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Topics Covered:

1. Properties of fluids

e Definition of a fluid
Density
Viscosity
Surface tension
Compressibility

2. Hydrostatics
e Hydrostatic pressure distribution
e Pressure measuring devices (manometers)
e Hydrostatic force acting on submerged plane and curved surfaces
e Equilibrium of a hydraulic structure under hydrostatic and applied forces

3. Fluid in Motion
e Continuity equation (conservation of mass)
e Bernoulli’s equation (conservation of mechanical energy)
e Momentum equation (force and rate of change of momentum)
e Applications
Velocity measurement with a Pitot tube
Jet issuing from an orifice
Flow-rate measurement with a Venturi-meter
Impact force by a jet on a flat plate
Impact force on a pipe bend
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(I) INTRODUCTION

What is Fluid Mechanics?

First, what is a fluid?

Three common states of matter are solid, liquid, and gas.

A fluid is either a liquid or a gas.

If surface effects are not present, flow behaves similarly in all common fluids, whether gases
or liquids.

Formal definition of a fluid - A fluid is a substance which deforms continuously under the
application of a shear stress.

(0]

Definition of stress - A stress is defined as a force per unit area, acting on an
infinitesimal surface element.

Stresses have both magnitude (force per unit area) and direction, and the direction is
relative to the surface on which the stress acts.

There are normal stresses and tangential stresses.

Normal
to surface

Fn
normal stress = —- .
dA Force acting

Tangent

F
shear stress = —-
dA to surface

Pressure is an example of a normal stress, and acts inward, toward the surface, and
perpendicular to the surface.

A shear stress is an example of a tangential stress, i.e. it acts along the surface,
parallel to the surface. Friction due to fluid viscosity is the primary source of shear
stresses in a fluid.

One can construct a free body diagram of a little fluid particle to visualize both the
normal and shear stresses acting on the body:

J’ Consider a tiny fluid element (a very small chunk of the
fluid) in a case where the fluid is at rest (or moving at
constant speed in a straight line). A fluid at rest can have
only normal stresses, since a fluid at rest cannot resist a
shear stress. In this case, the sum of all the forces must
balance the weight of the fluid element. This condition is
known as hydrostatics. Here, pressure is the only normal
stress which exists. Pressure always acts positively inward.
Obviously, the pressure at the bottom of the fluid element
must be slightly larger than that at the top, in order for the

Free body diagram for a fluid  total pressure force to balance the weight of the element.
particle at rest. Meanwhile, the pressure at the right face must be equal to

that on the left face, so that the sum of forces in the
horizontal direction is zero. [Note: This diagram is two-
dimensional, but an actual fluid element is three-
dimensional. Hence, the pressure on the front face must
also balance that on the back face.]
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‘ Consider a tiny fluid element (a very small chunk of the
fluid) that is moving around in some flow field. Since the

fluid is in motion, it can have both normal and shear
stresses, as shown by the free body diagram. The vector
sum of all forces acting on the fluid element must equal the
mass of the element times its acceleration (Newton's
second law). Likewise, the net moment about the center of
the body can be obtained by summing the forces due to
each shear stress times its moment arm. [Note: To obtain
force, one must multiply each stress by the surface area on

Free body diagram for a fluid ~ Which it acts, since stress is defined as force per unit area.]
particle in motion.

(0]

Fluids at rest cannot resist a shear stress; in other words, when a shear stress is
applied to a fluid at rest, the fluid will not remain at rest, but will move because of the
shear stress.

For a good illustration of this, consider the comparison of a fluid and a solid under
application of a shear stress: A fluid can easily be distinguished from a solid by
application of a shear stress, since, by definition, a fluid at rest cannot resist a shear
stress. If a shear stress is applied to the surface of a solid, the solid will deform a little,
and then remain at rest (in its new distorted shape). One can say that the solid (at rest)
is able to resist the shear stress. Now consider a fluid (in a container). When a shear
stress is applied to the surface of the fluid, the fluid will continuously deform, i.e. it
will set up some kind of flow pattern inside the container. In other words, one can say
that the fluid (at rest) is unable to resist the shear stress. That is to say, it cannot
remain at rest under application of a shear stress.

Contact area, Shear stress
A \ 7=F/A Force, F

I \ Y

a

Deformed
rubber

I // B
Shear
strain, o

Next, what is mechanics?

e Mechanics is essentially the application of the laws of force and motion. Conventionally, it is
divided into two branches, statics and dynamics.

So, putting it all together, there are two branches of fluid mechanics:

o Fluid statics or hydrostatics is the study of fluids at rest. The main equation required for this
is Newton's second law for non-accelerating bodies, i.e. Z F=0.

e Fluid dynamics is the study of fluids in motion. The main equation required for this is
Newton's second law for accelerating bodies, i.e. Z F=ma.

3
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(1) PROPERTIES OF FLUIDS

A. Density, Specific Weight, Relative Density

Density (o) = mass per unit volume of substance = sm/év; [p] = [ML™].

Specific weight (y) = force exerted by the earth's gravity upon a unit volume of the substance = pg;
[v] = [ML*T?].

Relative density (specific gravity) = ratio of mass density of the substance to that of water at a
standard temperature and pressure = o/ o (non-dimensional).

B. Viscosity

Viscosity is a measure of the importance of friction in fluid flow. Consider, for example, a fluid in
two-dimensional steady shear between two parallel plates, as shown below. The bottom plate is fixed,
while the upper plate is moving at a steady speed of U.

It turns out (we will prove this at a later date) that the velocity = - S
profile, u(y) is linear, i.e. u(y) =Uy/b. Also notice that the — Bi e
velocity of the fluid matches that of the wall at both the top and ! ! f
bottom walls. This is known as the no slip condition. y L/
N
The top plate will experience a friction force to the left, since it — L Fixed plate

is doing work trying to drag the fluid along with it to the right.

The fluid at the top of the channel will experience an equal and opposite force (i.e. to the right).
Similarly the bottom plate will experience a friction force to the right, since the fluid is trying to pull
the plate along with it to the right. The fluid at the bottom of the channel will feel an equal and
opposite force, i.e. to the left. In fluid mechanics, shear stress, defined as a tangential force per unit
area, is used rather than force itself, and is commonly denoted by 7 (Greek letter “tau").

In simple shear flow such as this, the shear stress is directly proportional to the rate of deformation of
the fluid, which in this case is equal to the slope of the velocity profile z U /b.

Introducing the constant of proportionality « (Greek letter "mu'"), which is called the coefficient of
viscosity, the Newton's equation of viscosity states that:

du
Z'=,U®

Fluids that follow the above relation are called Newtonian fluids. The coefficient of viscosity is also
known as dynamic viscosity; its dimensions are [z = [ML™T™] while its SI units are Pa-s. An ideal
fluid is one which has zero viscosity, i.e., inviscid or non-viscous.

Sometimes, it is more convenient to use kinematic viscosity, denoted by Greek letter "nu”, which is
simply defined as the viscosity divided by density, i.e.

Kinematic viscosity has the dimensions [v] = [L?T™], and its SI units are m?/s.

4

www.jntuworld.com



WWW.j ntuwor ld.com

EBingham plastic

Crude oil (B0 °F)

Shear thinning

Mewtonian
Water (60 °F)

£
Shearing stress, v

Shearing stress, ©

Water (100 °F)

1

Shear thickening

Air (BO°F)
R— . .ol
Rate of sh =
Rate of shearing strain, i—i ste O shearing strain oy
Typically, as temperature increases, the The fluid is non-Newtonian if the
viscosity will decrease for a liquid, but will relation between shear stress and shear
increase for a gas. strain rate is non-linear.

C. Surface Tension and Capillarity

Surface tension is a property of liquids which is felt at the interface LA molecule
between the liquid and another fluid (typically a gas). Surface - on the surface
tension has dimensions of force per unit length, and always acts

parallel to the interface. Surface molecules are subject to an

attractive force from nearby surface molecules so that the surface is

in a state of tension. A soap bubble is a good example to illustrate — A molecule
the effects of surface tension. How does a soap bubble remain ;ﬂ;;‘fg the
spherical in shape? The answer is that there is a higher pressure
inside the bubble than outside, much like a balloon. In fact, surface
tension in the soap film acts much the same as the tension in the skin
of a balloon.

Consider a soap bubble of radius R with internal pressure p., and external (atmospheric) pressure
P, - Theexcess pressure AP,,,.=P,—P, canbe found by

considering the free-body diagram of half a bubble. Note that
surface tension acts along the circumference (resulting from cutting
across the two interfaces) and the pressure acts on the area of the
half-bubble. By statics (to be explained later), the net force due to
the pressure is equal to the pressure times the projected area. Hence,

balancing the forces due to surface tension and pressure difference:

2(27R)0,

(ERz)APbubble

2(27[R)0‘S = (7[R2 )APbubb,e
= AR =40, /R (b) Half a bubble

where o is the surface tension of the fluid in air.

You may repeat this exercise for a droplet, and show that AR, .. =20,/ R.
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Surface tension is also important at the interface between a liquid, 27Ra
a gas, and a solid. For example, a meniscus occurs when the \
surface of a liquid touches a solid wall, as most readily noticed

when a capillary tube is placed in a liquid. Consider a glass '
capillary tube inserted into a liquid, such as water. The water will i W
rise up the tube to a height h, because surface tension pulls the e

surface of the water towards the glass, as shown. The meniscus is
the curved surface at the top of the water column.

The height of the water column can be found by summing all forces acting on the water column as a
free body diagram. (This is a statics problem since there is no acceleration.) The downward force is
due to gravity, i.e. the weight of the water column. The only upward force available to balance the
weight is that caused by surface tension (pressure forces all cancel out, as will be explained in a later
lecture). Column height h can be determined as follows:

weight of fluid column = surface tension pulling force
= pg(7R*h)=27Ro, cos g
_ 20,C08¢
~ poR

=h

The contact angle is defined as the angle between the liquid and solid surface, as shown in the
sketch. Contact angle depends on both the liquid and the solid. If ¢ is less than 90°, the liquid is said
to "wet" the solid. However, if ¢ is greater than 90°, the liquid is repelled by the solid, and tries not to
"wet" it. For example, water wets glass, but not wax. Mercury on the other hand does not wet glass.

;‘7 Meniscus
Water Mercury Tﬂl Meiiigone I
— 1 M En
(a) Wetting (b) Nonwetting Water Mercury P
fluid fluid

D. Vapor Pressure

Vapor pressure is defined as the pressure at which a liquid will boil (vaporize). VVapor pressure rises
as temperature rises. For example, suppose you are camping on a high mountain (10,000 ft. or
roughly 3,000 m in altitude). From Table A.6 of Fluid Mechanics by Frank White, the atmospheric
pressure at this elevation is about 70 kPa. From Table A.5 it is seen that at a temperature of around
90°C, the vapor pressure of water is also around 70 kPa. From this it can be stated that at 10,000 ft.
of elevation, water boils at around 90°C, rather than the common 100°C at standard sea level pressure.
This has consequences for cooking. For example, eggs have to be cooked longer at elevation to
become hard-boiled since they cook at a lower temperature. A pressure cooker has the opposite
effect. Namely, the tight lid on a pressure cooker causes the pressure to increase above the normal
atmospheric value. This causes water to boil at a temperature even greater than 100°C; eggs can be
cooked a lot faster in a pressure cooker!
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Vapor pressure is important to fluid flows because, in general, pressure in a flow decreases as
velocity increases. This can lead to cavitation, which is generally destructive and undesirable. In
particular, at high speeds the local pressure of a liquid sometimes drops below the vapor pressure of
the liquid. In such a case, cavitation occurs. In other words, a "cavity™ or bubble of vapor appears
because the liquid vaporizes or boils at the location where the pressure dips below the local vapor
pressure. Cavitation is not desirable for several reasons. First, it causes noise (as the cavitation
bubbles collapse when they migrate into regions of higher pressure). Second, it can lead to
inefficiencies and reduction of heat transfer in pumps and turbines (turbomachines). Finally, the
collapse of these cavitation bubbles causes pitting and corrosion of blades and other surfaces nearby.
The left figure below shows a cavitating propeller in a water tunnel, and the right figure shows
cavitation damage on a blade.

E. Compressibility

All fluids are compressible under the application of external forces. The compressibility of a fluid is
expressed by its bulk modulus of elasticity E, which is the ratio of the change in unit pressure to the
corresponding volume change per unit volume.

c__ AP _ AP
AV IV Aplp

Note that the bulk modulus of elasticity has the same dimensions as pressure: [E] = [ML™T].

For water at room temperature, E is approximately 2.2 x 10° N/m?, while for air at atmospheric
pressure the isentropic bulk modulus of elasticity is approximately 1.4x 10° N/m?. That is, air is
typically four orders of magnitude more compressible than water.

For most practical purposes liquids may be regarded as incompressible. However, there are certain
cases, such as unsteady flow in pipes (e.g., water hammer), where the compressibility should be
taken into account. Gases may also be treated as incompressible if the change in density is very
small (typically less than 3%).

An ideal fluid is an incompressible fluid.

Pressure disturbances imposed on a fluid move in waves. These pressure waves move at a velocity
equal to that of sound through the fluid. The velocity, or celerity, c, is given by

c=+E/p
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F. Perfect Gas Law

Very often we have fluid flows of gases at, or near, atmospheric pressure. In these cases, the changes
in pressure p, density p and absolute temperature T of a gas particle may be related accurately to each
other by the perfect (or ideal) gas law:

p=pRT, where R=R; /M,

where R is called the perfect gas constant, Ry is the Universal gas constant and Mg is the gas
molecular weight.

The universal gas constant is Ry = 8.31 J/mol- K = 0.082 L-atm/mol-K.

The perfect gas law alone is insufficient to explain how the properties of a gas change as it moves. In
addition, the laws of thermodynamics must be invoked. Compressible flows are inherently
complicated because the laws of thermodynamics, as well as the laws of fluid mechanics, operate
simultaneously.

G. Concluding Remarks

Fluid mechanics represents that branch of applied mechanics dealing with the behavior of
fluids at rest and in motion. In the development of the principles of fluid mechanics, some fluid
properties play principal roles, other only minor roles or no roles at all for a particular problem. In
fluid statics, weight is the important property, whereas in fluid flow, density and viscosity are
predominant properties. Where appreciable compressibility occurs, principles of thermodynamics
must be considered. VVapor pressure becomes important when low gauge pressures are involved, and
surface tension affects static and flow conditions in small passages.
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(I11) FLUID STATICS

Hydrostatics is the study of pressures throughout a fluid at rest and the pressure forces on finite
surfaces. As the fluid is at rest, there are no shear stresses in it. Hence the pressure at a point on a
plane surface always acts normal to the surface, and all forces are independent of viscosity. The
pressure variation is due only to the weight of the fluid. As a result, the controlling laws are
relatively simple, and analysis is based on a straightforward application of the mechanical principles
of force and moment. Solutions are exact and there is no need to have recourse to experiment.

A. Introduction to Pressure

Pressure always acts inward normal to any surface (even
imaginary surfaces as in a control volume). \

Pressure is a normal stress, and hence has dimensions of force per \\7/ -
unit area, or [ML™T?]. In the English system of units, pressure is

expressed as "psi” or Ibf/in® In the Metric system of units, pressure

is expressed as "pascals” (Pa) or N/m?. ~
Standard atmospheric pressure is 101.3 kPa or 14.69 psi. /

Pressure is formally defined to be

Surface

. AF,
p=Ilim
AA—0 AA

where AF, is the normal compressive force acting on an infinitesimal
area AA.

B. Pressure at a Point

By considering the equilibrium of a small triangular wedge of fluid extracted from a static fluid body,

one can show that for any wedge angle 6, the pressures on the three faces of the wedge are equal in
magnitude:

p,=Pp, =P, independent of &

This result is known as Pascal’s law, which states that the pressure at a point in a fluid at rest, or in
motion, is independent of direction as long as there are no shear stresses present.
9
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> 1y

Free surface

p =0 gage

Pressure at a point has the same magnitude in all
directions, and is called isotropic.

(c) 2002 Wadsworth Group / Thomson Learning

C. Pressure Variation with Depth

= £

p+A4p

I & cross sectional
— AZI area= A
4+
P

Consider a small vertical cylinder of fluid in equilibrium, where positive z is pointing vertically
upward. Suppose the origin z =0 is set at the free surface of the fluid. Then the pressure variation at
a depth z = -h below the free surface is governed by

le

(p+Ap)A+W = pA
= ApA+ pgAAz =0
= Ap=-pgAz

P__pg  or &

- asAz >0
dz dz 4 ( )

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific weight
y = pg of the fluid.

Homogeneous fluid: p is constant
By simply integrating the above equation:
Idp:—jpgdz = p=—pgz+C

where C is an integration constant. When z = 0 (on the free surface), p=C = p, (the atmospheric
pressure). Hence,

P=-p9Z+ P,
10
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Pressure given by this equation is called ABSOLUTE PRESSURE, i.e., measured above perfect
vacuum.

However, for engineering purposes, it is more convenient to measure the pressure above a datum
pressure at atmospheric pressure. By setting p, =0,

p=-pgz=pgh

Pressure given by this equation is called GAUGE (GAGE) PRESSURE.

o """""""""" o — Positive pressure
o — Negative pressure
p. gage or positive vacuum
, gag
______ Standard
atmosphere Local W -
—————————————————— = () cace
atmosphere ! &5
P, absolute Py, gage (negative)
101.3 kPa g
14.7 psi
30.0in. Hg
760 mm Hg o i e
34 ft H,O
1.013 bar
’ p . absolute
B
Zero absolute
(£) 2002 Wadswerth Greup/ Themeon Lesrnirg pressure P= 0 absolute

The equation derived above shows that when the density is constant, the pressure in a liquid at rest
increases linearly with depth from the free surface.

Consequently, the distribution of pressure acting on a submerged flat @ Pr= \f
surface is always trapezoidal (or triangular if the surface pierces through [ =
the free surface of the liquid and the pressure is gauge pressure).
h
Also, the pressure is the same at all points with the same depth from the l
free surface regardless of geometry, provided that the points are @ P2=Pum + psh

interconnected by the same fluid. However, the thrust due to pressure is
perpendicular to the surface on which the pressure acts, and hence its
direction depends on the geometry.

Pulm

Water

Py=Pp=Pc=Pp=Pp=Pp=Pg= Py, +pgh

PyzF,

11
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Compressible fluid: p varies with depth

Example: Find the relationship between pressure and altitude in the atmosphere near the Earth's
surface. For simplicity, neglect the vertical temperature gradient. Let temperature T = 288 K (15°C)
and pressure po= 1 atm at the surface. The average molecular weight of air is My = 28.8 g/mol. The

Universal gas constant is Ry = 8.3 J/mol- K.

Solution: Let the altitude above the Earth's surface be denoted by z, then

dp__
. r9

Assume that air is a perfect gas, its density varies with pressure according to

M

9

R,T

g

p=P

Combining the above two equations, and integrate:

— = dz
dz R,T p R,T
p z M
= [P (Dl
5 P 0 RgT
M
—In=_ o9 z
Po RgT

Neglecting temperature variation, the exponential decay rate for pressure with height is,

M,g 28.8x10°x9.81
R,T 8.3x 288

=1.18x10™* per meter of rise

Say, at 2000 ft or 610 m above the Earth's surface, the pressure is

p=(1 atm)exp[—l.18><10‘4 X 610] =0.93 atm

That is, for such a high elevation, the pressure drops only by 7%. (Note that temperature cannot be

considered constant if this calculation is performed for large altitude differences.)

In most practical problems where the change in elevation is not extremely large, atmospheric

pressure can be assumed to be constant.

12
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D. Hydrostatic Pressure Difference Between Two Points

For a fluid with constant density,

pbelow = pabove + pg |AZ|

It is easily remembered by thinking about scuba diving. As a diver goes down, the pressure on his
ears increases. So, the pressure "below" is greater than the pressure "above."

There are several "rules” or comments which directly result from the above equation:

e If you can draw a continuous line through the same fluid from point 1 to point 2, then p; =
P2 if Z1 = Zo.

For example, consider the oddly shaped container:
By this rule, p; = p, and p4 = ps since these points are at

the same elevation in the same fluid. However, p, does
not equal ps even though they are at the same elevation,

because one cannot draw a line connecting these points
through the same fluid. In fact, p; is less than ps3 since

mercury is denser than water.

1 2 3

e Any free surface open to the atmosphere has atmospheric pressure, po.

(This rule holds not only for hydrostatics, but for any free surface exposed
to the atmosphere, whether the surface is moving, stationary, flat, or mildly
curved.) Consider the hydrostatics example of a container of water:

The little upside-down triangle indicates a free surface, and means that the
pressure there is atmospheric pressure, po. In other words, in this example,
p1 = Po. To find the pressure at point 2, our hydrostatics equation is used:
P2 = potpgh (absolute pressure) or p, = pgh (gauge pressure).

e The shape of a container does not matter in hydrostatics.

(Except of course for very small diameter tubes, Iy Gruduuted Cylindee Vise
where surface tension becomes important.)
Consider the three containers in the figure below:

At first glance, it may seem that the pressure at
point 3 would be greater than that at point 1 or 2,
since the weight of the water is more "concentrated"
on the small area at the bottom, but in reality, all
three pressures are identical. Use of our hydrostatics
equation confirms this conclusion, i.e. 1 2 3

Pociow = Pabove + £9[AZ| = Py = P, = p; = P, + pYAZ

13
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e Pressure in layered fluid.

For example, consider the container in the figure below, which is partially filled with mercury,
and partially with water:

Il
o

Po

VH,0

P1 = Puarer 9AZ,

7Hg
| =

~ Y JH_}
p2 = pmercury gAZZ + pl

In this case, our hydrostatics equation must be used twice, once in each of the liquids

pbelow = pabove + pg |AZ|
= pl = pO + pwatergAzl and p2 = pl + pmercurygAZZ
Combining,

P2 = Po t Puater gAZl + pmercurygAZZ

Shown on the right side of the above figure is the distribution of pressure with depth across the two
layers of fluids, where the atmospheric pressure is taken to be zero p, =0. Note that:

e The pressure is continuous at the interface between water and mercury. Therefore, p,, which

is the pressure at the bottom of the water column, is the starting pressure at the top of the
mercury column. The pressure p, can also be regarded as the water surcharge pressure

superimposed onto (uniformly transmitted to, and felt at any depth by) the mercury below.

e The vertical gradient of the pressure distribution is equal to the specific weight of the fluid » .
Therefore, the pressure in mercury increases with depth at a rate 13.6 times faster than that in
water Since 7, cuy ! Vater =13.6 .

The fact that the pressure (or known as surcharge) applied to a F =P A,
confined fluid increases the pressure throughout the fluid by the

same amount has important applications, such as in the hydraulic

lifting of heavy objects:

H:Pzz—lzi:i:i«l

AA R A

o I u e

14
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E. Pressure Measurement and Manometers

Piezometer tube Open
The simplest manometer is a tube, open at the top, which is attached to a T
vessel or a pipe containing liquid at a pressure (higher than atmospheric) to Py
be measured. This simple device is known as a piezometer tube. As the tube " l

is open to the atmosphere the pressure measured is relative to atmospheric
SO IS gauge pressure: P, =yh A4 .

(1)

This method can only be used for liquids (i.e. not for gases) and only when the liquid height is
convenient to measure. It must not be too small or too large and pressure changes must be
detectable.

U-tube manometer Open
This device consists of a glass tube bent into the shape of a "U",
and is used to measure some unknown pressure. For example,
consider a U-tube manometer that is used to measure pressure pa
in some kind of tank or machine.

Again, the equation for hydrostatics is used to calculate the
unknown pressure. Consider the left side and the right side of the
manometer separately:

P, = p1+71h1: pA+71h1
P; = 7,h,

Since points labeled (2) and (3) in the figure are at the same elevation in the same fluid, they are
at equivalent pressures, and the two equations above can be equated to give

Pa =7 —nh
Finally, note that in many cases (such as with air pressure being measured by a mercury
manometer), the density of manometer fluid 2 is much greater than that of fluid 1. In such cases,
the last term on the right is sometimes neglected.

Differential manometer

A differential manometer can be used to measure the
difference in pressure between two containers or two

B
points in the same system. Again, on equating the ) r +
pressures at points labeled (2) and (3), we may get an By
expression for the pressure difference between A and B: L &

" Nl

(41
Pa— P = 7,0, + 750 — 0y

In the common case when A and B are at the same
elevation (h, =h, +h,) and the fluids in the two

h——

(3]

containers are the same (7, = 7,), one may show that
the pressure difference registered by a differential manometer is given by
15
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Ap = (&—1Jpgh
Yo,

where p_ is the density of the manometer fluid, o is the density of the fluid in the system, and
h is the manometer differential reading.

e Inclined-tube manometer

As shown above, the differential reading is proportional to the pressure difference. If the
pressure difference is very small, the reading may be too small to be measured with good
accuracy. To increase the sensitivity of the differential reading, one leg of the manometer can be
inclined at an angle @, and the differential reading is measured along the inclined tube. As shown
above, h, =/,siné, and hence

Pa— Pg =720,8IN0+ ;0 =y hy
Obviously, the smaller the angle &, the more the reading ¢, is magnified.

e Multifluid manometer

The pressure in a pressurized tank is measured by a multifluid manometer, as is shown in the figure.
Show that the air pressure in the tank is given by

— Oil
I:)air = Patm +9 (pmercuryhs _poilhz _pwaterhl> /-\ ﬁ

AIR

1
L]

WATER T

h 1

T 2
h’z jj
—
Mercury -

16
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F. Pressure Distributions

e Flat Surfaces

v
Qil
P
Water
0 X
v B
!I \V4 / T
B
| vh hy
- S 1
j
h 2 2
vhy
FR
& F, —
> c D E
[—— s

(a) (b)

: ; Pressure envelope
Seawater
0 ,
Cable

Circular
surface

e Curved Surfaces

Pressure
forces

Resultant

force ~4

(e)

When the curved surface is a circular arc (full circle or any part of it), the resultant hydrostatic force
acting on the surface always passes through the center of the circle. This is because the elemental
pressure forces are normal to the surface, and by the well-known geometrical property all lines
normal to the surface of a circle must pass through the center of the circle.

17
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G. Hydrostatic Force on a Plane Surface

Suppose a submerged plane surface is inclined at an angle & to the free surface of a liquid

Free surface :

po

\/',’ Lacation of
i resultant force
p (eenter of pressure, CP)

Po=P,. P=Py+pgysind Pressure
oS ) 0 0 ¥ / distribution
) Pressure prism

. -
- of volume V
Ay ,
\ S
z
P =P+ pgh N )
— Plane surface
Centroid \
dA

Center of pressure
Plane surface

of area A v=[av=[paa=F,

Notation:-

A - area of the plane surface

O-  the line where the plane in which the surface lies intersects the free surface,

C-  centroid (or centre of area) of the plane surface,

CP - center of pressure (point of application of the resultant force on the plane surface),
F. - magnitude of the resultant force on the plane surface (acting normally),

h. - vertical depth of the centroid C,

h, - vertical depth of the center of pressure CP,
y. - inclined distance from O to C,

Ys - inclined distance from O to CP.

18
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Find magnitude of resultant force:

The resultant force is found by integrating the force due to hydrostatic pressure on an element dA at a
depth h over the whole surface:

Fs =IdF :jpghdA:pg sin HI ydA
A A A

where by the first moment of area
I ydA=y A
A

Hence,
Fe = pg(y.sind) A= pgh A

The resultant force on one side of any plane submerged surface in a uniform fluid is therefore equal
to the pressure at the centroid of the surface times the area of the surface, independent of the shape of
the plane or the angle 6 at which it is slanted.

Find location of centre of pressure:

Taking moment about O,
FeYx :J.de = (pay,sindA)y, =Iy(pgysin 0dA) = (Y. A) Yq :J.ysz
A

A A

But
J'ysz: I, =1_+Ay’ by parallel axis theorem

A

where lo = second moment of area (or moment of inertia) of the surface about O,

I. =second moment of area (or moment of inertia) about an axis through the centroid and

parallel to the axis through O (depends on the geometry of the surface, see below for the
values for some common figures).

Therefore, on substituting,
(YoA) Ve = Ay +1,

= Y=Y+ = or h. =h +I°Sin26
yR yc yA R c hA

c C

Now, the depth of the center of pressure depends on the shape of the surface and the angle of
inclination, and is always below the depth of the centroid of the plane surface.

For a flat surface that pierces through the free surface, and hence triangular pressure
distribution: A=HB, h :%Hsinﬁ, h, :éHsine, F :%ngzBsinH

C

(€) 2002 Wadsworth Group/ Themson Leaming L |

= i

D :

<

19
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Properties for some Common sectional areas

GG is an axis passing through the centroid and parallel to the base of the figure.

Shape

Rectangle

Triangle

Circle

Semi-Circle

Dimensions

¢ N S HeX d

N

)
=
4

20

www.jntuworld.com

Area

bd

| ¢ (moment of

inertia about
GG)

Ty
12

Bl
36

0.115*



WWW.j ntuwor ld.com

Some Additional Notes on Second Moment of Area

For a plane surface of arbitrary shape, we may define the
n"(n=0,1, 2,3, ...) moment of area about an axis GG by
the integral

[yrda,
A

Then,

e the zeroth moment of area = total area of the surface,

e the first moment of area = 0, if GG passes through the
centroid of the surface,

e the second moment of area gives the variance of the
distribution of area about the axis.

G —_——) - - - —_- Y A\ — — — — — -

For example, for a rectangular surface, the second
b moment of area about the axis that passes through
the centroid is

A IC:IyZdA
A

A
v

d/2

____________ B )
YI ' - —d/2y (bdy)

b 3d/2
"""""""""" | 7]
-d/2

oo
12

Parallel Axis Theorem

If OO is an axis that is parallel to the axis GG,
which passes through the centroid of the surface,
then the second moment of area about OO is equal
to that about GG plus the square of the distance
between the two axes times the total area:

IO

J. y'’?dA
A

( y. — y)sz centroid

Il
> —

(v2-2y.y+y*)dA

Il
> —

yeA-2y, I ydA+J‘ y2dA
A A
=y:A+1,

21
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H. Hydrostatic Force on Submerged Curved Surfaces

1) Liquid above surface

Suppose we are required to find the force acting on the upper side of the curved surface AC.

UL

Horizontal projection
of the curved surface

I Vertical projection

Curved of the curved surface

surface

Free-body diagram
of the enclosed
liquid block

-

i
[

Horizontal component of force on surface:
By considering the equilibrium of the liquid mass contained in ABC, we get

Fu = F = resultant force of liquid acting on vertically projected area (BC) and acting through the
centre of pressure of F.

Vertical component of force on surface
By considering the equilibrium of the liquid mass contained in ADEC, we get

Fv =W = weight of liquid vertically above the surface (ADEC) and through the centre of gravity of
the liquid mass.

22
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Resultant force

F, = FZ+FR?,

pointing downward, and making an angle « = tan’l(FV /' F,) with the horizontal.

2) Liquid below surface

Suppose we are required to find the force acting on the underside of the curved surface AB. The
space above the surface ADCB may be empty or contain other fluid.

-
-
-
4"'
-
-
an

e ————

-"

Imagine that the space (ADCB) vertically above the curved surface is occupied with the same fluid
as that below it (disregard what actually is filling that space). Then the surface AB could be removed
without disrupting the equilibrium of the fluid. That means, the force acting on the underside of the
surface would be balanced by that acting on the upper side under this imaginary condition. Therefore
we may use the same arguments as in the preceding case:

Horizontal component of force on surface:

Fn = F = resultant force of liquid acting on vertically projected area (AB) and acting through the
centre of pressure of F.

Vertical component of force on surface

Fv = W = weight of imaginary liquid (i.e., same liquid as on the other side of the surface) vertically
above the surface (ADCB) and through the centre of gravity of the liquid mass.

Resultant force

Fo=F2+F2,

which points upward, and makes an angle « = tan’l(FV I F, ) with the horizontal.

23
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I. Solutions to Problems Selected from the Textbook

1.10R

1.10R (Viscosity) A large movable plate is located between
two large fixed plates as shown in Fig. P1.10R. Two Newtonian I
fluids having the viscosities indicated are contained between the 6 tﬂm
plates. Determine the magnitude and direction of the shearing
stresses that act on the fixed walls when the moving plate has .

a velocity of 4 m/s as shown. Assume that the velocity distri- E

bution between the plates is linear. - =
# FIGURE P1.10R

- Fixed plate

4 m/s

) Fixed plate

T =/L§*Lyi 5/‘% so That

U T/ f 7 £ (;-’:..,::-;;;- ’
= = . Nes \ 4 m T
Tsh T o2yt ) SO = N R
400&/»9 J_.
ST/ ra r//HU
T, A
. N ba (£
by /3.3 ——L Q/(’ 1:1//?’7/7‘}?*12'
”mn
- M
N U s )( %) )
= -— = (0,0 —
Z;L /‘L L,l ( m 8,003 m
- /3 3 N / . .
= 123 Stresses acl on frxed walls i

divection of Mmoving plate .

21R

2.1R (Pressure head)  Compare the column heights of
water, carbon tetrachloride, and mercury corresponding to a
pressure of 50 kPa. Express your answer in meters.

pe o y

3 L
5 0 2.
For water : A= Z2Emr o,

3
280 x10 3

3
/4 50X/ ;/:':.

- 3w
/56 X107

For  carbon tebrachlovide !

3 21 m

3 M
ﬁr mercury N %: 50410 ZHa 0,37 mm
3 N -
x10° £
/33 o3
24
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24R

2.4R (Manometer) A tank is constructed of a series of cyl-

inders having diameters of 0.30, 0.25, and 0.15 m as shown in T
Fig. P2.4R. The tank contains oil, water, and glycerin and a 01lm|
mercury manometer is attached to the bottom as illustrated. Cal- {— '
culate the manometer reading, h. 0.1m
F (2)
t
0.1m T
+— h
1
0.1m ‘L
[

Mercury

& Figure P2.4R

£t il (o.tm) = Xuzo (0.1m) + ngg (0.2/m) - X”& b =5

Thus, wilh p,=.=0 -
AL, ) B (o)

33 RN
m?>
= 6, 0327 m
2.7R
2.7R (Force on plane surface) A swimming pool is 18 m .—¥__ W
long and 7 m wide. Determine the magnitude and location of = ‘
the resultant force of the water on the vertical end of the pool 2,5
where the depth is 2.5 m. yc‘: c = —-i—-/m
y 1 uc:z Sm
{( it C P
Fe
b=width = 7m
25 -
- 3
gk: Tee - gc where Ty, = ;7 (’7,..,)(2,5",»1)
Feht
3
771“5, T/i‘[7"")(2-57’") + A.Sm [, 67 mm

7!2 ) (J.s;/m)(z,,,,( 2.6m) z

TAC 1[97'15 07[ Aly ‘é” acts L. 6T m be low surface alanj
vertical Centerline of end.

25
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2.8R

F/E—’.:

2.8R (Force on plane surface)

of a 7-m-long closed storage tank is shown in Fig. P2.8R. The
tank contains ethyl alcohol and the air pressure is 40 kPa. De-

termine the magnitude of the resultant fluid force acting on one
end of the tank.

Break area into #hree parts as

For area [
=, A =(%

F;r area

-
—

1

For area 3.
Frs = B As t a"gca As
- [yoi:;"-’;y—’i)(amxvm) VARD %)(f}/‘w}(‘ﬁ)@mx‘*“)

243 4y

F

The vertical cross section

# FIGURE P2.8R

Shown 1 74 Get rE,

”;V,,_)/;?mxam) = Jeo 4N 7—;

L (From Table 1.6 Yethy = 7-7‘7‘,%,/?/ )
fu-‘. /4; + b/’gcz /47..

[9‘0 %)[JZ/MK‘:‘M)'P /’7,7‘/- —;é’-‘%)("?‘)/ﬂmx Yom )
yor 4o

160 kN + 4444y + 2¢3 by

www.jntuworld.com

2r

‘—1

N}
3
=

S—

4m Ethyl
L _Alcohol i

NP

0]

2| \'es

@

E4¥) L w
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211R

2.11R (Force on plane surface) The rectangular gate CD
of Fig P2.1IR is 1.8 m wide and 2.0 m long. Assuming the
material of the gate to be homogeneous and neglecting friction
at the hinge C, determine the weight of the gate necessary to
keep it shut until the water level rises to 2.0 m above the hinge.

# FIGURE P2.11R

E = Y b A —==
Where h, = Am + —_’;_[[‘}')(Im)] =2.8m

Thus,
/:-;2: {7:20 %)/ﬂ:?m)(/.grm X 2m)

= 98.F AN
Ase, ,
= b where b. = =~ * [m = 3.5m
927 A % e
(4 57
So ﬂ'mf

3
y - (7z)(18m)am)” 3.5, = 3.5%m
R (35m)(1.8m x2m)

For egu/ vbriam

Z M, =o (Note: Set FRyzo +o obtemn prinimum way'/n’)

ang
Am -
W(—’;)ﬁ.;.’__)/zm)] - K (4,- {;_—)-) =0
o _ (e kw) 5515w —25m) L,
(L) [E)em)]
27
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2.7 l

2.1 For the great depths that may be en-
countered in the ocean the compressibility of sea-
water may become an important consideration.
(a) Assume that the bulk modulus for seawater
is constant and derive a relationship between
pressure and depth which takes into account the
change in fluid density with depth. (b) Make use

(o)

d — -—!
72 = ¢ =P8
Thus, dp . _ 4 dz
-3

Infeqrating E;,U)_ Since,

Z

dp :-—;{/a’i‘
£ .
/;éfv z
[ ]

or ,°_f z
e EPJP = _/:; oz
f B
so That

#= —E &n (/— ﬂ—éﬁ)

of part (a) to determine the pressure at a depth
of 6 km assuming seawater has a bulk modulus
of 2.3 x 10° Pa, and a density of 1030 kg/m® at
the surface. Compare this result with that ob-
tained by assuming a constant density of 1030
kg/m?.

(L—‘g, 2.4)

(1)

If p 15 a funchon of P, we must determne p=F(p) betore

E daf (Eg 113)
7%\?/7 fl’ d(o//o/."
_ K/t
dp = E, y:
+ ’ g
S ﬂh
° 2.
F = 'EV /eﬂ A
4
ThHS; /0__ /0 e?y LJ/‘)CV‘C /o-_—g at F:o
° 3 P=o at surfuce
From £9.01) T |
o zZ,

l IE Z

Where J*£= zu‘z'f, 1he
depty below surfoce

(con?)

A4

28
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2. 7 I (con)

(b) From ,omfz‘a))

A ah
P=-£, Ln /’ - ——,;Z; )
so That at [ = b Aom
_ (.03 x/aéﬁ% )2.81 = ){6)(/03/\»:)

23 x107 2
”mn

ﬁ: - (2-3)(/04-0/{,_ >£n /

= Lk xi N P
= L.l x| m’,_=6,/,‘f/"ia.

(c) For constant density
P=dh= P4 £ = [/ oix/oaﬂ%)/m’/;’—";)/éx/osm»)

= 0L M~

—:Z'-g—-—l 2.8 Blood pressure is commonly measured with a cuff
placed around the arm, with the cuff pressure (which is a mea-
sure of the arterial blood pressure) indicated with a mercury
manometer (see Video 2.1). A typical value for the maximum
value of blood pressure (systolic pressure) is 120 mm Hg. Why
wouldn’t it be simpler, and cheaper, to use water in the manome-
ter rather than mercury? Explain and support your answer with
the necessary calculations.

p= 4

F‘;V 120 rmpn Hj . f: ¥h
= (/33;(:03”—’:,/-,)(0./2 Oam)

= /‘0 /kPa-
A obtan Hus Pressure wim a wateyr Column

3N
20 7 yOX/sz:/';

Thus, /£ weter weve ased i The manometec the
vequired Column heignts would be too high and
/'mpmaﬁ(k/. Mo .

2-5
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A. 34

2.34  Small differences in gas pressures are
commonly measured with a micromanometer of
the type illustrated in Fig. P2.34. This device con-
sists of two large reservoirs each having a cross-
sectional area, A,, which are filled with a liquid
having a specific weight, y,, and connected by a
U-tube of cross-sectional area, A,, containing a
liquid of specific weight, y,. When a differential
gas pressure, p, — p,, is applied a differential
reading, h, develops. It is desired to have this
reading sufficiently large (so that it can be easily
read) for small pressure differentials. Determine
the relationship between 4 and p, — p, when the
area ratio A,/A, is small, and show that the dif-
ferential reading, 4, can be magnified by making
the difference in specific weights, y, — 3, small.
Assume that initially (with p, = p,) the fluid levels
in the two reservoirs are equal. ..
inthal

/evel

——

mitial level
for 94_7( -F/m'c/

[(//7(;; a d:‘téffﬂném'/ ressure P- is apphed we assyme Theb level in left
. P N 2 4 2, PR N

veservojr dreps by a  distance, An, and right tevel vises by Ah. Thus,

TAC (hanemeter eguation becomes

Py (d+A-ah) -5 4 - & (£ +4h)=4
77_@=3;,£~3,£+ Y (2 44.) (1)

Since The liguids in The manometer are Incompressible,

AA A, = 24 or 2dh - &

qnd I+ %‘f— s small Then 28h << and Jast term in Eg.())
Can be neglected. Thus,

'ﬁ“f‘z= (a:z_'—kl){

o ;. 4 - b
_ n-y ,

and larje valuvs of h can be obtained For Small pressure

differentials  if  Sa-&, 5 swmall,

oFr

2-28

30

www.jntuworld.com



WWW.j ntuwor ld.com

2.35

2,35 The cyclindrical tank with hemispherical ends shown
in Fig. P2.35 contains a volatile liquid and its vapor. The lig-
uid density is 800 kg/m?, and its vapor density is negligible. )
The pressure in the vapor is 120 kPa (abs), and the atmospheric hiis
pressure is 101 kPa (abs). Determine: (a) the gage pressure read- im
ing on the pressure gage; and (b) the height, 4, of the mercury ‘

manometer. T- 5

Mercury

B FIGURE P2.35

(a) Let bz= spwt, o f ‘l‘éut‘d = 6’00 %33>(?-81%“;>: 7850,%),3
and
B (1) = 120kB (1) = ol kP ()= 19 4R
Thus,
Bage™ Prapor T8 (1an)
\q )(\03 ;“N—,. + (755'0”/%3>(\’W‘)

"

= ?Q. 7 -’k Pc\.
(b) /gwcaasﬁ) « ¥ (1) - ¥, (&) =o
4x10° 2y (785p;N,)(lm)—(mxlf%;)(ﬁ):o

“ﬁ\:‘- O.202 M
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2.45  Determine the new differential reading
along the inclined leg of the mercury manometer
of Fig. P2.45, if the pressure in pipe A is de-
creased 10 kPa and the pressure in pipe B remains
unchanged. The fluid in A has a specific gravity
of 0.9 and the fiuid in B is water.

Y5

FIGURE P2.45

For The i1nitial C@n//j‘uraélén \
7f4+a:4/0./)+ r#g (6.05 sin 30°) - 3;,20[0,08)=f7>3 (/)

wheve all  lengths ave in m ., When $  decreases left column

moves wp « c/;s;‘anq’) @, and right eolumn moves dowhn
a distance 4, aS showh in flgare. for The Fihal tonfiguration ;

I-r Y [0,/ -—a.m'nBQ') + )’ (a sm30° + 0.05 sin 30" +a)—
= (2
'X“zo (0.081-@) = -75 )

lohere 7/64’ 1s The new pressure in /bf/ae_ ‘A.
Subtract Eg.xy from Eg.ll) 4o obtain

‘71}}—«;9‘)' + Y, (a sin30®) - 3@}&.(:&:30%1} "'XH,.O(Q') =0
Th
us, _ (PA"P/}I)

Uy SIn30° - 3/#? (sin30°+1) + a0

For ﬁ;‘fh’= 10 & Fo

a =

o AW

a =

(0.4)(431 23)(05) - (133 2 Yoser) + 7805,

0. 0540 m

1"

New diftevential I'Pkdln% Ah, measurved a/on7 inclined tule 1s
QZuaf +to
4h= Sin 30°

= O, 05% m
6.5

+ 0,06 + Q

+ 0,05m+ O.05% m = 0,.2/2Z m

a-%o
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257

2.57  Two square gates close two openings in a conduit con-
nected to an open tank of water as shown in Fig. P2.57. When
the water depth, /, reaches 5 m it is desired that both gates open
at the same time. Determine the weight of the homogeneous

horizontal gate and the horizontal force, R, acting on the vertical \V4
gate that is required to keep the gates closed until this depth is T ’ Hinge tal gate, 4m x 4m
reached. The weight of the vertical gate is negligible, and both ;
gates are hinged at one end as shown. Friction in the hinges is [ KR
negligible. L
8 _ <«
Water Vertical gate,
4m x 4m
™ Hinge

W
Bov horigontal  gate, H:JL g
=M, =o A
So That
Q) = pA  where P 15 The waker pressure on The
Jo om surfuce .

771“5/ -F:&Zzp/zf'n)

Jo 771n£ N
9 = (98002, ) (2m ) (4m <hm) = 314 4N

For vertical 741fc)
FE‘-‘Q’&A Where b= 7m

’
So That | R
B = (7500 20 (1m ) (km x4 m) .
= /160 AN Fe -
To locate Fr y ; iy «
Txe - ‘ﬁm)ﬂ/m/)
= =2 4 = 42 T 7 =719 wu
Je 9.4 Z (7MJ(9Mx4¢m)—r "

Ay -%u:'/l'br/um
2’ MH =0 So That
p- (G100 AN (Fm -T719/m ] _ 1G7 hN

4 m B

2-52
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EE

2.58  The rigid gate, OAB, of Fig. P258 is hinged at O and
rests against a rigid support at B. What minimum horizontal
force, P, is required to hold the gate closed if its width is 3 m?
Neglect the weight of the gate and friction in the hinge. The
back of the gate is exposed to the atmosphere.

F = XAC ,4/ Where A,:, : Som

Open to atmosphere;

P

® FIGURE P2.58 Oy

Thus,
F = /?5’00;%3 )(SM)(‘#M £30m)
= 598 x10°N O
= Yh A Where H= Tm ]
vl
So That —
- 4 2
£ = (7800 2, )(1om ) 2m x 3.) 0 »r
= Yz X 105K )
7o /06'4,146 F,) / 3
‘/1?: IXC + yﬁ' - TEG,____M—NiZ"_) -+ Som = 5. 267m
/

f gc AI

/

The vér[e £ acks at The Center
ZM, =0

and

(5 1) (¥m L3m)

of The AB sectios . 7%115)

£ (6 267m - 3m ) + E (Im) = P (%)

so Thet /éfyy,r/f/v)/z. 267am ) + (%llebsﬂ)/lfm)

p =

"

k3L RN

Y
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2.62

242 A gate having the shape shown in Fig. P2.62 is located
in the vertical side of an open tank containing water. The gate
is mounted on a horizontal shaft. (a) When the water level is at
the top of the gate, determine the magnitude of the fluid force NV

on the rectangular portion of the gate above the shaft and the e W
magnitude of the fluid force on the semicircular portion of the Water 6m
gate below the shaft. (b) For this same fluid depth determine
the moment of the force acting on the semicircular portion of | Shait i
the gate with respect to an axis which coincides with the shaft. 4 m

7

of gate

] Side view

@) %y vectangular P"”L"’.")
/f): 2'/6 A Where /)c = Fom

So That
(Fr),” (78002, ) (3m ) (bow xém) = [0ko kN

Fov semi-circular /Darfw', )
(R )= rh A here hy = bm + ;Lf (See Fis, 213)
'fh £ = bmm + Ll'(:?nn) = 727
@&

[7:R> (7800 )(727m (—[3m~)) = /610 kN

(b)

For sems-circalar /aorém
- Txe 0/073’/?
%e = + y + 7.2 m

.17 ’4 (7 Z_Mn)(ﬂ-) Rz

lf
0. 1098 (3m) D27 = T3b

( 7.27m X )m)™

Thus, moment Lty hes,oeuL fo .SAaH-J M,
M :(Fk)sc x (7.3(.,“'- L.oom )

= (1610 x10°N ) (1. 36 m)
= L3TXIEN-m

2-6oO

35

www.jntuworld.com




WWW.j ntuwor ld.com

2. 70

270 A 4-m-long curved gate is located in the side of a
reservoir containing water as shown in Fig. P2.70. Determine
the magnitude of the horizontal and vertical components of the
force of the water on the gate. Will this force pass through point

A? Explain.
B FIGURE P2.70
. Fol
For eguilibyium, A x
Z Fg=o JfW
or - <
F’;_Z Fz = Y'ﬂcz Az = Y(é""'”-f"')@m KL}M) F:2_ /[ F;'l
so Pt F
Fy= (‘LS’D&L; )ﬁym)(lzml) = g2 4N Y
m
' — W Vo/um_e,\, ‘V’
S‘an'qu’ﬂ) m::: 11_{;_”"):4/»1
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E’/:’ F; + 4 Where
Fie [¥ (emd]3m xtim) = (95008 Ylom)(12 ")
b= Y= (9.60 22 )an m?)

Th
“S) /:V = /7,30 %)[72 m> AT rms] = 783 4N

(/Vovle.' Force of wabtr on Gate will be opposite m direction 1‘5)
That shown ©n Ffr9ure.
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The vesultant must pass THrough The witersecton of all Fhese
forces which 1s at /301;77‘ A Yes.
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2. 81

2.8l Three gates of negligible weight are used to hold back
water in a channel of width b as shown in Fig. P2.81. The force
of the gate against the block for gate (b) is R. Determine (in
terms of R) the force against the blocks for the other two gates.

(a)

For Case () m FIGURE P2.8I
Faz HheA= FUEbus) = W2b
and Je = _:_l
Thus,
s 1;,{2—/{//# =0
) pr=(234)R
Le=(54)(E0%)
2
R = yj b )

or Case (a ) on ﬁfe-ém}- Gragram Shown
2
F-/é: &ZA (Hpm 44’»on} and

Yo F A
and
)= §x ¥l
2
= o”[’r%}(u]
= 7wdh?l
_ A
Jhus, =My =0
507744’[‘
W(h- 1)+ R54) = 5 h
and

rrM’é/_ } % + W; (24) -5 b

(Cor/’i)

By

tl
Tz

[ jatf(
widly =

See
Fig 2.18)
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2.5/ ' (tont )

.ZLL 74//0Id_! That
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for case ), Jor The free- Lm/y- diagram showy,
The Force To 97 he Cturved section passes Through
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U
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(IV) FLUIDS IN MOTION

Fluid motions manifest themselves in many different ways. Some can be described very easily, while
others require a thorough understanding of physical laws. In engineering applications, it is important
to describe the fluid motions as simply as can be justified. It is the engineer's responsibility to know
which simplifying assumptions (e.g., one-dimensional, steady-state, inviscid, incompressible, etc)
can be made.

A. Classification of Fluid Flows

1) Uniform flow; steady flow

If we look at a fluid flowing under normal circumstances - a river for example - the conditions (e.g.
velocity, pressure) at one point will vary from those at another point, then we have non-uniform flow.
If the conditions at one point vary as time passes, then we have unsteady flow.

Under some circumstances the flow will not be as changeable as this. The following terms describe
the states which are used to classify fluid flow:

Uniform flow: If the flow velocity is the same magnitude and direction at every point in the flow it is
said to be uniform. That is, the flow conditions DO NOT change with position.

Non-uniform: If at a given instant, the velocity is not the same at every point the flow is non-uniform.

Steady: A steady flow is one in which the conditions (velocity, pressure and cross-section) may
differ from point to point but DO NOT change with time.

Unsteady: If at any point in the fluid, the conditions change with time, the flow is described as
unsteady.

Combining the above we can classify any flow in to one of four types:

o Steady uniform flow. Conditions do not change with position in the stream or with time. An
example is the flow of water in a pipe of constant diameter at constant velocity.

o Steady non-uniform flow. Conditions change from point to point in the stream but do not
change with time. An example is flow in a tapering pipe with constant velocity at the inlet -
velocity will change as you move along the length of the pipe toward the exit.

e Unsteady uniform flow. At a given instant in time the conditions at every point are the same,
but will change with time. An example is a pipe of constant diameter connected to a pump
pumping at a constant rate which is then switched off.

e Unsteady non-uniform flow. Every condition of the flow may change from point to point and
with time at every point. An example is surface waves in an open channel.

You may imagine that one class is more complex than another — steady uniform flow is by far the
most simple of the four.

2) One-, two-, and three-dimensional flows

A fluid flow is in general a three-dimensional, spatial and time dependent phenomenon:-

V =V (F,t) =u(F,t)i +Vv(F,t)] +w(F,t)k
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wherer = (x, Y, z) is the position vector, (T, i, IZ) are the unit vectors in the Cartesian coordinates,

and (u,v,w) are the velocity components in these directions. As defined above, the flow will be

uniform if the velocity components are independent of spatial position (x, Y, z), and will be steady if
the velocity components are independent of time t.

*

Accordingly, a fluid flow is called three-dimensional if all et Partcle path ] et 81
three velocity components are equally important. timer , —
Intrinsically, a three-dimensional flow problem will have the [ o

most complex characters and is the most difficult to solve.

Fortunately, in many engineering applications, the flow can i
be considered as two-dimensional. In such a situation, one of

the velocity components (say, w) is either identically zero or  *
much smaller than the other two components, and the flow conditions vary essentially only in two

directions (say, x and y). Hence, the velocity is reduced to V =ui +vj where (u,v) are functions of
(x, y) (and possibly t). This reduction in the velocity component and spatial dimension will greatly

simplify the analysis. Examples of two-dimensional flow typically involve flow past a long structure
(with the axis of structure being perpendicular to the flow):

Two-dimensional flow over a long weir.

Flow past a car antenna is approximately two-dlmensmnal, except near the top and bottom of the
antenna.

It is sometimes possible to further simplify a flow analysis by assuming that two of the velocity
components are negligible, leaving the velocity field to be approximated as a one-dimensional flow
field. That is, V = ui where the velocity u may vary across the section of flow. Typical examples are
fully-developed flows in long uniform pipes and open-channels. One-dimensional flow problems
will require only elementary analysis, and can be solved analytically in most cases.

Vi

| =

61 2052 Wadlew it Dovusp | Thombon Ledmitg

One-dimensional ideal flow along a pipe, where the velocity is uniform across the pipe section.
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3) Viscous and inviscid flows

An inviscid flow is one in which viscous effects do not significantly influence the flow and are thus
neglected. In a viscous flow the effects of viscosity are important and cannot be ignored.

To model an inviscid flow analytically, we can simply let the viscosity be zero; this will obviously
make all viscous effects zero. It is more difficult to create an inviscid flow experimentally, because
all fluids of interest (such as water and air) have viscosity. The question then becomes: are there
flows of interest in which the viscous effects are negligibly small? The answer is "yes, if the shear
stresses in the flow are small and act over such small areas that they do not significantly affect the
flow field." The statement is very general, of course, and it will take considerable analysis to justify
the inviscid flow assumption.

Based on experience, it has been found that the primary class of flows, which can be modeled as
inviscid flows, is external flows, that is, flows of an unbounded fluid which exist exterior to a body.
Inviscid flows are of primary importance in flows around streamlined bodies, such as flow around an
airfoil (see the sketch below) or a hydrofoil. Any viscous effects that may exist are confined to a thin
layer, called a boundary layer, which is attached to the boundary, such as that shown in the figure;
the velocity in a boundary layer is always zero at a fixed wall, a result of viscosity. For many flow
situations, boundary layers are so thin that they can simply be ignored when studying the gross
features of a flow around a streamlined body. For example, the inviscid flow solution provides an
excellent prediction to the flow around the airfoil, except possibly near the trailing edge where flow
separation may occur. However the boundary layers must be accounted for when the skin friction
force on the body is to be calculated.

Boundary Edge of
Inviscid layer boundary

Inviscid flow
flow layer

region

region

\\ § Inviscid flow
- a .
: e : region

ch 2002 Wadsworth Sroup ! Thomson Leaming

External flow around an airfoil. Viscous flow in a boundary layer.

Viscous flows include the broad class of internal flows, such as flows in pipes, hydraulic machines,
and conduits and in open channels. In such flows viscous effects cause substantial "losses” and
account for the huge amounts of energy that must be used to transport oil and gas in pipelines. The
no-slip condition resulting in zero velocity at the wall, and the resulting shear stresses, lead directly
to these losses.

== T =
X X

() 2002 Wadsweth Greup ! Thomeon Lesrning {f.l } {b )

Viscous internal flow: (a) in a pipe; (b) between two parallel plates.
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4) Incompressible and compressible flows

All fluids are compressible - even water - their density will change as pressure changes. Under
steady conditions, and provided that the changes in pressure are small, it is usually possible to
simplify analysis of the flow by assuming it is incompressible and has constant density. As you will
appreciate, liquids are quite difficult to compress — so under most steady conditions they are treated
as incompressible. In some unsteady conditions very high pressure differences can occur and it is
necessary to take these into account - even for liquids. Gases, on the contrary, are very easily
compressed, it is essential in cases of high-speed flow to treat these as compressible, taking changes
in pressure into account.

More formally an incompressible flow is defined as one in which the density of each fluid particle
remains relatively constant as it moves through the flow field. This however does not demand that
the density is everywhere constant. If the density is spatially constant, then obviously the flow is
incompressible, but that would be a more restrictive condition. Atmospheric flow, in which p = p(z),
where z is vertical, and flows that involve adjacent layers of fresh and salt water, as happens when
rivers enter the ocean, are examples of incompressible flows in which the density varies.

Low-speed gas flows, such as the atmospheric flow referred to above, are also considered to be
incompressible flows. The Mach number is defined as

M=—

C
where V is the gas speed and c is the speed of sound. The Mach number is useful in deciding whether
a particular gas flow can be studied as an incompressible flow. If M < 0.3, density variations are at
most 3% and the flow is assumed to be incompressible; for standard air this corresponds to a velocity
below about 100 m/s. If M > 0.3, the density variations influence the flow and compressibility
effects should be accounted for. Compressible flows include the aerodynamics of high-speed aircraft,
airflow through jet engines, steam flow through the turbine in a power plant, airflow in a compressor,
and the flow of the air-gas mixture in an internal combustion engine.

5) Laminar and turbulent flows

| |
="

\ D
. AN | |
T Y
Q=VA Dye streak L
—_— — - Transitional

/ T
ﬁmooth, well-rounded |
entrance {

Turbulent

In the experiment shown above, a dye is injected into the middle of pipe flow of water. The dye
streaks will vary, as shown in (b), depending on the flow rate in the pipe. The top situation is called
laminar flow, and the lower is turbulent flow, occurring when the flow is sufficiently slow and fast,
respectively. In laminar flow the motion of the fluid particles is very orderly with all particles
moving in straight lines parallel to the pipe wall. There is essentially no mixing of neighboring fluid
particles. In sharp contrast, mixing is very significant in turbulent flow, in which fluid particles
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move haphazardly in all directions. It is therefore impossible to trace motion of individual particles
in turbulent flow. The flow may be characterized by an unsteady fluctuating (i.e., random and 3-D)
velocity components superimposed on a temporal steady mean (i.e., along the pipe) velocity.

1y

!/\'I/\\M/MMNWW\TUVDU[e“t

* I ’W‘ JI, Transitional

Laminar

Time dependence of fluid velocity at a point.

Whether the flow is laminar or not depends on the Reynolds number,

Re = AV p =density, u = viscosity, V =section-mean velocity, d = diameter of pipe
U

and it has been demonstrated experimentally that

< 2,000 laminar flow
Re< between 2,000 and 4,000 transitional flow
> 4,000 turbulent flow

B. Flow Visualization

There are four different types of flow lines that may help to describe a flow field.

1) Streamline

A streamline is a line that is everywhere tangent to the velocity vector at a given instant of time. A
streamline is hence an instantaneous pattern.

5-
Point (x + dx, y + dy) '7 :
. 4
Streamline dr
d_\. 1A q

\ dx u - y )
I." Point (x, y) |
X

—1 |IIII|II\I|IIII]IIII[]II[I1II

0 1 2 3 4 5
X
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Equation for a streamline

A

dr| _dx _dy _dz
u w

Streamlines are very useful to help visualize the flow pattern. Another example of the streamlines
around a cross-section of an airfoil has been shown earlier on page 41.

When fluid is flowing past a solid boundary, e.g., the surface of an aerofoil or the wall of a pipe,
fluid obviously does not flow into or out of the surface. So very close to a boundary wall the flow
direction must be parallel to the boundary. In fact, the boundary wall itself is also a streamline by
definition.

It is also important to recognize that the position of streamlines can change with time - this is the
case in unsteady flow. In steady flow, the streamlines do not change.

Some further remarks about streamlines

o Because the fluid is moving in the same direction as the streamlines, fluid cannot cross a
streamline.

« Streamlines cannot cross each other. If they were to cross, this would indicate two different
velocities at the same point. This is not physically possible.

e The above point implies that any particles of fluid starting on one streamline will stay on that
same streamline throughout the fluid.

e The mathematical expression of a streamline can also be obtained from

V xdF =0

where V is the fluid velocity vector and df is a tangential vector along the streamline. The
above cross product is zero since the two vectors are in the same direction.

o A useful technique in fluid flow analysis is to consider only a part of the total fluid in
isolation from the rest. This can be done by imagining a tubular surface formed by
streamlines along which the fluid flows. This tubular surface is known as a streamtube,
which is a tube whose walls are streamlines. Since the velocity is tangent to a streamline, no
fluid can cross the walls of a streamtube.

Streamlines

Streamtube

2) Streakline

A streakline is an instantaneous line whose points are occupied by particles which have earlier
passed through a prescribed point in space. A streakline is hence an integrated pattern. A streakline
can be formed by injecting dye continuously into the fluid at a fixed point in space. As time marches
on, the streakline gets longer and longer, and represents an integrated history of the dye streak.
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l Dye or smoke

Injected fluid particle

Streakline

3) Pathline

A pathline is the actual path traversed by a given (marked) fluid particle. A pathline is hence also an
integrated pattern. A pathline represents an integrated history of where a fluid particle has been.

Fluid particle at t =1,

start

+
Pathline ‘o'
'.- -~ Fa
+ e *
T e

Fluid particle at r = 1,4

Fluid particle at some
intermediate time

4) Timeline

A timeline is a set of fluid particles that form a line segment at a given instant of time. A timeline is
also an integrated pattern. For example, consider simple shear flow between parallel plates. A
timeline follows the location of a line of fluid particles, which can be a straight line initially.
Timelines of later time are composed of the same particles, and will continually distort with time, as
shown in the sketch. Notice the no-slip condition in action. The top and the bottom of the timelines
stay in the same location at all times, because the boundaries are not moving.

Timeline at t=0

. .
Timeline at 1 =15

Note: For steady flow, streamlines, streaklines, and pathlines are all identical. However, for unsteady
flow, these three flow patterns can be quite different. In a steady flow, all particles passing a given
point will continue to trace out the same path since nothing changes with time; hence the pathlines
and streaklines coincide. In addition, the velocity vector of a particle at a given point will be tangent
to the line that the particle is moving along; thus the line is also a streamline.
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C. Elementary Equations of Motion

In analyzing fluid motion, we might take one of two approaches: (1) seeking to describe the detailed
flow pattern at every point (x,y,z) in the field, or (2) working with a finite region, making a balance
of flow in versus flow out, and determining gross flow effects such as the force, or torque on a body,
or the total energy exchange. The second approach is the "control-volume" method and is the
subject of this section. The first approach is the "differential” approach and will be covered in a
higher level fluid mechanics course.

We shall derive the three basic control-volume relations in fluid mechanics:

the principle of conservation of mass, from which the continuity equation is developed;

the principle of conservation of energy, from which the energy equation is derived,;

the principle of conservation of linear momentum, from which equations evaluating dynamic
forces exerted by flowing fluids may be established.

1) Control volume

A control volume is a finite region, chosen carefully by
the analyst for a particular problem, with open boundaries
through which mass, momentum, and energy are allowed
to cross. The analyst makes a budget, or balance, between
the incoming and outgoing fluid and the resultant changes I
within the control volume. Therefore one can calculate I
the gross properties (net force, total power output, total I
heat transfer, etc.) with this method.

With this method, however, we do not care about the details inside the control volume (In
other words we can treat the control volume as a "black box.")

For the sake of the present analysis, let us consider a control volume that can be a tank,
reservoir or a compartment inside a system, and consists of some definite one-dimensional
inlets and outlets, like the one shown below:

Let us denote for each of the inlets and outlets:-

f

V = velocity of fluid in a stream

A = sectional area of a stream

p = pressure of the fluid in a stream
p = density of the fluid

Then, the volume flow rate, or discharge (volume
of flow crossing a section per unit time) is given by —’\\

Q=VA
Similarly, the mass flow rate (mass of flow crossing a section per unit time) is given by
m=pVA=pQ

Then, the momentum flux, defined as the momentum of flow crossing a section per unit time,
is given by mV .

For simplicity, we shall from here on consider steady and incompressible flows only.
46

www.jntuworld.com



WWW.j ntuwor ld.com

2) Continuity equation

By steadiness, the total mass of fluid contained in the control volume must be invariant with time.
Therefore there must be an exact balance between the total rate of flow into the control volume and
that out of the control volume:

Total Mass Outflow = Total Mass Inflow
which translates into the following mathematical relation

if_ll(loivi A )in = iZi:(PiVi A )out

where M is the number of inlets, and N is the number of outlets. If the density of fluid is constant,
conservation of mass also implies conservation of volume. Hence for a control volume with only
one-dimensional inlets and outlets,

SUAL-ZVAL, o 3(Q), =X,

1)

For example, in a pipe of varying cross sectional area, the continuity equation requires that, if the
density is constant, between any two sections 1 and 2 along the pipe

Q=V,A =V, A, = constant

Another example involving two inlets and one outlet is shown below.

my =2 kg/s m, = 3 kg/s

|
|
|
CV |
|
|
|
|

my=ny +n,=15kg/s
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3) Bernoulli and energy equations

Let us first derive the Bernoulli equation, which is one of the most well-known equations of motion
in fluid mechanics, and yet is often misused. It is thus important to understand its limitations, and
the assumptions made in the derivation.

The assumptions can be summarized as follows:
 Inviscid flow (ideal fluid, frictionless)
o Steady flow (unsteady Bernoulli equation will not be discussed in this course)
e Along a streamline
o Constant density (incompressible flow)
e No shaft work or heat transfer

The Bernoulli equation is based on the application of Newton's law of motion to a fluid element on a
streamline.

dA =sectional area

X

Let us consider the motion of a fluid element of length ds and cross-sectional area dA moving at a
local speed V, and x is a horizontal axis and z is pointing vertically upward. The forces acting on the

element are the pressure forces pdA and ( p+ dp) dA, and the weight w as shown. Summing forces
in the direction of motion, the s-direction, there results

pdA—(p+dp)dA—pg ds dAcosd = p ds dA a,

where as is the acceleration of the element in the s-direction. Since the flow is steady, only
convective acceleration exists

N~
ds

Also, it is easy to see that cosd =dz/ds. On substituting and dividing the equation by pgdA, we can
obtain Euler's equation:

%+dz+\idv =0
P9 g

Note that Euler's equation is valid also for compressible flow.
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Now if we further assume that the flow is incompressible so that the density is constant, we may
integrate Euler's equation to get

2
L +7Z +V— = constant
£9 29

This is the Bernoulli equation, consisting of three energy heads

p_F; Pressure head, which is the work done to move fluid against pressure
; Elevation head, representing the potential energy; z can be measured above any
reference datum
V 2
E Velocity head, representing the kinetic energy

e A head corresponds to energy per unit weight of flow and has dimensions of length.

e Piezometric head = pressure head + elevation head, which is the level registered by a
piezometer connected to that point in a pipeline.

e Total head = piezometric head + velocity head.

It follows that for ideal steady flow the total energy head is constant along a streamline, but the
constant may differ in different streamlines. (For the particular case of irrotational flow, the
Bernoulli constant is universal throughout the entire flow field.)

Applying the Bernoulli equation to any two points on the same streamline, we have

V.2 V,2
&+21+L:&+22+L

yele 29 pg 29

There is similarity in form between the Bernoulli equation and the energy equation that can be
derived directly from the first law of thermodynamics. Without getting into the derivation, the
energy equation for a control volume with only one inlet (section 1) and one outlet (section 2) can be
written as

2 2
P P 22+VL+V\'/s +h,

P9 29 pg 29

where W._ is the shaft work, or the rate of work transmitted by rotation shafts (such as that of a pump

or turbine; positive if output to a turbine, negative if input by a pump) that are cut by the control
surface, and h,_, called the head loss, is the sum of energy losses required to overcome viscous

forces in the fluid (dissipated in the form of thermal energy) and the heat transfer rate. In the
absence of these two terms, the energy equation is identical to the Bernoulli equation. We must
remember however that the Bernoulli equation is a momentum equation applicable to a streamline
and the energy equation above is applied between two sections of a flow. The energy equation is
more general than the Bernoulli equation, because it allows for (1) friction, (2) heat transfer, (3) shaft
work, and (4) viscous work (another frictional effect).
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4) Momentum equation

On applying Newton's second law of motion to the control volume shown on page 46, we get

z F= i(pivi A\Z )Out _Z('Oivi A‘\Z )in

i=1 i

(m,\7, )Out B Izil ( My, )in

N
=1

M=

1]
4N

Note that this equation
« follows from the principle of conservation of linear momentum: resultant force on the control

volume is balanced by the net rate of momentum flux (i.e., mV ) out through the control
surface.
« isa vector equation. Components of the forces and the velocities need to be considered.
e can be used to calculate the magnitude and direction of the impact force exerted on the
control volume by its solid boundary.

Further consider a steady-flow situation in which there is only one entrance (section 1) and one exit
(section 2) across which uniform profiles can be assumed (see the figure on page 47). By continuity

m, =m, = pQ = mass flow rate
The momentum equation now reduces to »' F = pQ (\72 —\71)

or in terms of their components in (x, y, z) coordinates

ZFX :pQ[(Vx)z_(Vx)l]
2R :pQ[(Vy)z_(Vy)J
ZFZ :pQ[(Vz)z_(VZ)J

where (V, ), is the x--component of the velocity at section 1, and so on.

On applying the momentum equation, one needs to pay attention to the following two aspects.

Forces
z F represents all forces acting on the control volume, including

o Surface forces resulting from the surrounding acting on the control volume:
o Impact force, which is usually the unknown to be found, on the control surface in
contact with a solid boundary
o Pressure force on the control surface which cuts a flow inlet or exit. Remember that
the pressure force is always a compressive force.
o Body force that results from gravity.

Sign of the vector variables
When plugging into the equations, one should be careful about the sign of the force and velocity

components. These quantities should carry a positive (negative) sign when they are in the same
(opposite) sense as that of the corresponding coordinate.
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D. Applications of the Bernoulli and Momentum Equations

1) Pitot tube

If a stream of uniform velocity flows into a blunt body, the streamlines take a pattern similar to this:

Stagnation point

Stagnation point Stagnation streamline
—"-\ t
{al €]

Streamlines around blunt bodies

Note how some move to the left and some to the right. But one, in the centre, goes to the tip of the
blunt body and stops. It stops because at this point the velocity is zero - the fluid does not move at
this one point. This point is known as the stagnation point.

From the Bernoulli equation we can calculate the pressure at this point. Apply Bernoulli equation
along the central streamline from a point upstream where the velocity is V, and the pressure p, to

the stagnation point of the blunt body where the velocity is zero, V, =0. Also z, = z,.

29 pg

Py Vi P, v VL
—+ A=+ + =p, +=pV,
o 4 % Zzg = P=p+o oY

This increase in pressure, which brings the fluid to rest, is called the dynamic pressure.

Dynamic pressure = pV,* /2
or converting this to head (using h=p/ pg)
Dynamic head = V,*/ 2g

The total pressure is know as the stagnation pressure (or total pressure)
Stagnation pressure = p, + pV,* /2

or in terms of head,
Stagnation head = p,/ pg +V,” /29

The blunt body stopping the fluid does not have to be a solid. It could be a static column of fluid.
Two piezometers, one as normal and one as a Pitot tube within the pipe can be used in an
arrangement shown below to measure velocity of flow.
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V=V V=0

A Piezometer and a Pitot tube.

F Y YYTYY

Using the above theory, we have the equation for p,,

1 1
p2=p1+§pV12 = ng=,ogh+E,0V2 = V=,/29(H—h)

which is an expression for velocity obtained from two pressure measurements and the application of
the Bernoulli equation. This equation is for ideal flow only. To account for real fluid effects, the

equation can be modified into V =C, /29 (H — h) , where C, is the coefficient of velocity to be
determined empirically.

A Pitot tube used to measure velocity of flow in a channel.

A Pitot tube underneath the wing of an aircraft.
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2) Pitot static tube

The necessity of one piezometer and one Pitot tube and

thus two readings make this arrangement a little _R-\ \
awkward. Connecting the two tubes to a manometer

would simplify things but there are still two tubes. The

Pitot static tube combines the tubes, and they can then

be easily connected to a differential manometer. A

Pitot static tube is shown here. The holes on the side of 1]
the tube connect to one side of a manometer and Y a— A N | .
register the static head, (h;), while the central hole is

connected to the other side of the manometer to [
register, as before, the stagnation head (h,). The h:
difference of the two heads, being the dynamic head, is A
now measured directly by the differential manometer.

Stagnation pressure hole

A\
Static pressure holes

Close-up of a Pitot static tube. e

Consider the pressures on the level of the centre line of the Pitot static tube and using the theory of
the manometer,

Pa =P, +p9X

Pe = P+ g (X =)+ ppe0h
But Pa = Ps
or P, = P+ (Puen — ) G

We also know that p, = p, + pV?*/2. Hence

=CV,

ideal

Videal = \/ W and Vactual

The Pitot/Pitot-static tubes give velocities at points in the flow. It does not give the overall discharge
of the stream, which is often what is wanted. It also has the drawback that it is liable to block easily,
particularly if there is significant debris in the flow.
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3) Orifice and vena contracta

We are to consider the flow from a tank through a hole in the side close to the base. The general
arrangement and a close-up of the hole and streamlines are shown in the figure below

(1)

vena contracta

Tank and streamlines of flow out of a sharp-edged orifice

The shape of the holes edges are as they are (sharp) to minimize frictional losses by minimizing the
contact between the hole and the liquid - the only contact is the very edge.

Looking at the streamlines you can see how they contract after the orifice to a minimum cross
section where they all become parallel, at this point, the velocity and pressure are uniform across the
jet. This convergence is called the vena contracta (from the Latin ‘contracted vein'). It is necessary
to know the amount of contraction to allow us to calculate the flow.

Vena contracta |_I v

c e agEeeE . — - s =¥e

o)

X -----grrl'\'-'-"“' £

4 ¥ z g 02282 &

3 L1688 2

. >0 O

_-—T'-—-...,_‘_._- | : 8@g 5
-

X - |°%0 3

i P R e I IO £

We can predict the velocity at the orifice using the Bernoulli equation. Apply it along the streamline
joining point 1 on the surface to point 3 at the centre of the vena contracta.

At the surface velocity is negligible (V1 = 0) and the pressure atmospheric (p, = 0). Outside the
orifice the jet is open to the air so again the pressure is atmospheric (psz = 0). If we take the datum
line through the orifice then z; = h and z3 =0, leaving

2
h:\zl_; = V3 :Videal :\/29h
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This is the theoretical value of velocity. Unfortunately it will be an over-estimate of the real velocity
because friction losses have not been taken into account. To incorporate friction we use the
coefficient of velocity to correct the theoretical velocity,

\Y C\V

actual — v Yideal

Each orifice has its own coefficient of velocity C,, which usually lies in the range (0.97 - 0.99).

To calculate the discharge through the orifice we multiply the area of the jet by the velocity. The
actual area of the jet is the area of the vena contracta not the area of the orifice. We obtain this area
by using a coefficient of contraction C, for the orifice:

Aactual = Cc A\)rifice

So the discharge through the orifice is given by
Q=AvV
= Qactual = Aactualvactual = Cch A\)rificevideal = Cd A\)rifice \Y Zgh

where Cy is the coefficient of discharge, and Cq4 = C.. C..

Typical flow patterns and contraction coefficients for various round exit configurations

4) Venturi, nozzle and orifice meters

The Venturi-, nozzle- and orifice-meters are three similar types of devices for measuring discharge in
a pipe. The Venturi meter consists of a rapidly converging section, which increases the velocity of
flow and hence reduces the pressure. It then returns to the original dimensions of the pipe by a gently
diverging 'diffuser’ section. By measuring the pressure differences the discharge can be calculated.
This is a particularly accurate method of flow measurement as energy losses are very small.
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The nozzle meter or flow nozzle is essentially a Venturi meter with the convergent part replaced by a
nozzle installed inside the pipe and the divergent part omitted. The orifice meter is a still simpler and
cheaper arrangement by which a sharp-edged orifice is fitted concentrically in the pipe.

(13 (21

| |
~I0__ .~
_'/'\-""\..—\__...—-

Orifice

— T e T Mozzle

= I Wenturi

B eSS
I

(13 (21

Schematic arrangements for three types of devices measuring flow-rate in a pipe

Venturi meter
A Az

= —»

A Venturi meter in laboratory.

The working formulae are similar for the three devices. Let us for illustration show the one for the
Venturi meter. Applying the Bernoulli equation along the streamline from point 1 to point 2 in the
narrow throat of the Venturi meter, we have

2 2
P, +V—_&+z2 Ve
Jols) 20 p9 29

56

www..jntuwor ld.com



WWW.j ntuwor ld.com

By using the continuity equation we can eliminate the velocity Vo, Q = AV, = AV, orV, = AV, / A,.

Substituting this into and rearranging the Bernoulli equation we get

Zg|:p1_p2_|_zl_zzj|

(AIA) -1

1

To get the theoretical discharge this is multiplied by the area. To get the actual discharge taking in to
account the losses due to friction, we include a coefficient of discharge

pl_pZ }
" 2477
pyg

(AIA) -1

29 {
Qideal = Alvl’ Qactual = Cd Qideal = Cd Alvl = Cd Al

Suppose a differential manometer is connected between (1) and (2). Then the terms inside the square
brackets can be related to the manometer reading h as given by

P, + 09z, = p2+pmangh+pg(22—h) = M+Zl—Z2 Zh(—pman —1]
ot P

Thus the discharge can be expressed in terms of the manometer reading:

Qactual = C:d Ai

Notice how this expression does not include any terms for the elevation or orientation (z; or z,) of the
Venturi meter. This means that the meter can be at any convenient angle to function.

The purpose of the diffuser in a Venturi meter is to assure gradual and steady deceleration after the
throat. This is designed to ensure that the pressure rises again to something near to the original value
before the Venturi meter. The angle of the diffuser is usually between 6 and 8 degrees. Wider than
this and the flow might separate from the walls resulting in increased friction and energy and
pressure loss. If the angle is less than this the meter becomes very long and pressure losses again
become significant. The efficiency of the diffuser of increasing pressure back to the original is rarely
greater than 80%.

It should be noted that in deriving a formula for a discharge measuring device (Venturi, nozzle,
orifice meters, etc), assumptions are taken to simplify the situations so that the Bernoulli equation
can be applied. For example, there is no energy loss and the flow is steady. In this way, exact
analytical solutions can be obtained, but as the assumptions are not exactly true, these solutions fail
to account for the real situations. Empirical coefficients such as C,, C4 are therefore introduced to
allow for these errors. The final formula will be an analytical solution modified by an empirical
coefficient. On the other hand, the value of the empirical coefficient can also reflect the justification
of using the ideal approach. C4 for orifice meter is far below unity (0.6-0.65), while Cq4 for nozzles
and venturi meters are close to one (approximately 0.98). It shows that energy loss is rather
substantial in an orifice meter, as is expected from its abrupt configuration.
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5) Force on a pipe nozzle

Let us from here on consider several applications of the momentum
equations. A simple application is to find the force on the nozzle at

the outlet of a pipe. Because the fluid is contracted at the nozzle

forces are induced in the nozzle. Anything holding the nozzle (e.g. /4
a fireman) must be strong enough to withstand these forces.

Steps in analysis:
1. Draw a control volume
Decide on a coordinate-axis system
Calculate the total force, given by the rate of change of momentum across the control volume

Calculate the pressure force F,
Calculate the body force Fj
Calculate the resultant reaction force F;

o U ~Mwh

1 & 2. Control volume and co-ordinate axis are shown in the figure below.

Notice how this is a one-dimensional system which greatly simplifies matters.

3. Calculate the total force

Z F=pQ (Vz _Vl)

By continuity, Q = AV, = AV,, so

D

4. Calculate the pressure force (red arrows)

F, = pressure force at 1 — pressure force at 2= p,A — p,A,

We use the Bernoulli equation to calculate the pressure

2 2
—+21+VL:&+22+VL
P9 29 P9 29

Since the nozzle is horizontal, z; = z,, and the pressure outside is atmospheric, p2 = 0, and with
continuity the Bernoulli equation gives
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5. Calculate the body force

The only body force is the weight due to gravity in the y-direction - but we need not consider this as
the only forces we are considering are in the x-direction.

6. Calculate the reaction force that the nozzle acts on the fluid (green arrow)

Since the indicated direction of the reaction force is opposite to x-axis, a negative sign is included

(1 1
F=—F+F,+ F = pQ°| ———
2 Miavd pQ(Az AJ

2 2 2
F, :m_a(iz_in_sz(i_i}&(ﬁ_lj
2 \A A A A) 2A A
So the fireman must be able to resist the force of F;.

6) Force due to a two-dimensional jet hitting an inclined plane

Consider a two-dimensional (i.e., very wide in the spanwise direction) jet hitting a flat plate at an
angle 6. For simplicity gravity and friction are neglected from this analysis.

We want to find the reaction force normal to the plate so we choose the axis system such that it is
normal to the plane.

oQ’N
I ®
»/
)/
[
q —
.‘?v
3
?\/
i
NE |'®
N
\\,c}'&

A two-dimensional jet hitting an inclined plate.
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We do not know the velocities of flow in each direction. To find these we can apply the Bernoulli
equation

V2 VZ 2
ﬁ+zl+L=&+z +L=&+Zg+i

Jalv 29 pg 29 pg 29

The height differences are negligible i.e., z, =z, = z,, and the pressures are all atmospheric = 0. So

V, =V, =V, =V
By continuity
Q1:Q2+Q3 = V1A1 :VZAZ +V3A3
= A=A+A

Using this we can calculate the forces in the same way as before.

1. Calculate the total force in the x-direction.

Remember that the co-ordinate system is normal to the plate.
Z F=p |:(Q2V2X +Q3Vs, ) - lelx:l

but V,, =V,, =0 as the jets are parallel to the plate with no component in the x-direction, and
V,, =V cosé, so

> F, =-pQV cosd

2. Calculate the pressure force

All zero as the pressure is everywhere atmospheric.

3.Calculate the body force

As the control volume is small, hence the weight of fluid is small, we can ignore the body forces.

4. Calculate the resultant reaction force

ZFX=—Fn+fp/+fB/=—PQ1VC°SH = F,=pQV cosé

which is the force exerted on the fluid by the plate.

We can further find out how much discharge goes along in each direction on the plate. Along the
plate, in the y-direction, the total force must be zero, Z F, =0, since friction is ignored.

Also in the y-direction: V, =Vsind, V,, =V, V, =-V, so
> F, = (QV, +QVs, )~ QM |= AV [Q, - Qs - Qisin ] = pV*[A, — A~ Asing]

Setting this to zero, we get
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0=A-A—-Asiné

and as found earlier we have A; = A, + Az so on solving

1+ﬁn0)

A= A3(1—sin 0

by which we readiily obtain that % —a= %(1+sin 6), -1 4= %(l—sin 0)
1 1
So we know how the discharge is divided between the two jets leaving the plate.

7) Flow past a pipe bend

Area= A4

Velocity = ]

Density = Py

Pressure = Py 2
Elevation =2
Area=
Welocity = V2
Density =2

Pressoure= P2

Elevation =22

Consider the pipe bend shown above. We may first draw a free body diagram for the control volume
with the forces:
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Force due to
pressure on

P4

the outlet
section . 3]

Force due to
pressure on

the inlet
section
—
04
Impact force the
W kend is acting on the
Weight of fluid fluid inside control
¥ in the control volume

volume if the
bendisina
vertical plane

Paying due regard to the positive x and y directions, we may write the summation of forces in these
two directions:

ZFX = plAi_ pZAZCOSH_Fx
> F,=F,—p,Asing-W

Relating these components to the net change of momentum flux through the inlet and exit surfaces

x-Direction
A — P,A cos6—F, = pQ(V, cos6-V, )

y-Direction
F, — p,A,sin6-W = pQ(V,sind-0)

From these two equations and using the continuity equation and the Bernoulli equation, we may
calculate the two force components. The magnitude and direction of the resultant force from the
bend on the fluid are

F=JF2+F
¢:tan’l(Fy/FX)

As a reaction, the impact force on the pipe bend is equal in magnitude, but opposite in direction to
the one on the fluid.
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E. Solution of Problems Selected from the Textbook

3.7R
E E R Water flows into a large tank Q=001 m¥s
at a rate of 0. ot | m‘/s as shown in Fig. P3.7R. The water leaves Nt
the tank through 20 holes in the bottom of the tank. cach of 250 N [§)]
which produces a stream of 10-mm diameter. Determine the
equilibrium height, A, for sicady state operation.

h
\L:u:n:l 2

- 2
®=Q where Q=o0.0n%

and 2

. Q,= 204l =20Fn™y,

2
.%.;..%.,;z,z-% 3‘%‘*31 where L =fa=0,V =0,
T hus wrd =

7

Vo = Togh
so that

3
0.00LZ =20 F (0.01m) Y2 4.8/ & )h
or
h=2.50m

3-6R
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[ 3.7%R]

LR Flowrate Water flows through the pipe contraction
shown in Fig. P3.14R. For the given 0.2-m difference in ma-
nometer level, determine the flowrate as a function of the di-
ameter of the small pipe, 2.

CANN S T e

B FIGURE P3.14R

VZ 2
Ly, =~é+—v‘-+1'z, whers 2 =2, and V=0

£ 29 ¥ 29
Thos,
= (L2 F1)

VJ = 2; anﬂl

Buvt

L=l and p,=th, | so that p-p =i (h,oh) = 0.28
Thus,

V, =129 028« V2g(0.2)

oar . 3
Q=AY =?#(0.Im)zv2.(?.8/3@.—.)(o.2m) = 0.0/58%

3-12R
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3,26

3.2¢

Thvs 4,

Also,
Q = Vz /4:,

Small-diameter, high-pressure liquid jets can be used
to cut various materials as shown in Fig. P3.26. If viscous ef-
fects are negligible, estimate the pressure needed to produce a
0.10-mm-diameter water jet with a speed of 700 m/s. Deter-
mine the flowrate.

3
-’%*—Vi—abz

ll

p
r
2 £1" -

7002

’3(/0'91»)2] =&580x/0

0.1 mm

/""“

(D )/\}9——\
' //7/9(
_y “x 57
D2 =/0'm ‘/é
2 ==

Vo u FIGURE P3.26

z} tZ, where V=0,2 %2, and p,=0
=4 evz =-21_-(777ﬁ )(700-——)2 = 2,45x/0° 25 k'v

6”,3
cy

3-23
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3.27 l

327 Air is drawn into a wind tunnel used for testing auto-
mobiles as shown in Fig. P3.27. (a) Determine the manometer
reading, h, when the velocity in the test section is 60 mph. Note
that there is a 1-in. column of oil on the water in the manome-
ter. (b) Determine the difference between the stagnation pres-
sure on the front of the automobile and the pressure in the test

section.

m FIGURE P3.27

(a) @L+zl+;g— -_-ﬁi }421

where
Z,=2, , =0, 4nd =0

Thus with Vy =60 moh= 88 £

4.&"‘ “-z—l;_%' or
pz-— PV2~—2(000233 f_’a)(ef'i)"’?ZZ-ﬁ'

8u1 Fe +%ob - o//(/'iﬁ =0 where &y =0.9 8y ,=0.9(62. "Ha

T/)I/.S' —562#3
—5’2274',z +524¢”’ (h#) 5;2 ,zH) 0, or p=0.223

2 2
(b) gl,;uzz 4% = 4,1 42155
where
2,22 and Yy =
T/IVJ
£—+ V" = 4’« or

ﬂs"ﬂz 70 =4 (0.0038 e )06 )’ = 92245
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3.2.9

3.29 A large open tank contains a layer of oil floating on —
water as shown in Fig. P3.29. The flow is steady and inviscid.

(a) Determine the height, 4, to which the water will rise. (b)
Determine the water velocity in the pipe. (¢) Determine the pres- s
sure in the horizontal pipe.

V2 ® FIGURE P3.29
2. 2
w izl - ini

where

Z=0, =0, V,=V=0, Z=h, “’7’{// 4’”( a//)
Thus, with &; = S6 57/0 —07(%*0 M)= 6. 8 =5 4
and from E?. {)

S0 B =200

() VA, = Vohy or %‘5%%=‘E_f"'/ﬂiv =4

Z(o.2m)*

("

But from the Berpovlli equatron,
Y =}[2;«/1 = ﬁ(?.?/m/:")(Z.Wm) =742

Thys,
V, = (741 8) = 1.85 &
2 2
(c) ﬁ;ﬁ+z¢+% = t%.;zzh%_
where
Zy=-im Vy=19sEE 20 2.=18n ;=0
7hos, .
f, =/m +;;fj,’,;)) =2.8m or Bt =3.43m
77;(1:

ﬂ«sﬁm(?w i) = 35.5kP,

0.1'm giameter

(1)

3-26
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3.32

3.32 Water flows through the pipe contraction shown in
Fig. P3.32. For the given 0.2-m difference in the manometer
level, determine the flowrate as a function-of the diameter of
the small pipe, D.

W FIGURE P3.32

2o Vg - L
3,+_£;+Z, 4_—»17?-1-22

where Z,=Z, and Vo =0.

77IUJ)
AT
Byt

Br=x and B=0.2m+x so that
2

X +_7f-;f = 02mix or

/)
Vi=Y2g002m) = (2 (2812 ) (0.2m))% = /.98 22
Thus,
Q =AY, = Z(0.imP(1982)= 0.0156 2 fo apy D
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3,47

3.47

pm = 900 kg/m3

Determine the flowrate through the pipe in Fig. P3.47.

.t
Water o (a)

) 2 FIGURE P3.47
‘%n“*'z'yf;' +zl=<%+?v;~+zz where z, =2, and V, =0
Thus, : -

4l o O A s

but,

L-FL=Gh+&(Lth) =f or /2"/0/’(0”37»)/)
so that

! kg
V=29 (1 =F)h = [2(%9/52)(/- .

999 _,L‘"ls

m
Thos,

2
Q=4 =F (0.0am) (2.20%) = 0.0111 %~

b

2
.5 m)]
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[3.85

3.85 Water flows from the pipe shown in Fig.
P3.85as a free jet and strikes a circular flat plate. Dlameter

The flow geometry shown is axisymmetrical. De- ‘ 222 L(f ) v
termine the flowrate and the manometer reading, (o} f °
H. ( 0.4 mm

1 r
H

0.1m '

() 0l-m
d|ameter

fe

FIGURE P3.85

Plpe

pl-f-_-l- +Z= f—— ?+2’2’ where f, =0 f,_ 0 zl=0 ””dzz-—az,n

22
T/ws

L-Lvz vhere A=AV =0

or v _hay - TDh - 40hy - 40Im(4x107m) \, _
V== gpi e = Y (comp 2 Th6he

Hence, Eq. (1) gives

(L60V, ) = Vi2 + 2(9.81%)(0.2m) o Y= .59 2
So that

Q= A Ve = 7 (0.0m)(4x10 ) (1.592) = 2.00x Pl
A/Sa k

+z, %h—‘é +Z, , where V,=0,2,=0.2m, V=160V,

T/ws,
H=te = /. (2.542)*

R =_—"""2 _02m = 0,2
2% %0 S0 m=22m

or V) =16001598) = 2,542 a,ul/,=o

N

3- 84
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3.87

3.87 A conical plug is used to regulate the air
flow from the pipe shown in Fig. P3.87 . The air
leaves the edge of the cone with a uniform thick-
ness of 0.02 m. If viscous effects are negligible
and the flowrate is 0.50 m?*/s, determine the pres-
sure within the pipe.

Q = 0.50 m3/s

FIGURE P3.87

V;+ZI —%‘i‘%‘"zz Wﬁefe Z/:::Zz 0/75{ fZ:O
/)Zs
o.s-ﬂ _ m

V= % 12(023’”) /2.0

and S

V=& = Q 0.5 % _jgq

2~ A, 2mRh 277‘(0 2m)(0.02m) ~/77Ts
Thus,

k3
£ =+p(V-V?) =7 (/.23%)(/7.92—/2.02)% = /554,

3-86
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5.3l
PLA:_,S
3.31 A nozzle is attached to a vertical pipe and discharges (2 ) 30°
water into the atmosphere as shown in Fig. P5.31. When the th'{'ﬂ’/ /"\//// !
discharge is 0.1 m’/s, the gage pressure at the flange is 40 kPa. volume =, 2
Determine the vertical component of the anchoring force re- . 7 Prea =001 m?
quired to hold the nozzle in place. The nozzle has a weight of /
200 N, and the volume of water in the nozzle is 0.012 m®. Is Nozzle —
the anchoring force directed upward or downward?
8
A l
——
(1) =i
p =40 kPa

<
TO.IO m3/s

B FIGURE P5.3i

The analysis feading to the solution of this problem
is  similar fo The one outlined i Example 5.10.
Tncluded n the (ontro| Volume are [he nozzle and 'he
water in the nozzle af an  instant. Application of le

Vertfical or 2-divechon component of fhe linear
momentuns Eguation (Eg.5.22) o The fow Thrrugh

this conbol volume [Cads Yo 0,7‘7‘5

i (Vsin30°-V, ) = pA~F = W-W =4 sz ()
fo/w'nj Eﬁ' / for f;‘; yrelds
= - -» n30°— (2,
6)2"9"41—%- M,/V m(‘é" 50 V,)
Pr m we use m = P&

FW%WQ-M!L M»Z,:-bf,);/

Fromn congert/aﬁ'on of hmass we obtain

€ = &,
or
.-
A (con't )
5-29
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(531 (con't)

Also we not that V)= /)ﬁl
Thus, E§.2 becomes

FI:PA,_ -{7(){__/0@/&5/”30-—-__’_)

Az

W go0 & 200 N
/M 1000 (& (ﬂ.ﬂzrw" — 20
(’Mw( m* P )[ m) )
%N N
~(0.012 '"1)(7"9,,?)//0”1’)
- (794 2 /a,a/ 23)(’ V.s? )(0.01 T ("""
m3 s — Sin 30"
*G.m 0.6/ m* ) 0.02mt
an ot

F , 7 B00N - 200N -117.6N - ON = 482N downward

A —

5-30
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5.33
V=15m/s
Area= 1 m? (l) CVM(Z;),- —Area=0.3m?

\

[

Water flows as two free jets from the tee attached to T 7

the pipe shown in Fig. P5.33. The exit speed is 15 m/s. If \ i |_
X
¥

viscous effects and gravity are negligible, determine the x and "
y components of the force that the pipe exerts on the tee. \ ! ===

Use +he Contral volume. Shown.
Foy +he X—componem‘ of the Sforce exeried by the pipe
on the tee we use the x- component of The linear
momentum egaaﬁ'on.

VYA F e a2 0A, - A ARy )+

Joge
KSR (1)
9%
o ge? vV we use comservation of- mass
6?, by Qz + Gl3
sr AV, =RV, + Al
2 m .
So Vv = Av, + AWy _ (2.3m*)(157% ) + (0.5 m™)(15 ™5 ) 274

AI /m—n.
Jo estimalke Prgase “E use Bevrnoull s eguaﬁ’m For Hpo betwean (1) and(2)

}7'9“5? 4 EZ = /719'123 + _V_l— J
ﬂ 2 /O Zz ko m ] N. 2
L i A1 )
"9'4)6 ) 2 ) ,;,—3 2 y

- .4
qusc - 4.0'500 2

Now Usin ) ,:/e get - 2
Lot - Coxms foetisl 42)-
ﬁo,Sao,:_‘i;)(/m‘) + F
or ——72/009/\/: F:(
so F o= 72,00N <—

X

For [Py comporant- of the foree exerfed éy”bf/ﬂJ}OC on He fee we use v
Y Component- oF (Rt [inear momentum egmatren fo get
V. AZ = £~

v, ol 7,
//Sf)(‘77?332)ﬁ55_)ﬂ.2m‘) = 67,400N 7‘ = F,
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5.3%
5.3% Acircular plate having a diameter of 300 chion(
mm is held perpendicular to an axisymmetric hor- sechion ’)-—\ I )
izontal jet of air having a velocity of 40 m/s and ]l /’ section (2)

a diameter of 80 mm as shown in Fig. P5.38. A | 4
hole at the center of the plate results in a dis- 40 m/s == 80 mm d=Fa,x §=—>40 m/s
charge jet of air having a velocity of 40 m/s and : |

a diameter of 20 mm. Determine the horizontal froe e )
component of force required to hold the plate ee J _J !
stationary. FIGURE P5.35 .1_41

7

i
l-Plate

120 mm

The contol volume contamns the plate and %mhy ar as indcated
/h the sketdh above . Application of the hovizontal or X
divection component of the lincar momentum equafion yiekds

—u,/aulﬁl-;-u”gu-zAL = _eix
o 2 WPt 2,y 0! 2 2
T/)Hj z z >
F o= (%0 r_n)ﬂi?f!) A (iomm)—(%mi/ﬂf/_ )
X 5 m*/ 4 /000 mm)* o
and ( ";’—) 952
F = 927N
ﬂ/X jos—
5-29
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5.47
e L I S e Vv
A free jet of fluid strikes a wedge as shown in Fig. _V> (/)i o p=30c : —
P5.47. Of the total flow, a portion is deflected 30°; the remainder ' ! e E)f
is not deflected. The horizontal and vertical components of force T }\\ A v
needed to hold the wedge stationary are F,, and F,,, respectively. Free jet ~ “\kfFv T
Gravity is negligible, and the fluid speed remains constant. De- A N | oy
termine the force ratio. F,,/F\. % 72) N~
The hmf}am‘a/ avd vertical Cm/gnerﬁfr of the [lrnear
momentum eguafion are applied Hp e (omfeths of the
Contol volume shown 1o get o
0 - /
SVeVA FY G At s S0 Ay =
- r 2 _ 2)
—Ysmmzoo, A, = F (
However v =v v, =/ so égs. (1)and(2) become
/ 2 7
l o
V/’(Az"ﬂj cos 30 — ﬂ) - - /—;,,
Vi Ay sm 30° = - F,
and ., (=)
6_, _ A, 130530 - A
K A, sm3z0°
From  conServalinn of mass we get
K, =&, + &
or
/‘)’ v = 4V 7+ /43 Vv
andl ("/)
AI = /)z 7‘— ”3
Comb Yy Eps. (7) amdd () We gef
o o
5 /47_7"/)?50.:.?0 — A, =% _ ﬂ;(loﬁo -/ _a.__z_z
= 3 5 30°
v A_; Son 30 2 ﬂ7

The negahVe sigm siodicater et F /s dpwn rather Thar
up as Shown 1y The stefe
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5.55  Assuming frictionless, incompressible,
one-dimensional flow of water through the hor-
izontal tee connection sketched in Fig. P5. 55,
estimate values of the x and y components of the
force exerted by the tee'on the water. Each pipe

Section (3) Section (2)
\ I

_——-- -

has an

inside diameter of 1 m.

py = 200 kPa
FIGURE P5. 55

We can use the x and y components of the linear momentium
eguation ( &5 . 5.22) Yo determine the x and y components of

the vreaction force exerted by the water on the tee. For
+he.  cortrol volume Com‘m;«:}nj water tn the fee, Eg. 522 lead's
o 2

R, =74tV el = RTD + VoA, )
and 2 2

Rp = BTh - BT + Upla—lir & (2)

The yeachion Forces in Fgs. lamd 2 ave am‘wz//y exerted éy the tee
on the water in the contrl volume . The reachon of the wakr 0n
the tee s egual in wagnitude bul opposite in Awection .
Conservation of mass (Eg. 5.¢) leads o
_ _ — Y 2 B 3 ks m3
Q,=Q,-@ = & ~ " :I@ =100 (é;_»)z_f(/m) = 528 2

Also 2 X
-Q, = %T_";D; :/é;—")g[/"') = 4.7/2 23’
5
Fuvther 3
ye B (5208 =)
A T 4733 o
7 7l
and Y
= 3 /0 -'—"—3
4 e = _(__’__]_ 12.73 7
77',‘7 77‘(/»1)1 s
7
/[‘on'f )
57
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45 55

(con't )

Because e How is ihcompressible and frictiontfess we assume that
Bernoullis equation (&5 5740 s valid  throvghou' The contrl volure. Thus

% 1 ?

2 a g 34 2 /7 A /o kVe
Lop+ £ = w4 (ﬁfgf(é?/'ﬁﬂﬁ/é *—")( ﬁ’)
i S* m3

/; = 137 %l
Also

4 2 2 7

- 2,2 _ 9% Y 0 24

AR %-@)-mﬁé+@’Zm)/ff’/-(éw,—”-//{g}/f)
s ”,1

ovr
p =1953 *Va
Wit é-‘ﬁ/

z, - /zaa,mﬁ’)yz‘(m; + /ég)ﬁ??éi)ﬂZZ;y/;ﬁw )= 1950000 = FSHNV

M3

and the  x-divtchim Compment  of Jorce exerfed by ﬂled/Or on The
tee /5 _ /85 RN

With £¢' 2
- N (Om) _ NYTT >
,2}, ﬂ‘?g?aa’; }'Z/L /m) (/fgvdom_z) 4_’ (Im) +[g.7335:r/f77¢§; 52

o +(€.733 L’Z)(Q‘i‘i L3 ﬁfzﬁ‘m?) 1N
5 — —

m3 s &g

52

R, = - g0oN =-45.54N
and +the Y- dl;’wﬁ'orx Cﬂm,opnc'af of 7§rc{. 6\5&)'7(55/ 5}' 7he watrer on
the tee is * 45.8 RN .

[
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5.57

Water flows steadily into and out of a tank that sits on
frictionless wheels as shown in Fig. P5.57. Determine the di-
ameter D so that the tank remains motionless if F = 0.

A,ap/ym‘j the hm;?an/a/ tomponent

of the linear wiomentum eiumf'm

fo e cConfents of M (ontrol

Vilume Shown 1 the skekb we get:
f \7/0 l_/l-'ga/ﬂ = ZF
s

'_V'FV'AI_%FVZAZ_I_V% 1/3/43 =0
and _ qu_{oﬁz _ V;f’f_pl—f ng(o v_-ffz-‘-' J
4 4 4

Fence v, =V, :lﬁ;;" we obtain

‘//2-0’131_/310'1_ V;DL (,)
Fron. the comServahon of mass Wm we 967L

R, =&, 1t Gy
or

vaT=y D + kgdl
Agam , 5vrce V2,=V3:l/z}7, we get

Vd* = vp*+yd® ()
Lookm'j at &s. (1) amd (2D Hogethar we Conchude

If WV, €300 cannot be satickled
e5.G) Cam be satisted

% es () can be sabished
G ezz, G) Cannot- be satiched
= e2.0) can be sahished w;zl b=0
& emy ’ Carn be satisBest wth P=0

So l/?;l/l MO:'O
V-
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5.60 A vertical jet of water leaves a nozzle at
a speed of 10 m/s and a diameter of 20 mm. It
suspends a plate having a mass of 1.5 kg as in-
dicated in Fig. P5.60 . What is the vertical dis-
tance h?

5.60

FIGURE P5.60-

To defermme the verlical distance b we Apply the verfical diechon
component of the /limear momentum €gualion (52' $.22) fo fhe
water 1 the contro] volume. shown in The sketcl above. Thys,

q

The l/er‘f/'m/ reaction farce o{ //15 j)/afe on he wafer js
equal in magnilude fo the weight of e plate , or
Re =9 Mylate =(9.81 2)(1.58) = 147 N
Also, the weight of te water within e control volume , pg ¥ ..,
is negligible, and the mmass flowrate is
peoAl = phly (99935 )F(002m) (10 8) =503 %

T/]Uj’ E 7 / becames

. 147 N m
—~ /4 = -~ m = ——— = 70 ==
/ 7/‘/ V or M 3’/3&/3 l‘L K3

From the Bernouli Eguetion (£4.3.7) we hove
ArEpU Iz = f 4P YR IE hers £, =f) =0
z,=% , 2~
Tﬁw,i Ve Loyt
2PV = 200
or since & =09

/ 2 2
h=m(l*-y* =m(/0 — 470" )% = 3,97 m

¥
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