
[[```Distance covariance’’’]] in [[statistics]] and in [[probability theory]] is a new 

measure of how much two variables change together. Distance covariance was introduced 

in 2005 by [[Gabor J. Szekely]] in several lectures to address the most important 

deficiency of Pearson’s classical [[covariance]], namely that Pearson’s [[covariance]] can 

easily be zero for dependent variables. Thus covariance = 0 (uncorrelatedness) does not 

imply independence while distance covariance = 0 does imply independence. The first 

results on distance covariance were published in 2007 and 2009.  

 

```Definition’’’ 

 

If (Xk, Yk), k=1,2,…, n is a sample from two variables, X and Y, (they can be real valued 

or vector valued), then take all pairwise distances of observations: ak,l:= |Xk – Xl|  and  

bk,l:= |Yk – Yl| for k,l=1,2,…,n. Then center these distances such that in the centered 

distance matrices (Ak,l) and  (Bk,l ) all row sums and all column sums equal zero. The 

centered distances are Ak,l:= ak,l–ak.–a. l + a. . and Bk,l:= bk,l–bk .–b. l + b. . where ak.  is 

the arithmetic average of the numbers ak,l  , l=1,2,…,n (the meaning of a. l  is similar), a.. 

is the arithmetic average of all distances ak,l   k,l=1,2,…,n, and we have the same notation 

for the b values. The empirical distance covariance is simply the arithmetic average of the 

products Ak,l Bk,l  that is 

 

dcovn(X,Y):= (1/n
2
) Σ k lAk,l Bk,l . 

 

```Properties of dcovn’’’ 

(i) dcovn (X,Y) ≥ 0.  

(ii) dcovn = 0 if and only if every observation is the same. 

 

The most important effect of working with centered distances is that the population value 

of distance covariance is zero if and only if X and Y are independent. The population 

value of distance covariance is  

 

dcov(X,Y):= E|X-X’||Y-Y’| + E|X – X’| E|Y – Y’| - E|X – X’||Y – Y”| - E|X – X”||Y – Y’|  



 

where E denotes expected value, X’ is an independent and identically distributed copy of 

X, Y’ is an independent and identically distributed copy of Y, finally X” (Y”) has the 

same distribution as X (Y) and independent not only of X (Y) but also of Y and Y’ (X 

and X’). One can show that dcov(X, Y) always exists if X and Y have finite expected 

values.  Distance covariance can be expressed with Pearson’s covariance, cov, as follows: 

dcov(X,Y) = cov(|X-X’|, |Y-Y’|) – 2cov(|X-X’|,|Y-Y”|). This identity shows that the 

distance covariance is not the same as the covariance of distances, cov(|X-Y|, |Y-Y’|), 

which can be zero even if X and Y are not independent.  

 

```Properties of dcov’’’ 

 

(i) dcov(a1+b1C1X,a2+b2C2Y) = |b1b2|dcor(X,Y) 

for all constant vectors a1, a2 , scalars b1, b2, and orthonormal matrices C1, 

C2. 

(i) If  the random vectors (X1, Y1) and (X2, Y2) are independent then 

dcov(X1+X2, Y1+Y2)  ≤ dcov(X1, Y1) + dcov (X2, Y2) 

with equality if and only if X1 and Y1 are both constants or X2 and Y2 are 

both constants or X1, X2, Y1, Y2 are mutually independent. 

 

dcovn(X,Y) is a biased estimate of dcov(X,Y) because Edcovn(X,Y) = [(n-1)/n
2
][(n-

2)dcov(X,Y)+E|X-X’|E|Y-Y’|].  Thus the bias can easily be corrected.  

 

It is interesting to note that if  ak,l     and  bk,l  were defined as squared distances then dcov 

would simply become the square of Pearson’s covariance.  

 

``Distance variance’’ is a special case of distance covariance when the two variables are 

identical. The empirical distance variance,+69-  

 

dvarn(X):=dcovn(X,X) = (1/n
2
) Σ k lAk,l

2 
 

 



 

 is a relative of [[Corrado Gini]]’s [[mean difference]] introduced in 1912 but Gini did 

not work with centered distances. 

 

The population value of distance variance is  

 

dvar(X):= E|X – X’|
2
  + E

2
|X-X’| - 2E|X-X’||X-X”|. 

 

```Properties of dvar’’’ 

 

(i) dvar(X) = 0 if and only if  X = E(X) almost surely. 

(ii) dvar(a + bCX) = |b|dvar(X)  for all constant vectors  a  , scalars  b, and 

orthonormal matrices C. 

 

The square root of the distance variance is the ``distance standard deviation’’. The 

(empirical) ``distance correlation’’ of two variables is obtained by dividing the 

(empirical) distance covariance of the two variables by the product of their (empirical) 

distance standard deviations. The (empirical) distance correlation is denoted by 

(dcorn(X,Y)) dcor(X,Y). 

 

```Properties of dcorn and dcor’’’ 

(i)  0  ≤  dcor_n(X,Y) ≤ 1 and  0 ≤ dcor(X,Y) ≤1. 

(ii) dcor(X,Y) = 0 if and only if X and Y are independent.  

(iii) dcor_n(X,Y) =  1 implies that dimensions of the linear spaces spanned by X and 

Y respectively are almost surely equal and if we assume that these spaces are 

equal, then in this subspace Y = a + b CX  for some vector a, scalar b and 

orthonormal matrix C.  
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