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Abstruct 
 

The Riemann hypothesis (RH) is well known. In the RH, the Robin criterion 

is one of the most famous theorems. In this paper we first obtain a new 

condition equivalent to the RH on the sum of divisors function. This 

condition is a generalization of the Robin criterion. Next, we prove that the 

new condition holds unconditionally.  
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1. Introduction 
 

The function  defined by an absolute convergent Dirichlet’s series  ( )sζ

                                                ∑
∞

=

=
1

1)(
n

sn
sζ                                                 (1)                                      

in complex half-plane  is called the Riemann’s zeta function ([3]).  Re 1s >

The Riemann’s zeta function has a simple pole with the residue 1 at  

and except the point  the function 

1s =

1s = ( )sζ  is analytically continued to 

whole complex plane. And ( )sζ  is expressed for  as  1Re >s

                                          ( ) ( ) 1
1 s

p

s pζ
−−= −∏ ,                                        (2)                                     

where infinite product runs over all the prime numbers. Also for  the 

function  satisfies the functional equation   

1Re >s

( )sζ

                   ( ) ( ) ( ) (12 2 1 sin 1
2

s ss s πζ π ζ− ⎛ ⎞= ⋅ ⋅Γ − ⋅ ⋅ −⎜ ⎟
⎝ ⎠

)s ,                        (3)                         

where  is the gamma function ([3]) )(sΓ

                                                 .                                     (4)                                      ∫
+∞

−−=Γ
0

1)( dxxes ss

From the infinite product of ( )sζ  the Riemann’s zeta function has no zeros 

in  and from the functional equation of 1Re >s ( )sζ  it has trivial zeros 

 in . The zeros of 2, 4, 6,− − − Re 0s < ( )sζ  in 0 Re s 1≤ ≤  are called the 

nontrivial zeros of  ([3]). In 1859 G. Riemann conjectured that all the 

nontrivial zeros of  would lie on the line 

( )sζ

( )sζ 2/1Re =s . This is just the 

Riemenn’s hypothesis. There have been published many research results on 

the RH. But the RH is unsolved until now ([1~8]).  
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To study the RH we will here consider the sum of divisors function. The 

sum of divisors function is one of the important arithmetical functions, but 

its properties are not well known in the RH. In the past, the study of the sum 

of divisors function had been mostly limited to the relation with the Euler’s 

function and to the relation with the perfect numbers, but for the RH it has 

been studied after Robin criterion in 1984 ([6]). The Robin criterion is one 

of the most famous theorems for the RH. Recently, The Robin criterion has 

been studied in many papers, but it is not still unsolved completely ([1,2]).     

In this paper we first obtain a new condition equivalent to the RH, which 

would be called an equivalence condition (EC). The EC is closely related 

with the RC and it is a generalization of the Robin criterion. And it is easy 

to consider rather than Robin criterion. We have also a new idea to prove 

that the EC holds unconditionally. The idea is to introduce a notion, which 

would be called a sigma-index of the natural number (see [15]). Next, in this 

paper we show that the new condition holds unconditionally. To do this, we 

work with a new standpoint that any natural number has the three 

dimensional structure. On the basis of the standpoint, we pass three steps for 

the completion of the proof. The every step is accompanied with the process 

reducing the dimension of the natural number or of the sigma-index, and it 

needs a new method corresponding with that. The first step is the relation 

of the sum of divisors function and the Hardy-Ramanujan number. This 

relation is also one of some important properties of the sigma-index. The 

second step is an optimization problem of a certain exponential function 

with the sun of divisors function. This problem is related with the existence 

of the optimum points of the given exponential function under the constraint 

of the inequalities. From the result of the second step, we get an estimate on 

the difference between consecutive primes. The third step is related with an 

inequality on the sum of divisors function. This inequality is also 

generalized than the Robin criterion, and it is a new one equivalent to the 

RH. Consequently, we would prove that the EC holds unconditionally. Our 
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proof has the three steps and our result consists of five papers. This result 

would give us a firm possibility that the RH is true. We are sure that our 

result would be right. But we need an objective verification on the result. 

Our result is of all of our. So we would like to contribute our result to the 

INTERNET. We hope that our result would give the valuable help whom 

would like to prove the RH.   

 

Let  be the set of the natural numbers. The function N ( )
|d n

nσ = d∑  is called 

the sum of divisors function of n ([3,5]). Then the function  is 

multiplicative on the coprime numbers.    

( )nσ

It is well known that the RH is true if and only if it holds that, for any 

,  5041n ≥

                                             ( ) log logn e nγσ ≤ ⋅ ⋅ n ,                                     (5) 

where 0.577γ =  is Euler’s constant. This (5) is called the Robin criterion 

or the Robin inequality. In the paper [2], they showed that the Robin 

inequality holds for any odd . But the Robin inequality is 

determinately related with the even numbers. In particular, it is essentially 

related with the Hardy-Ramanujan number ([2]). In deed, the Robin 

inequality in the case of all odd numbers is only a corollary of the result on 

the case of all Hardy-Ramanujan numbers.     

5041n ≥
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2. Main results of the paper 
 

In this section we show the main results of the paper without the proofs.  

We have 

Theorem 1. The RH is true if and only if there exist constants ,  

and  such that, for any , it holds that  

0 1c ≥ 1 0c ≥

2 0c ≥ 2n ≥

   ( ) ( )( )( )0 1 2log log exp log exp log log( 1)n e n c n c n c nγσ ≤ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + .    (6) 

Theorem 2. There exists constant  such that, for any , it holds 

unconditionally that  

0 1c ≥ 2n ≥

         ( ) ( )( )( )0log log exp log exp log log( 1)n e n c n n nγσ ≤ ⋅ ⋅ ⋅ ⋅ ⋅ + .        (7) 
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3. The proof of the theorem 1 
 

In this section we will prove the theorem 1. The main idea of the proof is the 

Robin theorems in the papers [5,6].  

We could 

Proof of the theorem 1. Suppose that the RH is true. Then, by the Robin’s 

theorem ([5,6]), for any , it holds that   5041n ≥

                                            ( ) log logn e nγσ ≤ ⋅ ⋅ n .                                    (8) 

Hence there exists a constant  such that, for any , we have   0 1c ≥ 2n ≥

( ) ( )0log logn e n c nγσ ≤ ⋅ ⋅ ⋅ .                                    

On the other hand, for any constants  and , it is clear that    1 0c ≥ 2 0c ≥

                        ( )( )1 2exp log exp log log( 1) 1c n c n⋅ ⋅ ⋅ + ≥ .                     (9) 

Therefore we have (6). Suppose that inequality (6) holds, but the RH is not 

true. Then also by the Robin’s theorem ([5,6]) there exist a constant  

and a constant 

0c >

0 1/ 2β< <  such that, for infinitely many number n , it holds 

that  

                              
( )

( )log loglog log
log

n ne n n c n
n

γ
β σ⋅

⋅ ⋅ + ⋅ ≤ .                        (10) 

 On the other hand, it is clear that  

          

( )( )( )
( )( )

( )

0 1 2

0 1 2

1 20

log log exp log exp log log( 1)

log log log log exp log log( 1)

log exp log log( 1)loglog log 1
log log

c n c n c n

c n c n c n

c n c ncn
n n

⋅ ⋅ ⋅ ⋅ ⋅ + =

= + + ⋅ ⋅ ⋅ + =

⎛ ⎞⎛ ⎞⋅ ⋅ ⋅ +⎜ ⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

         (11)   
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( )

( )

1 20

1 20

exp log log( 1)loglog log log 1
log log

exp log log( 1)loglog log .
log log

c c ncn
n n

c c ncn
n n

⎛ ⎞⋅ ⋅ +
⎜ ⎟= + + +
⎜ ⎟
⎝ ⎠

⋅ ⋅ +
≤ + +

≤

 

Hence, from (6) and (10), for infinitely many numbers , we have   n

             
( )

( )

( )1 20

log loglog log
log

exp log log( 1)loglog log
log log

n ne n n c n
n

c c nce n n
n n

γ
β

γ

σ⋅
⋅ ⋅ + ⋅ ≤ ≤

⎛ ⎞⋅ ⋅ +
⎜ ⎟≤ ⋅ ⋅ + +
⎜ ⎟
⎝ ⎠

             (12)   

and 

                 
( )

( )1 20
exp log log( 1)loglog log .

log loglog

c c ncnc e
n nn

γ
β

−
⋅ ⋅ +

⋅ ⋅ ≤ +              (13) 

If  or 0 1c = 1 0c = , then (13) is impossible. So suppose that  and .  0 1c > 1 0c >

Then since  we have   ( )1/ 2 0β− >

( )
( )

( )
( )1 20

1 1/ 2

exp log log( 1)log0 0
log log log log log log

c c ncc e n
n n n n

γ
β β

−
− −

⎛ ⎞⋅ ⋅ +
⎜ ⎟< ⋅ ≤ + → →∞
⎜ ⎟⋅ ⋅⎝ ⎠

                     (14) 

This is also a contradiction. □  

  

By using the method of the proof of the theorem 1, we have more.  

Proposition 3.1. The below statements are equivalent to each other.   

  a) The RH is true.  

  b) There exists a constant  such that, for any , it holds that   0 1c ≥ 2n ≥

                                         ( ) ( )0log logn e n c nγσ ≤ ⋅ ⋅ ⋅ .                              (15) 

 c) There exist constants ,  and  such that, for any ,  0 1c ≥ 1 0c ≥ 2 0c ≥ 2n ≥

 8  



    it holds that  

        ( ) ( )( )( )( )0 1 2log log exp log exp log log( 1)n e n c n c n c n αγσ ≤ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ,      

(16) 

     where 0 1α< < . 

  d) It holds that  

             ( )
( )

log
limsup log log

exp log log( 1)n

n n
e n

n n
γσ

→∞

⎛ ⎞
− ⋅ ⋅ < +∞⎜ ⎟

+⎝ ⎠
.          (17) 

It is not difficult to check the proof of the proposition 3.1. Here the impotant 

is the meaning of every expression. We note that (15) is one showing the 

most simple and clear relation with the Robin inequality. We could prove 

that the (15) holds unconditionally under 0 6c = . In fact, by the concrete 

calculation, we are able to get ( )( )0 exp exp 3/ 2 / 2 5.0951c e γ−= ⋅ = . And 

(16) is the most generalized type of the Robin ineqyality.  We note that 

log n  in (16) is unable to change into ( )log n µ  with 1/ 2µ > . In his paper 

(see [4]), Ramanujan showed under the RH it holds that 

                      

( )

( )

limsup log log log

4 2 2 log 4 1.39

n

n
e n n

n

e

γ

γ

σ

γ π

→∞

⎛ ⎞
− ⋅ ⋅ ≤⎜ ⎟

⎝ ⎠

≤ ⋅ − + − = − .

                   (18)         

It is easy to see that (18) is more weak that (17). Therefore the proposition 

3.1 shows that the Ramanujan’s formula (18) is a condition equivalent to the 

RH. Of course, we are able to change log log( 1)n +  in (17) into 

( )log log( 1)n α+  with 0< <1α .  

Note. See more the paper [13,14] for the proof of the theorem 1.  
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4. The proof of the theorem 2 
 

To prove the theorem 2 we need to take three steps. That reason is explained 

as follows. As noted in the introduction, we are able to say that any natural 

number has three-dimentional structure. In fact, suppose that 

 is a prime factorization of m
mqqqn λλλ 21

21 ⋅= n N∈ , where  are 

distinct primes and 

1 2, , mq q q

1 2, , , mλ λ λ  are non-negative integers. We assume that 

. And we put 1 2 1mλ λ λ≥ ≥ ≥ ≥ ( )n mω = , ( ) ( )1 2, , , mnλ λ λ λ=  and 

( ) ( )1 2, ,  , mq n q q q= , which would be called an exponent length, an 

exponent pattern and a prime factor pattern, respectively.   Here  

([4]) is the number of the prime factors of a given n . Then we could write 

any natural number  and the set  as  

( )
|

1
p n

nω =∑

n N

                                      ( ) ( ) ( )( ), ,n n q n n nλ ω=                                    (19) 

and 

                                ( ) ( ) ( )( )
( )( )( )

, ,
n n q n

N n q n n
ω λ

λ ω=∪∪∪ n                              (20) 

respectively. Hence we can say that any natural number n  has the three-

parameters. Of course, both ( )nλ  and ( )q n  are dependent on . 

But, if we take such the standpoint at the consideration of the theorem 2, 

then we would be able to prove it more easily.   

( )n mω =

 

Let be the first primes ([4]). Here then 1 2 32, 3, 5, , ,np p p p= = = np  is 

n-th prime number. If ( )nλ  and ( )nω are fixed in a given number 

, then we put m
mqqqn λλλ 21

21 ⋅= ( ) 1 2
0 1 2

m
mr n p p pλλ λ= ⋅  to . If  

then the number n  is called a Hardy-Ramanujan number (HRN) ([2]). In 

n ( )0n r n=
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other words, the HRN is just a natural number of such forms as 
1 2

1 2
m

mp p pλλ λ⋅  with . The HRN has special properties.  1 2 1mλ λ λ≥ ≥ ≥ ≥

In particular, the HRN has the close relations with the sum of divisors 

function. We put   

          ( ) ( ) ( ) ( ){ }1 2, | , , , ,mS m n N n n mλ λ λ λ λ λ ω= ∈ = = = ,          (21) 

 and  

                            ( ) ( ) ( ){ }0| ,HR m n N n r n n mω= ∈ = = .                      (22) 

Then ( ,S mλ )  consists of the natural numbers with ( ) ( )1 2, , , mnλ λ λ λ=  

and . And the set ( )n mω = ( )HR m  consists of the HRN with .     ( )n mω =

And for  it holds that m
mqqqn λλλ 21

21 ⋅=

( ) 1

1
1

1
1

im
i

i i

n q
n q

λσ − −

−
=

−
=

−∏ .                                      (23) 

 

 

 

4.1. The sum of divisors function and  

the Hardy-Ramanujan Number 
 

In this section we will show a relation with the sum of divisors function and 

the Hardy-Ramanujan number. This relation says that one can reduce the 

dimension of the natural number at the proof of (7) or the Robin inequality.  

 

 

4.1.1 The Hardy-Ramanujan number 
 

In this section we will show a property of the HRN. The HRN is a unique 

minimum element in the set ( ),S mλ . We have 
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Theorem 4.1.1. For any ( ),n S mλ∈  we have ( )0r n n≤ , that is, 

                                            ( )
( )

( )
1 2

0 , ,
,

mq q q
r n min S mλ= .                               (24) 

The proof of this theorem 4.1.1 is in the paper [9].   

 

  

4.1.2. The sum of divisors function 
 

In this section we will show a relation between the sun of divisors function 

and the HRN. This relation is one of many interesting properties of the sum 

of divisors function. We have  

Theorem 4.1.2. For any ( ),n S mλ∈  we have ( ) ( )( )
( )
0

0

r nn
n r n

σσ
≤ , i.e. 

                                    
( )( )
( ) ( )

( )
1 2

0

, ,
0 mq q q

r n n
max

r n n
σ σ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

.                              (25) 

The proof of this theorem 4.1.2 is also in the paper [9].  

  

4.1.3. Some note 

We put  

                                 ( )
( )( )( )exp exp /e n n

H n
n

γ σ− ⋅
= .                              (26) 

This  we would like to call a sigma-index of the natural number. Our 

aim in the proof of the theorem 2 is to obtain upper estimate of the sigma-

index . By above the theorem 4.1.1 and the theorem 4.1.2, for any 

( )H n

( )H n

( ,n S mλ∈ )  we have ( ) ( )( )0H n H r n≤ . Here ( )( )0H r n is related only 

with the exponent pattern ( )nλ and the exponent length .  Thus  ( )nω
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( )( 0H r n )  has two-parameters. Hence the consideration of the sigma-index 

 on any  is reduced to one on the set ( )H n 2n ≥ ( )
m

HR m∪  of the HRN.   

 

 

4.2. The sum of divisors function and  

a certain optimization problem 
 

In this section we will consider the sum of divisors function and the 

opimization problem of a certain exponential function. By this consideration, 

we have obtained an estimate for the difference between the consecutive 

primes. This is a new result at the distribution of the prime numbers. This 

section is the second step for the proof of the theorem 2. We here assume 

that ( 1 2, , , m )λ λ λ λ=  are real numbers and . Of 

course, let 

1 2 1mλ λ λ≥ ≥ ≥ ≥

1 22, 3, , ,mp p p= = be consecutive primes. We will choose 

 arbitrarily and fix it. We define functions 5mp ≥ ( )F λ and ( )H λ  

respectively by   

                             ( ) ( )
1

1 2 1
1

1, , ,
1

im
i

m
i i

pF F
p

λ

λ λ λ λ
− −

−
=

−
= =

−∏ ,                      (27) 

                 ( ) ( )
( )( )( )

1 21 2
1 2

exp exp
, , ,

mm
m

e F
H H

p p p

γ

λλ λ

λ
λ λ λ λ

− ⋅
= =

⋅
,                  (28) 

where 0.577γ =  is Euler’s constant ([3,4]). The aim of this section is to 

show an existence of the optimum points of the function ( )H λ  in the -

dimensional real space 

m

mR and to estimate the optimum points. 
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4.2.1.  An existence of the optimum points of the function ( )H λ  

 

Here we will show that the function ( )H λ  has an optimum point in the 

space mR . The maximum value theorem of the continuous function is used 

here. We get 

Theorem 4.2.1 There exist ( )0 0 0
0 1 2, , , m

m Rλ λ λ λ= ∈ such that for any 

( )1 2, , , m
m Rλ λ λ ∈  we have ( ) ( )0H Hλ λ≤ , that is,   

        ( )
( ) 1 2

1 2

1

1
10 0 0

1 2
, , , 1 2

1exp exp
1

, , ,

i

m m
m

m
i

i i
m

R m

pe
p

H max
p p p

λ
γ

λλ λλ λ λ
λ λ λ

− −
−

−
=

∈

⎛ ⎞⎛ ⎞−⋅⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠=
⋅

∏
.        (29) 

There is the proof of this theorem 4.2.1 in the paper [10].  

  

 

4.2.2.  The estimate of the optimum points of the function ( )H λ  
 

Here we will estimate the optimum points ( )0 0 0
0 1 2, , , mλ λ λ λ=  of the 

function ( )H λ  obtained from the theorem 4.2.1. The optimization problem 

of the function ( )H λ  with the constraints of the certain inequalities is 

discussed here. We obtain 

Theorem 4.2.2 Assume that . Then for the optimum points 5mp ≥

( 0 0 0
0 1 2, , , m

m ) Rλ λ λ λ= ∈  of the function ( )H λ  in the space mR  we have; 

  ① There exist some 0
iλ  in { }0 0 0

1 2, , mλ λ λ such that 0 1iλ = . In particular,  

        we have . 0 1mλ =

  ② There exist some 0
iλ  in { }0 0 0

1 2, , mλ λ λ such that . In particular,  0 1iλ >

        we have . 0
1 1λ >
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 ③ There exists a number  such that   k

                                  .                      (30) 0 0 0 0 0
1 2 1 1k k mλ λ λ λ λ+> > > > = = =

       In particular, for any (1i i k )≤ ≤  we have  

                      0 log log log 11 .
log log log log

m m
i

i i i

p p
p p p p

λ
⎛ ⎞ ⎛

= + − +Ο⎜ ⎟ ⎜ ⋅⎝ ⎠ ⎝ m

⎞
⎟
⎠

           (31)     

  

There is also the proof of this theorem 4.2.2 in the paper [10].  

  

The last bigger number k  than 1 in the optimum points { }0 0 0
1 2, , , mλ λ λ  of 

the function ( )H λ  is especially important. We will here discuss ,k kpλ  and 

 in detail. In the furture, we assume that . We have  k 5mp ≥

Theorem 4.2.3. For the number k  such that  we have;   0 0 0
1 1k kλ λ λ +> > =1

              ①  0 11
logk

mp
λ

⎛ ⎞
= +Ο⎜

⎝ ⎠
⎟ ,                                                              (32) 

          ②  1log 1
logk m m

m

p p p
p

⎛ ⎞⎛ ⎞
= ⋅ ⋅ +Ο⎜ ⎜⎜ ⎝ ⎠⎝ ⎠

⎟⎟⎟ ,                                     (33) 

          ③  log log2 1
log

m

m

pk m
p

⎛ ⎞⎛ ⎞
= ⋅ +Ο⎜ ⎜⎜ ⎝ ⎠⎝ ⎠

⎟⎟⎟ .                                             (34)           

There is also the proof of this theorem 4.2.3 in the paper [10].  

Note. In the proof of the theorem 4.2.3, we have taken a certain suitable 

constant  determining the region 1a > mR+⊂∏  such that there exist the 

optimum points ( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈  of the function ( )H λ .  

Let’s estimate the size of the constant .  1a >

In general, since , it is sufficient to take a constant 

such that . On the other hand, since     

0 0 0
1 2 1mλ λ λ≥ ≥ ≥ ≥

1a > 0
11 aλ< ≤
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( )( ) ( )( )

( )( )

0
1 1

1 0 0exp 1

log 1 ,m m m

p e F e F

p p p

λ γ γλ λ

ε

+ − −= ⋅

= ⋅ ⋅ +

+ =
                      (35) 

we get  

( )( )0
1

1

log log
1

log
m m mp p p

p
ε

λ
⋅ ⋅

= − . 

 Hence we can take the constant  as   1a >

1

log log log 1
log

mp pa
p

m+
= + .                                (36) 

 

 

4.2.3. The estimate of ( )0F λ   
 

By the theorem 4.2.1 and the theorem 4.2.2, for the optimum points 

( 0 0 0
0 1 2, , , m

m ) Rλ λ λ λ= ∈ m in -dimensional real space mR of the function 

( )H λ , the function value ( )0 0 0
1 2, , , mH λ λ λ  is dependent only on mp . So 

we can put   

                     ( )
( )( )( )

00 0
1 2

00 0 0
1 2

1 2

exp exp
, , ,

m
m m

m

e F
C H

p p p

γ

λλ λ

λ
λ λ λ

− ⋅
= =

⋅
.               (37) 

In this connection, we will put   

                     ( )
( ) ( )

00 0
1 2 1 1

0 1 2 1 0 0

0 0 0 1
0 1 2 1

0 0 0
1 0 1 2 1

, ,

, , , ,

, , ,

k
k k m m

m
m

m m

n p p p p p n n p

R

C H H

λλ λ

λ λ λ λ

λ λ λ λ

−
+

−
−

− −

⎧ ′= ⋅ =⎪⎪ ′ = ∈⎨
⎪

′ ′= =⎪⎩

1⋅

               (38) 

and  

                               
( )

( )
1 2 1

1 1 2
, , ,

, , ,
m

m
m m

R
C max H

λ λ λ
λ λ λ

−
− −

∈
= 1 .                    (39) 

Then it is clear that .  1 1m mC C− −′ ≤
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Let ( 1 2 1, , , mλ λ λ λ −′ ′ ′ ′= ) be the optimum points of the function 

( )1 2 1, , , mH λ λ λ −  with ( )1m− -variable in the space 1mR − . In general, then 

we have   

                             .                     (40)   1 2 1 1 1k k mλ λ λ λ λ−′ ′ ′ ′ ′> > > > = = =−

Rarely, the last bigger number than 1 in { }1 2 1, , , mλ λ λ −′ ′ ′ could be k . But it 

is not essential. It is important that for any ( )1 1i i k≤ ≤ −   

          ( )( ) ( )( )11 2 11 1
1 2 1 exp 1k

kp p p e F e Fλλ λ γ γλ λ−′′ ′ ++ ++ − −
− ′ ′= = = = ⋅ ⋅ ⋅ +       (41) 

holds. We note that it doesn’t exceed one in{ }0 0 0
1 2, , , mλ λ λ .   

We also put  

                       

( ) ( )

1 2

1 2

1 1
1 2 1 1

1 1 1 1
1 2 1 1

1 2 1

,

,

, , , , 1 , .

k

k

k k m

k k m m

m m

n p p p p p

n p p p p p p n p

C H

λλ λ

λλ λ

λ λ λ λ λ

′′ ′
− −

′′ ′
+ − −

+ −

⎧ ′ = ⋅
⎪⎪ ′ ′= ⋅ ⋅ =⎨
⎪ ′ ′ ′ ′ ′ ′= =⎪⎩

m

+

⋅                  (42) 

The aim of this section is to estimate the size of ( )1 1log logm mC C− −′− .  

On the other hand, it is well known that   

                                       (0 0
1 log log

m

m
p p

)mp b E p
p≤

= + +∑ ,                     (43) 

where 

                               0
1 1log 1 0.241

p
b

p p
γ

⎛ ⎞⎛ ⎞
= + − + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑                     (44) 

([4,7,8]). And there exists a constant  such that   0a >

                                   ( ) ( )( )0 exp logmE p a p= Ο − m .                            (45) 

 

In this section we will estimate the value ( )0F λ  for the optimum points 

( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈ of the function ( )1 2, , , mH λ λ λ .  
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We have  

Theorem 4.2.4 For the optimum points ( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈ of the 

function ( )1 2, , , mH λ λ λ  we have   

             ( ) ( ) ( )0 0 3/ 2

4log 1
logm m

m m

F e p E p p
p p

γλ ε
⎛ ⎞

= ⋅ ⋅ + − +⎜ ⎟⎜ ⎟⋅⎝ ⎠
m

)m

,     (46) 

where  . Hence we also have  ( ) ( )( 2
0mp E pε = Ο

    

( )( ) ( )( )

( ) ( ) ( ) ( )

0 0

0 3/ 2

exp

4 log 1
log 1 log 1 ,

log
m

m m m m m
m m

e F e F

p
p p p E p p

p p

γ γλ λ

ε

− −⋅ ⋅ ⋅ =

⎛ ⎞⋅ +
= ⋅ ⋅ + + ⋅ − +⎜ ⎟⎜ ⎟⋅⎝ ⎠

   (47) 

where . ( ) ( )( ))2 2
0logm mp p Eε = Ο ⋅ mp

Proof. This could be found in the paper [11].   

 

 

4.2.4. The estimate of ( )1 1log logm mC C− −′−    
  

 In this section we will estimate ( )1log logmC C− 1m−′− . This consideration is 

for next section. We get  

Theorem 4.2.5 There exists a number  such that for any  we have  0m 0m m≥

       ( )(1 1
1 1

11 1

log log 1
log

m m m m
m m

mm m

p p p pC C p
pp p

α− −
− −

−− −

⎛ ⎞− −′− = ⋅ ⋅ +⎜ ⎟
⋅ ⎝ ⎠

)m ,      (48)        

where ( ) 1
logm

m

p
p

α
⎛ ⎞

= Ο⎜
⎝ ⎠

⎟ .                                                                     (49)                      

Proof. This could be also found in the paper [11].   
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4.2.5. The estimate of ( )1m mp p −−  

In this section we will estimate the size of ( )1mp p+ − m

)m

. Here obtained result 

on (  is a new result for the distribution of the prime number.   1mp p+ −

We have 

Theorem 4.2.6. There exist a number  such that for any  we have  0m 0m m≥

                              ( ) ( )5/ 2
1 1 logm m m mp p p p− −− = Ο ⋅ 1− .                          (50)               

Proof. This could be also found in the paper [11]. 

 

4.2.6. The estimate of ( )0 mE p  
 

In this section we will estimate the size of the error iterm ( )0 mE p  given in 

the formular (101).  

We get  

Theorem 4.2.7 There exists a number  such that for any  we have  0m 0m m≥

                                ( )
2

0
log m

m
m

pE p
p

⎛
= Ο⎜⎜

⎝ ⎠

⎞
⎟⎟ .                               (51)                     

Proof. This could be also found in the paper [11]. 

  

 

 

4.3. The sum of divisors function and  

a related inequality 

(The proof of the theorem 2) 
 

In this section we will consider one inequality on the sum of divisors 

function. This inequality, in deed, is the proof of the theorem 2.     

We put  

 19  



                           ( )
( )( )( )( )

( )( )
exp exp / /

exp log exp log log( 1)

e n n n
G n

n n

γ σ− ⋅
=

⋅ +
.                  (52)        

Proof of the theorem 2. There are two steps for the proof of the theorem 2.        
① The function  has the following properties.   ( )G n

First, For any ( ,n S mλ∈ )  it holds that ( ) ( )0 ( )G n G r n≤ .  

In fact, it is clear by the theorem 4.1.1 and the theorem 4.1.2.    

Second, for 1 2
1 2

m
mn p p pλλ λ= ⋅  we put ( ) ( ) ( )1 2, , , mG n G Gλ λ λ λ= = . 

Then there exist ( )0 0 0
0 1 2, , m

m Rα α α α= ∈ such that for any 

( )1 2, , , m
m Rλ λ λ ∈  we have ( ) ( )0G Gλ α≤ . This is also clear by the 

theorem 4.2.1. And, for the optimum points ( )0 0 0
0 1 2, , m

m Rα α α α= ∈  of the 

function ( )G λ , such the results as in the theorem 4.2.2 and the theorem 

4.2.3 are valid. Also for any  we have 2n ≥

                       ( ) ( ) ( )( )( )( )= exp exp / /G n H n e n n nγ σ−≤ ⋅ .                   (53) 

 Finally, The every member ( )0 1,i i mα =  of the optimum points 

{ }0 0 0
1 2, , mα α α  of the function ( )G λ  is not larger than ( )0 1,i i mλ = of one 

of the function ( )H λ , namely, for any ( )1i i m≤ ≤  it holds that 0 0
i iα λ≤ .  

In fact, by the theorem 4.2.2, for the function ( )H λ  it holds that     

                         
( )( ) ( )( ) ( )

00 0
1 2 11 1

1 2

0 0exp 1 1 .

k
kp p p

e F e F i k

λλ λ

γ γλ λ

++ +

− −

= = = =

= ⋅ + ≤ ≤
               (54)    

Similarly, for the function ( )G λ  it holds that     

           
( )( ) ( )( ) ( ) ( )

00 0
1 2 11 1

1 2

0 0
1exp 1 1 ,

1

k
kp p p

e F e F i k
n

αα α

γ γα α

++ +

− −

= = = =

⎛ ⎞
= ⋅ ⋅ + ≤⎜ ⎟⎜ ⎟+Ψ⎝ ⎠

≤
       (55)       
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where  

                  
( )

( )

( )
( )

exp log log( 1)

2 log

exp log log( 1) log
0 .

log( 1) 12 log log( 1)

n
n

n

n n n n
n nn

+
Ψ = +

⋅

+ ⎛ ⎞+ ⋅ ⋅ → →⎜ ⎟+ +⋅ + ⎝ ⎠
∞

) 0
i

   (56)         

Hence for any  we have (1i i m≤ ≤ 0
iα λ≤  and, in particular, we have     

                        ( ) (
0 01 1

0 01 1
1 1

1 1
1 1

i im m
i i

i ii i

p pF F
p p

α λ

)α λ
− − − −

− −
= =

− −
= ≤ =

− −∏ ∏ .                (57)             

② We put   

                                           ( )0 0 0
1 2, , ,mD G mα α α=                                  (58)   

and 

                        ( )
( ) ( )

00 0
1 2 1 1

0 1 2 1 0 0

0 0 0 1
0 1 2 1

0 0 0
1 0 1 2 1

, ,

, , , ,

, , , .

k
k k m m

m
m

m m

n p p p p p n n p

R

D G G

αα α

α α α α

α α α α

1−
+

−
−

− −

⎧ ′= ⋅ =⎪⎪ ′ = ∈⎨
⎪

′ ′= =⎪⎩

⋅

           (59)      

In this connection, we put  

                                  
( )

( )1
1 2 1

1 1 2
, ,

, ,
m

m
m m

R
D max G

λ λ λ
λ λ λ

−
−

− −
∈

= 1

1m−

.                  (60)                

Then it is clear that  and    1mD D−′ ≤

( )( ) ( )( )( )
( )( )
( )( )

( )( ) ( ) ( )

( ) ( )( )

0 0
1

0 0 0

0 0 0

0 0

0 0 0

log exp exp

log log exp log log( 1)

log log exp log log( 1)

1exp exp 1 log

log exp log log( 1) log exp log log( 1) .

m

m

m
m

D e F e F
D

n n n

n n n

e F e F p
p

n n n n

γ γ

γ γ

α α

α α

− −

−

− −

′= ⋅ − ⋅ −
′

− + ⋅ + +

′ ′ ′+ + ⋅ + =

⎛ ⎞⎛ ⎞
′ ′= ⋅ ⋅ ⋅ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

′ ′− ⋅ + − ⋅ +0

  

 (61)             
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 By the theorem 4.2.7, we have   

                       

( )( ) ( )

( )( ) ( )

( )

0 0

0 0

1

1exp exp 1

1exp exp 1

log ,

m

m

m m

e F e F
p

e F e F
p

p p

γ γ

γ γ

α α

λ λ

− −

− −

⎛ ⎞⎛ ⎞
′ ′⋅ ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
′ ′

− ≤

≤ ⋅ ⋅ ⋅⎜ ⎟⎜⎜ ⎟⎝ ⎠⎝ ⎠
= +Θ

− =⎟                (62) 

where ( )
4

1
log .m

m
m

pp
p

⎛ ⎞
Θ = Ο⎜⎜

⎝ ⎠
⎟⎟  So there is a constant a such that   0a >

                                              ( )
4

1
log .m

m
m

pp a
p

Θ ≤ ⋅                                   (63)      

On the other hand, we have 

                         (64)   
( )

( ) ( ) ( )

00 0
1 2 1 1 0

0 1 2 1
1

0

1 1

log log log

log 1 log

k

m

k k m i i
i

m k

i i i m k k
i i

n p p p p p p

p p p p

αα α α

α ϑ ϑ

+
=

= =

= ⋅ =

= + − ⋅ = + +

∑

∑ ∑ R

⋅ =

iwhere ( )
1

log
m

m
i

p pϑ
=

=∑ is the Chebyshev’s function ([4,8]) and ( )k kR o p= .  

Hence by the prime number theorem ([3,4,8]), we have    

                       ( ) ( ) (0log 1m k k
m

m m m m

p pn R p
p p p p

ϑ ϑ
= + + → → ) .∞                 (65)       

From this we get  

                                         ( )( )0 1log 1mn p pθ= ⋅ + m ,                                (66)    

where ( )1
1

logm
m

p
p

θ
⎛ ⎞

= Ο⎜
⎝ ⎠

⎟ . So we also obtain  

                                 ( )( )0 1 2 1log 1mn p pθ−′ = + m− .                                     (67)               

where ( )2 1
1

1
logm

m

p
p

θ −
−

⎛ ⎞
= Ο⎜

⎝ ⎠
⎟ . And it is easy to see that  
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( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )( )

0 0 0 0

0 0 0

0 0 0

2

log exp log log( 1) log exp log log( 1)

log log exp log log( 1)

log exp log log( 1) exp log log( 1)

logexp log 1 ,
2

m
m m

m

n n n n

n n n

n n n

pp p
p

′ ′⋅ + − ⋅

′= − ⋅ + +

′ ′+ ⋅ + − + =

⎛ ⎞
= ⋅ ⋅ +Θ⎜ ⎟⎜ ⎟⋅⎝ ⎠

+ =

   (68)   

where ( )2
1

logm
m

p
p

⎛ ⎞
Θ = Ο⎜

⎝ ⎠
⎟ . Hence we have  

                         

( ) ( )( )

4

1

2

loglog log

logexp log 1 .
2

m
m m

m

m
m m

m

pD D a
p

pp p
p

−′− ≤ ⋅ −

− ⋅ +Θ
⋅

                        (69)             

On the other hand, it is clear that   

                                         
( ) (

3log 0
exp log

m
m

m

p p
p

→ → )∞

1

                        (70)             

This shows that there exists a number  such that for any  we have  0m 0m m≥

                                                    1m m mD D D− −′< ≤ .                                  (71)        

From this we get 

                                                00 sup m
m

c D< = < +∞ .                                (72)   

This is the proof of the theorem 2.   

See also more in the paper [12].  

 

Note.  ①We are able to see that  

                      
( )( )

( )( )0 1

exp exp 3/ 2 / 2
1.6436 2

exp log 2 exp log log 3

e
c D

γ− ⋅
= = = ≤

⋅
    (73)    
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② The process for the proof of the theorem 2 is graphically as follows. 

Here ⇒ shows the increasing direction of the values for the function  

and .   

( )H n

( )G n

                                    3 11 2
1 2 3 1

m m
m mn q q q q qλ λ λλ λ −
−= ⋅ ⋅ ⋅  

                                                      ⇩                                 ← theorem 4.1.2 
                                    31 2

0 1 2 3( ) m
mr n p p p pλ λλ λ= ⋅ ⋅ ⋅  

                                                      ⇩                                 ← theorem 4.2.2 
                             , 

00 0
1 2 1 1

0 1 2 1
k

k kn p p p p pλλ λ
+= ⋅ ⋅ m

1

                                                      ⇩                                 ← theorem 2   
                             

00 0
1 2 1 1

0 1 2 1
k

k k mn p p p p pλλ λ
+ −′ = ⋅ ⋅  

                                                   ⇩                          
  2n =   

 
As it was indicated in the paper [1], one can say that any natural number has 

the three-dimensional structure. For ( ) ( )1 2, , mq n q q q= , 

( ) ( )1 2, , mnλ λ λ λ=  and ( )n mω =  of 1 2
1 2

m
mn q q qλλ λ= ⋅  we put 

( ) ( ) ( )( , ,n n q n n nλ ω= ) . Then to prove the theorem we have taken the 

process reducing the dimensional numbers of ( ) ( ) ( )( ), ,n n q n n nλ ω=  in 

the function . The dimensional numbers of n  in the function  

were reduced by the theorem 4.1.2 and the theorem 4.2.2, respectively. That 

is so; 

( )G n ( )G n

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )0, , , ,n n q n n n n n n n n n mλ ω λ ω λ ω= → → → .     

③ The below table 1 shows  the optimum points ( )0 0 0
0 1 2, , , mλ λ λ λ=  of the 

function ( )H λ  and the values of ( )0H n  and  to 0( )G n mn =)(ω .   
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Table 1  

( )n
m

ω
=
 

( )0 0 0
1 2, , , mλ λ λ λ=  of  

00 0 0
1 2 2 1 1

0 12 3 5 k
k kn p pλλ λ λ

+= ⋅ ⋅ ⋅ mp  

( )0H n , 

0( )G n  

 
1 

   
  0

1 1λ =
5.09518716186 , 

 1.643686767536
 
2 

    
  0 0

1 21.65 , 1λ λ= =
3.58945411446 , 

-10.8250082 10×  
 
3 

   
  0 0

1 22.70 , 1.33 , 1λ λ= = 0
3λ =

1.91192398575 , 
-50.7148367 10×  

 
4   

0 0
1 2
0 0
3 4

3.36 , 1.75 ,
1 , 1

λ λ

λ λ

= =

= =

1.32309514626 , 
-60.1065950 10×  

 
5    

0 0
1 2
0 0 0
3 4 5

=4.22 ,  =2.29 ,

=1.24 , = 1

λ λ

λ λ λ =

0.57062058635 , 
-90.3761569 10×  

 
6   

0 0
1 2
0 0 0
3 4 5

=4.53 ,  =2.49 ,

=1.38 , = 1

λ λ

λ λ λ λ 0
6= =

 
0.40977025702 , 

-100.767767 10×  

 
7 

   

0 0
1 2
0 0
3 4
0 0 0
5 6 7

=5.02 ,  =2.80 ,

=1.59 , =1.14 ,

1

λ λ

λ λ

λ λ λ= = =

 
0.22782964552 , 

-110.575576 10×  

 
8 

   

0 0
1 2
0 0
3 4
0 0 0 0
5 6 7 8

=5.22 ,  =2.92 ,

=1.68 , =1.21 ,

1 

λ λ

λ λ

λ λ λ λ= = = =

 
0.20507350097 , 

-120.164730 10×  

 
9 

   

0 0
1 2
0 0
3 4
0 0 0 0 0
5 6 7 8 9

=5.57 ,  =3.14 ,

=1.83 , =1.34 ,

1

λ λ

λ λ

λ λ λ λ λ= = = = =

 
0.16722089980 , 

-140.287587 10×  

… …   …   … …   … 

 

 

③ The below table 2 shows the Hardy-Ramanujan’s numbers, which give 

maximum value of the function  to 0( )G n mn =)(ω .   
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Table 2 

( )n
m

ω
=
 

 

( ) 1 1 1
0 0 0 1 1

k
k kn r n p p p pλλ

+= = ⋅ m  

 

0( )G n  

1    2 1.643686767536  

2   32 ⋅  -10.82500822 10×  

3    5322 ⋅⋅ -50.71483676 10×  

4   3 22 3 5 7⋅ ⋅ ⋅  -60.10659507 10×  

5    117532 24 ⋅⋅⋅⋅ -90.37615690 10×  

6   4 22 3 5 7 11 13⋅ ⋅ ⋅ ⋅ ⋅  -100.76776726 10×  

7    1713117532 35 ⋅⋅⋅⋅⋅⋅ -110.575576185 10×  

8    191713117532 235 ⋅⋅⋅⋅⋅⋅⋅ -120.164730227 10×  

9    23191713117532 235 ⋅⋅⋅⋅⋅⋅⋅⋅ -140.287587585 10×  

…     …   …   …   … 

 

                                                     ===&&&===       

 

 

 

 

Acknowledgment 
I would like to thank the Dalian University of Technology (DUT) of China 

for the supporting of the financial assistance. And I also thank Prof. Dr. Jin 

Zengguo for all his help in the School of Mathematical Sciences of DUT. 

 

 
 
 
 

 26  



 

References  
[1] G. Caveney, J. L. Nicolas, J. Sondow, Robin’s theorem, primes, and a  
      new elementary reformulation of the Riemann hypothesis, arXiv:  
      1110.5078v1 [math.NT] 23 Oct 2011. 
[2] Y-J. Choie, N. Lichiardopol, P. Sole, P. Morre, “On Robin’s criterion for  
      the Riemann hypothesis”.   J. Theor. Nombres Bord. 19, 351-366, 2007. 
[3] P. Borwin, S. Choi, B. Rooney,  “The Riemann Hypothesis”, Springer,   
      2007   
[4] J. Sandor, D. S. Mitrinovic, B. Crstici, “Handbook of Number theory 1”,  
      Springer, 2006. 
[5] J. C. Lagarias,  “An elementary problem quivalent to the Riemann  
      hypothesis”, Amer. Math. Monthly 109, 534-543, 2002. 
[6] G. Robin, “Grandes valeurs de la fonction somme des diviseurs et  
      hypothese de Rimann”, Journal of Math. Pures et appl. 63, 187-213,  
      1984. 
[7] J. L. Nicolas, “Peties valeurs de la fonction d´Euler”, Journal of  
      Number Theory 17, 375-388, 1983. 
[8] J. B. Rosser, L. Schoenfeld, “ Approximate formulars for some functions  

of prime numbers”, IIlinois J. Math. 6(1962), 64-94. 
 

[9] R. G. Choe, The Sum of divisors function and the Hardy-Ramanujan’s 
number, Nov. 15, 2011.  
http://commons.wikimedia.org/wiki/File:The_sum_of_divisors_function_an
d_the_Hardy-Ramanujan%27s_number.pdf  
 
[10] R. G. Choe, An Exponential function and its optimization problem, 
Nov. 17, 2011.  
http://commons.wikimedia.org/wiki/File:An_Exponential_Function_and_its
_Optimization_Problem.pdf  
 
[11] R. G. Choe, An estimate for the error in a formula on prime numbers, 
Nov. 19, 2011. 
http://commons.wikimedia.org/wiki/File:An_Estimate_for_the_Error_in_a_
Formula_on_Prime_Numbers.pdf  
 
[12] R. G. Choe, An inequality for the sum of divisors function, Nov. 21, 
2011.  
http://commons.wikimedia.org/wiki/File:An_Inequality_for_the_Sum_of_D
ivisors_Function.pdf  
 
  
 

 27  

http://commons.wikimedia.org/wiki/File:The_sum_of_divisors_function_and_the_Hardy-Ramanujan%27s_number.pdf
http://commons.wikimedia.org/wiki/File:The_sum_of_divisors_function_and_the_Hardy-Ramanujan%27s_number.pdf
http://commons.wikimedia.org/wiki/File:An_Exponential_Function_and_its_Optimization_Problem.pdf
http://commons.wikimedia.org/wiki/File:An_Exponential_Function_and_its_Optimization_Problem.pdf
http://commons.wikimedia.org/wiki/File:An_Estimate_for_the_Error_in_a_Formula_on_Prime_Numbers.pdf
http://commons.wikimedia.org/wiki/File:An_Estimate_for_the_Error_in_a_Formula_on_Prime_Numbers.pdf
http://commons.wikimedia.org/wiki/File:An_Inequality_for_the_Sum_of_Divisors_Function.pdf
http://commons.wikimedia.org/wiki/File:An_Inequality_for_the_Sum_of_Divisors_Function.pdf


[13] R. G. Choe, An equivalent condition to the Robin inequality, Nov. 22, 
2011.   
http://commons.wikimedia.org/wiki/File:An_Equivalent_Condition_to_the_
Robin_Inequality.pdf  
 
[14] R. G. Choe, The sufficient conditions for the Robin criterion, Nov. 
2011. 
http://commons.wikimedia.org/wiki/File:The_Sufficient_Conditions_for_th
e_Robin_Criterion.pdf  
 
[15] R. G. Choe, Research plan for the Riemann hypothesis, Nov. 11, 2011.  
http://commons.wikimedia.org/wiki/File:Research_Plan_for_Riemann_Hyp
othesis.pdf     
 
 
 
 
Choe Ryong Gil,  
(Present address, Dec. 2011), 
School of Mathematical Sciences, 
Dalian University of Technology,  
P.R.China  
 
 
  

 28  

http://commons.wikimedia.org/wiki/File:An_Equivalent_Condition_to_the_Robin_Inequality.pdf
http://commons.wikimedia.org/wiki/File:An_Equivalent_Condition_to_the_Robin_Inequality.pdf
http://commons.wikimedia.org/wiki/File:The_Sufficient_Conditions_for_the_Robin_Criterion.pdf
http://commons.wikimedia.org/wiki/File:The_Sufficient_Conditions_for_the_Robin_Criterion.pdf
http://commons.wikimedia.org/wiki/File:Research_Plan_for_Riemann_Hypothesis.pdf
http://commons.wikimedia.org/wiki/File:Research_Plan_for_Riemann_Hypothesis.pdf

	Choe Ryong Gil
	Abstruct
	Contents
	Acknowledgment …………………………………………….. 26
	References…………………………………………………….. 27

	Acknowledgment
	References



