Quiz: Complex Numbers and Discriminants

Question 1a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 91330)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following statements <i>must</i> be true of an equation before you can use the quadratic formula to find the solutions?

Check all that apply.

Correct Answers:			
	Cho	ice	
*A.	There can be no term whose degree is higher than 2.		
*В.	The coefficient of the x^2 -term can't be 0.		
c.	The coefficient of the <i>x</i> -term must be positive.		
*D.	One side of the equation must be 0.		
Atte	empt	Incorrect Feedback	
1st			
	Correct Feedback		
		Global Incorrect Feedback	
		The correct answers are: The whose degree is higher that of the x^2 -term can't be 0.	n 2, The coefficient

of the x^2 -term can't be 0, and One side of the

equation must be 0.

Question 1b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297698)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following statements <i>must</i> be true of an equation before you can use the quadratic formula to find the solutions?

Check all that apply.

Cho	lice
	re can be no term whose ree is higher than 2.
* K I	coefficient of the x^2 -term t be 0.
CI	coefficient of the <i>x</i> -term st be positive.
*D. One be (side of the equation must).
Attempt	Incorrect Feedback
1st	

Correct Feedback
Global Incorrect Feedback
The correct answers are: There can be no term whose degree is higher than 2, The coefficient of the x^2 -term can't be 0, and One side of the equation must be 0.

Question 1c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297699)

l

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following statements <i>must</i> be true of an equation before you can use the quadratic formula to find the solutions?

Check all that apply.

Correct Answers:

	Choice
*A.	There can be no term whose degree is higher than 2.
* B .	The coefficient of the x^2 -term can't be 0.
c.	The coefficient of the <i>x</i> -term must be positive.
*D.	One side of the equation must be 0.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: There can be no term whose degree is higher than 2, The coefficient of the x^2 -term can't be 0, and One side of the equation must be 0.

Question 2a of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 91331)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	After being rearranged and simplified, which of the following equations could be solved using the quadratic formula?

Check all that apply.

	Choice
Α.	$2x^2 - 3x + 10 = 2x^2 + 21$
*В.	$x^2 - 6x - 7 = 2x$
*C.	$5x^2 - 3x + 10 = 2x^2$
D.	$5x^3 + 2x - 4 = 2x^2$

Preview

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x^2 - 6x - 7 = 2x$ and $5x^2 - 3x + 10 = 2x^2$.

Question 2b of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297700)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	After being rearranged and simplified, which of the following equations could be solved using the quadratic formula?

Check all that apply.

Correct Answers:

	Choice
*A.	$2x^2 - 3x + 10 = 2x + 21$
В.	$2x^2 - 6x - 7 = 2x^2$
C.	$5x^3 - 3x + 10 = 2x^2$
*D.	$5x^2 + 2x - 4 = 2x^2$

Incorrect Feedback
Correct Feedback
Global Incorrect Feedback
The correct answers are: $2x^2 - 3x + 10 = 2x + 21$ and $5x^2 + 2x - 4 = 2x^2$.

Question 2c of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297701)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	After being rearranged and simplified, which of the following equations could be solved using the quadratic formula?

Check all that apply.

	Choi	се
*A.	5 <i>x</i> ² ·	$-3x + 10 = 2x^2 + 21$
*В.	x ² -	6 <i>x</i> - 7 = 2
C.	5 <i>x</i> ²	$-3x + 10 = 5x^2$
D.	5 <i>x</i> ³	$+ 2x - 4 = 2x^2$
Atte	empt	Incorrect Feedback
1st		

Correct Feedback
Global Incorrect Feedback
The correct answers are: $5x^2 - 3x + 10 = 2x^2 + 21$ and $x^2 - 6x - 7 = 2$.

Question 3a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 91332)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $3x^2 - 5x + 1 = 0$

	Choice
*A.	$x = \frac{5}{6} \frac{\sqrt{5}}{2}$
*В.	$x = \frac{5 + \sqrt{3}}{6}$
c.	$\mathbf{x} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_1^T \\ \mathbf{y}_2^T \end{bmatrix}_{t=1}^{T}$
D.	$x = \frac{-5 - \sqrt{15}}{5}$
E.	$x = \frac{-5 + \sqrt{5}}{5}$
F.	$x = \frac{5 + \sqrt{37}}{6}$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x =$ and $x =$

Question 3b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297702)

Page 5 of 25

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $2x^2 - 5x + 1 = 0$

Correct Answers:

	Choice
* A .	$x = \frac{5 - \sqrt{7}}{4}$
*В.	$x = \frac{\tau_1 + \sqrt{17}}{c}$
C.	$x = \frac{-\tau_1 + \sqrt{\tau_1 + \tau_2}}{\sqrt{\tau_1 + \tau_2}}$
D.	$x = \frac{-\tau_1 - \sqrt{\tau_1 - \tau_2}}{r}$
E.	$x = \frac{\sum_{i=1}^{n} + \sqrt{\sum_{i=1}^{n}}}{\frac{1}{2}}$
F.	$X = \frac{\sum_{i=1}^{r} \frac{\sqrt{1-r_{i}}}{v}}{v}$
Attempt Incorrect Feedback	

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x = \frac{5 - \sqrt{17}}{4}$ and $x =$
	$\frac{5-\sqrt{17}}{2} \cdot$

Question 3c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297703)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.
	$1x^2 - 3x + 1 = 0$

Preview

	Choi	ice	
* A .	<i>x</i> =	3 <mark>1/5</mark> 7	
*В.	<i>x</i> =	3 + √5 ∠	
c.	<i>x</i> =	-1 + ₁ /F 2	
D.	<i>x</i> =	-3 - 1/5 ?	
E.	<i>x</i> =	<u>ວ່າ</u> ເວັ່ <u>ງ</u> 2	
F.	<i>x</i> =	0 + √10 2	
Atte	empt	Incorrect Feedback	
1st	-		

150	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x = \begin{bmatrix} 2 & \sqrt{5} \\ 2 & -\frac{\sqrt{5}}{2} \end{bmatrix}$ and $x = \begin{bmatrix} 2 & \sqrt{5} \\ 2 & -\frac{\sqrt{5}}{2} \end{bmatrix}$

Question 4a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 91333)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

$$2x^2 + 3x - 5 = 0$$

	Choice	
Α.	<i>x</i> =	
*В.	<i>x</i> = 1	
C.	<i>x</i> = -1	
D.	<i>x</i> =	
*E.	<i>x</i> = -	
F.	<i>x</i> =	
Atte	empt Incorrect Feedback	
1st		

Correct Feedback
Global Incorrect Feedback
Global Incorrect Feedback

Question 4b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297704)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $5x^2 + 2x - 3 = 0$

Correct Answers:

	Cho	ice		
* A .	<i>x</i> =	3 5		
В.	<i>x</i> =	1		
*C.	<i>x</i> =	-1		
D.	<i>x</i> =	$\frac{1}{5}$		
E.	<i>x</i> =	$x = \frac{1 - \sqrt{14}}{5}$		
F.	<i>x</i> =	$\mathbf{x} = \frac{\frac{7 - 2\sqrt{52}}{5}}{5}$		
Atte	empt	Incorrect Feedback		
1st				
		Correct Feedback		
		Global Incorrect Feedback		

The correct answers are: x = -1.

Question 4c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297705)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.
	$3x^2 + 7x + 4 = 0$

Preview

	Cho	ice	
Α.	<i>x</i> =	<u>7</u>	
В.	<i>x</i> =	1	
*C.	<i>x</i> =	-1	
*D.	<i>x</i> = ·	- 4 - -	
Е.	$x = -\frac{-7 + 1/97}{7}$		
F.	$x = \frac{7 - \sqrt{97}}{6}$		
Atte	empt	Incorrect Feedback	
1st			
	Correct Feedback		
		Global Incorrect Feedback	
		The correct answers are: $x = -1$ and $x = -\frac{4}{2}$.	

Question 5a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 91334)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

$$x^2 - 3x - 4 = 0$$

	Choice
Α.	$x = \frac{7 - \sqrt{-7}}{7}$
В.	<i>x</i> = -4
c.	<i>x</i> =
*D.	<i>x</i> = 4
E.	<i>x</i> =
*F.	x = -1

Attempt	Incorrect Feedback	
1st		
	Correct Feedback	
	Global Incorrect Feedback	
	The correct answers are: $x = 4$ and $x = -1$.	

•	
Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $x^2 + 3x - 4 = 0$

Correct Answers:

	Cho	ice	
Α.	<i>x</i> =	-3 + <mark>17</mark> 2	
* B .	<i>x</i> = ·	-4	
C.	<i>x</i> =	-3 - <u>17</u> 2	
D.	<i>x</i> = 4	4	
*E.	<i>x</i> =	1	
F.	<i>x</i> = ·	-1	
Atte	empt	Incorrect Feedback	
1st			
		Correct Feedback	

Correct Feedback
Global Incorrect Feedback
The correct answers are: $x = -4$ and $x = 1$.

Question 5c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297707)

Maximum Attempts:	1		
Question Type:	Multiple Response		
Maximum Score:	2		
Question:	Which of the following are solutions to the equation below?		
	Check all that apply.		
	$x^2 - 4x + 3 = 0$		

Correct Answers:

	Choice	
Α.	<i>x</i> = 2 +	
*B.	<i>x</i> = 3	
C.	<i>x</i> = 2 -	
D.	<i>x</i> = -3	
*E.	<i>x</i> = 1	
F.	<i>x</i> = -2 +	
Atte	empt Incorrect Feedback	

Attempt	Incorrect Feedback
1st	
	Correct Feedback

Page 9 of 25

Global Incorrect Feedback
The correct answers are: $x = 3$ and $x = 1$.

Question 6a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 91335)

Maximum Attempts:	1	
Question Type:	Multiple Response	
Maximum Score:	2	
Question:	on: Which of the following are solutions to the equation below	
	Check all that apply.	

 $x^2 - 5x + 1 = 0$

Correct Answers:

Choice
$x = \frac{5 + \sqrt{25}}{2}$
$\mathbf{x} = \begin{bmatrix} 1 & \sqrt{21} \\ 0 \end{bmatrix}$
$x = \frac{5 + \sqrt{2^2}}{2}$
$x = \frac{-1 + J21}{2}$
$x = \frac{5 - \sqrt{2^{n}}}{2}$
$x = \frac{5 - \sqrt{20}}{2}$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are:
	x = and $x =$.

Question 6b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297708)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.
	$x^2 - 5x - 1 = 0$

Preview

	Cho	ice			
*A.	<i>x</i> =	5 + V 70 , 2			
В.	<i>x</i> =	$\frac{-1 - \sqrt{21}}{2}$			
C.	<i>x</i> =	$\frac{5+\sqrt{2^2}}{2}$			
D.	<i>x</i> =	$\frac{-1 + \sqrt{21}}{2}$			
E.	<i>x</i> =	$\frac{5 - \sqrt{2^{+}}}{2}$			
*F.	<i>x</i> =	5 √ <u>,,</u> , ,			
Atte	empt	Incorrect Feedback			
1st					
		Correct Feedback			
		Global Incorrect Feedback			
		The correct answers are: x	= 7	29	and
		$\underline{b} = \sqrt{2b}$			

Question 6c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297709)

x =

Maximum Attempts:	1	
Question Type:	Multiple Response	
Maximum Score:	2	
Question:	Which of the following are solutions to the equation below?	
	Check all that apply.	

 $x^2 + x - 5 = 0$

	Choice	
Α.	<i>x</i> =	
*в.	<i>x</i> =	
c.	<i>x</i> =	
*D.	<i>x</i> =	
E.	<i>x</i> =	
F.	<i>x</i> =	

Preview

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x = \frac{-1}{2} - \frac{\sqrt{21}}{2}$ and $x = \frac{-1}{2}$

Question 7a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 91336)

Maximum Attempts:	1	
Question Type:	Multiple Response	
Maximum Score:	2	
Question:	Which of the following are solutions to the equation below?	
	Check all that apply.	
	$4x^2 + 3x + 2 = 0$	

	Choice	
* A .	$x = \frac{-3 + \sqrt{-22}}{8}$	
В.	$x = \frac{3 + \sqrt{20}}{2}$	
*C.	$x = \begin{array}{c} 3 & \sqrt{23} \\ 0 \end{array}$	
D.	$x = \frac{-3 - \sqrt{23}}{\varepsilon}$	
E.	$x = \frac{1}{2} + \frac{1}{2} \frac{1}{2}$	
F.	<i>x</i> =	
Attempt Incorrect Feedback		
1st		

ISt	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are:
	x = and $x =$.

Page 13 of 25

-	
Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $5x^2 + 3x + 2 = 0$

Correct Answers:

	Choice
*A.	$x = \frac{-3 + \sqrt{-2^{2}}}{1 - 2^{2}}$
В.	$x = \frac{-\beta - \sqrt{21}}{10}$
*C.	$x = \frac{-3 - \sqrt{-3}}{1 - \sqrt{-3}}$
D.	x = ⁷ 5
Ε.	<i>x</i> = -1
F.	$x = \frac{-3 + \sqrt{51}}{10}$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x = \frac{3 - \sqrt{31}}{10}$ and $x = \frac{3 - \sqrt{31}}{10}$
	=

Question 7c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297711)

Maximum Attempts:	1	
Question Type:	Multiple Response	
Maximum Score:	2	
Question:	Which of the following are solutions to the equation below?	
	Check all that apply.	
	$4x^2 + 3x + 3 = 0$	

Preview

	Cho	ice	
*A.	<i>x</i> =	3 <mark>/</mark> 33	
В.	<i>x</i> =	d r y'ad d	
*C.	<i>x</i> =	<u>667 (768</u> 0	
D.	<i>x</i> =	3 y ¹ 23 8	
E.	<i>x</i> =	<u>3 757</u> 8	
F.	<i>x</i> =	<u>3 + 757</u> 3	
Atte	empt	Incorrect Feedback	
1st			
		Correct Feedback	
		Global Incorrect Feedback	
		The correct answers are: x	$= \frac{-3 - \sqrt{-39}}{8} \text{ and } 3$

Question 8a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 91337)

Maximum Attempts:	1	
Question Type:	Multiple Response	
Maximum Score:	2	
Question:	: Which of the following are solutions to the equation below?	
	Check all that apply.	

 $2x^2 - x + 5 = 0$

Correct Answers:

	Choice
А.	<i>x</i> =
*В.	<i>x</i> =
c.	<i>x</i> =
D.	<i>x</i> =
Е.	<i>x</i> =
*F.	<i>x</i> =

 $\frac{-3 - \sqrt{-39}}{8}$

Preview

Attempt	Incorrect Feedback
1st	
	Correct Feedback
Global Incorrect Feedback	
	The correct answers are: $x = \frac{+\sqrt{-10}}{4}$ and $x = \frac{-\sqrt{-10}}{4}$.

Question 8b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297712)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.
	$3x^2 - x + 5 = 0$

	Choice
Α.	$x = \frac{1 - \sqrt{r_{\rm eff}}}{t_{\rm eff}}$
*B.	$x = \frac{1 + \sqrt{-79}}{2}$
c.	$x = \frac{1 - \sqrt{2\pi}}{5}$
D.	$x = \begin{array}{c} & \sqrt{61} \\ & 6 \end{array}$
E.	$x = \begin{array}{c} \cdot & \sqrt{61} \\ & 6 \end{array}$
*F.	$x = \frac{1 - \sqrt{-59}}{7}$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x =$ and $x =$

Question 8c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297713)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $4x^2 - x + 5 = 0$

Correct Answers:

	Choice
Α.	$x = \frac{1 - \sqrt{79}}{8}$
*B.	$\mathbf{x} = \frac{1 + \sqrt{-79}}{z}$
c.	$x = \frac{1 - \sqrt{72}}{8}$
D.	$x = \frac{1 - \sqrt{81}}{6}$
E.	$x = \frac{1 - \sqrt{21}}{2}$
* F .	$x = \frac{1 - \sqrt{-/9}}{2}$

Attempt	Incorrect Feedback	
1st		
	Correct Feedback	
	Global Incorrect Feedback	
	The correct answers are: $x = \frac{1 + \sqrt{-70}}{8}$ and $x = \frac{1 + \sqrt{-70}}{8}$.	

Question 9a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121087)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	imaginary
Question:	The square root of a negative value is called an or complex number.

Attempt	Incorrect Feedback	
1st		
	Correct Feedback	
	Global Incorrect Feedback	
	The correct answer is: imaginary.	

Page 16 of 25

Question 9b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297714)

Page 17 of 25

L	
Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	complex
Question:	The square root of a negative value is called an imaginary or number.
Attempt Incorrect Fe	edback
1st	
Correct Feed	lback
Global Incor	rect Feedback
The correct a	nswer is: complex.

Question 9c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297715)

-	
Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	negative, negativ
Question:	The square root of a value is called an imaginary or complex number.
Attempt Incorrect Fe	edback
1st	
Correct Feed	Iback

Question 10a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121088)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	discriminant, discriminent
Question:	The is the name of the number under the radical symbol in the quadratic formula.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: discriminant.

Global Incorrect Feedback

The correct answer is: negative.

Question 10b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297716

)	
Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	discriminant, discriminent
Question:	The is the name of the number under the radical symbol in the quadratic formula.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	Global Incollect Leeuback
	The correct answer is: discriminant.

Question 10c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297717)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	discriminant, discriminent
Question:	The is the name of the number under the radical symbol in the quadratic formula.
Attempt Incorrect Fe	edback

Attempt	Incorrect Feedback
1st	
	Correct Feedback
Global Incorrect Feedback	
	The correct answer is: discriminant.

Question 11a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121089)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	subtract
Question:	If the right-hand side of a quadratic equation does not equal zero, you need to the number or expression on the right-hand side from both sides before you can use the quadratic formula.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: subtract.

Page 18 of 25

Question 11b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297718

)	
Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	subtract
Question:	If the right-hand side o to the number o

subtract If the right-hand side of a quadratic equation does not equal zero, you need to _____ the number or expression on the right-hand side from both sides before you can use the quadratic formula.

Page 19 of 25

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: subtract.

Question 11c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297719)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	subtract
Question:	If the right-hand side of a quadratic equation does not equal zero, you need to the number or expression on the right-hand side from both sides before you can use the quadratic formula.

Incorrect Feedback
Correct Feedback
Global Incorrect Feedback
The correct answer is: subtract.

Question 12a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121090)

Maximum Attempts:	1
Question Type:	Numeric Fill In Blank
Maximum Score:	2
Correct Answer:	2
Question:	The quadratic formula cannot be used to solve an equation if a term in the equation has a degree higher than

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: 2.

Question 12b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297720)

Page 20 of 25

1
Numeric Fill In Blank
2
2
The quadratic formula cannot be used to solve an equation if a term in the equation has a degree higher than

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: 2.

Question 12c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297721)

Maximum Attempts:	1
Question Type:	Numeric Fill In Blank
Maximum Score:	2
Correct Answer:	2
Question:	The quadratic formula cannot be used to solve an equation if a term in the equation has a degree higher than
Attempt Incorrect Fe	edback

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: 2.

Question 13a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121091

)	
Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	real
Question:	You can determine by the discriminant whether the solutions to the equation are or complex numbers.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: real.

Question 13b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297722

Page 21 of 25

)	
Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	complex, imaginary, imaginiery
Question:	You can determine by the discriminant whether the solutions to the equation are real or numbers.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: complex.

Question 13c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297723)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	real
Question:	You can determine by the discriminant whether the solutions to the equation are or complex numbers.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: real.

Question 14a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121092)

Maximum Attempts: Question Type: Maximum Score: Question:

1 Multiple Choice 2 Check the solutions to the equation below. $x^2 + x + 2$

Preview

	The correct answer is:	
	$x = \frac{-1 + \sqrt{-7}}{2}$ and $x = \frac{-1 - \sqrt{-7}}{2}$.	
•		

Question 14b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297724)

Maximum Attempts:	1
Question Type:	Multiple Choice
Maximum Score:	2
Question:	Check the solutions to the equation below.
	$x^2 + x + 1$

	Choice	Feedback
* A .	$x = \frac{1 + \sqrt{2}}{2} \text{ and } x$ $= \frac{1 + \sqrt{2}}{2}$	
в.	x = 2 and $x = 1$	
C.	$x = \frac{-1 + \sqrt{-7}}{2}$ and $x = \frac{1}{2} \sqrt{\frac{7}{7}}$	
D.	x = 8 and $x = 4$	
		Global Incor

Global I	ncorrect Feedbac	k	
The corr	ect answer is:		
<i>x</i> =	and $x =$		

Question 14c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297725)

Maximum Attempts:	1
Question Type:	Multiple Choice
Maximum Score:	2
Question:	Check the solutions to the equation below.
	$x^2 + 3x + 4$

Preview

Global Incorrect Feedback The correct answer is: $x = \frac{3 + \sqrt{2}}{2}$ and $x = \frac{3 - \sqrt{2}}{2}$.

Question 15a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 133820)

Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.
	$x^2 + x + 5 = 0$

	Choice
*A.	x = 10 ∠
*В.	$x = \frac{-1 - \sqrt{-15}}{2}$
C.	<i>x</i> = 5
D.	<i>x</i> = 1
E.	<i>x</i> =
F.	<i>x</i> =

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x =$ and x
	= .

Question 15b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297726)

Page 24 of 25

)	
Maximum Attempts:	1
Question Type:	Multiple Response
Maximum Score:	2
Question:	Which of the following are solutions to the equation below?
	Check all that apply.

 $x^2 + x + 3 = 0$

Correct Answers:

	Choice
* A .	$x = \frac{1}{\sqrt{11}}$
*В.	$x = \frac{-1 - \sqrt{-11}}{2}$
C.	<i>x</i> = 3
D.	<i>x</i> = 1
E.	$x = \frac{-1 - \sqrt{-10}}{2}$
F.	$x = \frac{-1 + \sqrt{-1}}{2}$
Attempt Incorrect Feedback	

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are: $x = \frac{ +\sqrt{x'} }{x}$ and $x =$
	$\frac{1}{2}$

Question 15c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297727)

Maximum Attempts:	1	
Question Type:	Multiple Response	
Maximum Score:	2	
Question:	estion: Which of the following are solutions to the equation below	
	Check all that apply.	
	$x^2 + x + 4 = 0$	

Preview

	Cho	ice
* A .	<i>x</i> =	$\frac{1}{2}$
*В.	<i>x</i> =	` √ 15 -
C.	<i>x</i> = 4	
D.	<i>x</i> = 1	
Е.	<i>x</i> =	$\frac{-1}{2} \sqrt{17}$
F.	<i>x</i> =	$\frac{1}{2} \sqrt{\frac{1}{2}}$
Attempt Incorrect Feedback		
1st		
		Correct Feedback
		Global Incorrect Feedback
		The correct answers are: $x = \frac{-1 + \sqrt{-5}}{2}$ and x
		$=\frac{-1-\sqrt{-15}}{2}$.