# The partial fractions are not so tough as we think with the traditional methods. Just follow us and and fell the fun with Partial Fractions. Let us consider few problems. 

- Example 1.

$$
\begin{align*}
& \frac{x^{2}-3 x+2}{(x-5)^{3}}=\frac{A}{x-5}+\frac{B}{(x-5)^{2}}+\frac{C}{(x-5)^{3}}  \tag{1}\\
& \Rightarrow x^{2}-3 x+2=A(x-5)^{2}+B(x-5)+C \tag{2}
\end{align*}
$$

Put $x=5$ in equation [2] to get
$\Rightarrow 25-3 \times 5+2=A \times 0+B \times 0+C$
$\Rightarrow \mathrm{C}=12$
Differentiate equation [2] with respect to $x$
$\Rightarrow 2 x-3=2 A(x-5)+B$
Put $\mathbf{x}=5$ in equation [3] to get

$$
\begin{aligned}
& \Rightarrow 2 \times 5-3=2 A \times 0+B \\
& \Rightarrow B=7
\end{aligned}
$$

Again Differentiate equation [3] with respect to x

$$
\begin{equation*}
\Rightarrow 2=2 \mathrm{~A} \tag{4}
\end{equation*}
$$

$\Rightarrow A=1$
Now

$$
\frac{x^{2}-3 x+2}{(x-5)^{3}}=\frac{1}{x-5}+\frac{7}{(x-5)^{2}}+\frac{12}{(x-5)^{3}}
$$

- Example 2.

$$
\begin{align*}
& \frac{x^{3}-3 x}{\left(x^{2}+2 x-1\right)(x-5)^{2}}=\frac{A x+B}{\left(x^{2}+2 x-1\right)}+\frac{C}{(x-5)}+\frac{D}{(x-5)^{2}}  \tag{1}\\
& \Rightarrow x^{3}-3 x=(A x+B)(x-5)^{2}+C\left(x^{2}+2 x-1\right)(x-5)+D\left(x^{2}+2 x-1\right) \tag{2}
\end{align*}
$$

put $x=5$ in equation [2] to get
$5^{3}-3 \times 5=D\left(5^{2}+2 \times 5-1\right) \Rightarrow 110=D(34)$
$\Rightarrow \mathrm{D}=\frac{55}{17}$
Differentiate equation [2] with respect to x
$\Rightarrow 3 x^{2}-3=A(x-5)^{2}+2(A x+B)(x-5)+C\left\{(2 x+2)(x-5)+\left(x^{2}+2 x-1\right)\right\}+D(2 x+2)$
put $\mathbf{x}=5$ in equation[3]
$3 \times 5^{2}-3=A \times 0+B \times 0+C\left\{0+\left(5^{2}+2 \times 5-1\right)\right\}+\frac{55}{17}(2 \times 5+2)$

$$
\left(\text { using } D=\frac{55}{17}\right)
$$

$\Rightarrow 72=34 C+\frac{660}{17}$

$$
\Rightarrow C=\frac{282}{289}
$$

Differentiate equation [3] with respect to $x$
$6 x=2 A(x-5)+2 A(x-5)+2(A x+B)+C\{2(x-5)+(2 x+2)+(2 x+2)\}+2 D$
$6 x=4 A(x-5)+2(A x+B)+C\{2(x-5)+4(x+1)\}+2 D$
put $x=5$ in equation [4]
$\Rightarrow 30=10 A+2 B+C(24)+2 D=10 A+B+\frac{282}{289} \times 24+2 \times \frac{55}{17}$
$\Rightarrow \frac{32}{289}=10 A+2 B \quad \Rightarrow \frac{16}{289}=5 A+B$
Differentiate equation [4] with respect to $\mathbf{x}$
$6=6 A+6 C \quad \Rightarrow \quad 1=A+\frac{282}{289} \quad$ (using value of $C$ )
$\Rightarrow A=\frac{7}{289}$
Use value of $A$ in [5] to get the value of $B$ as below

$$
\begin{aligned}
& \frac{16}{289}=5 A+B=5 \times \frac{7}{289}+B \\
& \Rightarrow B=-\frac{19}{289} \\
& \text { Finally }
\end{aligned}
$$

$$
\frac{x^{3}-3 x}{\left(x^{2}+2 x-1\right)(x-5)^{2}}=\frac{\frac{7}{289} x-\frac{19}{289}}{\left(x^{2}+2 x-1\right)}+\frac{\frac{282}{289}}{(x-5)}+\frac{\frac{55}{17}}{(x-5)^{2}}
$$

Just use this method and enjoy the fun of partial fraction.

## Regards -

## Dr U P Singh

Associate Professor of Mathematics
Ambalika Institute of Management \& Technology
Lucknow, U.P., India

