- WHITE PAPER, June 2012 -

EmbeddedXEN: A Revisited Architecture of the XEN hyervisor to support ARM-
based embedded virtualization

Prof. Daniel Rossier, PhD

Reconfigurable Embedded Digital Systems Institute
School of Business and Engineering in Canton dedVau
Yverdon-les-Bains, Switzerland
daniel.rossier@heig-vd.ch

Abstract—Embedded virtualization is gaining increasing
interest in embedded system industry, as microcondilers are
endowed with high performance ARM cores and powerfl
multi-media peripherals. This paper presents a noMeapproach
in virtualization mechanisms to address particular needs in
embedded systems, such as dealing with heterogensoARM
cores and keeping execution overhead as low as pbgs We
introduce EmbeddedXEN, a revisited virtualization framework
based on the existing XEN hypervisor. Para-virtualzation of
guest operating systems turned out to be the righthoice in
terms of performance and capabilities to deal withdevice
heterogeneity. Adaptations of guest OSes are keptimmal and
low-level events such as IRQs are processed effitiiy.

Keywords: XEN hypervisor, Linux, embedded virtualization,
ARM cores

l. INTRODUCTION

Embedded virtualization makes the execution of ipielt
instances of operating systems on the same michatien
possible. While virtualization remains of huge et in the
classical desktop/server environment, recent ARMbas
microcontrollers [1] are particularly powerful andn afford
to run much more complex execution environments ties
years ago. In this context, virtualization can ndwe

considered in embedded systems such as smartphon

gateways, set-top boxes, realtime platforms, etarditer to
provide end users with new features [2] [3]: highbcwe
execution environments, hardware consolidation
resources partitioning, etc.

been developed in order to provide a virtual magmonitor

or hypervisor so as to give end users a complete framewor

for managing several instances of operating systemagnly
on ARM cores, with particular emphasis on securitgr -
isolation - aspects.

On the desktop side, one powerfulpen source
hypervisor is XEN [4]; XEN is perfectly well supped on
IA-32/64 SMP platforms and provides the end useh witot
of userlandtools to manageirtual machinesand physical
resources. XEN has been originally developed to aversl

Linux VMs on servers, and isle facto not tailored to
embedded platforms

This paper introducegEmbeddedXENa hypervisor based
on XEN source code and devoted to ARM cores with a
revisited architecture to achieve a virtualizativpamework
tailored to embedded systems. In particuembeddedXEN
supports the heterogeneity of ARM-based devices,nmga
that cross-compiled OS and applications intendediioon a
particular ARM platform can be ported on a diffdren
platform with more recent ARM CPUs, without requiring
any modification of the user-space applications.

Our framework has been deployed on devices suppgortin
v5, v6 and v7 ARM instruction sets, among which Lecfit
Squeezebox Touch device and HTC Desire HD
Smartphone.

A. Embedded Hypervisors

Using virtualization in embedded systems brings &bou
different challenges than the desktop, server gtofa
universe. Of course, the main difference residakenpower
and capacity of embedded CPUs (microcontrollers)chviin
most cases are RISC- based architectures and dbavet
support for virtualization in their instruction sejet.

wever, ARM have already announced cores (namely

drtex-A15) with such support; they should be awdélzon
the market in early 2013.

and Hence, embedded virtualization requires the guest

operating system to be slightly modified in orderset up

Jnteractions with the hypervisor, which is the fiostderlying

software layer close to the hardwar@his mechanism is
génown as para-virtualization and well supported byNXfer
entiumarchitectures.

B. Porting XEN on ARM

We started our research investigations in early720h
the objective to port thEEN hypervisor on ARM platforms.
In this context, we started the development of
EmbeddedXENwith the primary objective to enable the

A port for PPC was done, but is no longer supported

2 The SqueezeBox Touch is an advanced multimedigepkold by
Logitech which runs SqueezeOS (based upon Linwgr& code is
available at http://wiki.slimdevices.com

% In that sense, XEN is considered aye-1hypervisor.

execution of a hard realtime domain in parallelhwét non-
realtime domain. Both domains were based Lonux*.
During the last two years, we have focused on tssipility
to let coexist anative operating system and a second third-
party OS; the latter typically runs on a differeigvice than
the host device, therefore with different peripkerand
capabilities, as well as a different ARM core.

In this paper, we outline the main differences et
the original XEN andEmbeddedXEN

A. The Big Picture
A major difference with other ARM hypervisors isath

EMBEDDEDXEN ARCHITECTURE ANDCOMPONENTS

head | Hypervisor DOMO DOMU

vmlinux.dom0 vmlinux.domU

[0 (pomo) |
[1 (pomu) |

arch/arm/boot/vmiinux

EETTIIETD concatenated & compressed vmlinux

Figure 2. Multi-kernel single binary image

This image is a single file which can be easilyldggd
into the flash or transferred via NFS. Since thagmis built
upon similar scripts as those used by lthreix build system
(as well as the compression/relocation code), Iiege can
be loaded and started from doypux-compatiblebootloader
(such asU-boot for instance, or evekiBootused by HTC

EmbeddedXENsupports only two guest operating systemsSmartphones). The image’s bootstrap is therefondasi to
The first guestOS is calleddomOand consists of a para- Linux except that the first executed code is hiypervisor
virtualized version of theative OS running on the target code. For this reason, the code architecture aled #&

device. The second OS is caldadmUand represents the OS
running on the third-party device, which has naoghto do
with the device running the host OS. The overathaecture
including the hypervisodomOanddomUis depicted on Fig.
1.

Primary Guest OS
known as Dom0
N p— N " Core ™\
vePu \“ ’Z,p:ﬂlf) Emulation
Scheduler) ™~ - lanage,
“Domain ™ ~ Remote ™ s
Creation) Peripherals Migration)
ind Setup. Manager, Manager

Figure 1. Overall architecture with two guest OSes

Secondary Guest 0S
known as DomU

N

EmbeddedXEN
Hypervisor

- Full privilege
- Domo0 Original drivers
- Backend drivers

- Full privilege
- DomU Original drivers
- Frontend drivers

l

Hardware

Para-virtualization of the guest OS at the keregkl is
required for two reasons: on the one hand, ARM Q®es
not support virtualized instructions like Intel CPWith VT-
extensions or AMD CPUs yet; the Cortex-Al5 annodriog
ARM, which will have such support, is not commellgia
available yet. On the other hand, restricting CRtivaies in

embedded systems is relevant in order to reduceepow

consumption. INnEmbeddedXENmodifications in the guest
kernel to support virtualization are minimized.

The Xen-guestcontains the API and other functions to
control the interactions between the hypervisor tedguest
OS kernel.

B. Single Multikernel Binary Image

The build system oEmbeddedXENbroduces a single
binary image which contains the hypervisor and om0

directories organization remain identicallioux.

The hypervisor parses the file to extract the domai
(normallydomOanddomU) and put the images on top of the
RAM. Those images are stored in ELF-formanl{inuy and
are parsed in turn by the ELF loader during the a@om
setup.

C. Memory Address Spaces and Isolation

As already mentioned, one of the main differences
between our virtualization framework and othersdes in
security aspects of memory management. In
environment, the physical RAM is allocated to thest by
the hypervisor, depending on size configurationt the
mapping of virtual memory to this portion is deleghto the
guest. Normally, a translation table like ghysical-to-
machinetable is used in order to protect the real (physica
memory from the guest, and provide it with interiagel
address: the virtual address is therefore trarslat® an
intermediate addresgpl{ysical or pseudo-physical and a
second translation is needed to reach the fira@ching
address. To make these two translations, eitheardware-
assisted MMU is necessary, or the page table situp
managed by the hypervisor and tpaysical-to-machine
table is used to configure the page table entria die right
frame number.

We do not use such a mechanismBmbeddedXEN
since we trust the guest OS kernel, the manipulatad page
tables are made directly by the guest. Only sinijplear
mapping of the allocated RAM is performed during th
domain set-up. Fig. 3 shows the mapping of viraddress
spaces onto the physical space.

our

anddomUwhich are concatenated and separated by specific

markers, as shown on Fig. 2.

4 Hard realtime OS consisted in using ¥enomapatch for Linux.

Virtual Address

Space

Interrupt Vectors y Interrupt Vectors
/
frame table / frame table
XEN heap (2 MiB) / XEN heap (2 MiB)
/
boot allocator / domU boot allocator
Hypervisor code <\ Hypervisor code

Linear \

1st-level page table X 1st-level page table

OxFF000000 2N £
10 \ N 1o
) \
/\ \ dom0 2,
N \
\ \
domU A
Tt \ domo0
Linear
appir .
M\W”g \ Hypervisor
. N AN 1
3GiB \ 3GiB
!V
~N

The virtual address space on left is set up duting

Figure 3. Virtual and physical address mapping

hypervisor bootstrap. A linear mapping of the alai

physical

RAM

is performed at the virtual
0xc000000Qwhere the kernel space starts). The hypervisor

itself resides aDxff000000(as in the originalXEN). The
hypervisor can therefore have the visibility of theo

domains, initialize the guest page tables and peeib@m for

bootstrap easily.

channels) as well as manage all interactionsxenbus,
which enables messages and events exchange betheen
guest domains (see also Section IV.A). No userespaals
are required irEmbeddedXENsince the domain images are
included in the single binary; furthermoren-guesincludes
all necessarynit code such agenbusdevice initialization
code.

As shown on Fig. 4, aken-guestode runs at the same
level as the rest of kernel code. Following a mithial
architecture, the insertion of this code withimux kernel
makes calls to other subsystems straightforward and
efficient. For instance, the processing of IRQseeelon a
polling mechanism which interrogates an event hitma
whenever an event occurs, the IRQ is propagatetyaioe
guest kernel by calling the correspondingm_do_IRQ()
function known in theLinux kernel which is normally called

addressby the interrupt vector as definedéntry-armv.S

It has to be noted that theen-guestcode — which
basically corresponds twvopsof XEN - is common taomO
anddomU,

On the right side, the virtual address space cooreds to
the one used whedomO executes itself. The "traditional”
Linux address space configuration is used without any
particular modifications; however, only a portiorf the
RAM is passed to the guest through the RAM desaript
initialized by the hypervisor at the guest boot inThis
configuration also shows that there is no possitikect
interaction with the other domaiddmU and both domains

are thus isolated.
The same virtual address space is set ugdorU.

D. Para-virtualization and Xen-Guest API

The para-virtualization of guest domains consists i mode while the hypervisor runs in a full privilegetbde.
modifying files in the guest kernel source treeonter to

support the interactions between the hypervisortaadther

domain correctly. There are approximately 73 fitesbe
slightly modified (or added). Table | outlines arsuary of

modified files to give an idea about the patchelseanade.

TABLE I. SUMMARY OF PATCHED FILES
File # files Para-virtualized functions

arch/arm/ 16 Bootstrap, IRQs, setup, traps, memory injt
drivers/ 27 Block, input, serial, video

include/ 15 Memory, irgs, system, mach-related
init/ 2 Main entry poir_1t (retri_eving of st‘a_rt ir)fq from

the hypervisor, slightly modified init)

sound/ 9 Support for the sounddamU

kernel/ 4 IRQs and time-related adaptations

In addition, a new directory calleden-guestmust be

added in the guest (a symbolic link is actuallyemjdwhich
enhances the guest with convenient APIs in ord@etrform

hypercalls process IRQs (which are known as event

xen-guest 0S Subsystem
subsystem
Hypervisor
API
E;Z:’l't IRQ Handler
|
Low level arch-
Low-level ISR /mach-specific code
Hypercall
trampoline Kernel mode

Figure 4. Architecture of a para-virtualized guest OSlam0Oor domU
Normally, a guest kernel should run irs@mi-privileged

Architectures based ox86 for example use the notion of
rings to give the necessary protection levels te@ th
hypervisor, guest kernel anderlandapplications. On ARM
architectures however, such mechanisms do not gzist
As we will see in Section lll.A, the guest kerngkriinning in
supervisor mode as for the hypervisor.

Therefore, thehypercall mechanism at the guest level
should normally lead to use syscaltspecific instruction
such asSWIto execute some code at the hypervisor level. In
EmbeddedXENwe do not use this approach since the kernel
is already running imprivileged mode when théypercallis
initiated: jumping to a pre-defined address in hiypervisor
(corresponding to théwypercall entry point) is sufficient.
Typically, such address can be acquired in ket info
structure retrieved at the early stage of the Kdroetstrap.

° Next generation of ARM Cortex-A15 based on ARMv7+
virtualization support will have such facilitiegjtmot commercially
available yet.

Ill. INTERACTION SCHEME hypervisor has set @irtual execution mode tgseudo-usr
mode when the guest kernel is started, with itec@atedG-

c)lstack By the way, the two domains have their own stacks
I.e. G-stack(domOpnd G-stack(domU) Note that when the
guest is running ilisermode, a dedicated stack is used and

The presence of a user mode gsgudo-usemode at
the kernel level constitutes another fundament
EmbeddedXENyhich is detailed in the following sections.

A. Double stack and pseudo-user mode no interference may occur with the kernel stackatiti now
In the early implementation of our framework, thede ~ happening when an interrupt (IRQ) occurs? _
was mainly based on the SamsuKgn-arm project5]. We now consider the case where an IRQ happens while

However, we faced an important problem when we foad 90MOis running (either iruser or SVC mode): the ARM
deploy the framework on Ereescale i.MX2®ased device: CPU automatically switches to thigQ mode, which has its
accessing the /O address from the user mode wddVn stack, and the low-level IRQ handler is exedwiéthin
complicated, or even impossible. We therefore d@evia the hypervisor context; as it is the casd.imux kernel this
novel approach based on the assumption that tret gemel ~Mode will be left as soon as possible to work ia $VC
code was mature and secure enough to grant the kggregl ~ Mode, which is common to any situation when sonteeie
with privileges to run in supervisor (kernel) modss, it is code_ must execute. Therefore, a swﬂciS\tI:ls. done afte.r
normally the case without virtualization layer. Bies the ~configuring theSVCstack correct§. The running stack is
possibility to perform direct read/write access KO still G-_stack(dom}_) wher_1 theSVCIRQ h_andler begins its
addresses, the advantages of such an approactuliifelch ~ €xecution. At this point, the hypervisor saves t6Ge
the use ofhypercalls can be considerably reduced andStack(domOjcurrent address stored in tstack pointer (sp)
therefore avoid some complicated call paths betwihen INtO itsguest contextlescriptor, switches to thértual kernel
hypervisor and the guest. The overall performanse iMode, and resespto theH-stackwhich has been saved at a
therefore improved. Another advantage is the smathber ~ fixéd memory location right before giving the hatud the
of files to be modified; 1/0O accesses are kept anged in 9uest. The hypervisor can then perform the handéefe
the original Linux and upgrading to new versions iswith the right stack, without any interference witte guest
facilitated. kernel stack G-stach. Once the handler completes, the
One particular problem of using the same mode at thyPervisor can execute thepcall code, which leads to
hypervisor and guest levels concerns the use ofsthek restoring the preempted guest. Of course, one irspior
pointer; on ARM CPUs, different stack pointers arged action of theupcall will consist in storing the curremt-stack
accordi’ng to the executi(;n mode (USR, IRQ, SVC.) §&. in its fixed location, settingp back toG-stack(domOyaved
If the execution mode is restricted to ®¥C(kernel) mode, Previously in its guest contextdescriptor, and finally
only one stack pointer — therefore one stack -sedduvhich resetting thevirtual execution mode tpseudo-usemode. It
leads to some complications in the stack handisgecially —has to be noted that the guest which is restorednampcall
during domain context switches. The introduction tab path always restarts its execution in kernel madepseudo-

different stacks as well as\értual pseudo-useexecution UST mode indeed, either an IRQ must be propagated to the
mode is required as shown on Fig. 5. guest, or the guest executes an hypercall at itsekdevel,

and pursues its execution after the trampoline.

Now, there are two typical scenarios which can take
place when the execution is still at the hyperviswel: for
example, a domain context switch could occur if the
scheduler decides; without entering into detailbe t
Low-level ISR | scheduler could have been invoked duringupeall path. In
this case, the restored stack is the corresporiatack- G-
stack(doml in our case - and the stack @dmO remains
consistent. The other scenario is related to thenedling of
interrupts along theipcall path; interrupts are normally re-
enabled to improve system reactivity; another IRQym
Hypervisor | Upcalls | occur before the guest has been restored. In #Hss, dhe
pseudo-user mode behavior can be differentiated thanks to the us@e¥irtual
Hypervisor Stack mode: the hypervisor is indeed runningkernelmode, and
Sy no stack permutation is needed. Again, the stackaires
consistent.

Hypercall handler This approach allowed us to deal with a unique (LPU

= kernel mode $VC)and to differentiate the execution at the
. hypervisor and guest level.

Guest OS

pseudo-user mode
Guest Stack (G-stack) |

/-/yperca//nrampo/meH Hypervisor callback |

Figure 5. Double stack witlpseudo-usemode handling

Let us examine the different cases once the guast h
been booted up by the hypervisor, and is runninge T

® Switching toABT, UND, FIQleads to the same behavior.

B. IRQs and Upcalls

Compared to the origin&EN, IRQs inEmbeddedXEN
also rely on the event channel bitmap approachanesvent
channel, represented by a single bit, is associaifd an
IRQ. When an interrupt occurs, the hypervisor penfo
machine-dependent low-level handling code, dependin
whether the IRQ is ghysical IRQ or virtual IRQ. The
corresponding event channel bit is set, the inptriime is
acknowledged and masked, and the IRQ is propagattt:
guest domain oopcall path.

Physical IRQ (PIRQ) is used when the interrupt nihest
processed by the guest, and is therefore not lizaghby the
hypervisor; PIRQs are particularly helpful sincevide
drivers are normally located om0 and must handle IRQs
as normal drivers; low-level handleed@e level or simplg
are normally applied as they are in normhalux. Virtual
IRQ (VIRQ) on the other hand is an IR§g¢neratedby the
hypervisor (following a real interrupt or not). TMRQ has
its unique identifier and is propagated to the gaesf it was
a real interrupt. To do that, thgcall consists of jumping to
a specific location in the guest by means of a ifipec
callback address which is set by the guest vidnygercall
during its bootstrap (using start_info structure). As a part

of thexen-guestode at the guest level, the event channels

are processed one after the other, by triggering th
corresponding IRQs (the standasin_do_IRQ(junction is
called). Once all event channels have been prodedeen0
executes &ypercallto ask the hypervisor to interrogate the
IRQ controller again to check for potential pending

interrupts. This mechanism avoids unnecessary domaP

switches, improves reactivity, and even revealessary on
HTC Desire HD, where a lot of IRQs issued from oas
peripherals are frequently generated, and cannatelayed
too much.

The guest makes no real differentiation betweetuair
and physical IRQs; the difference mainly conceies way
the hypervisor manages them. The overall interastio
between hypervisor and guest are depicted on Fig. 6

” At the moment, onllomOcan managed PIRQs, but this should not
be always true especially when considering resop&cttioning
betweerdomOanddomU

xen-guest
-for each enabled
event channel IRQ Handler
- check for
pending IRQs
Action(s)
|
Low-level ISR
= (==
3 Hypervisor domO kernel
\%‘ subsystem
1
1 Hypervisor,

Upcall

Check for softirgs

if domU running/scheduled,
check for pending IRQs

generate VIRQ
If necessary (timer; xenbus)

action, ifany

(G-/H-)stacks handling

IRQ low-level handler

set event channel bit

yes

no

Is it a bound IRQ?

an interrupt occurs

Figure 6. Interactions between the hypervisor alwinOwhen an interrupt
occurs

For a better understanding of what happens when an
interrupt occurs, let's examine two examples oérifpts:
timer interrupt and touchscreen interrupt. Timeteirupts
are required by the hypervisor to activate its daker
eriodically, and thus to perform domain switchepehding
on their time consumption. Timer interrupt therefaannot
be processed directly bylomQ But the guest OSes
themselves also need such interrupts for their own
scheduling purposes; the hypervisor must conselyuent
generate a proper interrupt for each guest - dgtaavirtual
IRQ — by enabling the corresponding VIRQ event cdehn
Touchscreen interrupts are not of great interest the
hypervisor. Moreover, thétamebufferstrongly depends on
the hardware and needs a particular driver; thigedras
explained in the next section, residesl@mQ the interrupt is
therefore considered as a physical interrupt baondiomO
during its IRQ initialization. Once acknowledged dan
masked, the hypervisor will directly propagate theerrupt
towards the guest via thepcall by giving the priority to
domO(reschedule oflomOis done immediately in this case if

domU was running before the preemption or newly
scheduled).
IV. DRIVERS, FRONTEND AND BACKEND

A. Frontend and Backend Drivers

Drivers play a fundamental role in an operatingteays
since they deal with specific hardware and manalje a
interactions between the hardware and the kernetl a
between the kernel and the user space. In a virtuhl
environment based oXEN, the approach with drivers
consists in giving the responsibility of dealingtiwthereal
hardware todomO,which runs in asemiprivileged mode,
hence with sufficient privileges to perform /O asses

properly. In this context, other guest OSdsnfly must T werguet|[o5 verguetl os
have a modified version of drivers in order to fatd with b) Xunetors subsys || subsys subsys | subsys
the driver counterpart indomQ To implement these T 7 | Senstore -
interactions between drivers frodomU anddomQ drivers 4/8 e CXE,MD
are broken down into two componentgontend and Aage pomo || (" pagé oomu Ao
backend Fig. 7 shows the driver split and the underlying = oot 1
communication mechanism. S EAEAN /
Backend Frontend { || [Fromtena erivers|
L driver) L driver) event_channel C/D 5
xenbus_client ‘ Xen-gues[‘": v 5 ey, (B Hypervisor
; store_evtchn) start_info->store_mfn
xenbus backend xenbus frontend 1 § start_info->store_evtchn
([xs (msg/transaction)] Figure 8. Bus communication witkenbusbetweerdomOanddomU
& Xonbus | According to this architecture, frontend drivers
—_— ~correspond to the driver part@gomuU,while backend drivers
[R J (e } are the part illomQ The split of original drivers is achieved
. by adapting the low-level driver of each guest ©8:the
Linux bus subsystem | backend side, the driver must handle two diffemigins of

request to the hardware, as to dispatch the redroestthe
hardware to the right domain (or broadcast it). @e

asynchronously thanks to a robust communicationcailed ~ forwards them to the backend usixenbus On the contrary,
xenbus The same philosophy is used EmbeddedXEN When data are received from the hardware and amy reo
however with simplified mechanisms. be transmitted talomy, the frontend is informed via the

Linux functions, so that user applications can deal witHeerformance reasons, all data do not transikeizstore and

device name exported by the kernel (idev or /sysfsfor ~ Xenbusbut are stored in dedicated pages which are dfuare
example) and access drivers seamlessly. No paticul CoPiedbetween domains. This powerful mechanism is based

Figure 7. Driver split architecture with frontend and backeiivers

change at this level is required. ongrant tablesand explained in the next section.
. o Since initial entries inxenstore are inserted at the
B. Xenbus and Inter-domain Communication bootstrap of the kernel, there is no need to haer space

The exchange of data between the two domains mainfpols to manageenstoreas it is the case with the original
consists in using a central repository cakedstorewhich is ~XEN. So far, no particular need of having dynamic
located and managed withitomQ Xenstoreis a kind of in- ~ creation/deletion of entries has been identified.
memory database which stores sdkeg-valuepairs useful :
for device and driver management. All availableidew are c. Page_ sharing and grant tables i)
created within xenstore at the boot time, andkenbus Sharing pages betweaiomOand domU is sometimes
performs calls to probe functions during initiatipa for ~ Necessary to support interactions taking placeinvithivers. .
each entry found in the database. Any kind of datah as For example, both domains use the same physical
framebuffer properties or block size, can be inserted an(jramebuffgr but with totally different contents. According to
queried by thérontendandbackenddrivers. XEN architecture (and hence EmbeddedXEN), atiynO

The xenbus interactions are managed by means ofhas access to the real (local) hardware. Memorgpaged
different threads, namely one thread relatedttte bus PY the framebufferbelong to separate domains, gm0
communication system, and another relateckdnstorein ~ N€eds access to tlemU pages. The access to the local
domQ The threads are using a memory page containing twStorage device (SD card or flash) relies on the esam
separate ring buffers which store requests/resgoisseied principle: the domO block device driver needs access to

by domOor domu physicaldomU pages so thatomU can mount its root file
Asynchronous requests/answers can be handled wiffyStem. _ o o
dedicated event channels. When a domain sendsuastetp In traditional virtualization approaches, theseiiattions

the otherxenbusinvokes an hypercall in order to trigger a Must be highly secured and therefore under theralooit the
virtual IRQ which corresponds to the dedicated evenhypervisor in order to guarantee the isolation @pie
channel. On the other domainxenbus reads the between the_r domains. The sharing and transfeitfasimust
corresponding ring buffer on arrival of the IRQ gretforms ~ reély on dedicated hypercalls. EmbeddedXEMowever, the

the transaction. Theenbus organization is depicted on approach is slightly different: all interacti.onskeaplace via
Fig. 8. the xen-guesi\Pls and do not need any involvement of the

hypervisor. Furthermore, the virtual memory layeceinains
based on the original Linux layout withinear kernel

addresses and virtual addresses. In addition, tigereo
physical-to-machine address translation table.
mechanisms are much simpler being aware that waodo
rely on a strong secured isolation of memory spaetseen
domains, as it is the case with the original XENg. P

linear virtual

However, Linux drivers such as block device drivers

(with the bio subsystem) use memory pages which are

allocated in the linear address space. Page shafg

shows how a domain can access pages from the othinplemented inEmbeddedXEMNherefore becomes hard to

domain. Such pages are referred téoasignpages.

Domo RAM Domu

Hypervisor Hypervisor
0xFF000000 0xFF000000

gntatydomt)

gnttatydomy))
gnttab{dom)) domu
gnttab(domd)

nttatydomd)
gnttab(dom0) "

gnttab(domo) eferencés t

mem_map_foreign(domiJ) dom0 mem_map_foreign(dom0) | mem map. foreign

shared pages ¥
3GiB 3GiB
Hypervisor

Figure 9. Organization of grant tables between domO and domU

At initialization time, each domain receives thegpa

frame number gfn) of the foreign grant table, which is

virtually mapped onto its virtual address spaceanGtables

are allocated within the'malloc area, therefore "normal"

virtual addresses can be used, even if the phygiagk
number is outside the RAM allocated to the domaims is
an important point; such mappings should normalbort to
a physical-to-machine conversion table leading to
secondary address translation. It is not the caseur
context.

use and page transfer mechanisms are preferablge Pa

transfer allows a guest to access a real copygg pantents.
Pages can therefore be allocated usimglloc() within the

linear address space, and linear macros can be Ubéesl

time, the contents of the foreign page is transtein a local
page and must be re-synchronized with the foreiggep
when necessary. A dedicatgdant copyfunction is available
in xen-guest

V. DEALING WITH HETEROGENEITY

A. ARM Core Hegerogeneity

EmbeddedXENs mainly focused on various versions of
ARM cores which correspond to different instructisats

(v5, v6, v7). Recent cores add some new features an
remain backward

instructions, but most recent ones
compatible [1]. Therefore, binary code compiledpoavious
instructions sets should run without any problehigwever,
some functionalities regarding cache managememiMtJ
may lead to incompatibilities and must be treatéith ware.
For example, running @omuU guest OS on an ARMv7
(HTC-like) which has been cross-compiled on a ARMv6

&€PU may lead to some problems when particular cache

related instructions are executed. This problem thesn
solved by calling dedicatduypercallsin thedomUkernel in

Whenever a page needs to be shared with the othgle cache handling functions suchflash_kern_cache_all()
domain, the originating domain requests an assobial The real execution of this function is thereforefpened

between a grant reference and the corresporufimgThis
association is stored within the grant table anel ghant
reference is passed to the other domainxeastore The
target domain (which needs to access the shares) pagst

within the hypervisor by using cache handling fiorcs
corresponding to the host architecture.

Similarly, VFP instructions are slightly differerand
must be processed carefully. Still, usimgpercallsto control

retrieve thepfn from the foreign grant table, and map it ihe execution of VEP remain the best solution.

within its virtual address space. Another partidtyahas to

be highlighted: some macros doing conversions keiwe B. Peripheral Heterogeneity

virtual/physical addresses and their correspondibgct

pag€ addresses (or vice-versa) are based on offsetstfre

frame table base; therefore, these macros have ddigirtly

adapted: if thefn is outside the RAM space, th&uct page
is found in a shadow (foreign) frame table, whistailocated
at initialization time. This is necessary to mainteoherence
when using address conversion functions.

Of course, dealing with heterogeneity at periphéreél
is at the heart oEmbeddedXENA domU guest OS is
normally compiled for a foreign device making ohigouse
of local peripherals, which are not the same asdhmn the
host. We have seen in this paper how device drieees
structured betweemlomO and domU splitting the device
driver in afrontendpart indomUand abackendpart indomO

As previously mentioned, only virtual addressest (noenables the achievement of this heterogeneity rag &s the

linear) can be mapped, since conversion functicetsvden
virtual and physical addresses for this kind ofradd rely on
simple addition/subtraction and do not use pagdesab
Furthermore, ARM cores give the possibility to mapge
(1 MByte) sections of memory without the use ofeacd
level page table. For this reason, it is not pdssib re-map

8 struct pagés the frame entry which is associated to eaclsichy
page. All entries are stored contiguously facilitgttheir access.

frontendis able to provideirtualizedinterfaces to the upper
layer and/or user applications. In this context, uged the
driver split philosophy proposed in the origindEN to cope
with various embedded peripherals which can agtuall
provide similar functionalities.

9 In thexen-armproject, they configure the entire linear spacd it

4 KB mapping granularity which enables mappingsaage level.
However, it requires a"2page table translation which may introduce
some latencies in embedded systems.

addresses to 4 KBytes pages without
Theompromising the whole sectibn

VI CONCLUSIONS [3] Fabiano Hessel Alexandra Aguiar, "Embedded Systems’
We presented the architecture BimbeddedXENwhich Virtualization: The Next Challenge?," IREE International
. . K . L . S i Rapid Syst Protot; jrfax, Virginia, USA,
is a new virtualization framework tailored to vasoARM- ymposium on Rapid System Prototypigriax, Virginia

2012.
based embedded systems such as HTC smartphones-or e [4] David Chisnall,The Definitive Guide to the Xen Hypervisor

user d%wg((ajs sucr;wi.afx?glte?h SBhToucrk]]. A . PrenticeHall, 2008

. Embedde).(E iffers from the other ARM. . YPEVISors [5] Joo-Young Hwang et al., "Xen on ARM: System Virtmation using
in that the architecture has been greatly simpliiad can be Xen Hypervisor for ARM-based Secure Mobile Phonds Fifth
used on ARM CPUs based @b, v6 or vinstruction sets. In IEEE Consumer Communications & Networking Confeeghas
this sense, the virtualization framework can be @y on Vegas, Nevada, 2008.

ARM cores which do not support any virtualization [6] Steve FurbetARM System-on-chip Architectyr2nd ed.
mechanisms yet. However, security in terms of SUBEPIt (7] paul Barham et al., "Xen and the Art of Virtualizat” in 19th ACM

various CPU execution modes has been neglectedidebv Symposium on Operating Systems Principles (SOSFB@®&pn
that the Linux kernel is secure enough to avoid esirdble Landing, New York, USA, October 19-22, 2003.

corruptions between host and guest operating system(8] Thomas R. Gross Mathias Payer, "Fine-Grained Upan& Security
Memory isolation is guaranteed thanks to adequatelling Through Virtualization," irVirtual Execution Environments

of virtual address spaces, and appropriate staa:ldlilmg (VEE’'11), Newport Beach, California, USA, Marcl-11, 2011

relies on a pseudo-user mode with distinct (sepdjattacks
between the guest and the hypervisor.

As of Today, only two OSes are supported: the host OS,
which can béAndroid, and a guest third-party OS, which can
be taken from another piece of hardware. Heterogerudit
CPUs is based on the fact that recent ARM architestu
remain backward-compatible with previous ones.
Furthermore, heterogeneity of peripherals betweehira-
party device and the host device is managed thaaks
hardware virtualization of devices. Currently, most
popular peripherals such as block device, serialicde
networking, sound, display and touchscreen arey full
supported. Virtualization of peripherals is achig¥lanks to
driver split organization with a frontend driverdomU and
a backend driver idomQ

EmbeddedXEN is now publicly available on
Sourceforg® and will be presented during th&enSummit
North AmericaconferenceAugust 2012, in San Diego.

ACKNOWLEDGMENT

I would like to express my profound thanks to theDSE
Engineering Team who has been involvedEmbeddedXEN
for a while, in particular Romain Bornet, LaurentliGod
and Lionel Sambuc, who spent so many hours in Bglvi
some complex problems and debugging thousands tihes
code in extreme conditions. Thank You!

Finally, | am deeply grateful to the CTI/KTI Swiss
Organization who funded a two years research projettt wi
an industrial partner which allowed us to pursueresearch
in the field of embedded virtualization paying anstant
attention to the market needs.

VIl. BIBLIOGRAPHY

[1] ARM Limited. (2009) Architectures, Processors, dmevices.
[Online]. http://infocenter.arm.com

[2] Open Kernel Labs and NICT and University of New thowales,
"The Role of Virtualization in Embedded SystemsFirst
Workshop on Isolation and Integration in Embeddgdt&ms
(IES'08), Glasgow, UK, 2008.

' https://sourceforge.net/projects/embeddedxen

