
- WHITE PAPER, June 2012 -

EmbeddedXEN: A Revisited Architecture of the XEN hypervisor to support ARM-
based embedded virtualization

Prof. Daniel Rossier, PhD
Reconfigurable Embedded Digital Systems Institute

School of Business and Engineering in Canton de Vaud
Yverdon-les-Bains, Switzerland

daniel.rossier@heig-vd.ch

Abstract—Embedded virtualization is gaining increasing
interest in embedded system industry, as microcontrollers are
endowed with high performance ARM cores and powerful
multi-media peripherals. This paper presents a novel approach
in virtualization mechanisms to address particular needs in
embedded systems, such as dealing with heterogeneous ARM
cores and keeping execution overhead as low as possible. We
introduce EmbeddedXEN, a revisited virtualization framework
based on the existing XEN hypervisor. Para-virtualization of
guest operating systems turned out to be the right choice in
terms of performance and capabilities to deal with device
heterogeneity. Adaptations of guest OSes are kept minimal and
low-level events such as IRQs are processed efficiently.

Keywords: XEN hypervisor, Linux, embedded virtualization,
ARM cores

I. INTRODUCTION

Embedded virtualization makes the execution of multiple
instances of operating systems on the same microcontroller
possible. While virtualization remains of huge interest in the
classical desktop/server environment, recent ARM-based
microcontrollers [1] are particularly powerful and can afford
to run much more complex execution environments than ten
years ago. In this context, virtualization can now be
considered in embedded systems such as smartphones,
gateways, set-top boxes, realtime platforms, etc. in order to
provide end users with new features [2] [3]: highly secure
execution environments, hardware consolidation and
resources partitioning, etc.

 Several research projects and company products have
been developed in order to provide a virtual machine monitor
or hypervisor, so as to give end users a complete framework
for managing several instances of operating systems, mainly
on ARM cores, with particular emphasis on security - or
isolation - aspects.

On the desktop side, one powerful open source

hypervisor is XEN [4]; XEN is perfectly well supported on
IA-32/64 SMP platforms and provides the end user with a lot
of userland tools to manage virtual machines and physical
resources. XEN has been originally developed to run several

Linux VMs on servers, and is de facto not tailored to
embedded platforms1.

This paper introduces EmbeddedXEN, a hypervisor based

on XEN source code and devoted to ARM cores with a
revisited architecture to achieve a virtualization framework
tailored to embedded systems. In particular, EmbeddedXEN
supports the heterogeneity of ARM-based devices, meaning
that cross-compiled OS and applications intended to run on a
particular ARM platform can be ported on a different
platform with more recent ARM CPUs, without requiring
any modification of the user-space applications.

Our framework has been deployed on devices supporting
v5, v6 and v7 ARM instruction sets, among which Logitech
Squeezebox Touch device2 and HTC Desire HD
Smartphone.

A. Embedded Hypervisors

Using virtualization in embedded systems brings about
different challenges than the desktop, server or laptop
universe. Of course, the main difference resides in the power
and capacity of embedded CPUs (microcontrollers) which in
most cases are RISC- based architectures and do not have
support for virtualization in their instruction set yet.
However, ARM have already announced cores (namely
Cortex-A15) with such support; they should be available on
the market in early 2013.

Hence, embedded virtualization requires the guest
operating system to be slightly modified in order to set up
interactions with the hypervisor, which is the first underlying
software layer close to the hardware3. This mechanism is
known as para-virtualization and well supported by XEN for
Pentium architectures.

B. Porting XEN on ARM

We started our research investigations in early 2007 with
the objective to port the XEN hypervisor on ARM platforms.
In this context, we started the development of
EmbeddedXEN with the primary objective to enable the

1 A port for PPC was done, but is no longer supported.
2 The SqueezeBox Touch is an advanced multimedia player sold by
Logitech which runs SqueezeOS (based upon Linux). Source code is
available at http://wiki.slimdevices.com
3 In that sense, XEN is considered as a type-1 hypervisor.

execution of a hard realtime domain in parallel with a non-
realtime domain. Both domains were based on Linux4 .
During the last two years, we have focused on the possibility
to let coexist a native operating system and a second third-
party OS; the latter typically runs on a different device than
the host device, therefore with different peripherals and
capabilities, as well as a different ARM core.

In this paper, we outline the main differences between
the original XEN and EmbeddedXEN.

II. EMBEDDEDXEN ARCHITECTURE AND COMPONENTS

A. The Big Picture

A major difference with other ARM hypervisors is that
EmbeddedXEN supports only two guest operating systems.
The first guest OS is called dom0 and consists of a para-
virtualized version of the native OS running on the target
device. The second OS is called domU and represents the OS
running on the third-party device, which has nothing to do
with the device running the host OS. The overall architecture
including the hypervisor, dom0 and domU is depicted on Fig.
1.

Figure 1. Overall architecture with two guest OSes

Para-virtualization of the guest OS at the kernel level is
required for two reasons: on the one hand, ARM CPU does
not support virtualized instructions like Intel CPUs with VT-
extensions or AMD CPUs yet; the Cortex-A15 announced by
ARM, which will have such support, is not commercially
available yet. On the other hand, restricting CPU activities in
embedded systems is relevant in order to reduce power
consumption. In EmbeddedXEN, modifications in the guest
kernel to support virtualization are minimized.

The Xen-guest contains the API and other functions to
control the interactions between the hypervisor and the guest
OS kernel.

B. Single Multikernel Binary Image

The build system of EmbeddedXEN produces a single
binary image which contains the hypervisor and both dom0
and domU which are concatenated and separated by specific
markers, as shown on Fig. 2.

4 Hard realtime OS consisted in using the Xenomai patch for Linux.

Figure 2. Multi-kernel single binary image

This image is a single file which can be easily deployed
into the flash or transferred via NFS. Since the image is built
upon similar scripts as those used by the Linux build system
(as well as the compression/relocation code), the image can
be loaded and started from any Linux-compatible bootloader
(such as U-boot for instance, or even HBoot used by HTC
smartphones). The image's bootstrap is therefore similar to
Linux, except that the first executed code is the hypervisor
code. For this reason, the code architecture and files &
directories organization remain identical to Linux.

The hypervisor parses the file to extract the domains
(normally dom0 and domU) and put the images on top of the
RAM. Those images are stored in ELF-format (vmlinux) and
are parsed in turn by the ELF loader during the domain
setup.

C. Memory Address Spaces and Isolation

As already mentioned, one of the main differences
between our virtualization framework and others resides in
security aspects of memory management. In our
environment, the physical RAM is allocated to the guest by
the hypervisor, depending on size configuration, but the
mapping of virtual memory to this portion is delegated to the
guest. Normally, a translation table like a physical-to-
machine table is used in order to protect the real (physical)
memory from the guest, and provide it with intermediate
address: the virtual address is therefore translated into an
intermediate address (physical or pseudo-physical), and a
second translation is needed to reach the final (machine)
address. To make these two translations, either a hardware-
assisted MMU is necessary, or the page table setup is
managed by the hypervisor and the physical-to-machine
table is used to configure the page table entry with the right
frame number.

We do not use such a mechanism in EmbeddedXEN;
since we trust the guest OS kernel, the manipulations of page
tables are made directly by the guest. Only simple linear
mapping of the allocated RAM is performed during the
domain set-up. Fig. 3 shows the mapping of virtual address
spaces onto the physical space.

Figure 3. Virtual and physical address mapping

The virtual address space on left is set up during the
hypervisor bootstrap. A linear mapping of the available
physical RAM is performed at the virtual address
0xc0000000 (where the kernel space starts). The hypervisor
itself resides at 0xff000000 (as in the original XEN). The
hypervisor can therefore have the visibility of the two
domains, initialize the guest page tables and prepare them for
bootstrap easily.

On the right side, the virtual address space corresponds to
the one used when dom0 executes itself. The "traditional"
Linux address space configuration is used without any
particular modifications; however, only a portion of the
RAM is passed to the guest through the RAM descriptor
initialized by the hypervisor at the guest boot time. This
configuration also shows that there is no possible direct
interaction with the other domain (domU) and both domains
are thus isolated.

The same virtual address space is set up for domU.

D. Para-virtualization and Xen-Guest API

The para-virtualization of guest domains consists in
modifying files in the guest kernel source tree in order to
support the interactions between the hypervisor and the other
domain correctly. There are approximately 73 files to be
slightly modified (or added). Table I outlines a summary of
modified files to give an idea about the patches to be made.

TABLE I. SUMMARY OF PATCHED FILES

File # files Para-virtualized functions

arch/arm/ 16 Bootstrap, IRQs, setup, traps, memory init

drivers/ 27 Block, input, serial, video

include/ 15 Memory, irqs, system, mach-related

init/ 2
Main entry point (retrieving of start info from

the hypervisor, slightly modified init)

sound/ 9 Support for the sound in domU

kernel/ 4 IRQs and time-related adaptations

In addition, a new directory called xen-guest must be

added in the guest (a symbolic link is actually added) which
enhances the guest with convenient APIs in order to perform
hypercalls, process IRQs (which are known as event

channels) as well as manage all interactions on xenbus,
which enables messages and events exchange between the
guest domains (see also Section IV.A). No user space tools
are required in EmbeddedXEN, since the domain images are
included in the single binary; furthermore, xen-guest includes
all necessary init code such as xenbus device initialization
code.

As shown on Fig. 4, all xen-guest code runs at the same
level as the rest of kernel code. Following a monolithic
architecture, the insertion of this code within Linux kernel
makes calls to other subsystems straightforward and
efficient. For instance, the processing of IRQs relies on a
polling mechanism which interrogates an event bitmap;
whenever an event occurs, the IRQ is propagated along the
guest kernel by calling the corresponding asm_do_IRQ()
function known in the Linux kernel which is normally called
by the interrupt vector as defined in entry-armv.S.

It has to be noted that the xen-guest code – which
basically corresponds to pvops of XEN - is common to dom0
and domU.

Figure 4. Architecture of a para-virtualized guest OS as dom0 or domU

Normally, a guest kernel should run in a semi-privileged
mode while the hypervisor runs in a full privileged mode.
Architectures based on x86 for example use the notion of
rings to give the necessary protection levels to the
hypervisor, guest kernel and userland applications. On ARM
architectures however, such mechanisms do not exist yet5.
As we will see in Section III.A, the guest kernel is running in
supervisor mode as for the hypervisor.

Therefore, the hypercall mechanism at the guest level
should normally lead to use a syscall-specific instruction
such as SWI to execute some code at the hypervisor level. In
EmbeddedXEN, we do not use this approach since the kernel
is already running in privileged mode when the hypercall is
initiated: jumping to a pre-defined address in the hypervisor
(corresponding to the hypercall entry point) is sufficient.
Typically, such address can be acquired in the start info
structure retrieved at the early stage of the kernel bootstrap.

5 Next generation of ARM Cortex-A15 based on ARMv7+
virtualization support will have such facilities, but not commercially
available yet.

III. INTERACTION SCHEME

The presence of a user mode and pseudo-user mode at
the kernel level constitutes another fundament of
EmbeddedXEN, which is detailed in the following sections.

A. Double stack and pseudo-user mode

In the early implementation of our framework, the code
was mainly based on the Samsung Xen-arm project[5].
However, we faced an important problem when we had to
deploy the framework on a Freescale i.MX25 based device:
accessing the I/O address from the user mode was
complicated, or even impossible. We therefore devised a
novel approach based on the assumption that the guest kernel
code was mature and secure enough to grant the guest kernel
with privileges to run in supervisor (kernel) mode, as it is
normally the case without virtualization layer. Besides the
possibility to perform direct read/write access to I/O
addresses, the advantages of such an approach are multifold:
the use of hypercalls can be considerably reduced and
therefore avoid some complicated call paths between the
hypervisor and the guest. The overall performance is
therefore improved. Another advantage is the small number
of files to be modified; I/O accesses are kept unchanged in
the original Linux and upgrading to new versions is
facilitated.

One particular problem of using the same mode at the
hypervisor and guest levels concerns the use of the stack
pointer; on ARM CPUs, different stack pointers are used
according to the execution mode (USR, IRQ, SVC, etc.) [6].
If the execution mode is restricted to the SVC (kernel) mode,
only one stack pointer – therefore one stack – is used which
leads to some complications in the stack handling, especially
during domain context switches. The introduction of two
different stacks as well as a virtual pseudo-user execution
mode is required as shown on Fig. 5.

Figure 5. Double stack with pseudo-user mode handling

Let us examine the different cases once the guest has
been booted up by the hypervisor, and is running. The

hypervisor has set a virtual execution mode to pseudo-usr
mode when the guest kernel is started, with its associated G-
stack. By the way, the two domains have their own stacks,
i.e. G-stack(dom0) and G-stack(domU). Note that when the
guest is running in user mode, a dedicated stack is used and
no interference may occur with the kernel stack. What is now
happening when an interrupt (IRQ) occurs?

We now consider the case where an IRQ happens while
dom0 is running (either in user or SVC mode): the ARM
CPU automatically switches to the IRQ mode, which has its
own stack, and the low-level IRQ handler is executed within
the hypervisor context; as it is the case in Linux kernel, this
mode will be left as soon as possible to work in the SVC
mode, which is common to any situation when some kernel
code must execute. Therefore, a switch to SVC is done after
configuring the SVC stack correctly6. The running stack is
still G-stack(dom0) when the SVC IRQ handler begins its
execution. At this point, the hypervisor saves the G-
stack(dom0) (current address stored in the stack pointer (sp))
into its guest context descriptor, switches to the virtual kernel
mode, and resets sp to the H-stack which has been saved at a
fixed memory location right before giving the hand to the
guest. The hypervisor can then perform the handler code
with the right stack, without any interference with the guest
kernel stack (G-stack). Once the handler completes, the
hypervisor can execute the upcall code, which leads to
restoring the preempted guest. Of course, one important
action of the upcall will consist in storing the current H-stack
in its fixed location, setting sp back to G-stack(dom0) saved
previously in its guest context descriptor, and finally
resetting the virtual execution mode to pseudo-user mode. It
has to be noted that the guest which is restored on an upcall
path always restarts its execution in kernel mode, i.e. pseudo-
usr mode: indeed, either an IRQ must be propagated to the
guest, or the guest executes an hypercall at its kernel level,
and pursues its execution after the trampoline.

Now, there are two typical scenarios which can take
place when the execution is still at the hypervisor level: for
example, a domain context switch could occur if the
scheduler decides; without entering into details, the
scheduler could have been invoked during the upcall path. In
this case, the restored stack is the corresponding G-stack - G-
stack(domU) in our case - and the stack of dom0 remains
consistent. The other scenario is related to the re-enabling of
interrupts along the upcall path; interrupts are normally re-
enabled to improve system reactivity; another IRQ may
occur before the guest has been restored. In this case, the
behavior can be differentiated thanks to the use of the virtual
mode: the hypervisor is indeed running in kernel mode, and
no stack permutation is needed. Again, the stack remains
consistent.

This approach allowed us to deal with a unique (CPU)
kernel mode (SVC) and to differentiate the execution at the
hypervisor and guest level.

6 Switching to ABT, UND, FIQ leads to the same behavior.

B. IRQs and Upcalls

Compared to the original XEN, IRQs in EmbeddedXEN
also rely on the event channel bitmap approach, i.e. an event
channel, represented by a single bit, is associated with an
IRQ. When an interrupt occurs, the hypervisor performs
machine-dependent low-level handling code, depending
whether the IRQ is a physical IRQ or virtual IRQ. The
corresponding event channel bit is set, the interrupt line is
acknowledged and masked, and the IRQ is propagated to the
guest domain on upcall path.

Physical IRQ (PIRQ) is used when the interrupt must be
processed by the guest, and is therefore not virtualized by the
hypervisor; PIRQs are particularly helpful since device
drivers are normally located in dom07 and must handle IRQs
as normal drivers; low-level handlers (edge, level or simple)
are normally applied as they are in normal Linux. Virtual
IRQ (VIRQ) on the other hand is an IRQ generated by the
hypervisor (following a real interrupt or not). The VIRQ has
its unique identifier and is propagated to the guest as if it was
a real interrupt. To do that, the upcall consists of jumping to
a specific location in the guest by means of a specific
callback address which is set by the guest via an hypercall
during its bootstrap (using a start_info structure). As a part
of the xen-guest code at the guest level, the event channels
are processed one after the other, by triggering the
corresponding IRQs (the standard asm_do_IRQ() function is
called). Once all event channels have been processed, dom0
executes a hypercall to ask the hypervisor to interrogate the
IRQ controller again to check for potential pending
interrupts. This mechanism avoids unnecessary domain
switches, improves reactivity, and even reveals necessary on
HTC Desire HD, where a lot of IRQs issued from various
peripherals are frequently generated, and cannot be delayed
too much.

The guest makes no real differentiation between virtual
and physical IRQs; the difference mainly concerns the way
the hypervisor manages them. The overall interactions
between hypervisor and guest are depicted on Fig. 6.

7 At the moment, only dom0 can managed PIRQs, but this should not
be always true especially when considering resource partitioning
between dom0 and domU.

Figure 6. Interactions between the hypervisor and dom0 when an interrupt

occurs

For a better understanding of what happens when an
interrupt occurs, let's examine two examples of interrupts:
timer interrupt and touchscreen interrupt. Timer interrupts
are required by the hypervisor to activate its scheduler
periodically, and thus to perform domain switches depending
on their time consumption. Timer interrupt therefore cannot
be processed directly by dom0. But the guest OSes
themselves also need such interrupts for their own
scheduling purposes; the hypervisor must consequently
generate a proper interrupt for each guest - actually a virtual
IRQ – by enabling the corresponding VIRQ event channel.
Touchscreen interrupts are not of great interest for the
hypervisor. Moreover, the framebuffer strongly depends on
the hardware and needs a particular driver; this driver, as
explained in the next section, resides in dom0; the interrupt is
therefore considered as a physical interrupt bound to dom0
during its IRQ initialization. Once acknowledged and
masked, the hypervisor will directly propagate the interrupt
towards the guest via the upcall by giving the priority to
dom0 (reschedule of dom0 is done immediately in this case if
domU was running before the preemption or newly
scheduled).

IV. DRIVERS, FRONTEND AND BACKEND

A. Frontend and Backend Drivers

Drivers play a fundamental role in an operating system
since they deal with specific hardware and manage all
interactions between the hardware and the kernel, and
between the kernel and the user space. In a virtualized
environment based on XEN, the approach with drivers
consists in giving the responsibility of dealing with the real
hardware to dom0, which runs in a semi-privileged mode,
hence with sufficient privileges to perform I/O accesses

properly. In this context, other guest OSes (domU) must
have a modified version of drivers in order to interact with
the driver counterpart in dom0. To implement these
interactions between drivers from domU and dom0, drivers
are broken down into two components: frontend and
backend. Fig. 7 shows the driver split and the underlying
communication mechanism.

Figure 7. Driver split architecture with frontend and backend drivers

Frontend and backend drivers may exchange information
asynchronously thanks to a robust communication bus called
xenbus. The same philosophy is used in EmbeddedXEN,
however with simplified mechanisms.

All device and driver management uses the standard
Linux functions, so that user applications can deal with
device name exported by the kernel (via /dev or /sysfs for
example) and access drivers seamlessly. No particular
change at this level is required.

B. Xenbus and Inter-domain Communication

The exchange of data between the two domains mainly
consists in using a central repository called xenstore which is
located and managed within dom0. Xenstore is a kind of in-
memory database which stores some key-value pairs useful
for device and driver management. All available devices are
created within xenstore at the boot time, and xenbus
performs calls to probe functions during initialization for
each entry found in the database. Any kind of data, such as
framebuffer properties or block size, can be inserted and
queried by the frontend and backend drivers.

The xenbus interactions are managed by means of
different threads, namely one thread related to the bus
communication system, and another related to xenstore in
dom0. The threads are using a memory page containing two
separate ring buffers which store requests/responses issued
by dom0 or domU.

Asynchronous requests/answers can be handled with
dedicated event channels. When a domain sends a request to
the other, xenbus invokes an hypercall in order to trigger a
virtual IRQ which corresponds to the dedicated event
channel. On the other domain, xenbus reads the
corresponding ring buffer on arrival of the IRQ and performs
the transaction. The xenbus organization is depicted on
Fig. 8.

Figure 8. Bus communication with xenbus between dom0 and domU

According to this architecture, frontend drivers
correspond to the driver part in domU, while backend drivers
are the part in dom0. The split of original drivers is achieved
by adapting the low-level driver of each guest OS: on the
backend side, the driver must handle two different origins of
request to the hardware, as to dispatch the request from the
hardware to the right domain (or broadcast it). On the
frontend side, the low-level driver intercepts the requests and
forwards them to the backend using xenbus. On the contrary,
when data are received from the hardware and are ready to
be transmitted to domU, the frontend is informed via the
event channel that data are available. However, for
performance reasons, all data do not transit via xenstore and
xenbus, but are stored in dedicated pages which are shared or
copied between domains. This powerful mechanism is based
on grant tables and explained in the next section.

Since initial entries in xenstore are inserted at the
bootstrap of the kernel, there is no need to have user space
tools to manage xenstore as it is the case with the original
XEN. So far, no particular need of having dynamic
creation/deletion of entries has been identified.

C. Page sharing and grant tables

Sharing pages between dom0 and domU is sometimes
necessary to support interactions taking place within drivers.
For example, both domains use the same physical
framebuffer, but with totally different contents. According to
XEN architecture (and hence EmbeddedXEN), only dom0
has access to the real (local) hardware. Memory pages used
by the framebuffer belong to separate domains, but dom0
needs access to the domU pages. The access to the local
storage device (SD card or flash) relies on the same
principle: the dom0 block device driver needs access to
physical domU pages so that domU can mount its root file
system.

In traditional virtualization approaches, these interactions
must be highly secured and therefore under the control of the
hypervisor in order to guarantee the isolation principle
between the domains. The sharing and transfer facilities must
rely on dedicated hypercalls. In EmbeddedXEN however, the
approach is slightly different: all interactions take place via
the xen-guest APIs and do not need any involvement of the
hypervisor. Furthermore, the virtual memory layout remains
based on the original Linux layout with linear kernel

addresses and virtual addresses. In addition, there is no
physical-to-machine address translation table. The
mechanisms are much simpler being aware that we do not
rely on a strong secured isolation of memory spaces between
domains, as it is the case with the original XEN. Fig. 9
shows how a domain can access pages from the other
domain. Such pages are referred to as foreign pages.

Figure 9. Organization of grant tables between dom0 and domU

At initialization time, each domain receives the page
frame number (pfn) of the foreign grant table, which is
virtually mapped onto its virtual address space. Grant tables
are allocated within the vmalloc area, therefore "normal"
virtual addresses can be used, even if the physical page
number is outside the RAM allocated to the domain. This is
an important point; such mappings should normally resort to
a physical-to-machine conversion table leading to a
secondary address translation. It is not the case in our
context.

Whenever a page needs to be shared with the other
domain, the originating domain requests an association
between a grant reference and the corresponding pfn. This
association is stored within the grant table and the grant
reference is passed to the other domain via xenstore. The
target domain (which needs to access the shared page) must
retrieve the pfn from the foreign grant table, and map it
within its virtual address space. Another particularity has to
be highlighted: some macros doing conversions between
virtual/physical addresses and their corresponding struct
page8 addresses (or vice-versa) are based on offsets from the
frame table base; therefore, these macros have been slightly
adapted: if the pfn is outside the RAM space, the struct page
is found in a shadow (foreign) frame table, which is allocated
at initialization time. This is necessary to maintain coherence
when using address conversion functions.

As previously mentioned, only virtual addresses (not
linear) can be mapped, since conversion functions between
virtual and physical addresses for this kind of address rely on
simple addition/subtraction and do not use page tables.
Furthermore, ARM cores give the possibility to map large
(1 MByte) sections of memory without the use of a second
level page table. For this reason, it is not possible to re-map

8 struct page is the frame entry which is associated to each physical
page. All entries are stored contiguously facilitating their access.

linear virtual addresses to 4 KBytes pages without
compromising the whole section9.

However, Linux drivers such as block device drivers
(with the bio subsystem) use memory pages which are
allocated in the linear address space. Page sharing as
implemented in EmbeddedXEN therefore becomes hard to
use and page transfer mechanisms are preferable. Page
transfer allows a guest to access a real copy of page contents.
Pages can therefore be allocated using kmalloc() within the
linear address space, and linear macros can be used. This
time, the contents of the foreign page is transferred in a local
page and must be re-synchronized with the foreign page
when necessary. A dedicated grant copy function is available
in xen-guest.

V. DEALING WITH HETEROGENEITY

A. ARM Core Hegerogeneity

EmbeddedXEN is mainly focused on various versions of
ARM cores which correspond to different instruction sets
(v5, v6, v7). Recent cores add some new features and
instructions, but most recent ones remain backward
compatible [1]. Therefore, binary code compiled on previous
instructions sets should run without any problems. However,
some functionalities regarding cache management or MMU
may lead to incompatibilities and must be treated with care.
For example, running a domU guest OS on an ARMv7
(HTC-like) which has been cross-compiled on a ARMv6
CPU may lead to some problems when particular cache-
related instructions are executed. This problem has been
solved by calling dedicated hypercalls in the domU kernel in
the cache handling functions such as flush_kern_cache_all().
The real execution of this function is therefore performed
within the hypervisor by using cache handling functions
corresponding to the host architecture.

Similarly, VFP instructions are slightly different and
must be processed carefully. Still, using hypercalls to control
the execution of VFP remain the best solution.

B. Peripheral Heterogeneity

Of course, dealing with heterogeneity at peripheral level
is at the heart of EmbeddedXEN. A domU guest OS is
normally compiled for a foreign device making obvious use
of local peripherals, which are not the same as those on the
host. We have seen in this paper how device drivers are
structured between dom0 and domU; splitting the device
driver in a frontend part in domU and a backend part in dom0
enables the achievement of this heterogeneity as long as the
frontend is able to provide virtualized interfaces to the upper
layer and/or user applications. In this context, we used the
driver split philosophy proposed in the original XEN to cope
with various embedded peripherals which can actually
provide similar functionalities.

9 In the xen-arm project, they configure the entire linear space with a
4 KB mapping granularity which enables mappings at page level.
However, it requires a 2nd page table translation which may introduce
some latencies in embedded systems.

VI. CONCLUSIONS

We presented the architecture of EmbeddedXEN, which
is a new virtualization framework tailored to various ARM-
based embedded systems such as HTC smartphones or end-
user devices such as Logitech SB Touch.

EmbeddedXEN differs from the other ARM hypervisors
in that the architecture has been greatly simplified and can be
used on ARM CPUs based on v5, v6 or v7 instruction sets. In
this sense, the virtualization framework can be deployed on
ARM cores which do not support any virtualization
mechanisms yet. However, security in terms of supporting
various CPU execution modes has been neglected, provided
that the Linux kernel is secure enough to avoid undesirable
corruptions between host and guest operating system.
Memory isolation is guaranteed thanks to adequate handling
of virtual address spaces, and appropriate stack handling
relies on a pseudo-user mode with distinct (separated) stacks
between the guest and the hypervisor.

As of Today, only two OSes are supported: the host OS,
which can be Android, and a guest third-party OS, which can
be taken from another piece of hardware. Heterogeneity of
CPUs is based on the fact that recent ARM architectures
remain backward-compatible with previous ones.
Furthermore, heterogeneity of peripherals between a third-
party device and the host device is managed thanks to
hardware virtualization of devices. Currently, most of
popular peripherals such as block device, serial device,
networking, sound, display and touchscreen are fully
supported. Virtualization of peripherals is achieved thanks to
driver split organization with a frontend driver in domU and
a backend driver in dom0.

EmbeddedXEN is now publicly available on
Sourceforge10 and will be presented during the XenSummit
North America conference, August 2012, in San Diego.

ACKNOWLEDGMENT

I would like to express my profound thanks to the REDS
Engineering Team who has been involved in EmbeddedXEN
for a while, in particular Romain Bornet, Laurent Colloud
and Lionel Sambuc, who spent so many hours in solving
some complex problems and debugging thousands lines of
code in extreme conditions. Thank You!

Finally, I am deeply grateful to the CTI/KTI Swiss
Organization who funded a two years research project with
an industrial partner which allowed us to pursue our research
in the field of embedded virtualization paying a constant
attention to the market needs.

VII. BIBLIOGRAPHY

[1] ARM Limited. (2009) Architectures, Processors, and Devices.
[Online]. http://infocenter.arm.com

[2] Open Kernel Labs and NICT and University of New South Wales,
"The Role of Virtualization in Embedded Systems," in First
Workshop on Isolation and Integration in Embedded Systems
(IIES'08), Glasgow, UK, 2008.

10 https://sourceforge.net/projects/embeddedxen

[3] Fabiano Hessel Alexandra Aguiar, "Embedded Systems’
Virtualization: The Next Challenge?," in IEEE International
Symposium on Rapid System Prototyping, Fairfax, Virginia, USA,
2012.

[4] David Chisnall, The Definitive Guide to the Xen Hypervisor.:
Prentice Hall, 2008.

[5] Joo-Young Hwang et al., "Xen on ARM: System Virtualization using
Xen Hypervisor for ARM-based Secure Mobile Phones," in Fifth
IEEE Consumer Communications & Networking Conference, Las
Vegas, Nevada, 2008.

[6] Steve Furber, ARM System-on-chip Architecture, 2nd ed.

[7] Paul Barham et al., "Xen and the Art of Virtualization," in 19th ACM
Symposium on Operating Systems Principles (SOSP'03), Bolton
Landing, New York, USA, October 19-22, 2003.

[8] Thomas R. Gross Mathias Payer, "Fine-Grained User-Space Security
Through Virtualization," in Virtual Execution Environments
(VEE’11), Newport Beach, California, USA, March 9–11, 2011.

