HOMEWORK

SELCAN AKSOY

II.7.1. $\left|S_{3}\right|=6 \Rightarrow 1 / 6,2 / 6,3 / 6,6 / 6$

Since S_{3} is not cyclic, we may or may not find a subgroup whose order is 2 or 3 .
$S_{3}=\{(1),(12),(13),(23),(123),(132)\}$
$H_{1}=<(1)>=\{(1)\}$
$H_{2}=<(12)>=\left\{(1),(12),(12)^{2}, \ldots\right\}=\{(1),(12)\}$
$H_{3}=<(13)>=\left\{(1),(13),(13)^{2}, \ldots\right\}=\{(1),(13)\}$
$H_{4}=<(23)>=\left\{(1),(23),(23)^{2}, \ldots\right\}=\{(1),(23)\}$
$A_{3}=<(123)>=\left\{(1),(123),(123)^{2}, \ldots\right\}=\{(1),(123),(132)\}$
$A_{3}=<(132)>=\left\{(1),(132),(132)^{2}, \ldots\right\}=\{(1),(132),(123)\}$
These are all subgroups of S_{3}.
"Definition 7.1. A subgroup N of a group G is normal if $\forall g \in G, \forall n \in$ $N, g n g^{-1} \in N^{\prime \prime}$
S_{3} is normal subgroup of S_{3}, because $\forall n, g \in S_{3}, g n g^{-1} \in S_{3}$
H_{1} is normal subgroup of S_{3}, because $\forall g \in S_{3}, \forall n \in H_{1}$, gng $^{-1} \in H_{1}$
H_{2} is not normal subgroup of S_{3}, because $(13) \in S_{3},(12) \in H_{2},(13)(12)(13)^{-1}=$ (23) $\notin H_{2}$
H_{3} is not normal subgroup of S_{3}, because $(12) \in S_{3},(13) \in H_{3},(12)(13)(12)^{-1}=$ $(23) \notin H_{3}$
H_{4} is not normal subgroup of S_{3}, because $(12) \in S_{3},(23) \in H_{4},(12)(23)(12)^{-1}=$ (13) $\notin H_{4}$

Since $A_{3} \leq S_{3}$ and $\left(S_{3}: A_{3}\right)=2$, then A_{3} is a normal subgroup of S_{3}

