HOMEWORK

SELCAN AKSOY

II.7.1. $|S_3| = 6 \Rightarrow 1/6, 2/6, 3/6, 6/6$ Since S_3 is not cyclic, we may or may not find a subgroup whose order is 2 or 3. $S_3 = \{(1), (12), (13), (23), (123), (132)\}$ $H_1 = < (1) > = \{(1)\}$ $H_2 = \langle (12) \rangle = \{(1), (12), (12)^2, ...\} = \{(1), (12)\}$ $H_3 = \langle (13) \rangle = \{(1), (13), (13)^2, ...\} = \{(1), (13)\}$ $H_4 = \langle (23) \rangle = \{(1), (23), (23)^2, ...\} = \{(1), (23)\}$ $A_3 = \langle (123) \rangle = \{(1), (123), (123)^2, \dots\} = \{(1), (123), (132)\}$ $A_3 = \langle (132) \rangle = \{ (1), (132), (132)^2, ... \} = \{ (1), (132), (123) \}$ These are all subgroups of S_3 . "Definition 7.1. A subgroup N of a group G is normal if $\forall g \in G, \forall n \in$ $N, gng^{-1} \in N''$ S_3 is normal subgroup of S_3 , because $\forall n, g \in S_3$, $gng^{-1} \in S_3$ H_1 is normal subgroup of S_3 , because $\forall g \in S_3$, $\forall n \in H_1$, $gng^{-1} \in H_1$ H_2 is not normal subgroup of S_3 , because (13) $\in S_3$, (12) $\in H_2$, (13)(12)(13)^{-1} = $(23) \notin H_2$ H_3 is not normal subgroup of S_3 , because $(12) \in S_3$, $(13) \in H_3$, $(12)(13)(12)^{-1} =$ $(23) \notin H_3$ H_4 is not normal subgroup of S_3 , because $(12) \in S_3$, $(23) \in H_4$, $(12)(23)(12)^{-1} =$ $(13) \notin H_4$ Since $A_3 \leq S_3$ and $(S_3 : A_3) = 2$, then A_3 is a normal subgroup of S_3