
Open Journal of Optimization, 2012, 1, 34-38 
doi:10.4236/ojop.2012.12006 Published Online December 2012 (http://www.SciRP.org/journal/ojop) 

Investigation of Probability Generating Function in an  
Interdependent M/M/1:(∞; GD) Queueing Model with  
Controllable Arrival Rates Using Rouche’s Theorem 

Vishwa Nath Maurya 
Shekhawati Engineering College, Rajasthan Technical University, Kota, India 

Email: prof.drvnmaurya@gmail.com, prof_vnmaurya@yahoo.in 
 

Received September 28, 2012; revised November 2, 2012; accepted November 14, 2012 

ABSTRACT 

Present paper deals a ( )1 : ;M M G∞ D queueing model with interdependent controllable arrival and service rates where- 

in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as 
per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is 
presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server 
provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our cen- 
tral attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and 
faster arrival rates of the queueing model taken into consideration; which may be helpful for mathematicians and re- 
searchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting 
the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy 
periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this 
paper. 
 
Keywords: Interdependent Queueing Model; Bivariate Poisson Process; Controllable Arrival Rates; Probability  

Generating Function; Laplace Transform; Rouche’s Theorem; Performance Measures  

1. Introduction 
The probability generating function approach plays a 
vital role in the study of queueing problems as it is cru- 
cially useful in performance analysis of a wide range of 
queueing models. As an example, the probability gener- 
ating function approach facilitates to determine the ex- 
pected busy and idle periods and system size distribu- 
tion. In the queueing literature, it has been enthusiasti- 
cally observed that most of the previous researchers [2-7] 
and references therein have presumed that the parameters 
of arrival and service rates in the queueing systems are 
independent to each other. However, it is not so in gen- 
eral because we find many queueing situations in our real 
life where the arrival and service rates are correlated with 
an elevated extent. We remark here that the arrival rate of 
a variety of queueing systems is usually controlled in 
order to reduce the queue length. Queueing models with 
controllable arrival rates have been studied by a few 
noteworthy researchers [3,8-10] which reveals the fact 
that there is still an increasing demand of analyzing an 
interdependent queueing models with controllable arrival 
rates. Srinivasa Rao et al. [8] have confined to obtain the 
average system size and average waiting time of an  

1M M ∞  interdependent queueing model with con- 
trollable arrival rates under steady state conditions. Of 
late, Pal [4] considered the same queueing model which 
was already examined by Srinivasa Rao et al. [8] with a 
version of its limited waiting space and he succeeded to 
investigate the cost per unit time of a served customer in 
the system. Recently, Thiagarajan M. and Srinivasan A. 
[9] focused their attention to explore the 1XM M ∞  
interdependent queueing model with bulk arrivals and 
controllable arrival rates. In this sequential work, we 
consider here an interdependent ( )1 : ;M M G∞ D  
queueing model incorporating bivariate Poisson process 
and controllable arrival rates in order to investigate the 
probability generating functions in faster and slower ar- 
rival rates. 

2. Description of the Model 

In the present study, we consider an interdependent 
( )1 : ;M M G∞ D

2

 queueing model with bivariate Pois- 
son process and controllable arrival rates. The arrival 
pattern of customers are controlled by the system that it 
allows two arrival rates  and ; . Without 1λ 2λ 1λ λ>
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loss of generality we assume that whenever the system 
size attains a fixed number S, the arrival rate reduces to 

2  from 1  and the arrival rate 2  remains unchang- 
ed till the system size is greater than . But 
as soon as the system size reduces to R, the arrival rate 

2  changes back to 1  and the same pattern of change 
of arrival rates is repeated during the complete busy 
period of the system. Moreover, we assume that both 

λ

λ

λ λ
;0R R≤ < S

λ

( ){ }X t  and ( ){ }Y t

( )

 representing respectively the 
arrival and service processes are interdependent and 
these discrete random variables follow a bivariate 
Poisson distribution [11] with their probability mass 
function ( ){ },x Y=P X
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with following feasible conditions:  

 

and μ ν λ μ> < < . 
Here μ  is the mean service rate and ν  is the 

covariance between arrival and service processes. 

3. Postulates of the Model  

In addition to our assumptions in previous section-2 of the 
model, we have here underlying postulates for the pur-
pose of our current study and analysis: 

Postulate 3.1: The probability that there is one arrival 
and no service completion during a small interval of time 

 is ( ) ; when the system has arrival rate 
. 

tΔ
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Postulate 3.2: The probability that there is neither ar- 
rival and nor service completion during a small interval of 
time  is , when the system 
has arrival rate . 

tΔ+

Postulate 3.3: The probability that there is no arrival 
and one service completion during a small interval of time 

 is , whatever be the arrival rate 
. 

Postulate 3.4: The probability that there is one arrival 
and one service completion during a small interval of time 

 isνΔ +

;t i =
2
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4. Differential-Difference Equations  

Before proceeding further, we use symbol  
be the probability that there are n customers in the system 
at time i  when system allows the arrival rate 

. 

1,2

; 1= ,it i
Now it is fairly easy to observe that  exists 

when  however both  and 
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We further assume that the initial system size is 1 and 
R + 1 respectively when system has arrival rate . 
Let 0 1  and R+  be the busy period density 
respectively when the system has arrival rate . 

; 1, 2i iλ =

; 1, 2i iλ =
( )P t 'P

0 1

( )
λ μ

1,

)

1 2

 

Now in view of an absorbing barrier at empty system 
during its faster arrival rate 1  the governing differential 
difference equations of the system size for the model are 
as following: 

′P t            (4.1) 

( ) ( ( )1 1 1 1= − + tλ μ    (4.2) 
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+ −
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 (4.3) 

The differential difference equation for the system size 
 is as following: 

( ) ( ( )1 1 1
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P t P tλ ν
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 (4.4) 

Moreover, the differential difference equations for the 
system size  are as following: n R= +

( ) ( ( )
( )

1 1 1

     

= −

+ −

tλ ν
μ ν

  (4.5) 

And the differential difference equation governing the 
state  is as follows 1n S= +

( ) ( ) ( )1 1 1= − tλ ν  (4.6) 

Similarly, in view of an absorbing barrier at  
system size during its slower arrival rate 2 , we have the 
differential difference equations governing for the system 
size as following: 
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th
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As in the earlier case of faster arrival rate, it is fairly 
easy to obtain the differential difference equations gov- 
erning the states for  in slower 
arrival rate of the model which are given as following 

S

( ) ( ( )2 1
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P tλ ν
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S S
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t

slower arrival rate are as follows 

λ ν
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 (4.10) 

Moreover, the differential difference equations gov- 
erning the states of the system for . in 2,S + 
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1 2n

 (4.11) 

5. Determination of Probability Generating  

W unction for 

( ) ( ) ( )2 2 1 2−
′ = −n nP t P tλ ν From Equation (5.5), we can observe here that  
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the busy period of server in faster arrival rate:  
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and we use symbol On making use of Rouche’s theorem in Equation (5.4), 
it is fairly easy to evaluate ( )0 1P s  as following:  
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Taking Laplace transform of both sides of partial dif- 
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Equation (5.9) can be used in view of Gross and Harris 
[12] to explore the expected busy periods in faster 
arrival rate as discussed by Maurya [1] and it is ex- 
pressed as following: 
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 6. Determination of Probability Generating  
Function in Slower Arrival Rate  

 (5.4) 

As we know the fact that the

In this section, we define following probability generating 
function for the busy period of slower arrival rate:  
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where is given by following equation:  ( )1iz
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It is remarkable that in Equation (6.4) possesses 
following three properties: 
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Applying Rouche’s theorem in Equation (6.3), we may 
have 
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We remark here that using equation (6.8) in the light of 
Gross and Harris [12], Maurya [1] succeeded to evalu- 
ate ; the expected busy period in slower ar

pressed as following: 

1
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n is the most importan
mathematical technique to examine the transien
steady state behavior of queueing models, particul
explore many significant performance measures in study

ueing models which has been been
work of Maurya [1,6,7] and refer-

2 12
Rμ λ λ ν μ ν− − −  

7. Conclusions  

The probability generating functio

 
t 

t and 
arly to 

 
 of wide range of que

evidenced by recent 
ences therein and therefore it plays considerably a vital 
role in analyzing queueing problems. In the present paper, 
we have successfully investigated the probability gener- 
ating functions for two different cases of slower and faster 
arrival rates of an interdependent 1 : ( ; )M M GD∞  
queueing model with controllable arrival rates taking into 
account that the two parameters of arrival and service 
rates follow the bivariate Poisson process. In order to 
emphasize the application aspect of the investigated result 
in the present paper, it is much relevant to remark here 

taken into present consideration can be determined. In 
addition to this, it is highly expected th f 
the present investigation can be further extended by in- 
corporating the concept of some other versions of control 
policies, server breakdown and multi-phase services. 
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