

	D-Alanine			D-Aspartate		
	$V_{\rm max}~({\rm min}^{-1})$	$K_{\rm m}~({\rm mM})$	$V_{\rm max}/K_{\rm m}$	$V_{\max} (\min^{-1})$	$K_{\rm m}~({\rm mM})$	$V_{\rm max}/K_{\rm m}$
Wild-type M213R ^b	3900 ^a 630	0.9 ^a 17.8	4330 ^a 35	40 235	33.1 2.0	1.2 118
 irst round of error-prone PCR 2144R (1-7) .118H (3-382) .242V/Q253R/D304V (2-41) 	2685 3620 4555	0.8 0.4 2.3	3200 8415 1980	56 31 40	12.8 12.8 16.3	4.3 2.4 2.4
Second round of error-prone PCR starti F60A/Q144R/K152E (4-903) Q144R/G199D/Y223C/H329R (5-249)	ng from His-Q1 3660 5740	44R 0.6 0.4	5800 13660	53 71	7.9 9.8	6.7 7.2
	$\frac{D}{V_{\max}} (\min^{-1})$		Vmar/Km	✓Improve	ment in	catalytic
Wild-type M213R ^b	640 Below detection	2.8 on limit	228	 Comparable (kind of) 		
First round of error-prone PCR Q144R (1-7) L118H (3-382) D242V/Q253R/D304V (2-41)	470 880 920	3.5 2.1 4.6	135 410 198	acidic an	ino acic	s Is
Second round of error-prone PCR T60A/Q144R/K152E (4-903) Q144R/G199D/Y223C/H329R (5-249)	745 880	3.4 2.4	210 366	 Similar response of neutral, acidic <u>and basic</u> amino acids? NO! 		

