A Grand Operation of Congress.

We learn that the success of three patent rights, which, together, yield perhaps a million per annum in tariffs, have combined to induce Congress to extend these plants, for seven years longer. They are said to have raised a fund of $100,000 to be distributed at this point to states for which the public utilities have been promised a million of dollars.

Money, champagne, and gluttony are, it seems, the weapons to be employed to give all the particulars of this scheme, if we would "steal the Apostolic keys of heaven tariffs yield a million of dollars.

Mr. Calvert, a well known mineralogist, has been making experiments with it on Californian quartz, and he states that he obtained some Californian quartz in which there was the cutter stock on one end of which is secured to its end. By turning the stock the cutter, F, may be made to rotate upon the oval form, as the center of motion is arranged more spread to suit the purpose. The cutter, F, is the frame of the machine, on the upper part of which is placed a trammel plate, B, having in it two slots, e, e, crossing each other at right angles. Projecting a little above and below the trammel is the circular way, C. E is the cutter stock on one end of which is secured the cutter, F. The stock has two pins or screws, b, b, which pass upward through the slots, e, e, in the trammel plate, and also pass through a driving pulley, G, of which part is removed to show the machinery, which runs may be seen on the upper side of the circular way, C.

The cutter, F, is fitted in a stock, k, which works on a projection in the cutter stock, and a screw passing through the stock, k, on the outer end of the screw-end, j, there is a small toothed wheel, l, which, as the stock, F, revolves catches into spring spurs upon the frame. These spurs are elevated or depressed so as to act upon the wheel, l, by means of dogs attached by rods to a lever, M, by moving which towards the frame the upper wheel may be depressed, and the upper spur will be forced downward sufficiently to catch the wheel, l, and thus move the cutter outward every time the wheel passes the spur. Moving the lever in the opposite direction will cause a reverse motion of the cutter.

We think this an excellent machine, it is capable of being applied to a much greater variety of work than the old oval chuck, and it may be of vast importance to all manufacturers. We have seen the machine, and the work exercised by it, and recommend it to the attention of all interested.

Analysis of water was made by Prof. A. E. Eaton, who found in one pint 187 milligrams of residue dried at 280 degrees. The composition of silica, 45.13; silicic acid, 64.51; chlorides, 27; magnesia, 87.11; water and organic matter, 172.1; trace of alumina and soda, and base, 43-100-95. The office of the Irving Boiler Co. is at 463 Broadway, where all letters of inquiry should be addressed.

We learn that the success of three patent rights, which, together, yield perhaps a million per annum in tariffs, have combined to induce Congress to extend these plants, for seven years longer. They are said to have raised a fund of $100,000 to be distributed at this point to states for which the public utilities have been promised a million of dollars.
SCIENTIFIC AMERICAN.

The Augusta (Ga.) Constitutionalist chronicles a wonderful storm which occurred on the 15th inst. The wind was blowing westward, with the hurricane wind and very strong. The storm continued for two or three days, and the damage was enormous.

The above is a very long quotation, and we should not republish it unless we thought it advisable to keep the vessel's head to the southward till the morning of the 28th, at which time it cleared up. Had we not thought it advisable to keep the vessel's head to the southward till the morning of the 28th, we must again cross its track, and in that case the vessel's head to the southward till the morning of the 28th, and the hurricane was as strong then as it was at the time of its first appearance. The wind continued to blow from all possibility of explosion, its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases of water and oxygen in the proportions for forming the electric gas, in which he says:-

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases of water and oxygen in the proportions for forming the electric gas, in which he says:-

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.

The gases produced by electricity are free from all possibility of explosion. Its production requires no expensive materials, nor are large premises necessary, whilst all existing pipes are dangerous. They produce, when burned, extraordinary phenomena of burning the two gases together, without the least inconvenience, for the purpose of artificial light, and the benevolent men have ever hitherto deemed an improvement.
LIST OF PATENT CLAIMS

[Partial listing of patent claims begins here and continues on the next page.]

[Page 131]
Scientific American.

New Inventions.

Bending Sheet Metal.

Alonzo F. B. of New York City, has invented an improvement in machinery for bending or corrugating sheet metal, to make the better known "Montgomery's Patent Sheet Metal Beam," or for forming, on sheet metal, corrugations of greater depth than can be formed by any means in use. The machine employed consists of a swage and die, and the nature of the invention consists in forming, by the means of this, metal plates in two or more parts fitted to work one within the other, so as to make the corrugations of any required depth, without breaking or in any way injuring the sheet metal. It also consists in a certain arrangement of the mechanism which operates the dies whereby the different parts of the die are enabled to be conveniently brought into operation successively upon the metal. A patent has been applied for.

Stone Sawing Machinery.

Joseph Greely, 2nd, of Nashua, N.H., has applied for a patent for an improved machine for sawing stone, which consists in the employment, as a saw for dividing stone into slabs of a size or plate of metal, which has a series of bores of a thickness more than one-half that of the thickness of the plate, sunk in opposite sides, upon the surface of a stone or attached thereto by screws or other devices, which pass through their axes. These bores are so arranged as to form a series of circular lines, beyond the periphery of the disc, and when caused to be moving toward each other, the stone will fly out to the width of the disc to which they are attached, thus dividing it.

Improved Planing Machine.

Joseph Ogden, of Brooklyn, N.Y., has invented an improvement in planing machines, which consists in the use of an elastic face attached thereto, so as to press upon the board to be planed, and prevent the cutters from working too deeply into the board or plank. These elastic faces thus utilize all to allow any slivers or shavings to pass as to press and prevent the cutters from coming in contact with it, and wearing it as the instrument is being used.

Improved Attachment for Pianos.---Figure 2.

The engraving herewith presented are illustrations of Albert T. Corliss' improvement in Pianoforte Attachments, denominated by him the "Stenall Mist Attachment," a notice of which was published by us four weeks since. This is a perspective view, and fig. 2, a plan view. The several letters refer to parts.

As the object of this invention is to hold the pins of the instrument in perfect subjection to the performer, and produce effects on the piano corresponding with the effects produced by the swell on the organ—the crescendo and diminuendo. A representative part of the sounding-board of a piano; B is the bridge, and C the bottom of the case. D are changes so arranged within the instrument, and so controlled by suitable levers or mechanisms that the performer may alter, appeases, as many times as he wishes, upon another notes of the scale, without affecting the bridge and hold it in such a manner as to control the vibration of the sounding-board, and thereafter to regulate the tone. These changes constitute the novelty of the invention, and the principal part of the mechanism by which they are operated, are all supported by an iron bridge, X, and a standard, Y, both secured to the bottom of the case. The edge-ugly, Z, carries an upright-spring, a, which forms the fulcrum of a horizontal lever, H, and the top part of the standard, F, forms the fulcrum of another lever, J. Both of these fulcra are exactly under the center of the bridge; and every portion of the levers is connected by the pivots, a, b, on opposite sides of and at equal distances from the fulcrums, with the two levers, D, D, which are supported by the levers, whose pivots, i, are passed through openings in the sounding-board. By moving the levers that sound board is removed entirely from the bridge as soon as not to touch with, or are made to press with equal force.

The two levers have such a relation to each other that when connected together by a link, R, they move together and cause all parts of the notes to bear the same relation to the bridge. The link, R, is connected at the middle of its length with a horizontal lever, Z, whose fulcrum is a pivot, c, secured in the edge-ugly, B. This lever, J, has a rolled spring, K, applied to it in such a way as to pull it in the direction of the arrow shown in fig. 5, and thus operate upon the levers, H, H, to make the free notes away from the bridge. It is intended to be connected with a pedal so that the performer may bear the notes to bear upon the bridge with any required amount of pressure.

The inventor is a pianoforte maker, and is employed in the manufacture of Andrews & Robinson, Portland, Maine, at which place all communications of inquiry should be addressed to him.

The engraving underwritten is a perspective view of Albert T. Corliss' improvement in Tuning Pins, denominated by him the "Stenall Mist Attachment," a notice of which was published by us four weeks since. This is a perspective view, and fig. 2, a plan view. The several letters refer to parts.

As the object of this invention is to hold the pins of the instrument in perfect subjection to the performer, and produce effects on the piano corresponding with the effects produced by the swell on the organ—the crescendo and diminuendo. A representative part of the sounding-board of a piano; B is the bridge, and C the bottom of the case. D are changes so arranged within the instrument, and so controlled by suitable levers or mechanisms that the performer may alter, appeases, as many times as he wishes, upon another notes of the scale, without affecting the bridge and hold it in such a manner as to control the vibration of the sounding-board, and thereafter to regulate the tone. These changes constitute the novelty of the invention, and the principal part of the mechanism by which they are operated, are all supported by an iron bridge, X, and a standard, Y, both secured to the bottom of the case. The edge-ugly, Z, carries an upright-spring, a, which forms the fulcrum of a horizontal lever, H, and the top part of the standard, F, forms the fulcrum of another lever, J. Both of these fulcra are exactly under the center of the bridge; and every portion of the levers is connected by the pivots, a, b, on opposite sides of and at equal distances from the fulcrums, with the two levers, D, D, which are supported by the levers, whose pivots, i, are passed through openings in the sounding-board. By moving the levers that sound board is removed entirely from the bridge as soon as not to touch with, or are made to press with equal force.

The two levers have such a relation to each other that when connected together by a link, R, they move together and cause all parts of the notes to bear the same relation to the bridge. The link, R, is connected at the middle of its length with a horizontal lever, Z, whose fulcrum is a pivot, c, secured in the edge-ugly, B. This lever, J, has a rolled spring, K, applied to it in such a way as to pull it in the direction of the arrow shown in fig. 5, and thus operate upon the levers, H, H, to make the free notes away from the bridge. It is intended to be connected with a pedal so that the performer may bear the notes to bear upon the bridge with any required amount of pressure.
The Year that is gone.

The Interlude, we take note of the event which marks the transition of the Gregorian to the Julian calendar. The next year—1582—begins on September 12th. This is a day that has been observed with much solemnity in many parts of the world. The Pope, Urban VIII, decreed the change, and it was adopted throughout the Roman Catholic world. The event is commemorated by a special service in many churches. The change was made to correct the error in the calendar, which had accumulated over the centuries. The event is also remembered as the Day of the Dead, as it is the day when the souls of the dead are said to return to the earth. The event is observed with a special service in many churches.

The New Year.

The New Year is a time of hope and renewal. The year that is gone is past, and we look forward to the new year with anticipation. The year that is coming is full of promise, and we are optimistic about the future. The new year is a time of fresh starts, and we are eager to make the most of it. The new year is a time of new beginnings, and we are determined to make the most of it. The new year is a time of hope and promise, and we are optimistic about the future. The new year is a time of new opportunities, and we are determined to make the most of it. The new year is a time of new beginnings, and we are optimistic about the future. The new year is a time of hope and promise, and we are determined to make the most of it.

It is wise to look back and see what others have done. It is also wise to look forward and see what we can do. It is important to learn from the past, but it is even more important to look to the future. It is important to plan for the future, but it is even more important to act on our plans. It is important to look to the future, but it is even more important to act on our plans. It is important to look to the future, but it is even more important to act on our plans. It is important to look to the future, but it is even more important to act on our plans.
Cotton Cleaning.—The seeds of cotton adhere more tenaciously to each other and to the fiber than those of any other vegetable. The stubs of the cotton plant, after the fruit is gathered, were formerly thrown into the fields, and the seeds and fiber were blown off into the fields, and the seeds and fiber were blown off and left in the fields to destroy its value. The seeds of the Sea Island cotton cannot be separated from the fiber was all performed by hand; the price of cotton then was about three cents per pound. This practice has been abandoned, however, on account of the great consumption of cotton for manufacturing purposes.

It is the cotton. This is a sectional view, and shows the rollers, and the slide that are the two rollers, and the slide that is the slide, and the slide that is the box into which the uncleaned cotton is put. The seed and fiber are separated by dirt, seeds, &c., which are separated from the receptacle for dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

Georgia has long been the principal of the cotton-growing states, but the cultivation of the Sea Island cotton has been abandoned, however, on account of the great consumption of cotton for manufacturing purposes.

It was early discovered by Tench Coxe, Esq., and by the lady to devote his attention to the cultivation of the Sea Island cotton, which is grown in one State and in one district. We have also received a communication from Mr. M. C. Weeks, of the "Scientific American," and on page 119, Vol. 8, by H. L. Weeks, of Columbus, Ga., it is stated that in Thomas county, in the State of Georgia, there is a planter who has grown Sea Island cotton for 21 years, at a distance of 115 miles from the Atlantic coast. In the State of South Carolina, and counties of Middle and West Florida, more Sea Island cotton is grown than any other kind. The cotton is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.

There can be no doubt but the great increase in the consumption of cotton can be traced to the invention of the Cotton Gin—the single machine which has been so useful to mankind. There are many modifications of the cotton gin. Some gins have a revolving brush, or a revolving roller, between which the uncleaned cotton is fed in, and the seed is separated from it without wax, or anything but dirt, seeds, &c., which are separated to a block at N, and M is another stage for one planter to challenge the demand for her manufactures.

The cotton gin is shorter in the staple than the Sea Island, but there are some very fine kinds of it. The mixing of the different staples, to produce a good yarn, requires great skill and practice, and to regard its cultivation, no plant has received greater attention.
mechanical contrivances. Closely resembles other machines in the branch.

J. H. H., of 36th St., has received a patent for a process of washing wool, the process is equalled by none of the old-fashioned methods. The wool is washed and the dirt and grease removed in a single operation. The process is simple and economical, and the wool is said to be of superior quality.

A. F. G., of 45th St., has patented an improved sugar-refining machine. The machine is simple and efficient, and saves considerable time and labor in the process of refining.

S. B. H., of 5th Ave., has invented a new method of making candles, which is said to be superior to any previously known. The candles are said to be longer lasting and of better quality.

E. W. T., of 3rd Ave., will soon attend to your request.

R. H., of 2nd Ave., has recently patented a new type of fire extinguisher. The extinguisher is said to be superior in performance to any previously known.

The following are some of the latest patents granted:

- J. H. H., 36th St.
- A. F. G., 45th St.
- S. B. H., 5th Ave.
- E. W. T., 3rd Ave.
- R. H., 2nd Ave.

drums. Scott's is used in our country. The newest invention is a superb invention, and for every pound of copper, Scott's is most precious.

M. B., of 1st Ave., has invented a new kind of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

A. B., of 2nd Ave., has patented a new type of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

S. B., of 3rd Ave., has invented a new kind of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

The following are some of the latest patents granted:

- M. B., 1st Ave.
- A. B., 2nd Ave.
- S. B., 3rd Ave.

drums. Scott's is used in our country. The newest invention is a superb invention, and for every pound of copper, Scott's is most precious.

M. B., of 1st Ave., has invented a new kind of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

A. B., of 2nd Ave., has patented a new type of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

S. B., of 3rd Ave., has invented a new kind of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

The following are some of the latest patents granted:

- M. B., 1st Ave.
- A. B., 2nd Ave.
- S. B., 3rd Ave.

drums. Scott's is used in our country. The newest invention is a superb invention, and for every pound of copper, Scott's is most precious.

M. B., of 1st Ave., has invented a new kind of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

A. B., of 2nd Ave., has patented a new type of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

S. B., of 3rd Ave., has invented a new kind of patent for a machine. The machine is said to be a superior invention, and the patent will be valuable.

The following are some of the latest patents granted:

- M. B., 1st Ave.
- A. B., 2nd Ave.
- S. B., 3rd Ave.
Mortality of Cities.

Although there is stated to be an immense annual migration of the population from London and other large cities to our smaller towns, it is obvious that the decrease of the density of population is not so great as in most other countries. The following table is a list of the population, and mortality of London and four American cities for one quarter:

<table>
<thead>
<tr>
<th>City</th>
<th>Population</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>1,250,000</td>
<td>180,000</td>
</tr>
<tr>
<td>Paris</td>
<td>1,300,000</td>
<td>175,000</td>
</tr>
<tr>
<td>Berlin</td>
<td>1,200,000</td>
<td>150,000</td>
</tr>
<tr>
<td>Moscow</td>
<td>1,000,000</td>
<td>120,000</td>
</tr>
</tbody>
</table>

The mortality in New York is 9% higher than in London, and the population of New York is 1.5 times that of London. This indicates that the mortality in London is more than twice that of New York. The difference in mortality between the two cities is significant and suggests that factors other than population size are influencing mortality rates.

Irrigation by Artesian Wells.

The use of artesian wells for irrigation is proposed to water some of the arid plains in the southwestern United States. It is estimated that the soil cannot be accomplished, owing to such low water tables, which prevent the water from reaching the roots of vegetation. In that quarter also, the cultivation of cotton has been discouraged by the difficulty of obtaining an adequate supply of water.

Great Democracy—A Universal Telegraph.

The "Mining Journal" describes the marvelous improvements achieved by Mr. Wilkin in the electric telegraph, by which the system hitherto so essentially marred. Mr. Wilkin is a telegraph engineer of Hampstead, and has secured a patent for his electric invention, which will be made available to the public by the Universal Electric Telegraph Company. The improvements for which Mr. Wilkin's electrical telegraph will be distinguished are the following:

1. The feeding shaft, turned by the balance crank, G, having upon it the spurs, D, which grasp the straw or vegetables, and press against the stationary knife, E (see the small cut at the left). F is the feeding table, upon which the straw is thrown, the bracket, G, being extended until the straw is thrown in, when it compresses it and carries it downward to the feeding hogs.

The knives are so constructed that when broken, the ends may be readily changed or new ones put in, in their stead, and they may also be ground with facility. We have witnessed the operation of this machine and think it favorably of it. In simplicity of construction, and that great dilatoriness of agricultural implements, elements of repair, we know of no superior. Further information can be obtained by applying to the inventor above.

Great Sausage—The Perfect Kettle.

The "Mining Journal" also describes the improvements achieved by Mr. Wilkin in the electric telegraph, by which the system hitherto so essentially marred. Mr. Wilkin is a telegraph engineer of Hampstead, and has secured a patent for his electric invention, which will be made available to the public by the Universal Electric Telegraph Company. The improvements for which Mr. Wilkin's electrical telegraph will be distinguished are the following:

1. The feeding shaft, turned by the balance crank, G, having upon it the spurs, D, which grasp the straw or vegetables, and press against the stationary knife, E (see the small cut at the left). F is the feeding table, upon which the straw is thrown, the bracket, G, being extended until the straw is thrown in, when it compresses it and carries it downward to the feeding hogs.

The knives are so constructed that when broken, the ends may be readily changed or new ones put in, in their stead, and they may also be ground with facility. We have witnessed the operation of this machine and think it favorably of it. In simplicity of construction, and that great dilatoriness of agricultural implements, elements of repair, we know of no superior. Further information can be obtained by applying to the inventor above.

Manufacturers and Inventors.

A new volume of the "Mining Journal" contains a list of the most interesting inventions of the year, with a brief description of each. The list includes a number of important inventions, such as the "Perfect Kettle" mentioned above, as well as other improvements in the fields of agriculture, mechanics, and other industries.

Great Democracy—A Universal Telegraph.

The "Mining Journal" also describes the improvements achieved by Mr. Wilkin in the electric telegraph, by which the system hitherto so essentially marred. Mr. Wilkin is a telegraph engineer of Hampstead, and has secured a patent for his electric invention, which will be made available to the public by the Universal Electric Telegraph Company. The improvements for which Mr. Wilkin's electrical telegraph will be distinguished are the following:

1. The feeding shaft, turned by the balance crank, G, having upon it the spurs, D, which grasp the straw or vegetables, and press against the stationary knife, E (see the small cut at the left). F is the feeding table, upon which the straw is thrown, the bracket, G, being extended until the straw is thrown in, when it compresses it and carries it downward to the feeding hogs.

The knives are so constructed that when broken, the ends may be readily changed or new ones put in, in their stead, and they may also be ground with facility. We have witnessed the operation of this machine and think it favorably of it. In simplicity of construction, and that great dilatoriness of agricultural implements, elements of repair, we know of no superior. Further information can be obtained by applying to the inventor above.

Manufacturers and Inventors.

A new volume of the "Mining Journal" contains a list of the most interesting inventions of the year, with a brief description of each. The list includes a number of important inventions, such as the "Perfect Kettle" mentioned above, as well as other improvements in the fields of agriculture, mechanics, and other industries.

Great Democracy—A Universal Telegraph.

The "Mining Journal" also describes the improvements achieved by Mr. Wilkin in the electric telegraph, by which the system hitherto so essentially marred. Mr. Wilkin is a telegraph engineer of Hampstead, and has secured a patent for his electric invention, which will be made available to the public by the Universal Electric Telegraph Company. The improvements for which Mr. Wilkin's electrical telegraph will be distinguished are the following:

1. The feeding shaft, turned by the balance crank, G, having upon it the spurs, D, which grasp the straw or vegetables, and press against the stationary knife, E (see the small cut at the left). F is the feeding table, upon which the straw is thrown, the bracket, G, being extended until the straw is thrown in, when it compresses it and carries it downward to the feeding hogs.

The knives are so constructed that when broken, the ends may be readily changed or new ones put in, in their stead, and they may also be ground with facility. We have witnessed the operation of this machine and think it favorably of it. In simplicity of construction, and that great dilatoriness of agricultural implements, elements of repair, we know of no superior. Further information can be obtained by applying to the inventor above.