature T4. In principle, this is the temperature
of object B independent of object A. So, now suppose
we have another object, object C, which we touch to
object A, and again, we notice no energy flow. Then
again, object C is assigned a temperature T4. But note
that the temperatures assigned to objects B and C may
not be well-defined, because they are connected to the
object A. That is, we arbitrarily assigned a number to
object A, given its current state, noticed no energy flow
between A and B, and A and C, and therefore assigned
the same number to B and C. But, for this number to
be the measure of temperature that we’re looking for,
then it must be a property of B and C that does not
depend on A, and we should be able to use this number
to determine the direction of energy flow between B and
C, again, independently of A.

Since B and C are both assigned a temperature Ty,
when they are put in thermal contact, then there should
be no energy flow between B and C. This is exactly the
Zeroth Law: If system A is in thermal equilibrium with
system B, and system A is in thermal equilibrium with
system C, then system B is in thermal equilibrium with
system C.

Let’s reason this a bit further: Let us now consider
the set of all objects in their appropriate energy states
that are in thermal equilibrium with object A, in the
state where it is assigned a temperature T4. These ob-
jects are all assigned a temperature Ty as well, and are
in thermal equilibrium with each other, according to the
Zeroth Law. Therefore, the temperature T4 may be as-
sociated with all objects in the states where they are in
thermal equilibrium with object A, in the state where it
is assigned a temperature 74. Although object A has
been selected for measuring temperature, there is noth-
ing special about it. Consider another object A’. If it
has a temperature T4, then it is in thermal equilibrium
with object A in the state where it is assigned a temper-
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FIG. 1: A set of systems in thermal equilibrium with object
A, assigned a temperature T4, and a set of systems in thermal
equilibrium with a copy of object A, denoted A’, assigned a
temperature T > T4. Heat will always from an object in
thermal equilibrium with A’ to an object in equilibrium with
A.

ature T4. But then, any other object that is in thermal
equilibrium with A’ at the temperature Ty will, by the
Zeroth Law, also be in thermal equilibrium with A at the
temperature T4, and will therefore have a temperature
T4. This object will also be in thermal equilibrium with
all objects in thermal equilibrium with A at temperature
Ty.

Now, let’s make sure that our measure of temperature
deals with the direction of heat flow properly. Let’s take
object A, and change its state, which is assigned a tem-
perature 1% . Without loss of generality, we assume that
T’ > T4. Now, consider any object, denoted object B’,
that is in thermal equilibrium with A when it is in a
state that is given a temperature 7%. Then object B’ is

assigned a temperature 17 .

Consider some other object, object B, that is in ther-
mal equilibrium with A when it is in a state that is given
a temperature T4, so that object B has a temperature
T4. We claim that heat energy will flow from B’ to B.

For suppose that heat energy were to flow from B to
B’. If we make a copy of A, and put one in a state
assigned a temperature of T4, and place it in thermal
contact with B, then we can reversibly transfer heat en-
ergy from this copy of A to B. If we put the other copy
in a state assigned a temperature of T, rename it A’,
and place it in thermal contact with B’, then we can
reversibly transfer heat energy from B’ to A’.

Therefore, we can reversibly transfer heat energy from
A to B, irreversibly transfer this heat from B to B’, and
then reversibly transfer this heat from B’ to A’. The
net effect is that heat has been irreversibly transferred
from A to A’. But this makes no sense. For how do we
know that A’ is hotter than A? Because the direction of
heat flow is always from A’ to A, and not the other way
around. Since we cannot irreversibly transfer heat from
A to A’ (at least, not without doing any work on the
system), it follows that we cannot irreversibly transfer
heat from B to B’, so heat has to flow from B’ to B.

This means that our method of assigning temperatures
allows us to unambiguously determine the direction of
energy flow between any two objects.

Clearly, once we understand the statistical mechani-
cal basis for all of this, the above line of reasoning be-
comes much shorter. You can think of the laws of ther-
modynamics as the postulates of geometry before peo-
ple started computing with actual coordinate systems.
Many of the early geometric proofs, although beautiful,
became much easier to prove once you could just “crunch
the numbers.”



