Preview Page 1 of 20

PREVIEW

CLOSE

Quiz: The Quadratic Formula

Question 1a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90968)

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$x^2 + 3x - 5$$

Correct Answers:

	Choice	
A.	$x = \frac{3 + \sqrt{-1}}{2}$	
В.	$x = \frac{3 - \sqrt{-1}}{2}$	
*C.	$x = \frac{-3 + \sqrt{29}}{2}$	
D.	$x = \frac{-3 - \sqrt{11}}{2}$	
E.	$x = \frac{-3 + \sqrt{11}}{2}$	
*F.	$x = \frac{-3 - \sqrt{29}}{2}$	

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorr	ect Feedback	
The correct ar	nswers are:	
x =	and $x =$	

$\textbf{Question 1b of 15} \ (\ 3 \ \text{Using The Quadratic Formula to Solve Quadratic Equations 297743}\)$

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

 $x^2 + 3x + 5$

Page 2 of 20

Preview	
	Choice

	Choice
*A.	$x = \begin{array}{ccc} 3 & \sqrt{11} \\ 2 & \end{array}$

***B.**
$$x = \frac{-\gamma - \sqrt{-11}}{2}$$

c.
$$x = \frac{3}{2} - \sqrt{39}$$

D.
$$x = \frac{3}{2} - \frac{1}{2}$$

E.
$$x = \frac{3 + \sqrt{1 + 1}}{2}$$

F.
$$x = \frac{3 - \sqrt{29}}{2}$$

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorrect Feedback	
The correct answers are: $x = \frac{-\sqrt{1-x}}{\sqrt{2}}$.	$3+\sqrt{11}$ and x

Question 1c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297744)

Maximum Attempts:

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$x^2 - 3x - 5$$

	Choice
A.	<i>x</i> =
В.	<i>x</i> =
C.	<i>x</i> =
*D.	<i>x</i> =
*E.	<i>x</i> =
F.	<i>x</i> =

Attempt	Incorrect Feedback
1st	

Page 3 of 20

Correct Feedback

G	Global Incorrect Feedback
TI	The correct answers are: $x = \frac{3}{2} + \sqrt{\frac{25}{2}}$ and $x = \frac{3}{2} + \sqrt{\frac{23}{2}}$.

Question 2a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90969)

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$2x^2 - 11x + 15$$

Correct Answers:

	Choice
A.	$x = \frac{11 - \sqrt{-1 - 9}}{2}$
В.	$x = \frac{11 + \sqrt{z^2}}{2}$
*C.	<i>x</i> = 2.5
D.	$x = \frac{11 - \sqrt{61}}{2}$
*E.	<i>x</i> = 3
F.	$x = \frac{11 + \sqrt{-109}}{2}$

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorrect Feedback
The correct answers are: $x = 2.5$ and $x = 3$.

 $\textbf{Question 2b of 15} \ (\ \textbf{3 Using The Quadratic Formula to Solve Quadratic Equations 297746}\)$

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

 $2x^2 + 7x + 6$

Page 4 of 20

Preview

ı		Ciloice
	A.	$x = \frac{7}{2} \sqrt{\frac{109}{2}}$

***B.**
$$x = -2$$

C.
$$x = \frac{7 - \sqrt{-109}}{2}$$

D.
$$x = \frac{7}{\sqrt{61}}$$

***E.**
$$x = -1.5$$

F.
$$x = \frac{7 - \sqrt{61}}{2}$$

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorrect Feedback
The correct answers are: $x = -2$ and $x = -1.5$.

Question 2c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297747)

Maximum Attempts:

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$2x^2 + 11x + 15$$

	Choice
*A.	<i>x</i> = −2.5
В.	$x = \frac{1 + \sqrt{31}}{2}$
c.	<i>x</i> =
D.	<i>x</i> =
*E.	<i>x</i> = −3
F.	x =

Attempt	Incorrect Feedback
1st	

	Correct Feedback

Global Incorrect Feedback
The correct answers are: $x = -2.5$ and $x = -3$.

Preview Page 5 of 20

Question 3a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90970)

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$x^2 - 5x + 2$$

Correct Answers:

	Choice
A.	∴ - 1 /2
*B.	$x = \frac{5 - \sqrt{17}}{7}$
*C.	$x = \frac{5 + \sqrt{17}}{2}$
D.	<i>x</i> = 5
E.	$x = \frac{-5 - \sqrt{-3}}{2}$
F.	$x = \frac{-5 + \sqrt{-5}}{2}$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answers are:
	$x = \frac{5 - \sqrt{7}}{2}$ and $x = \frac{5 + \sqrt{17}}{2}$.

Question 3b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297748)

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$x^2 + 5x + 7$$

Page 6 of 20

	Choice
A.	$x = -\frac{1}{5}$

A.	$x = -\frac{1}{2}$
	6 = 1 1 7

C.
$$x = \frac{5 + \sqrt{17}}{2}$$

D.
$$x = 5$$

Preview

*F.
$$x = \frac{1 + \sqrt{3}}{2}$$

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorrect Feedback
The correct answers are: $x = \frac{5}{3}$ and $x = \frac{5}{3}$

Question 3c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297749)

Maximum Attempts:

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$x^2 + 5x - 7$$

	Choice
A.	
*В.	<i>x</i> =
*C.	<i>x</i> =
D.	<i>x</i> = 5
E.	<i>x</i> =
F.	<i>x</i> =

Attempt	Incorrect Feedback
1st	

Correct Feedback

Preview Page 7 of 20

Global Incorrect Feedback
The correct answers are: $x = \frac{5 \cdot \sqrt{53}}{2}$ and $x = \frac{-5 - \sqrt{53}}{2}$.

Question 4a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90971)

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$3x^2 + 8x - 3$$

Correct Answers:

	Choice
*A.	<i>x</i> = -3
В.	$x = \frac{-8 + \sqrt{28}}{6}$
C.	$x = \frac{3 - \sqrt{5}}{3}$
D.	$x = \frac{-8 - \sqrt{28}}{6}$
*E.	$x = \frac{1}{3}$
F.	$x = \frac{3 + \sqrt{5}}{3}$

Attempt	Incorrect Feedback
1st	
	Correct Feedback

Global Incorrect Feedback
The correct answers are: $x = -3$ and $x =$

Question 4b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297750)

Maximum Attempts: 1

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

 $3x^2 + 20x - 7$

Page 8 of 20

	Choice
*A.	<i>x</i> = -7
В.	$x = \frac{-10 - \sqrt{79}}{5}$

D.
$$x = \frac{-10 + \sqrt{79}}{2}$$

F.
$$x = \frac{77 - \sqrt{-79}}{2}$$

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorrect Feedback
The correct answers are: $x = -7$ and $x = \frac{1}{3}$.

Question 4c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297751)

Maximum Attempts:

Question Type: Multiple Response

Maximum Score: 2

Question: Select the two values of *x* that are roots of the given polynomial below.

$$3x^2 + 11x - 4$$

	Choice
*A.	x = -4
В.	<i>x</i> =
c.	<i>x</i> =
D.	<i>x</i> =
*E.	<i>x</i> =
F.	<i>x</i> =

Attempt	Incorrect Feedback
1st	

Correct Feedback

Global Incorrect Feedback	
The correct answers are: $x = -4$ and $x = -4$	

Question 5a of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 90972)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: The polynomial given below has _____ root(s).

$$2x^2 + 3x - 2$$

	Choice	Feedback
A.	two positive	
В.	two negative	
C.	two complex	
*D.	one positive and one negative	

Global Incorrect Feedback

The correct answer is: one positive and one negative.

Question 5b of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297752)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: The polynomial given below has _____ root(s).

$$2x^2 + 2x + 4$$

	Choice	Feedback
A.	two positive	
В.	two negative	
*C.	two complex	
D.	one positive and one negative	

Global Incorrect Feedback

The correct answer is: two complex.

Question 5c of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297754)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: The polynomial given below has _____ root(s).

$$2x^2 + 5x + 2$$

	Choice	Feedback
*A.	two negative	
В.	two positive	
c.	one positive and one negative	
D.	two complex	

Global Incorrect Feedback

The correct answer is: two negative.

Preview Page 10 of 20

Question 6a of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 90973)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: The polynomial given below has _____ root(s).

$$3x^2 - 8x + 4$$

	Choice	Feedback
*A.	two positive	
В.	two negative	
c.	one positive and one negative	
D.	two complex	

Global Incorrect Feedback

The correct answer is: two positive.

Question 6b of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297753)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: The polynomial given below has ____ root(s).

$$2x^2 - 3x + 1$$

	Choice	Feedback
*A.	two positive	
В.	one positive and one negative	
C.	two negative	
D.	two complex	

Global Incorrect Feedback

The correct answer is: two positive.

 $\textbf{Question 6c of 15} \ (\ 2 \ \text{Using The Quadratic Formula to Solve Quadratic Equations 297755}\)$

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: The polynomial given below has _____ root(s).

$$2x^2 - 9x + 9$$

	Choice	Feedback
*A.	two positive	
В.	two negative	
c.	one positive and one negative	
D.	two complex	

Global Incorrect Feedback

The correct answer is: two positive.

Preview Page 11 of 20

Question 7a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121113)

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: 0

Question: The quadratic formula cannot be used to solve an equation if the coefficient of

the equation's x^2 -term is _____

Attempt	Incorrect Feedback	
1st		
	Correct Feedback	
	Global Incorrect Feedback	
	The correct answer is: 0.	

Question 7b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297756)

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2 Correct Answer: 0

Question: The quadratic formula cannot be used to solve an equation if the coefficient of

the equation's x^2 -term is _____.

Attempt	Incorrect Feedback	
1st		
	_	
	Correct Feedback	
	Global Incorrect Feedback	
	The correct answer is: 0.	

 $\textbf{Question 7c of 15} \ (\ 1 \ \text{Using The Quadratic Formula to Solve Quadratic Equations 297757}\)$

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: 0

Question: The quadratic formula cannot be used to solve an equation if the coefficient of

the equation's x^2 -term is _____.

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: 0.

Question 8a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121263)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is *positive*, which of the following is true of

the equation?

Preview Page 12 of 20

	Choice	Feedback
A.	It has two complex solutions.	
В.	It has one real solution.	
*C.	It has two real solutions.	

Global Incorrect Feedback

The correct answer is: It has two real solutions.

Question 8b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297758)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is positive, which of the following is true of

the equation?

	Choice	Feedback
A.	It has two complex solutions.	
В.	It has one real solution.	
*C.	It has two real solutions.	

Global Incorrect Feedback

The correct answer is: It has two real solutions.

Question 8c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297759)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is positive, which of the following is true of

the equation?

	Choice	Feedback
A.	It has one real solution.	
*В.	It has two real solutions.	
c.	It has two complex solutions.	

Global Incorrect Feedback

The correct answer is: It has two real solutions

Question 9a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121264)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is 0, which of the following is true of the

equation?

Preview Page 13 of 20

	Choice	Feedback
A.	It has two complex solutions.	
*В.	It has one real solution.	
C.	It has two real solutions.	

Global Incorrect Feedback

The correct answer is: It has one real solution.

Question 9b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297760)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is 0, which of the following is true of the

equation?

	Choice	Feedback
A.	It has two complex solutions.	
В.	It has two real solutions.	
*C.	It has one real solution.	

Global Incorrect Feedback

The correct answer is: It has one real solution.

Question 9c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297761)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is 0, which of the following is true of the

equation?

	Choice	Feedback	
*A.	It has one real solution.		
В.	It has two complex solutions.		
c.	It has two real solutions.		

Global Incorrect Feedback

The correct answer is: It has one real solution.

Question 10a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121265

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is negative, which of the following is true of

the equation?

Page 14 of 20

	Choice	Feedback
*A.	It has two complex solutions.	Correct!
В.	It has one real solution.	
C.	It has two real solutions.	

Global Incorrect Feedback

The correct answer is: It has two complex solutions.

Question 10b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297762

)

Preview

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is *negative*, which of the following is true of

the equation?

	Choice	Feedback
A.	It has one real solution.	
*B.	It has two complex solutions.	
C.	It has two real solutions.	

Global Incorrect Feedback

The correct answer is: It has two complex solutions.

Question 10c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297763)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: If the discriminant of an equation is *negative*, which of the following is true of

the equation?

	Choice	Feedback
A.	It has two real solutions.	
В.	It has one real solution.	
*C.	It has two complex solutions.	

Global Incorrect Feedback

The correct answer is: It has two complex solutions.

Preview Page 15 of 20

Question 11a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121267

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score:2Correct Answer:0

Question: Find the discriminant of the following equation.

 $4x^2 + 12x + 9$

Attempt	Incorrect Feedback	
1st		
	Correct Feedback	
	Global Incorrect Feedback	
	The correct answer is: 0.	

Question 11b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297764

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: 0

Question: Find the discriminant of the following equation.

 $9x^2 + 12x + 4$

Attempt	Incorrect Feedback
1st	
	Correct Feedback

Global Incorrect Feedback
The correct answer is: 0.

Question 11c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297765)

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: 0

Question: Find the discriminant of the following equation.

 $4x^2 + 16x + 16$

Attempt	Incorrect Feedback
1st	
	Correct Feedback

Į	
ī	
ı	Global Incorrect Feedback

The correct answer is: 0.

Preview Page 16 of 20

Question 12a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121268

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score:

Question: What is the solution to the following equation?

$$4x^2 + 12x + 9 = 0$$

	Choice	Feedback
A.	2	
*B.	민	
c.	olei	
D.	11 كا	

Global Incorrect Feedback

The correct answer is: $\frac{-z}{2}$.

Question 12b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297766

Maximum Attempts:

Question Type: Multiple Choice

Maximum Score: 2

Question: What is the solution to the following equation?

$$9x^2 + 12x + 4 = 0$$

	Choice	Feedback
A.	2	
В.	Υ 4	
c.	m le	
*D.		

Global Incorrect Feedback

The correct answer is:

Question 12c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297767)

Maximum Attempts:

Question Type: Multiple Choice

Maximum Score: 2

Question: What is the solution to the following equation?

 $4x^2 + 16x + 16 = 0$

Page 17 of 20

	Choice	Feedback
*A.	-2	
В.	-4	
c.	- .4	
D.	1 4	

GIA	hal	Inco	rrect	Food	hack
UIU	vai	THICK	11 ECL	reeu	vacr

The correct answer is: -2.

Question 13a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121274

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: -24

Question: Find the discriminant of the following equation.

$$x^2 + 2x + 7 = 0$$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: -24.

Question 13b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297768

Maximum Attempts: 1

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: -23

Question: Find the discriminant of the following equation.

$$x^2 + 3x + 8 = 0$$

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback

Question 13c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297769)

Maximum Attempts: 1

The correct answer is: -23.

Question Type: Numeric Fill In Blank

Maximum Score: 2
Correct Answer: -28

Question: Find the discriminant of the following equation.

 $x^2 + 2x + 8 = 0$

Page 18 of 20

Preview		
Attem	at Incorrect Feedback	

Attempt	Incorrect Feedback
1st	
	Correct Feedback
	Global Incorrect Feedback
	The correct answer is: -28.

Question 14a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121275

Maximum Attempts:

Question Type: Multiple Choice

Maximum Score: 2

Question: What is the solution to the following equation?

$$x^2 + 2x + 7 = 0$$

	Choice	Feedback
A.	6	
B.	-6	
c.	<u>-2 ± √ 5</u>	
*D.	1 ± -√ =	

Global Incorrect Feedback

The correct answer is: $(\pm \sqrt{6})$.

Question 14b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297770

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: What is the solution to the following equation?

$$x^2 + 4x + 7 = 0$$

	Choice	Feedback
A.	3	
В.	-3	
c.		
*D.		

Global Incorrect Feedback

The correct answer is:

Question 14c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297771)

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: What is the solution to the following equation?

 $x^2 + 2x + 6 = 0$

Page 19 of 20

		Choice	Feedback
A	•	5	
В	•	-5	
C.	•	2±√5	
*	D.	-1+-,[

Global Incorrect Feedback

The correct answer is: $-\frac{1}{2} + \sqrt{-5}$.

Question 15a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121288

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: Find the roots of the polynomial below.

$$2x^2 - 8x + 3$$

	Choice	Feedback
A.	$\sqrt{-\frac{8+\sqrt{5}}{4}}$ and	
	$x = \frac{8 - \sqrt{5}}{4}$	
В.	x = 4 and $x = 2$	
C.	x = 10 and x = 4	
* D	$x = 10 \text{ and } x = 4$ $x = \frac{(1 + \sqrt{10})}{2} \text{ and } x$ $= \frac{4 + \sqrt{10}}{2}$	
*D.	= 4 31-	

Global Incorrect Feedback

The correct answer is: $x = \begin{pmatrix} 4 & \sqrt{1} \\ 2 \end{pmatrix}$ and $x = \begin{pmatrix} 4 & \sqrt{1} \\ 2 \end{pmatrix}$

.

Question 15b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297772

Maximum Attempts: 1

Question Type: Multiple Choice

Maximum Score: 2

Question: Find the roots of the polynomial below.

 $3x^2 - 8x + 3$

Page 20 of 20

Preview

	Choice	Feedback
A.	$x = \frac{4 + 3\sqrt{5}}{6} \text{ and }$ $x = \frac{4 + 3\sqrt{5}}{6}$	
B.	x = 4 and $x = 2$	
C.	x = 20 and x = 8	
*D.	$x = \frac{2 - \sqrt{7}}{3} \text{ and}$ $x = \frac{2 - \sqrt{7}}{3}$	

Global Incorrect Feedback

The correct answer is: $x = \frac{4 - \sqrt{7}}{3}$ and

$$g_{ij} = \frac{2i - \sqrt{r_i}}{3}.$$

Question 15c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297773)

Maximum Attempts:

Question Type: Multiple Choice

Maximum Score:

Question: Find the roots of the polynomial below.

$$2x^2 - 9x + 3$$

	Choice	Feedback
*A.	$\frac{C = \sqrt{C7}}{4} \text{ and}$ $\frac{C = \sqrt{C7}}{4}$ $\frac{C = \sqrt{C7}}{4}$	
В.	x = 8 and x = 2	
C.	x = 9 and x = 18	
D.	$x = \frac{z - \sqrt{6}}{2}$ and	

Global Incorrect Feedback

The correct answer is:

and