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Abstract—Embedded virtualization is gaining increasing 
interest in embedded system industry, as microcontrollers are 
endowed with high performance ARM cores and powerful 
multi-media peripherals. This paper presents a novel approach 
in virtualization mechanisms to address particular needs in 
embedded systems, such as dealing with heterogeneous ARM 
cores and keeping execution overhead as low as possible. We 
introduce EmbeddedXEN, a revisited virtualization framework 
based on the existing XEN hypervisor. Para-virtualization of 
guest operating systems turned out to be the right choice in 
terms of performance and capabilities to deal with device 
heterogeneity. Adaptations of guest OSes are kept minimal and 
low-level events such as IRQs are processed efficiently. 

Keywords: XEN hypervisor, Linux, embedded virtualization, 
ARM cores 

I.  INTRODUCTION 

Embedded virtualization makes the execution of multiple 
instances of operating systems on the same microcontroller 
possible. While virtualization remains of huge interest in the 
classical desktop/server environment, recent ARM-based 
microcontrollers [1] are particularly powerful and can afford 
to run much more complex execution environments than ten 
years ago. In this context, virtualization can now be 
considered in embedded systems such as smartphones, 
gateways, set-top boxes, realtime platforms, etc. in order to 
provide end users with new features [2] [3]: highly secure 
execution environments, hardware consolidation and 
resources partitioning, etc. 

 Several research projects and company products have 
been developed in order to provide a virtual machine monitor 
or hypervisor, so as to give end users a complete framework 
for managing several instances of operating systems, mainly 
on ARM cores, with particular emphasis on security - or 
isolation - aspects. 

 
On the desktop side, one powerful open source 

hypervisor is XEN [4]; XEN is perfectly well supported on 
IA-32/64 SMP platforms and provides the end user with a lot 
of userland tools to manage virtual machines and physical 
resources. XEN has been originally developed to run several 

Linux VMs on servers, and is de facto not tailored to 
embedded platforms1. 

 
This paper introduces EmbeddedXEN, a hypervisor based 

on XEN source code and devoted to ARM cores with a 
revisited architecture to achieve a virtualization framework 
tailored to embedded systems. In particular, EmbeddedXEN 
supports the heterogeneity of ARM-based devices, meaning 
that cross-compiled OS and applications intended to run on a 
particular ARM platform can be ported on a different 
platform with more recent ARM CPUs, without requiring 
any modification of the user-space applications. 

Our framework has been deployed on devices supporting 
v5, v6 and v7 ARM instruction sets, among which Logitech 
Squeezebox Touch device2  and HTC Desire HD 
Smartphone. 

A. Embedded Hypervisors 

Using virtualization in embedded systems brings about 
different challenges than the desktop, server or laptop 
universe. Of course, the main difference resides in the power 
and capacity of embedded CPUs (microcontrollers) which in 
most cases are RISC- based architectures and do not have 
support for virtualization in their instruction set yet. 
However, ARM have already announced cores (namely 
Cortex-A15) with such support; they should be available on 
the market in early 2013. 

Hence, embedded virtualization requires the guest 
operating system to be slightly modified in order to set up 
interactions with the hypervisor, which is the first underlying 
software layer close to the hardware3. This mechanism is 
known as para-virtualization and well supported by XEN for 
Pentium architectures. 

B. Porting XEN on ARM 

We started our research investigations in early 2007 with 
the objective to port the XEN hypervisor on ARM platforms. 
In this context, we started the development of 
EmbeddedXEN with the primary objective to enable the 

   
1 A port for PPC was done, but is no longer supported.  
2 The SqueezeBox Touch is an advanced multimedia player sold by 
Logitech which runs SqueezeOS (based upon Linux). Source code is 
available at http://wiki.slimdevices.com 
3 In that sense, XEN is considered as a type-1 hypervisor. 



execution of a hard realtime domain in parallel with a non-
realtime domain. Both domains were based on Linux4 . 
During the last two years, we have focused on the possibility 
to let coexist a native operating system and a second third-
party OS; the latter typically runs on a different device than 
the host device, therefore with different peripherals and 
capabilities, as well as a different ARM core.  

In this paper, we outline the main differences between 
the original XEN and EmbeddedXEN. 

II. EMBEDDEDXEN ARCHITECTURE AND COMPONENTS 

A. The Big Picture 

A major difference with other ARM hypervisors is that 
EmbeddedXEN supports only two guest operating systems. 
The first guest OS is called dom0 and consists of a para-
virtualized version of the native OS running on the target 
device. The second OS is called domU and represents the OS 
running on the third-party device, which has nothing to do 
with the device running the host OS. The overall architecture 
including the hypervisor, dom0 and domU is depicted on Fig. 
1. 
 

 
Figure 1.  Overall architecture with two guest OSes 

Para-virtualization of the guest OS at the kernel level is 
required for two reasons: on the one hand, ARM CPU does 
not support virtualized instructions like Intel CPUs with VT-
extensions or AMD CPUs yet; the Cortex-A15 announced by 
ARM, which will have such support, is not commercially 
available yet. On the other hand, restricting CPU activities in 
embedded systems is relevant in order to reduce power 
consumption. In EmbeddedXEN, modifications in the guest 
kernel to support virtualization are minimized.  

The Xen-guest contains the API and other functions to 
control the interactions between the hypervisor and the guest 
OS kernel. 

B. Single Multikernel Binary Image 

The build system of EmbeddedXEN produces a single 
binary image which contains the hypervisor and both dom0 
and domU which are concatenated and separated by specific 
markers, as shown on Fig. 2. 
 

   
4 Hard realtime OS consisted in using the Xenomai patch for Linux. 

 
Figure 2.  Multi-kernel single binary image 

This image is a single file which can be easily deployed 
into the flash or transferred via NFS. Since the image is built 
upon similar scripts as those used by the Linux build system 
(as well as the compression/relocation code), the image can 
be loaded and started from any Linux-compatible bootloader 
(such as U-boot for instance, or even HBoot used by HTC 
smartphones). The image's bootstrap is therefore similar to 
Linux, except that the first executed code is the hypervisor 
code. For this reason, the code architecture and files & 
directories organization remain identical to Linux. 

The hypervisor parses the file to extract the domains 
(normally dom0 and domU) and put the images on top of the 
RAM. Those images are stored in ELF-format (vmlinux) and 
are parsed in turn by the ELF loader during the domain 
setup. 

C. Memory Address Spaces and Isolation 

As already mentioned, one of the main differences 
between our virtualization framework and others resides in 
security aspects of memory management. In our 
environment, the physical RAM is allocated to the guest by 
the hypervisor, depending on size configuration, but the 
mapping of virtual memory to this portion is delegated to the 
guest. Normally, a translation table like a physical-to-
machine table is used in order to protect the real (physical) 
memory from the guest, and provide it with intermediate 
address: the virtual address is therefore translated into an 
intermediate address (physical or pseudo-physical), and a 
second translation is needed to reach the final (machine) 
address. To make these two translations, either a hardware-
assisted MMU is necessary, or the page table setup is 
managed by the hypervisor and the physical-to-machine 
table is used to configure the page table entry with the right 
frame number. 

We do not use such a mechanism in EmbeddedXEN; 
since we trust the guest OS kernel, the manipulations of page 
tables are made directly by the guest. Only simple linear 
mapping of the allocated RAM is performed during the 
domain set-up. Fig. 3 shows the mapping of virtual address 
spaces onto the physical space. 



 
Figure 3.  Virtual and physical address mapping 

The virtual address space on left is set up during the 
hypervisor bootstrap. A linear mapping of the available 
physical RAM is performed at the virtual address 
0xc0000000 (where the kernel space starts). The hypervisor 
itself resides at 0xff000000 (as in the original XEN). The 
hypervisor can therefore have the visibility of the two 
domains, initialize the guest page tables and prepare them for 
bootstrap easily. 

On the right side, the virtual address space corresponds to 
the one used when dom0 executes itself. The "traditional" 
Linux address space configuration is used without any 
particular modifications; however, only a portion of the 
RAM is passed to the guest through the RAM descriptor 
initialized by the hypervisor at the guest boot time. This 
configuration also shows that there is no possible direct 
interaction with the other domain (domU) and both domains 
are thus isolated. 

The same virtual address space is set up for domU. 
 

D. Para-virtualization and Xen-Guest API 

The para-virtualization of guest domains consists in 
modifying files in the guest kernel source tree in order to 
support the interactions between the hypervisor and the other 
domain correctly. There are approximately 73 files to be 
slightly modified (or added). Table I outlines a summary of 
modified files to give an idea about the patches to be made.  

TABLE I.  SUMMARY OF PATCHED FILES 

File # files Para-virtualized functions 

arch/arm/ 16 Bootstrap, IRQs, setup, traps, memory init 

drivers/ 27 Block, input, serial, video 

include/ 15 Memory, irqs, system, mach-related 

init/ 2 
Main entry point (retrieving of start info from 

the hypervisor, slightly modified init) 

sound/ 9 Support for the sound in domU 

kernel/ 4 IRQs and time-related adaptations 

 
In addition, a new directory called xen-guest must be 

added in the guest (a symbolic link is actually added) which 
enhances the guest with convenient APIs in order to perform 
hypercalls, process IRQs (which are known as event 

channels) as well as manage all interactions on xenbus, 
which enables messages and events exchange between the 
guest domains (see also Section IV.A). No user space tools 
are required in EmbeddedXEN, since the domain images are 
included in the single binary; furthermore, xen-guest includes 
all necessary init code such as xenbus device initialization 
code. 

As shown on Fig. 4, all xen-guest code runs at the same 
level as the rest of kernel code. Following a monolithic 
architecture, the insertion of this code within Linux kernel 
makes calls to other subsystems straightforward and 
efficient. For instance, the processing of IRQs relies on a 
polling mechanism which interrogates an event bitmap; 
whenever an event occurs, the IRQ is propagated along the 
guest kernel by calling the corresponding asm_do_IRQ() 
function known in the Linux kernel which is normally called 
by the interrupt vector as defined in entry-armv.S. 

It has to be noted that the xen-guest code – which 
basically corresponds to pvops of XEN - is common to dom0 
and domU.  

 

 
Figure 4.  Architecture of a para-virtualized guest OS as dom0 or domU 

Normally, a guest kernel should run in a semi-privileged 
mode while the hypervisor runs in a full privileged mode. 
Architectures based on x86 for example use the notion of 
rings to give the necessary protection levels to the 
hypervisor, guest kernel and userland applications. On ARM 
architectures however, such mechanisms do not exist yet5. 
As we will see in Section III.A, the guest kernel is running in 
supervisor mode as for the hypervisor. 

Therefore, the hypercall mechanism at the guest level 
should normally lead to use a syscall-specific instruction 
such as SWI to execute some code at the hypervisor level. In 
EmbeddedXEN, we do not use this approach since the kernel 
is already running in privileged mode when the hypercall is 
initiated: jumping to a pre-defined address in the hypervisor 
(corresponding to the hypercall entry point) is sufficient. 
Typically, such address can be acquired in the start info 
structure retrieved at the early stage of the kernel bootstrap. 

   
5 Next generation of ARM Cortex-A15 based on ARMv7+ 
virtualization support will have such facilities, but not commercially 
available yet. 



III.  INTERACTION SCHEME 

The presence of a user mode and pseudo-user mode at 
the kernel level constitutes another fundament of 
EmbeddedXEN, which is detailed in the following sections. 

A. Double stack and pseudo-user mode 

In the early implementation of our framework, the code 
was mainly based on the Samsung Xen-arm project[5]. 
However, we faced an important problem when we had to 
deploy the framework on a Freescale i.MX25 based device: 
accessing the I/O address from the user mode was 
complicated, or even impossible. We therefore devised a 
novel approach based on the assumption that the guest kernel 
code was mature and secure enough to grant the guest kernel 
with privileges to run in supervisor (kernel) mode, as it is 
normally the case without virtualization layer. Besides the 
possibility to perform direct read/write access to I/O 
addresses, the advantages of such an approach are multifold: 
the use of hypercalls can be considerably reduced and 
therefore avoid some complicated call paths between the 
hypervisor and the guest. The overall performance is 
therefore improved. Another advantage is the small number 
of files to be modified; I/O accesses are kept unchanged in 
the original Linux and upgrading to new versions is 
facilitated. 

One particular problem of using the same mode at the 
hypervisor and guest levels concerns the use of the stack 
pointer; on ARM CPUs, different stack pointers are used 
according to the execution mode (USR, IRQ, SVC, etc.) [6]. 
If the execution mode is restricted to the SVC (kernel) mode, 
only one stack pointer – therefore one stack – is used which 
leads to some complications in the stack handling, especially 
during domain context switches. The introduction of two 
different stacks as well as a virtual pseudo-user execution 
mode is required as shown on Fig. 5. 

 

 
Figure 5.  Double stack with pseudo-user mode handling 

Let us examine the different cases once the guest has 
been booted up by the hypervisor, and is running. The 

hypervisor has set a virtual execution mode to pseudo-usr 
mode when the guest kernel is started, with its associated G-
stack. By the way, the two domains have their own stacks, 
i.e. G-stack(dom0) and G-stack(domU). Note that when the 
guest is running in user mode, a dedicated stack is used and 
no interference may occur with the kernel stack. What is now 
happening when an interrupt (IRQ) occurs?  

We now consider the case where an IRQ happens while 
dom0 is running (either in user or SVC mode): the ARM 
CPU automatically switches to the IRQ mode, which has its 
own stack, and the low-level IRQ handler is executed within 
the hypervisor context; as it is the case in Linux kernel, this 
mode will be left as soon as possible to work in the SVC 
mode, which is common to any situation when some kernel 
code must execute. Therefore, a switch to SVC is done after 
configuring the SVC stack correctly6. The running stack is 
still G-stack(dom0) when the SVC IRQ handler begins its 
execution. At this point, the hypervisor saves the G-
stack(dom0) (current address stored in the stack pointer (sp)) 
into its guest context descriptor, switches to the virtual kernel 
mode, and resets sp to the H-stack which has been saved at a 
fixed memory location right before giving the hand to the 
guest. The hypervisor can then perform the handler code 
with the right stack, without any interference with the guest 
kernel stack (G-stack). Once the handler completes, the 
hypervisor can execute the upcall code, which leads to 
restoring the preempted guest. Of course, one important 
action of the upcall will consist in storing the current H-stack 
in its fixed location, setting sp back to G-stack(dom0) saved 
previously in its guest context descriptor, and finally 
resetting the virtual execution mode to pseudo-user mode. It 
has to be noted that the guest which is restored on an upcall 
path always restarts its execution in kernel mode, i.e. pseudo-
usr mode: indeed, either an IRQ must be propagated to the 
guest, or the guest executes an hypercall at its kernel level, 
and pursues its execution after the trampoline. 

Now, there are two typical scenarios which can take 
place when the execution is still at the hypervisor level: for 
example, a domain context switch could occur if the 
scheduler decides; without entering into details, the 
scheduler could have been invoked during the upcall path. In 
this case, the restored stack is the corresponding G-stack - G-
stack(domU) in our case - and the stack of dom0 remains 
consistent. The other scenario is related to the re-enabling of 
interrupts along the upcall path; interrupts are normally re-
enabled to improve system reactivity; another IRQ may 
occur before the guest has been restored. In this case, the 
behavior can be differentiated thanks to the use of the virtual 
mode: the hypervisor is indeed running in kernel mode, and 
no stack permutation is needed. Again, the stack remains 
consistent. 

This approach allowed us to deal with a unique (CPU) 
kernel mode (SVC) and to differentiate the execution at the 
hypervisor and guest level. 

   
6 Switching to ABT, UND, FIQ leads to the same behavior. 



B. IRQs and Upcalls 

Compared to the original XEN, IRQs in EmbeddedXEN 
also rely on the event channel bitmap approach, i.e. an event 
channel, represented by a single bit, is associated with an 
IRQ. When an interrupt occurs, the hypervisor performs 
machine-dependent low-level handling code, depending 
whether the IRQ is a physical IRQ or virtual IRQ. The 
corresponding event channel bit is set, the interrupt line is 
acknowledged and masked, and the IRQ is propagated to the 
guest domain on upcall path. 

Physical IRQ (PIRQ) is used when the interrupt must be 
processed by the guest, and is therefore not virtualized by the 
hypervisor; PIRQs are particularly helpful since device 
drivers are normally located in dom07 and must handle IRQs 
as normal drivers; low-level handlers (edge, level or simple) 
are normally applied as they are in normal Linux. Virtual 
IRQ (VIRQ) on the other hand is an IRQ generated by the 
hypervisor (following a real interrupt or not). The VIRQ has 
its unique identifier and is propagated to the guest as if it was 
a real interrupt. To do that, the upcall consists of jumping to 
a specific location in the guest by means of a specific 
callback address which is set by the guest via an hypercall 
during its bootstrap (using a start_info structure). As a part 
of the xen-guest code at the guest level, the event channels 
are processed one after the other, by triggering the 
corresponding IRQs (the standard asm_do_IRQ() function is 
called). Once all event channels have been processed, dom0 
executes a hypercall to ask the hypervisor to interrogate the 
IRQ controller again to check for potential pending 
interrupts. This mechanism avoids unnecessary domain 
switches, improves reactivity, and even reveals necessary on 
HTC Desire HD, where a lot of IRQs issued from various 
peripherals are frequently generated, and cannot be delayed 
too much. 

The guest makes no real differentiation between virtual 
and physical IRQs; the difference mainly concerns the way 
the hypervisor manages them. The overall interactions 
between hypervisor and guest are depicted on Fig. 6. 

 

   
7 At the moment, only dom0 can managed PIRQs, but this should not 
be always true especially when considering resource partitioning 
between dom0 and domU. 

 
Figure 6.  Interactions between the hypervisor and dom0 when an interrupt 

occurs 

For a better understanding of what happens when an 
interrupt occurs, let's examine two examples of interrupts: 
timer interrupt and touchscreen interrupt. Timer interrupts 
are required by the hypervisor to activate its scheduler 
periodically, and thus to perform domain switches depending 
on their time consumption. Timer interrupt therefore cannot 
be processed directly by dom0. But the guest OSes 
themselves also need such interrupts for their own 
scheduling purposes; the hypervisor must consequently 
generate a proper interrupt for each guest - actually a virtual 
IRQ – by enabling the corresponding VIRQ event channel. 
Touchscreen interrupts are not of great interest for the 
hypervisor. Moreover, the framebuffer strongly depends on 
the hardware and needs a particular driver; this driver, as 
explained in the next section, resides in dom0; the interrupt is 
therefore considered as a physical interrupt bound to dom0 
during its IRQ initialization. Once acknowledged and 
masked, the hypervisor will directly propagate the interrupt 
towards the guest via the upcall by giving the priority to 
dom0 (reschedule of dom0 is done immediately in this case if 
domU was running before the preemption or newly 
scheduled). 

IV. DRIVERS, FRONTEND AND BACKEND 

A. Frontend and Backend Drivers 

Drivers play a fundamental role in an operating system 
since they deal with specific hardware and manage all 
interactions between the hardware and the kernel, and 
between the kernel and the user space. In a virtualized 
environment based on XEN, the approach with drivers 
consists in giving the responsibility of dealing with the real 
hardware to dom0, which runs in a semi-privileged mode, 
hence with sufficient privileges to perform I/O accesses 



properly.  In this context, other guest OSes (domU) must 
have a modified version of drivers in order to interact with 
the driver counterpart in dom0. To implement these 
interactions between drivers from domU and dom0, drivers 
are broken down into two components: frontend and 
backend. Fig. 7 shows the driver split and the underlying 
communication mechanism. 

 
Figure 7.  Driver split architecture with frontend and backend drivers 

Frontend and backend drivers may exchange information 
asynchronously thanks to a robust communication bus called 
xenbus. The same philosophy is used in EmbeddedXEN, 
however with simplified mechanisms. 

All device and driver management uses the standard 
Linux functions, so that user applications can deal with 
device name exported by the kernel (via /dev or /sysfs for 
example) and access drivers seamlessly. No particular 
change at this level is required. 

B. Xenbus and Inter-domain Communication 

The exchange of data between the two domains mainly 
consists in using a central repository called xenstore which is 
located and managed within dom0. Xenstore is a kind of in-
memory database which stores some key-value pairs useful 
for device and driver management. All available devices are 
created within xenstore at the boot time, and xenbus 
performs calls to probe functions during initialization for 
each entry found in the database. Any kind of data, such as 
framebuffer properties or block size, can be inserted and 
queried by the frontend and backend drivers. 

The xenbus interactions are managed by means of 
different threads, namely one thread related to the bus 
communication system, and another related to xenstore in 
dom0. The threads are using a memory page containing two 
separate ring buffers which store requests/responses issued 
by dom0 or domU.  

Asynchronous requests/answers can be handled with 
dedicated event channels. When a domain sends a request to 
the other, xenbus invokes an hypercall in order to trigger a 
virtual IRQ which corresponds to the dedicated event 
channel. On the other domain, xenbus reads the 
corresponding ring buffer on arrival of the IRQ and performs 
the transaction. The xenbus organization is depicted on 
Fig. 8. 

 

 
Figure 8.  Bus communication with xenbus between dom0 and domU 

According to this architecture, frontend drivers 
correspond to the driver part in domU, while backend drivers 
are the part in dom0. The split of original drivers is achieved 
by adapting the low-level driver of each guest OS: on the 
backend side, the driver must handle two different origins of 
request to the hardware, as to dispatch the request from the 
hardware to the right domain (or broadcast it). On the 
frontend side, the low-level driver intercepts the requests and 
forwards them to the backend using xenbus. On the contrary, 
when data are received from the hardware and are ready to 
be transmitted to domU, the frontend is informed via the 
event channel that data are available. However, for 
performance reasons, all data do not transit via xenstore  and 
xenbus, but are stored in dedicated pages which are shared or 
copied between domains. This powerful mechanism is based 
on grant tables and explained in the next section. 

Since initial entries in xenstore are inserted at the 
bootstrap of the kernel, there is no need to have user space 
tools to manage xenstore as it is the case with the original 
XEN. So far, no particular need of having dynamic 
creation/deletion of entries has been identified.  

C. Page sharing and grant tables 

Sharing pages between dom0 and domU is sometimes 
necessary to support interactions taking place within drivers. 
For example, both domains use the same physical 
framebuffer, but with totally different contents. According to 
XEN architecture (and hence EmbeddedXEN), only dom0 
has access to the real (local) hardware. Memory pages used 
by the framebuffer belong to separate domains, but dom0 
needs access to the domU pages. The access to the local 
storage device (SD card or flash) relies on the same 
principle: the dom0 block device driver needs access to 
physical domU pages so that domU can mount its root file 
system. 

In traditional virtualization approaches, these interactions 
must be highly secured and therefore under the control of the 
hypervisor in order to guarantee the isolation principle 
between the domains. The sharing and transfer facilities must 
rely on dedicated hypercalls. In EmbeddedXEN however, the 
approach is slightly different: all interactions take place via 
the xen-guest APIs and do not need any involvement of the 
hypervisor. Furthermore, the virtual memory layout remains 
based on the original Linux layout with linear kernel 



addresses and virtual addresses. In addition, there is no 
physical-to-machine address translation table. The 
mechanisms are much simpler being aware that we do not 
rely on a strong secured isolation of memory spaces between 
domains, as it is the case with the original XEN. Fig. 9 
shows how a domain can access pages from the other 
domain. Such pages are referred to as foreign pages. 

 
Figure 9.  Organization of grant tables between dom0 and domU 

At initialization time, each domain receives the page 
frame number (pfn) of the foreign grant table, which is 
virtually mapped onto its virtual address space. Grant tables 
are allocated within the vmalloc area, therefore "normal" 
virtual addresses can be used, even if the physical page 
number is outside the RAM allocated to the domain. This is 
an important point; such mappings should normally resort to 
a physical-to-machine conversion table leading to a 
secondary address translation. It is not the case in our 
context. 

Whenever a page needs to be shared with the other 
domain, the originating domain requests an association 
between a grant reference and the corresponding pfn. This 
association is stored within the grant table and the grant 
reference is passed to the other domain via xenstore. The 
target domain (which needs to access the shared page) must 
retrieve the pfn from the foreign grant table, and map it 
within its virtual address space. Another particularity has to 
be highlighted: some macros doing conversions between 
virtual/physical addresses and their corresponding struct 
page8 addresses (or vice-versa) are based on offsets from the 
frame table base; therefore, these macros have been slightly 
adapted: if the pfn is outside the RAM space, the struct page 
is found in a shadow (foreign) frame table, which is allocated 
at initialization time. This is necessary to maintain coherence 
when using address conversion functions. 

As previously mentioned, only virtual addresses (not 
linear) can be mapped, since conversion functions between 
virtual and physical addresses for this kind of address rely on 
simple addition/subtraction and do not use page tables. 
Furthermore, ARM cores give the possibility to map large 
(1 MByte) sections of memory without the use of a second 
level page table. For this reason, it is not possible to re-map 

   
8 struct page is the frame entry which is associated to each physical 
page. All entries are stored contiguously facilitating their access. 

linear virtual addresses to 4 KBytes pages without 
compromising the whole section9.  

However, Linux drivers such as block device drivers 
(with the bio subsystem) use memory pages which are 
allocated in the linear address space. Page sharing as 
implemented in EmbeddedXEN therefore becomes hard to 
use and page transfer mechanisms are preferable. Page 
transfer allows a guest to access a real copy of page contents. 
Pages can therefore be allocated using kmalloc() within the 
linear address space, and linear macros can be used. This 
time, the contents of the foreign page is transferred in a local 
page and must be re-synchronized with the foreign page 
when necessary. A dedicated grant copy function is available 
in xen-guest. 

V. DEALING WITH HETEROGENEITY 

A. ARM Core Hegerogeneity 

EmbeddedXEN is mainly focused on various versions of 
ARM cores which correspond to different instruction sets 
(v5, v6, v7). Recent cores add some new features and 
instructions, but most recent ones remain backward 
compatible [1]. Therefore, binary code compiled on previous 
instructions sets should run without any problems. However, 
some functionalities regarding cache management or MMU 
may lead to incompatibilities and must be treated with care. 
For example, running a domU guest OS on an ARMv7 
(HTC-like) which has been cross-compiled on a ARMv6 
CPU may lead to some problems when particular cache-
related instructions are executed. This problem has been 
solved by calling dedicated hypercalls in the domU kernel in 
the cache handling functions such as flush_kern_cache_all(). 
The real execution of this function is therefore performed 
within the hypervisor by using cache handling functions 
corresponding to the host architecture. 

Similarly, VFP instructions are slightly different and 
must be processed carefully. Still, using hypercalls to control 
the execution of VFP remain the best solution. 

B. Peripheral Heterogeneity 

Of course, dealing with heterogeneity at peripheral level 
is at the heart of EmbeddedXEN. A domU guest OS is 
normally compiled for a foreign device making obvious use 
of local peripherals, which are not the same as those on the 
host. We have seen in this paper how device drivers are 
structured between dom0 and domU; splitting the device 
driver in a frontend part in domU and a backend part in dom0 
enables the achievement of this heterogeneity as long as the 
frontend is able to provide virtualized interfaces to the upper 
layer and/or user applications. In this context, we used the 
driver split philosophy proposed in the original XEN to cope 
with various embedded peripherals which can actually 
provide similar functionalities. 

   
9 In the xen-arm project, they configure the entire linear space with a 
4 KB mapping granularity which enables mappings at page level. 
However, it requires a 2nd page table translation which may introduce 
some latencies in embedded systems. 



VI.  CONCLUSIONS 

We presented the architecture of EmbeddedXEN, which 
is a new virtualization framework tailored to various ARM-
based embedded systems such as HTC smartphones or end-
user devices such as Logitech SB Touch. 

EmbeddedXEN differs from the other ARM hypervisors 
in that the architecture has been greatly simplified and can be 
used on ARM CPUs based on v5, v6 or v7 instruction sets. In 
this sense, the virtualization framework can be deployed on 
ARM cores which do not support any virtualization 
mechanisms yet. However, security in terms of supporting 
various CPU execution modes has been neglected, provided 
that the Linux kernel is secure enough to avoid undesirable 
corruptions between host and guest operating system. 
Memory isolation is guaranteed thanks to adequate handling 
of virtual address spaces, and appropriate stack handling 
relies on a pseudo-user mode with distinct (separated) stacks 
between the guest and the hypervisor. 

As of Today, only two OSes are supported: the host OS, 
which can be Android, and a guest third-party OS, which can 
be taken from another piece of hardware. Heterogeneity of 
CPUs is based on the fact that recent ARM architectures 
remain backward-compatible with previous ones. 
Furthermore, heterogeneity of peripherals between a third-
party device and the host device is managed thanks to 
hardware virtualization of devices. Currently, most of 
popular peripherals such as block device, serial device, 
networking, sound, display and touchscreen are fully 
supported. Virtualization of peripherals is achieved thanks to 
driver split organization with a frontend driver in domU and 
a backend driver in dom0. 

EmbeddedXEN is now publicly available on 
Sourceforge10 and will be presented during the XenSummit 
North America conference, August 2012, in San Diego. 
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