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Topics Covered: 
  
1. Properties of fluids 

• Definition of a fluid 
• Density 
• Viscosity 
• Surface tension 
• Compressibility 

 
2. Hydrostatics 

• Hydrostatic pressure distribution 
• Pressure measuring devices (manometers) 
• Hydrostatic force acting on submerged plane and curved surfaces 
• Equilibrium of a hydraulic structure under hydrostatic and applied forces 
 

3. Fluid in Motion 
• Continuity equation (conservation of mass) 
• Bernoulli’s equation (conservation of mechanical energy) 
• Momentum equation (force and rate of change of momentum) 
• Applications 

o Velocity measurement with a Pitot tube  
o Jet issuing from an orifice  
o Flow-rate measurement with a Venturi-meter  
o Impact force by a jet on a flat plate 
o Impact force on a pipe bend  
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(I) INTRODUCTION  
 
What is  Fluid Mechanics?  
 
First, what is a fluid?  

• Three common states of matter are solid, liquid, and gas. 
• A fluid is either a liquid or a gas. 
• If surface effects are not present, flow behaves similarly in all common fluids, whether gases 

or liquids. 
• Formal definition of a fluid - A fluid is a substance which deforms continuously under the 

application of a shear stress. 
o Definition of stress - A stress is defined as a force per unit area, acting on an 

infinitesimal surface element. 
o Stresses have both magnitude (force per unit area) and direction, and the direction is 

relative to the surface on which the stress acts. 
o There are normal stresses and tangential stresses. 
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o Pressure is an example of a normal stress, and acts inward, toward the surface, and 
perpendicular to the surface. 

o A shear stress is an example of a tangential stress, i.e. it acts along the surface, 
parallel to the surface. Friction due to fluid viscosity is the primary source of shear 
stresses in a fluid. 

o One can construct a free body diagram of a little fluid particle to visualize both the 
normal and shear stresses acting on the body: 

 

Free body diagram for a fluid 
particle at rest. 

Consider a tiny fluid element (a very small chunk of the 
fluid) in a case where the fluid is at rest (or moving at 
constant speed in a straight line). A fluid at rest can have 
only normal stresses, since a fluid at rest cannot resist a 
shear stress. In this case, the sum of all the forces must 
balance the weight of the fluid element. This condition is 
known as hydrostatics. Here, pressure is the only normal 
stress which exists. Pressure always acts positively inward. 
Obviously, the pressure at the bottom of the fluid element 
must be slightly larger than that at the top, in order for the 
total pressure force to balance the weight of the element. 
Meanwhile, the pressure at the right face must be equal to 
that on the left face, so that the sum of forces in the 
horizontal direction is zero. [Note: This diagram is two-
dimensional, but an actual fluid element is three-
dimensional. Hence, the pressure on the front face must 
also balance that on the back face.]  
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Free body diagram for a fluid 
particle in motion. 

 
 
Consider a tiny fluid element (a very small chunk of the 
fluid) that is moving around in some flow field. Since the 
fluid is in motion, it can have both normal and shear 
stresses, as shown by the free body diagram. The vector 
sum of all forces acting on the fluid element must equal the 
mass of the element times its acceleration (Newton's 
second law). Likewise, the net moment about the center of 
the body can be obtained by summing the forces due to 
each shear stress times its moment arm. [Note: To obtain 
force, one must multiply each stress by the surface area on 
which it acts, since stress is defined as force per unit area.] 

 
o Fluids at rest cannot resist a shear stress; in other words, when a shear stress is 

applied to a fluid at rest, the fluid will not remain at rest, but will move because of the 
shear stress. 

o For a good illustration of this, consider the comparison of a fluid and a solid under 
application of a shear stress: A fluid can easily be distinguished from a solid by 
application of a shear stress, since, by definition, a fluid at rest cannot resist a shear 
stress.  If a shear stress is applied to the surface of a solid, the solid will deform a little, 
and then remain at rest (in its new distorted shape). One can say that the solid (at rest) 
is able to resist the shear stress.  Now consider a fluid (in a container). When a shear 
stress is applied to the surface of the fluid, the fluid will continuously deform, i.e. it 
will set up some kind of flow pattern inside the container. In other words, one can say 
that the fluid (at rest) is unable to resist the shear stress. That is to say, it cannot 
remain at rest under application of a shear stress.  

   

 

 

 

 

 

Next, what is mechanics?  

• Mechanics is essentially the application of the laws of force and motion. Conventionally, it is 
divided into two branches, statics and dynamics. 

  So, putting it all together, there are two branches of fluid mechanics:  

• Fluid statics or hydrostatics is the study of fluids at rest. The main equation required for this 
is Newton's second law for non-accelerating bodies, i.e. 0F =∑ .  
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• Fluid dynamics is the study of fluids in motion. The main equation required for this is 
Newton's second law for accelerating bodies, i.e. F ma=∑ . 
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(II) PROPERTIES OF FLUIDS  

A. Density, Specific Weight, Relative Density  

Density (ρ) = mass per unit volume of substance = δm/δv; [ρ] = [ML-3].  

Specific weight (γ) = force exerted by the earth's gravity upon a unit volume of the substance = ρg; 
[γ] = [ML-2T-2].  

Relative density (specific gravity) = ratio of mass density of the substance to that of water at a 
standard temperature and pressure = ρ/ρw (non-dimensional).  

B. Viscosity  

Viscosity is a measure of the importance of friction in fluid flow. Consider, for example, a fluid in 
two-dimensional steady shear between two parallel plates, as shown below. The bottom plate is fixed, 
while the upper plate is moving at a steady speed of U.  
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It turns out (we will prove this at a later date) that the velocity 
profile, u(y) is linear, i.e. . Also notice that the 
velocity of the fluid matches that of the wall at both the top and 
bottom walls. This is known as the no slip condition.  

( ) /u y Uy b=

The top plate will experience a friction force to the left, since it 
is doing work trying to drag the fluid along with it to the right. 
The fluid at the top of the channel will experience an equal and opposite force (i.e. to the righ
Similarly the bottom plate will experience a friction force to the right, since the fluid is trying to pu
the plate along with it to the right. The fluid at the bottom of the channel will feel an equal and 
opposite force, i.e. to the left. In fluid mechanics, shear stress, defined as a tangential force per un
area, is used rather than force itself, and is commonly deno

t). 
ll 

it 
ted by τ (Greek letter "tau").  

In simple shear flow such as this, the shear stress is directly proportional to the rate of deformation of 
the fluid, which in this case is equal to the slope of the velocity profile /U bτ ∝ .  

Introducing the constant of proportionality μ (Greek letter "mu"), which is called the coefficient of 
viscosity, the Newton's equation of viscosity states that:  

 du
dy

τ μ=  

Fluids that follow the above relation are called Newtonian fluids. The coefficient of viscosity is also 
known as dynamic viscosity; its dimensions are [μ] = [ML-1T-1] while its SI units are Pa-s.  An ideal 
fluid is one which has zero viscosity, i.e., inviscid or non-viscous.  

Sometimes, it is more convenient to use kinematic viscosity, denoted by Greek letter "nu", which is 
simply defined as the viscosity divided by density, i.e.  

μν
ρ

=  

Kinematic viscosity has the dimensions [ν] = [L2T-1], and its SI units are m2/s.  
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Typically, as temperature increases, the 
viscosity will decrease for a liquid, but will 
increase for a gas. 

 The fluid is non-Newtonian if the 
relation between shear stress and shear 
strain rate is non-linear. 

C. Surface Tension and Capillarity  

Surface tension is a property of liquids which is felt at the interface 
between the liquid and another fluid (typically a gas). Surface 
tension has dimensions of force per unit length, and always acts 
parallel to the interface. Surface molecules are subject to an 
attractive force from nearby surface molecules so that the surface is 
in a state of tension.  A soap bubble is a good example to illustrate 
the effects of surface tension. How does a soap bubble remain 
spherical in shape? The answer is that there is a higher pressure 
inside the bubble than outside, much like a balloon. In fact, surface 
tension in the soap film acts much the same as the tension in the skin 
of a balloon.  

Consider a soap bubble of radius R with internal pressure inp  and external (atmospheric) pressure 

outp .  The excess pressure  bubble in outP P PΔ = −  can be found by 
considering the free-body diagram of half a bubble.  Note that 
surface tension acts along the circumference (resulting from cutting 
across the two interfaces) and the pressure acts on the area of the 
half-bubble.  By statics (to be explained later), the net force due to 
the pressure is equal to the pressure times the projected area.  Hence, 
balancing the forces due to surface tension and pressure difference: 

( ) ( )2
bubble

s

R R P

P / R

π

σ

= Δ

bubble

      2 2

  4
sπ σ

⇒ Δ =
 

where sσ  is the surface tension of the fluid in air. 

You may repeat this exercise for a droplet, and show that droplet 2 sP / RσΔ = . 
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Surface tension is also important at the interface between a liquid, 
a gas, and a solid. For example, a meniscus occurs when the 
surface of a liquid touches a solid wall, as most readily noticed 
when a capillary tube is placed in a liquid. Consider a glass 
capillary tube inserted into a liquid, such as water. The water will 
rise up the tube to a height h, because surface tension pulls the 
surface of the water towards the glass, as shown. The meniscus is 
the curved surface at the top of the water column.  

The height of the water column can be found by summing all forces acting on the water column as a 
free body diagram. (This is a statics problem since there is no acceleration.) The downward force is 
due to gravity, i.e. the weight of the water column. The only upward force available to balance the 
weight is that caused by surface tension (pressure forces all cancel out, as will be explained in a later 
lecture). Column height h can be determined as follows:  

( )2

    weight of fluid column = surface tension pulling force

2 cos

2 cos
s

s

g R h R

h
gR

ρ π π σ φ

σ φ
ρ

⇒ =

⇒ =

 

 The contact angle is defined as the angle between the liquid and solid surface, as shown in the 
sketch. Contact angle depends on both the liquid and the solid. If φ is less than 90o, the liquid is said 
to "wet" the solid. However, if φ is greater than 90o, the liquid is repelled by the solid, and tries not to 
"wet" it. For example, water wets glass, but not wax. Mercury on the other hand does not wet glass.  
   

 

 

 

 

 

 

D. Vapor Pressure  

Vapor pressure is defined as the pressure at which a liquid will boil (vaporize). Vapor pressure rises 
as temperature rises. For example, suppose you are camping on a high mountain (10,000 ft. or 
roughly 3,000 m in altitude). From Table A.6 of Fluid Mechanics by Frank White, the atmospheric 
pressure at this elevation is about 70 kPa. From Table A.5 it is seen that at a temperature of around 
90oC, the vapor pressure of water is also around 70 kPa. From this it can be stated that at 10,000 ft. 
of elevation, water boils at around 90oC, rather than the common 100oC at standard sea level pressure. 
This has consequences for cooking. For example, eggs have to be cooked longer at elevation to 
become hard-boiled since they cook at a lower temperature. A pressure cooker has the opposite 
effect. Namely, the tight lid on a pressure cooker causes the pressure to increase above the normal 
atmospheric value. This causes water to boil at a temperature even greater than 100oC; eggs can be 
cooked a lot faster in a pressure cooker!  
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Vapor pressure is important to fluid flows because, in general, pressure in a flow decreases as 
velocity increases. This can lead to cavitation, which is generally destructive and undesirable. In 
particular, at high speeds the local pressure of a liquid sometimes drops below the vapor pressure of 
the liquid. In such a case, cavitation occurs. In other words, a "cavity" or bubble of vapor appears 
because the liquid vaporizes or boils at the location where the pressure dips below the local vapor 
pressure. Cavitation is not desirable for several reasons. First, it causes noise (as the cavitation 
bubbles collapse when they migrate into regions of higher pressure). Second, it can lead to 
inefficiencies and reduction of heat transfer in pumps and turbines (turbomachines). Finally, the 
collapse of these cavitation bubbles causes pitting and corrosion of blades and other surfaces nearby.  
The left figure below shows a cavitating propeller in a water tunnel, and the right figure shows 
cavitation damage on a blade. 

  

 

 

 

 

 

E. Compressibility  

All fluids are compressible under the application of external forces. The compressibility of a fluid is 
expressed by its bulk modulus of elasticity E, which is the ratio of the change in unit pressure to the 
corresponding volume change per unit volume.  

/ /
P PE

V V ρ ρ
Δ Δ

= =
−Δ Δ

 

Note that the bulk modulus of elasticity has the same dimensions as pressure: [E] = [ML-1T-2].  

For water at room temperature, E is approximately 2.2 × 109 N/m2, while for air at atmospheric 
pressure the isentropic bulk modulus of elasticity is approximately 1.4× 105 N/m2. That is, air is 
typically four orders of magnitude more compressible than water.  

For most practical purposes liquids may be regarded as incompressible. However, there are certain 
cases, such as unsteady flow in pipes (e.g., water hammer), where the compressibility should be 
taken into account.  Gases may also be treated as incompressible if the change in density is very 
small (typically less than 3%). 

An ideal fluid is an incompressible fluid.  

Pressure disturbances imposed on a fluid move in waves. These pressure waves move at a velocity 
equal to that of sound through the fluid. The velocity, or celerity, c, is given by  

 c E / ρ=  
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F. Perfect Gas Law  

Very often we have fluid flows of gases at, or near, atmospheric pressure. In these cases, the changes 
in pressure p, density ρ and absolute temperature T of a gas particle may be related accurately to each 
other by the perfect (or ideal) gas law:  

,           where    /g gp RT R R Mρ= =  

where R is called the perfect gas constant, Rg is the Universal gas constant and Mg is the gas 
molecular weight.  

The universal gas constant is Rg ≅ 8.31 J/mol⋅ K ≅ 0.082 L⋅atm/mol⋅K.  

The perfect gas law alone is insufficient to explain how the properties of a gas change as it moves. In 
addition, the laws of thermodynamics must be invoked. Compressible flows are inherently 
complicated because the laws of thermodynamics, as well as the laws of fluid mechanics, operate 
simultaneously.  

G. Concluding Remarks 

Fluid mechanics represents that branch of applied mechanics dealing with the behavior of 
fluids at rest and in motion. In the development of the principles of fluid mechanics, some fluid 
properties play principal roles, other only minor roles or no roles at all for a particular problem. In 
fluid statics, weight is the important property, whereas in fluid flow, density and viscosity are 
predominant properties. Where appreciable compressibility occurs, principles of thermodynamics 
must be considered. Vapor pressure becomes important when low gauge pressures are involved, and 
surface tension affects static and flow conditions in small passages.  
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(III) FLUID STATICS  

Hydrostatics is the study of pressures throughout a fluid at rest and the pressure forces on finite 
surfaces. As the fluid is at rest, there are no shear stresses in it. Hence the pressure at a point on a 
plane surface always acts normal to the surface, and all forces are independent of viscosity. The 
pressure variation is due only to the weight of the fluid. As a result, the controlling laws are 
relatively simple, and analysis is based on a straightforward application of the mechanical principles 
of force and moment. Solutions are exact and there is no need to have recourse to experiment.  

A. Introduction to Pressure  

Pressure always acts inward normal to any surface (even 
imaginary surfaces as in a control volume).  

Pressure is a normal stress, and hence has dimensions of force per 
unit area, or [ML-1T-2].  In the English system of units, pressure is 
expressed as "psi" or lbf/in2. In the Metric system of units, pressure 
is expressed as "pascals" (Pa) or N/m2.  

Standard atmospheric pressure is 101.3 kPa or 14.69 psi.  

Pressure is formally defined to be 

 
0

lim n

A

Fp
AΔ →

Δ
=

Δ
 

where  is the normal compressive force acting on an infinitesimal 
area 

nFΔ
AΔ . 

B. Pressure at a Point 

 

By considering the equilibrium of a small triangular wedge of fluid extracted from a static fluid body, 
one can show that for any wedge angle θ, the pressures on the three faces of the wedge are equal in 
magnitude: 

         independent of s y zp p p θ= =  
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This result is known as Pascal's law, which states that the pressure at a point in a fluid at rest, or in 
motion, is independent of direction as long as there are no shear stresses present. 
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Pressure at a point has the same magnitude in all 
directions, and is called isotropic. 

 

 
C. Pressure Variation with Depth 
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p+Δp  
cross sectional 
area = A  

 p 
Consider a small vertical cylinder of fluid in equilibrium, where positive z is pointing vertically 
upward. Suppose the origin  is set at the free surface of the fluid. Then the pressure variation at 
a depth z = -h below the free surface is governed by 

0z =

                           

( )        
    0
    

             or                     (as 0)

p p A W pA
pA gA z
p g z

dp dpg z
dz dz

ρ
ρ

ρ γ

+ Δ + =

⇒ Δ + Δ =
⇒ Δ = − Δ

⇒ = − = − Δ →

 

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific weight 
gγ ρ≡  of the fluid. 

Homogeneous fluid: ρ is constant  

By simply integrating the above equation:  

          dp gdz p gz Cρ ρ= − ⇒ = − +∫ ∫  

where C is an integration constant. When z = 0 (on the free surface), 0p C p= =  (the atmospheric 
pressure).  Hence,  

0p gz pρ= − +  
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Pressure given by this equation is called ABSOLUTE PRESSURE, i.e., measured above perfect 
vacuum.  

However, for engineering purposes, it is more convenient to measure the pressure above a datum 
pressure at atmospheric pressure. By setting 0p  = 0,  

p gz ghρ ρ= − =  

Pressure given by this equation is called GAUGE (GAGE) PRESSURE.  

 

 

 

 

 

 

 

 

The equation derived above shows that when the density is constant, the pressure in a liquid at rest 
increases linearly with depth from the free surface. 

Consequently, the distribution of pressure acting on a submerged flat 
surface is always trapezoidal (or triangular if the surface pierces through 
the free surface of the liquid and the pressure is gauge pressure). 

Also, the pressure is the same at all points with the same depth from the 
free surface regardless of geometry, provided that the points are 
interconnected by the same fluid.  However, the thrust due to pressure is 
perpendicular to the surface on which the pressure acts, and hence its 
direction depends on the geometry. 
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Compressible fluid: ρ varies with depth  

Example: Find the relationship between pressure and altitude in the atmosphere near the Earth's 
surface. For simplicity, neglect the vertical temperature gradient. Let temperature T = 288 K (15oC) 
and pressure p0 = 1 atm at the surface. The average molecular weight of air is Mg = 28.8 g/mol. The 
Universal gas constant is Rg = 8.3 J/mol⋅ K.  

Solution: Let the altitude above the Earth's surface be denoted by z, then  

dp g
dz

ρ= −  

Assume that air is a perfect gas, its density varies with pressure according to  

g

g

M
P

R T
ρ =  

Combining the above two equations, and integrate:  

0 0

0

0

     

                           

                           ln

                            exp

g g

g g

p z
g

gp

g

g

g

g

M g M gdp dpp d
dz R T p R T

M gdp dz
p R T

M gp z
p R T

M g

z

p p z
R T

= − ⇒ = −

⇒ = −

⇒ = −

⎡ ⎤⎛ ⎞
⇒ = −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫
 

  

Neglecting temperature variation, the exponential decay rate for pressure with height is,  

3
428.8 10 9.81 1.18 10   per meter of rise

8.3 288
g

g

M g
R T

−
−× ×

= = ×
×

 

Say, at 2000 ft or 610 m above the Earth's surface, the pressure is  

( ) 41 atm exp 1.18 10 610 0.93 atmp −⎡ ⎤= − × × =⎣ ⎦  

That is, for such a high elevation, the pressure drops only by 7%.  (Note that temperature cannot be 
considered constant if this calculation is performed for large altitude differences.)  

In most practical problems where the change in elevation is not extremely large, atmospheric 
pressure can be assumed to be constant.  
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D. Hydrostatic Pressure Difference Between Two Points  

For a fluid with constant density,  

below abovep p gρ z= + Δ  

It is easily remembered by thinking about scuba diving. As a diver goes down, the pressure on his 
ears increases. So, the pressure "below" is greater than the pressure "above."  

There are several "rules" or comments which directly result from the above equation:  

• If you can draw a continuous line through the same fluid from point 1 to point 2, then p1 = 
p2 if z1 = z2.  

For example, consider the oddly shaped container: 

By this rule, p1 = p2 and p4 = p5 since these points are at 
the same elevation in the same fluid. However, p2 does 
not equal p3 even though they are at the same elevation, 
because one cannot draw a line connecting these points 
through the same fluid. In fact, p2 is less than p3 since 
mercury is denser than water.  
 
 

• Any free surface open to the atmosphere has atmospheric pressure, p0. 

(This rule holds not only for hydrostatics, but for any free surface exposed 
to the atmosphere, whether the surface is moving, stationary, flat, or mildly 
curved.) Consider the hydrostatics example of a container of water:  

The little upside-down triangle indicates a free surface, and means that the 
pressure there is atmospheric pressure, p0. In other words, in this example, 
p1 = p0. To find the pressure at point 2, our hydrostatics equation is used: 
p2 = p0+ρgh (absolute pressure) or p2 = ρgh (gauge pressure).  

 

• The shape of a container does not matter in hydrostatics. 

(Except of course for very small diameter tubes, 
where surface tension becomes important.) 
Consider the three containers in the figure below:  

At first glance, it may seem that the pressure at 
point 3 would be greater than that at point 1 or 2, 
since the weight of the water is more "concentrated" 
on the small area at the bottom, but in reality, all 
three pressures are identical. Use of our hydrostatics 
equation confirms this conclusion, i.e.  

below above 1 2 3 0p p g z p p p p gρ ρ= + Δ ⇒ = = = + zΔ    
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• Pressure in layered fluid. 

For example, consider the container in the figure below, which is partially filled with mercury, 
and partially with water:  
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1 water 1p g zρ= Δ

0 0p =

2H Oγ  

1 

 

Hgγ

1 

2 mercury 2 1              p g z pρ= Δ +  
 

In this case, our hydrostatics equation must be used twice, once in each of the liquids  

below above

1 0 water 1 2 1 mercury 2

2

                                            
                      and         

Combining,                  
                                     

p p g z
p p g z p p g

p p

ρ
ρ ρ

= + Δ

⇒ = + Δ = + Δ

= 0 water 1 mercury 2g z g zρ ρ+ Δ + Δ

z
 

 
Shown on the right side of the above figure is the distribution of pressure with depth across the two 
layers of fluids, where the atmospheric pressure is taken to be zero 0 0p = .  Note that: 

• The pressure is continuous at the interface between water and mercury. Therefore, 1p , which 
is the pressure at the bottom of the water column, is the starting pressure at the top of the 
mercury column. The pressure 1p  can also be regarded as the water surcharge pressure 
superimposed onto (uniformly transmitted to, and felt at any depth by) the mercury below.  

• The vertical gradient of the pressure distribution is equal to the specific weight of the fluid γ . 
Therefore, the pressure in mercury increases with depth at a rate 13.6 times faster than that in 
water since 13.6mercury water/γ γ = . 

The fact that the pressure (or known as surcharge) applied to a 
confined fluid increases the pressure throughout the fluid by the 
same amount has important applications, such as in the hydraulic 
lifting of heavy objects: 

 
1 2 1 1

1 2
1 2 2 2

1F F F AP P
A A F A

= ⇒ = ⇒ =
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E. Pressure Measurement and Manometers 

• Piezometer tube 

The simplest manometer is a tube, open at the top, which is attached to a 
vessel or a pipe containing liquid at a pressure (higher than atmospheric) to 
be measured.  This simple device is known as a piezometer tube. As the tube 
is open to the atmosphere the pressure measured is relative to atmospheric 
so is gauge pressure:  1 1Ap hγ=  

This method can only be used for liquids (i.e. not for gases) and only when the liquid height is 
convenient to measure. It must not be too small or too large and pressure changes must be 
detectable.  

• U-tube manometer 

This device consists of a glass tube bent into the shape of a "U", 
and is used to measure some unknown pressure. For example, 
consider a U-tube manometer that is used to measure pressure pA 
in some kind of tank or machine.  

Again, the equation for hydrostatics is used to calculate the 
unknown pressure. Consider the left side and the right side of the 
manometer separately:  

2 1 1 1 1 1

3 2 2

Ap p h p
p h

hγ γ
γ

= + = +
=

 

Since points labeled (2) and (3) in the figure are at the same elevation in the same fluid, they are 
at equivalent pressures, and the two equations above can be equated to give  

2 2 1 1Ap h hγ γ= −  

Finally, note that in many cases (such as with air pressure being measured by a mercury 
manometer), the density of manometer fluid 2 is much greater than that of fluid 1. In such cases, 
the last term on the right is sometimes neglected. 

• Differential manometer 

A differential manometer can be used to measure the 
difference in pressure between two containers or two 
points in the same system. Again, on equating the 
pressures at points labeled (2) and (3), we may get an 
expression for the pressure difference between A and B: 
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2 2 3A B 3 1 1p p h h hγ γ γ−− = +

)
)

 

In the common case when A and B are at the same 
elevation ( and the fluids in the two 

containers are the same (
1 2 3h h h= +

1 3γ γ= , one may show that 
the pressure difference registered by a differential manometer is given by 
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1mp ghρ ρ
ρ

⎛ ⎞
Δ = −⎜ ⎟

⎝ ⎠
 

where mρ  is the density of the manometer fluid, ρ  is the density of the fluid in the system, and 
 is the manometer differential reading. h

• Inclined-tube manometer 

 

 

 

 

 

 

As shown above, the differential reading is proportional to the pressure difference.  If the 
pressure difference is very small, the reading may be too small to be measured with good 
accuracy. To increase the sensitivity of the differential reading, one leg of the manometer can be 
inclined at an angle θ , and the differential reading is measured along the inclined tube. As shown 
above, 2 2 sinh θ= , and hence 

2 2 3 3 1 1sinA Bp p h

2

hγ θ γ γ− = + −  

Obviously, the smaller the angle θ , the more the reading  is magnified. 2

• Multifluid manometer 

The pressure in a pressurized tank is measured by a multifluid manometer, as is shown in the figure.  
Show that the air pressure in the tank is given by 

( )air atm mercury 3 oil 2 water 1P P g h h hρ ρ ρ= + − −

 16

www.jntuworld.com

www.jntuworld.com



F. Pressure Distributions 

• Flat Surfaces 

 

 

 

 

 

 

 

 

• Curved Surfaces 

 

 

 

 

 

 

 

 
When the curved surface is a circular arc (full circle or any part of it), the resultant hydrostatic force 
acting on the surface always passes through the center of the circle.  This is because the elemental 
pressure forces are normal to the surface, and by the well-known geometrical property all lines 
normal to the surface of a circle must pass through the center of the circle. 
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G. Hydrostatic Force on a Plane Surface 

Suppose a submerged plane surface is inclined at an angle θ  to the free surface of a liquid  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation:-  

A  -  area of the plane surface 
O - the line where the plane in which the surface lies intersects the free surface, 
C -   centroid (or centre of area) of the plane surface,  
CP -  center of pressure (point of application of the resultant force on the plane surface),  

RF  -  magnitude of the resultant force on the plane surface (acting normally),  

ch  -  vertical depth of the centroid C,  

Rh  -  vertical depth of the center of pressure CP,  

cy  -  inclined distance from O to C,  

Ry  -  inclined distance from O to CP.  
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Find magnitude of resultant force:  

The resultant force is found by integrating the force due to hydrostatic pressure on an element dA at a 
depth h over the whole surface:  

sinR
A A A

F dF ghdA g ydAρ ρ θ= = =∫ ∫ ∫   

where by the first moment of area 
 c

A

ydA y A=∫  
Hence,  

( )sinR c cF g y A gh Aρ θ ρ= =  

The resultant force on one side of any plane submerged surface in a uniform fluid is therefore equal 
to the pressure at the centroid of the surface times the area of the surface, independent of the shape of 
the plane or the angle θ at which it is slanted.  

Find location of centre of pressure:  

Taking moment about O,  
( ) ( ) ( ) 2 sin sinR R c R c R

A A

F y ydF gy A y y gy dA y A y y dAρ θ ρ θ= ⇒ = ⇒ =∫ ∫
A
∫  

But  
2 2   by parallel axis theoremO c c

A

y dA I I Ay= = +∫  

 
where  IO = second moment of area (or moment of inertia) of the surface about O,  

cI  = second moment of area (or moment of inertia) about an axis through the centroid and 
parallel to the axis through O (depends on the geometry of the surface, see below for the 
values for some common figures).  

Therefore, on substituting,  
( ) 2

2

    

sin             or              

c R c c

c c
R c R c

c c

y A y Ay I

I Iy y h h
y A h A

θ

= +

⇒ = + = +
 

 

Now, the depth of the center of pressure depends on the shape of the surface and the angle of 
inclination, and is always below the depth of the centroid of the plane surface.  

For a flat surface that pierces through the free surface, and hence triangular pressure 

distribution: 21 2 1,     sin ,      sin ,     sin
2 3 2c RA HB h H h H F gH Bθ θ ρ= = = = θ  
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Properties for some Common sectional areas  

GG is an axis passing through the centroid and parallel to the base of the figure.  
   

Shape Dimensions Area 
cI  (moment of 

inertia about 
GG) 

Rectangle 

 

bd 
 

Triangle 

 

  

Circle 

 

 
 

Semi-Circle 
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 Some Additional Notes on Second Moment of Area 
 
For a plane surface of arbitrary shape, we may define the 
nth (n = 0, 1, 2, 3, ...) moment of area about an axis GG by 
the integral 

G

y 

dA 

G

n

A
∫ y dA , 

Then,  
• the zeroth moment of area = total area of the surface, 
• the first moment of area = 0, if GG passes through the 

centroid of the surface, 
• the second moment of area gives the variance of the 

distribution of area about the axis. 
 
 

For example, for a rectangular surface, the second 
moment of area about the axis that passes through 
the centroid is 

dy 

y 

b 

( )

 21

2

/ 2 2

/ 2

/ 23

/ 2
3

   

   
3

   
12

c
A

d

d

d

d

I y dA

y bdy

by

bd

−

−

=

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

∫

∫
 

d 

 
 
 

 
 
 
Parallel Axis Theorem 
 

G G

dA 

y 

O

y'

centroid 

yc 

OIf OO is an axis that is parallel to the axis GG, 
which passes through the centroid of the surface, 
then the second moment of area about OO is equal 
to that about GG plus the square of the distance 
between the two axes times the total area: 
 

( )

( )

2

2

2 2

2 2

2

0

   

   2

   2

   

o
A

c
A

c c
A

c c
A A

c c

cI

I y dA

y y dA

y y y y dA

y A y ydA y d

y A I

′=

= −

= − +

= − +

= +

∫

∫

∫

∫ ∫ A
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H. Hydrostatic Force on Submerged Curved Surfaces  
 
1) Liquid above surface  

Suppose we are required to find the force acting on the upper side of the curved surface AC.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

C 

B 

D E 

FH 

FV 

  F 

 
Horizontal component of force on surface:  

By considering the equilibrium of the liquid mass contained in ABC, we get  

FH = F = resultant force of liquid acting on vertically projected area (BC) and acting through the 
centre of pressure of F.  

Vertical component of force on surface  

By considering the equilibrium of the liquid mass contained in ADEC, we get  

FV = W = weight of liquid vertically above the surface (ADEC) and through the centre of gravity of 
the liquid mass.  
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Resultant force   
2 2

R HF F F= + V , 
 

pointing downward, and making an angle ( )1tan /V HF Fα −=  with the horizontal.  
  

2) Liquid below surface  

Suppose we are required to find the force acting on the underside of the curved surface AB. The 
space above the surface ADCB may be empty or contain other fluid.  

F F    H

 23

 

FV 

Imagine that the space (ADCB) vertically above the curved surface is occupied with the same fluid 
as that below it (disregard what actually is filling that space). Then the surface AB could be removed 
without disrupting the equilibrium of the fluid. That means, the force acting on the underside of the 
surface would be balanced by that acting on the upper side under this imaginary condition. Therefore 
we may use the same arguments as in the preceding case:  

Horizontal component of force on surface:  

FH = F = resultant force of liquid acting on vertically projected area (AB) and acting through the 
centre of pressure of F.  

Vertical component of force on surface  

FV = W = weight of imaginary liquid (i.e., same liquid as on the other side of the surface) vertically 
above the surface (ADCB) and through the centre of gravity of the liquid mass.  

Resultant force   

2 2
R H VF F F= + , 

which points upward, and makes an angle ( )1tan /V HF Fα −=  with the horizontal.  
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I. Solutions to Problems Selected from the Textbook 
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(IV) FLUIDS IN MOTION 

Fluid motions manifest themselves in many different ways. Some can be described very easily, while 
others require a thorough understanding of physical laws. In engineering applications, it is important 
to describe the fluid motions as simply as can be justified. It is the engineer's responsibility to know 
which simplifying assumptions (e.g., one-dimensional, steady-state, inviscid, incompressible, etc) 
can be made.  

A. Classification of Fluid Flows  

1) Uniform flow; steady flow  

If we look at a fluid flowing under normal circumstances - a river for example - the conditions (e.g. 
velocity, pressure) at one point will vary from those at another point, then we have non-uniform flow. 
If the conditions at one point vary as time passes, then we have unsteady flow.  

Under some circumstances the flow will not be as changeable as this. The following terms describe 
the states which are used to classify fluid flow:  

Uniform flow: If the flow velocity is the same magnitude and direction at every point in the flow it is 
said to be uniform. That is, the flow conditions DO NOT change with position. 

Non-uniform: If at a given instant, the velocity is not the same at every point the flow is non-uniform.  

Steady: A steady flow is one in which the conditions (velocity, pressure and cross-section) may 
differ from point to point but DO NOT change with time.  

Unsteady: If at any point in the fluid, the conditions change with time, the flow is described as 
unsteady. 

Combining the above we can classify any flow in to one of four types:  

• Steady uniform flow. Conditions do not change with position in the stream or with time. An 
example is the flow of water in a pipe of constant diameter at constant velocity. 

• Steady non-uniform flow. Conditions change from point to point in the stream but do not 
change with time. An example is flow in a tapering pipe with constant velocity at the inlet - 
velocity will change as you move along the length of the pipe toward the exit. 

• Unsteady uniform flow. At a given instant in time the conditions at every point are the same, 
but will change with time. An example is a pipe of constant diameter connected to a pump 
pumping at a constant rate which is then switched off. 

• Unsteady non-uniform flow. Every condition of the flow may change from point to point and 
with time at every point. An example is surface waves in an open channel. 

You may imagine that one class is more complex than another – steady uniform flow is by far the 
most simple of the four. 
 

2) One-, two-, and three-dimensional flows  

A fluid flow is in general a three-dimensional, spatial and time dependent phenomenon:- 

 ( , ) ( , ) ( , ) ( , )r t u r t v r t w r t= = + +V V i j k  

 39

www.jntuworld.com

www.jntuworld.com



 40

)where  is the position vector, ( , ,r x y z= ( ), ,i j k  are the unit vectors in the Cartesian coordinates, 

and (  are the velocity components in these directions.  As defined above, the flow will be 

uniform if the velocity components are independent of spatial position 
), ,u v w

( ), ,x y z , and will be steady if 
the velocity components are independent of time t.  

Accordingly, a fluid flow is called three-dimensional if all 
three velocity components are equally important.  
Intrinsically, a three-dimensional flow problem will have the 
most complex characters and is the most difficult to solve.  

Fortunately, in many engineering applications, the flow can 
be considered as two-dimensional.  In such a situation, one of 
the velocity components (say, w) is either identically zero or 
much smaller than the other two components, and the flow conditions vary essentially only in two 
directions (say, x and y).  Hence, the velocity is reduced to u v= +V i j  where (  are functions of )

)
,u v

( ,x y  (and possibly t).  This reduction in the velocity component and spatial dimension will greatly 
simplify the analysis.  Examples of two-dimensional flow typically involve flow past a long structure 
(with the axis of structure being perpendicular to the flow): 

y 

x  

Two-dimensional flow over a long weir. 

 

 
Flow past a car antenna is approximately two-dimensional, except near the top and bottom of the 

antenna. 
 
It is sometimes possible to further simplify a flow analysis by assuming that two of the velocity 
components are negligible, leaving the velocity field to be approximated as a one-dimensional flow 
field. That is, V where the velocity u may vary across the section of flow.  Typical examples are 
fully-developed flows in long uniform pipes and open-channels.  One-dimensional flow problems 
will require only elementary analysis, and can be solved analytically in most cases.  

u= i

 

 
 

One-dimensional ideal flow along a pipe, where the velocity is uniform across the pipe section. 
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3) Viscous and inviscid flows  

An inviscid flow is one in which viscous effects do not significantly influence the flow and are thus 
neglected. In a viscous flow the effects of viscosity are important and cannot be ignored.  

To model an inviscid flow analytically, we can simply let the viscosity be zero; this will obviously 
make all viscous effects zero. It is more difficult to create an inviscid flow experimentally, because 
all fluids of interest (such as water and air) have viscosity.  The question then becomes: are there 
flows of interest in which the viscous effects are negligibly small? The answer is "yes, if the shear 
stresses in the flow are small and act over such small areas that they do not significantly affect the 
flow field."  The statement is very general, of course, and it will take considerable analysis to justify 
the inviscid flow assumption.  

Based on experience, it has been found that the primary class of flows, which can be modeled as 
inviscid flows, is external flows, that is, flows of an unbounded fluid which exist exterior to a body. 
Inviscid flows are of primary importance in flows around streamlined bodies, such as flow around an 
airfoil (see the sketch below) or a hydrofoil. Any viscous effects that may exist are confined to a thin 
layer, called a boundary layer, which is attached to the boundary, such as that shown in the figure; 
the velocity in a boundary layer is always zero at a fixed wall, a result of viscosity.  For many flow 
situations, boundary layers are so thin that they can simply be ignored when studying the gross 
features of a flow around a streamlined body.  For example, the inviscid flow solution provides an 
excellent prediction to the flow around the airfoil, except possibly near the trailing edge where flow 
separation may occur.  However the boundary layers must be accounted for when the skin friction 
force on the body is to be calculated. 

 

 

 

 

 

 External flow around an airfoil.    Viscous flow in a boundary layer. 

Viscous flows include the broad class of internal flows, such as flows in pipes, hydraulic machines, 
and conduits and in open channels. In such flows viscous effects cause substantial "losses" and 
account for the huge amounts of energy that must be used to transport oil and gas in pipelines. The 
no-slip condition resulting in zero velocity at the wall, and the resulting shear stresses, lead directly 
to these losses.  

 

Viscous internal flow: (a) in a pipe; (b) between two parallel plates. 
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4) Incompressible and compressible flows  

All fluids are compressible - even water - their density will change as pressure changes. Under 
steady conditions, and provided that the changes in pressure are small, it is usually possible to 
simplify analysis of the flow by assuming it is incompressible and has constant density. As you will 
appreciate, liquids are quite difficult to compress – so under most steady conditions they are treated 
as incompressible. In some unsteady conditions very high pressure differences can occur and it is 
necessary to take these into account - even for liquids.  Gases, on the contrary, are very easily 
compressed, it is essential in cases of high-speed flow to treat these as compressible, taking changes 
in pressure into account.  

More formally an incompressible flow is defined as one in which the density of each fluid particle 
remains relatively constant as it moves through the flow field.  This however does not demand that 
the density is everywhere constant.  If the density is spatially constant, then obviously the flow is 
incompressible, but that would be a more restrictive condition.  Atmospheric flow, in which ρ = ρ(z), 
where z is vertical, and flows that involve adjacent layers of fresh and salt water, as happens when 
rivers enter the ocean, are examples of incompressible flows in which the density varies.  

Low-speed gas flows, such as the atmospheric flow referred to above, are also considered to be 
incompressible flows. The Mach number is defined as  

VM
c

=  

where V is the gas speed and c is the speed of sound. The Mach number is useful in deciding whether 
a particular gas flow can be studied as an incompressible flow. If M < 0.3, density variations are at 
most 3% and the flow is assumed to be incompressible; for standard air this corresponds to a velocity 
below about 100 m/s.  If M > 0.3, the density variations influence the flow and compressibility 
effects should be accounted for.  Compressible flows include the aerodynamics of high-speed aircraft, 
airflow through jet engines, steam flow through the turbine in a power plant, airflow in a compressor, 
and the flow of the air-gas mixture in an internal combustion engine.  

 

5) Laminar and turbulent flows  

 

In the experiment shown above, a dye is injected into the middle of pipe flow of water.  The dye 
streaks will vary, as shown in (b), depending on the flow rate in the pipe.  The top situation is called 
laminar flow, and the lower is turbulent flow, occurring when the flow is sufficiently slow and fast, 
respectively.  In laminar flow the motion of the fluid particles is very orderly with all particles 
moving in straight lines parallel to the pipe wall.  There is essentially no mixing of neighboring fluid 
particles.  In sharp contrast, mixing is very significant in turbulent flow, in which fluid particles 
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move haphazardly in all directions.  It is therefore impossible to trace motion of individual particles 
in turbulent flow.  The flow may be characterized by an unsteady fluctuating (i.e., random and 3-D) 
velocity components superimposed on a temporal steady mean (i.e., along the pipe) velocity. 

 

Time dependence of fluid velocity at a point. 

Whether the flow is laminar or not depends on the Reynolds number, 

Re     ensity,  viscosity,  section-mean velocity,  diameter of pipeVd d V dρ ρ μ
μ

≡ = = = =  

and it has been demonstrated experimentally that 

  
2,000 laminar flow

Re between 2,000 and 4,000   transitional flow
4,000 turbulent flow

<⎧
⎪
⎨
⎪ >⎩

 

B. Flow Visualization 

There are four different types of flow lines that may help to describe a flow field. 

1) Streamline 
A streamline is a line that is everywhere tangent to the velocity vector at a given instant of time. A 
streamline is hence an instantaneous pattern. 
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Equation for a streamline 

 
dr dx dy dz

u v wV
= = =  

 Streamlines are very useful to help visualize the flow pattern.  Another example of the streamlines 
around a cross-section of an airfoil has been shown earlier on page 41.   

When fluid is flowing past a solid boundary, e.g., the surface of an aerofoil or the wall of a pipe, 
fluid obviously does not flow into or out of the surface. So very close to a boundary wall the flow 
direction must be parallel to the boundary.  In fact, the boundary wall itself is also a streamline by 
definition. 

It is also important to recognize that the position of streamlines can change with time - this is the 
case in unsteady flow. In steady flow, the streamlines do not change.  

Some further remarks about streamlines  

• Because the fluid is moving in the same direction as the streamlines, fluid cannot cross a 
streamline. 

• Streamlines cannot cross each other.  If they were to cross, this would indicate two different 
velocities at the same point.  This is not physically possible. 

• The above point implies that any particles of fluid starting on one streamline will stay on that 
same streamline throughout the fluid. 

• The mathematical expression of a streamline can also be obtained from 

0V dr× =  

where V  is the fluid velocity vector and dr  is a tangential vector along the streamline. The 
above cross product is zero since the two vectors are in the same direction. 

• A useful technique in fluid flow analysis is to consider only a part of the total fluid in 
isolation from the rest. This can be done by imagining a tubular surface formed by 
streamlines along which the fluid flows. This tubular surface is known as a streamtube, 
which is a tube whose walls are streamlines. Since the velocity is tangent to a streamline, no 
fluid can cross the walls of a streamtube.  

 

 

 

 

 

 

 

 

2) Streakline 

A streakline is an instantaneous line whose points are occupied by particles which have earlier 
passed through a prescribed point in space.  A streakline is hence an integrated pattern.  A streakline 
can be formed by injecting dye continuously into the fluid at a fixed point in space. As time marches 
on, the streakline gets longer and longer, and represents an integrated history of the dye streak. 
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3) Pathline 

A pathline is the actual path traversed by a given (marked) fluid particle.  A pathline is hence also an 
integrated pattern.  A pathline represents an integrated history of where a fluid particle has been. 

 

 

4) Timeline 

A timeline is a set of fluid particles that form a line segment at a given instant of time. A timeline is 
also an integrated pattern.  For example, consider simple shear flow between parallel plates. A 
timeline follows the location of a line of fluid particles, which can be a straight line initially. 
Timelines of later time are composed of the same particles, and will continually distort with time, as 
shown in the sketch. Notice the no-slip condition in action. The top and the bottom of the timelines 
stay in the same location at all times, because the boundaries are not moving. 

 

Note: For steady flow, streamlines, streaklines, and pathlines are all identical. However, for unsteady 
flow, these three flow patterns can be quite different. In a steady flow, all particles passing a given 
point will continue to trace out the same path since nothing changes with time; hence the pathlines 
and streaklines coincide. In addition, the velocity vector of a particle at a given point will be tangent 
to the line that the particle is moving along; thus the line is also a streamline. 
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C. Elementary Equations of Motion 

In analyzing fluid motion, we might take one of two approaches: (1) seeking to describe the detailed 
flow pattern at every point (x,y,z) in the field, or (2) working with a finite region, making a balance 
of flow in versus flow out, and determining gross flow effects such as the force, or torque on a body, 
or the total energy exchange. The second approach is the "control-volume" method and is the 
subject of this section. The first approach is the "differential" approach and will be covered in a 
higher level fluid mechanics course.  

We shall derive the three basic control-volume relations in fluid mechanics:  

• the principle of conservation of mass, from which the continuity equation is developed; 
• the principle of conservation of energy, from which the energy equation is derived; 
• the principle of conservation of linear momentum, from which equations evaluating dynamic 

forces exerted by flowing fluids may be established. 

1) Control volume 

• A control volume is a finite region, chosen carefully by 
the analyst for a particular problem, with open boundaries 
through which mass, momentum, and energy are allowed 
to cross. The analyst makes a budget, or balance, between 
the incoming and outgoing fluid and the resultant changes 
within the control volume. Therefore one can calculate 
the gross properties (net force, total power output, total 
heat transfer, etc.) with this method. 

• With this method, however, we do not care about the details inside the control volume (In 
other words we can treat the control volume as a "black box.") 

• For the sake of the present analysis, let us consider a control volume that can be a tank, 
reservoir or a compartment inside a system, and consists of some definite one-dimensional 
inlets and outlets, like the one shown below: 

Let us denote for each of the inlets and outlets:- 

V = velocity of fluid in a stream 
A = sectional area of a stream 
p = pressure of the fluid in a stream 
ρ = density of the fluid 
 
Then, the volume flow rate, or discharge (volume 
of flow crossing a section per unit time) is given by 

 Q VA=  

Similarly, the mass flow rate (mass of flow crossing a section per unit time) is given by 
 

m VA Qρ ρ= =  
 

Then, the momentum flux, defined as the momentum of flow crossing a section per unit time, 
is given by . mV

• For simplicity, we shall from here on consider steady and incompressible flows only. 
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2) Continuity equation 

By steadiness, the total mass of fluid contained in the control volume must be invariant with time.  
Therefore there must be an exact balance between the total rate of flow into the control volume and 
that out of the control volume: 

Total Mass Outflow = Total Mass Inflow 

which translates into the following mathematical relation 

( ) ( )in out
1 1

M N

i i i i i i
i i

V A V Aρ ρ
= =

=∑ ∑  

where M is the number of inlets, and N is the number of outlets. If the density of fluid is constant, 
conservation of mass also implies conservation of volume. Hence for a control volume with only 
one-dimensional inlets and outlets,  
 

( ) ( ) ( ) ( )in out in out
1 1 1 1

                  or                  
M N M N

i i i i i i
i i i i

V A V A Q Q
= = = =

= =∑ ∑ ∑ ∑  

 

 

(1) 

(2) 

For example, in a pipe of varying cross sectional area, the continuity equation requires that, if the 
density is constant, between any two sections 1 and 2 along the pipe  

1 1 2 2 constantQ V A V A= = =  
 

 
Another example involving two inlets and one outlet is shown below. 
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3) Bernoulli and energy equations 

Let us first derive the Bernoulli equation, which is one of the most well-known equations of motion 
in fluid mechanics, and yet is often misused.  It is thus important to understand its limitations, and 
the assumptions made in the derivation.  

The assumptions can be summarized as follows:  
• Inviscid flow (ideal fluid, frictionless) 
• Steady flow (unsteady Bernoulli equation will not be discussed in this course) 
• Along a streamline 
• Constant density (incompressible flow) 
• No shaft work or heat transfer 

   

The Bernoulli equation is based on the application of Newton's law of motion to a fluid element on a 
streamline.  

 

Let us consider the motion of a fluid element of length ds and cross-sectional area dA moving at a 
local speed V, and x is a horizontal axis and z is pointing vertically upward. The forces acting on the 
element are the pressure forces pdA  and ( )p dp dA+ , and the weight w as shown. Summing forces 
in the direction of motion, the s-direction, there results  

( )  cos    spdA p dp dA g ds dA ds dA aρ θ ρ− + − =  
 

where as is the acceleration of the element in the s-direction. Since the flow is steady, only 
convective acceleration exists  

s
dVa V
ds

=  

Also, it is easy to see that cos /dz dsθ = . On substituting and dividing the equation by ρgdA, we can 
obtain Euler's equation:  

0dp Vdz dV
g gρ

+ + =  

Note that Euler's equation is valid also for compressible flow.  

 48

www.jntuworld.com

www.jntuworld.com



Now if we further assume that the flow is incompressible so that the density is constant, we may 
integrate Euler's equation to get  

2

constant
2

p Vz
g gρ

+ + =

 

This is the Bernoulli equation, consisting of three energy heads  

p
gρ

 Pressure head, which is the work done to move fluid against pressure 

z Elevation head, representing the potential energy; z can be measured above any 
reference datum  

2

2
V

g
 Velocity head, representing the kinetic energy 

• A head corresponds to energy per unit weight of flow and has dimensions of length.  

• Piezometric head = pressure head + elevation head, which is the level registered by a 
piezometer connected to that point in a pipeline. 

• Total head = piezometric head + velocity head. 

It follows that for ideal steady flow the total energy head is constant along a streamline, but the 
constant may differ in different streamlines. (For the particular case of irrotational flow, the 
Bernoulli constant is universal throughout the entire flow field.)  

Applying the Bernoulli equation to any two points on the same streamline, we have  

2 2
1 1 2

1 22 2
2p V p Vz z

g g gρ ρ
+ + = + +

g
 

 
There is similarity in form between the Bernoulli equation and the energy equation that can be 
derived directly from the first law of thermodynamics.  Without getting into the derivation, the 
energy equation for a control volume with only one inlet (section 1) and one outlet (section 2) can be 
written as 

2 2
1 1 2 2

1 22 2 s L
p V p Vz z
g g g gρ ρ

+ + = + + + +W h  

 
where sW  is the shaft work, or the rate of work transmitted by rotation shafts (such as that of a pump 
or turbine; positive if output to a turbine, negative if input by a pump) that are cut by the control 
surface, and h , called the head loss, is the sum of energy losses required to overcome viscous 
forces in the fluid (dissipated in the form of thermal energy) and the heat transfer rate.  In the 
absence of these two terms, the energy equation is identical to the Bernoulli equation.  We must 
remember however that the Bernoulli equation is a momentum equation applicable to a streamline 
and the energy equation above is applied between two sections of a flow. The energy equation is 
more general than the Bernoulli equation, because it allows for (1) friction, (2) heat transfer, (3) shaft 
work, and (4) viscous work (another frictional effect).  

L
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4) Momentum equation 

On applying Newton's second law of motion to the control volume shown on page 46, we get 

 50

( ) ( )

( ) ( )
out in

1 1

out in
1 1

       

M N

i i i i i i i i
i i

M N

i i i i
i i

F V AV V AV

mV mV

ρ ρ
= =

= =

= −

= −

∑ ∑ ∑

∑ ∑
 

Note that this equation  
• follows from the principle of conservation of linear momentum: resultant force on the control 

volume is balanced by the net rate of momentum flux (i.e., mV ) out through the control 
surface.  

• is a vector equation. Components of the forces and the velocities need to be considered.  
• can be used to calculate the magnitude and direction of the impact force exerted on the 

control volume by its solid boundary.  

Further consider a steady-flow situation in which there is only one entrance (section 1) and one exit 
(section 2) across which uniform profiles can be assumed (see the figure on page 47). By continuity  

1 2 mass flow ratem m Qρ= = =  

The momentum equation now reduces to ( )2 1F Q V Vρ= −∑  

or in terms of their components in ( ), ,x y z  coordinates  

( ) ( )

( ) ( )
( ) ( )

2 1

2 1

2 1

x x

y y

z z

F Q V V

F Q V V

F Q V V

ρ

ρ

ρ

x

y

z

⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦

∑
∑
∑

 

where ( )1xV  is the x-component of the velocity at section 1, and so on. 

On applying the momentum equation, one needs to pay attention to the following two aspects. 

Forces  
F∑  represents all forces acting on the control volume, including  
• Surface forces resulting from the surrounding acting on the control volume:  

o Impact force, which is usually the unknown to be found, on the control surface in 
contact with a solid boundary  

o Pressure force on the control surface which cuts a flow inlet or exit. Remember that 
the pressure force is always a compressive force.  

• Body force that results from gravity.  

Sign of the vector variables 
When plugging into the equations, one should be careful about the sign of the force and velocity 
components. These quantities should carry a positive (negative) sign when they are in the same 
(opposite) sense as that of the corresponding coordinate. 
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D. Applications of the Bernoulli and Momentum Equations 

1) Pitot tube 

If a stream of uniform velocity flows into a blunt body, the streamlines take a pattern similar to this:  

 
 
 

 
 

Streamlines around blunt bodies 

Note how some move to the left and some to the right. But one, in the centre, goes to the tip of the 
blunt body and stops. It stops because at this point the velocity is zero - the fluid does not move at 
this one point. This point is known as the stagnation point.   

From the Bernoulli equation we can calculate the pressure at this point. Apply Bernoulli equation 
along the central streamline from a point upstream where the velocity is  and the pressure 1V 1p  to 
the stagnation point of the blunt body where the velocity is zero, 2 0V = . Also .  1 2z z=

1
1

p z
gρ

+
2

1 2
22

V p z
g gρ

+ = +
2

2

2
V

g
+ 2

2 1
1           
2 1p p Vρ⇒ = +  

This increase in pressure, which brings the fluid to rest, is called the dynamic pressure.  

Dynamic pressure =  2
1 / 2Vρ

or converting this to head (using /h p gρ= ) 
Dynamic head =  2

1 / 2V g

The total pressure is know as the stagnation pressure (or total pressure)  

Stagnation pressure =  2
1 1 / 2p Vρ+

or in terms of head, 
Stagnation head = 2

1 1/ / 2p g V gρ +  
  

The blunt body stopping the fluid does not have to be a solid. It could be a static column of fluid. 
Two piezometers, one as normal and one as a Pitot tube within the pipe can be used in an 
arrangement shown below to measure velocity of flow.  
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A Piezometer and a Pitot tube. 

Using the above theory, we have the equation for 2p ,  

( )2 2
2 1 1

1 1       2
2 2

p p V gH gh V V g H hρ ρ ρ ρ= + ⇒ = + ⇒ = −  

which is an expression for velocity obtained from two pressure measurements and the application of 
the Bernoulli equation.   This equation is for ideal flow only.  To account for real fluid effects, the 
equation can be modified into ( )2vV C g H h= − , where  is the coefficient of velocity to be 
determined empirically. 

vC
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V 

A Pitot tube used to measure velocity of flow in a channel. 
 
 

 
 

A Pitot tube underneath the wing of an aircraft. 
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2) Pitot static tube  

The necessity of one piezometer and one Pitot tube and 
thus two readings make this arrangement a little 
awkward. Connecting the two tubes to a manometer 
would simplify things but there are still two tubes. The 
Pitot static tube combines the tubes, and they can then 
be easily connected to a differential manometer. A 
Pitot static tube is shown here. The holes on the side of 
the tube connect to one side of a manometer and 
register the static head, (h1), while the central hole is 
connected to the other side of the manometer to 
register, as before, the stagnation head (h2).  The 
difference of the two heads, being the dynamic head, is 
now measured directly by the differential manometer. 

1

1

2

A B
h

X
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Close-up of a Pitot static tube. 
 
 
 
 
 
 
Consider the pressures on the level of the centre line of the Pitot static tube and using the theory of 
the manometer,  

 
( )

( )

2

1

2 1

                        
                        
But                  
or                    

A

B m

A B

man

p p gX
p p g X h g
p p
p p gh

h
ρ
ρ ρ

ρ ρ

= +

= + − +

=

= + −

 

We also know that . Hence   2
2 1 / 2p p Vρ= +

( )
ideal actual ideal

2
     and      man

v

gh
V V

ρ ρ
ρ

−
= = C V  

The Pitot/Pitot-static tubes give velocities at points in the flow. It does not give the overall discharge 
of the stream, which is often what is wanted. It also has the drawback that it is liable to block easily, 
particularly if there is significant debris in the flow.  
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3) Orifice and vena contracta 

We are to consider the flow from a tank through a hole in the side close to the base. The general 
arrangement and a close-up of the hole and streamlines are shown in the figure below  

(1) 

(3)
h 

(2) (3)

vena contracta 

 

Tank and streamlines of flow out of a sharp-edged orifice 

The shape of the holes edges are as they are (sharp) to minimize frictional losses by minimizing the 
contact between the hole and the liquid - the only contact is the very edge.  

Looking at the streamlines you can see how they contract after the orifice to a minimum cross 
section where they all become parallel, at this point, the velocity and pressure are uniform across the 
jet. This convergence is called the vena contracta (from the Latin 'contracted vein'). It is necessary 
to know the amount of contraction to allow us to calculate the flow.  

 

 

 

 

 

 

 

We can predict the velocity at the orifice using the Bernoulli equation. Apply it along the streamline 
joining point 1 on the surface to point 3 at the centre of the vena contracta.  

At the surface velocity is negligible (V1 = 0) and the pressure atmospheric (p1 = 0). Outside the 
orifice the jet is open to the air so again the pressure is atmospheric (p3 = 0). If we take the datum 
line through the orifice then z1 = h and z3 =0, leaving  

2
3

3 ideal                   2
2
Vh V V

g
= ⇒ = = gh  
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This is the theoretical value of velocity. Unfortunately it will be an over-estimate of the real velocity 
because friction losses have not been taken into account. To incorporate friction we use the 
coefficient of velocity to correct the theoretical velocity,  

actual idealvV C V=  

Each orifice has its own coefficient of velocity Cv, which usually lies in the range (0.97 - 0.99).  

To calculate the discharge through the orifice we multiply the area of the jet by the velocity. The 
actual area of the jet is the area of the vena contracta not the area of the orifice. We obtain this area 
by using a coefficient of contraction Cc for the orifice:  

actual orificecA C A=  

So the discharge through the orifice is given by  

actual actual actual orifice ideal orifice

        

  2c v d

Q AV

Q A V C C A V C A

=

⇒ = = = gh
 

where Cd is the coefficient of discharge, and Cd = Cc Cv.  

 

Typical flow patterns and contraction coefficients for various round exit configurations 

 

4) Venturi, nozzle and orifice meters 

The Venturi-, nozzle- and orifice-meters are three similar types of devices for measuring discharge in 
a pipe. The Venturi meter consists of a rapidly converging section, which increases the velocity of 
flow and hence reduces the pressure. It then returns to the original dimensions of the pipe by a gently 
diverging 'diffuser' section. By measuring the pressure differences the discharge can be calculated. 
This is a particularly accurate method of flow measurement as energy losses are very small.  
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The nozzle meter or flow nozzle is essentially a Venturi meter with the convergent part replaced by a 
nozzle installed inside the pipe and the divergent part omitted. The orifice meter is a still simpler and 
cheaper arrangement by which a sharp-edged orifice is fitted concentrically in the pipe.  

 

Schematic arrangements for three types of devices measuring flow-rate in a pipe 

 

 

A Venturi meter in laboratory. 

The working formulae are similar for the three devices.  Let us for illustration show the one for the 
Venturi meter. Applying the Bernoulli equation along the streamline from point 1 to point 2 in the 
narrow throat of the Venturi meter, we have  

2 2
1 1 2

1 22 2
2p V p Vz z

g g gρ ρ
+ + = + +

g
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By using the continuity equation we can eliminate the velocity V2, 1 1 2 2 2 1 1 2 or /Q AV A V V AV A= = = . 

Substituting this into and rearranging the Bernoulli equation we get  

( )

1 2
1 2

1 2
1 2

2

/ 1

p pg z
g

V
A A
ρ

z⎡ ⎤−
+ −⎢ ⎥

⎣ ⎦=
−

 

To get the theoretical discharge this is multiplied by the area. To get the actual discharge taking in to 
account the losses due to friction, we include a coefficient of discharge  

( )

1 2
1 2

ideal 1 1 actual ideal 1 1 1 2
1 2

2
;         

/ 1d d d

p pg z
g

Q AV Q C Q C AV C A
A A
ρ

z⎡ ⎤−
+ −⎢ ⎥

⎣ ⎦= = = =
−

 

Suppose a differential manometer is connected between (1) and (2).  Then the terms inside the square 
brackets can be related to the manometer reading  as given by h

( ) 1 2
1 1 2 2 1 2   man

man
p pp gz p gh g z h z z h

g
ρρ ρ ρ

ρ ρ
⎛ ⎞−

+ = + + − ⇒ + − = −⎜ ⎟
⎝ ⎠

1  

Thus the discharge can be expressed in terms of the manometer reading:  

( )actual 1 2
1 2

2 1

/ 1

man

d

gh
Q C A

A A

ρ
ρ

⎡ ⎤
−⎢ ⎥

⎣ ⎦=
−

 

Notice how this expression does not include any terms for the elevation or orientation (z1 or z2) of the 
Venturi meter. This means that the meter can be at any convenient angle to function.  

The purpose of the diffuser in a Venturi meter is to assure gradual and steady deceleration after the 
throat.  This is designed to ensure that the pressure rises again to something near to the original value 
before the Venturi meter. The angle of the diffuser is usually between 6 and 8 degrees. Wider than 
this and the flow might separate from the walls resulting in increased friction and energy and 
pressure loss.  If the angle is less than this the meter becomes very long and pressure losses again 
become significant.  The efficiency of the diffuser of increasing pressure back to the original is rarely 
greater than 80%.  

It should be noted that in deriving a formula for a discharge measuring device (Venturi, nozzle, 
orifice meters, etc), assumptions are taken to simplify the situations so that the Bernoulli equation 
can be applied. For example, there is no energy loss and the flow is steady. In this way, exact 
analytical solutions can be obtained, but as the assumptions are not exactly true, these solutions fail 
to account for the real situations.  Empirical coefficients such as Cv, Cd are therefore introduced to 
allow for these errors. The final formula will be an analytical solution modified by an empirical 
coefficient. On the other hand, the value of the empirical coefficient can also reflect the justification 
of using the ideal approach. Cd for orifice meter is far below unity (0.6-0.65), while Cd for nozzles 
and venturi meters are close to one (approximately 0.98). It shows that energy loss is rather 
substantial in an orifice meter, as is expected from its abrupt configuration.  
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5) Force on a pipe nozzle  

Let us from here on consider several applications of the momentum 
equations.  A simple application is to find the force on the nozzle at 
the outlet of a pipe. Because the fluid is contracted at the nozzle 
forces are induced in the nozzle. Anything holding the nozzle (e.g. 
a fireman) must be strong enough to withstand these forces.  

Steps in analysis:  
1. Draw a control volume 
2. Decide on a coordinate-axis system 
3. Calculate the total force, given by the rate of change of momentum across the control volume 
4. Calculate the pressure force  pF
5. Calculate the body force BF  
6. Calculate the resultant reaction force RF  
 

1 & 2. Control volume and co-ordinate axis are shown in the figure below.  

 

A2,   V2 

FR

A1 
V1 
p1 

  Notice how this is a one-dimensional system which greatly simplifies matters.  

3. Calculate the total force  

( )2 1F Q V Vρ= −∑  

By continuity, , so  1 1 2 2Q AV A V= =

2

2 1

1 1F Q
A A

ρ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑  

4. Calculate the pressure force (red arrows) 

1 1 2 2 pressure force at 1  pressure force at 2pF p= − = A p A−  

We use the Bernoulli equation to calculate the pressure  

2 2
1 1 2

1 22 2
2p V p Vz z

g g gρ ρ
+ + = + +

g
 

Since the nozzle is horizontal, z1 = z2, and the pressure outside is atmospheric, p2 = 0, and with 
continuity the Bernoulli equation gives  
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2

1 2 2
2 1

2
1

2 2
2 1

1 1     
2

1 1
2p

Qp
A A

Q AF
A A

ρ

ρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

⇒ = −⎜ ⎟
⎝ ⎠

 

5. Calculate the body force  

The only body force is the weight due to gravity in the y-direction - but we need not consider this as 
the only forces we are considering are in the x-direction.  

6. Calculate the reaction force that the nozzle acts on the fluid (green arrow) 

Since the indicated direction of the reaction force is opposite to x-axis, a negative sign is included 

R p BF F F F= − + +∑ 2

2 1

22 2
21 1

2 2
2 1 2 1 1 2

1 1

1 1 1 1 1
2 2R

Q
A A

Q A AQF Q
A A A A A A

ρ

ρ ρρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛
⇒ = − − − = −⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎠

 

So the fireman must be able to resist the force of . RF

6) Force due to a two-dimensional jet hitting an inclined plane  

Consider a two-dimensional (i.e., very wide in the spanwise direction) jet hitting a flat plate at an 
angle θ.  For simplicity gravity and friction are neglected from this analysis. 

We want to find the reaction force normal to the plate so we choose the axis system such that it is 
normal to the plane.  

 

 

   

 

 

 

 

 A3,   V3 

A1,   V1 

A2,   V2 

Fn 

 

A two-dimensional jet hitting an inclined plate. 
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We do not know the velocities of flow in each direction. To find these we can apply the Bernoulli 
equation  

22 2
3 31 1 2 2

1 22 2 3 2
p Vp V p Vz z z

g g g g gρ ρ ρ
+ + = + + = + +

g

3

 

The height differences are negligible i.e., 1 2z z z= = , and the pressures are all atmospheric = 0. So  

1 2 3V V V V= = =  
By continuity  

1 2 3 1 1 2 2 3

1 2 3

       
                            
Q Q Q V A V A V A

A A A
= + ⇒ = +

⇒ = +
3  

Using this we can calculate the forces in the same way as before.  

1. Calculate the total force in the x-direction.  

Remember that the co-ordinate system is normal to the plate.  

( )2 2 3 3 1 1x x xF Q V Q V QVρ= + − x⎡ ⎤⎣ ⎦∑  

but  as the jets are parallel to the plate with no component in the x-direction, and 2 3 0x xV V= =
cosV V1x θ= , so  

1 cosxF QVρ θ= −∑  

2. Calculate the pressure force  

All zero as the pressure is everywhere atmospheric.  

3.Calculate the body force  

As the control volume is small, hence the weight of fluid is small, we can ignore the body forces.  

4. Calculate the resultant reaction force  

x n pF F F= − + BF+ 1 1cos               cosnQV F QVρ θ ρ θ= − ⇒ =∑  

which is the force exerted on the fluid by the plate.  

We can further find out how much discharge goes along in each direction on the plate. Along the 
plate, in the y-direction, the total force must be zero, 0yF =∑ , since friction is ignored.  

Also in the y-direction: 1 2 3sin ,  ,  ,y y yV V V V V Vθ= = = −  so  

( ) [ ] [ ]2
2 2 3 3 1 1 2 3 1 2 3 1sin siny y y yF Q V Q V QV V Q Q Q V A A Aρ ρ θ ρ⎡ ⎤= + − = − − = − −⎣ ⎦∑ θ  

Setting this to zero, we get 
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in 2 3 10 sA A A θ= − −  

and as found earlier we have A1 = A2 + A3, so on solving 

2 3
1 sin
1 sin

A A θ
θ

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
 

by which we readily obtain that  ( ) ( )32 1 11 sin ,       1 1 sin
2 2

QQ
Q Q1 1

α θ α= = + = − = − θ  

So we know how the discharge is divided between the two jets leaving the plate.  

7) Flow past a pipe bend 

 

 

Consider the pipe bend shown above. We may first draw a free body diagram for the control volume 
with the forces:  
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Paying due regard to the positive x and y directions, we may write the summation of forces in these 
two directions:  

 1 1 2 2

2 2

cos

sin
x x

y y

F p A p A F

F F p A W

θ

θ

= − −

= − −
∑
∑

 

Relating these components to the net change of momentum flux through the inlet and exit surfaces  

x-Direction  
( )1 1 2 2 2 1cos cosxp A p A F Q V Vθ ρ θ− − = −  

   
y-Direction  

( )2 2 2sin sin 0yF p A W Q Vθ ρ θ− − = −  
 

From these two equations and using the continuity equation and the Bernoulli equation, we may 
calculate the two force components.  The magnitude and direction of the resultant force from the 
bend on the fluid are  

 
( )

2 2

1tan /

x y

y x

F F F

F Fφ −

= +

=
 

As a reaction, the impact force on the pipe bend is equal in magnitude, but opposite in direction to 
the one on the fluid.
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E. Solution of Problems Selected from the Textbook 
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