A Method to Derive an Expression for Summations of Natural Numbers (i) Raised to a Positive Integer Exponent (\mathbf{P}) as (i) is Indexed from 1 to N .

Before stepping into the method described in this paper, we need to first examine the origin of the identities used in the development of this method.

Lets first define a function $G(x)$ as being the difference in another function $F(x)$ as the value of x increases by 1 .

$$
\text { So } \quad G(x)=F(x+1)-F(x)
$$

This expression can be manipulated by use of simple mathematical properties to change its appearance as below:

$\mathrm{F}(\mathrm{x}+1)-\mathrm{F}(\mathrm{x})=\mathrm{G}(\mathrm{x})$	Given relationship
$\mathrm{F}(\mathrm{x}+1)=\mathrm{G}(\mathrm{x})+\mathrm{F}(\mathrm{x})$	Addition of $\mathrm{F}(\mathrm{x})$ to both sides of the expression
$\mathrm{F}(\mathrm{x}+1)=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$	Commutative property of addition
$\mathrm{F}(\mathrm{x}+2)-\mathrm{F}(\mathrm{x}+1)=\mathrm{G}(\mathrm{x}+1)$	Given relationship
$\mathrm{F}(\mathrm{x}+2)=\mathrm{G}(\mathrm{x}+1)+\mathrm{F}(\mathrm{x}+1)$	Addition of $\mathrm{F}(\mathrm{x}+1)$ to both sides of the expression
$\mathrm{F}(\mathrm{x}+2)=\mathrm{F}(\mathrm{x}+1)+\mathrm{G}(\mathrm{x}+1)$	Commutative property of addition
$\mathrm{F}(\mathrm{x}+2)=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})+\mathrm{G}(\mathrm{x}+1)$	Substitution of $\mathrm{F}(\mathrm{x}+1)$

The above manipulation of the expression can be repeated until we have

$$
\mathrm{F}(\mathrm{x}+\mathrm{m})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})+\mathrm{G}(\mathrm{x}+1)+\mathrm{G}(\mathrm{x}+2)+\ldots+\mathrm{G}(\mathrm{x}+\mathrm{m}-1)
$$

and this form of the expression can be abbreviated as

$$
\mathrm{F}(\mathrm{x}+\mathrm{m})=\mathrm{F}(\mathrm{x})+\sum_{\mathrm{i}=\mathrm{x}}^{(\mathrm{x}+\mathrm{m}-1)} \mathrm{G}(\mathrm{i})
$$

If we let $\mathrm{N}=\mathrm{x}+\mathrm{m}-1$ then $\mathrm{N}+1=\mathrm{x}+\mathrm{m}$ and the above expression simplifies further to

$$
\mathrm{F}(\mathrm{~N}+1)=\mathrm{F}(\mathrm{x})+\sum_{\mathrm{i}=\mathrm{x}}^{\mathrm{N}} \mathrm{G}(\mathrm{i})
$$

and if you take the special case where $x=1$, then we have a form of the relationship that is key to development of this method

$$
\mathrm{F}(\mathrm{~N}+1)=\mathrm{F}(1)+\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{G}(\mathrm{i})
$$

and the final form is obtained by subtracting $\mathrm{F}(1)$ from both sides

$$
\sum_{i=1}^{N} G(i)=F(N+1)-F(1)
$$

The final form of the expression for the relationship between $G(x)$ and $F(x)$ makes it apparent that if we are given the expression for $F(x)$, we can then calculate the sum of $G(i)$ without generating each value resulting from $i=1$ to N. This observation focuses on the objective of this paper and starts us off with some direction to solving this problem.

Since the function $G(x)$ is determined from the expression of $F(x)$, we should investigate resultant expressions of $G(x)$ from known $\mathrm{F}(\mathrm{x})$ expressions. For simplicity, let's assume that $\mathrm{F}(\mathrm{x})$ is a polynomial in standard form. A table below shows that an easy to prove pattern exists.

Known $\mathrm{F}(\mathrm{x})$	Resultant $\mathrm{G}(\mathrm{x})=\mathrm{F}(\mathrm{x}+1)-\mathrm{F}(\mathrm{x})$
constant $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots)$	0
x	1
Ax	A
$\mathrm{Ax}+\mathrm{B}$	$\mathrm{A}+0$
x^{2}	$2 \mathrm{x}+1$
Ax	$\mathrm{A}(2 \mathrm{x}+1)$
$\mathrm{Ax}+\mathrm{Bx}+\mathrm{C}$	$\mathrm{A}(2 \mathrm{x}+1)+\mathrm{B}+0$
x^{p}	$(\mathrm{x}+1)^{\mathrm{p}}-\mathrm{x}^{\mathrm{p}}=$ binomial expansion of $(\mathrm{x}+1)^{\mathrm{p}}$ minus

the first term
We can see from the pattern above that if $\mathrm{F}(\mathrm{x})$ is expressed as a polynomial, each term within the expression has an additive effect on expression for $\mathrm{G}(\mathrm{x})$. Below is a list of observations about the pattern which will prove useful later.

1) $G(x)$ can be determined by evaluating each term of $F(x)$ as a separate function and then adding the accumulative differences from all of the terms together.

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=\mathrm{T}_{1}(\mathrm{x})+\mathrm{T}_{2}(\mathrm{x})+\ldots+\mathrm{T}_{\mathrm{d}+1}(\mathrm{x}) \text { where } \mathrm{d} \text { is the highest degree of } \mathrm{x} \text { in } \mathrm{F}(\mathrm{x}) \text {, and } \\
& \mathrm{G}(\mathrm{x})=\mathrm{T}_{1}(\mathrm{x}+1)-\mathrm{T}_{1}(\mathrm{x})+\mathrm{T}_{2}(\mathrm{x}+1)-\mathrm{T}_{2}(\mathrm{x})+\ldots+\mathrm{T}_{\mathrm{d}+1}(\mathrm{x}+1)-\mathrm{T}_{\mathrm{d}+1}(\mathrm{x})
\end{aligned}
$$

2) If $T(x)=x^{p}$ then $T(x+1)-T(x)$ is equal to the binomial expansion of $(x+1)^{p}$ minus x^{p} or

$$
T(x+1)-T(x)=\sum_{i=1}^{p}(p!/[i!(p-i)!]) x^{(p-i)}
$$

3) The coefficient of $T(x)$ will factor out of $T(x+1)-T(x)$ and remain a factor for the difference.

If $T(x)=A x^{p}$ then $T(x+1)-T(x)=A\left[(x+1)^{p}-x^{p}\right]$ which is equal to the product of A and the binomial expansion of $(x+1)^{p}$ minus the first term.

Now we have the problem of working in the other direction. Given an expression for $\mathrm{G}(\mathrm{x})$, how do we determine the expression for $\mathrm{F}(\mathrm{x})$?

If we still think of $G(x)$ as a function determined from another function $F(x)$, we can back track how the expression for $\mathrm{G}(\mathrm{x})$ took on its form. Before $\mathrm{G}(\mathrm{x})$ obtained a standard polynomial form, several terms had to be expanded, combined with like terms, and then written in descending powers of x. The crude form of $G(x)$ may be perceived as

$$
\mathrm{G}(\mathrm{x})=\mathrm{A}_{1}\left[(\mathrm{x}+1)^{\mathrm{p}}-\mathrm{x}^{\mathrm{p}}\right]+\mathrm{A}_{2}\left[(\mathrm{x}+1)^{(\mathrm{p}-1)}-\mathrm{x}^{(\mathrm{p}-1)}\right]+\ldots+\mathrm{A}_{(\mathrm{d}+1)}
$$

The process of expanding and combining like terms can make each part of this expression undergo many changes. However, the first term in the standardized form of $G(x)$ was never combined with a like term in the process, because none of the other parts of the expression produced a power of x high enough to combine with it. If you take the time
to investigate, you will learn that as you track the generation of terms in $G(x)$, terms with lower degrees of x are the result of combining many like terms and terms with higher degrees of x are the result of combining fewer like terms.

The origin of the first term in $G(x)$ is from the $A_{1}\left[(x+1)^{p}-x^{p}\right]$ part of the crude expression. Since x^{p} cancels, the degree of the first term in standardized $G(x)$ must be equal to $(p-1)$. We now know the degree of the expression for $F(x)$, which is equal to p. Since the first term in $G(x)$ was never combined with another term, the coefficient of this term is only the result of multiplying A_{1} by the coefficient from the binomial expansion of $(x+1)^{p}$. Since we know the value of p we can determine the coefficient from the binomial expansion and then the value of A_{1}, which is the coefficient of the first term in $\mathrm{F}(\mathrm{x})$. Once we have the values for p and A_{1}, we can subtract the effect of the first term of $\mathrm{F}(\mathrm{x})$ from the generation of $\mathrm{G}(\mathrm{x})$. We then have,

$$
\mathrm{G}(\mathrm{x})-\left[\mathrm{T}_{1}(\mathrm{x}+1)-\mathrm{T}_{1}(\mathrm{x})\right]=\mathrm{A}_{2}\left[(\mathrm{x}+1)^{(\mathrm{p}-1)}-\mathrm{x}^{(\mathrm{p}-1)}\right]+\mathrm{A}_{3}\left[(\mathrm{x}+1)^{(\mathrm{p}-2)}-\mathrm{x}^{(\mathrm{p}-2)}\right]+\ldots+\mathrm{A}_{(\mathrm{d}+1)}
$$

The new terms obtained in the expression for $G(x)-\left[T_{1}(x+1)-T_{1}(x)\right]$ are the result of expanding and combining like terms from the remaining portion of the crude expression of $G(x)$. As before, the new first term, was never combined with a like term in this process. Since the characteristics of generating the terms of $G(x)-\left[T_{1}(x+1)-T_{1}(x)\right]$ and $G(x)-\sum$ $[T(x+1)-T(x)]$ are the same as for $G(x)$, we can repeat the procedure described above until all of the terms in the expression of $\mathrm{F}(\mathrm{x})$ are determined.

Example: Find an expression for $\sum_{x=1}^{N} x^{3}$

If we let $\mathrm{G}(\mathrm{x})=\mathrm{x}^{3}$ we only need to determine an expression for $\mathrm{F}(\mathrm{x})$ to solve this problem, since we have the identity

$$
\sum_{x=1}^{N} G(x)=F(N+1)-F(1)
$$

x^{3}	Given expression for $\mathrm{G}(\mathrm{x})$ tells us that $\mathrm{p}=4$
${ }^{1}{ }_{4}\left(4 x^{3}+6 \mathrm{x}^{2}+4 \mathrm{x}+1\right)$	Expansion of $(x+1)^{4}$ minus x^{4}, letting $\mathrm{A}_{1}=1 / 4$ makes the first term drop out
$-3 / 2 x^{2}-x-1 / 4$	New expression after subtraction of $\left[\mathrm{T}_{1}(\mathrm{x}+1)-\mathrm{T}_{1}(\mathrm{x})\right]$
$-1 / 2\left(3 x^{2}+3 x+1\right)$	Expansion of ($\mathrm{x}+1)^{3}$ minus x^{3}, letting $\mathrm{A}_{2}=-1 / 2$ makes the next term drop out
$1 / 2 x+1 / 4$	New expression after subtraction of [$\mathrm{T}_{2}(\mathrm{x}+1)-\mathrm{T}_{2}(\mathrm{x})$]
$1 / 4$.	Expansion of ($\mathrm{x}+1)^{2}$ minus x^{2}, letting $\mathrm{A}_{3}=1 / 4$ makes the next term drop out
	Stop, since the difference remaining is zero, all of the terms of $\mathrm{F}(\mathrm{x})$ have be

As determined above

$$
F(x)=1 / 4 x^{4}-1 / 2 x^{3}+1 / 4 x^{2}
$$

Using this expression in the identity above, we will obtain the solution to the problem.

$$
\sum_{x-1}^{N} x^{3}=\left[1 / 4(N+1)^{4}-1 / 2(N+1)^{3}+1 / 4(N+1)^{2}\right]-\left[1 / 4(1)^{4}-1 / 2(1)^{3}+1 / 4(1)^{2}\right]
$$

In my experience, $\mathrm{F}(1)$ has always been equal to zero, but I have not attempted a deductive proof.

Simplification of the solution by expanding binomials, combining like terms, and factoring what doesn't cancel, provides the final polished solution below

$$
\sum_{x=1}^{N} x^{3}=\frac{N^{2}(N+1)^{2}}{4}
$$

Below is a listing of a few polynomial representations of the summation of X raised to the integer exponent p , if X is indexed from 1 to N .

$$
\sum_{x=1}^{\mathrm{N}} \mathrm{x}^{\mathrm{p}}
$$

p Polynomial expression in method generated form

1	$1 / 2 \quad(\mathrm{~N}+1)^{2}$	$-1 / 2(N+1)$				
2	$1 / 3 \quad(\mathrm{~N}+1)^{3}$	- $1 / 2(\mathrm{~N}+1)^{2}$	$+{ }^{1} / 6 \quad(\mathrm{~N}+1)$			
3	$1 / 4 \quad(\mathrm{~N}+1)^{4}$	$-1 / 2(\mathrm{~N}+1)^{3}$	$+{ }^{1 / 4} 4(\mathrm{~N}+1)^{2}$			
4	$1 / 5 \quad(\mathrm{~N}+1)^{5}$	$-1 / 2(\mathrm{~N}+1)^{4}$	$+{ }^{1 / 3} 3(\mathrm{~N}+1)^{3}$	$-1 / 30 \quad(\mathrm{~N}+1)$		
5	$1 / 6 \quad(\mathrm{~N}+1)^{6}$	$-1 / 2(\mathrm{~N}+1)^{5}$	$+5 / 12(\mathrm{~N}+1)^{4}$	$-1 / 12(\mathrm{~N}+1)^{2}$		
6	$1 / 7{ }_{7} \quad(\mathrm{~N}+1)^{7}$	$-\frac{1}{2}(\mathrm{~N}+1)^{6}$	$+{ }^{1 / 2} 2(\mathrm{~N}+1)^{5}$	$-1 / 6 \quad(\mathrm{~N}+1)^{3}$	$+{ }^{1 / 42}(\mathrm{~N}+1)$	
7	$1 / 8 \quad(\mathrm{~N}+1)^{8}$	$-1 / 2(\mathrm{~N}+1)^{7}$	$+{ }^{7} / 12(\mathrm{~N}+1)^{6}$	$-{ }^{7} / 24(\mathrm{~N}+1)^{4}$	$+{ }^{1 / 12}(\mathrm{~N}+1)^{2}$	
8	$1 / 9 \quad(\mathrm{~N}+1)^{9}$	$-1 / 2(\mathrm{~N}+1)^{8}$	$+{ }^{2} / 3(\mathrm{~N}+1)^{7}$	$-{ }^{7} / 15(\mathrm{~N}+1)^{5}$	$+{ }^{2} / 9(\mathrm{~N}+1)^{3}$	- ${ }^{1 / 30}(\mathrm{~N}+1)$
9	$1 / 10(\mathrm{~N}+1)^{10}$	$-1 / 2(\mathrm{~N}+1)^{9}$	$+{ }^{3} / 4(\mathrm{~N}+1)^{8}$	$-{ }^{7} / 10(\mathrm{~N}+1)^{6}$	$+1 / 2(\mathrm{~N}+1)^{4}$	$-3 / 20 \quad(\mathrm{~N}+1)^{2}$

