Quiz: Factoring by Graphing (Advanced)

Question 1a of 11 (2 What it means for a polynomial to have one root or no roots 90888)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The graph below has:

	Choice	Feedback
*A.	no linear factors.	
B.	one repeated linear factor.	
C.	two dissimilar linear factors.	

Global Incorrect Feedback
The correct answer is: no linear factors.

[^0]| | Choice | Feedback |
| :--- | :--- | :--- |
| *A. | no linear factors. | |
| B. | one repeated
 linear factor. | |
| C. | two dissimilar
 linear factors. | |

Global Incorrect Feedback

The correct answer is: no linear factors.

```
Question 1c of 11 ( 2 What it means for a polynomial to have one root or no roots 294726 )
```

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The graph below has:

	Choice	Feedback
*A.	no linear factors.	
B.	one repeated linear factor.	
C.	two dissimilar linear factors.	

Global Incorrect Feedback
The correct answer is: no linear factors.

Question 2a of 11 (2 Identifying the roots of a polynomial and their importance 90889)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

Multiple Choice
2
The graph below has:

	Choice	Feedback
A.	no linear factors.	
B.	one repeated linear factor.	
*C.	two dissimilar linear factors.	

Global Incorrect Feedback
The correct answer is: two dissimilar linear factors.

Question 2b of 11 (2 Identifying the roots of a polynomial and their importance 294727)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The graph below has:

	Choice	Feedback
A.	no linear factors.	
B.	one repeated linear factor.	
$*$ C.	two dissimilar linear factors.	

Global Incorrect Feedback

The correct answer is: two dissimilar linear factors.

Question 2c of $\mathbf{1 1}$ (2 Identifying the roots of a polynomial and their importance 294728)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

Multiple Choice
2
The graph below has:

	Choice	Feedback
A.	no linear factors.	
B.	one repeated linear factor.	
*C.	two dissimilar linear factors.	

Global Incorrect Feedback
The correct answer is: two dissimilar linear factors.

Question 3a of 11 (3 What it means for a polynomial to have one root or no roots 90890)

Maximum Attempts:
Question Type:
Maximum Score:
Is Case Sensitive:
Correct Answer:
Question:

1
Text Fill In Blank
2
false
$(x-5)^{\wedge} 2,(x-5)(x-5),(1 x-5)^{\wedge} 2,(1 x-5)(1 x-5),\left(x^{\wedge} 1-5\right) \wedge 2,\left(x^{\wedge} 1-5\right)\left(x^{\wedge} 1-5\right),\left(1 x^{\wedge} 1-\right.$
$5)^{\wedge} 2,\left(1 x^{\wedge} 1-5\right)\left(1 x^{\wedge} 1-5\right),(x-5)^{*}(x-5),(1 x-5)^{*}(1 x-5),\left(x^{\wedge} 1-5\right)^{*}\left(x^{\wedge} 1-5\right),\left(1 x^{\wedge} 1-\right.$ 5) ${ }^{\left(1 x^{\wedge} 1-5\right)}$

What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x-5)^{2}$.

Question 3b of 11 (3 What it means for a polynomial to have one root or no roots 294729) Maximum Attempts: 1

Question Type:
Maximum Score:
Is Case Sensitive:
Correct Answer:
Question:

1
Text Fill In Blank
2
false
$(x-4) \wedge 2,(x-4)(x-4),(1 x-4)^{\wedge} 2,(1 x-4)(1 x-4),\left(x^{\wedge} 1-4\right) \wedge 2,\left(x^{\wedge} 1-4\right)\left(x^{\wedge} 1-4\right),\left(1 x^{\wedge} 1-\right.$
$4)^{\wedge} 2,\left(1 x^{\wedge} 1-4\right)\left(1 x^{\wedge} 1-4\right),(x-4)^{*}(x-4),(1 x-4)^{*}(1 x-4),\left(x^{\wedge} 1-4\right)^{*}\left(x^{\wedge} 1-4\right),\left(1 x^{\wedge} 1-\right.$ 4)* $\left(1 x^{\wedge} 1-4\right)$

What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x-4)^{2}$.

Question 3c of 11 (3 What it means for a polynomial to have one root or no roots 294730)

Maximum Attempts:
Question Type:
Maximum Score:
Is Case Sensitive:
Correct Answer:
Question:

1
Text Fill In Blank
2
false
$(x-6)^{\wedge} 2,(x-6)(x-6),(1 x-6)^{\wedge} 2,(1 x-6)(1 x-6),\left(x^{\wedge} 1-6\right)^{\wedge} 2,\left(x^{\wedge} 1-6\right)\left(x^{\wedge} 1-6\right),\left(1 x^{\wedge} 1-\right.$ $6)^{\wedge} 2,\left(1 x^{\wedge} 1-6\right)\left(1 x^{\wedge} 1-6\right),(x-6) *(x-6),(1 x-6) *(1 x-6),\left(x^{\wedge} 1-6\right) *\left(x^{\wedge} 1-6\right),\left(1 x^{\wedge} 1-\right.$ $6)^{*}\left(1 x^{\wedge} 1-6\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x-6)^{2}$.

Question 4a of 11 (3 what it means for a polynomial to have one root or no roots 90891)

Maximum Attempts: 1
Question Type:
Maximum Score:
Is Case Sensitive:

Correct Answer:
Question:

1

2

Text Fill In Blank
false
$(x-2) \wedge 2,(x-2)(x-2),(1 x-2)^{\wedge} 2,(1 x-2)(1 x-2),\left(x^{\wedge} 1-2\right) \wedge 2,\left(x^{\wedge} 1-2\right)\left(x^{\wedge} 1-2\right),\left(1 x^{\wedge} 1-\right.$
$2)^{\wedge} 2,\left(1 x^{\wedge} 1-2\right)\left(1 x^{\wedge} 1-2\right),(x-2)^{*}(x-2),(1 x-2)^{*}(1 x-2),\left(x^{\wedge} 1-2\right)^{*}\left(x^{\wedge} 1-2\right),\left(1 x^{\wedge} 1-\right.$ 2)*($\left.1 x^{\wedge} 1-2\right)$

What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order.
$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x-2)^{2}$.

Question 4b of 11 (3 What it means for a polynomial to have one root or no roots 294731)

Maximum Attempts:	1
Question Type:	Text Fill In Blank
Maximum Score:	2
Is Case Sensitive:	false
Correct Answer:	$\begin{aligned} & (x-1)^{\wedge} 2,(x-1)(x-1),(1 x-1)^{\wedge} 2,(1 x-1)(1 x-1),\left(x^{\wedge} 1-1\right)^{\wedge} 2,\left(x^{\wedge} 1-1\right)\left(x^{\wedge} 1-1\right),\left(1 x^{\wedge} 1-\right. \\ & 1)^{\wedge} 2,\left(1 x^{\wedge} 1-1\right)\left(1 x^{\wedge} 1-1\right),(x-1)^{*}(x-1),(1 x-1)^{*}(1 x-1),\left(x^{\wedge} 1-1\right)^{*}\left(x^{\wedge} 1-1\right),\left(1 x^{\wedge} 1-\right. \\ & 1)^{*}\left(1 x^{\wedge} 1-1\right) \end{aligned}$
Question:	What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x-1)^{2}$.

Question 4c of 11 (3 What it means for a polynomial to have one root or no roots 294732)

Maximum Attempts: 1
Question Type:
Maximum Score:
Is Case Sensitive:

Correct Answer

Question:
1

2

Text Fill In Blank
false
$(x-3) \wedge 2,(x-3)(x-3),(1 x-3) \wedge 2,(1 x-3)(1 x-3),\left(x^{\wedge} 1-3\right) \wedge 2,\left(x^{\wedge} 1-3\right)\left(x^{\wedge} 1-3\right),\left(1 x^{\wedge} 1-\right.$
$3)^{\wedge} 2,\left(1 x^{\wedge} 1-3\right)\left(1 x^{\wedge} 1-3\right),(x-3)^{*}(x-3),(1 x-3)^{*}(1 x-3),\left(x^{\wedge} 1-3\right)^{*}\left(x^{\wedge} 1-3\right),\left(1 x^{\wedge} 1-\right.$ $3)^{*}\left(1 x^{\wedge} 1-3\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order.

$y=$

Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x-3)^{2}$.

Question 5a of 11 (3 What it means for a polynomial to have one root or no roots 90892)

Maximum Attempts:
Question Type:
Maximum Score:
Is Case Sensitive:
Correct Answer:
Question:

1
Text Fill In Blank
2
false
$(x+5)^{\wedge} 2,(x+5)(x+5),(1 x+5)^{\wedge} 2,(1 x+5)(1 x+5),\left(x^{\wedge} 1+5\right)^{\wedge} 2,\left(x^{\wedge} 1+5\right)\left(x^{\wedge} 1+5\right)$, $\left(1 x^{\wedge} 1+5\right)^{\wedge} 2,\left(1 x^{\wedge} 1+5\right)\left(1 x^{\wedge} 1+5\right),(x+5)^{*}(x+5),(1 x+5)^{*}(1 x+5)$, $\left(x^{\wedge} 1+5\right)^{*}\left(x^{\wedge} 1+5\right),\left(1 x^{\wedge} 1+5\right)^{*}\left(1 x^{\wedge} 1+5\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order. Enter exponents using the caret (\wedge). For example, you would enter $4 x^{2}$ as $4 x^{\wedge} 2$.

$$
y=
$$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x+5)^{2}$.

Question 5b of 11 (3 What it means for a polynomial to have one root or no roots 294810)

Maximum Attempts: 1
Question Type:
Maximum Score:
Is Case Sensitive:

Correct Answer:

Question:

1

2

Text Fill In Blank
false
$(x+6)^{\wedge} 2,(x+6)(x+6),(1 x+6) \wedge 2,(1 x+6)(1 x+6),\left(x^{\wedge} 1+6\right) \wedge 2,\left(x^{\wedge} 1+6\right)\left(x^{\wedge} 1+6\right)$, $\left(1 x^{\wedge} 1+6\right)^{\wedge} 2,\left(1 x^{\wedge} 1+6\right)\left(1 x^{\wedge} 1+6\right),(x+6)^{*}(x+6),(1 x+6)^{*}(1 x+6)$, $\left(x^{\wedge} 1+6\right)^{*}\left(x^{\wedge} 1+6\right),\left(1 x^{\wedge} 1+6\right)^{*}\left(1 x^{\wedge} 1+6\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order. Enter exponents using the caret (${ }^{\wedge}$). For example, you would enter $4 x^{2}$ as $4 x^{\wedge} 2$.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x+6)^{2}$.

Question 5c of 11 (3 What it means for a polynomial to have one root or no roots 294811)

Maximum Attempts: 1
Question Type:
Maximum Score:
Is Case Sensitive:

Correct Answer:

Question:
1

2

Text Fill In Blank
false
$(x+7)^{\wedge} 2,(x+7)(x+7),(1 x+7)^{\wedge} 2,(1 x+7)(1 x+7),\left(x^{\wedge} 1+7\right)^{\wedge} 2,\left(x^{\wedge} 1+7\right)\left(x^{\wedge} 1+7\right)$, $\left(1 x^{\wedge} 1+7\right)^{\wedge} 2,\left(1 x^{\wedge} 1+7\right)\left(1 x^{\wedge} 1+7\right),(x+7)^{*}(x+7),(1 x+7) *(1 x+7)$, $\left(x^{\wedge} 1+7\right)^{*}\left(x^{\wedge} 1+7\right),\left(1 x^{\wedge} 1+7\right)^{*}\left(1 x^{\wedge} 1+7\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order. Enter exponents using the caret (\wedge). For example, you would enter $4 x^{2}$ as $4 x^{\wedge} 2$.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x+7)^{2}$.

Question 6a of 11 (3 what it means for a polynomial to have one root or no roots 90893)

Maximum Attempts:
Question Type:
Maximum Score:
Is Case Sensitive:

Correct Answer:

Question:

1
Text Fill In Blank
2
false
$(x+4)^{\wedge} 2,(x+4)(x+4),(1 x+4)^{\wedge} 2,(1 x+4)(1 x+4),\left(x^{\wedge} 1+4\right) \wedge 2,\left(x^{\wedge} 1+4\right)\left(x^{\wedge} 1+4\right)$, $\left(1 x^{\wedge} 1+4\right)^{\wedge} 2,\left(1 x^{\wedge} 1+4\right)\left(1 x^{\wedge} 1+4\right),(x+4)^{*}(x+4),(1 x+4)^{*}(1 x+4)$, $\left(x^{\wedge} 1+4\right)^{*}\left(x^{\wedge} 1+4\right),\left(1 x^{\wedge} 1+4\right)^{*}\left(1 x^{\wedge} 1+4\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order. Enter exponents using the caret (\wedge). For example, you would enter $4 x^{2}$ as $4 x^{\wedge} 2$.

$y=$	
Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x+4)^{2}$.

Question 6b of 11 (3 What it means for a polynomial to have one root or no roots 294812)

Maximum Attempts: 1
Question Type:
Maximum Score:
Is Case Sensitive:
Correct Answer:

Question:
1

2

Text Fill In Blank
false
$(x+3)^{\wedge} 2,(x+3)(x+3),(1 x+3)^{\wedge} 2,(1 x+3)(1 x+3),\left(x^{\wedge} 1+3\right) \wedge 2,\left(x^{\wedge} 1+3\right)\left(x^{\wedge} 1+3\right)$, $\left(1 x^{\wedge} 1+3\right) \wedge 2,\left(1 x^{\wedge} 1+3\right)\left(1 x^{\wedge} 1+3\right),(x+3) *(x+3),(1 x+3) *(1 x+3)$, $\left(x^{\wedge} 1+3\right)^{*}\left(x^{\wedge} 1+3\right),\left(1 x^{\wedge} 1+3\right)^{*}\left(1 x^{\wedge} 1+3\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order. Enter exponents using the caret (\wedge). For example, you would enter $4 x^{2}$ as $4 x^{\wedge} 2$.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x+3)^{2}$.

Question 6c of 11 (3 What it means for a polynomial to have one root or no roots 294813)

Maximum Attempts: 1
$\begin{array}{ll}\text { Question Type: } & \text { T } \\ \text { Maximum Score: } & 2\end{array}$
Is Case Sensitive:

Correct Answer:

Question:
2

Text Fill In Blank
false
$(x+2)^{\wedge} 2,(x+2)(x+2),(1 x+2)^{\wedge} 2,(1 x+2)(1 x+2),\left(x^{\wedge} 1+2\right) \wedge 2,\left(x^{\wedge} 1+2\right)\left(x^{\wedge} 1+2\right)$, $\left(1 x^{\wedge} 1+2\right)^{\wedge} 2,\left(1 x^{\wedge} 1+2\right)\left(1 x^{\wedge} 1+2\right),(x+2)^{*}(x+2),(1 x+2)^{*}(1 x+2)$, $\left(x^{\wedge} 1+2\right)^{*}\left(x^{\wedge} 1+2\right),\left(1 x^{\wedge} 1+2\right)^{*}\left(1 x^{\wedge} 1+2\right)$
What is the factorization of the polynomial graphed below? Assume it has no constant factor. Write each factor as a polynomial in descending order. Enter exponents using the caret (\wedge). For example, you would enter $4 x^{2}$ as $4 x^{\wedge} 2$.

$y=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: $(x+2)^{2}$.

Question 7 a of 11 (3 What it means for a polynomial to have one root or no roots 120535)

Maximum Attempts: Question Type: Maximum Score: Is Case Sensitive: Correct Answer: Question:

1
Text Fill In Blank
2
false
real
Graphs that do not cross or meet the x-axis do not have real roots. In other words, they don't have factors of the form of $a x+b$, where a and b are \qquad numbers.

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: real.

Question 7b of $\mathbf{1 1}$ (3 What it means for a polynomial to have one root or no roots 294815)

Maximum Attempts: 1
Question Type:
Maximum Score:
Is Case Sensitive:
Correct Answer:
Question:
2
real

Text Fill In Blank
false

Graphs that do not cross or meet the x-axis do not have real roots. In other words, they don't have factors of the form of $a x+b$, where a and b are \qquad numbers.

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: real.

Question 7c of 11 (3 What it means for a polynomial to have one root or no roots 294816)
Maximum Attempts: 1
Question Type: Text Fill In Blank
Maximum Score: 2
Is Case Sensitive: false
Correct Answer: real
Question:
Graphs that do not cross or meet the x-axis do not have real roots. In other words, they don't have factors of the form of $a x+b$, where a and b are \qquad numbers.

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: real.

Question 8a of 11 (2 What it means for a polynomial to have one root or no roots 120537)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
Which of the following equations does not have real roots?

	Choice	Feedback		
A.	$x^{2}+x-2$			
B.	$12 x^{2}-17 x-7$			
*C.	$x^{4}+5 x^{2}+6$			
D.	$2 x^{4}+13 x^{3}+$			
	$21 x^{2}$		\quad	
:---				

Global Incorrect Feedback
The correct answer is: $x^{4}+5 x^{2}+6$.

Question 8b of $\mathbf{1 1}$ (2 What it means for a polynomial to have one root or no roots 294817)

Maximum Attempts: 1
Question Type:
Maximum Score:
Question:
2

Multiple Choice

Which of the following equations does not have real roots?
$\left.\begin{array}{|l|l|l|}\hline & \text { Choice } & \text { Feedback } \\ \hline \text { A. } & x^{2}+4 x-4 & \\ \hline \text { *B. } & x^{2}+x+7 & \\ \hline \text { C. } & -x^{4}+5 x^{2}+6 & \\ \hline \text { D. } & 2 x^{4}+13 x^{3}+ & \\ \hline 21 x^{2}\end{array}\right]$.

Global Incorrect Feedback
The correct answer is: $x^{2}+x+7$.

Question 8c of 11 (2 What it means for a polynomial to have one root or no roots 294818)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
Which of the following equations does not have real roots?

	Choice	Feedback
*A.	$x^{4}+2 x^{2}+$ 2	
B.	$x^{2}-17 x-$ 7	
C.	$-x^{4}+4 x^{2}$ +6	
D.	$2 x^{2}-13$	

Global Incorrect Feedback
The correct answer is: $x^{4}+2 x^{2}+2$.

Question 9a of 11 (3 what it means for a polynomial to have one root or no roots 120539)

Maximum Attempts:
Question Type:
Maximum Score:
Correct Answer:
Question:

1
Numeric Fill In Blank
2
1
How many roots does $y=x^{2}-4 x+4$ have? It may help to graph the equation.

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 1.

Question 9b of $\mathbf{1 1}$ (3 What it means for a polynomial to have one root or no roots 294819)

Maximum Attempts: 1
Question Type: Numeric Fill In Blank
Maximum Score: 2
Correct Answer: 1
Question: How many roots does $y=x^{2}-2 x+1$ have? It may help to graph the equation.

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 1.

Question 9c of 11 (3 what it means for a polynomial to have one root or no roots 294820)

Maximum Attempts: 1
Question Type: Numeric Fill In Blank
Maximum Score: 2
Correct Answer: 1
Question:

How many roots does $y=x^{2}-6 x+9$ have? It may help to graph the equation.

Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 1.

Question 10a of 11 (3 Explaining how different polynomials can have the same roots

331393)
Maximum Attempts:
Question Type:
Maximum Score:
Question:

	Choice	Feedback
*A.	True	
B.	False	

1
True-False 2

The polynomial $y=x^{2}-4 x+4$ has a repeated factor.

Global Incorrect Feedback
The correct answer is: True.

Question 10b of 11 (3 Explaining how different polynomials can have the same roots 294838)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
True-False
2
The polynomial $y=x^{2}-3 x+9$ has a repeated factor.

	Choice	Feedback
A.	True	
*B.	False	

Global Incorrect Feedback
The correct answer is: False.

Question 10c of 11 (3 Explaining how different polynomials can have the same roots 294839)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

	Choice	Feedback
*A.	True	
B.	False	

1
True-False
2
The polynomial $y=x^{2}-8 x+16$ has a repeated factor.

Global Incorrect Feedback

The correct answer is: True.

Question 11 of 11 (2 What it means for a polynomial to have one root or no roots 120541)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
What are the factors of the polynomial graphed here?

	Choice	Feedback
A.	$x=-5, x=7$	
B.	$x=-2, x=1.5$	
C.	$x=2.2, x=4.1$	
*D.	It has no linear factors.	

Global Incorrect Feedback
The correct answer is: It has no linear factors.

Question 11b of 11 (2 What it means for a polynomial to have one root or no roots 294864)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
What are the factors of the polynomial graphed here?

	Choice	Feedback
A.	$x=-7, x=5$	
B.	$x=-3, x=1$	
C.	$x=8.2, x=4.1$	
*D.	It has no linear factors.	

Global Incorrect Feedback
The correct answer is: It has no linear factors.

Question 11 c of 11 (2 What it means for a polynomial to have one root or no roots 294865)
Maximum Attempts:
Question Type:
Maximum Score:
Question:

```
1
Multiple Choice
2
What are the factors of the polynomial graphed here?
```

	Choice	Feedback
A.	$x=-2, x=10$	
B.	$x=-5, x=1.5$	
C.	$x=7.2, x=4.1$	
*D.	It has no linear factors.	

[^0]: Question 1 b of 11 (2 What it means for a polynomial to have one root or no roots 294725)

 Maximum Attempts:
 Question Type:
 Maximum Score:
 Question:

 1
 Multiple Choice
 2
 The graph below has:

