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II. PROBLEM FORMULATION

We consider a wireless network of N nodes existing in an

environment E . The state of each node i at time t is described
by the random variable x(t)

i ; the set of all states is denoted

x(t). Nodes can move independently from time t− 1 to t. At
each time t, node i may make internal measurements z(t)

i,self
about its state, e.g. from an inertial measurement unit. The set

of all internal measurements is denoted z
(t)
self .

Within the network, nodes communicate with each other

via wireless transmissions. We denote the set of nodes from

which node i can receive transmissions at time t by S(t)
→i. Note

that the communication link may not be bidirectional; i.e.,

j ∈ S(t)
→i does not imply i ∈ S(t)

→j . Using packets received from

j ∈ S(t)
→i, node i may make a set of relative measurements,

represented by the vector z(t)
j→i, which may include time of

arrival, angle of arrival, or other metrics. We denote the set

of all relative measurements made in the network at time t
by z

(t)
rel . The full set of relative and internal measurements is

denoted z(t).

The objective of the localization problem is for each node i
to estimate its state x(t)

i at each time t, given information up
to and including t.
We make the following assumptions about node states and

movement. The states of all nodes are a priori mutually

independent. Nodes move independently according to a mem-

oryless random walk. Conditioned on the states of the nodes,

internal measurements are mutually independent, independent

across time steps and depend only on the current and previous

states of the node. Conditioned on the states of the nodes,

relative measurements are independent of internal measure-

ments, mutually independent at each time step, and depend

only on the current states of the receiver and transmitter. The

mathematical implications of these assumptions are found in

[9].

Following Bayesian techniques, the random variable x(t)
i

can be estimated by determining the a posteriori distribu-

tion p(xi | Z). From this distribution, we can obtain the

maximum a posteriori (MAP) estimate of xi, x̂i,MAP =
arg maxxi

p(xi | Z) or the minimum mean square error

(MMSE) estimate x̂i,MMSE = xip(xi | Z) dxi. In this

paper, we will derive a distributed algorithm for each node

i to calculate its a posteriori location distribution p(xi | Z),
using information from its neighboring nodes. Our approach is

based on a graphical representation of the joint distribution as

a factor graph and application of the sum-product algorithm to

calculate the marginals. In the following section, we provide

an overview of these techniques.

III. GRAPHICAL MODELS

Graphical models are a tool to graphically represent infer-

ence problems, and to develop efficient inference algorithms.

While there are many classes of graphical models, we will

focus on factor graphs, for their flexibility and easy of use

[15]–[17]. In this section, we briefly describe factor graphs,

as well as a message passing algorithm, the sum-product

algorithm (SPA), which is used to computed marginals.

A. Factor Graphs

In the setting of statistical inference, a factor graph (FG) is

a way to graphically represent a factorization of an a posteriori

distribution, say

pX|Z (x |z ) =
1

Q

M
∏

k=1

φk (xk) , (1)

where every factor φk (·) depending only on a small subset
of variables xk ⊂ x, M is the number of factors and Q is a

(possibly unknown) normalization constant. The correspond-

ing factor graph is created by drawing (i) a vertex for every

factor φk , labeled as “φk”, (ii) a vertex for every variable

Xl, labeled as “Xl”, (iii) an edge for every variable Xl that

appears in factor φk, between the corresponding two vertices.

For example, when X = [X1, X2, X3] has an a posteriori
distribution that can be factorized as

p (x1, x2, x3 |z ) = (2)

1

Q
φ1 (x1)φ2 (x1, x2)φ3 (x1, x2)φ4 (x2, x3) ,

where Q is an unknown constant, the corresponding FG is

given in Fig 1.
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Figure 1. FG of φ1 (x1) φ2 (x1, x2)φ3 (x1, x2) φ4 (x2, x3).

B. The Sum-Product Algorithm

The SPA is a message passing algorithm on a cycle-free FG

that computes all the marginal distributions pXk|Z (· |z), ∀k,
of the associated a posteriori distribution pX|Z (x |z). Suppose
a vertex Xl has L adjacent vertices φl,1, . . . , φl,L, then the

message from vertex Xl to vertex φl,j is given by

µXl→φl,j
(xl) ∝

∏

i"=j

µφl,i→Xl
(xl). (3)

Similarly, suppose a vertex φk has K adjacent vertices

Xk,1, . . . , Xk,K , then the message from vertex φk to vertex

Xk,j is given b

µφk→Xk,j
(xk,j) ∝

∑

xk,i,i"=j

φ(xk,1, . . . , φk,K)
∏

i"=j

µXk,i→φk
(xk,i).

(4)

The marginal of any variable Xl is obtained by point-wise

multiplication of two messages passed over any incident edge:

pXl|Z (xl |z) ∝ µXl→φl,j
(xl) × µφl,j→Xl

(xl) , (5)

where φl,j is a factor which contains Xl as a variable. When

the FG of pX|Z (x |z) has cycles, the relationship (5) no longer


