
A report on C. Domshlak’s ”Unstructuring User
Preferences” seminar

Miguel Ramirez Javega

June 22, 2006

Abstract

One of the hot topics on automatic decision making research are ”Recom-
mender Systems”. These systems, given a description of user preferences about
items of a certain kind, offer advice for making decisions regarding other items of
that same kind. One of the most popular applications of these systems is in elec-
tronic commerce, where user preferences are the history of past purchases on an
e-store.

1 Helping people to make decisions

One of the aspects of human cognition that has attracted more interest from the Ar-
tificial Intelligence research community is that of making decisions. When a human
makes a decision two elements are taken into account. First, the knowledge the person
has about the subject of the decision. And second, her ”preferences”. Preferences are
not facts, but a certain predisposition to judge certain situations or objects in a concrete,
sometimes very particular way. So preferences can be seens as ”rules of thumb”, which
do not need to be necessarily self-consistent, nor have a simple structure or being easy
to describe.

AI work regarding decision making can be classified according the following di-
mensions:

• Is the intelligent system supposed to substitute a human decision maker? Or just
to support her?

• Do we care about a concrete individual preferences? Are we rather looking
at some sort of idealized set of preferences, that we identify with ”rationality”
or ”common sense”? Or we just care about the utility of the outcome of the
decisions made?

Mr. Domshlak talk was about systems thatsupporta concretehuman decision
maker. The task of these systems is to producesuggestionsabout action taking into
account the preferences of the supported decision maker. These suggestions are helpful
when the system is able to reduce the effort invested by the user in reviewing possible
options. That essentially amounts to prioritize options for reviewing, so the user can
make a decision faster.

This idea offocusing user attentionis somewhat similar to that ofsearch engines.
In this setting though, the system can produce a ranking of options without the user

1

having to make explicit his needs or preferences. While search engines focusing on at-
tending short term needs of information, decision support systems focus is on attending
long termneeds. Decision support systems are harder endeavours than search engines,
since besides needing an efficient procedure to compute rankings for options, it is also
necessary to model those rules of thumb that constitute user preferences.

This ”ranking” function is usually implemented by alinear utility function:

U(x) =
∑

i

wixi (1)

wherex is the representation of an option as a vector (set) of attributes. The task can
be then posed formally as that of computing the ”optimal” set of coefficientsx. And
optimality means that these coefficients guarantee the maximum degree of agreement
between user expectations and system suggestions.

2 User preferences are not necessarily simple

User preference representation and choice ranking computation are tightly coupled:
representation mostly determines how ranks are computed. This representation has
some built-in assumptions about the nature of users’ preference rules. Since each rule
will be affecting the ranking of a choice, past research has mostly limited itself to
modeling these rules as independent, since this guarantees that choice ranking will
have the nice properties of additivity. Frequently this assumption is not sound as the
attributes used to represent options are not independent themselves.

Models based on these premises haven’t show particularly exciting performance.
While the model is simple enough to ensure efficient computation, it usually turns out
to be too simple to faithfully depict user preferences.

Mr. Domshlak’s proposal goes one step further from these simple models. He
proposes that:

• The system should be free of any explicit assumption on user preferences struc-
ture.

• The user should be able to provide arbitrary qualitative preference expressions,
and the system should be able to extract a reasonable interpretation of these
expressions.

3 Modeling objects

Before describing Mr. Domshlak we should introduce the concept of an item’ssurro-
gate. A surrogate is the representation, or model, of the real thing about users will be
expressing preferences about. The surrogate is composed by a set ofattributeswhich
describe qualitatively those item features that are find to be relevant. For instance, the
surrogate for a car in an on-line car store would be composed by the attributes: maker
brand, color, gas consumption per mile (high, low), top speed, etc. The set of attributes
a surrogate can have is the backbone of the language the user will be expressing his
preference statements.

Why is that? Preference statements, in this setting, are partial orderings supplied
by the user on some conjunction of attributes’ values. For instance, she can say that she

2

prefers sport fast cars over non-sport, low gas consuming cars. The preference criteria
implicit in the previous statement should be also encoded according those attributes.

Let’s consider that our items are described by just two binary (yes/no) attributes,X1

andX2, wherex1 denotes the ”yes” value for attributeX1. All the possible ”words”
of the language the user will be using arex1, x̄1, x2, x̄2, x1x2, x1x̄2, x̄1x2, x̄1x̄2. Note
that is not required that preference statements refer explicitly toall attributes. The size
of this language is exponential on the number of attributes, more precisely22n

.
So every object in our world then can be projected to an algebraic space whose

axis are precisely all the possible conjunctions of attribute valuesx1, . . . , x̄1x̄n. More

formally we can define the following mappingΦ : X 7−→ F = R22n

:

Φ(x)[i] =

{
1 val(fi) ⊆ x
0 otherwise

(2)

whereval(fi) denotes the i-th element of the set:

x1, x̄1, . . . , xn, x̄n, . . . , x1x2 · · ·xn, . . . , x̄1x̄2 · · · x̄n (3)

note that his space accounts for the relationships between different objects’ surrogates
– sharing an attribute value. In our 2 attribute objects world, the objectx1, x̄2 would
be represented by the vectorΦ(x) = {1, 0, 0, 1, 0, 1, 0, 0}.

This space has two major advantages with respect to previous approaches. First,
axis aremeaningful, in contrast with similar techniques likePrincipal Component
Analysisor Factor Analysis. Second, a linear utility function definition comes forward:

U(Φ(x)) =
22n∑

i

wiΦ(x)[i] (4)

Note that the linearity of the utility function, in this space, is guaranteed by construc-
tion.

4 Interpretation of preference statements

The question that is yet to be addressed is how one is supposed to compute the coef-
ficientswi. This computation implies that the system gives an interpretation to user’s
preference statements. Domshlak addresses interpretation from a non-monotonic logic
perspective: to reason about preferred models.

Given an statementγ > ψ, that is that the objects implied by logical sentenceγ
are preferred over those implied by sentenceψ, we consider the constraints in thew
coefficients associated. For instance, if we have the preference statement:

γ > ψ (5)

X1 ∨X2 > X̄3 (6)

the models (the attribute values conjunction implying those sentences) ofγ andψ are:

Models(γ) = {x1x2, x1x̄2, x̄1x2} (7)

and
Models(ψ) = {x̄3} (8)

3

so the user is specifying implicitly thewi coefficients, since she’s saying that the sum
of the utilities of the models ofγ should be always greater than the sum of the utilities
of the modelsψ:

wx1 + wx2 + wx1x2 >wx̄3 (9)

wx1 + wx̄2 + wx1x̄2 >wx̄3 (10)

wx̄1 + wx2 + wx̄1x2 >wx̄3 (11)

Formally, the process of deriving the set of constraintsC is as follows for a single
preference statement is:

U(Φ(x)) > U(Φ(x)) ⇔
22n∑
i=1

wiΦ(x)[i] >
22n∑
i=1

wiΦ(x′)[i] (12)

⇔ wΦ(x) > wΦ(x′) (13)

Form preference statements we end up with the constraint setC:

C :wΦ(x1) > wΦ(x′1) (14)

. . . (15)

wΦ(xm) > wΦ(x′m) (16)

Summing up, preference statements are used to build a set of linear equations (con-
straints)C, that constrain the parameters of our utility functionU(Φ((x)). Any solution
to the set of constraints (equations) will yield a valid, that is consistent with the inter-
pretation of user’s statements, solution. Another boon of this interpretation is the fact
that is least commiting- thus being able to handle inconsistent information provided
by the user.

Although Mr. Domshlak’s proposal is sound, is not very tractable. There’s a com-
binatoric explosion:

• in the number of constraints is linear in22n

• in the summation in each constraint for an statementγ > ψ is exponential in the
number of attributes appearing onγ andψ.

so the utility function will be usually unfeasible to compute (and store somewhere).

5 Computing the utility function

As mentioned above, solving the constraint setC for an interesting number of attributes
n will be unfeasible for nave methods. Mr. Domshlak’s approach, based on duality
techniques and Mercer kernels solves such a system in time linear onn, the number
of attributes used to describe items, and polynomial onm, the number of statements
supplied by the user.

The first step consists in posing the optimization problem as an strictly convex
quadratic program:

Minimize w.r.t. x :
1
2
w ·w (17)

subject to: wΦ(x1) > wΦ(x′1) + 1 (18)

. . . (19)

wΦ(xm) > wΦ(x′m) + 1 (20)

4

This optimization problem is moved into its Wolfe’s dual, where it becomes ob-
vious the necessity of finding an effective way to compute inner products inF . In
order to being able to use Mercer kernels, and compute efficiently the inner product,
the mapping is slightly changed, as described in the following theorem.

Theorem(Domshlak & Joachims, 2005).
For the mappingΦλ : X 7→ F = R22n

Φλ(x)[i] =

{√
cλ(|val(fi)|), val(fi) ⊆ x

0, otherwise
(21)

where

cλ(k) =
n∑

l=k

λl

∑
l1>1,··· ,lk≥1
l1+···+lk=l

l!
l1! · · · lm!

(22)

and any pairx,x′ ∈ X andλ1, · · · , λn ≥ 0, the kernel

K(x,x′) =
n∑

l=1

λl(x · x′)l (23)

computes the inner productΦλ(x) · Φλ(x′) = K(x,x′).
To compute the value ofU for a given alternativex′′, that is, an object that does

not appear on those statements supplied by the user, we need to know only the dual
solution and the kernel:

U(Φ(x′′)) = x∗ · Φλ(x′′) =
m∑

i=1

αi(K(xi, x
′′)−K(x′i, x

′′) (24)

So by using the “kernel trick”, computingU or solvingC does not require computations

to be performed on the intractableR22n

space.

6 Biographical information about C. Domshlak

Carmel Domshlak is a senior lecturer at Technion, the Israel Institute of Technology.
He holds a PhD on Computer Science from Ben Gurion University (2002). Mr. Domsh-
lak’s work is centered on research about algorithms and models for automatic decision
making and reasoning, both in sequential situated domains (planning) and graphical
models.

5

