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Circular permutation describes a type of relationship

between proteins, whereby the proteins have a changed order of

amino acids in their protein sequence, such that the sequence of

the first portion of one protein (adjacent to the N-terminus) is

related to that of the second portion of the other protein (near its

C-terminus), and vice versa (see Figure 1). This is directly

analogous to the mathematical notion of a cyclic permutation

over the set of residues in a protein.

Circular permutation can be the result of evolutionary events,

post-translational modifications, or artificially engineered muta-

tions. The result is a protein structure with different connectivity,

but overall similar three-dimensional (3D) shape. The homology

between portions of the proteins can be established by observing

similar sequences between N- and C-terminal portions of the two

proteins, structural similarity, or other methods.

History

In 1979, Bruce Cunningham and his colleagues discovered the

first instance of a circularly permuted protein in nature [1]. After

determining the peptide sequence of the lectin protein favin, they

noticed its similarity to a known protein—concanavalin A - except

that the ends were circularly permuted (see Figure 2). Later work

confirmed the circular permutation between the pair [2] and

showed that concanavalin A is permuted post-translationally [3]

through cleavage and an unusual protein ligation [4].

After the discovery of a natural circularly permuted protein,

researchers looked for a way to emulate this process. In 1983,

David Goldenberg and Thomas Creighton were able to create a

circularly permuted version of a protein by chemically ligating the

termini to create a cyclic protein, then introducing new termini

elsewhere using trypsin [5]. In 1989, Karolin Luger and her

colleagues introduced a genetic method for making circular

permutations by carefully fragmenting and ligating DNA [6]. This

method allowed for permutations to be introduced at arbitrary

sites, and is still used today to design circularly permuted proteins

in the lab.

Despite the early discovery of post-translational circular

permutations and the suggestion of a possible genetic mechanism

for evolving circular permutants, it was not until 1995 that the first

circularly permuted pair of genes were discovered. Saposins are a

class of proteins involved in sphingolipid catabolism and lipid

antigen presentation in humans. Christopher Ponting and Robert

Russell identified a circularly permuted version of a saposin

inserted into plant aspartic proteinase, which they nicknamed

swaposin [7]. Saposin and swaposin were the first known case of

two natural genes related by a circular permutation.

Hundreds of examples of protein pairs related by a circular

permutation were subsequently discovered in nature or produced

in the laboratory. The Circular Permutation Database [8] contains

2,238 circularly permuted protein pairs with known structures,

and many more are known without structures [9]. The CyBase

database collects proteins that are cyclic, some of which are

permuted variants of cyclic wild-type proteins [10]. SISYPHUS is

a database that contains a collection of hand-curated manual

alignments of proteins with non-trivial relationships, several of

which have circular permutations [11].

Evolution

There are two main models that are currently being used to

explain the evolution of circularly permuted proteins: permutation by

duplication and fission and fusion. The two models have compelling

examples supporting them, but the relative contribution of each

model in evolution is still under debate [12]. Other, less common,

mechanisms have been proposed, such as ‘‘cut and paste’’ [13] or

‘‘exon shuffling.’’

Permutation by Duplication
The earliest model proposed for the evolution of circular

permutations is the permutation by duplication mechanism [1]. In

this model, a precursor gene first undergoes a duplication and

fusion to form a large tandem repeat. Next, start and stop codons

are introduced at corresponding locations in the duplicated gene,

removing redundant sections of the protein (see Figure 3).

One surprising prediction of the permutation by duplication

mechanism is that intermediate permutations can occur. For

instance, the duplicated version of the protein should still be

functional, since otherwise evolution would quickly select against

such proteins. Likewise, partially duplicated intermediates where

only one terminus was truncated should be functional. Such

intermediates have been extensively documented in protein

families such as DNA methyltransferases [14].

Saposin and swaposin. An example for permutation by

duplication is the relationship between saposin and swaposin.

Saposins are highly conserved glycoproteins that consist of an

approximately 80 amino acid residue long protein forming a four

alpha helical structure. They have a nearly identical placement of

cysteine residues and glycosylation sites. The cDNA sequence that
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codes for saposin is called prosaposin. It is a precursor for four

cleavage products, the saposins A, B, C, and D. The four saposin

domains most likely arose from two tandem duplications of an

ancestral gene [16]. This repeat suggests a mechanism for the

evolution of the relationship with the plant-specific insert (PSI) (see

Figure 4). The PSI is a domain exclusively found in plants,

consisting of approximately 100 residues and found in plant aspartic

proteases [17]. It belongs to the saposin-like protein family (SAPLIP)

and has the N- and C- termini ‘‘swapped’’, such that the order of

helices is 3-4-1-2 compared with saposin, thus leading to the name

‘‘swaposin’’ [7]. For a review on functional and structural features of

saposin-like proteins, see Bruhn (2005) [18].

Fission and Fusion
Another model for the evolution of circular permutations is the

fission and fusion model. The process starts with two partial

proteins. These may represent two independent polypeptides (such

as two parts of a heterodimer), or may have originally been halves

of a single protein that underwent a fission event to become two

polypeptides (see Figure 5).

Figure 2. Two proteins that are related by a circular permuta-
tion. Concanavalin A (left), from the Protein Data Bank (PDB), 3cna and
peanut lectin (right), from PDB 2pel, which is homologous to favin. The
termini of the proteins are highlighted by blue and green spheres, and
the sequence of residues is indicated by the gradient from blue (N-
terminus) to green (C-terminus). The 3D fold of the two proteins is
highly similar; however, the N- and C- termini are located on different
positions of the protein [1].
doi:10.1371/journal.pcbi.1002445.g002

Figure 3. The permutation by duplication mechanism for
producing a circular permutation. First, a gene is duplicated in
place. Next, start and stop codons are introduced, resulting in a
circularly permuted gene.
doi:10.1371/journal.pcbi.1002445.g003Figure 1. Schematic representation of a circular permutation in

two proteins. The first protein (outer circle) has the sequence a-b-c.
After the permutation the second protein (inner circle) has the
sequence c-a-b. The letters N and C indicate the location of the amino-
and carboxy-termini of the protein sequences and how their positions
change relative to each other.
doi:10.1371/journal.pcbi.1002445.g001

Figure 4. Suggested relationship between saposin and swapo-
sin. They could have evolved from a similar gene [15]. Both consist of
four alpha helices with the order of helices being permuted relative to
each other.
doi:10.1371/journal.pcbi.1002445.g004
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The two proteins can later fuse together to form a single

polypeptide. Regardless of which protein comes first, this fusion

protein may show similar function. Thus, if a fusion between two

proteins occurs twice in evolution (either between paralogues

within the same species or between orthologues in different

species) but in a different order, the resulting fusion proteins will be

related by a circular permutation.

Evidence for a particular protein having evolved by a fission and

fusion mechanism can be provided by observing the halves of the

permutation as independent polypeptides in related species, or by

demonstrating experimentally that the two halves can function as

separate polypeptides [19].

Transhydrogenases. An example for the fission and fusion

mechanism can be found in nicotinamide nucleotide trans-

hydrogenases [20]. These are membrane-bound enzymes that catalyze

the transfer of a hydride ion between NAD(H) and NADP(H) in a

reaction that is coupled to transmembrane proton translocation. They

consist of three major functional units (I, II, and III) that can be found

in different arrangement in bacteria, protozoa, and higher eukaryotes

(see Figure 6). Phylogenetic analysis suggests that the three groups of

domain arrangements were acquired and fused independently [12].

Other Processes that Can Lead to Circular Permutations
Post-translational modification. The two evolutionary

models mentioned above describe ways in which genes may be

circularly permuted, resulting in a circularly permuted mRNA

after transcription. Proteins can also be circularly permuted via

post-translational modification, without permuting the underlying

gene. Circular permutations can happen spontaneously through

auto-catalysis, as in the case of concanavalin A [4] (see Figure 2).

Alternately, permutation may require restriction enzymes and

ligases [5].

The Role of Circular Permutations in Protein
Engineering

Many proteins have their termini located close together in 3D

space [21,22]. Because of this, it is often possible to design circular

permutations of proteins. Today, circular permutations are

generated routinely in the lab using standard genetics techniques

[6]. Although some permutation sites prevent the protein from

folding correctly, many permutants have been created with nearly

identical structure and function to the original protein.

The motivation for creating a circular permutant of a protein

can vary. Scientists may want to improve some property of the

protein, such as

N Reduce proteolytic susceptibility. The rate at which

proteins are broken down can have a large impact on their

activity in cells. Since termini are often accessible to proteases,

designing a circularly permuted protein with less accessible

termini can increase the lifespan of that protein in the cell [23].

N Improve catalytic activity. Circularly permuting a protein

can sometimes increase the rate at which it catalyzes a

chemical reaction, leading to more efficient proteins [24].

N Alter substrate or ligand binding. Circularly permuting a

protein can result in the loss of substrate binding, but can

occasionally lead to novel ligand binding activity or altered

substrate specificity [25].

N Improve thermostability. Making proteins active over a

wider range of temperatures and conditions can improve their

utility [26].

Alternately, scientists may be interested in properties of the

original protein, such as

N Fold order. Determining the order in which different parts of

a protein fold is challenging due to the extremely fast time

scales involved. Circularly permuted versions of proteins will

often fold in a different order, providing information about the

folding of the original protein [27–29].

N Essential structural elements. Artificial circularly per-

muted proteins can allow parts of a protein to be selectively

deleted. This gives insight into which structural elements are

essential or not [30].

N Modify quaternary structure. Circularly permuted pro-

teins have been shown to take on different quaternary

structure than wild-type proteins [31].

N Find insertion sites for other proteins. Inserting one

protein as a domain into another protein can be useful. For

instance, inserting calmodulin into green fluorescent protein

(GFP) allowed researchers to measure the activity of

calmodulin via the florescence of the split-GFP [32]. Regions

of GFP that tolerate the introduction of circular permutation

are more likely to accept the addition of another protein while

retaining the function of both proteins.

N Design of novel biocatalysts and biosensors. Introduc-

ing circular permutations can be used to design proteins to

catalyze specific chemical reactions [33,24], or to detect the

Figure 5. The fission and fusion mechanism of circular
permutation. Two separate genes arise (potentially from the fission
of a single gene). If the genes fuse together in different orders in two
orthologues, a circular permutation occurs.
doi:10.1371/journal.pcbi.1002445.g005

Figure 6. Transhydrogenases in various organisms can be found in
three different domain arrangements. In cattle, the three domains
are arranged sequentially. In the bacteria E. coli, Rb. capsulatus, and R.
rubrum, the transhydrogenase consists of two or three subunits. Finally,
transhydrogenase from the protist E. tenella consists of a single subunit
that is circularly permuted relative to cattle transhydrogenase [20].
doi:10.1371/journal.pcbi.1002445.g006
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presence of certain molecules using proteins. For instance, the

GFP-calmodulin fusion described above can be used to detect

the level of calcium ions in a sample [32].

Algorithmic Detection of Circular Permutations

Many sequence alignment and protein structure alignment

algorithms have been developed assuming linear data representa-

tions and as such are not able to detect circular permutations

between proteins. Two examples of frequently used methods that

have problems correctly aligning proteins related by circular

permutation are dynamic programming and many hidden Markov

models. As an alternative to these, a number of algorithms are

built on top of non-linear approaches and are able to detect

topology-independent similarities, or employ modifications allow-

ing them to circumvent the limitations of dynamic programming.

Table 1 is a collection of such methods.

The algorithms are classified according to the type of input

they require. Sequence-based algorithms require only the

sequence of two proteins in order to create an alignment.

Sequence methods are generally fast and suitable for searching

whole genomes for circularly permuted pairs of proteins.

Structure-based methods require 3D structures of both proteins

being considered. They are often slower than sequence-based

methods, but are able to detect circular permutations between

distantly related proteins with low sequence similarity. Some

structural methods are topology independent, meaning that they are

also able to detect more complex rearrangements than circular

permutation.
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Further Reading

N David Goodsell (2010) Concanavalin A and Circular
Permutation. Research Collaboratory for Structural Biol-
ogy (RCSB) Protein Data Bank (PDB) Molecule of the
Month April 2010.

N Yu and Lutz (2011), for a review of the use of circular
permutation in protein design [22].

N Weiner and Bornberg-Bauer (2006), for a review of
evolutionary mechanisms for circular permutations [12].

N Cyclic permutation entry in Wikipedia, http://en.
wikipedia.org/w/index.php?title=Cyclic_permutation

Table 1. Algorithms for comparing pairs of circularly permuted proteins.

Name Type Description Author Year Availability Reference

FBPLOT Sequence Draws dot plots of suboptimal sequence alignments. Zuker 1991 [34]

Bachar et al. Structure,
topology
independent

Uses geometric hashing for the topology independent comparison
of proteins.

Bachar et al. 1993 [35]

Uliel at al. Sequence First suggestion of how a sequence comparison algorithm for the
detection of circular permutations can work.

Uliel et al. 1999 [36]

SHEBA Structure Duplicates a sequence in the middle; uses SHEBA algorithm for structure
alignment; determines new cut position after structure alignment.

Jung, Lee 2001 [37]

Multiprot Structure,
topology
independent

Calculates a sequence order independent multiple protein structure
alignment.

Shatsky 2004 Server,
download

[38]

RASPODOM Sequence Modified Needleman and Wunsch sequence comparison algorithm Weiner et al. 2005 Server [39]

CPSARST Structure Describes protein structures as one-dimensional text strings by using a
Ramachandran sequential transformation (RST) algorithm. Detects circular
permutations through a duplication of the sequence representation and
‘‘double filter-and-refine’’ strategy.

Lo, Lyu 2008 Server [40]

GANGSTA+ Structure Works in two stages: Stage one identifies coarse alignments based on
secondary structure elements. Stage two refines the alignment on residue
level and extends into loop regions.

Schmidt-
Goenner et al.

2009 Server,
download

[41]

SANA Structure Detect initial aligned fragment pairs (AFPs). Build network of possible
AFPs. Use random-mate algorithm to connect components to a graph.

Wang et al. 2010 Download [42]

CE-CP Structure Built on top of the combinatorial extension algorithm. Duplicates atoms
before alignment, truncates results after alignment.

Bliven et al. 2010 Server,
download

[43]

doi:10.1371/journal.pcbi.1002445.t001
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