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1 Introduction to Differential Equations

Exercises 1.1

10.

11.

12.

13.

14.

. Second-order; linear.
. Third-order; nonlinear because of (dy/dz)*.

. The differential equation is first-order. Writing it in the form z(dy/dz) + y% = 1, we see that it is

nonlinear in y because of y2. However, writing it in the form (y? — 1)(dz/dy) + z = 0, we see that

it is linear in z.

. The differential equation is first-order. Writing it in the form w(dv/du) + (1 + u)v = ue* we see

that it is linear in v. However, writing it in the form (v + uv — ue*)(du/dv) + u = 0, we see that it

is nonlinear in u.

. Fourth-order; linear

Second-order; nonlinear because of cos(r + u)
Second-order; nonlinear because of /1 + (dy/dz)?

Second-order; nonlinear because of 1/R?

. Third-order; linear

Second-order; nonlinear because of 2
From y = e™%/2 we obtain y' = ~1e /2 Then 2y +y = —e™%/2 + e=%/2 = (.

Fromy = g — —ge“QOt we obtain dy/dt = 24¢=2% g0 that

= 420y = +20(=— < = 24.

631

From y = €% cos 2z we obtain y' = 3¢%% cos 22 — 2¢%% sin 2z and 3" = 5% cos 2z — 1237 sin 2z, so0

that ' — 6y’ + 13y = 0.

From y = — coszIn(secz + tanz) we obtain ¢ = —1 + sinz In(secz + tanz) and

Y’ =tanz + coszln(secz +tanz). Then y” +y = tanz.
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Exercises 1.1

15. Writing In(2X — 1) — ln(X — 1) = ¢ and differentiating implicitly ~ X
we obtain
2 dX 1 dX !
2X -1 dt X—1 dt )
( 2 )ﬁ_l -
2X -1 X -1/ dt 2 2 N 2z 4 ¢
2X —2-2X +1dX _ ]|
X DX -1) d& ,
dx et

— = —(2X — DX = 1) = (X - )1 - 2X).

Exponentiating both sides of the implicit solution we obtain

2X -1
= = 2X-1=Xe'—e! = (! —1)=(e! -2)X = X = .
X ~1 et —2

Solving €' — 2 = 0 we get ¢ = In2. Thus, the solution is defined on (~00,1n2) or on (In2,co).

The graph of the solution defined on (—c0o,In2) is dashed, and the graph of the solution defined on
(In 2, 00) is solid.

16. Implicitly differentiating the solution we obtain

y

d d
_2x2gz_—4xy+2y(—i%:0 > —xQdy—szdx+ydy=O 4
= 2zydz + (2% — y)dy = 0. 2

Using the quadratic formula to solve y% —2z%y —1 = 0 for y, we get

-4 - P S S
y = (222 £ Vart +4)/2 = 22 £ V¥ + 1. Thus, two explicit g
. solutions are y; = 22+ vz¥+ 1 and Yo = 22 — V¥ + 1. Both 2
solutions are defined on (—o0,o0). The graph of y1(z) is solid and -4

the graph of ¥9 is dashed.
17. Differentiating P = cjet/ (1 + clet) we obtain

dP <1 + clet> cret — et - cret

dt (1+cret)?

et [(1 + c1et) - clet}

_ = P(1-P).
1+ ciet 1+ cret ( )

2 [T 2 2 .
18. Differentiating y = e™* /0 e’ dt + cre™® we obtain

! —z% 1z g2 (T2 g2 g2 [T 42 g2
Yy =e “e’ —2ze /Oe dt — 2cize =1-2ze /Oe dt — 2cize™ 7 .

2



19.

20.

21.

22.

23.

Exercises 1.1

Substituting into the differential equation, we have
2 [T 2 2 2 [T .2 2
Yy +2zy =1-2ze " / e’ dt — 2cize”® + 2ze”F / el"dt + 2cize™ = 1.
0 0

dt 2
From y = c1e%® + cpze® we obtain d—J = (2¢1 +02)eQI +2coze’® and ey _ (4¢y +4cg)621+462$621,
z

dz?
so that

de dy 2z 2z
a2 45 + 4y = (4cy + 4eg — 8c1 — 4eg + 4e1)e” + (dep — 8cp + 4eg)ze™ = 0.
Fromy = c1271 4+ oz + sz Inz + 422 we obtain
d
Y& _ —c1a:_2 +co+c3+c3lnr + 8z,
dx
de 3 -1
—% =2c12" >+ 3z + 8,
dZC2 1 3
and
day 4 -2
—= = —6c1z7" — 3" ¢,
dZCB 1 3
so that
d® d? d
3 &Y 2 07y Y
B2ttt
dz3 dz? dz 7
= (—6¢c; +4c1 + 1 + 01)13-1 +(—c3+2¢c3—cp—c3+ o)z

+(—c3+c3)zlnz 4+ (16 — 8 + 4)z>
=12z
(a) From ¢1 = z” we obtain ¢} = 2z, s0
2@, — 261 = z(2z) — 22% = 0.

2 we obtain ¢ = —2z, so

From ¢9 = —z
Tdh — 2py = z(—2z) — 2(~2?) = 0.

Thus, ¢1 and ¢2 are solutions of the differential equation on (—o0, 00).

o
—-z%, <0 -2z, z<(
b) From y = ’ /e obtain ¢y’ = ’ so that zy' — 2y = 0.
(b) ) {1327 :CZO“EO ain y {21 £>0 y Yy
The function y(z) is not continuous at z = 0 since li%’l y(z) =5 and lirf(()1+ y(z) = —5. Thus, ¢/(z)
z—U™ Tr—

does not exist at x = 0.

(a) The domain of the function, found by solving z 4+ 3 > 0, is [—3, c0).

3



Exercises 1.1

(b) From ¢/ = 1+ (z +3)"Y/? we have .
-z —y+z-2={z+2vVz+ 3 —z][1+ (1 + (x = 3)"/?

~[z+2vVz+3]+2-2
=2v/z+3+2—-z-2Vz+3+z—-2=0.

Since y(z) is not differentiable at z = —3, y is a solution of the differential equation on (-3, c0).
24. (a) An interval on which tan 5t is continuous is —7/2 < 5t < /2, so 5tan5t will be a solution on
(=m/10,7/10).
(b) For (1—sint)~'/2 to be continuous we must have 1 —sin¢ > 0 or sin¢ < 1. Thus, (1—sint)~1/2
will be a solution on (7/2, 57/2).
25. (a) From y = e™ we obtain ¢’ = me™. Then 3’ + 2y = 0 implies
me™ + 2™ = (m + 2)e™ = 0.

2t is a solution.

Since e™ > 0 for all ¢, m = —2. Thus y = e~
(b) From y = e™ we obtain ¢ = me™ and ¢y’ = m?e™. Then y" — 5y’ + 6y = 0 implies
m2e™ — 5me™ + 6e™ = (m — 2)(m — 3)e™ = 0.
Since e™ > 0 for all ¢, m =2 and m = 3. Thus y = e?* and y = €% are solutions.
26. (a) From y = t™ we obtain ¢/ = mt™ ! and 3" = m(m — 1)t™ "2 Then ty” + 2y’ = 0 implies

tm(m — D™ 4 2mt™ 7 = [m(m — 1) + 2mt™ " = (m? + m)em !

=m{m + 1)t™ ! = 0.

Since t™"1 > 0 fort >0, m=0and m=—1 Thusy =1 and y = ¢! are solutions.
(b) From y = t™ we obtain ¢/ = mt™~! and ¢ = m(m — 1)#™"2. Then t%y" — Tty' + 15y = 0
implies

mim = D)t™ 2 = 7tmt™ L 4 156" = [m(m — 1) — Tm + 15])t7

= (m? = 8m 4 15)t™ = (m — 3)(m — 5)t™ = 0.

Since t™ > 0for t >0, m =3 and m = 5. Thus y = ¢ and y = t° are solutions.

27. From z = e~ + 3¢5 and y = —e~? + 55 we obtain
d . . d .
d—f = -2 4+18¢% and Ei% = 2e™ 2 4 306
Then
T4 3y = (e7% + 3e%) + 3(—e % 4 565
dx
= 0~ 1 180t = &
e " + 18e pr
and



Exercises 1.1

5z + 3y = 5(e™2t 4 3¢8) 4 3(—e 2 + 5¢5)

d
=272 4305 = 2
dt
. From z = cos 2t + sin2¢ + %et and y = — cos 2t — sin 2¢ — %et we obtain
dzx 1 d i 1
T = —2sin2t + 2cos 2t + get and d—gt/ = 2sin2t — 2cos 2t — get
and ., )
d*z . 1y d-y . 1y
Pl = —4cos2t — 4sin 2t + ge and gl =4cos2t +4sin2t — 56 .
Then
1
4y + €' = 4(—cos2t —sin 2t — get) +¢é
1 d%z
= —4cos2t —4sin 2t + —et = —
COo! in z 772
and .
4z ~ €' = 4(cos 2t +sin 2t + get) — ¢t
1 d?
= 4 cos2t + 4sin 2t — get = Et_g

29.
30.
31.

(y')2 + 1 = 0 has no real solution.

The only solution of (¢/)2 + 3% = 0isy = 0, since if y # 0, y> > 0 and (¥/)? + y* > 32 > 0.

The first derivative of f(t) = el is e*. The first derivative of f(t) = e** is kekt. The differential
equations are v’ = y and ¥’ = ky, respectively.

. Any function of the form y = ce! or y = ce™*

is its own second derivative. The corresponding
differential equation is ¥ — y = 0. Functions of the form y = csint or ¥ = ccost have second

derivatives that are the negatives of themselves. The differential equation is "' +y = 0.

. Since the nth derivative of ¢(x) must exist if ¢(z) is a solution of the nth order differential equation,
all lower-order derivatives of ¢(x) must exist and be continuous. [Recall that a differentiable function
is continuous.}
. Solving the system

c1y1(0) + c2y2(0) = 2

c191(0) + c2y5(0) = 0
for ¢1 and cp we get

2y5(0)
y1(0)y2(0) ~ 41 (0)y2(0)

241(0)
y1(0)y5(0) — y1(0)y2(0)

= and ¢ =—



35.

36.

37.

38.

39.

40.

41.

42.

Exercises 1.1

Thus, a particular solution is

2y5(0) v 2y1(0) "
y1(0)y5(0) = 37(0)y2(0) ™ y1(0)y5(0) ~ 91(0)y(0) ™™

y:

where we assume that y1(0)y5(0) — 31(0)y2(0) # 0.

For the first-order differential equation integrate f(z). For the second-order differential equation
integrate twice. In the latter case we get y = [([ f(¢)dt)dt + 1t + ca.

Solving for 4/ using the quadratic formula we obtain the two differential equations

1 1 /
y/:E<2+2/1+3t6> and y/=5<2-2 1+3t6>,

so the differential equation cannot be put in the form dy/dt = f(t,y).

The differential equation yy’ —ty = 0 has normal form dy/dt = t. These are not equivalent because

y = 0 is a solution of the first differential equation but not a solution of the second.

Differentiating we get ¥’ = ¢ + 3cat? and y” = 6cgt. Then ¢y = /6t and ¢; =3/ — ty”/2, so

/ ty// y// 3 ;o Loy
= - = |t it =ty — =t
Y (?J 5 + 6t Y 3 Y

and the differential equation is t%y” — 3ty’ + 3y = 0.

When ¢(t) = 0, y = 0 is a solution of a linear equation.

(a) Solving (10 — 5y)/3z = 0 we see that y = 2 is a constant solution.

(b) Solving y2 +2y —3 = (y+3)(y — 1) = 0 we see that y = —3 and y = 1 are constant solutions.
(c¢) Since 1/(y — 1) = 0 has no solutions, the differential equation has no constant solutions.

(d) Setting ¥’ = 0 we have 3’ = 0 and 6y = 10. Thus y = 5/3 is a constant solution.

One solution is given by the upper portion of the graph with domain approximately (0,2.6). The

other solution is given by the lower portion of the graph, also with domain approximately (0, 2.6).

One solution, with domain approximately (—o0,1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution, with
domain approximately (0,1.6) is the upper part of the graph in the first quadrant. The third
solution, with domain (0, oo)', is the part of the graph in the fourth quadrant.

6



43.

44.

45.

46.

47.

Exercises 1.1

Differentiating (z° + y%)/zy = 3¢ v« obtain ,

zy(3z% + 3%y - Py +y) 0
22y -
3::334 zydy — 2ty — Py — Y —yt =0
’.’jxyz — - Iyz)y’ = —313y + IBy +
g = Y2yl - 2)
2zyd — 2t z(2y% —23)
A tangent line will be vertical where 3’ is undefined, or in this case, where z(2y® — 2°) = 0. This

gives z = 0 and 233 = 3. Substitnting ¥® = 2%/2 into 2% + 4® = 3zy we get

1 1
3, 2.3_ 4
z +2I 3z <21/3 I)
3 3 3 9
2t T st
I3=22/3I2

2z —2¥% = 0.
Thus, there are vertical tangent lines at £ = 0 and z = 22/3 or at (0,0) and (22/3,21/3). Since
22/3 2~ 1.59, the estimates of the domains in Problem 42 were close.
Since ¢'(z) > 0 for all z in I, ¢(z) is an increasing function on I. Hence, it can have no relative
extrema on I.
(a) Wheny =5,y =0,s0y=>5isasolution of ¢/ =5 —y.
(b) When y > 5, ¢/ < 0, and the solution must be decreasing. When y < 5, 3/ > 0, and the

solution must be increasing. Thus, none of the curves in color can be solutions.

(c)

1
L

(a) y=0and y = a/b.
(b) Since dy/dzx = y(a —by) > 0 for 0 < y < a/b, y = ¢(z) is increasing on this interval. Since
dy/dz < 0 for y < 0 or y > a/b. y = ¢(z) is decreasing on these intervals.

7



Exercises 1.1

(c) Using implicit differentiation we compute

de ’ / ’
) =y(=by') + ¥ (a - by) = y'(a — 2by).

Solving d?y/dz? = 0 we obtain y = a/2b. Since d%y/dz? > 0 for 0 < y < a/2b and d*y/dz? < 0
for a/2b <y < a/b, the graph of y = ¢(z) has a point of inflection at y = a/2b.

(d) N

Py y=0

— x

48. The family of parabolas is plotted using ¢; = +1, £4, £10. The v
ellipses are plotted using cp = 1, 2, 3. It appears from the figure
that the parabolas and ellipses intersect at right angles. To verify

this we note that the first differential equation can be written in the

form dy/dz = y/2z and the second in the form dy/dx = —2z/y.
Thus, at a point of intersection, the slopes of tangent lines are

negative reciprocals of each other, and the two tangent lines are

perpendicular.
49. In Mathematica use
Clear(y]
y[xJ:= x Exp[5x] Cos[2x]

y[x]
y''r[x] = 20 yr[x] + 158 y[x] — 580 y'[x] + 841 y[x] // Simplify

50. In Mathematica use
Clear[y]
y[x_]:= 20 Cos[5 Log{x]]/x — 3 Sin[5 Log(x|]/x

y[x]
x"3y(x] + 2x"2 y[x] + 20 x y'[x] — 78 y[x] // Simplify



Exercises 1.2

Exercises 1.2

1 1 1
. Solving —— = —— we get ¢; = —4. The solution is y = ———.
& 3 1l4¢ geta I A e
Solving 2 ! t Lo~ The solution i 2
olvi = we get ¢ = —=e” . The solution is y = ————— .
§L= T e et a= 3¢ Y=
Using ' = —cysint + cpcost we obtain ¢ = —1 and ¢ = 8. The solution is £ = — cost + 8sint.
Using 2’ = —cysint 4+ cpcost we obtain ¢ = 0 and —c; = 1. The solution is £ = —cost.
Using £’ = —cy sint + ¢y cost we obtain
3(: N 1c 1
2 1T T
1 V3
~=c1+ —=c =0
21T T
. 3 1 3 1,
Solving we find ¢; = % and ¢p = 7 The solution is z = —é—‘ cost + Zsmt.
. Using ¢’ = —c;sint + cycost we obtain
2 2
£ ¢+ i =2
2 2
2 2
~£c1 +—'\/—:62=2\/§.
2 2
Solving we find ¢; = —1 and ¢z = 3. The solution is £ = ~—cost + 3sin t.
. From the initial conditions we obtain the system
cg+cp=1
¢ — ¢y = 2.
Solving we get ¢; = % and ¢o = —% . A solution of the initial-value problem is y = %ez - -12-6_1.
. From the initial conditions we obtain the system '
cle+ 626_1 =(
cle — cze_1 =e.
Solving we get ¢; = —%— and ¢y = —+e2. A solution of the initial-value problem is y = %ez - %62_1.
. From the initial conditions we obtain
el e=5
-1 _
cie — (€ = —5.

Solving we get ¢; = 0 and ¢y = 5¢~!. A solution of the initial-value problem is y = 5e~%1.

9



10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Exercises 1.2

From the initial conditions we obtain

c1+c=0

c1 —co = 0.
Solving we get ¢1 = ¢ = 0. A solution of the initial-value problem is y = 0.
Two solutions are y = 0 and y = z°.

Two solutions are y = 0 and y = z2. (Also, any constant multiple of 2 is a solution.)

For f(z,y) = y%/3 we have 5—?; = gy_ . Thus the differential equation will have a unique solution
in any rectangular region of the plane where y # 0.
, af 1 [z : . o . .
For f(z,y) = /Ty we have 0 =3 Thus the differential equation will have a unique solution
Y Y

in any region where £ > 0 and y > 0 or where x < 0 and y < 0.

d 1 L
For f(z,y) = g we have 6_f = — . Thus the differential equation will have a unique solution in any
z y oz

region where z # 0.

d .
For f(z,y) = x +y we have 5{ = 1. Thus the differential equation will have a unique solution in
Y
the entire plane.
2 8 2 2
For f(z,y) = ——x——g we have of = ——x—y——o Thus the differential equation will have a unique
-y Oy (4-v2)
solution in any region where y < —2, =2 <y < 2, or y > 2.
2 2,22 :
For flz,y) = ad 5 we have of = ——Biy—Q Thus the differential equation will have a unique
l+y Oy  (1+93)

solution in any region where y # —1.

2 d 272
For f(z,y) = —iy——Q we have —f = _____?3/__2 . Thus the differential equation will have a unique
5 +y Oy (22 +y?)
solution in any region not containing (0, 0).
5} -2z . .
For f(z,y) = y+z we have ——i = ———— . Thus the differential equation will have a unique
y—z 9y (y—=z)

solution in any region where y < z or where y > z.
The differential equation has a unique solution at (1, 4).

The differential equation is not guaranteed to have a unique solution at (5, 3).

. The differential equation is not guaranteed to have a unique solution at (2, —3).

10



Exercises 1.2

24. The differential equation is not guaranteed to have a unique solution at (—1,1).

25. (a) A one-parameter family of solutions is y = cz. Since ¢’ = ¢, z¢/ =2zc =y and y(0) =c-0= 0.

26.

27,

(b)

(c)

(b)

(c)

(b)

(c)

(d)

Writing the equation in the form 3 = y/z we see that R cannot contain any point on the y-axis.
Thus, any rectangular region disjoint from the y-axis and containing (zg, yo) will determine an
interval around zp and a unique solution through (zg,yo). Since zo = 0 in part (a) we are not

guaranteed a unique solution through (0, 0).

The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not differ-

entiable at z = 0.

d :
Since e tan(z + ¢) = sec’(z + ¢) = 1 + tan®(z + ¢), we see that y = tan(z + ¢) satisfies the

differential equation.

Solving y(0) = tanc = 0 we obtain ¢ = 0 and y = tanz. Since tanz is discontinuous at

x = £7/2, the solution is not defined on (—2,2) because it contains =7 /2.

The largest interval on which the solution can exist is (~7/2,7/2).

. d 1 1 1 . . .
Since ——(—— ) = = 1?, we see that y = — is a solution of the differential
dt\ t+ec (t+c)? t+c
equation.

Solving y(0) = —1/c = 1 we obtain ¢ = —1 and y = 1/(1 — ¢). Solving y(0) = —1/c = -1
we obtain ¢ = 1 and y = —1/(1 + t). Being sure to include ¢ = 0, we see that the interval
of existence of y = 1/(1 —t) is (—o0,1), while the interval of existence of y = —=1/(1+1) is
(-1, 00).

Solving y(0) = —1/c = yo we obtain ¢ = —1/yg and

1 __ Yo
—1/y0+t 1 — yot

y=— , Yo #0.

Since we must have —1/yg + t # 0, the largest interval of existence (which must contain 0) is

either (—o0, 1/yo) when yo > 0 or (1/yg, c0) when o < 0.

By inspection we see that y = 0 is a solution on (—00, 00).

28. (a) Differentiating 322 — y? = ¢ we get 6z — 2yy’ = 0 or yy’ = 3z.

11



29.

30.

31.

32.

33.

34.

Exercises 1.2

(b) Solving 312 — % = 3 for y we get

y=¢1(z) = /3(?-1), l<z<oo, ,

y = ¢ga(z) = —/3(z2 - 1), 1<z < o0, s s x
y=¢3(z) =/3(z% - 1), —0 <z < —1, -2
y=¢a(z) = —/3(z2 - 1), —00 <z < -1 h
Only y = ¢3(z) satisfies y(—2) = 3.
(c) Settingz =2andy = -4in322 —y> =cweget 12— 16 = —4 =, v
so the explicit solution is 4
y=—1/372 +4, —o00o <z < 0. 2
Y ) 2 4
N
(d) Setting c = 0 we have y = /37 and y = —/3z, both defined on (—o0, 0c).
Whenz =0and y = % , % = —1, so the only plausible solution curve is the one with negative slope

at (0, % ), or the black curve.

The value of y' = dy/dz = f(z,y) is determined by f(z,y), so it cannot be arbitrarily specified at

T =1x9.

If the solution is tangent to the z-axis at (zg,0), then ¥/ = 0 when z = zg and y = 0. Substituting
these values into ' + 2y = 3z — 6 we get 0+ 0 = 3z¢ — 6 or zp = 2.

We look for the curve containing the point corresponding to the initial conditions.
(a) D (b) A (c) C (d) C (e) B (f) A

The theorem guarantees a unique {meaning single) solution through any point. Thus, there cannot

be two distinct solutions through any point.

The functions are the same on the interval (0,4), which is all that is required by Theorem 1.1.

12



Exercises 1.3

35. From y' = 0, for y = z — 1, we see that solutions intersecting the line
y = z—1 have horizontal tangent lines at the point of intersection. From
v > 0, for y > z — 1, we see that solutions above the line y = z — 1
are increasing. From y’ < 0, for y < z — 1, we see that solutions are
decreasing below the line y = z — 1. From ¢” = 0, for y = z, we see

that solutions have possible inflection points on the line y = z. Actually,

y = z is easily seen to be a solution of the differential equation, so the
solutions do not have inflection points. From y” > 0 for y > z we see
that solutions above the line y = z are concave up. From y” < 0 for y < z we see that solutions

below the line y = z are concave down.

Exercises 1.3

1.%:1@P+T; %Iti:kP—T

2. Let b be the rate of births and d the rate of deaths. Then b = k; P and d = ko P. Since dP/dt = b—d,
the differential equation is dP/dt = k1 P — ko P.

3. Let bbe the rate of births and d the rate of deaths. Then b = kP and d = ko P?. Since dP/dt = b—d,
the differential equation is dP/dt = ki P — ko P?.

4. Let P(t) be the number of owls present at time ¢t. Then dP/dt = k(P - 200 + 10t).

5. From the graph we estimate Ty = 180° and T,,, = 75°. We observe that when T = 85, dT'/dt = —1.
From the differential equation we then have

_dT/dt -1 o1
T T-T. 8-75

6. By inspecting the graph we take Ty, to be Tp,,(t) = 80 — 30 cos7t/12. Then the temperature of the

k

body at time ¢ is determined by the differential equation
% =k [T— (80—30005?—?)} , t>0.

7. The number of students with the flu is z and the number not infected is 1000 — z, so dz/dt =
kz(1000 — z).

8. By analogy with differential equation modeling the spread of a disease we assume that the rate at
which the technological innovation is adopted is proportional to the number of people who have
adopted the innovation and also to the number of people, y(t), who have not yet adopted it. If one
person who has adopted the innovation is introduced into the population then z +y =n + 1 and

dz .
7 zin+1l-2z), z(0)=1
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10.

11.

12.

13.

14.

Exercises 1.3

. The rate at which salt is leaving the tank is

A A
in) -1 =—1 in.
(3 gal/min) (300 b/gal> T b/min
Thus dA/dt = A/100.

The rate at which salt is entering the tank is
Ry = (3 gal/min) - (2 Ib/gal) = 6 1b/min.

Since the solution is pumped out at a slower rate, it is accumulating at the rate of (3 —2)gal/min =
1 gal/min. After ¢ minutes there are 300 + ¢ gallons of brine in the tank. The rate at which salt is

leaving is
24

= 300 + ¢

A
= (2 in)« ([ ——— in.
Ry = (2 gal/min) (300+t lb/gal) Ib/min
The differential equation is
dA 24

dt o 300+t
The volume of water in the tank at time ¢ is V' = A, h. The differential equation is then
dh 1 dv 1 cAg
—=———=—(-cA h)=—-="—-/2gh.
dt Ay dt Aw<0029) Ay oh
e

9 2
Using Ag =7 (—) = 3%

3 , Ay =102 = 100, and g = 32, this becomes

dh e/ 36 cw
R TR Jedh =~ /R,
dt 100 6 450 &

The volume of water in the tank at time tis V = %mﬂh = %Awh. Using the formula from

Problem 11 for the volume of water leaving the tank we see that the differential equation is

dh 3 dV 3 3cAy,
= T~ o (eAn/2gh) =~k /agh.

Using Ap = 7(2/12)2 = 1/36, g = 32, and ¢ = 0.6, this becomes

dt Ay Ay
To find A, we let 7 be the radius of the top of the water. Then r/h = 8/20, so r = 2h/5 and
Ay = m(2h/5)% = 4wh?/25. Thus

dt 47rh2/25h = —25h7
. dgq d*q | _dg _oodi
Since 4 = = and LEt—Q + RE = E(t) we obtain La + Ri = FE(t).
d 1
By Kirchoff’s second law we obtain RE;Z + oi= E(t).
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16.

17.

18.

19.

20.
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d
From Newton’s second law we obtain md_: = —ko? + mg.
We have from Archimedes’ principle

upward force of water on barrel = weight of water displaced
= (62.4) x (volume of water displaced)
= (62.4)n(s/2)%y = 15.6ms%y.

d? d*y 1567
It then follows from Newton’s second law that Ed—tg = —15.67r52y or gi—;“/— + 20789 y = 0, where
g = 32 and w is the weight of the barrel in pounds.

The net force acting on the mass is

d%z
F=ma=mE§ = —k(s+z)+mg=—kz+mg— ks.
Since the condition of equilibrium is mg = ks, the differential equation is
d’z
m Ei = —ks.

From Problem 17, without a damping force, the differential equation is m d?z/dt? = ~kz. With a

damping force proportional to velocity the differential equation becomes
%z dz 2z _dz
mW=—kl‘—ﬂ—(—i—£ or 7nﬁ+ﬁg+k2=0.
Let z(t) denote the height of the top of the chain at time ¢ with the positive direction upward. The
weight of the portion of chain off the ground is W = (z ft) - (1 Ib/ft) = z. The mass of the chain is
m=W/g=1z/32. The net forceis F =5~ W =5 — z. By Newton’s second law,

du dr

%(%v) =5-z o gz fv— =160-32
Thus, the differential equation is
d%z dz\2
— 4+ (= 32z = 160.
T 7 + <dt> + 32z

d .
The force is the weight of the chain, 2L, so by Newton'’s second law, ;ﬁ[mv] = 2L. Since the mass

of the portion of chain off the ground is m = 2(L — z)/g, we have

d 2(L - z) dv dzy
E[—?——v]=2L or (L—z)—CEJrv( ) =Lg.
Thus, the differential equation is

2

d°z <dz>2 - Lo,

L-2gm —F

15



21.

22.

23.

24.
25.
26.

27.

28.

29.

Exercises 1.3

From g = k/R? we find k = gR*. Using a = d?r/dt® and the fact that the positive direction is.

upward we get

d*r k gR?, d*  gR?

S = —g = —— = =% o —— + = =0.
dt2+ 72

The gravitational force on m is F = —kM,m/r?. Since M, = 4nér3/3 and M = 4w5R*/3 we have

M, = r3M/R? and

M 3 3 M
B [TQm _ i [TZL/R _ _kmsfr'
T re R
Now from F = ma = d%r/dt? we have
- d*r LM d*r kM
—=—k—57 OF —% =——xT.
dt? R3 dt? R3
) . .. dA
The differential equation is = k(M — A).
) . .. dA
The differential equation is - = ki(M — A) — koA
The differential equation is ©/(t) = r — kz(t) where k£ > 0.
By the Pythagorean Theorem the slope of the tangent line is ¢/ = 2—y =
s?—y
We see from the figure that 260 + o = 7. Thus A
Y 2tané
< =t =t —20) = —tan20 = ——————.
— =tana an(m — 26) an T a2l
Since the slope of the tangent line is ¢ = tan d we have y/z = 2¢/[1— (¢/)?]
or y—y(y')? = 2z, which is the quadratic equation y(y')%+ 227/ —y =0 -y
XI p—————
in 7. Using the quadratic formula we get Y B¢
! Y
y,_—Qxi,/4x2+4y2_—xi\/x2+y2 79 ot
= > = . X x
2y Y

Since dy/dz > 0, the differential equation is

dy —z 42?4y d ,
%z——-—T—y or yd—yﬂ\/xz—i—yQ—i—x:O.
X

The differential equation is dP/dt = kP, so from Problem 31 in Exercises 1.1, P = et and a

one-parameter family of solutions is P = ce®.

The differential equation in (3) is dT/dt = k(T — Tr,). When the body is cooling, T > Tr,, so
T — T;n > 0. Since T is decreasing, dT'/dt < 0 and k& < 0. When the body is warming, T < Tjn, so
T — Ty, < 0. Since T is increasing, dT/dt > 0 and k& < 0.
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30.

31.

32.

33.

34.

35.

Exercises 1.3

The differential equation in (8) is dA/dt = 6 — A/100. If A(t) attains a maximum, then dA/dt =0
at this time and A = 600. If A(t) continues to increase without reaching a maximum then A’(¢) > 0
for t > 0 and A cannot exceed 600. In this case, if A’(t) approaches 0 as t increases to infinity, we
see that A(t) approaches 600 as t increases to infinity.

The input rate of brine is 7; gal/min and the concentration of salt in the inflow is ¢; Ib/gal, so the
input rate of salt is 7¢;lb/min. The output rate of brine is r, gal/min and the concentration of
salt in the outflow is ¢, 1b/gal, so the output rate of salt is 7o¢o lb/min. The solution in the tank
is accumulating at a rate of (r; — r,) gal/min (or decreasing if r; < r,). After ¢ minutes there are
Vo + (r: — 7o)t gallons of brine in the tank, and the output rate of salt is 7,A/[Vy + (r; — 75)t] Ib/min.
The differential equation is

dA roA
—_— =T - .
it T Vot (ot
This differential equation could describe a population that undergoes periodic fluctuations.
. dP . dA .
(1): = kP is linear (2): = kA is linear
dar d
(3): = k(T — Ty,) is linear (5): d_i = kz(n+ 1 —z) is nonlinear
aX , , dA -
(6): P k{a — X)(f — X) is nonlinear (8): = = 6 — TG linear
dh A _ , d’¢ _dg 1 .
(10): pri —E\/Qgh is nonlinear (11): LW + REZ + ci= E(t) is linear
d2
(12): Es = —g is linear (14): m% =mg — kv is linear
d? d d’z 64
(15): ma; + kd—: =mg is linear (16): Eg —TT= 0 is linear
From Problem 21, d?r/dt? = —gR?/r?. Since R is a constant, if r = R+ s, then d?r/dt® = d?s/dt?

and, using a Taylor series, we get
d*s R? 2 2 2t p—2 3 2gs
—_— —_— = Tl — 4 - 92sR” e | = — —~
) g(R+s)2 gR* (R +s) gR*[R s + o] g+R3+
Thus, for R much larger than s, the differential equation is approximated by d%s/dt? = ~g.
If p is the mass density of the raindrop, then m = pV and
dm av dd 4 odr dr
—_— = _— = _— = = 4 _—) = _—
7w T ral =l ) = eS g
If dr/dt is a constant, then dm/dt = kS where pdr/dt = k or dr/dt = k/p. Since the radius is
decreasing, k < 0. Solving dr/dt = k/p we get r = (k/p)t + co. Since 7(0) = rg, co = ro and
r=kt/p+ro.
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36.

Exercises 1.3

d
From Newton’s second law, —[mv] = mg, where v is the velocity of the raindrop. Then

dt
dv dm 4 3 dv 2 4 3
mE-i-vE:mg or p<§7rr )Et—-i-v(kéim" )=p<§7rr )g.
Dividing by 4pmr3/3 we get
dv 3k dv 3k/p
L= —_— Ly = k .
dt +prv g or dt +kt/p+rov g9 k<0

‘We assume that the plow clears snow at a constant rate of k¥ cubic miles per hour. Let ¢ be the
time in hours after noon, z(¢) the depth in miles of the snow at time ¢, and y(¢) the distance the
plow has moved in ¢ hours. Then dy/dt is the velocity of the plow and the assumption gives

ay
wxa =k

where w is the width of the plow. Each side of this equation simply represents the volume of snow
plowed in one hour. Now let ¢y be the number of hours before noon when it started snowing and
let s be the constant rate in miles per hour at which z increases. Then for t > —tg, £ = s(t + tg).
The differential equation then becomes

dy k1

dt wst+to

Integrating we obtain
k
= —[In(t+t) +
y= [t + o) +c]
where ¢ is a constant. Now when ¢t =0, y = 0 so ¢ = —In{g and
k t
y=-—In <1 + ——) .
ws to
Finally, from the fact that when t =1, y = 2 and when ¢ = 2, y = 3, we obtain
9\ 2 1\3
I+2) ={1+—) .
< T to> ( T to)

Expanding and simplifying gives t% +1tg—1=0. Since to > 0, we find #y = 0.618 hours ~

37 minutes. Thus it started snowing at about 11:23 in the morning.
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Chapter 1 Review Exercises

13.
14.
15.
16.

17.

18.

Chapter 1 Review Exercises

4 .
" dz c1eft = ciket; % = ky
d —2z -2z -2 dy dy
. — = — e z -— N _ = ——2 —_ —_— = —
d:c(5+cle ) 2¢c1€ 2(5+ cre 5); Iz (y—35) or - 2y + 10
d
Zi;(cl coskz + cosinkz) = —key sin kx + keg cos kz;
d2
—d—§(cl coskz + cosinkz) = —k2%¢y cos kz — k%co sin kz = —kQ(cl coskz + co sin kz);
T
d2y 2 d2y 2
@ = —k Yy or d—:(,‘i + k y= 0
d
Iz (¢1 cosh kx + co sinh kz) = ke sinh kx + ke cosh kz;

.d2
ﬁ(cl cosh kz + co sinh kz) = k% cosh kz + k%cy sinh kz = k%(cy cosh kz + co sinh kz);
z
Py o dy o
—Z =k —% —ky=0
dz? oo e v
. Y = c16% + coze® + coe”: Yy’ = c1e® + coze® + 2¢oe”;

Y +y = 2(c1€% + coze®) + 2¢9e% = 2(c1€% + coxe® + cpe”) = 2y; ¥ —2¢y +y=0

/

. Y = —c1e¥sinx + c1e®cosx + e cosx + coe¥ sin T

Yy’ = —~c1e%¥cosz —c1e¥sinz — c1e¥sinx + 1€ cos T — coe” sin z + coe” cos T + coeT cos T+ caet sinx
= —2¢1€¥ sinx + 2¢p€e” cos z;

y" — 2y = —2c1e®cosT — 2cpe¥sing = ~2y; ' — 2y +2y=0

a,d 8. ¢ 9. b 10. ac 11. b 12. abd

A few solutions are y =0, y = ¢, and y = €%.

Easy solutions to see are y = 0 and y = 3.

The slope of the tangent line at (x,v) is 4/, so the differential equation is ¢’ = 22 + ¢°.

The rate at which the slope changes is dy//dz = y”, so the differential equation is ¢/ = —y' or
' +y' =0.

(a) The domain is all real numbers.

(b) Since v/ = 2/3z/%, the solution y = 22/% is undefined at z = 0. This function is a solution of

the differential equation on (—oo,0) and also on (0, c0).

(a) Differentiating y? — 2y = 22 — z + ¢ we obtain 2yy’ — 2y’ = 22 — L or (2y — 2)y/ = 2z — 1.
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19.

20.
21.

22.

Chapter 1 Review Exercises

(b) Setting z =0 and y =1 in the solution we have 1 =2 =0-0+c or ¢ = —1. Thus, a solution
of the initial-value problem is y% — 2y = 2% —z — 1.

(c) Solving y?—2y—(z%—z—1) = 0 by the quadratic formula we get y = (2+ \/4 +4(z2 -z —-1))/2
=1+Vzl—z = 1:t\/m. Since z{z — 1) > 0 for z < 0 or z > 1, we see that neither

y=1+/z(z —1)nory=1—,/z(xr — 1) is differentiable at z = 0. Thus, both functions are

solutions of the differential equation, but neither is a solution of the initial-value problem.

y=12+01 y=—z2+02

(b) When y =22 +¢1, v = 2z and (v/)? = 42%. When y = —22 + ¢, 3/ = —27 and (¢/)? = 422

—z? <0
(¢) Pasting together 2, £ > 0, and —z?, £ < 0, we get y = { ; TSV
x4, z>0
The slope of the tangent line is y' [y 4= 6v4+5(-1)°%=71.
Differentiating ¥ = sin(lnz) we obtain i/ = cos(Inz)/z and ¥’ = —(sin(ln z) + cos(Inz)]/x%. Then

2tz +y=1z

2(_sm(ln z) +2cos(1n z)) N 2:cos(ln z) + sin(lnz) = 0.
z
Differentiating y = cos(ln z) In(cos(Inz)) + (In z) sin(ln z) we obtain
1 (_ sin(ln x))
T

cos(ln z)

y' = cos(lnz) + In(cos(In z))(—— sin(ln I)) + hmcos(lnz) + sin(ln z)

T T

__In(cos(Inz)) sin(In z) N (Inz) cos(ln z)
T T

and

y' = -z {ln(cos(lnz))__._cos(inz) 1 (_Sin(ln x))} 1

- 1
+sin(ln I)cos(ln ) T z2

1
— — (Inz)cos(ln z)—l—

_sin(ln x)) N cos(ln z)}
T z2

+ In(cos(In z)) sin(ln z)% +z [(ln x)( p

T
sin?(In z)

cos(In7) + In{cos(In z) sin(ln z)

= % [— In(cos(ln z) cos(lnz) +

— (Inz)sin(lnz) + cos(lnz) — (Inz) cos(ln x)}

20
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Then
sin?(In z)

cos(Inz) + In(cos(Inz)) sin(ln z) — (In ) sin(In z)

a?y" + 2y’ + y = — In(cos(Inz)) cos(In z) +

+cos(lnz) — (Inz) cos(Inz) — In(cos(In z)) sin(In z)
+ (Inz) cos(Inz) + cos(In z) In(cos(Inz)) + (Inz) sin(ln z)

.9 2
sin“(Inz) 4 cos*(Inzx) 1 — sec(Inz).

_ sin®(Inx)
cos(ln z) ~ cos(lnz)

= os(nz) +cos(lnz) =

(This problem is easily done using Mathematica.)
23. From the graph we see that estimates for yog and y; are yo = —3 and y; = 0.
24. The differential equation is
dh cAp
20 fogh.
at A, VY
Using Ao = 7(1/24)? = /576, Ay = 7(2)? = 47, and g = 32, this becomes

dh cr /576 c
L VEah = V&,
di o Ve = o vh

25. From Newton’s second law we obtain

dv 1 V3 dv
& Imo— u Y2 Z=16(1-3u).
mdt ng H mg or o ( \/_pc>

21
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Exercises 2.1
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15. Writing the differential equation in the form dy/dz = y(1 —y)(1 +y) we see that critical points are

located at y = —1, y = 0, and y = 1. The phase portrait is shown below.

=2

(d)

(c)

1
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16.

17.

18.

19.

20.

21.

Exercises 2.1

Writing the differential equation in the form dy/dz = y*(1 — y)(1 + y) we see that critical points
are located at y = —1, y =0, and y = 1. The phase portrait is shown below.

@ (b) v
3 ‘/
- —

(c) ' - (d) '

Solving ¥? — 3y = y(y — 3) = 0 we obtain the critical points 0 and 3.

| —

e
0

.
%

1 -
1 bt

3

From the phase portrait we see that O is asymptotically stable and 3 is unstable.

Solving 4% — ¢° = y2(1 — y) = 0 we obtain the critical points 0 and 1.

o Il o~ | .
P —T 1 <

0 1

From the phase portrait we see that 1 is asymptotically stable and 0 is semi-stable.

Solving {y — 2)* = 0 we obtain the critical point 2.

P | o
» T P

2

From the phase portrait we see that 2 is semi-stable.
Solving 10 + 3y — 4% = (5 — y)(2 4+ y) = 0 we obtain the critical points —2 and 5.

. - 1 .
-

g 1

L
.
-2 5

From the phase portrait we see that 5 is asymptotically stable and —2 is unstable.

Solving 4%(4 — y?) = 2 (2 — y)(2 +y) = 0 we obtain the critical points —2, 0, and 2.

[ B L vy
1 > T -

0 2

il [
— :

|
+-
2
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Exercises 2.1

From the phase portrait we see that 2 is asymptotically stable, O is semi-stable, and —2 is unstable.

22. Solving y(2 — y)(4 — y) = 0 we obtain the critical points 0, 2, and 4.

o I T 1 1
il { el 1 T

0 2 4

. P
< >

From the phase portrait we see that 2 is asymptotically stable and 0 and 4 are unstable.

23. Solving yln(y + 2) = 0 we obtain the critical points —1 and 0.

T « T
-1 0

— o 1 Iy } -
I - >
2

From the phase portrait we see that —1 is asymptotically stable and 0 is unstable.

24. Solving ye¥ — 9y = y(e¥ — 9) = 0 we obtain the critical points 0 and In 9.

T
i
A

From the phase portrait we see that 0 is asymptotically stable and In9 is unstable.

25. (a) Writing the differential equation in the form
vk (mg )
—_——= | —= — v
dt m\ k
we see that a critical point is mg/k.

P 1 —l
S

mg/k

From the phase portrait we see that mg/k is an asymptotically stable critical point. Thus,

lims 00 v = mg/k.

(b) Writing the differential equation in the form

dv _ k mg 9 _k( mg )(/Lng )
dt_'m<k v>_m k v k+v

we see that a critical point is /mg/k.

- - <

V mg/k

From the phase portrait we see that ,/mg/k is an asymptotically stable critical point. Thus,

limi—eo v = /myg/k.

26. (a) From the phase portrait we see that critical points are o and 8. Let X (0) = Xj.

. I _— i o
> T - 1 »

o g

If Xo<a weseethat X —aast—oco. If a < Xg < f, weseethat X — ¢ ast— oo

25



Exercises 2.1

If Xo > 3, we see that X(¢) increases in an unbounded manner, but more specific behavior of

X (t) as t — oo is not known.

(b) When a = 8 the phase portrait is as shown.

Y
Y

N
I
o

If Xo < , then X(¢) - aast — oco. If Xy > o, then X (¢) increases in an unbounded manner.
This could happen in a finite amount of time. That is, the phase portrait does not indicate
that X becomes unbounded as t — co.

(c) When k£ = 1 and @ = (3 the differential equation is dX/dt = (a — X)%. Separating variables
and integrating we have

=dt
(a— X)?
! =t+c
a—-X
a—X = 1
t+c
X=a- L
t+c
For X (0) = /2 we obtain
1
X(t)=a— .
®) t+ 2/
For X (0) = 2a we obtain
1
X(t)=a- .
t)=a t—1/a
X X
20,
o —’—'/cx
77N .
=2/ il

For Xo > «, X(¢) increases without bound up to ¢t = 1/a. For ¢t > 1/, X (t) increases but
X —aast— 0.
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=

[ P,
R R E Ly

B R N A T4
~nwm [l rr ey
s |-y,

-~—
-~
e~
~——

27. Critical points are y = 0 and y = c.

e —— ] ———-
——e TN sl

H

t

' o o o

v
vy
P e
P lvrmmrs
v ———
P

28. Critical points are y =

y = 1.7

29. At each point on the circle of radius ¢ the lineal element has slope ¢2.

30.

(a) When z = 0 or y =4, dy/dz = —2 so the lineal elements have slope ~2. When y =3 or y = 5,

dy/dr = z — 2, so0 the lineal elements at (z,3) or (z,5) have slopes z — 2.

(b) At (0,yo) the solution curve is headed down. As z increases, it will eventually turn around and

but it can never cross y = 4 where a tangent line to a solution curve must have slope

head up,

0. Thus, y cannot approach co as z approaches co.

2y is positive and the portions of solution

2

31. Wheny < 322, ¢/ =z

ARG m—f e ——— i —
— A =
- Mgy = F
B e N\ S
4 N
——— e e N ™ =
\\\\\\ 2, B

N
R et ] B
B Nmm e ———
—— e
————p

-,

- NN e e e

2y is negative and the portions of the solution curves

‘outside” the nullcline parabola are decreasing.

3

curves “inside” the nullcline parabola are increasing. When y > %xQ,

y/:xQ_

32. For dz/dt = 0 every real number is a critical point, and hence all critical points are nonisolated.

33. Recall that for dy/dz

we are assuming that f and f’ are continuous functions of y on

)

Y

(

=/

some interval I. Now suppose that the graph of a nonconstant solution of the differential equation
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34.

35.

Exercises 2.1

crosses the line y = ¢. If the point of intersection is taken as an initial condition we have two distinct
solutions of the initial-value problem. This violates uniqueness, so the graph of any nonconstant
solution must lie entirely on one side of any equilibrium solution. Since f is continuous it can only
change signs around a point where it is 0. But this is a critical point. Thus, f{y) is completely
positive or completely negative in each region R;. If y(z) is oscillatory or has a relative extremum,
then it must have a horizontal tangent line at some point (2o, yo). In this case yo would be a critical
point of the differential equation, but we saw above that the graph of a nonconstant solution cannot

intersect the graph of the equilibrium solution y = yo.

By Problem 33, a solution y(z) of dy/dz = f(y) cannot have relative extrema and hence must be
monotone. Since y'(z) = f(y) > 0, y(z) is monotone increasing, and since y(z) is bounded above
by ¢g, limywoo y(z) = L, where L < co. We want to show that L = ¢o. Since L is a horizontal

asymptote of y(z), limz—e0 7' (z) = 0. Using the fact that f(y) is continuous we have

F(L) = f(Jim y(z)) = lim f(y(z)) = lim y(z) = 0.

T—0O0 =00
But then L is a critical point of f. Since ¢; < L < ¢», and f has no critical points between ¢; and
c2, L= 9.
(a) Assuming the existence of the second derivative, points of inflection of y(z) occur where
y'(z) = 0. From dy/dz = g(y) we have d%y/dz? = ¢'(y) dy/dz. Thus, the y-coordinate of a
point of inflection can be located by solving g'(y) = 0. (Points where dy/dz = 0 correspond to

constant solutions of the differential equation.)

(b) Solving y?—y—6 = (y—3)(y+2) = 0 we see that 3 and —2 are critical s
points. Now d%y/dz® = (2y — 1)dy/dz = (2y — 1)(y — 3)(y + 2), +
so the only possible point of inflection is at y = %, although the T
concavity of solutions can be different on either side of y = —2 and L T\ ,x L,
y = 3. Since y”(z) < Ofory < 2 and 1 <y < 3, and ¢’(z) > 0

for 2 <y < % and y > 3, we see that solution curves are concave 4

down for y < —2 and % <y < 3 and concave up for -2 <y < % and 5L
y > 3. Points of inflection of solutions of autonomous differential
equations will have the same y-coordinates because between critical points they are horizontal

translates of each other.
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Exercises 2.2

In many of the following problems we will encounter an expression of the form In|g(y)| = f(z) + ¢. To
solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = ¢/@+¢ = e“e’®) which
implies g(y) = +ee/\®). Letting ¢; = £e° we obtain g(y) = cref @),

1. From dy = sin 5z dx we obtain y = —% cos bz + c.

2. From dy = (z + 1)?dz we obtain y = 3(z + 1)3 + <.

3. From dy = —e~3% dz we obtain y = %e‘sz +c.

1
4. Hommdy=dxweobtain—y_1:$+cory=l—x+c.

1 4
5. From ady = dz we obtain Inly| = 41n|z| + c or y = c1z%.

1
6. From —dy = —2zdz we obtain Injy| = —z2 4+ cory = e
Y

7. From e~ ¥dy = ¢**dz we obtain 3¢~ % + 2% = ¢.

1
8. From ye¥dy = (e—z + 6‘31) dr we obtain ye¥ —e¥ + 7% + 56_31 =c.
3

1 2 1
9. From (y+2+—) dy = 2% In z dz we obtain %—+2y+1n|y! = %1n[z| - §$3+c.
Y

1 1 2 1
10. From ——=dy = ——5d btai = +ec.
Qy+3)2 Y T e O TS T it
1 1
11. From ——dy = ———5—dz or sinydy = — cos’ zrdx = —%(1 + cos 2z) dz we obtain
cscy sec® x
—cosy = —%m— %sin25c+c or 4cosy =2z +sin2z + c;.
in3
12. From 2ydy = — 51n3 < dz = — tan 3z sec’ 3z dz we obtain y2 = —% sec? 3z + c.
cos® 3z
e¥ —e® . -1_ 1/ -2
13. From dy = 5 dz we obtain — (e¥ + 1) = 5(e+1) " +c

Y
(ey+1)2 (eT +1)
T
1+ 22

14. From

dz we obtain (1 + y2)1/2 = (1 + :52)1/2 +c

7 4y = ( 172

(1+y?)
1
15. From gdS = kdr we obtain S = ce".

16. From

1 X
070 dQ = kdt we obtain In|Q — 70| = kt + c or Q — 70 = c1et.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Exercises 2.2

1 1 1
From mdP = <1—3 + 1—:—]3) dP = dt we obtain In [P|—In |1-P| = t+cso that In = = t+c
t
or TP = c1€'. Solving for P we have P = —I——j_l—zl?.
1
From NdN=(tet+2—1) dt we obtain In |N] = te!*? — &2 — ¢t +¢.
-2 z-—1 5 5
From Z+3dy=z+4dx or (1—m>dy=<l-m)dxweobtain
z+4\°
—5lnjy+3l=z-5njz+ 4+ = e Y.
y njy+3l=z njz+4/+c or <y+3> cie
+1 +2 2 5
From z_ldyzz__?)dx or <1+y—_—1>dy=<1+:§>dxweobtain
—1)2
y+2lnly—1|=2z+5njz -3 +c or Eg——2—=clex'y‘
z —3)3
1 . 1.9 .1 . z?
F‘romxda::—ﬁdyweobtamﬁx =sin" " y+cory=sin —2—+cl .
l-y
1 e* . 1 -1 1
From y—QdyzeT-i—e‘z dr = (ez)2+1dx we obtain —§=tan e"+c or yz—m.

1
From m—ldx = 4dt we obtain tan~!z = 4t + ¢. Using z(n/4) = 1 we find ¢ = —37/4. The

3
solution of the initial-value problem is tan ™'z = 4¢ — —% or z = tan <4t - BZW-)

1 1 1/ 1 1 1/ 1 1
- iy = do or 5 (-~ —)dy= 3 (== ~ =) dw we obtain
om T IQ—IIOIQ(y—l y—{—l)y 2\z -1 zqi)Fweonan

y=1 c(z-1)
y+1  z+1

Inly-~1-Inly+ 1| =Injz—-1 -lnjz+1{+Inc or . Using y(2) = 2 we find

-1 -1
¢ = 1. The solution of the initial-value problem is Y =2 or Yy = I.
y+1 z+1
1 - 1 1 1 ’
From —dy = ! 2$ dz = (—2 - —> dz we obtain Inly} = —= — In|z| = ¢ or zy = cie”/*. Using
] z z? oz z
y(—1) = —1 we find ¢; = e~!. The solution of the initial-value problem is zy = e—1-1/z,
1
From T dy = dt we obtain —1In|l —2y| =t +cor 1 — 2y = cie™%. Using y(0) = 5/2 we find
c1 = —4. The solution of the initial-value problem is 1 — 2y = —4e™* ory = 2¢7% + 1.

Separating variables and integrating we obtain

dz d
— Y =0 and sin‘lx—sin'1y=c.

V1—1x2 J1-92

30



28. From ! dy =

29.

Exercises 2.2

Setting £ = 0 and y = \/§/2 we obtain ¢ = —x /3. Thus, an implicit solution of the initial-value

Yz —sin~!y = 7/3. Solving for y and using a trigonometric identity we get

3v1 = 2
y=sin(sin‘1z+%) =zcos%+\/1—1251n%=%+-\/;7—z,

problem is sin™

5 dT we obtain

1+(29)2 7 14 (22)

2 2

1 1
itan'12y=—§tan‘lz +c or tan‘12y+tan_lz =c.

Using y(1) = 0 we find ¢1 = 7/4. The solution of the initial-value problem is

tan™! 2y+ tan~ !z = g— .
(a) The equilibrium solutions y(z) = 2 and y(z) = —2 satisfy the initial conditions y(0) = 2 and
y(0) = =2, respectively. Setting z = % and y=11iny = 2(1 4 ce®®) /(1 ~ ce*®) we obtain
1+ce 1

, l—ce=2+4+2ce, —-1=3ce, and c¢=——.
3e

1=2
1—ce

The solution of the corresponding initial-value problem is
1— %841—1 3 641——1

y= 21 + _13_641-—1 = 23+e4z-1 '

(b) Separating variables and integrating yields
1 1
Zln}y—.?] - Zln|y+2]+lncl =z

Infy—2|-Infy+2|+Inc=4z

| LDy,

y+2
c-—y—2=e4x.
y+2

Solving for y we get y = 2(c+e%®)/(c—e**). The initial condition y(0) = —2 can be solved for,
yielding ¢ = 0 and y(x) = —2. The initial condition y(0) = 2 does not correspond to a value
of ¢, and it must simply be recognized that y(z) = 2 is a solution of the initial-value problem.
Setting z = % and y = 1in y = 2(c + €**)/(c — €*®) leads to ¢ = —3e. Thus, a solution of the
initial-value problem is

=3¢ +¢e'® 3 —ele!

T T 3e—elt T34 ete-l]
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30.

31.

32.

Exercises 2.2

1 -1 1
From <F—1+7> dy = Edaz we obtain Inly — 1l ~Inlyl =lnjz|+cory =

1
1-cz

Another solution is y = 0.

(a) Ify(0) =1 theny=1.

(b) If y(0) =0 then y = 0.

1f 2)=1/2th = .
() 1y(1/2) = 1/2 then y = T——

(d) Settingz =2 and y = % we obtain

1 1 3
e~ 1-92=4, and c1=->.
1" 1-a) “ ane =7y

1 2

Thus, y = = .
S T P P

Singular solutions of dy/dz = z1/1 —y? arey = —1 and y = 1. A singular solution of
(e* + e %)dy/dz = y? is y = 0.

Differentiating In(z? + 10) + cscy = ¢ we get

T dy
———— — cot —= =0,
2110 Ve,

2z cosy 1 dy
22 +10 sinysinydz

)

or

2z siny dz — (z% + 10) cosy dy = 0.
Writing the differential equation in the form

dy 2z siny

dz ~ (22 +10)cosy

we see that singular solutions occur when sin2y =0, or y = km, where k is an integer.
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33. The singular solution y = 1 satisfies the initial-value problem.

. . . d
34. Separating variables we obtain (—-21? = dz. Then
y f—
z+c—1
———=2z+¢ and y=———.
y—1 T+c
Setting z = 0 and y = 1.01 we obtain ¢ = —100. The solution is
_z—101
~ 2—100"
35. Separating variables we obtain dy = dz. Then
© Separating w—DZ+o00l ™

1 z+c
10tan"' 10(y — 1) = =1+t :
an (y—1)=z+c and vy +10 an 10

Setting x = 0 and y = 1 we obtain ¢ = 0. The solution is

=14 = tan
y=1T 10" 100

d
36. Separating variables we obtain miy——“o—é? = dz. Then
10y — 11
S5ln|——!= :
n ‘ T r+c
Setting £ = 0 and y = 1 we obtain ¢ = 5ln 1 = 0. The solution is
10y —
5ln &_1_1( _

10y — 9
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-0.004-0.002
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-0.004-0.002

1.0004

1.0002

0.002 0.004

0.9998

0.9996

1.0004

1.0002

0.002 0.004

~0.004-0.002
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37.

Exercises 2.2

Separating variables, we have

112 1/2
=(=+L2 - L% \gy = dz.
y—v* y(l-yl+y) (y l1—y 1+y> v

Integrating, we get

1 1

When y > 1, this becomes

Y
y? -1

1 1
lny—aln(y——l)~§1n(y+1)=ln =z+c

Letting = 0 and y = 2 we find ¢ = In(2/v/3). Solving for y we get y1(z) = 2¢%//4e%* — 3, where
z > In(V/3/2).

When 0 < y < 1 we have

1 1
lny—-éln(l—y)—aln(lﬁ—y):ln =z +c

Letting = 0 and y = § we find ¢ = In(1//3). Solving for y we get y2(z) = €*/ve2® + 3, where

—00 < T < Q.

When —1 < y < 0 we have

1 1
In(~y) — §ln(1 -y) - aln(l +y)=In

Letting ¢ = 0 and y = —% we find ¢ = In(1/v/3). Solving for y we get y3(z) = —e*/ve2® +3,

where —o0 < z < 0.

When y < —1 we have

1 1 -
In(-y) = 3l -y) - 3la(-1-9) =l ===t
"

Letting z = 0 and y = —2 we find ¢ = In(2/v/3). Solving for y we get y4(z) = —2%//4e?® — 3,
where z > In(v/3/2).
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Y
4 4 4
2 2 2
T 2 3 4 5* ~-1 =2 24 * T4a = 24 * 12 3 4 5%
-2 -2 -2 -
-4 -4 -4 - f
38. (a) The second derivative of y is y
8

d*y dy/dz 1/(y=3) _ 1

a? T (y-1)7 T @-8)? (-3F §
The solution curve is concave up when d%y/dz® > 0 or y > 3, ﬁ
and concave down when d%y/dz? < 0 or y < 3. From the phase t \\2
portrait we see that the solution curve is decreasing when y < 3
and increasing when y > 3.

(b) Separating variables and integrating we obtain

y
8
(y—3)dy=dz
6/
l?/2—3y=z-+-c //
2 {
2
y—6y+9=2zx+0 \
(y—3)2=21+c1 -1 1 2 3 4 3%
-2
y=3E£V2r+c.

The initial condition dictates whether to use the plus or minus sign.
When y;(0) = 4 we have ¢; = 1 and y1(z) = 3+ 2z + L.
When y2(0) = 2 we have ¢c; = 1 and yo(z) =3 — v2z + 1.
When y3(1) = 2 we have ¢; = —1 and y3(z) =3 — /22 — 1.
( 34++2z+3.
39. (a) Separating variables we have 2ydy = (2z + 1)dz. Integrating gives y? = z° + z + ¢. When

y(=2) = —1wefindc=—-1,s0¢’ =22 +zr—-1land y= —vZ2 + z — 1. The negative square
root is chosen because of the initial condition.

When y4(—1) = 4 we have ¢; = 3 and y4(z) =
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(b)

(c)

40. (a)

(b)

41. (a)
(b)
42. (a)
(b)
(c)

The interval of definition appears to be approximately (—co, —1.65). 2

Solving 2 +z—-1=0 we get T = —-}2— + %\/5, so the exact interval of definition is

(~e0. =3 = 3V5),

From Problem 7 the general solution is 3e™% 4 2¢3% = ¢. When y(0) = 0 we find ¢ = 5, so
3e™% 4 23 = 5. Solving for y we get y = —% In %(5 — 2¢%7),

The interval of definition appears to be approximately (—co, 0.3).

-1

-2

Solving +(5 — 2¢%) = 0 we get = = < In(2), so the exact interval of definition is (—oo, £ ln(é .
3 ) 33 313

While yo(z) = —v/25 — z? is defined at z = —5 and = = 5, y5(z) is not defined at these values,

and so the interval of definition is the open interval (~5,5).

At any point on the z-axis the derivative of y(z) is undefined, so no solution curve can cross

the z-axis. Since —z/y is not defined when y = 0, the initial-value problem has no solution.

Separating variables and integrating we obtain 2 — y? = ¢. For ¢ # 0 the graph is a square
hyperbola centered at the origin. All four initial conditions imply ¢ = 0 and y = +z. Since the
differential equation is not defined for y = 0, solutions are y = +z, r < 0 and y = £z, z > 0.
The solution for y(a) =aisy =z, £ > 0; for y(a) = —aisy = —z; for y(—a) = aisy = -z,

z < 0; and for y(—a) = —aisy =1z, z < 0.
Since z/y is not defined when y = 0, the initial-value problem has no solution.

Setting z = land y =2 1in z2 —y% = c we get ¢ = =3, s0 > = 2> + 3 and y(z) = V22 + 3,
where the positive square root is chosen because of the initial condition. The domain is all real

numbers since 2 + 3 > 0 for all .
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44.

45.

46.

Exercises 2.2

Separating variables we have dy/(y/1+ 2 siny) = dz
which is not readily integrated (even by a CAS). We
note that dy/dz > 0 for all values of z and y and that
dy/dz = 0 when y = 0 and y = 7, which are equilibrium

solutions.

6 -4 2 T 2 4 & 8°*

Separating variables we have dy/( /¥ +y) = dz/(v/z + z). To integrate [ dt/(v/t+1t) we substitute
u? =t and get

2 2
/ﬁdu:/1+udu=21n[1+u|+c=21n(1+\/5)+c,
Integrating the separated differential equation we have

2In(1+ /) =21 ++vz)+c or In(l1+.F)=In(1+vz)+ha.
Solving for y we get y = [c1(1 + vz ) — 1]°.

We are looking for a function y(z) such that

2
dy
2
— ] =1L
o+ (&)
Using the positive square root gives
dy dy

=4/1-9y2 = —F— =dz = sin~! =z +c.
dz y /1 — ,y2 y
Thus a solution is y = sin(z + ¢). If we use the negative square root we obtain
y = sin(c — z) = —sin(z — ¢) = —sin(z + ¢1)-

Note also that y = 1 and y = ~1 are solutions.

(a)

(b) For |z} > 1 and |y| > 1 the differential equation is dy/dz = 1/y? —1/v/22 — 1. Separating
variables and integrating, we obtain
d

%y = ad and cosh™ly = cosh™!z +c.
Jyi-1 Vel
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Setting z = 2 and y = 2 we find ¢ = cosh™!2 — cosh™ 2 = 0 and cosh™" y =cosh™lz. An
explicit solution is y = z.

47. (a) Separating variables and integrating, we have

(3y2 + 1)dy = —(8z+5)dz and ¥ +y=—-42® -5z +c 4

Using a CAS we show various contours of f(z,7) = y3 +y+4z2+ 2

5z. The plots shown on [-5, 5] x [=5, 5] correspond to c-values 0

of 0, £5, +20, £40, £80, and £125. . ,
Z—\\

(b) The value of ¢ corresponding to y(0) = —1is f(0,—-1) = —=2;
to y(0) = 2 is f(0,2) = 10; to y(—1) = 4 is f(-1,4) = 67,
and to y(—1) = -3 is —31.

48. (a) Separating variables and integrating, we have v
(—2y +y%)dy = (z — 2%)dz s
and 1, 1, 1 ’
2 3 _ 2 3
-y +§y—§x—§z +c 0
Using a CAS we show some contours of f(z,y) = -2
213 — 6y® + 22° — 322. The plots shown on [—7, 7] x 4

[—5, 5] correspond to c-values of —450, —300, —200,
—-120, —60, —20, —10, —8.1, =5, —0.8, 20, 60, and
120.
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(b) The value of ¢ corresponding to (0) = % is f(0, %) = y
__24_7, The portion of the graph between the dots cor- 4 \
responds to the solution curve satisfying the intial con- 2 >
dition. To determine the interval of definition we find o < x
dy/dz for 2y° — 6y® + 22° — 322 = —% . Using implicit -
differentiation we get y' = (z — z2)/(y?* — 2y), which - : \
is infinite when y = 0 and y = 2. Letting y = 0 in B 0 z 7 ¢

2% — 692 4 223 — 322 = —% and using a CAS to solve
for z we get x = —1.13232. Similarly, letting y = 2, we find £ = 1.71299. The largest interval
of definition is approximately {—1.13232,1.71299).
(c) The value of ¢ corresponding to y(0) = —2is f(0,—2) = y

—40. The portion of the graph to the right of the dot a
corresponds to the solution curve satisfying the initial »

~ condition. To determine the interval of definition we find ; | i
dy/dz for 2y3 — 6y? + 223 — 322 = —40. Using implicit -4
differentiation we get ' = (z — z2)/(y?® — 2y), which

is infinite when y = 0 and y = 2. Letting y = 0 in -4z o6 2z 4 €& & 10
2y3 — 6y? + 22° — 322 = —40 and using a CAS to solve
for  we get z = —2.29551. The largest interval of definition is approximately (—2.29551, 00).

Exercises 2.3

d
. For ¢/ — 5y = 0 an integrating factor is e=J5dz = ¢=5% 5o that . [e~51y] =0 and y = ce® for

—00 < I < 0.

d
. For ¢/ + 2y = 0 an integrating factor is ef2dz — 2% 5o that e [eQIy} = 0and y = ce=?* for

—00 < Z < 0o. The transient term is ce™2%.

3 ) 4z

d
. For ¢ +y = €’* an integrating factor is el 9% = ¢7 5o that o [e*y] = e** and y = %e“ + ce™ 7 for
T

~00 < T < 0o. The transient term is ce™=.

d
. Fory' +4y = g— an integrating factor is ef4dz — ¢4 o5 that = [e‘”y] = %642 and y = % + e
z

for —oo < z < co. The transient term is ce™4%.

2 z3

3
2 =z°e" andy = %+ce'

2 3 d 3
. For y/+3z%y = 22 an integrating factor is ef 32" dz — ¢2” o that o [ez y
z

. ) .3
for —oo < £ < co0. The transient term is ce™® .
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10.

11.

12.

13.

14.

15.

16.

Exercises 2.3

: d 2 2
. For i + 2zy = % an integrating factor is ef 2wde _ _eIz so that — [e®" y| = z°¢® and y =
& dx

1,2

2
5T — 5 + ce = for —oo < z < co. The transient term is ce % .

1 1 d 1 1

For y' + —y = —; an integrating factor is eJ(U/=)dz = 150 that — [zy] = - andy = —lnz +
x z z x x

for 0 < z < co.

. d -
For 4/ — 2y = 22 + 5 an integrating factor is e=J 247 = =25 g5 that . [e—hy] g2 4 5o
z
andyz—%xQ—%x-—%—kceQI for —co < T < 0.

1 1 d [1 :
For Y — =y = zsinz an integrating factor is e~ JW=dz 2 g5 that iz [— y] = sinz and
I z T Lz
y=cr—zcosz for 0 <z < co.

2 3 d
For y' + SYy= e integrating factor is e (/Pdz — 12 55 that o [:EQy] =3z and y = % +cx™?

for 0 < z < 00.

>

d
For ¢/ + Zy= z% — 1 an integrating factor is eJ (/2= — 74 5o that Ia [r4y] = 28 — 2% and

y:%r3—%r+cr‘4for0<r<oo.

d
For y’————r— y = z an integrating factor is e~ Jle/(1+o))dz (z+1)e™* so that — [(l‘ + l)e—Iy] =

(1+z) dzx
2z+4+3 *
zz+ e Pand y =~z — s + -2 for—1<z< o0
z+1 z+1
’ 2 ez f[1+(2/a:)] 2,z d 2.z 2z
For y' + (1 + —) y = — an integrating factor is e = z%e® so that o [r e y] = e“" and
T T
1 - F
Y= 69 +—5 e for 0 < z < co. The transient term is ce 5
2 72 z
/ 1 R . : o [l+(1/2)dz z d. =
Fory + {1+ — )y = —e™Tsin2z an integrating factor is e = ze® so that — |[ze®y| =
y T z dz
. 1 . ce™® . . .
sin2r and y = —oot  cos 2z + for 0 < z < c0. The entire solution is transient.
d
For 22 - 2z = 4° an integrating factor is e~ J@Wdy - y~* so that — {y“ir] = 4y and
dy y dy

=258 +cy? for 0 <y < co.

dr 2 d

For o + —x = ¢ an integrating factor is eJ WAy y? so that T [yQI] = ery and z =
Y Y
2 2 2+c

eV ——e¥ + — + %— for 0 < y < co. The transient term is —; .
) Y Y Y
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Exercises 2.3

2

d
For ¢/ +(tan z)y = sec z an integrating factor is eJ 1202z - sec 7 50 that . [(secz)y] = sec” z and
z

y=sinz +ccosz for —n/2 <z < 7/2.

: . : d . .
2 £ csc z an integrating factor is eJ etzdz - gin 7 50 that — [(sinz)y] = sec’z

For ¢/ +(cot z)y = sec
dz

and y =secz +ccscz for 0 < z < m/2.

z+2  2zeF d
For ¢/ + ol II+ [ en integrating factor is eJlz+2)/(z+Dldz (z+1)e*, so g z+1)ey] =
2
2z and y = . e T+ e % for =1 < £ < co. The entire solution is transient.
z+1 z+1
5 d
For ¢/ + s y = T+ o) an integrating factor is eJl4/(z+2))dz (z+2)* so that . [(x -+ 2)4y] =

) .
5(z+2)%and y = g(x +2)7 4 ¢(z+2)"* for =2 <z < co. The entire solution is transient.

dr
e
1+sind and r(sec +tanf) = § — cos§ + ¢ for —m/2 < 6 < /2 .

d
For — +7sec 6 = cos § an integrating factor is eJ 520040 — 5661 tan 6 so that 7 [r(sect + tan 6)] =

apP d
For I + (2t — 1)P = 4t — 2 an integrating factor is eJt-Ddt etQ‘t so that 7 [Peﬁ_t} =
t2

(4t — 2)et2_t and P =2+ ce!* for —co < t < 0o. The transient term is ce'~%".
1 e~
Fory’+<3+;>y=
-3z

d
an integrating factor is e/B+(/z)ldz — 137 56 that 72 [xeBIy] =1 and

ce
y=e3 4 for 0 < z < 0o. The transient term is ce™3%/z.
2 z

For ¢ + =
I R | T+ dz

and (z—ly=z(z+1)+c(z+1)for -1 <z <1

1 -1 d [z—1
an integrating factor is eJ2/(=*-1)ldz a:_l_ so that — [x—-i-ly] =1

1 1 d 1 c
For ¢/ + V== e” an integrating factor is e/ (1/7)9% = g 5o that . [zy] =€ and y = ;ez +-

1 2 —
for0<:c<oo.Ify(l)=2thenc=2—eandy=;ez+ xe‘.
d 1 1 d |1
For &= 2y an integrating factor is e~ JO/dy = = oo that — [—x} =2and z=2y° 4+ ¢y
ay Y y ay |y
49
for —o0 <y < co. If y(1) = 5 then ¢ = —49/5 and z = 2y% — —y.

5
di R E d E
Sty o 2o ~ .« [(R/LYdt _ Rt/L @ o R/l _ £ Rt/
For gt + 7 7 = 7 an integrating factor is ef Jat = eRt/L g4 that 7 [: ] = IE e and
1= = +ce Bl for ~c0 <t < 00. If i(0) =4p thenc=1y— E/Rand i= = + (io - ﬁ) e~ Rt/L.

R
ar . . o J(=kydt _ —kt d 1 —kt —kt
For i kT = —Tpnk an integrating factor is e = e~ ™ so that pr [Te™] = —Tmke™" and

T = Trm + ce® for —oo < t < o0, If T(0) = Ty then ¢ = Tp — Trp and T = Ty, + (To — Tim)e.
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30.

31.

32.

33.

Exercises 2.3

For y' + ! _ oz
y z-f—ly_z-f—l
andyz—z—lnz— + c
z+1 z+1 z+1
T | T + 21
nr-— .
+1 z+1 z+1

d
an integrating factor is eJW/e+ldz = 1 4 1 0 that d—[(z +1)y] =1Inz
T

for 0 < z < oo, If y(l) = 10 then ¢ = 21 and y =

d
For ' + (tanz)y = cos® z an integrating factor is eJ ATz — o0 750 that o [(sec z) y] = cosz and
T
y =sinzcosz + ccosz for —r/2 < z < w/2. If y(0) = —1 then ¢ = ~1 and y = sinzcosz — cos .
For 3/ + 2y = f(x) an integrating factor is e?* so that %
1,2 :
yezz:{§e2+c1, 0<z<3;
co, > 3.
If y(0) = 0 then ¢; = —1/2 and for continuity we must have Tt
co = %66 — % so that ‘
%(1—6‘22), 0<z<3;
y =
%(66 —1e™ 2, >3
For ¢ +y = f(z) an integrating factor is ® so that

. ef+c, 0z
yer =
—e¥ +cy, x> 1.

If y(0) = 1 then ¢; = 0 and for continuity we must have ca = 2e
so that

1, 0<z <,
Y=V 2el s -1, z>1.

For ¥/ + 2zy = f(z) an integrating factor is ¢® so that ,7A

1,x? .

yexzz{iex +c, 0L

C2, > 1. T
If y(0) = 2 then ¢; = 3/2 and for continuity we must have ¢y =
%e + % so that + ' %T
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T
0<z <1,
, 2z 1422’ =T=4 17
34. For y+1—-—2y= —r
Tz —, z>1
1+z% B S
X
an integrating factor is 1 + z2 so that : ‘lJ:

Iz 4+, 0<z<1

(1”2)@,:{

If y(0) = 0 then ¢; = 0 and for continuity we must have ¢z = 1 so that

—%332 +c9, T>1.

1 1
. 0<z<1;
5T 21ty oS
. S L z>1
2(1+2%2) 2’ '
35. We need
2z, 0<z<1
/P(z)da:= .
—2Inz, z>1

An integrating factor is
2
Pz _ [ €5 O0sz=<1
1/z?, z>1

and

d [[ye*®, 0<z<1 4re®® 0<z<1
aHy/z2, z>1 }:{4/1, z>1
Integrating we get
ye¥* 0<z<1 _ 2ze? —e? +¢, 0<z<1
{y/:z?, z>1 _{41113:—{—62, z>1 '
Using y(0) = 3 we find ¢; = 4. For continuity we must have cp = 2 — 1+ 4e72 = 1+ 4e~2. Then
21 — 1+ de~ 2=, 0<z<l1
- {49:21nz+ (1+4e 2)z?, z>1 '

36. An integrating factor for 3y — 2zy = 1 is e==". Thus
d . _2 g2
ol tyl=e
—? T _42
e y=/oe dt = erf(z) + ¢

and

2 2
= ¢e% erf(z) + ce” .
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38.
39.

40.

41.

42.

43.

Exercises 2.3

From y(1) = 1 we get 1 = eerf(1) + ce, so that ¢ = e~! — erf(1). Thus
y= ererf(:z) + (et - erf(l))eI2 =1y 6I2(erf(:r) —erf(1)).

For i + e®y = 1 an integrating factor is e¢ . Thus
4 [yl =€ and e y= /I e'dt + c.
dr 0

From y(0) =1 wegetc=e, soy=e"¢ [F e dt + el ="

When 3 + €%y = 0 we can separate variables and integrate:

d
Yo _¢"dz and In lyl = —e® +c.
Y

Thus y = c1e~¢ . From y(0)=1wegetc =e soy=e "¢,
When 3’ + ey = ¥ we can see by inspection that y = 1 is a solution.
We want 4 to be a critical point, so use ¥’ = 4 — v.

(a) All solutions of the form y = z°%® — z%® + cz* satisfy the initial condition. In this case,
since 4/z is discontinuous at z = 0, the hypotheses of Theorem 1.1 are not satisfied and the

initial-value problem does not have a unique solution.
(b) The differential equation has no solution satisfying y(0) = yo, yo # 0.

(¢) In this case, since zg # 0, Theorem 1.1 applies and the initial-value problem has a unique

solution given by y = z%% — z1e” + cz* where ¢ = yo/z§ — z0e® + €%0.

On the interval (-3, 3) the integrating factor is
efxdx/(x2—9) _ e—fxdx/(9—1:2) _ e%ln(g—aﬂ) - /9 g2
and so p
21/o—22yl =0 and y= —me.
dz[ ’ Zy} ey
We want the general solution to be y = 3z — 5 + ce™®. (Rather than e™?, any function that

approaches 0 as z — oo could be used.) Differentiating we get
Y =3-ce*=3-(y~3z+5) =-y+3z~-2,
so the differential equation 3’ + v = 3z — 2 has solutions asymptotic to the line y = 3z — 5.

The left-hand derivative of the function at z = 1 is 1/e and the right-hand derivative at z = 1 is
1 —1/e. Thus, y is not differentiable at z = 1.

a) Differentiating y. = ¢/z3 we get
gy g



44.

45.
46.

Exercises 2.3

so a differential equation with general solution y. = ¢/z® is v/ + 3y = 0. Now
Ty + 3yp = 2(32%) + 3(z%) = 62°
so a differential equation with general solution y = ¢/x3 + 2% is 7/ + 3y = 623, This will be a
general solution on (0, c0).
(b) Since y(1) = 13 ~ 1/13 = 0, an initial condition is y(1) = 0. Since ]
y(1) = 1% + 2/1% = 3, an initial condition is y(1) = 3. In each
case the interval of definition is (0, c0). The initial-value problem

1y + 3y = 62, y(0) = 0 has solution y = z° for —00 < 7 < co.

-3 4

(c) The first two initial-value problems in part (b) are not unique. For example, setting y(2) =
2% — 1/2% = 63/8, we see that y(2) = 63/8 is also an initial condition leading to the solution
y=1z%—1/z%

Since ef P(@)dz+e — ece [ P(z)dz clef P(2)dz e would have
clefp(x)dzy =9+ /clefp(z)dzf(x) dz and efp(z)dxy =3+ / efp(x)dmf(x) dz,

which is the same as (6) in the text.
We see by inspection that y = 0 is a solution.
The first equation can be solved by separation of variables. We obtain z = cie~ Mt From z(0) = zo
we obtain ¢; = zg and so z = zge~**. The second equation then becomes
d

d
d_?i = :c())\le"\lt — doy or 71;5/ + Aoy = :co>\1€_’\

lt

which is linear. An integrating factor is e*2*. Thus

d _ _
el [e)\gty] - xo)\le Alte)\gt — xo)\le()\g At

dt
Mty = TOAL (a-nty ¢
Ag =X\
ToAL g ~ ot
Y e o 2

From y(0) = yo we obtain ¢y = (yoA2 — yor1 — zoA1)/(A2 — A1). The solution is

y= ToAL gt + YAz = YoA1L — ToAL gt
A2 — N A2 — M
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47. (a) Letting y = y1 + y2 we have y(zo) = y1(20) + y2(z0) = @ + 0 = « and

48. (a)

(b)

49. (a)

Yy + P(@)y = (y1 +y2) + P(2)(y1 +v2)
= (41 + P(z)y1) + (2 + P(z)y2) = 0+ f(z) = f(z).

Thus y = y1 + y2 is a solution of the initial-value problem y' + P(z)y = f(z), v(z0) = c.
By Theorem 1.1 the initial-value problem

y' + P(z)y = fi(z) + folz),  ylmo) =a+0 (1)
has a unique solution. Consider y = y1 + y2. Since y(zo) = y1(z0) + y2(z0) = a + I, y satisfles
the initial condition of (1). Also

Y + P(z)y = (y1 +v2)" + P(z)(y1 + v2)

= (y1 + P(@)y1) + (v + P(2)ye) = f1(=) + fal2),
so y satisfies the differential equation in (1). Thus y = y1 +y2 is the unique solution of (1) and
y(zo) = o+ 0.

Since c1y1 is a solution of 3y + P{z)y = c1f1(z), y(zo) = ci1a, and coys is a solution of
Y + P(2)y = cafo(x), y(zo) = c2, we see by the above argument that y(zo) = cia + c2f.
An integrating factor for ¢ ~ 22y = —1is e=*". Thus
d 2 2
e
Nzl

5 T
ey = —/0 et dt = -5 erf(z) + c.

From y(0) = /7/2, and noting that erf(0) = 0, we get ¢ = \/7/2. Thus

y=e" (—? erf(z) + @) = @ (1 —

4 Z

Using Mathematica we find y(2) = 0.226339.

An integrating factor for




Exercises 2.3

is z2. Thus J )
9 sinx
—[z*y] = 10—
2 .
T gint
12y=10/0 s%l—-dt-kc

y = 10z7%Si(z) + cz 2.
From y(1) = 0 we get ¢ = —10Si(1). Thus
y = 1027 2Si(z) — 10z~ 2Si(1) = 10z~ %(Si(z) — Si(1)).

-5

(c) From the graph in part (b) we see that the absolute maximum occurs around z = 1.7. Using

the root-finding capability of a CAS and solving y'(z) = 0 for z we see that the absolute
maximum is (1.688, 1.742).

50. (a) Separating variables and integrating, we have
d z
?y =sinz?dr and lnly|l= /0 sint?dt + c.

Now, letting ¢ = 1/7/2u we have
x Ve/tz
/0 sint? dt = \/g/o sin(gu2>du,

y= clefo“” sint?dt __ cle\/7r/2 fo\/m’”sin(mz/m du _ cle‘/"/2 S(\/2/rz)
Using S(0) = 0 and y(0) = 5 we see that ¢; = 5 and y = 5eV ™/25(V2/7z),

SO
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(c) From the graph we see that as r — oo, y(z) oscillates with decreasing amplitude approaching
9.35672. Since limy oo 5(z) = §, limz 0o y(x) = 5¢V/8 x 9.357, and since lim,_, o0 S(z) =
~1, limy oo y(x) = 5e~V/® x 2,672,

(d) From the graph in part (b) we see that the absolute maximum occurs around z = 1.7 and the
absolute minimum occurs around z = —1.8. Using the root-finding capability of a CAS and
solving v/ (z) = 0 for z, we see that the absolute maximum is (1.772,12.235) and the absolute
minimum is (—1.772,2.044).

Exercises 2.4

10.

11.

. Let M =2z—1and N = 3y+7sothat My = 0= Nz. From f; = 22— 1 we obtain f = 2 —z+h(y),

K (y) =3y + 7, and h(y) = %yg + 7y. The solution is z% — ¢ + %yQ + Ty =c.

. Let M =2z +y and N = —z — 6y. Then M, =1 and N; = —1, so the equation is not exact.

Let M = 5z + 4y and N = 4z — 83 so that M, = 4 = N,. From f, = 5z + 4y we obtain
f= —gx? +dzy + h(y), M (y) = =8>, and h(y) = —2y*. The solution is %xg +dzy -2t =c

Let M = siny — ysinz and N = cosz + zcosy — y so that M, = cosy —sinz = N;. From
fz =siny —ysinz we obtain f = zsiny+ycosz + h(y), A'(y) = —y, and h(y) = %y2. The solution
is rsiny +ycosz — %yg =c.

. Let M = 2y%z — 3 and N = 2yz? + 4 so that My = 4y = N;. From fr = 2y%z — 3 we obtain

f=2% -3z +h(y), ¥(y) = 4, and h(y) = 4y. The solution is %y — 37 + 4y = c.

Let M = 42° — 3ysin3z — y/z? and N = 2y — 1/z + cos 3z so that M, = —~3sin3x — 1/z% and
Nz = 1/2% — 3sin 3z. The equation is not exact.

Let M = 22 — 4% and N = 2% — 22y so that My = —2y and N, = 2z — 2y. The equation is not
exact.

Let M =1+Inz+y/r and N = —1+Inz so that M, = 1/z = N;. From f, = ~1+Inz we obtain
f=-y+ylnz+h(y), M(z) =1+Inz, and A(y) = zlnz. The solution is —y +ylnz+zlnz =c.

. Let M = 3% —y?sinz —z and N = 3zy® + 2ycosz so that M, = 3y? — 2ysinz = N,. From

fe = y° —1y?sinz — z we obtain f = zy® + y®cosz — %IQ + h(y), W (y) = 0, and h(y) = 0. The
solution is zy* + 32 cosz — %x2 =c.

Let M = z° + 43 and N = 3zy? so that M, = 3y> = N,. From f, = 2% + 43 we obtain
f= %z‘l +zy® + h(y), K (y) = 0, and A(y) = 0. The solution is %24 +xy =c

Let M =ylny —e ™ and N = 1/y+ zlny so that My, = 1+ Ilny + ye™*¥ and Ny = Iny. The

equation is not exact.
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18.

19.

20.
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Let M = 32:2y +e¥and N =23+ ze¥ — 2y so that M, = 322 + e¥ = N,. From fe= 3x2y + e¥ we

obtain f = z3y + ze¥ + h(y), ' (y) = —2y, and h(y) = —y?. The solution is 23y + ze¥ — y% = c.

Let M =y — 622 — 2ze® and N = z so that My=1=N;. From f, =y - 622 — 2ze® we obtain

f=zy—22%~2ze® +2e" +h(y), K'(y) = 0, and h(y) = 0. The solution is zy — 2% — 27 +2¢* = c.

Let M =1-3/z+yand N =1-3/y+zsothat My =1=N,. From f =1-3/z+y
3

we obtain f = z — 3In|z| + zy + h(y), '(y) = 1 — —, and h(y) = y — 3Inly|. The solution is
Y

T+y+zy—3njzyl =c

Let M = z?%¢% — 1/ (1 +9m2) and N = 23y? so that My = 3z%y? = N,. From f, = 2% -

1/ (1 + 9m2) we obtain f = %mByB - %arctan(B_m) + h(y), ' (y) = 0, and h(y) = 0. The solution is

z3y® — arctan(3z) = c.

Let M = —2y and N = 5y—2z so that M = —2 = N,. From f; = —2y we obtain f = —2zy+h(y),

R (y) = 5y, and h(y) = %yQ. The solution is —2zy + %yQ =c.

Let M = tanz — sinzsiny and N = coszcosy so that My = —sinzcosy = N;. From fr =
tanz —sinz siny we obtain f = In|secz|+coszsiny+ h(y), K'(y) = 0, and h(y) = 0. The solution

is In|secz| + coszsiny = c.
2
Let M = 2ysinzcosz — y + 2@/26’:3’2 and N = —z + sin® z + 4zye®¥ so that
2 2
My =2sinzcosz — 1+ 4zy3e™ + 4ye™ = N,.

From f; = 2ysinzcosz —y + 2erIy2 we obtain f = ysin®z — zy + 2e7V" + h(y), K (y) = 0, and
h(y) = 0. The solution is ysin®z — zy + 2e7” = c.

Let M = 4t3y—15t—y and N = t443y% —t so that M, = 4t3—1 = N;. From f; = 4t3y— 15t —y we
obtain f = tiy — 5t> —ty +h(y), ' (y) = 3¢?, and h(y) = v®. The solution is tiy — 5t> —ty+4° = c.

2
Let M = 1/t+1/~y/ (2 + 4?) and N = ye¥ +1/ (t2 + %) so that My = (2 — 1) / (£ +4?) " =
1 t
N;. From fy = 1/t +1/t* —y/ <t2 + y2) we obtain f =1In || — T arctan <§> +h(y), A (y) = ye?,

and h(y) = ye¥ — e¥. The solution is

1 t
In |t]| - i arctan <—> +ye¥ —e¥=c.
Y

Let M = 224 2zy+1y? and N = 2zy+ 2% — 1 so that My = 2(z+y) = N,. From f; = 2%+ 2zy +¢?
we obtain f = 12?4+ 2%y + zy? + h(y), M'(y) = —1, and A(y) = ~y. The general solution is
%133 + 2%y + 292 —y = ¢. If y(1) = 1 then ¢ = 4/3 and the solution of the initial-value problem is
%x3+x2y+xy2~—y=%.
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Let M = e®+y and N = 2+z+yeY so that My = 1= N,;. From f; = e*+y we obtain f = e®+zy+
h(y), K'(y) = 2+ ye¥, and h(y) = 2y + ye¥ — y. The general solution is % + zy + 2y + ye¥ —e¥ = ¢.
If y(0) = 1 then ¢ = 3 and the solution of the initial-value problem is e + zy + 2y + ye¥ — ¥ = 3.
Let M = 4y + 2t —5and N = 6y +4t — 1 so that My = 4 = N;. From f; = 4y + 2t — 5 we
obtain f = 4ty + t* — 5t + h(y), A'(y) = 6y — 1, and h(y) = 3y? —y. The general solution is
4ty +t2 -5t + 3y? —y = ¢. I y(—1) = 2 then ¢ = 8 and the solution of the initial-value problem is
dty +t2 -5t + 3y’ -y =38

Let M =t/2y* and N = (Sy2 - t2) /y® so that M, = —2t/y®> = N;. From f; = t/2y* we obtain

£ 3 3 . t2 3
f= e + h(y), K (y) = et and h(y) = % The general solution is R =c Ify(L) =1
2
then ¢ = —5/4 and the solution of the initial-value problem is 3 = 5 .

4yt 22 4
Let M =y%cosz — 322y —2z and N =2ysinz — 2% + Iny so that My =2ycosz - 3z%2 = N;. From
fz =vy%cosz —3x2y—2z'we obtain f = y?sinz —z3y—22+h(y), K'(y) = Iny, and h(y) = ylny~y.
The general solution is y?sinz — 23y — 22 + ylny —y = ¢. If y(0) = e then ¢ = 0 and the solution
of the initial-value problem is y%sinz — 23y — 22 + ylny —y = 0.

Let M = y? +ysinz and N = 2zy —cosz — 1/ (1 +y2) so that My = 2y +sinz = N;. From f; =

-1
y% + ysinz we obtain f = zy? —ycosz + A(y), K'(y) = T30 and h(y) = —tan~!y. The general

solution is zy? — ycosz —tan~ly = ¢. If y(0) = 1 then ¢ = —1 — 7/4 and the solution of the
7r

initial-value problem is zy? — ycosz — tan"ty = —1 — 1

Equating M, = 3y? + 4kzy® and N, = 332 + 40zy® we obtain k = 10.

Equating M, = 18zy? — siny and N, = 4kzy? — siny we obtain &k = 9/2.

Let M = —z%y?sinz + 2zy? cosz and N = 2%y cos z so that M, = —2z2ysinz + 4zycosz = N.
From f, = 2x%y cosz we obtain f = z%y%cosz + h(y), h'(y) = 0, and h(y) = 0. The solution of the

differential equation is z2y% cosz = c.

Let M = (12 + 2zy — y2) / (:52 + 2zy + y2) and N = (y2 + 22y — :c2) / (y2 + 22y + 12) so that
2y?

z+Yy

h(y), K'(y) = —1, and h(y) = —y. The solution of the differential equation is 2 + 32 = c(z + v).

My = —4zy/(z +y)} = N;. From f; = (12 +2zy + 4 — 2y2) /(z +y)? we obtain f =z +

We note that (M, — Nz)/N = 1/z, so an integrating factor is efd5/7 = ¢ Let M = 2292 + 322
and N = 222y so that My = 4zy = N;. From f; = 2zy? + 322 we obtain f = z%y% + 23 + A(y),
R'(y) = 0, and h(y) = 0. The solution of the differential equation is z%y% + 23 = c.

We note that (My — N;)/N = 1, so an integrating factor is eJ I =7 Let M = zye® +y%e% + ye®
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33.

34.

35.

36.

37.

38.

Exercises 2.4

and N = ze + 2ye® so that My = ze® + 2ye® + * = N;. From fy, = ze® + 2ye” we obtain
f = zye® + y?e® + h(z), W(y) = 0, and h(y) = 0. The solution of the differential equation is
Tye® + y?e® =c.

We note that (N; — My)/M = 2/y, so an integrating factor is el 2u/y — y?. Let M = 6zy® and
N = 4° + 9z2%y? so that M, = 18zy% = N,. From f, = 6zy> we obtain f = 3z%° + h(y),
R'(y) = 44, and Rh(y) = y. The solution of the differential equation is 3?2 i = :
We note that (M, — N;)/N = —cotz, so an integrating factor is emJootzdr = qop Let M =
coszescz = cotz and N = (14 2/y)sinzcscz =14 2/y, so that My = 0= N,. From f; = cotz
we obtain f = In(sinz)+h(y), h'(y) = 1+ 2/y, and h(y) = y+Iny? The solution of the differential

equation is In(sinz) +y +Iny? = c.

We note that (My — Nz)/N = 3, so an integrating factor is ef3dz = (32 Let

M = (10 — 6y + e~ 3%)&% = 10 — 6y + 1
and
N = -2¢%,
so that My = —6e3% + N,. From f, = 10 — 6ye®® 4+ 1 we obtain f = %e“ ~ 2ye%% + 2 + h(y),
h'(y) =0, and h(y) = 0. The solution of the differential equation is %Oeh — e rr=c

We note that (N; — My)/M = —3/y, so an integrating factor is e=3 /v = 1/4°. Let

M=(+z*)/y*=1/y+=z
and
_ 2 R 3 _ 2 .
N = (5" ~ zy + y”siny)/y" = 5/y — z/y” + siny,

so that My = —1/y? = N,. From f, = 1/y+z we obtain f = z/y+ 322 +h(y), K'(y) = 5/y +siny,
and h(y) = 51n |y| —cosy. The solution of the differential equation is z /y+ %—x2+5 In|y|—cosy = c.

We note that (M, — N;)/N ~ 2z/(4+ z2), so an integrating factor is g2 wda/(4+a?) o 1/(4 + z?).
Let M = z/(4+2%) and N = (2%y + 4y)/(4 +22) = y, so that My, = 0 = N,. From f, = z(4 + z?)
we obtain f = 31n(4 + z2) + h(y), R'(y) = y, and h(y) = 3y% The solution of the differential
equation is §In(4 + z%) + 3y = c.

We note that (My — N;)/N = —3/(1+z), so an integrating factor is g3 S dz/(142) - 1/(1+z)% Let
M = (z%+y?-5)/(1+z)% and N = —(y+2zy)/(1+2)% = —y/(1+2)?, so that M, = 2y/(1+z)% = N,.
From fy = —y/(1 + z)® we obtain f = —3y?/(1 + 2)? + h(z), K (z) = (22 - 5)/(1 + z)*, and
h(z) =2/(1+ z)? +2/(1 4+ z) + In|1 + z|. The solution of the differential equation is
Y 2
+ +
21+2)2 (1+z)2 (1+2)

+Injl+z|=c

51



39.

40.

41.

42,

43.

44.

Exercises 2.4

(a) Implicitly differentiating 22 + 222y 4+ y? = ¢ and solving for dy/dz we obtain

dy dy dy 322 + 4y
322 + 22 =2 1+ 4 y—==0 and -—= =" 2
T dx+ Y+ ydx an dz 222 + 2y

Separating variables we get (4zy + 3z°)dzx + (2y + 22%)dy = 0.
(b) Setting z = 0 and y = —2 in z3 + 2z%y + y> = ¢ we find ¢ = 4, and setting z = y = 1 we also
find ¢ = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving z® + 2z%y + ¢ = 4 for y we get 4

yi(z) = -2 — /4 - 23+ 1t
() = =2 + /4~ 23 + 24,

and

2

To see that the equations are not equivalent consider dz = (z/y)dy = 0. An integrating factor is
w(z,y) = y resulting in ydz + z dy = 0. A solution of the latter equation is y = 0, but this is not a

solution of the original equation.

The explicit solution is y = \/(3 +cos?z)/(1 — z2). Since 3+ cos?z > 0 for all z we must have
1—-22>0o0r —1 <z < 1. Thus, the interval of definition is (~1, 1).
(a) Since fy = N(z,y) = ze™ + 2zy + 1/z we obtain f = ¥ + zy® + % + h(z) so that f, =

w2 = Y pie). Let M(z,y) = ye®¥ + 42 — 2
ye™ +y a:2+ (z). Let M(z,y) =ye™¥ +y ol

(b) Since fz = M(z,y) = yl20712 4 ¢ (xQ + y)ﬂl we obtain f = 23,/1/2331/2 + %ln ’a:Q + y‘ +g(y)

1 -1 1 -1
so that fy = y 12512 4 5 (a:2 + y) +¢'(z). Let N(z,y) =y /22?2 + 3 (a:2 + y) .
First note that

d(yz? +y2) = dr + dy.
/22 + 2 [22 1 42
Then zdzr + ydy = /22 + y2 dx becomes

L+ dy=d(\/22 +2) = da.
\/x2+y2 \/x2+y2

The left side is the total differential of \/z% +y* and the right side is the total differential of z +c.
Thus /22 + y2 = £ + ¢ is a solution of the differential equation.

To see that the statement is true, write the separable equation as —g(z) dr + dy/h(y). Identifying
M = —g(z) and N = 1/h(y), we see that My = 0 = N, so the differential equation is exact.

52



1. Letting y = ux we have

2. Letting y = uz we have

3. Letting z = vy we have

Exercises 2.5

Exercises 2.5

(z ~uz)dz +z(udz +zdu) =0

dr+zdu=20
iz-+alu=0
z

Injzl+u=c

zlnl|r|+y=cz.

(z+uz)dr+z(udz +zdu) =0

(1+2u)dr+z2du=0

dz+ du ~0
x 1+2u

1
1n|:z:|+§1n|1+2u|=c

z? (1 +2£> =C
T

z? +2zy = ¢;.

vy(vdy +ydv) + (y — 2vy)dy =0

vydv+(02—2v+1)dy=0

vdv dy

G-ty 7Y

1
1n|v—1]—ﬁ+ln]y|=c

+lny=c

lnE—ll—

Y

z/y—1

(z~y)nlz—yl-y=clz~y)

53



Exercises 2.5

4. Letting z = vy we have

5. Letting y = ux we have

6. Letting y = uz we have

ylvdy +ydv) = 2(vy +y)dy =0
ydv—(v+2)dy=0

d d
v y:0

v+2 ¥y

Injv+2|-Inlyl =c

In

g—:+21—1n|y|=c
)

T+ 2y = clyg.

(ugz2 + uzg) dz — r*(udz + zdu) =0
uldr —zdu=0

dr du

=220

r u?

1
Injz|+=-=c¢
u

I
o

1nl:1:]-9—E
Y

ylnlz| +z = cy.

(quQ + ua:g) dr + z?(udr + zdu) =0

<u2+2u) dr+xdu=0

r, _d
¢ ulu+2)

1 1
lnjz|+§lnlu]—§1n|u+2| =c
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7. Letting y = ux we have
(uz — z)dz — (uz + z)(udz + zdu) = 0

<u2+1)dx+:c(u+1)du=0
dr  u+1

du=0
z w21l

1
In|z|+ -2—1n (u2+ 1) +tanlu=c

2
In <% + 1) + 2tan~} % =0

24 4?) 4+ 2tan 1Y = ¢y,
ln(:c +y)+ an - ca
8. Letting y = uz we have
(z+ 3uz)dz — (3z + uz)(udz + zdu) =0
(u2—1>dz+z(u+3)du=0
dz u+3
—_—t ——————du=0
z +(u—1)(u+1) ¢
Injz|+2nju—1]-Infu+1]=c
132
z(u—1) —q
u—+1
2
x<g—1> =c1<—y--|-1>
z z
(y—2)*=aly+2).

9. Letting y = uz we have
~uzrdz + (z + Vuz)(udz +zdu) =0
(z+ zv/u) du+u¥2dz =0

(u—3/2+%>du+dx =0

z
“V2 finjul 4+ Injz| = c

—2u
Injy/z| + In|z| = 2y/z/y + ¢

y(In [y| — ¢)* = 4z.
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10. Letting ¥ = ux we have
<ux + 2?2 + u2x2> dz — z(udz + zdu) =0

zyl+uldz —z2du=0

dz du
T V14u?

i S o
=c

In|z] —In

u+\/1+u2‘
ut+\/1+ul=cz

y+ y2 + 22 = 122

11. Letting y = ux we have
(a:3 - u3x3) dr + v’ (udr + zdu) = 0

dr +ulzdu =0
d
I
x

1
Injz| + §u3 =c

323 |z} + y® = 12,

Using y(1) = 2 we find ¢; = 8. The solution of the initial-value problem is 3z In|z| + * = 8z°.
12. Letting ¥ = ux we have
(a:2 + 2u2x2) dr — ur(udz + zdu) =0
(1 +u2) dr —urdu=20

dx udu
z 14 u?

ln]x|—%ln(1+u2) =c

2

14 42

=
= c1 (y2+x2).

Using y(~1) = 1 we find ¢; = 1/2. The solution of the initial-value problem is 2z = 32 + 2.
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13.

14.

15.

16.

17.

18.

19.

Exercises 2.5

Letting y = uz we have

(z + uze*)dr — ze*(udz + zdu) =0

dr —zedu =10

d—I——e“duzo
T
Injz{—e*=c¢

Inlz| — ¥/ =c.
Using y(1) = 0 we find ¢ = —1. The solution of the initial-value problem is In |z| = ev/T — 1.
Letting = = vy we have
y(vdy +ydv) + vy(lnvy — lny — )dy =0

ydv+vlnvdy =0

d d
L+ g
vlnv vy

In|ln|v]| +In |yl = ¢

yln

T
- =c1.

Using y(1) = e we find ¢ = —e. The solution of the initial-value problem is yIn f' = —e.

1 1 d 3
From ¢ + —y = ~y~2 and w = y3 we obtain Ly 2u=2 An integrating factor is z° so that
z z z z

3 3

w=r3+cory3=1+cx‘.

z
! z,,2 -1 - dw x : : ; z
From ¢y’ —y = ¢"y* and w = y~' we obtain o + w = —e®. An integrating factor is e® so that
z
efw = —%622 +coryt= —%e’ + ce™".

d
From ¢ +y = zy* and w = y~3 we obtain EE — 3w = —3z. An integrating factor is e~%% so that
z

3% = 37 + %6—31 +cor y—3 =+ % + ce3T.

1 d 1 .
Fromy' — {1+ =)y =19 and w =y~ ! we obtain e + {1+ —)w= -1 An integrating factor is
T y d T

z
r et T xr —1 1 C —_
ze® so that zew = —ze* +e* 4 cory " = -1+ -+ —e ~.
T oz
1 1 dw 1 1
From ¢’ — ?y = —t—Qy2 and w =y~ we obtain - + V=g An integrating factor is ¢ so that

57



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Exercises 2.5

1 t
tw=1Int+cory ! = i Int + % Writing this in the form — = Inz + ¢, we see that the solution
Y
can also be expressed in the form e!/¥ = ¢;z.
2t dw 2t —2t
From '+ = *and w = y~3 we obtain — — w = . An integrati
YT+ T3y Y T T e
w 1
factor is so that =— ry 3=1+4c(1+1¢2).
ac 1+ Tre2 1xg ooy +e(1+#)
2 3 d 6 9
From 3/ — <y = —2y4 and w = y~3 we obtain ad +—w = ——5 . An integrating factor is 28 so that
T z dr z
28w = —-59-275 +cory3 = —%x"l + ez, Ify(l) = % then ¢ = -459 and y~3 = —%z‘l + %I_GA
/ —1/2 3/2 . dw 3 3 : : fo 232/2
Fromy +y=y and w = y°/* we obtain o + qW=73- An integrating factor is e so that
i

3%/t = e3/2 4 ¢ or y*2 = 1+ ce™3%/%. If y(0) = 4 then ¢ = 7 and y*/% = 1 + 7e=3%/2,

d 1
Let u = z + y + 1 so that du/dx = 1+ dy/dz. Then 2 1 = w?or ——du = dz. Thus
: dz 1+u?

u=r+coru=tan(z+c),andz +y+1=tan(z+c) ory =tan(z +c¢c) —z - 1.
1—

tan™

U
or udu = dz. Thus %uQ =z+c

Let w = z + y so that du/dz = 1 + dy/dx. Then % —1=

or u? =2z + ¢, and (z + )% = 2z + 1.

d
Let w = = + y so that du/dz = 1+ dy/dz. Then d—;‘- ~1 = tan®u or cos’udu = dz. Thus

%uﬁ-z—i sin2u = z+4c or 2u+sin 2u = 4z +cy, and 2(z+y)+sin 2(z+y) = 4z +c; or 2y+sin2(z+y) =
2x 4 ¢y.

d ,
Let u = x + y so that du/dz = 1+ dy/dz. Then M1 = sinwor ————— du = dz. Multiplying
dz 1+sinu
1—-sinu 9

by (1 — sinwu)/(1 — sinu) we have du = dx or (sec u— tanusecu) du = dz. Thus

cosu

tanu —secu =z + ¢ or tan(z +y) —sec(z +y) =z + ¢

d 1
Let u = y — 2z + 3 so that du/dz = dy/dz — 2. Then Zig+2: 2 + u or Tduzdz. Thus
U
2Vu=z+cand 2\/y -2z +3 =2z +c

Let u = y — x + 5 so that du/dz = dy/dz — 1. Then

du

7 +1=1+¢e"or e ¥dy = dxr. Thus
T

—e % =g +4cand —e¥ Tt =z +¢.

d 1
Let u = £+ ¥ so that du/dz = 1 + dy/dz. Then % 1= cosuand ——— du = dz. Now
dz 1+ cosu

1 l—cosu 1-—cosu 2
= 5 = ) =csc”u —cscucotu
14+ cosu 1-—cos“u sin“u
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30.

31.
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so we have [(csc® u—cscucotu)du = f dz and — cot u+cscu = z+c. Thus — cot(z+y)+csc(z+y) =
z 4 c. Setting z = 0 and y = n/4 we obtain ¢ = V2 = 1. The solution is

cse(z +y) —cot(z +y) =z + V2 — 1.

du 2u Su+6 u+2

Letu=3z+2 th = dy/dz. Then — =3 du = dz.
et u = 37+ 2y so that du/dz = 3+2dy/dz. Then T +u+2 oo and o du=dz
Now

u+2_1+ 4

S5u+6 5  25u-+ 30
so we have

1 4
— —— d =
/<5+25u+30> u=de

and $u+ 5 In|25u + 30| = z + c. Thus
4
%(3x+2y)+2—5ln|75x+50y+30| =z+c.
Setting z = —1 and y = —1 we obtain ¢ = %In 95. The solution is
1 4 4
=3z +2y)+ —=In|75z 4+ 50y + 30| =z + - 1n95
) 25 S
or
5y — 5z + 21n |75z + 50y + 30| = 101n 95.

We write the differential equation M(z,y)dz + N(z,y)dy = 0 as dy/dz = f(z,y) where

M(z,y)
N(z,y)

f(a:,y)= -

The function f(z,y) must necessarily be homogeneous of degree 0 when M and N are homogeneous
of degree a. Since M is homogeneous of degree a, M(tz,ty) = t*M(z,y), and letting t = 1/z we
have '

! M(z,y) or M(z,y)=z°M(1,y/z).

ey

M(1,y/z) =
Thus

d . s MOe) M) _ (v
dz (z.9) = z®N(1,y/z) N(1,y/z) F(x)

To show that the differential equation also has the form

dy z
5_G<y>

we use the fact that M(z,y) = y*M(z/y,1). The forms F(y/z) and G(z/y) suggest, respectively,

the substitutions u = y/z or y = uz and v = z/y or z = vy.
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33.

34.
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Asz — —00, €% — 0 and y — 2z + 3. Now write (1 + ce®)/(1 — ce®®) as (7% +¢)/(e78 —¢).

6z

Then, as z — o0, e7°% — 0 and y — 2z — 3.

(a) The substitutions y = y1 +u and

dy dyr  du
dz ~ dz = dz
lead to
d d
D+ 2 =P+ QU +u) + Rlyr +u)’
dr dzx
= P+ Qu1 + Ry? + Qu + 2y, Ru + Ru?
or
d
= (Q + 2y1R)u = Ru’.
dz
This is a Bernoulli equation with n = 2 which can be reduced to the linear equation
d
Zs (Q@+2y1R)w=—R
dz

by the substitution w = u~!.

(b) Identify P(z) = —4/z% Q(z) = —1/z, and R(z) = 1. Then %—Z) + <—% + %) w= —1. An

-1
integrating factor is 3 so that 23w = —%x‘* +coru= [—%x + cx‘ﬂ . Thus, y = ~ +u.
z

Write the differential equation in the form z(y'/y) = Inz+Iny and let w = Iny. Then du/dz = //y
and the differential equation becomes z(du/dz) = Inz + u or du/dr —u/z = (lnz)/z, which is
first-order, linear. An integrating factor is e~ Jdo/z 1/z, so that (using integration by parts)

d[lu]_lna: d u 1 Inz
detlz 1 22 z oz z
The solution is

—cz—1

€

Iny=-1-Inz+cx or y= o

Exercises 2.6

1.

We identify f(z,y) = 2z — 3y + 1. Then, for A = 0.1,
Yn+1 = Yn + 0.1(22n — 3yn + 1) = 0.2z, + 0.7y, + 0.1,

and
y(1.1) =y =0.2(1) +0.7(5) + 0.1 = 3.8

y(1.2) ~ ya = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98.
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For h = 0.05
Yn+1 = Yn + 0.05(22, — 3y, + 1) = 0.1z, + 0.85y, + 0.1,
and
y(1.05) ~ y; = 0.1(1) + 0.85(5) + 0.1 = 4.4
y(1.1) = yo = 0.1(1.05) + 0.85(4.4) + 0.1 = 3.895
y(1.15) ~ y3 = 0.1(1.1) + 0.85(3.895) + 0.1 = 3.47075

y(1.2) = yq = 0.1(1.15) + 0.85(3.47075) + 0.1 = 3.11514

2. We identify f(z,y) = 2 +y% Then, for h = 0.1,

Ynt1 = Yo+ 0.1(Tp + y2) = 0.12p + yn + 0.1y2,

and '
y(0.1) = y; = 0.1(0) + 04 0.1(0)> = 0
¥(0.2) = y3 = 0.1(0.1) 4 0 + 0.1(0)? = 0.01.
For h = 0.05
Yns1 = Yn + 0.05(2n + y2) = 0.052y, + yn + 0.05y2,
and

(0.05) = y; = 0.05(0) + 0+ 0.05(0)* = 0
y(0.1) = yp = 0.05(0.05) + 0 + 0.05(0)? = 0.0025
(0.15) = y3 = 0.05(0.1) + 0.0025 + 0.05(0.0025) = 0.0075

¥(0.2) & y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)% = 0.0150.

3. Separating variables and integrating, we have

d
?y=dm and Infy/=z+c

Thus y = c1e® and, using y(0) = 1, we find ¢ = 1, so y = €% is the solution of the initial-value

problem.
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h=0.1 h=0.05
True Abs. % Rel. True Abs. % Rel.
Xn Yn Value Error Error Xn Yn value Error Error
0.00 1.0000 1.0000 0.0000 0.00 0.00 1.0000 1.0000 0.0000 0.00
0.10 1.1000 1.1052 0.0052 0.47 0.05 1.0500 1.0513 0.0013 0.12
0.20 1.2100 1.2214 0.0114 0.93 0.10 1.1025 1.1052 0.0027 0.24
0.30 1.3310 1.3499 0.0189 1.40 0.15 1.1576 1.1618 0.0042 0.36
0.40 1.4641 1.4918 0.0277 1.86 0.20 1.2155 1.2214 0.0059 0.48
0.50 1.6105 1.6487 0.0382 2.32 0.25 1.2763 1.2840 0.0077 0.60
0.60 1.7716 1.8221 0.0506 2.77 0.30 1.3401 1.3499 0.0098 0.72
0.70 1.9487 2.0138 0.0650 3.23 0.35 1.4071 1.4191 0.0120 0.84
0.80 2.1436 2.2255 0.0820 3.68 0.40 1.4775 1.4918 0.0144 0.96
0.90 2.3579 2.4596 0.1017 4.13 0.45 1.5513 1.5683 0.0170 1.08
1.00 2.5937 2.7183 0.1245 4.58 0.50 1.6289 1.6487 (0.0198 1.20
0.55 1.7103 1.7333 0.0229 1.32
0.60 1.7959 1.8221 0.0263 1.44
0.65 1.8856 1.9155 0.0299 1.56
0.70 1.9799 2.0138 0.0338 " 1.68
0.75 2.0789 2.1170 0.0381 1.80
0.80 2.1829 2.2255 0.0427 1.92
0.85 2.2920 2.3396 0.0476 2.04
0.90 2.4066 2.4596 0.0530 2.15
0.95 2.5270 2.5857 0.0588 2.27
1.00 2.6533 2.7183 0.0650 2.39

4. Separating variables and integrating, we have

% =2¢dz and Inlyl=2%+c
Y

1

Thus y = cleI2 and, using y(1) =1, wefindc=e"",s0y = e%"~1 s the solution of the initial-value

problem.

h=0.1 h=0.05
True . Abs. % Rel. True Abs. % Rel.
Xn Yn vValue Error Error Xn Yn Value Error Error
1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73 1.05 1.1000 1.1079 0.0079 0.72
1.20 1.4640 1.5527 0.0887 5.71 1.10 1.2155 1.2337 0.0182 1.47
1.30 1.8154 1.9937 0.1784 8.95 1.15 1.3492 1.3806 0.0314 2.27
1.40 2.2874 2.6117 0.3243 12.42 1.20 1.5044 1.5527 0.0483 3.11
1.50 2.9278 3.4903 0.5625 16.12 1.25 1.6849 1.7551 0.0702 4.00
) 1.30 1.8955 1.9937 0.0982 4,93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08
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h=0.1 h=0.05 h=0.1 h=0.05
5 Xn Yn Xn Yn 6. Xn Yn Xn ¥Yn
0.00 0.0000 0.00 0.0000 0.00 1.0000 0.00 1.0000
0.10 0.1000 0.05 0.0500 0.10 1.1000 0.05 1.0500
0.20 0.1905 0.10 0.0876 0.20 1.2220 0.10 1.1053
0.30 0.2731 0.15 0.1429 0.30 1.3753 0.15 1.1668
0.40 0.3492 0.20 0.1863 0.40 1.5735 0.20 1.2360
0.50 0.4198 0.25 0.2278 0.50 1.8371 0.25 1.3144
0.30 0.2676 0.30 1.403S
0.35 0.3058 0.35 1.5070
0.40 0.3427 0.40 1.6267
0.45 0.3782 0.45 1.7670
0.50 0.4124 0.50 1.9332
h=0.1 h=0.05 h=0.1 h=0.05
7. 8.

Xn Yn Xn Yn Xn Yn Xn Yn
0.00 0.5000 0.00 0.5000 0.00 1.0000 0.00 1.0000
0.10 0.5250 0.05 0.5125 0.10 1.1000 0.05 1.0500
0.20 0.5431 0.10 0.5232 0.20 1.2158 0.10 1.1039
0.30 0.5548 0.15 0.5322 0.30 1.3505 0.15 1.1619
0.40 0.5613 0.20 0.5395 0.40 1.5072 0.20 1.2245
0.50 0.5639 0.25 0.5452 0.50 1.6902 0.25 1.2921

0.30 0.5496 0.30 1.3651
0.35 0.5527 0.35 1.4440
0.40 0.5547 0.40 1.5293
0.45 0.5559 0.45 1.6217
0.50 0.5565 0.50 1.7219
h=0.1 h=0.05 h=0.1 h=0.05
9 Xn Yn Xn ¥n 10. Xn Yn Xn Yn
1.00 1.0000 1.00 1.0000 0.00 0.5000 .00 0.5000
1.10 1.0000 1.05 1.0000 0.10 0.5250 0.05 0.5125
1.20 1.0191 1.10 1.0049 0.20 0.5499 0.10 0.5250
1.30 1.0588 1.15 1.0147 0.30 0.5747 0.15 0.5375
1.40 1.1231 1.20 1.0298 0.40 0.5991 0.20 0.5499
1.50 1.2194 1.25 1.0506 0.50 0.6231 0.25 0.5623
1.30 1.0775 0.30 0.574¢
1.35 1.1115 0.35 0.5868
1.40 1.1538 0.40 0.5989
1.45 1.2057 0.45 0.6109
1.50 1.2696 0.50 0.6228
11.
h=0.25 J y y
; he0.] 1 1=0.05 ?
Runge-Kutta

ﬁRungc—Kuua y ﬂRunge-Kullu

I
|
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Exercises 2.6

12.
b4
h=0.25
¢ Runge-Kutta b i
h=0.
Q.1 h=0.05
5 5
Runge-Kutta Runge-Kutta
Euler
Euler
Euler
-t PO SR VN S
2 2 4

13. Using separation of variables we find that the solution of the differential equation is y = 1/(1 —z?),
which is undefined at z = 1, where the graph has a vertical asymptote.

h=0.1 Eulexr h=0.05 Euler h=0.1" R-K h=0.05 R-K
Xn Yn Xn Vn Xn Yn Xn Yn
0.00 1.0000 0.00 1.0000 0.00 1.0000 0.00 1.0000
0.10 1.0000 0.05 1.0000 0.10 1.0101 0.05 1.0025
0.20 1.0200 0.10 1.0050 0.20 1.0417 0.10 1.0101
0.30 1.0616 0.15 1.0151 0.30 1.0989 0.15 1.0230
0.40 1.1292 0.20 1.0306 0.40 1.1905 0.20 1.0417
0.50 1.2313 0.25 1.0518 0.50 1.3333 0.25 1.0667
0.60 1.3829 0.30 1.0735 0.60 1.5625 0.30 1.0989
0.70 1.6123 0.35 1.1144 0.70 1.9607 0.35 1.1396
0.80 1.9763 0.40 1.1579 0.80 2.7771 0.40 1.1905
0.90 2.6012 0.45 1.2115 0.90 5.2388 0.45 1.2539
1.00 3.8191 0.50 1.2776 1.00 42.9931 0.50 1.3333
0.55 1.3592 0.55 1.4337
0.60 1.4608 0.60 1.5625
0.65 1.5888 0.65 1.7316
0.70 1.7529 0.70 1.9608
0.75 1.9679 0.75 2.2857
0.80 2.2584 0.80 2.7777
0.85 2.6664 0.85 3.6034
0.90 3.2708 0.90 5.2609
0.95 4.2336 0.95 10.1973
1.00 5.9363 1.00 84.0132

Because the actual solution of the differential equation becomes unbounded at z approaches 1, very
small changes in the inputs z will result in large changes in the corresponding outputs y. This can

be expected to have a serious effect on numerical procedures.
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14. (a) y
0.6
0.4
0.2 .h"“‘*--w‘
h— 2 s

/.
.,o
™)

-0.6

d
(b) For ¢/ + 2zy = 1 an integrating factor is e/ 22% = e’ so that E;[elzy] = ¢* and

ﬁ

z 2 2
Y= e’ /0 e dz + ce™® = 5 erf (z) +ce”™™ .

Ify(0)=0thenc=0andy = gerf (2).

(c) Using FindRoot in Mathematica we see that the solution has a relative minimum at

(—0.924139, —0.541044) and a relative maximum at (0.924139, 0.541044).

Chapter 2 Review Exercises

1. Writing the differential equation in the form 3’ = k(y + A/k) we see that the critical point —A/k
is a repeller for k > 0 and an attractor for k < 0.

2. Separating variables and integrating we have

d 4
R
y oz
Iny=4lnz+c=Inz*+¢
y=c1:z4.

We see that when z = 0, y = 0, so the initial-value problem has an infinite number of solutions for
k = 0 and no solutions for k # 0.

dy

_ —1V2(,,
3. a;—(y 1)%(y - 3)°
4. —Zy =yly - 2)*(y — 4)
X
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t
z" T even z" z odd —z" mz even —z" z odd

0 0 0 0
For dz/dt = z™,when n is even, 0 is semi-stable; when n is odd, 0 is unstable. For dz/dt = —z™ ,when
n is even, 0 is semi-stable; when n is odd, 0 is stable.
6. The zero of f occurs at approximately 1.3. Since P/(t) = f(P) > 0for P < 1.3and P'(t) = f(P) > 0
for P > 1.3, limy_ P(t) = 1.3.

7. F7=nm ANV
====\VVANn

C AR R AR LN RN S SR
2 s~wn ANAVANNFANNN Vv -0y

8. (a) linear in y, homogeneous, exact

(b) linear in z

(c) separable, exact, linear in = and y
(d) Bernoulli in z

(e) separable

(f) separable, linear in z, Bernoulli
(g) linear in z

(h) homogeneous

(i) Bernoulli

(j) homogeneous, exact, Bernoulli
(k) linear in z and y, exact, separable, homogeneous

(1) exact, linear in y
(m) homogeneous

(n) separable
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10.

11.

12.

13.

14.

Chapter 2 Review Exercises

. Separating variables we obtain

Y

2
cos“zdxr =
y? +1

1 1 1
dy = 5x+asin2x=§1n(y2+1)+c = 2x+sin2x=21n(y2+1)+c.

Write the differential equation in the form yln Liz = (x In r_ y) dy. This is a homogeneous
Yy Yy

equation, so let £ = uy. Then dr = udy + y du and the differential equation becomes
ylnu(udy +ydu) = (uylnu—y)dy or ylnudu=—dy.

Separating variables we obtain

x

d
nudu= -2 — vlnfu| —u=-Inlyl+¢ = -z—ln
Y

= z(lnz—~Iny)—z=-yln|y| +cy.

2 322

y = — y~2 is Bernoulli. Using w = 3® we obtain
6z + 1

. . dy
The differential tion —=
e difterential equation ir + ]
dw 6 922

E+6z+1w=*6z+1'

An integrating factor is 6z + 1, so

33 + ¢
6z+1 6z+1

(Note: The differential equation is also exact.)

d
. [(6z + Dw] = ~92% = w=-— = (6z+1)y° = -3+

Write the differential equation in the form (3y? + 2z)dz + (44 + 6zy)dy = 0. Letting M = 3y®> + 2z
and N = 4y% 4 6zy we see that M, = 6y = N, so the differential equation is exact. From
fz = 3% + 2z we obtain f = 3zy? + 22 + h(y). Then f, = 6zy+ K (y) = 4y? + 6zy and K (y) = 49°
so h(y) = %yB. The general solution is

4
3zy2 + 2%+ §y3 =c.

Write the equation in the form
aQ 1 3
— 4+ -@ =t"Int.
7 + tQ n

In

An integrating factor is e™! = ¢, so

d 1 1
[t = tInt = tQ=-—=t"+-t"Int+c

25 5
14 14 ¢
=—— —t*1 =.
= Q="+ t'Int+ -
Letting u = 22 + y 4+ 1 we have
du dy
2942
dr -Jr—dz7



15.

16.

17.

Chapter 2 Review Exercises

and so the given differential equation is transformed into

du du  2u+1
ul—-2|=1 or — = .
dz U

v du = dzx
2u+1
1 1 1
_—— = :d
(2 22u+1>u *

1 1
5“‘1111]2“4'1‘:33"‘0

2u—1In2u+1] =2z +¢.
Resubstituting for u gives the solution
dr+2y+2—-In|dz+2y+3|=2z+¢

or

2r+2y+2—Inldz+2y+ 3| =c1.

d 8z 2z 4
Write the equation in the form Yoy An integrating factor is (mg + 4) , SO

dr  2+4’ T Zxa

(] e = (49

- (:r2+4>4+c=>y=%+c(a:2+4>—4.

=

Letting M = 2r2cosfsinf +rcosf and N = 4r +sin  — 2r cos®  we see that M, = 4rcosfsinf +
cosf = Ny so the differential equation is exact. From fy = 2r2cosfsinf + rcosd we obtain
f = -r2cos?8 +rsinf + h(r). Then f, = —2rcos?f + sind + h/(r) = 4r + sinf — 2rcos?§ and
K(r) = 4r so h(r) = 2r%. The general solution is

—r?2cos?f +rsinf + 2r% = c.

. : . d . .
The differential equation has the form . [(sinz)y] = 0. Integrating we have (sinz)y = ¢ or
y = c¢/sinz. The initial condition implies ¢ = —2sin(7x/6) = 1. Thus, y = 1/sinz, where
7 < < 27 is chosen to include z = 7n/6.
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Chapter 2 Review Exercises

18. Separating variables and integrating we have
d
o o+ 1)dt
Y

1
——=—(t+1)?+c
y

1
YEET 2t
The initial condition implies ¢ = —9, so the solution of the initial-value problem is
= ! where —4<i<2
Ve rar—s '

19. (a) For y <0, \/y is not a real number.
(b) Separating variables and integrating we have

d
Y —dz end 2/y=z+c

VY

Letting y(zo) = yo we get ¢ = 2,/yo — Zo, so that

2y=z+2/yo—x0 and y= %(m+2\/%——x0)2.
Since \/y > 0 for y # 0, we see that dy/dz = %(m + 2,/yo — zo) must be positive. Thus, the
interval on which the solution is defined is (zo — 2/%0, ).
20. (a) The differential equation is homogeneous and we let y = uz. Then
(2% ~ ) dz +zydy =0
(2% — vw?2?) dz + uz(udz + z du) = 0

drz +urdu =0

d
wdu= -2
, z
12
—uf = —1 +
U njzl+c
2
—y—2=—2ln1x{+c1.
z

The initial condition gives ¢; = 2, so an implicit solution is y? = z2(2 — 21n |z|).
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22.

Chapter 2 Review Exercises

(b) Solving for y in part (a) and being sure that the initial condi- v
tion is still satisfied, we have y = —v/2|z|(1 — In|z|)!/2, where 2
—e <z < esothat 1-In|z| > 0. The graph of this function indi- E
cates that the derivative is not defined at z = 0 and z = e. Thus, R i 2 7%
the solution of the initial-value problem isy = —v/2z(1—Inz)!/2, -1
for0 <z <e. 2

The graph of y1(z) is the portion of the closed black curve lying in the fourth quadrant. Its interval
of definition is approximately (0.7,4.3). The graph of ya(z) is the portion of the left-hand black
curve lying in the third quadrant. Its interval of definition is (—oo0, 0).

The first step of Euler’s method gives y(1.1) = 9+ 0.1(1 + 3) = 9.4. Applying Euler’s method one
more time gives y(1.2) ~ 9.4 +0.1(1 + 1.1/9.4) ~ 9.8373.
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3 Modeling with First-Order
Differential Equations

Exercises 3.1

1. Let P = P(t) be the population at time ¢, and Fy the initial population. From dP/dt = kP we
obtain P = Ppet’. Using P(5) = 2P we find k = 11n2 and P = Ppe"?¥/5. Setting P(t) = 3P
we have

(In2)t ‘o 5In3

_ (ln2)t/5 _
3=e = In3 5 == 03

~ 7.9 years.

Setting P(t) = 4P, we have

PR R o)

== t = 10 years.

2. Setting P =10,000 and ¢ = 3 in Problem 1 we obtain
10,000 = Ppe(m23/5 — Py =10,000e 06122 ~ 6597.5.

Then P(10) = Ppe?"? = 4Py ~ 26,390.

3. Let P = P(t) be the population at time t. From dP/dt = kt and P(0) = Fy = 500 we obtain
P = 500e*. Using P(10) = 575 we find k = 15 In 1.15. Then P(30) = 500¢* 115 ~ 760 years.

4. Let N = N(t) be the number of bacteria at time ¢ and Ny the initial number. From dN/dt = kN we
obtain N = Noe*®. Using N(3) = 400 and N(10) = 2000 we find 400 = Noe3* or e* = (400/Ng)'/3.
From N(10) = 2000 we then have

) 400 2073 2000 7 2000 \~3/7
- 10k _ _ /3 — ~
2000 = Npel® = Ny <N0> = o = N, = Nyp= (40010/3) ~ 201.

5. Let J = I(t) be the intensity, ¢ the thickness, and I(0) = Io. If dI/dt = kI and I(3) = 0.25]y then
I =Ioef, k= 11n0.25, and I(15) = 0.000981.

6. From dS/dt = rS we obtain S = Spe™ where S(0) = So.
(a) If Sg = $5000 and r = 5.75% then S(5) = $6665.45.
(b) If S(t) =$10,000 then t = 12 years.
(c) S~ $6651.82

7. Let N = N(t) be the amount of lead at time t. From dN/dt = kN and N(0) = 1 we obtain
N = ¢e*. Using N(3.3) = 1/2 we find k = ﬁ In1/2. When 90% of the lead has decayed, 0.1 grams
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13.

14.

15.

16.
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will remain. Setting N(t) = 0.1 we have

t1/3:3)n(1/2) . ¢ 1 ol omon p= 3301 096 hours.
e 1 = 3‘3r12 n = nl/z 0.96 hours

Let N = N(t) be the amount at time ¢. From dN/dt = kt and N(0) = 100 we obtain N = 100e*.
Using N(6) = 97 we find k = 1n0.97. Then N(24) = 100e(//OUn09724 = 100(0.97)* ~ 88.5 mg.

Setting N (t) = 50 in Problem 8 we obtain

1 In1/2
50 = 10065 = kt=1lnt —» = 2L

2/~ 136.5 hours.
2 (1/6)Imog7 = 1365 hours

a) The solution of dA/dt = kA is A(t) = Apet. Letting A = 3 Ag and solving for ¢ we obtain the
P)
half-life T = —(In2)/k.

(b) Since &k = —(In2)/T we have

Alt) = Aoe—(lng)t/T = A02~t/T.

(c) Writing %Ao = Ag27tT as 273 = 27%/T and solving for ¢t we get t = 37T. Thus, an initial
amount Ag will decay to %Ao in three half lives.

Assume that A = Age® and k = —0.00012378. If A(t) = 0.145A¢ then ¢ ~15,600 years.

From Example 3, the amount of carbon present at time t is A(t) = Age 000012378 [ etting t = 660
and solving for Ag we have A(660) = Age~00001237(660) — () 921553 Ag. Thus, approximately 92%
of the original amount of C-14 remained in the cloth as of 1988.

Assume that dT'/dt = k(T — 10) so that T = 10+ ce**. If T(0) = 70° and T(1/2) = 50° then ¢ = 60
and & = 21In(2/3) so that T(1) = 36.67°. If T(t) = 15° then ¢t = 3.06 minutes.

Assume that dT'/dt = k(T —5) so that T = 5+cet. If T(1) = 55° and T(5) = 30° then k = —% In2
and ¢ = 59.4611 so that 7(0) = 64.4611°.

Assume that dT/dt = k(T — 100) so that T = 100 + ce¥*. If T(0) = 20° and T(1) = 22° then
¢ = —80 and k = In(39/40) so that T(t) = 90° implies t = 82.1seconds. If T(t) = 98° then
t = 145.7 seconds.

Using separation of variables to solve dT'/dt = k(T —T}n) we get T'(t) = T + ce®. Using T(0) = 70
we find ¢ = 70 — Tr,, 50 T(t) = Tpn + (70 — Tin)e®®. Using the given observations, we obtain

T(%) = T + (70 = Tin)eF/? = 110

T(1) = T + (70 — Tpn)ek = 145.
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19.

20.

21.

22.
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Then /2 = (110 — T,.)/(70 = T}) and

2
& = (&2 (110—Tm> 145 - Ty,

70-T,/)  70-Tn
(110 — Tr,)?

Y =145~ T,
70 — Tppy 5

12100 — 22075, + T2 = 10150 — 2507y, + T2,
Trm = 390.

The temperature in the oven is 390°.

From dA/dt = 4 — A/50 we obtain A = 200 + e/, If A(0) = 30 then ¢ = —170 and 4 =
200 — 170e~4/50,

From dA/dt = 0 — A/50 we obtain A = ce/%0. If A(0) = 30 then ¢ = 30 and A = 30e~*/%°.

From dA/dt = 10 — A/100 we obtain A = 1000 + ce~*/1%0  If A(0) = 0 then ¢ = —1000 and
A = 1000 - 1000e /1% At ¢t = 5, A(5) ~ 48.77 pounds.

dA 104 2A
Fr = — hatell - - = i =1 — — )2 If
om — 10 500 (10 = 5)¢ 10 T obtain A 000 — 10t + ¢(100 — ¢)
A(0)=0thenc= _Tlﬁ‘ The tank is empty in 100 minutes.
dA 4A 24
Fr — =3 =3 - —— in A=>50+1¢ 50+41)"2. If A(0) =10th
om — 3 100 5 (6 4)¢ 3 Bt e obtain +t+c(50+1) (0) en

¢ = —100,000 and A(30) = 64.38 pounds.

(a) Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of
3 gal/min and the solution is pumped out at a rate of 2 gal/min, the net change is an increase

of 1 gal/min. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.

(b) The differential equation describing the amount of salt in the tank is A'(t) = 6 —24/(300 + ¢)

with solution
A(t) = 600 + 2t — (4.95 x 107)(300+¢)"2, 0 <t < 100,

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the

tank when it overflows is

A(100) = 800 — (4.95 x 107)(400) 2 = 490.625 lbs.
(¢) When the tank is overflowing the amount of salt in the tank is governed by the differential
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24.

25.

26.

27.
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equation
dA“(3 l/min)(2 Ib/g 1)—(i Ib/gal)(3 gal/min)
- = (g min)( ga. 100 1P/82b(3 gal/min
3A
=6—-— = .625.
6- 55 A(100) =490.625

Solving the equation we obtain A(t) = 800 + ce3/400. The initial condition yields
¢ = —654.947, so that

A(t) = 800 — 654.947¢~3/400
When ¢ = 150, A(150) = 587.37 lbs.

(d) Ast — oo, the amount of salt is 800 lbs, which is to be expected since
(400 gal)(2 1bs/gal)= 800 lbs.

(e) A

T
200 400 600

Assume Ldi/dt + Ri = E(t), L = 0.1, R = 50, and E(t) = 50 so that { = % + ce™500 £ 4(0) = 0
then ¢ = —3/5 and lim;—, 4(t) = 3/5.

Assume Ldi/dt + Ri = E(t), E{t) = Epsinwt, and (0) = ip so that

. EoR EoLw —Rt/L
P gy g et gy greoswi e
FoLw
Since ¢(0) =1 obtain ¢ = i + —5—5——5 .
ince 1(0) = ip we obtain ¢ = g T2 B

Assume Rdg/dt + (1/c)g = E(t), R =200, C = 107%, and E(t) = 100 so that ¢ = 1/100 + ce>%.
If ¢(0) = 0 then ¢ = —1/100 and 1 = 2e=5%.

Assume Rdg/dt+(1/c)q = E(t), R = 1000, C = 5x 1075, and E(t) = 200. Then q = %Ooﬂ—ce’gom
and ¢ = —200ce™2%% If j(0) = 0.4 then ¢ = —gkj, ¢(0.005) = 0.003 coulombs, and #(0.005) =
0.1472 amps. As t — oo we have ¢ — Tﬁl()—O'

For 0 <t < 20 the differential equation is 20 di/dt + 24 = 120. An integrating factor is et/ 5o

% [e/1%] = 6¢/1° and 4 = 60 + c1e=*/1%. If (0) = 0 then ¢1 = —60 and & = 60 — 60e~*/10.

For ¢ > 20 the differential equation is 20di/dt +2¢ =0 and ¢ = coet/10,
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At t = 20 we want cpe~? = 60 — 60e2 so that cp = 60 (e2 - 1). Thus

60 — 60e~t/10, 0<t<20;
| 60(e2—1)et/10, 1> 20,
28. Separating variables we obtain
dg dt q ’ 1 (Eo —q/C)~¢
= - — A= Stk + kot] +c ATy,
Eo—q/C k1 + kot = CIH’EO Cl  ky ol + kot e = (k1 + kot)1/k2 K
Ep — ¢o/C)~¢
Setting ¢(0) = go we find ¢» = L—0—~—;]?T/)— , 80
ky 2
~1/k
(Bo—4/C)™C _ (Eo—/C)~° g\ ¢ _ o\ C [ Kk k2
= » = Eo - = =|Fy— =
(k1 + kot)!/%2 i /2 C C k + kot
1/Cko
q g0 ky
Ey— == - =
— 7T ( 0 C) <k+k2t>
ky 1/Cko
= ~E
= ¢= FEoC+ (g 0C) <k+k2t)

29. (a) From mdu/dt = mg — kv we obtain v = gm/k +ce /™. If v(0) = v then ¢ = vy — gm/k and

the solution of the initial-value problem is

(b) Ast — oo the limiting velocity is gm/k.

(c) From ds/dt = v and s(0) = 0 we obtain

gm,_m 9N —kt/m E( _@_)
s—kt k(vo k)e +kvo )

30. (a) Integrating d*s/dt? = —g we get v(t) = ds/dt = —gt + c¢. From v(0) = 300 we find ¢ = 300, so
the velocity is v(t) = ~32t + 300.

(b) Integrating again and using s(0) = 0 we get s(t) = —16t> + 300t. The maximum height is
attained when v = 0, that is, at ¢, = 9.375. The maximum height will be s(9.375) = 1406.25 ft.
31. When air resistance is proportional to velocity, the model for the velocity is mdv/dt = —mg —
kv (using the fact that the positive direction is upward.) Solving the differential equation using
separation of variables we obtain v(t) = —mg/k + ce™**/™. From v(0) = 300 we get
__mg M\ —kijm
oft) = —— + (300 + p Jemktm,
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Integrating and using s(0) = 0 we find
mg

. _TE T_nﬁ _ —kt/m
s(t)———k—t+k<300+ k)(l e kt/my .

Setting k& = 0.0025, m = 16/32 = 0.5, and g = 32 we have

s(t) = 1,340,000 — 6,400t — 1,340,000¢~0-005¢
and
v(t) = —6,400 + 6,700e %005,

The maximum height is attained when v = 0, that is, at ¢, = 9.162. The maximum height will be
5(9.162) = 1363.79 ft, which is less than the maximum height in part (a).

Assuming that air resistance is proportional to velocity and the positive direction is downward, the
model for the velocity is m dv/dt = mg — kv. Using separation of variables to solve this differential
equation we obtain u(t) = mg/k + ce™¥/™  From v(0) = 0 we get v(t) = (mg/k)(1 — e~*t/™).
Letting k& = 0.5, m = 160/32 = 5, and g = 32 we have v(t) = 320(1 — e~%!). Integrating,
we find s(t) = 320t 4+ 3200e~01*. At t = 15, when the parachute opens, v(15) = 248.598 and
s(15) = 5514.02. At this point the value of & changes to k& = 10 and the new initial velocity
is vg = 248.598. Her velocity with the parachute open (with time measured from the instant of
opening) is v,(t) = 16 + 232.598¢~%. Integrating, we find s,(¢) = 16t — 116.299¢~%*. Twenty
seconds after leaving the plane is five seconds after the parachute opens. Her velocity at this
time is vp(5) = 16.0106 ft/sec and she has fallen s(15) + sp(5) = 5514.02 4 79.9947 = 5594.01 ft.
Her terminal velocity is lim;c vp(t) = 16, so she has very nearly reached her terminal velocity
five seconds after the parachute opens. When the parachute opens, the distance to the ground is
15,000 — 5514.02 = 9485.98 ft. Solving sp(t) = 9485.98 we get ¢t = 592.874 s = 9.88 min. Thus, it
will take her approximately 9.88 minutes to reach the ground after her parachute has opened and
a total of (592.874 + 15)/60 = 10.13 minutes after she exits the plane.

(a) The differential equation is first-order, linear. Letting b = k/p, the integrating factor is
efBbdt/(bt-H‘o) = (rg + bt)3. Then

d
zi—t[(ro +bt)30] = g(ro + bt)® and (ro +bt)dv = %(ro +bt)t +c.

The solution of the differential equation is v(t) = (g/4b)(ro + bt) 4 c(ro + bt)~3. Using v(0) = 0
we find ¢ = —gr§ /4b, so that

973
4k(ro + kt/p)3

973 9p

-9 99 _9°
v(t) = o0 — i hE 4k

k

(’7‘0 + -t) -
p

(b) Integrating dr/dt = k/p we get r = kt/p+c. Using r(0) = ro we have ¢ = ro, sor(t) = kt/p+ro.
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34.

35.

36.

37.

Exercises 3.1

(¢) If r =0.007ft when ¢t = 10s, then solving r(10) = 0.007 for k/p, we obtain k/p = —0.0003 and
7(t) = 0.01 — 0.0003¢. Solving r(t) = 0 we get t = 33.3, so the raindrop will have evaporated
completely at 33.3 seconds.

Separating variables we obtain y

£1%:‘-zlccostalt — In|P|=ksint+c => P = cetsint. .
If P(0) = Py then ¢ = Py and P = Ppeksint, L S A S
(a) From dP/dt = (k; — ko) P we obtain P = Ppe*17%2)t where Py = P(0).

(b) If k1 > ko then P — oo ast — oo. If ky = kg then P = Py for every t. If k1 < ko then P — 0

ast — oo.

The first equation can be solved by separation of variables. We obtain z = cje~*1t. From z(0) = z¢
we obtain ¢ = zg and so £ = zge~ ™, The second equation then becomes
d

Y gt dy —A
— = I\ . 0 —Z + Xy = zgAie
at oAl1€ 2Y T dt 2y 0A1

1t

which is linear. An integrating factor is e*2*. Thus
d ot At gt (Aa=A1)t
p [e*?y] = zoA1e™ " e"? = zghie
oty — _TOAL (-t
A2 — A1
Y= ToAL
A2 — A1

+ Co

From y(0) = yo we obtain ca = (yoA2 — yor1 — ZoA1)/ (A2 — A1). The solution is

_ _ZoM Y YoA2 — YoA1 — ZoM o=t
VTN X2 — M '

(a) Solving k1(M — A) — koA = 0 for A we find the equilibrium solution A = ky M/ (k1 + k2). From
the phase portrait we see that limy_,o A(t) = k1 M/ (k1 + k2).

kyM
k1+k2

Y

A
S

Since ko > 0, the material will never be completely memorized and the larger ko is, the less

the amount of material will be memorized over time.
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(b) Write the differential equation in the form dA/dt+(k;+k2)A =

(k1+ko)t KM

ki kg

k1 M. Then an integrating factor is e , and

i [6(k1+k2)fA} — kljwe(lcl+k2)t

dt
o glarkaiy = FIM ey
ki + ko
= A= M + cem Rtk
ki + ks
kiM kM
Using A(0) = 0 we find ¢ = & 1+ T and A = n 1+ T (1 - e“(k1+’°2)t>. As t — o0,
ki M
A )
Ttk

38. (a) Solving r — kz = 0 for z we find the equilibrium solution z = r/k. When z < r/k, dz/dt > 0
and when z > r/k, dz/dt < 0. From the phase portrait we see that lim; .o z(t) = r/k.

Y
A
x

i

r

k

(b) From dz/dt = r — kz and z(0) = 0 we obtain z = r/k — (r/k)e™*
so that ¢ — r/k as t — co. If o(T) = r/2k then T = (In2)/k.

X

r/k

t

39. It is necessary to know the air temperature from the time of death until the medical examiner
arrives. We will assume that the temperature of the air is a constant 65°F. By Newton’s law of

cooling we then have

ar

i k(T - 65), T(0) = 82.
Using linearity or separation of variables we obtain T' = 65+ ce*t. From T(0) = 82 we find ¢ = 17, so
that T = 65 4 17e**. To find k we need more information so we assume that the body temperature

at t = 2 hours was 75°F. Then 75 = 65 + 17¢%* and k = —0.2653 and
T(t) = 65 + 1770293,

At the time of death, to, T'(to) = 98.6°F, s0 98.6 = 65 + 17e702653¢ which gives t = —2.568. Thus,
the murder took place about 2.568 hours prior to the discovery of the body.
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40. We will assume that the temperature of both the room and the cream is 72°F, and that the

41.

42.

temperature of the coffee when it is first put on the table is 175°F. If we let T7(¢) represent the
temperature of the coffee in Mr. Jones’ cup at time ¢, then

%7;—1 = k(T1 - 72),
which implies T = 72+ c1e®. At time t = 0 Mr. Jones adds cream to his coffee which immediately
reduces its temperature by an amount a, so that 73(0) = 175 — a. Thus 175 — a = T1(0) = 72 + ¢y,
which implies ¢; = 103 — @, so that T1(t) = 72+ (103 — a)e**. At t =5, T1(5) = 72+ (103 — a)e%*.
Now we let To(t) represent the temperature of the coffee in Mrs. Jones’ cup. From Tp = 72 + coekt
and T5(0) = 175 we obtain ¢y = 103, so that Th(t) = 72 + 103e¥. At t = 5, Tp(5) = 72 + 103¢%*.
When cream is added to Mrs. Jones’ coffee the temperature is reduced by an amount a. Using the

fact that k < 0 we have
(5 —a=T72+ 103e%* — a < 72 + 103e% — ae’*

=72 + (103 — a)e®* = T1(5).
Thus, the temperature of the coffee in Mr. Jones’ cup is hotter.
Drop an object from a great height and measure its terminal velocity, v:. In Problem 29(b) we saw
that v, = gm/k, so k = gm/v;.
We saw in part (a) of Problem 30 that the ascent time is ¢, = 9.375. To find when the cannonball
hits the ground we solve s(t) = —16t% + 300t = 0, getting a total time in flight of ¢ = 18.75. Thus,
the time of descent is tg = 18.75 — 9.375 = 9.375. The impact velocity is v; = v(18.75) = —300,

which has the same magnitude as the initial velocity.

We saw in part (b) of Problem 30 that the ascent time in the case of air resistance is t, = 9.162.
Solving s(t) = 1,340,000— 6,400t — 1,340,000e ~%9%% = 0 we see that the total time of flight is 18.466.
Thus, the descent time is ¢t = 18.466 — 9.162 = 9.304. The impact velocity is v; = v(18.466) =
~290.91, compared to an initial velocity of vg = 300.

Exercises 3.2

1.

(a) Solving N(1 — 0.0005N) = 0 for N we find the equilibrium solutions N = 0 and N = 2000.
When 0 < N < 2000, dN/dt > 0. From the phase portrait we see that lim,_.. N(t) = 2000.
1 - !

f
0 2000

A graph of the solution is shown in part (b).
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(b) Separating variables and integrating we have - N
AN 1 1 2000
—_—— = (= — —————— AN =dt
N(1 - 0.0005N) <N N— 2000) o
and 500
InN —In(N —2000) =t +c. ; 510 15 3 °©

Solving for N we get N(t) = 2000e°**/(1 + e°*?) = 2000e%e? /(1 + e°€!). Using N(0) = 1 and
solving for e we find e® = 1/1999 and so N(¢) = 2000e?/(1999 + €?). Then N(10) = 1833.59,

so 1834 companies are expected to adopt the new technology when t = 10.

N
. From N _ N(a —bN) and N(0) = 500 we obtain N = 500a

Since tlim N =

dt 500b + (a — 500b)e~at —00
a 50,000
E ZSO,OOO and N(].) = 1000 we have a = 07033, b= 000014, and N = W
dP R _ 500
. From —— = P(107 ~1077P) and P(0) = 5000 we obtain P = sorme—rre—py; 50 that

P — 1,000,000 as t — oco. If P(t) = 500,000 then ¢t = 52.9 months.
. (a) We have dP/dt = P(a — bP) with P(0) = 3.929 million. Using separation of variables we

obtain
P(t) = 3.929a _ a/b
T 3.920b + (@ — 3.929b)e=%t 1+ (a/3.920b — 1)e—at
C

T 1+ (¢/3.929 = et
At t = 60(1850) the population is 23.192 million, so

¢
1+ (c/3.929 — 1)e=60a

or ¢ = 23.192 + 23.192(¢/3.929 — 1)e%% At ¢t = 120(1910)
C
1+4(c/3.929 — 1)e~1200

or ¢ = 91.972 + 91.972(¢/3.929 — 1)(e~%%¢)2. Combining the two equations for ¢ we get

(c — 23.192)/23.192 2( c ) _c—91.972
¢/3.929 — 1 3.929 91972

23.192 =

91.972 =

Qor
91.972(3.929)(c — 23.192)? = (23.192)%(c — 91.972)(c — 3.929).

The solution of this quadratic equation is ¢ = 197.274. This in turn gives ¢ = 0.0313. Therefore

197.274
P(t) = .
=1 -+ 49.21¢700313¢
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10.

11.

12.

Exercises 3.2

aX 2 - . 150 :
From = = k(150 — X)*, X(0) = 0, and X(5) = 10 we obtain X = 150 — 5ok £ 1 where

k = .000095238. Then X (20) = 33.3grams and X — 150 as ¢ — oo so that the amount of 4 — 0
and the amount of B — 0 as t — oo. If X(¢) = 75 then t = 70 minutes.

(a) The initial-value problem is dh/dt = —8AsVh /Ay, 10,
h{0) = H. Separating variables and integrating we have 2
dh 84, 8An 4
\/E_ Aw dt and 2vh = Awt+c )

Using h(0) = H we find ¢ = 2v/H, so the solution of 5001000 1500 i

the initial-value problem is 1/h(t) = (Aw\/ﬁ — 4Apt) /Ay, where AwVH — 445t > 0. Thus,
h(t) = (AyVH — 4A44t)% /A2 for 0 < t < A, H/4A.

(b) Identifying H = 10, Ay, = 4, and Ay = 7/576 we have A(t) = t2/331,776 — (,/5/2 /144)t + 10.
Solving h(t) = 0 we see that the tank empties in 576/10 seconds or 30.36 minutes.

To obtain the solution of this differential equation we use A(t) from part (a) of Problem 11 in
Exercises 11.3 with A replaced by cAp. Then h(t) = (AyvVH — 4cApt)?/A%. Solving h(t) = 0
with ¢ = 0.6 and the values from Problem 11 we see that the tank empties in 3035.79 seconds or
50.6 minutes.

(a) Separating variables and integrating we have
6h3/2dh = —5t and l;hf’/? = -5t +c.

Using A(0) = 20 we find ¢ = 1920+/5, so the solution of the initial-value problem is h(t) =
(8004/5 — %—%t)z/s. Solving h(t) = 0 we see that the tank empties in 3841/5 seconds or
14.31 minutes. '

(b) When the height of the water is A, the radius of the top of the water is r = htan 30° = h/+/3
and A, = Th? /3. The differential equation is

m(2/12)2 2
= —c———\/ = 0.6 = e VBih =~

Separating variables and 1ntegrat1ng we have

5h3/%dh = —2dt and 2h%% = -2t +c.
Using h(0) = 9 we find ¢ = 486, so the solution of the initial-value problem is h(t) = (243—1)%/5.
Solving h(t) = 0 we see that the tank empties in 24.3 seconds or 4.05 minutes.

When the height of the water is h, the radius of the top of the water is 2(20 — h) and Ay =
47 (20 — h)2/25 The differential equation is

2/12) 5 Wh
—C*—\/———— 06 )2/95\/@——5@_—}1)7.
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(b) Census Predicted 9o
Year Population _ Population Error Error
1790 3.929 3.929 0.000 0.00
1800 5.308 5.334 -0.026 -0.49
1810 7.240 7.222 0.018 0.24
1820 9.638 9.746 -0.108 -1.12
1830 12.866 13.090 -0.224 -1.74
1840 17.069 17475 -0.406 -2.38
1850 23.192 23.143 0.049 0.21
1860 31.433 30.341 1.092 3.47
1870 38.558 39.272 -0.714 -1.85-
1880 50.156 50.044 0.112 0.22
1890 62.948 62.600 0.348 0.55
1900 75.996 76.666 -0.670 -0.88
1910 - 91.972 91.739 0.233 0.25
1920 105.711 107.143 -1.432 -1.35
1930 122.775 122.140 0.635 0.52
1940 131.669 136.068 -4.399 -3.34
1950 150.697 148.445 2.252 1.49

The model predicts a population of 159.0 million for 1960 and 167.8 million for 1970. The
census populations for these years were 179.3 and 203.3, respectively. The percentage errors

are 12.8 and 21.2, respectively.

5. (a) The differential equation is dP/dt = P(1—1In P), which has equilibrium

solution P = e. When Py > e, dP/dt < 0, and when Py < e, dP/dt >
0.
t
(b) The differential equation is dP/dt = P(1+In P), which has equilibrium P

solution P = 1/e. When Py > 1/e, dP/dt > 0, and when Py < 1/e,

dP/dt < 0.

l/e

t

aP -1 -
6. From — = P(a—bln P) we obtain - Inja.—bln P| = t+c so that P = e*/%¢c " PO)= PR

dt .
then ¢ = 7 InPg.

7. Let X = X(t) be the amount of C at time ¢ and Cfi—)t( = k(120 — 2X)(150 — X). If X(0) = 0 and
150 — 150¢80kt

X(5) = 10 then X =

1-— 2'56180kt

where k = .0001259, and X (20) = 29.3 grams. Now X — 60

as t — 00, so that the amount of A — 0 and the amount of B — 30 as ¢t — oo.
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14. We solve

d
m ditj = —mg — kv?, v(0) = 300

using separation of variables. This gives

[k /
u(t) = ,/@ tan (tam—1 3004/ — — kg t) .
k . mg m

Integrating and using s(0) = 0 we find

k k k
cos /-2 t — tan™! 300,/ — ' Ly (14 200008
m mg 2k mg

Solving v(t) = 0 we see that t, = 6.60159. The maximum height is s(t,) = 823.84 ft.

s(t) = %ln

15. (a) Let p be the weight density of the water and V the volume of the object. Archimedes’ principle
states that the upward buoyant force has magnitude equal to the weight of the water displaced.
Taking the positive direction to be down, the differential equation is

dv
— = —k 2 V.
m - =mg— kvt —p

(b) Using separation of variables we have

mdv — it
(mg — pV) — kv?
m Vkdv _
Vk (vVmg = pV )2 = (Vkv)?
n tanh ™ vEv =t+c

1
Vk mg—pV Vmg — oV

(6 = | P v (LR ),

(c) Since tanht — 1 as ¢ — oo, the terminal velocity is /(mg — pV)/k.

Thus

16. (a) Writing the equation in the form (z — \/z% + y2 )dz + y dy we identify M = z — /22 + y? and
N =y. Since M and N are both homogeneous of degree 1 we use the substitution y = uz. It
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Separating variables and integrating we have

(20 — h)?
Vvh

Using h(0) = 20 we find ¢ = 2560+/5/3, so an implicit solution of the initial-value problem is

dh:—gdt and 800\/E—~%0h3/2+§h5/2=—gt+6~

2
800v/% — _839h3/2 N _;_hS/:z _ _%t ., 56?()]\/5

To find the time it takes the tank to empty we set h = 0 and solve for t. The tank empties in
1024+/5 seconds or 38.16 minutes. Thus, the tank empties more slowly when the base of the cone
is on the bottom.

13. (a) Separating variables we obtain

mdv
Y —dt
mg — kv? d
1 dv — dt

g 1~ (kv/mg)?

Voo v k/mgdv _d
Vkg 1- (Vkv/,/mg)?

k
ﬂtanh_1 Q =t+c
\ kg VMg

kv kg
tanh™! ~—= = (/2 t + ¢1.
/g m

Thus the velocity at time t is

u{t) = \/T—n—k—?tanh (@t + c1> .

Setting t = 0 and v = vg we find ¢; = tanh_l(ﬂvo/,/mg ).
(b) Since tanht — 1 as t — oo, we have v — y/mg/k as t — oo.

(c) Integrating the expression for v(t) in part (a) we obtain

s(t) = ,/%/tanh (H:—f—t—l—q) dt = %ln {cosh <ﬂk—n§t+c1>} + co.

Setting t = 0 and s = sg we find ¢p = g ~ %ln(cosh 1).
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follows that

<$— z2+u212>dz+uz(udz+zdu) =0

:EKI— 1+u2>+u2] dz + z?udu = 0

udu _@_
1+u?2~V1+u? =
udu dz

VI+u?(1-V1+u?) T

Letting w = 1 — V1 +u? we have dw = —udu/v1 +u? so that

—1n<1—\/1+u2> =lnz+c¢

1
=1z
1—v1+u?
C
1—\/1+u2=~;2 (—cg =1/c1)
2
c
1+2 -1+ %
xz xz
2c c? 2
1+ 24214 %
T

Solving for y? we have
2 2 c2 C2
e d=a(3) (+3)
y=aarra 2 2
which is a family of parabolas symmetric with respect to the z-axis with vertex at (—c/2,0)
and focus at the origin.

(b) Let u= z2 + ¢? so that

% =2z + 2y Ey
Then
dy 1du
V" 2dm

and the differential equation can be written in the form

1 du 1 du
—ia—z—~—z+ﬂ or Ea—ﬁ
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Separating variables and integrating we have

du iy
a
Vu=z+c

u=1z%+2z+c

m2+y2=m2+2cz+c2

yQ = 2cx + 2.

17. (a) From 2W?2 — W3 = W2(2 — W) = 0 we see that W = 0 and W = 2 are constant solutions.

(b) Separating variables and using a CAS to integrate we get

dw 1
m=dl‘ and — tanh (-2"V4—2W>=I+C.

. Using the facts that the hyperbolic tangent is an odd function and 1 — tanh®z = sech®z we
have

V4 - 2W = tanh(—z — ¢) = — tanh(z + ¢)

Bl N e

(4 — 2W) = tanh®(z + ¢)
1- %W = tanh?(z + ¢)
1
§W =1 —tanh?(z 4 ¢) = sech?(z +¢).

Thus, W(z) = 2sech?(z + ¢).
(c) Letting z = 0 and W = 2 we find that sech?(c) = 1 and ¢ = 0.

18. (a) Solving 72 + (10 — h)? = 10 for 7* we see that 72 = 20h — h%. Combining the rate of input of
water, 7, with the rate of output due to evaporation, knr? = km(20h — h?), we have dV/dt =
m — kn(20h — h?). Using V = 10mh? — inh®, we see also that dV/dt = (20mh — nh¥)dh/dt.
Thus,

dh 1 —20kh + kh?

dh
20mh — mh?)— = 1 — kn(20h — A2 d == 7
(20mh = mh) = m = km(20 ) and o 20% — A2
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19.

(b) Letting £ = 1/100, separating variables and integrating (with

the help of a CAS), we get
100(h? — 10A + 100)

100h(h — 20)
—————dh=dt d =t+c
(h—10)2 an 10-h T
Using h(0) = 0 we find ¢ = 1000, and solving for h we get
h(t) = 0.005(+/t2 + 4000t — t), where the positive square root is

chosen because h > 0.

Exercises 3.2

2000 4000 6000 8000 10006

The volume of the tank is V = §7(10)3 feet, so at a rate of m cubic feet per minute, the tank

will fill in £(10)° =~ 666.67 minutes ~ 11.11 hours.

At 666.67 minutes, the depth of the water is h(666.67) = 5.486 feet. From the graph in (b) we
suspect that lim;_,o0 h(t) = 10, in which case the tank will never completely fill. To prove this

we compute the limit of h(t):

2 4+ 4000t — ¢2

lim R(t) = 0.005 lim (1/£2 + 4000t — £) = 0.005 lim oo or —*°
Jim A(t) 5 Jim (V/#2 + ) oo /iZ T 4000% + £

t—o0

4000t 4000

= 0.005 lim = 0.005 lim —— = 0.005(2000) = 10.
t—col 41

t=00 ¢ /1 + 4000/t + ¢

t P(t) Q1)
0 - 3.925 0.035%
i0 5.308 0.036
20 7.240 0.033
30 9.638 0.033
40 12.866 0.033
50 17.069 0.036
60 23.192 0.036
70 31.433 0.023
80 38.558 0.030
90 50.156 0.026
100 62.948 0.021
110 75.996 0.021
120 91.972 0.015
130 105.711 0.016
140 122.775 0.007
150 131.669 0.014
160 150.697 0.019
170 179.300
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(b) The regression line is @ = 0.0348391 — 0.000168222F.

0.038
0.03
0.025
0.02
0.015
0.01
0.005

p

20 40 60 80 100 120 140

(c) The solution of the logistic equation is given in equation (5) in the text.

0.0348391 and b = 0.000168222 we have
_ abPy
bRy + (a — bPp)e=at "

P(t)

(d) With Py = 3.929 the solution becomes

P) = 0.136883
= 0.000660944 + 0.0341781¢—0-0348301¢

(e)

t

25 50 75 100 125 150

Identifying a

(f) We identify ¢ = 180 with 1970, ¢ = 190 with 1980, and ¢ = 200 with 1990. The model predicts
P(180) = 188.661, P(190) = 193.735, and P(200) = 197.485. The actual population figures
for these years are 203.303, 226.542, and 248.765 millions. As ¢t — oo, P(t) — a/b = 207.102.

20. (a) Using a CAS to solve P(1 — P) +0.3¢~F = 0 for P we see that P = 1.09216 is an equilibrium
solution. )
(b) Since f(P) > 0 for 0 < P < 1.09216, the solution P(t) of ,
dP/dt = P(1 - P)+0.3eF, P(0) = P, )
is increasing for Py < 1.09216. Since f(P) < 0 for P > 1.09216, the 5

solution P(t) is decreasing for Py > 1.09216. Thus P = 1.09216 is
an attractor.
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(c) The curves for the second initial-value problem are thicker. The

equilibrium solution for the logic model is P = 1. Comparing ;| 5
1.09216 and 1, we see that the percentage increase is 9.216%.

21. To find t; we solve
m=— =mg — kv, v(0) =0
o =™ (0)
using separation of variables. This gives

Integrating and using s(0) = 0 gives

s(t) = —T;—Lln (cosh \/%1&) :

To find the time of descent we solve s(t) = 823.84 and find ¢ty = 7.77882. The impact velocity is
v(tg) = 182.998, which is positive because the positive direction is downward.

22. (a) Solving v; = /mg/k for k we obtain k = mg/v?. The differential equation then becomes

dv mg o dv 1,
= - — —=g{l——=v"].
e =™ vf v vf

Separating variables and integrating gives
v
vetanh™! = = gt +cy.
(%
The initial condition v(0) = 0 implies ¢; = 0, so
’ t
v(t) = vy tanh %
We find the distance by integrating:

t 2 t
s(t) = /vttanhg—dt =% (cosh—g—> + co.
Ut g Ut

The initial condition s(0) = 0 implies ¢3 = 0, so

2 t
s(t) = v In coshg— .
v

g t
In 25 seconds she has fallen 20,000 — 14,800 = 5,200 feet. Solving
32(25
5200 = (v?/32) In (cosh 82(25) )

(%
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Exercises 3.2

for v gives vy = 271.711 ft/s. Then

2
s(t) = & In(cosh gt ) = 2307.08 In(cosh 0.117772¢).
g Ut

(b) Att =15, 5(15) = 2,542.94 ft and v(15) = §'(15) = 256.287 ft/sec.

While the object is in the air its velocity is modeled by the linear differential equation mdv/dt =
mg — kv. Using m = 160, k = % , and g = 32, the differential equation becomes dv/dt + (1/640)v =
32. The integrating factor is e dt/640 t/640 and the solution of the differential equation is
et/040y = [32¢4/6404; = 20,480et/640 + ¢, Using v(0) = O we see that ¢ = —20,480 and v(t) =
20,480 — 20,480e~t/640 Integrating we get s(t) = 20,480t + 13,107,200e~*/640 + ¢. Since 5(0) = 0,
¢ = ~13,107,200 and s(t) = —13,107,200+ 20,480t +13,107,200e ~t/64%. To find when the object hits
the liquid we solve s(t) = 500—75 = 425, obtaining t, = 5.16018. The velocity at the time of impact
with the liquid is v, = v(¢,) = 164.482. When the object is in the liquid its velocity is modeled by
mdv/dt = mg—kv? Usingm = 160, g = 32, and k = 0.1 this becomes dv/dt = (51,200 —v2)/1600.

Separating variables and integrating we have

dv dt V2 | v—160v2 1
and

51,200 — % _ 1600 640 | v+ 160v2 | 1600
Solving v(0) = v, = 164.482 we obtain ¢ = —0.00407537. Then, for v < 1602 = 226.274,

= €

t+c.

v-160V2 | vaysoisas 010V mus s
v + 160+/2 v+ 160v2

Solving for v we get

_13964.6 — 2208.29¢V2t/
61.7153 + 9.75937eV2/5

v(t)

Integrating we find
s(t) = 226.275¢ — 1600 In(6.3237 + V/%) 4 c.

Solving s(0) = 0 we see that ¢ = 3185.78, so
s(t) = 3185.78 + 226.275¢ — 1600 In(6.3237 + eV/5),

To find when the object hits the bottom of the tank we solve s(t) = 75, obtaining ¢, = 0.466273.
The time from when the object is dropped from the helicopter to when it hits the bottom of the
tank is t, + £, = 5.62708 seconds.
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Exercises 3.3

1. The equation dz/dt = —Ajz can be solved by separation of variables. Integrating both sides of

dz/z = —A1dt we obtain In [z| = —A;t + ¢ from which we get z = ¢je~*1*. Using z(0) = zo we find

A1t

c17o so that z = zge . Substituting this result into the second differential equation we have

dy —Art
— + Xy = Ajzoe” M1
dt+ 2y 1Z0

which is linear. An integrating factor is e*2* so that

4 [e’\zty] = AzeeP? M 4 ¢p

dt
_ %o ePa=An)tg=dat 4 o p=tat _MiTo e Mt 4 cgem ot
Ao — A1 Ag — A '
Using y(0) = 0 we find ¢y = —A1z0/(A2 — A1). Thus
_ iz ~At Aot
el S
Substituting this result into the third differential equation we have
dz )\1)\2$0 — At . — At
dt Ay — A1 (e € )
Integrating we find
. Ao At A1To Aot
= = >\2—>\1€ + cs3.
Using z(0) = 0 we find ¢s = zo. Thus
>\2 -t >\1 — Aot
s (12t )
2. We see from the graph that the half-life of 4 is ap- %, v, z
proximately 4.7 days. To determine the half-life of B 20
we use t = 50 as a base, since at this time the amount .5 vit)
of substance A is so small that it contributes very lit-
tle to substance B. Now we see from the graph that 10
y(50) =~ 16.2 and y(191) ~ 8.1. Thus, the half-life of st \x(t) 71t)
B is approximately 141 days.
25 50 75 100 125 150

3. The amounts of z and y are the same at about ¢t = 5 days. The amounts of z and z are the same
at about ¢ = 20 days. The amounts of ¥ and z are the same at about ¢t = 147 days. The time when
y and 2z are the same makes sense because most of A and half of B are gone, so half of C should

have been formed.
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4. Suppose that the series is described schematically by W = -\ X = —X2Y = —A3Z where
—X1, —Ag, and — A3 are the decay constants for W, X and Y, respectively, and Z is a stable element,.

Let w(t), z(t), y(t), and z(t) denote the amounts of substances W, X, Y, and Z, respectively. A
model for the radioactive series is

dw
ke Y
dt 1w
d
—d%:)\lw—)\ﬂ
dy
Xz -
dt 2T 3Y
dz
22 o
— = Ay
5. The system is
”—23+1 ! 4= 2.7:+la:+6
n= 5072 T 507 T T T T 5™
;1 1 1 2 2
I R LA A T T
6. Let z1, z2, and z3 be the amounts of salt in tanks A, B, and C, respectively, so that
;1 1 1 3
U= 10572 2 T 1007t 0T 507 T 50t
a:'—la: 6+1a: 1.7:2 la: 5—3.7: La:—i-ia:
27 100! 1007 100 2 1002775 1002 1003
a:'——l—a:~5~ 1.7: 1.7: 4—-—1—.7: ——1—.7:
37 70072 00° 100 " 20 0¥
7. (a) A model is
dxy T2 Ty
azy _ o —9. =10
& = T0—: Yo =0)=100
dzo 1 T2
a2 _ 5. _3. — 50.
dt oz S o 0=5

(b) Since the system is closed, no salt enters or leaves the system and z;(¢) +22(¢) = 100450 = 150
for all time. Thus z1 = 150 — 25 and the second equation in part (a) becomes
dzz 20150 -z9)  3zp 300 22 3z
dt  100+¢ 100—¢ 100+t 100+t 100—¢

d_:r_2+< 2, 3 )I_ 300
dt 100+¢  100—¢t/ 2" 100+t

which is linear in z9. An integrating factor is

or

e2ln(100+t)—-31n(100—t) — (100 + t)2(100 _ t)—3
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SO
d 2 -3 -3
a—t[(loo +)*(100 — t) " z9] = 300(100 + ¢)(100 — ¢)

Using integration by parts, we obtain

(100 +¢)%(100 — t) 324 = 300 { (100 + ¢)(100 — t) 2 — %(100 —t)7 L+ c} .

Thus
_ 300 ;1 , 1 }
% = 50 TP tc(lOO £)° = 5100 — )7 + 5(100 + £)(100 — 1
300
= (100+t)2[c(100 -t)3+t(100——t)].

~ Using z2(0) = 50 we find ¢ = 5/3000. At t = 30, z2 = (300/130%)(703¢ + 30 - 70) =~ 47.4 lbs.

8. A model is
| dzl = (4 gal/min)(0 1b/gal) — (4 gal/min) (—1—1:1 lb/gal>
dt 200
dza = (4 gal/min) (-1—1?1 1b/gal) ~ (4 gal/min) (—lﬂ:g 1b/gal)
dt 200 150
93 _ (4 gal/min) (-—12 1b/gal> — (4 gal/min) (—1~1:3 1b/gal>
dt 150 100
or
dzl 1
T 50
d:EQ 1 2
at 507 T 75T
dzs 2 1
ETE R

Over a lorig period of time we would expect z1, z2, and z3 to approach 0 because the entering pure
water should flush the salt out of all three tanks.

9. From the graph we see that the populations are first equal
at about t = 5.6. The approximate periods of z and y are
both 45.
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10. (a) The population y(t) approaches 10,000, while the population st
z(t) approaches extinction. %
5 Y

| T 1 i I l_—!
10 20
(b) The population z(t) approaches 5,000, while the population S.y
1
y(t) approaches extinction.
5 X
1 1 ] I
T T 1 3 l't
| 10 20
(¢) The population y(t) approaches 10,000, while the population 3]
10
z(t) approaches extinction.
5
—
4
! 10 20
(d) The population z(t) approaches 5,000, while the population S,y
1
y(t) approaches extinction.
5 X
Y 1 ] I I
l T T 1 T l'l
10 20
Xy £y
1. (@) 10 (b) 10 Y
5 5
|{}i}1}§1, |II§5'||LI€~,
20 40 20 40
Xy Xy
©) 1 d 5
Y Y
5 5
= e
20 40 20 40

In each case the population z(t) approaches 6,000, while the population y(t) approaches 8,000.
12. By Kirchoff’s first law we have iy = iy +143. By Kirchoff’s second law, on each loop we have E(t) =
1 . .
Li} + Riig and E(t) = Li] + Roig + Faso that ¢ = CRyia — CRaiz. Then i3 = ¢’ = CRyih — CRaig

so that the system is
Lis + Lis + Ryio = E(t)

1
—Ryi5 + Rais + 6—2'3 = 0.
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14.

15.

16.
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By Kirchoff’s first law we have i; = i3 + 43. Applying Kirchoff’s second law to each loop we obtain

di

E(t) =4 Ry + ngf + iRy
and
di
E(t) =i1R; + Lz—(—;-:- + 13K3.
Combining the three equations, we obtain the system
di .
Ll_dl?z + (R + Ry)ig+ Rjis=FE

di .
L2£ + Rjig + (Rl + R3)’L3 =F.

By Kirchoff’s first law we have i; = iy + i¢3. By Kirchoff’s second law, on each loop we have
E(t) = L} + Riy and E(t) = Li} + 4o that g = CRiy. Then i3 = ¢ = CRif so that system is
Li' + Rig = E(t)
CRiy+1iy — i1 = 0.
We first note that s(t) + i(t) + r(¢t) = n. Now the rate of change of the number of susceptible
persons, s(t), is proportional to the number of contacts between the number of people infected and
the number who are susceptible; that is, ds/dt = —kis;. We use —k; because s(t) is decreasing.

Next, the rate of change of the number of persons who have recovered is proportional to the number

infected; that is, dr/dt = koi where ko is positive since r is increasing. Finally, to obtain di/dt we

use J J
Zi_t(s+l+r) = En=0
This gives
di dr ds
= —— — — = —koi + kji.
dt - dt  dt 2wt s
The system of equations is then
ds _ —kis
at
% = —koi + k18t
dr
hadl S
at -

A reasonable set of initial conditions is i(0) = 4p, the number of infected people at time 0, s(0) =
n —1g, and 7(0) = 0.

(a) If we know s(t) and 4(t) then we can determine r(¢) from s+i+7 = n.
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(b) In this case the system is

d

d—‘z = —0.2si

i

d—z — —0.74 + 0.2si.

We also note that when i(0) = 4, s(0) = 10 — 4 since r(0) = 0 and () + s(¢t) + r(t) = 0 for
all values of ¢t. Now ky/k; = 0.7/0.2 = 3.5, so we consider initial conditions s(0) = 2, i(0) = 8;
s(0) = 3.4, i(0) = 6.6; s(0) =7, 4(0) = 3; and s(0) = 9, 4(0) = 1.

5\
10

3 10° ' 5 10’
We see that an initial susceptible population greater than ks/k; results in an epidemic in the
sense that the number of infected persons increases to a maximum before decreasing to 0. On
the other hand, when s(0) < ko/k1, the number of infected persons decreases from the start
and there is no epidemic.

17. Since zg > yg > 0 we have z(t) > y(t) and y —z < 0. Thus dz/dt < 0 xyA

and dy/dt > 0. We conclude that z(t) is decreasing and y(t) is
increasing. As t — oo we expect that z(t) — C and y(t) — C, *(0)

where C' is a constant common equilibrium concentration.

18. We write the system in the form

=2 = ke (y —

dt 1(y I)
dy

29— kol —
= 2z —v),
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where k1 = k/V4 and kg = k/Vp. Letting z(t) = z(t) — y(t) we have

dr dy
g{—a—kl(y—x)—’%(ﬂ?—y)
dz
pri ki(—z) — kaz

dz
T + (k1 + k2)z=0.

This is a first-order linear differential equation with solution z(t) = cje~*1752)!, Now

dgt:lz = —'kl(y — :E) = _klz = _k1C16—(k1+k2)t

and

k1 —(k1+k2)t
e + ¢o.
k1 + ko 2

z(t)=q
Since y(t) = z(t) — 2(t) we have

ko 6—(k1+k2)t

+ 2. .
k1 + ks 2

y(t) = —a

The initial conditions z(0) = z¢ and y(0) = yo imply

_ zoks + yoki

cl =x0— and
1 0 Yo k1+k2

The solution of the system is

(t) = (20 = Y0)k1 (k) ko)t Zok2 + Yoks

k1 + ko k1 + ko

(Yo — Z0)k2 (k) +ky)t | Toka +yok1

t = e el 1 2 + —————
v(t) k1+ ko ¢ k1 + ko

As t — o0, z(t) and y(t) approach the common limit

zokz +yok1 _ zok/VB +yok/Va _ zoVa + yoVB
ki+ky — k/Va+k/VB  Va+Vp
= I Ya + Yo e :
Va+Vp Va+VB

This makes intuitive sense because the limiting concentration is seen to be a weighted average of

the two initial concentrations.
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19. Since there are initially 25 pounds of salt in tank A and xlx2
none in tank B, and since furthermore only pure water is 30
being pumped into tank A, we would expect that z1(2) 20
would steadily decrease over time. On the other hand, 10

since salt is being added to tank B from tank A, we would

t
expect zo(t) to increase over time. However, since pure 50 100

water is being added to the system at a constant rate
and a mixed solution is being pumped out of the system, it makes sense that the amount of salt in
both tanks would approach 0 over time.

Chapter 3 Review Exercises

dpP
1. From —— = 0.018P and P(0) = 4 billion we obtain P = 4¢%018 5o that P(45) = 8.99 billion.

dt
, dA A 3 .
2. Let A = A(t) be the volume of COs at time ¢. From T 1.2 — 7 and A(0) = 16{t°> we obtain

A = 48 + 11.2¢7%* Since A(10) = 5.7ft3, the concentration is 0.017%. As t — co we have
A — 4.8t or 0.06%.

3. (a) For0<t<4,6<t<10,and 12 <t < 16, no voltage is applied to the heart and E(t) =0. At
the other times the differential equation is dE/dt = —E/RC. Separating variables, integrating,
and solving for E, we get E = ke~/%C subject to E(4) = E(10) = E(16) = 12. These initial
conditions yield, respectively, k = 12¢4/RC | | = 12¢10/RC  and k = 12¢18/8C, Thus

0, 0<t<4, 6<t<10, 12<t< 16

12eU-0/RC 4 <t <6

12e010-0/RC 10 < ¢ < 12

12¢(16-0/RC 16 <t < 18.

4 6 1012 16 18 '

4. From V dC/dt = kA(Cs — C) and C(0) = Cp we obtain C = C, + (Co — Cy)e™*44/V

98



5.

8.

Chapter 3 Review Exercises

(a) The differential equation is

dT
— =k -y~ B(Ty = T)) = k[(1 + B)T - (BT + T)}.
Separating variables we obtai dT kdt. Then
in = kdt.
parating 1+ BT - Bh+D)
1 _ _ BT+ D k(1+B)t
1+B1n[(1+B)T—(BT1+T2)I—kz‘.+c and T(t)——l_’T+03e .
. -1y
T = =
Since T(0) = T} we must have c3 ) and so

_Bh+Ty, Th-Th 1+ B)t

t) =

T =—7p 1+ B

(b) Since k < 0, lim **B) = 0 and lim T(t) = Bhtly
t—o0 t—o0 1+ B

» BT,+T»\ BT +T
(c) Since Ty = Ty + B(Ty - T), tlist=T2+BT1—B( 1f 2): 1+ 2
— 00 .

1+B 1+ B

: .
. We first solve (1 — Tﬁ) % + 0.2¢ = 4. Separating variables we obtain
di dt
0-2% " 10—¢ lbem
1
—§ln]40 -2 =-Injl0—t|+¢c or V40—2i= (10 —1). 10 20

Since #(0) = 0 we must have c; = 2/4/10. Solving for i we get i(t) = 4t — %tz,
0 <t < 10. For ¢t > 10 the equation for the current becomes 0.2 = 4 or i = 20. Thus
4t - 12, 0<t<10
it) = 1T :
20, t>10

. From y [1 + (y')Q] = k we obtain dz = VY dy. If y = ksin? @ then

F—y
. 1 1 k.
dy = 2ksinfcosfdf, dx =2k (5 ~3 cos29> df, and z==k0— §sm29 +ec

If z=0when 6§ =0 thenc=0.

(a) Fromy = —z — 1+ ¢1€* we obtain ¢ = y+ z so that the differential equation of the orthogonal

dy 1 dz
family is == = ~ or — + z = —y. An integrating factor is €¥, so
Y y+z dy y grating
d -
—@[eyx] =-—ye¥ = eVr=—ye¥+eV+¢c = z=—-y+1+ce V.
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(b) Differentiating the family of curves, we have
;L 1 1
GRS

The differential equation for the family of orthogonal trajectories

is then 9/ = 3. Separating variables and integrating we get

d
——g—:dr
Y
1
—— =T+
_ 1
y= T+c
dm 1 1 aklt
From — = kiz(a — z) we obtain ﬁﬂ—ﬂ dz = kidt so that & = o Ff - From
dt r a-—-z 1+ cre®®

d
Y koxy we obtain

at

aklt’ ka/ky

k
In]y'zﬁln}1+cle +c¢ or Y =Co (1+cleak15)

In tank A the salt input is

gal b gal z2 1b ( 1 ) b
=) (2= 12 (22 2 ) = —zp) —.
(7 min> ( gal) * ( min> (100 gal) M 166%2) min
The salt output is
2 Ib
gLy [z by fpeel) (o o) _ 2, b
min / \ 100 gal min / \ 100 gal 25 " min
In tank B the salt input is
seal)fz by 1 1
min/ \ 100 gal / 20 1 in

gl fz2 by [ ogal) (2o by 1 b
min / \ 100 gal min / \ 100 gal / ~ 20 2 min

The system of differential equations is then

The salt output is

dzi 1 2
= 1 oy — =
AR TR el
dra 1 . 1 -
20t 207



Chapter 3 Related Exercises

1.

2.

Chapter 3 Related Exercises

(a) The differential equation is dP/dt = P(5 — P) — 4. Solving P(5 — P) — 4 = 0 for P we obtain

equilibrium solutions P = 1 and P = 4. The phase portrait is shown below and solution curves

are shown in part (b).

-l | B | i P
- » T -

I
1 4

We see that for Py > 4 and 1 < Py < 4 the population approaches 4 as t increases. For
0 < By < 1 the population decreases to 0 in finite time.

(b) The differential equation is P

dP

— =P(5—P)—4=—(P2-5P+4)=—(P—-4)(P-1).

Separating variables and integrating, we obtain , \% .
dP

(P—4)(P-1)

1/3  1/3 _
(m‘ﬁ) b = —dt

-

= —dt

j
P-1

—F:‘-l = C1€ .

Setting ¢t = 0 and P = Py we find ¢1 = (Py — 4)/(Po — 1). Solving for P we obtain
4(Po—1) — (R~ 4)e”™

(oD = (R = D)e ™

=-—-t+c

1ln
3

P(t) =

(¢) To find when the population becomes extinct in the case 0 < Py < 1 we set P=01in

Po1 R-1°
from part (a) and solve for t. This gives the time of extinction

1 4Py — 1)

5

(a) Solving P(5 — P) — & = 0 for P we obtain the equilibrium solution P = 5. For P # 5,

4
dP/dt < 0. Thus, if Py < -g , the population becomes extinct {otherwise there would be another

equilibrium solution.) Using separation of variables to solve the initial-value problem we get
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(b)

3. (a)

(b)

P(t) = [4Py + (10P, — 25)t]/[4 + (4Po — 10)t]. To find when the population becomes extinct
for Py < § we solve P(t) = 0 for ¢t. We see that the time of extinction is t = 4Py/5(5 — 2F).

Solving P(5— P)—7 = 0 for P we obtain complex roots, so there are no equilibrium solutions.
Since dP/dt < 0 for all values of P, the population becomes extinct for any initial condition.

Using separation of variables to solve the initial-value problem we get

P(t)= g + %—gtan[tan'l<2p\o/§— 5) - %—gt}

Solving P(t) = 0 for t we see that the time of extinction is

f= %(\/ﬁtan'l(w\/g) + V3tan~1[(2P, - 5)/V3]).

Without harvesting, the population is governed by the
logistic equation dP/dt = P(r — rP/K). With initial #0000
population Py, the population was shown in Section 3.2

r

to be 200000
Pt = rhy/K + (rrforPo/K)e"” :
_ By 50 100
PoJK +(1 - By/K)et
To find when P(t) = 1K we solve
By 1 25

=K -1
PJK+(1-R/Ke 20 7 Bt(K-Re"
This gives
1 By 1 70,000
=_Z _— )=~ ~ 19.4 yrs.
b=yl <K - Po) 008 ™ <400,000 = 70,000) S s

Letting K == 400,000, Py = 70,000, and r = 0.08, and
solving
K~ /K2 —-4Kh/r
Py = =P
2
for h, we get h = hg = 4620.
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(¢) The MSY is obtained when Fy = r/2 = 0.04, and the
yield in this case is FP; = KE(1 — E/r) = 8,000. The
limiting population is K (1 — E/r) = 200,000.

4. (a) Letting 1959 be year 0 and 1973 year 14, we obtain the P

graph shown. 400 .
300
*
L]
200 e ® s R
L]
1000 , 00 .
t
2 4 [ 8 10 12 14

(b) Taking P(0) = 1.91/(c - 414 - 294) =~ 78.4613 and ex-

perimenting with the other parameters, we find that the 4% .

o

graph of the logistic function fits the data points reason- 300
ably well for K = 500 and r = 0.11. , 200 o 0

100 A

(¢) The graph is shown with Fy = 78.4613, K = 500,
r=0.11, and h = §rK =~ 6.875. 400

o

300

200

100

(d) The graph is shown with Py = 78.4613, K = 500,
r=0.11, and E = 37 = 0.055. 250

200

o

150

100

50
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4 Higher-Order Differential Equations

Exercises 4.1

1. From y = c1€® + coe™® we find 3/ = c1e® — cpe™®. Then y(0) =c; +c2=0,9'(0) =c1 —co =150
that ¢; = 1/2 and ¢2 = —1/2. The solution is y = %ez - %e—x,

2. From y = c1e*® + cpe™ we find i = 4c1e®® ~ coe™. Then y(0) =c1+co =1, ¢’(0) = 4c; —cp = 2
so that ¢; = 3/5 and ¢3 = 2/5. The solution is y = %e‘lx + %e‘x.

3. Fromy =ciz+cozlnz wefindy =c; +c2(l +1nz). Theny(1) =c; =3, (1) =c1+cp=—1s0
that ¢y = 3 and ¢y = —4. The solution is y =3z — 4z lnx.

4. From y = ¢ +cycosz +cysinT we find o = —cysinz +cgcosz and 4’ = —cypcosz — c3sinz. Then
y(r)=c1—c2 =0,y (7)) = —c3 =2,y"{n) =co = =1 sothat c = —1, cg = —1, and c3 = —2. The
solution is y = —1 — cosz — 2sinz.

5. From y = c1 + coz? we find i/ = 2cpz. Then y(0) = ¢1 = 0, ¥'(0) = 2¢co - 0 = 0 and %'(0) = 1 is not
possible. Since ag(z) = z is 0 at £ = 0, Theorem 4.1 is not violated.

6. In this case we have y(0) = ¢1 =0, ¥'(0) = 2¢c2- 0 = 0 s0 ¢; = 0 and ¢y is arbitrary. Two solutions
are y = 22 and y = 222,

7. From z(0) = zp = c; we see that z(t) = zocoswt + cpsinwt and /() = —zpsinwt + cow coswt.
Then 2/(0) = 21 = cow implies ¢y = z1/w. Thus

I .
z(t) = zp coswt + — sinwt.
w

8. Solving the system
z(to) = c1coswiy + epsinwty =z

Il(to) = —ciwsinwiy + cow coswty = T1
for ¢y and cg gives

wxgcoswty — x1sinwty q T1 coswity + wxg sinwtg
= an 0 = .

w w

C1

Thus . .

wTgCcoswip — x1 Sinwip T1coswiy + wrgsinwty
= coswt + sinwt
w w

z(t)
z

= zo(coswi coswty + sinwtsinwty) + =1 (sinwt coswty — coswt sin wip)
W

= rgcosw(t —tg) + L sin w(t — o).
w
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15.
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17.
18.

19.
20.

Exercises 4.1

. Since as(z) = z — 2 and z¢ = 0 the problem has a unique solution for —oo < z < 2.

Since ag(z) = tanz and z¢ = 0 the problem has a unique solution for ~7/2 < z < 7/2.

We have y(0) = c1+c =0, ¢¥/(1) = cre+coe™ = 1 so that ¢; = ¢/ (62 - 1) and cp = —e/ (62 - 1).

The solution is y = ¢ (eT - 6—1> / (62 - 1).

In this case we have y(0) = ¢1 = 1, y/(1) = 2co = 6 so that ¢; = 1 and ¢o = 3. The solution is

y =1+ 322

From y = c1€® cosz + coe” sinz we find y' = c1e*(—sinz + cosz) + cpe”(cos z + sinz).

(a) We have y(0) = c1 =1, ¥/(0) = ¢1 + ¢ = 0 so that ¢; = 1 and ¢ = —1. The solution is
y=e cosr — e¥sinz.

(b) We have y(0) = ¢1 =1, y(n) = —c1e™ = —1, which is not possible.

(c) We have y(0) = ¢; = 1, y(n/2) = c2¢™? = 1 s0 that ¢; = 1 and cp = e~™2. The solution is

y=e"cosz + e /2% sin .

(d) We have y(0) = ¢1 =0, y(n) = —c1e” = 0 so that ¢ = 0 and cp is arbitrary. Solutions are

y = cpe® sin z, for any real numbers ¢s.

(a) We have y(—1) =c1+c2+3=0, y(1) = c1 + c2 + 3 = 4, which is not possible.

(b) We have y(0) = ¢1-0+cp -0+ 3 = 1, which is not possible.

(c¢) We have y(0) = ¢1 -0+ c2-0+3 =3, y(1) = c1 + ¢ + 3 = 0 so that ¢; is arbitrary and
cp = —3 — c1. Solutions are y = 1% — (c1 + 3)z* + 3.

(d) We have y(1) = c1 + 2 +3 =3, y(2) = 4c1 + 16co + 3 = 15 so that ¢; = —1 and ¢ca = 1. The
solution is y = —z% + 2% + 3.

Since (—4)z + (3)2? + (1)(4z — 32?) = 0 the functions are linearly dependent.

Since (1)0 + (0)z + (0)e* = 0 the functions are linearly dependent. A similar argument shows that

any set of functions containing f(z) = 0 will be linearly dependent.

Since (~1/5)5 + (1) cos? z + (1) sin?z = 0 the functions are linearly dependent.

Since (1) cos 2z + (1)1 + (—2) cos? 2 = 0 the functions are linearly dependent.

Since (—4)z + (3)(z — 1) + (1)(z + 3) = 0 the functions are linearly dependent.

From the graphs of fi(z) = 2+ z and fo(z) = 2+ |z

we see that the functions are linearly independent since

they cannot be multiples of each other.
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26.

27.

28.

Exercises 4.1

) l+z z 22 .
The functions are linearly independent since W (1 + 1z, a:2> =] 1 1 2z|=2#0.
0 0 2
Since (—1/2)e* + (1/2)e™* + (1) sinh z = 0 the functions are linearly dependent.

The functions satisfy the differential equation and are linearly independent since
W (e7%,6%) = 7e* #0
for —o0 < z < oo. The general solution is
y = cre”5% + cpe*®.
The functions satisfy the differential equation and are linearly independent since
W (cosh 2z, sinh 2z) = 2
for —o00 < < o0. The general solution is

y = ¢1 cosh 2x + ¢ sinh 2z.

The functions satisfy the differential equation and are linearly independent since
W (e® cos 2z, €% sin 2z) = 2e** # 0
for —oco < z < o0. The general solution is y = c1e* cos 2z + cpe” sin 2z.

The functions satisfy the differential equation and are linearly independent since
W (e”’ﬂ,xer/g) =e" #0
for —oc0 <z < 0. The general solution is

y = c1e®? + coze®/?.

The functions satisfy the differential equation and are linearly independent since
W (2%, %) =2® #0
for 0 < < co. The general solution is
Yy = c1x3 + cga:4.
The functions satisfy the differential equation and are linearly independent since
W (cos(lnz),sin(lnz)) =1/ # 0
for 0 < x < 0. The general solution is

y = cicos(lnz) + cosin(lnz).
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33.

34.

35.

36.
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The functions satisfy the differential equation and are linearly independent since
%% (m,m_Q,m“anm) =9z 40
for 0 < z < 0o. The general solution is
y=cCz+ 021*2 + 031—2 Inz.
The functions satisfy the differential equation and are linearly independent since
W(l,z,cosz,sinz) =1
for —oo < £ < o0. The general solution is
y=2c¢] + T+ ¢c3¢c08T+ cy8inz.

The functions y; = €%® and yp = €% form a fundamental set of solutions of the homogeneous

equation, and y, = 6e” is a particular solution of the nonhomogeneous equation.
The functions y; = cosz and y2 = sinz form a fundamental set of solutions of the homogeneous

equation, and Yp = xsin z+(cos z) In(cos z) is a particular solution of the nonhomogeneous equation.

The functions y; = €%® and yp = ze®® form a fundamental set of solutions of the homogeneous

equation, and y, = 22e?® + ¢ — 2 is a particular solution of the nonhomogeneous equation.
The functions y1 = z~Y/2 and yp = 7! form a fundamental set of solutions of the homogeneous
equation, and y, = %mQ - %m is a particular solution of the nonhomogeneous equation.
(a) We have g, = 6e% and Yp, = 12¢%, s0
Y — 6yp, + 5yp, = 126 — 36e%® + 15¢% = —0e?”.
Also, y;, = 2z + 3 and y;’,’2 =2, 50
Ypy = 6Up, + 5Ypy, = 2 — 6(2z + 3) + 5(z” + 3z) = 52° + 3z — 16.

(b) By the superposition principle for nonhomogeneous equations a particular solution of y" — 6y’ +
5y = 522 4 3z — 16 — 9¢27 is Yp = 22 + 3z + 3e2%. A particular solution of the second equation
is

1 1 5,

2
§yp1 = —-2z° — 6z — ge

Yp = —2Yp, —
(a) Ypy = 5
(b) yp, = —2z
(€) Yp=Yp +Yp, =52z

(d) yp= %ym — 2yp, = % +4z

37. (a) Since D2z = 0, z and 1 are solutions of y" = 0. Since they are linearly independent, the

general solution is y = c1z + ¢a.
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39.

40.
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11

(b) Since D3z% =0, 2%, z, and 1 are solutions of ™ = 0. Since they are linearly independent, the

general solution is ¥ = ¢;z2 + ¢o + 3.

(c) Since D*z3 =0, z*, 22, z, and 1 are solutions of v = 0. Since they are linearly independent,
the general solution is y = c123 + 2% + c37 + c4.

(d) By part (a), the general solution of " = 0 is y = c1z +co. Since D?22 =2 =2, y, =122 is 2

particular solution of 3 = 2. Thus, the general solution is y = c1z + ¢ + z2.

(e) By part (b), the general solution of ¥/ = 0 is y, = c1z? 4 coz + ¢3. Since D?z® = 3! = 6,

3 1

yp = z° is a particular solution of ¥’/ = 6. Thus, the general solution is y = e122 +epz+c3+1°.

(f) By part (c), the general solution ofy(4) =0isy, = e123+cpz? + ez +cq. Since Dizt = 4! =24,
Yp = z4 is a particular solution of y(4> = 24. Thus, the general solution is Yy = e1z3 + coz® +
C3T + C4 + 174.

By the superposition principle, if y1 = €% and y2 = e™* are both solutions of a homogeneous linear

differential equation, then so are

1 e +e T
=(y1+y2) = 5

1 —
5 =coshz and —2-(y1 — 1Y) = £ % —sinhz

(a) From the graphs of y; = 23 and yo = |z| we see
that the functions are linearly independent since
they cannot be multiples of each other. It is easily
shown that y; = z3 solves z2y” — 4zy’ + 6y = 0.

To show that yo = |z[° is a solution let yo = z3

for z > 0 and let yp = —z3 for z < 0.

1,‘3 73
(b) fz>0thenyr=2%and Wy,ge)=|, , . o/ =0
3z¢ 3z
3 _.3
Yy = —x3 1794 ) = ‘ =0
Ifz <0 then yp = —z° and W(y1,y2) = 322 —322 :
2

This does not violate Theorem 4.3 since az(z) = z* is zero at z = 0.

(c) The functions Y] = z° and Y3 = z? are solutions of z%y” — 4zy’ + 6y = 0. They are linearly
independent since W (1;3, :1:2> =z*+£ 0 for —c0 < T < 00.

(d) The function y = z° satisfies y(0) = 0 and ¢/(0) = 0.

(e) Neither is the general solution since we form a general solution on an interval for which
a2(z) $# 0 for every z in the interval.

-3

Since €273 = e73e% = (e7%e?)e? = e7%¢+2, we see that €3 is a constant multiple of e**2 and the

functions are linearly dependent.
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Exercises 4.2

41. Since Oy; + Oy2 + -+ - + Oyx + lyk41 = 0, the set of solutions is linearly dependent.

42. The solutions are linearly dependent. Suppose n of the solutions are linearly independent (if not,
then the set of n + 1 solutions is linearly dependent). Without loss of generality, let this set be y,

Y2, .--, Yn. Then y = c1y1 + coy2 + - - - + ¢cn¥n is the general solution of the nth-order differential
equation and for some choice, ¢}, ¢, ..., ¢}, of the coefficients yn41 = cjy1 +chy2 + - +chyn. But
then the set y1, ¥2, .-+, Yn, Yn+1 is linearly dependent.

Exercises 4.2

In Problems 1-8 we use reduction of order to find a second solution. In Problems 9-16 we use formula
(5) from the text.

1. Define y = u(x)e?* so
Y = 2ue® 4 e, o = P 4 4ePU 4 46y, and " — 4y + dy = 4e%u" = 0.
Therefore u” = 0 and u = c1z + c3. Taking ¢; = 1 and c3 = 0 we see that a second solution is

yo = ze®<.

-

2. Define y = u(z)ze™* so
v =1 ~-z)eFu+ze %, ¥ =ze T +2(1-2)e”" - (2 - z)e ",
and )
V'+2% +y=eF(z" +2¢)=0 or u"+ ;u' =0. -

) 2 . . .
If w = v we obtain the first-order equation w'+= w = 0 which has the integrating factor e2f dz/z =
z

z2. Now J
2 - 2
— z°w] =0 gives z°w=rc
7p ] g
S 1 -
Therefore w = u/ = ¢/2? and u = ¢;/z. A second solution is yp = i T=¢e"
3. Define y = u(z) cos4z so
y' = —dusindz + v’ cosdz, 3’ =" cosdz — 8u' sindx — 16ucosdz

and
Y’ + 16y = (cosdz)u” — 8(sindz)u’ =0 or u” - 8(tandz)u' = 0.

If w = u’ we obtain the first-order equation w’ — 8(tan4z)w = 0 which has the integrating factor

e~8[tandzdr _ (o2 40 Now

dix [(COS2 4r)w] =0 gives (cos? 4r)w =c.
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Therefore w = u' = csec? 4z and u = c1 tan4z. A second solution is yo = tan 4z cos 4z = sin 4z.

. Define y = u(z) sin 3z so
y = 3ucos3z +u'sin3z, y” =u"sin3z + 6w’ cos 3z — usin 3z,

and
y" + 9y = (sin3z)u” + 6(cos3z)u’ =0 or u” +6(cot3z)u’ = 0.
If w = v we obtain the first-order equation w’ + 6(cot 3z)w = 0 which has the integrating factor

8 cot3zde _ 5in23, Now

%[(Sin2 3z)w] =0 gives (sin?3z)w =c.

Therefore w = v’ = ccsc? 3z and u = ¢1 cot 3z. A second solution is y2 = cot 3z sin 3z = cos 3z.

. Define y = u(z) coshz so
y' = usinhz + v/ coshz, 3" =u"coshz + 2u'sinhz +ucoshz

and
y" —y = (coshz)u” + 2(sinhz)u’ =0 or u’ +2(tanhz)u’' = 0.

If w = v we obtain the first-order equation w’ + 2(tanh z)w = 0 which has the integrating factor

e2[tanhzds — osh? . Now

. [(cosh? z)w] =0 gives (cosh?z)w = c.

T

Therefore w = v’ = csech®z and u = c1 tanhz. A second solution is y2 = tanh z coshz = sinh z.
. Define y = u(z)e5® so

Y =55y + 5,y =B + 10550 + 25¢5%u

and
Y — 25y =5 (u +10u/) =0 or u’+ 100 =0.

If w = v/ we obtain the first-order equation w’+ 10w = 0 which has the integrating factor el0fdz -
10z
e, Now

w]=0 gives e%y=c

dx

% and u = c;e" 9%, A second solution is y2 = e

d [6101:

Therefore w = v/ = ce10 1028z . =5z

. Define y = u(z)e?*/3 so

2
yl — 56211:/3

u+ 621:/311,/, y// _ eQz/Su// + %621:/3”/ + geQz/Su

and
9" — 12y + 4y = 9e%/3y" = 0.
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Therefore v” = 0 and v = c;z + ¢;. Taking ¢; = 1 and ¢; = 0 we see that a second solution is
yo = ze?*/3,
Define y = u(z)e*/? so
y/ - -l—eI/BU + ear:/Bu/7 y// - ez/Bu// + gez/Bu/ + lez/Bu
3 3 9
and 5
6y +y —y=eB6u" +5)=0 or '+ —6-u/ =0.

If w = u’ we obtain the first-order equation w’+%w = 0 which has the integrating factor e(%/6) =z —

e5%/6 Now

di [3/%w] =0 gives €>/°
z

Therefore w = v’ = ce™5%/8 and u = c1e=3%/8. A second solution is yg = e

w=cC.

—52/6,7/3 _ o—%/2
Identifying P(z) = —~7/z we have
- [=(7/z)dz 1
Yo =x4/§-—m8——dx=x4/;dm=m4ln|m|.
A second solution is yp = z4 In |z].
Identifying P(z) = 2/z we have

o e-—f(?/:r)d:r o 6 __l 3
y2—$/ o, dx—x/m dr = SI .

A second solution is yp = z73.

Identifying P(z) = 1/z we have

—fd:r/x d 1
[ T
QQZIHI/WdIZIHI/m—IHI<—I—H—m‘>——1.

A second solution is yg = 1.

Identifying P(z) = 0 we have

yo = /2 lnm/ ze:;hfl:z =7/%Inz (—lnim) = —z!/2,
A second solution is y = z!/2.
Identifying P(z) = —1/z we have
e~ f —dz/= z

y2 = zsin(In x)/ dz = zsin(ln m)/ dz

22 sin?(In z) z2sin?(Inz)
= [zsin(lnz)] [~ cot(Inz)] = —z cos(In z).

A second solution is yo = zcos(Inz).
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Identifying P(z) = —3/z we have
e—f—3 dz/z 3

14 cos?(In z)

z

dzr

yg = z2 cos(In ) / dz = z%cos(Inz) /

z¥cos?(lnz)
= 22 cos(In z) tan(In z) = z?sin(In z).

A second solution is y2 = z%sin(ln z).

Identifying P(z) = 2(1 + )/ (1 -2z - :1;2> we have

e—f2(1+z)dz/(1—2z—zz) eln(l—Zz—zz)

y2=($+1)/ ($+1)2 dl‘=(l‘+1)/——($—+—ﬁz——d1}
— 2z — 22 2
=(x+1)[—x+l—x}=—2~a:2—$.

A second solution is yg = 2% + z + 2.

Identifying P(z) = —2z/ (1 - x2) we have

e

A second solution is y2 = ln |(1 + z)/(1 — z)].

—2x

Define y = u(z)e™** so

Y = —2ue™® +le™, =T _ /e 4 gy

and
Y —dy=eu 4™y =0 or v -4/ =0

If w = u' we obtain the first order equation w’ — 4w = 0 which has the integrating factor e~z =

e %% Now

4
dx

Therefore w = v/ = ce*® and u = cre

[e™4w] =0 gives e w=c
4z A second solution is yp = e~ 2%e*® = 2 We see by

observation that a particular solution is y, = —1/2. The general solution is

- 1
y=cire” % + e — >

Define y = u(z) - 1 so

yl — 'U.I, yll — ull and yll -+ y/ — ull -+ ul — O
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If w = u’ we obtain the first order equation w’' + w = 0 which has the integrating factor efdr — oz
Now

d
E[e’”w] =0 gives e*w=c

and u = c1e” %, *

! -z A second solution is yp = 1-€¢7% = e™*. We see by

Therefore w = v/ = ce

observation that a particular solution is y, = z. The general solution is
y=1c + e 4z

Define y = u(z)e® so
v =ue® +u'e®, Y =u"e® 4+ 2u'e” + ue®
and
V' =3 +2y=€"u" - =0 or u' —u =0.

-

If w = u’ we obtain the first order equation w’—w = 0 which has the integrating factor e~ Ja= = ¢

Now
d, _, . —z
E[e wj=0 gives e *w=c
Therefore w = «/ = ce® and u = ce®. A second solution is yo = e%e® = 2. To find a particular
solution we try y, = Ae®®. Then y' = 3Ae*, ¢ = 9A4€%, and 94e* — 3 (3A63’”> + 24e% = 5¢32,

Thus A= 5/2 and y, = %631. The general solution is
T 2z 5 3z
Yy = c1e” +coe”” + 56 .

Define y = u(z)e® so
v =ue® +u'e®, 3 =u"e" + 2u'e” + ue®
and
v —dy +3y=e"u" -2 =0 or u -2 =0
-2 [dx

If w = ' we obtain the first order equation w’ — 2w = 0 which has the integrating factor e

e~2% Now

d
E[e_zzw] =0 gives e Fw=c

22 and u = c1e?®. A second solution is yg = e%e?® = ¢3%. To find a particular

Therefore w = u' = ce
solution we try y, = az +b. Then y, = a, yp = 0, and 0 — da + 3(az + b) = 3az ~da + 3b = z.
Then 3a =1 and —4a+3b=0soa=1/3 and b = 4/9. A particular solution is yp = %I + % and

the general solution is

1 4
3z

=c1e"+ e + -z + =,
4 1 2 3 9

113



Exercises 4.2

21, (a) For m; constant, let y; = e™Z. Then y] = m1e™? and y} = m$e™. Substituting into the
differential equation we obtain
oyl + by} + ey = amie™? + bmie™? + ce™?
= e™%(am? + bmy +¢) = 0.

Thus, y1 = ™7 will be a solution of the differential equation whenever am? + bmi + ¢ = 0.

Since a quadratic equation always has at least one real or complex root, the differential equation
must have a solution of the form y; = ™%,

(b) Write the differential equation in the form
b c
y//+ _y/+_y :O,
a a

and let y; = €™!% be a solution. Then a second solution is given by

iz e—EI/a
Yy =e / IO dz

— emlx/e—(b/a+2m1)$dx

1 miz ,—(b/a+2m1)
=—_— -b/2
b/a+2m1e ¢ (m1 # —b/2a)
. o~ (b/atmy).
b/a + 2m1
Thus, when m; # —b/2a, a second solution is given by y2 = e™2% where mg = —b/a — m;.
When m; = —b/2a a second solution is given by
Yo = emlz/d:r = g™,
(¢) The functions
: 1 iz —iz 1 iT —iz
= — - osz = _—(e" +e
sinz 22_(e e~ ) cos T 2( )
. 1 T - 1 T -
smh:r=§(e —e ) coshx=§(e +e77)

are all expressible in terms of exponential functions.
22. Wehavey] =land yf =0,s0 zyf —zy; +y1 =0 —z + 2 = 0 and y1(z) = z is a solution of the
differential equation. Letting y = u(z)y1(z) = zu(z) we get
Y =zu'(z) +u(z) and y" =zu’(z) + 20/ (z).

Then zy” — zyf + y = 220" + 2zv/ — 2%/ — zu + zu = 220" — (2% — 2z)u’ = 0. If we make the

substitution w = v/, the second-order linear differential equation becomes z?w’ — (z? — z)w = 0,
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which is separable:

d 1
%= (-2
L (1-2)a

lmw=z-Ilnz+c¢

eI

w=Cc1—.
z
Then v/ = cje*/z and u = ¢; [e®dz/z. To integrate e”/z we use the series representation for e”.

Thus, a second solution is

x

y2 = zu(z) = clx/% dz

1 1 5 134
=c1x/;(1+z+az +ix +--~>dz

1 11,
=c1x/(;+1+§x+az +>dI

= (1 PP S S )
I R TCT) R TET)

= cl(zlnx+x2+ 5(17!)2;3 + 3—(%)—:64-%---).
An interval of definition is probably (0, c0) because of the Inz term.
23. (a) We have y' =¢" =¢7, 50
zy” — (z + 10)y’ + 10y = ze* — (z + 10)e” + 10e” = 0,
and y = e” is a solution of the differential equation.

(b) By (5) a second solution is

e—fP(:c)d:c . ef’—'tél—gd:c . ef(l+10/:c)d:c
Y2 =1 / T dz = /——-————eg:c dr=e¢ /——62“ dz
e:c+ln:clo

= ¢¥ / s dr = e* / 2% % dz

= e%(—3,628,800 — 3,628,800z — 1,814,400z% — 604,800z% — 151,200z*
— 30,240z° — 5,040z% — 72027 — 90z — 10z° — 210~

= —3,628,800 — 3,628,800z — 1,814,400z% — 604,800z — 151,200z*

— 30,2402° — 5,0402% — 72027 - 9028 — 102° — 21°.
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10

1 .
(c) By Corollary (A) of Theorem 4.2, —% = o z" is a solution.
! = nl

Exercises 4.3

From 4m? +m = 0 we obtain m = 0 and m = —1/4sothat y =¢; + coe /4,

From m? — 36 = 0 we obtain m = 6 and m = —6 so that y = c1e5% 4 coe~ 6%,

2 2z

From m? —~m — 6 = 0 we obtain m = 3 and m = —2 so that y = c1e3% + coe™

From m? — 3m + 2 = 0 we obtain m = 1 and m = 2 so that y = c1e® + cpe??.

From m? + 8m + 16 = 0 we obtain m = —4 and m = —4 so0 that y = c;e %% + cpze™%.

From m2 — 10m + 25 = 0 we obtain m = 5 and m = 5 so th.at y=c1e® + coze®.
From 12m?2 — 5m — 2 = 0 we obtain m = —1/4 and m = 2/3 so that y = cle"”/4 + 0262’”/3.

From m?2 + 4m — 1 = 0 we obtain m = —2 % /5 so that y = c16<"2+‘/§)1 + cze(_2“/§)’”.

o= =
N O~ O

13.

14.

15.

16.

17.

T

From m? + 9 = 0 we obtain m = 3i and m = —3; so that Yy = ¢1 cos 3x + cgsin 3x.

From 3m? + 1 = 0 we obtain m = i/v/3 and m = —i//3 so that y = ¢; cosz/v/3 + ¢y sinz/v/3.
From m? — 4m + 5 = 0 we obtain m = 2 £ 4 so that Yy = 621(61 €osT + casin ).

. From 2m? +2m + 1 = 0 we obtain m = —1/2 £ /2 so that

y=e"%?(cicosz/2 + casinz/2).
From 3m? + 2m + 1 = 0 we obtain m = —1/3 £ v/24/3 so that
y=e%3 (cl cosvV2z/3 + co sinx/ix/3) :

From 2m? — 3m + 4 = 0 we obtain m = 3/4 & v/23i/4 so that
y = e3%/4 (cl cos /23 /4 + co sin \/5533/4) )

3

From m3 — 4m? — 5m = 0 we obtain m =0, m = 5, and m = —1 so that

Y =c1 +cpe®® + cze 7.
From m® — 1 = 0 we obtain m = 1 and m = —1/2 + v/34/2 so that
y=cie® + e */? (cz cos V3z/2 + c3sin \/5:5/2) .
Fromm?——5m2+3m+9=0weobtainm=—1,m=3, and m = 3 so that

y =cie~% + 3% + caze’®.

116



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Exercises 4.3

From m3 + 3m? — 4m — 12 = 0 we obtain m = —2, m = 2, and m = —3 so that
y=cre” % + c0e®® + cze .
From m® +m? — 2 = 0 we obtain m = 1 and m = —1 = so that
u=cret + e (cocost + cysint).
From m3 —m? — 4 = 0 we obtain m = 2 and m = —1/2 + /71/2 so that
T =cre?t +et/? (cz cosV7t/2 + casin \/?t/,?) )
From m? 4+ 3m?2 + 3m + 1 = 0 we obtain m = —1, m = —1, and m = —1 so that

2, —x

y=cie "+ coze ® + czze .

From m® — 6m? + 12m — 8 = 0 we obtain m = 2, m = 2, and m = 2 so that
y = c1€”® + cpze?® + caz’e™.
From m? +m3 4+ m? =0 we obtainm =0, m =0, and m = —1/2 £ /34/2 so that
y=c +CT + e~ /2 (03 cos \/§x/2 + ¢4 8in \/§:z:/2> .
From m* —2m2 +1 =0 we obtain m =1, m =1, m = —1, and m = —1 so that
y = c1e* + caze® + c3e” + cqze . .
From 16m? 4 24m? + 9 = 0 we obtain m = +/3i/2 and m = +v/34/2 so that
y = ¢1c0sv3z2/2 + cysin V3z/2 + ez cos V3z/2 + cqz sin V3 /2.
From m? — 7m? — 18 = 0 we obtain m = 3, m = —3, and m = /24 so that
y=c1% + coe 3% + c3c08 V2 z + ¢y sin V2 1.

From m® 4+ 5m* — 2m3 — 10m? + m+5=0we obtain m = —~1, m=—1, m =1, and m = 1, and

m = —5 so that

u=-cre”" + core™" + cze” + care” + cxe” .

From 2m® — Tm* + 12m® + 8m? = Q we obtain m =0, m= 0, m = ~1/2, and m = 2 & 27 so that
T=c1+ s+ cze %+ €%(cq cos 25 + c5 sin 25).

From m? + 16 = 0 we obtain m = +4i so that y = ¢; cos 4z + cosin4z. If y(0) = 2 and 3/(0) = -2

then ¢; =2, ¢ = —1/2, and y = 2cos4z — %sinél:z:.

From m? + 1 = 0 we obtain m = =i so that y = ¢; cosf + ¢y sinf. If y(r/3) = 0 and ¢/(7/3) = 2
1 3 3 1

then 501 -+ —\é—:CQ =0, —%q -+ §C2 =2,s0c0=—V3,g=1,andy = —/3 cosf + sind.

117



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Exercises 4.3

From m? —4m — 5 = 0 we obtain m = —1 and m = 5, so that y = cje™% + 9. If y(1) =0
and y/(1) = 2, then cie™! + ce® = 0, —cre™! + 5¢0e® = 2, 50 ¢; = —e/3, ¢y = e79/3, and
Y= _%el——z + %651—5‘

From 4m? —4m—3 = 0 we obtain m = —1/2 and m = 3/2 so that y = c1e™%/2+9¢%%/2. If 4(0) = 1

and y'(0) = 5 then ¢j +c2 = 1, —%cl—f—%cz =5,s0c;=—7/4,ca=11/4,andy = —%e‘$/2+14—163$/2.
From m2+m+2 = 0 we obtain m = —1/24/71/2 so that y = e~%/2 (cl cos /7x/2 + cysin ﬁz/Q).
If 4(0) = 0 and %/(0) = 0 then ¢; = 0 and c2 = 0 so that y = 0.

From m? — 2m + 1 = 0 we obtain m = 1 and m = 1 so that y = ¢je% + coze®. If y(0) = 5 and
y'(0) = 10 then ¢; = 5, ¢; +c2 =100 ¢; = 5, co = 5, and y = 5¢* + 5ze”.

From m3+12m2+36m = 0 we obtain m = 0, m = —6,and m = —6sothat y = cl+cge“6$+03ze‘6$.
If y(0) =0, ¥'(0) =1, and y”(0) = —7 then
c1+e2=0, —6cg+cy=1, 36cs—12c3=—7,
so ¢1 =5/36, cg = —5/36, c3 = 1/6; and y = 55(—5 - %e—w + %ze‘sz.
From m3 +2m? — 5m — 6 = 0 we obtain m = —1, m = 2, and m = —3 so that
y=cre” % + e® + 3.

If y(0) =0, ¥'(0) = 0, and y”’(0) = 1 then

c1+e+ec3=0, —c1+2c9—-3c3=0, c1+4c0+93=1,
so ¢; = —1/6, ca = 1/15, c3 = 1/10, and

y= —ée"x + 1—15-te + %6—32.

From m? — 10m + 25 = 0 we obtain m = 5 and m = 5 so that y = ;e + coxe®*. If y(0) = 1 and
y(1) =0then ¢y =1, c1e® +c2e® = 0,50 ¢; = 1, 3 = —1, and y = 5% — 757,

From m? + 4 = 0 we obtain m = +2i so that y = ¢; cos 2z + cpsin2z. If y(0) = 0 and y(7) = 0
then ¢ = 0 and y = cpsin 2z.

From m? + 1 = 0 we obtain m = i so that y = ¢jcosz + cosinz. If 3/(0) = 0 and 3/(7/2) = 2
then ¢;1 = —2, ¢co =0, and y = —2cosz.

From m? — 2m + 2 = 0 we obtain m = 1 £ so that y = e®(c; cosz + cosinz). If y(0) = 1 and
y(m) = 1 then ¢; = 1 and y(r) = e" cos7 = —e”. Since —e” # 1, the boundary-value problem has
no solution.

The auxiliary equation is m? — 3 = 0 which has roots —/3 and v/3. By (10) the general solution
sy = cle‘/gz + cze“/gz. By (11) the general solution is y = ¢ cosh 3z + cosinh+/3z. For
y = cle‘/gx + (:Qe"‘/gz the initial conditions imply ¢1 + ¢2 = 1, V3¢ — /3¢y = 5. Solving for ¢; + c2
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42,

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

Exercises 4.3

we find ¢; = é(3 +5v3) and ¢y = %(3 - 5v3)soy = %(3 + 5\/5)6\/§I + é(3 - 5\/5)6\/51. For
y = c1 cosh v/3z + ¢ sinh v/3z the initial conditions imply ¢; = 1, v/3¢cy = 5. Solving for ¢; and ¢y
we find ¢ = 1 and ¢p = g\/ﬁ so y = cosh \/§x+§ 3sinh +/3z.

The auxiliary equation is m? — 1 = 0 which has roots —1 and 1. By (10) the general solution is
y = c1e® + cge™%. By (11) the general solution is y = c1 coshz + ¢cp sinh z. For y = ¢1e¥ + cpe™" the
boundary conditions imply ¢;4+cg = 1, cie—cge™! = 0. Solving for ¢; and ¢ we find ¢; = 1/(1+62)
and ¢y = e2/(1+¢€?) soy = e*/(1 +€2) +e2e7%/(1 +¢€?). For y = ¢ coshz + ¢z sinh z the boundary
conditions imply ¢1 = 1, ¢co = —tanh 1, so y = coshz — {tanh 1) sinh z.

The auxiliary equation should have two positive roots, so that the solution has the form y =
c1e®17 + cpek2?. Thus, the differential equation is (f).

The auxiliary equation should have one positive and one negative root, so that the solution has the

k12 1 cge™2% . Thus, the differential equation is (a).

form y = c1e

The auxiliary equation should have a pair of complex roots a & bi where a < 0, so that the solution

has the form €% (c; cos bz + ¢y sin bz). Thus, the differential equation is (e).

The auxiliary equation should have a repeated negative root, so that the solution has the form

y = c1€”% + coze~*. Thus, the differential equation is (c).

The differential equation should have the form 4" + k%y = 0 where k = 1 so that the period of the

solution is 27r. Thus, the differential equation is (d).

The differential equation should have the form 3" + k?y = 0 where k¥ = 2 so that the period of the

solution is 7. Thus, the differential equation is (b).

(a) The auxiliary equation is m? — 64/L = 0 which has roots +8/+/L. Thus, the general solution
of the differential equation is = = ¢; cosh(8t/Vv/L ) + co sinh(8t/v/'L).

(b) Setting z(0) = zo and £/(0) = 0 we have ¢; = zg, 8co/v/L = 0. Solving for ¢; and ¢y we get
¢1 =20 and ¢g = 0, so z(t) = o cosh(8t/VL). .

(c) When L = 20 and zp = 1, z(t) = cosh(4tv/5). The chain will last touch the peg when
z(t) = 10. Solving z(t) = 10 for ¢t we get t; = %\/gcosh_l 10 = 1.67326. The velocity of the
chain at this instant is 2'(¢;) = 124/11/5 ~ 17.7989 ft/s.

Both —C{1] and ¢ represent arbitrary constants, and each may take on any real value.

Since (m—4)(m+5)? = m3 +6m? — 15m ~ 100 the differential equation is "' +6y" — 15y’ — 100y = 0.

The differential equation is not unique since any constant multiple of the left-hand side of the

differential equation would lead to the auxiliary roots.

A third root must be m3 = 3 — 7 and the auxiliary equation is

(m+é—)[m—(3+i)][m—(3—i)]= <m+%)(m2—6x+10)=m3—1—21m2+7m+5.
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53.

54.

55.

56.

Exercises 4.3

The differential equation is

n

11
Yy - 7y”+7y’+5y =0.

—4z

From the solution y; = ¢ cos z we conclude that m; = —4 + ¢ and mo = —4 — ¢ are roots of the

auxiliary equation. Hence another solution must be y3 = e™%*

sinz. Now dividing the polynomial
m3 +6m2+m—34 by [m— (=4 +1i)][m — (=4 —14)] = m% +8m + 17 gives m — 2. Therefore m3 = 2
is the third root of the auxiliary equation, and the general solution of the differential equation is

4

4 2z

y=-cre *Fcosz +coe *Tsinz + c3e

Since 1/z — 0 as £ — oo, we would expect the solutions of y” + (1/z)y’ + y = 0 to behave similar
to the solutions of 3’ + y = 0; that is, like sinz and cosz for large values of z. Solutions of

zy” +1y +zy = 0 are obtained using an ODE solver and are shown below with the indicated initial

conditions.

¥ ¥
1 1
0.5 0.5

- 3 ox - Ox
0.5 -0.5
-1 -1

y(1)=0, (1) =2 y(1)=2, ¥(1)=0

Factoring the difference of two squares we obtain
mitl=m2+12-2m?>=m?+1-V2m)(m®>+1+v2m) =0.

Using the quadratic formula on each factor we get m = ++/2/2 + v/2i/2. The solution of the
differential equation is

2 2 2 2
y(z) = ¢V22/2 (clcos—\g——r—f—czsin—\é—_x) +e~V22/2 <C3cos§r+c4;sin§x>.

(a) The auxiliary equation m?2 + bm + ¢ = 0 has solutions m = (—b + Vb2 — 4¢)/2. If b < 0, then
the solution will contain a term of the form €% for 8 > 0, and the solution cannot approach
0 as ¢ — oo. Thus, for the solution to approach 0 we must have b > 0. Now, if ¢ < 0 then
Vb =4c > b and —b + Vb2 —4c > 0. Thus y(z) cannot approach 0. Finally, if ¢ > 0 then
Vb2 —4c < band —b++/b% — 4c < 0. In this case the solution has terms of the form e* where
B < 0. Therefore y(z) — 0 as £ — oo if and only if b > 0 and ¢ > 0.

(b) If 2 — 4dc > 0, then y = c1e™7% + ¢9e™2% and the only solution satisfying ¥(0) =0, y(1) = 0 is
y=0.
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58.
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If b% — 4c = 0, then y = ;™ + cote™*. Again, the only solution satisfying y(0) = 0, y(1)=0
isy=0.

If 52 — 4¢ < 0 then

y = cre 2 cos\/dc — b2 1 + coe /2 sin \/dc — b2 7.

Now y(0) = 0 implies ¢; = 0 and

y = coe™"/?sin \/4c — b2 z.

If we are to have a nontrivial solution, the condition y(1) = 0 implies vdc — b2 = nrm or
4c — b? = n27? for n a positive integer.
The auxiliary equation is m2 + A = 0 and we consider three cases.

Case I When A = 0 the general solution of the differential equation is y = ¢; + coz. The boundary
conditions imply 0 = y(0) = ¢; and 0 = y(n/2) = co7m/2, so that ¢ = ¢z = 0 and the problem
possesses only the trivial solution.

Case II When X < 0 the general solution of the differential equation is y = clemz +cpem VAT
or alternatively, y = cjcoshv/—Xz + copsinhv/=Xz. Again, y(0) = 0 implies ¢; = 0 so y =
cgsinh /=X z. The second boundary condition implies 0 = y(7/2) = cgsinh/=X7/2 or co = 0. In
this case also, the problem possesses only the trivial solution.

Case III  When X\ > 0 the general solution of the differential equation is y = c¢; cos Viz +
casinvAz. In this case also, y(0) = 0 yields ¢; = 0, so that y = cpsin VA z. The second boundary
condition implies 0 = cgsinvA7/2. When vA7/2 is an integer multiple of 7, that is, when
VX = 2k for k a nonzero integer, the problem will have nontrivial solutions. Thus, for A = 4k? the
boundary-value problem will have nontrivial solutions y = cg sin 2kz, where k is a nonzero integer.
On the other hand, when v/) is not an even integer, the boundary-value problem will have only the

trivial solution.

Applying integration by parts twice we have

/e“f(z)dz= ie“f( ) — %/e“f’(x)dz
=2 e (o) - - [Sena) - 2 [enf (@) dal
it s b e

Collecting the integrals we get

J e (1) - 5 5"@) do = 2 e 5(z) - = = f'(a),



59.

60.

61.

62.

Exercises 4.3

In order for the technique to work we need to have

/e‘” <f(z) - a—12f”($)> dr = k/e‘”f(a:)dr
f(&) = = 1'(2) = k£ (z),

where k # 0. This is the second-order differential equation

F(z) +a(k— 1) f(z) = 0.

If k<1, k+# 0, the solution of the differential equation is a pair of exponential functions, in which
case the original integrand is an exponential function and does not require integration by parts for
its evaluation. Similarly, if K = 1, f”(z) = 0 and f(z) has the form f(z) = az + b. In this case a
single application of integration by parts will suffice. Finally, if & > 1, the solution of the differential
equation is

f(z)=cicosavk — 1z + cosinavk — 1z,

and we see that the technique will work for linear combinations of cos az and sin az.

Using a CAS to solve the auxiliary equation m3 — 6m?2 + 2m + 1 we find m; = —0.270534,
mo = 0.658675, and m3 = 5.61186. The general solution is

y = 616—0.270534:1: + 6260.658675:1: + 0365'611861‘

Using a CAS to solve the auxiliary equation 6.11m? + 8.59m? + 7.93m + 0.778 = 0 we find
my = —0.110241, ma = —0.647826 + 0.857532i, and m3 = —0.647826 — 0.857532;. The general
solution is

y = ce” 0110241 —0.6478262 (1 0650.8575322 + c3 sin 0.857532).

Using a CAS to solve the auxiliary equation 3.15m* — 5.34m? + 6.33m — 2.03 = 0 we find
myp = —1.74806, my = 0.501219, m3 = 0.62342 + 0.5889654, and my4 = 0.62342 — 0.588965:. The

general solution is

y= cre~ 174806z | () 00501219z 60'62342””(@, cos 0.588965z + c4 sin 0.588965z).

Using a CAS to solve the auxiliary equation m* + 2m? — m + 2 = 0 we find m; = 1/2 + \/§i/2,
mg =1/2 —+/34/2, m3 = ~1/2+ /74/2, and mg = —1/2 — /74/2. The general solution is

3 3 7 7
Y= %/? <cl cos %—z + ¢p sin \—g—_r> +e7%/? <63 cos \—/2:$ + ¢4 8in %—r> .
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64.

Exercises 4.4

From 2m* + 3m3 — 16m2 + 15m — 4 = 0 we obtain m = —4, m = -;—, m =1, and m = 1, so that
y = c1e™4 4 cpe®/? + c3e® + cqze®. If y(0) = —2, ¥ (0) = 6, ¥”(0) = 3, and ¢"'(0) = % , then

ci+cotez=—2
1
—4C1+§C2+C3+C4=6
1
1661+ZCQ+C3+264=3

1 1
—64c1 + gcg+cg+304 =3

_ .4 - 116 918 _ _ 58
S0 ¢ = —wg, Q= —"3",03 =%, 4= —%,and

4 4p 116 ,p 918, 58

y=—%e —Te +¥e —?me

From m? — 3m® + 3m? —m =0 we obtain m =0, m=1, m =1, and m = 1 so that
y'=c1 + co€® + c3ze® + cqz?e®. If y(0) = 0, y'(0) = 0, ¥’(0) = 1, and y"(0) = 1 then

c1+co=0, co+e3=0, coa+2c3+2c4=1, cog+3cz+6cqg=1,

soc1=2,c0=-2,¢c3=2,¢4=—1/2, and
1
y=2— 2" + 22" — 5:17261.
Exercises 4.4
1. From m?+3m + 2 =0 we find m; = —1 and mg = —2. Then y. = c1e™% + coe™ %% and we assume
yp = A. Substituting into the differential equation we obtain 24 = 6. Then A = 3, y, = 3 and
y=rcie % +coe 4+ 3.
2. From 4m? +9 = 0 we find my = —%i and mg = %z Then y. = ¢ cos %x + ¢9 sin %m and we assume
yp = A. Substituting into the differential equation we obtain 94 = 15. Then A = %  Yp = % and
=c cos3x+c sin3m+ 5
y=0a 3 2 3 3"
3. From m2 — 10m + 25 = 0 we find mi1 = mo = 5. Then y. = c1€° + cpzed® and we assume

yp = Az + B. Substituting into the differential equation we obtain 264 = 30 and —10A+25B = 3.
ThenA=%, B=%,yp=gx+g,and

6
y = c16% + coze™® + =% + 5
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=32 4 9e?® and we assume

. From m? +m — 6 = 0 we find m; = —3 and mg = 2. Then y. = cie
Yp = Az + B. Substituting into the differential equation we obtain —6A4 = 2 and A—6B = 0. Then

1 _ 1 _ 1 1
A=—§,B——ﬁ,yp———§x~ﬁ,and

1 1
-3z 2z
=c + _——T = —.
Y 1€ c2€ 3 18

=22 and we assume

. From %mQ +m+1=0wefind m; = mg = 0. Then y. = c1e”%* + coze
Yp = Az® + Bz + C. Substituting into the differential equation we obtain A = 1, 24+ B = =2,

and %A+B+C=O. ThenA:1,B=—4,C=%,yp=x2—4x+%,and
7
y=cle"2”+cwe—2”+x2——4x+—2-.

. From m? — 8m + 20 = 0 we find m; = 2+ 44 and mo = 2 — 44. Then y, = eZI(cl cos4z + o sin 4z)
and we assume y, = Az + Bz + C + (Dz + E)e®. Substituting into the differential equation we

obtain
2A—-8B+20C =0

—-6D +13E =0

1644+ 20B=10
13D = -26
20A = 100.

ThenA=5,B=4,C=%,D=——2,E=~%,yp=5x2+4x+%+(—2x~%>ezand

11 12
y = e*(c1 cos 4z + cosindz) + 522 + 4z + o + <—2a: - ﬁ) e”.

. From m?2 +3 = 0 we find m; = V34 and my = —v/34. Then y. = cicosV3z + cpsinyv3z
and we assume y, = (Az? + Bz + C)e3%. Substituting into the differential equation we obtain
2A+6B +12C = 0, 12A+12B =0, and 124 = —48. Then A = —4, B =4, C = —-%,
Yp = (—43:2 + 4z — %) 3% and

4
= ¢1c08V3z + casinV3z + <~4$2+4x— §> ez,

32/2 1 c9e™%/2 and we assume

. From 4m2?—4m—3 = 0 we find m] = % and mg = —%. Then y. = c1e
yp = Acos2z + Bsin2z. Substituting into the differential equation we obtain —19 — 8B =1 and
8A —19B =0. Then A = _1129_, B= —%5, Yp = —4%95 cos2x — T%sinQa:, and

19 8
=2 U — —— §i ]
oE cos 2z 155 sin 2z

3z/2 —z/2

Yy =cie + coe
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11.

12.

13.

14.

. From m

Exercises 4.4

2—m=0wefindm; =1and mg =0. Then Ye = c16¥ + co and we assume yp = Az.

Substituting into the differential equation we obtain —A = —3. Then A = 3, y, = 3z and
y=c1e° + ¢z + 3z.

From m? + 2m = 0 we find m; = —2 and mg = 0. Then Ye = c16”%% 4+ ¢y and we assume
Yp = Az? + Bz + Cze~%*. Substituting into the differential equation we obtain 24 + 2B = 5,
4A=2,and —2C = —1. Then A=5,B=2,C =1, y, = 122+ 22+ jze™?, and

1 1
y = cre”E 4o+ 51:2 + 2z + Exe‘QI.
From m? — m + % = 0 we find m; = mo = % Then y. = c16%/2 + cpze®/? and we assume

Yp = A+ Bzr%e%/2. Substituting into the differential equation we obtain 1A = 3 and 2B = 1. Then
A= 12, B = %’ Yp = 12 +%.’E2€z/27 and

1
Y= c1€*/? + coze®? 112 + 51:251/2.

From m? — 16 = 0 we find m; = 4 and mg = —4. Then Ve = c1€%® + coe™* and we assume
Yp = Aze*®. Substituting into the differential equation we obtain 84 = 2. Then A = }T’ Yp = %:z:e‘lyc
and

y=c1e®® 4 e 4 %xe‘“.
From m? 4+ 4 = 0 we find m; = 2i and my = —2i. Then Yo = €1 COS 2z + ¢z 8in 2z and we assume
yp = Azcos2z + Bzsin2z. Substituting into the differential equation we obtain 4B = 0 and

—4A = 3. Then A = —%, B=0,y= ~%xc052x, and
3
Y = €] COS 2Z + ¢o Sin 2z ~ Z:z: cos 2z.

From m? +4 = 0 we find m; = 2 and ms = —2i. Then Yo = €1 €082z + cosin 2z and we assume
Yp = (A2 + Bz? 4+ Cz) cos 2z + (D2 + Fz? + Fz) sin 2z. Substituting into the differential equation

we obtain
2B+4F =0
6A+8E =0
12D =0
—4C +2F = -3
—-8B+6D=0
—12A=1.
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16.

17.

18.

19.

20.

Exercises 4.4

Then A = — 12, B=0,C= 3— D=0,E=1—16,F=0,yp=(—523+—§%)cos2x+ xsm2x
and
s2x + s")—f—( 1 +25> 22—}—123'2
= 10822 in2z ——z° + —T } cos —z”sin2z.
v=a K 127 T3 16
From m2 + 1 = 0 we find m; =7 and mg = —i. Then Yo = C1COSZT + ¢y sin T and we assume yp, =

(Az? + Bz)cosz + (Cz? + Dr)sinz. Substituting into the differential equation we obtain 4C =0,
24+2D =0, —4A = 2, and —2B+2C = 0. Then A= -}, B=0,C=0D =1, 1y, =

—%22 cosz + %z sinz, and

1 1 .
Yy =¢1C08T + cosinz — 5220052 +5zsing.
From m? — 5m = 0 we find m; = 5 and my = 0. Then Yo = c1€®® + ¢y and we assume Yp =
Az*+ Bz3+C2z%+ Dz. Substituting into the differential equation we obtain —204 =2,12A-15B =
—4, 6B —10C = -1, and 20 -~ 5D = 6. Then A = -4, B =4 0 = & D= -8,
==t + e+ B~ Bl and
14 53 697
S —

y=c1e” +co - ix + =z .
10 75 250 625

From m% —2m+5 =0 we find m; = 1+ 2 and ms = 1 —2i. Then ye = €%(c1 cos 2z + ¢ sin 2z) and
we assume Yy, = Aze® cos2z + Bre®sin2z. Substituting into the differential equation we obtain
4B=1and —4A =0. Then A=0, B =, yp = 1zesin2z, and

1
y = €%(c1 cos 2z + o 8in 2z) + erz sin 2z.

From m? —2m+2 =0we find m; = 1 +1 and mg = 1 —i. Then Yo = €*(c1cosz + co8inz)
and we assume y, = Ae?® cosT + Be?®sinz. Substltutlng into the differential equation we obtain
A+2B=1and ~24+ B =-3. Then A = %, B= 5 ,Yp = —echos:r— geQIsmx and

. 7 1 .
y=e%(cicosz + cosinz) + 362‘"‘ coszx — 562‘"‘ sin .

~% and we assume

From m? +2m +1 = 0 we find m; = my = —1. Then Yo = c1e7% + coxe
yp = Acosz + Bsinz + Ccos 2z + Dsin2z. Substituting into the differential equation we obtain
2B =0, —2A=1 —30+4D=3 and —4C —3D=0. Then A=~} ,B=0,0 =%, D=1,

Yp = —%coscc 25 cos 2z + 52 sm2:z: and

1 9 12
% _ Zcosx — —Ccos 2z + — sin 2z.

— -
Yy =ci1e ~ + cazxe 5 %5 %%

From m? + 2m — 24 = 0 we find m; = —6 and my = 4. Then Ye = c1e78% 4 c9e®® and we
assume yp = A + (Bz? + Cz)e®®. Substituting into the differential equation we obtain —244 = 16,
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23.

24.

25.

26.
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2B+10C = —2,and 20B = ~1. Then A= —% , B = —;, C = — {55, yp = — % — (2% + £557) €2,
and

Yy =cle

From m3 — 6m?2 = 0 we find m; = my = 0 and ms = 6. Then y. = ¢1 + cox + c3€%* and we assume
Yp = Az? + Bcosz + Csinz. Substituting into the differential equation we obtain —12A = 3,
68B—~C =—1,and B+6C =0. Then A= —%,B= —-%, C= %,yp= —%xQ—%cosx+3l—7sinx,
and

1 6 1
y=c1+or+ c3e%% — Z2% — — cosT + — sinz.
4 37 37
From m3 —2m2 —4m+8 = 0 we find m1 =mg=2and mg = —2. Theny, = c162% + coze®® + c3e” %

and we assume yp, = (Az> + Bz?)e’®. Substituting into the differential equation we obtain 244 = 6
and 6A+ 8B =0. Then A= %, B= ——1—?’6  Yp = (%x3 - T%$2> e?® and

y = 1% + coze®® + e3¢ + (%xz — %ﬁ) e?=.
From m® — 3m? 4+ 3m — 1 = 0 we find 71 = mg = m3 = 1. Then y. = c1€% + coze® + c3z?e® and
we assume yp = Az + B + Cz3e®. Substituting into the differential equation we obtain —A = 1,
3A—-B=0,and 6C =—4. Then A= —1, B=-3,C = -2, y, = —z — 3 — 32%7, and

2 3

2.z
—z-3-2=
€ T 3$

y=ce® + coze” + 3z ev.

3 2z

From m®—m2—4m+4=0wefind m; =1, mp = 2, and mg = —2. Theny. = c1e5 4+ cpe®® +cze”
and we assume y,, = A+ Bze®+Cze?®. Substituting into the differential equation we obtain 44 = 5,

~3B=—-1,and 4C = 1. ThenA=%,B=%,C=%,yp=%+%xem+%zeh,and

5 1 1
y=c1€® + cpe?® + c3e™ ¥ + = + Zxe® + Sze®
4 3 4
From m* + 2m2 + 1 = 0 we find m; = m3 = i and mg = mg = —i. Then y. = ¢;cosz + casinz +

€32 cosT + c4z sinz and we assume y, = Az? 4+ Bz + C. Substituting into the differential equation
we obtain A =1, B=-2and4A+C=1 Then A=1,B=-2,C=-3, yp =222z -3, and

Yy = clcosx+czsinz+C3xcosx+64xsinx+x2 -2z — 3.

4 T

From m%—m? = 0 we find my=mp =0, mg=1,and mg = —1. Then y. = ¢1 +cox+ c3e” + cge”
and we assume y, = Az® + Bz? + (Cz? + Dz)e™®. Substituting into the differential equation we
obtain —6A4 = 4, —2B = 0, 10C — 2D = 0, and —4C = 2. Then A= -2, B =0, C = -3,
D= —-% y Yp = —§x3 - (%z2 + g:z:> e~ %, and

2 1 5
y=c1+cox +cae” + et — §x3 -~ (5232 + —2-x> e .
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31.

32.
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We have y. = ¢y cos 2T+ ¢ sin 2z and we assume y, = A. Substituting into the differential equation
we find A = ——% . Thus y = ¢ cos 2z + ¢y sin 2z — % . From the initial conditions we obtain ¢; = 0
and ¢g = \/—2—,soy=\/’2—sin2x—%.

We have y, = c1e™ %% + c9e%/? and we assume Yp = Az?+ Bz +C. Substituting into the differential
equation we find A = =7, B = —19, and ¢ = —37. Thus y = cie™2* + cpe®/? — 722 — 192 — 37.

From the initial conditions we obtain ¢; = —% and ¢y = %6 , SO
1 186
y= —ge‘h + —5—6”2 —72% — 19z — 37.

—z/5

We have y. = c1e +cg and we assume yp = Az?+ Bz. Substituting into the differential equation

we find A = —3 and B = 30. Thus y = cie™%/5 + ¢3 — 3z% + 30z. From the initial conditions we
obtain ¢; = 200 and ¢ = —200, so

y'=200"%/5 — 200 — 322 + 30z.
We have yo = c1e™% + coze™® and we assume y, = (Az3 + Br?)e™?2. Substituting into the

differential equation we find A = é and B = % Thus y = cie™ % + core™% 4 (éx:‘ + %:1:2) e,

From the initial conditions we obtain ¢; =2 and ¢s = 9, so

1 3
y=2e"% +9ze” % + <6x3 + §x2> e 2

We have y. = e—QI(cl cosz + cpsinz) and we assume yp = Ae™%*_ Substituting into the differential
equation we find A = 5. Thus y = e~2%(c1 cos T + cosinx) + 7e %%, From the initial conditions we
obtain ¢; = —10 and ¢2 = 9, so

y=e 22(~10cosz + 9sinz + 7e~ %),

We have y. = ¢1 coshz 4+ ¢ sinh ¢ and we assume y, = Az coshx 4+ Brsinhz. Substituting into the
differential equation we find A =0 and B = % . Thus

. 1
y = c; coshzx + cgsinhz + 53: sinh z.
From the initial conditions we obtain ¢; = 2 and ¢ = 12, so

1
y =2coshz + 12sinhz + 3 sinh z.

We have z. = ¢1 coswt + cpsinwt and we assume z, = Atcoswt + Btsinwt. Substituting into the
differential equation we find A = —Fy/2w and B = 0. Thus z = ¢; cos wt+c sinwt—(Fp/2w)t coswt.
From the initial conditions we obtain ¢; = 0 and ¢3 = Fo/2w2, S0

z = (Fp/2w?)sinwt — (Fo/2w)t cos w.
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35.

36.

37.
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We have z; = ¢] coswt+cp sinwt and we assume Z, = Acosyt+ B sinvt, where v # w. Substituting
into the differential equation we find A = Fp/(w? — v%) and B = 0. Thus

= ¢ coswt + cpsinwit + cos L.

Fo
(w? = %)
From the initial conditions we obtain ¢j = Fo/(w? ~~?) and ¢y = 0, so

g Fa
Y _coswt+ —rr
(w? —~?) (W2 =2

We have y, = ¢1 + cge® + c3ze® and we assume y, = Az + Bz?e® + Ce% . Substituting into the
differential equation we find A =2, B= —12,and C = % Thus

= cos vt.

1
y = c1+coe” + c3ze” + 2z — 120%€® + Eesm.

From the initial conditions we obtain ¢; = 11, ¢cg = —11, and ¢3 = 9, so

1
y=11~11€" + 9ze® + 2z — 12z%€® + Eesm.

We have y. = c1e7%% + e*(cpcos+/3 1 + casin \/gcc) and we assume y, = Az + B + Cre™ %=,
Substituting into the differential equation we find A = % , B = —% ,and C = % . Thus

1 5 2
y = c1e” % 4+ e%(cycos V3z + c3sin \/527) -+ 7% —+ ga:e_%.
From the initial conditions we obtain ¢1 = —% , Cg = ——g% , and ¢3 = %—; 3, so
23 59 17 . 1 5 2
Yy = —Ee'h + e (_ﬂ cosV3z+ ﬁx/gsm 3x> + ZI 3 + gxe‘%.

We have y. = ¢j cosz + casinz and we assume y, = A%+ Bz +C. Substituting into the differential
equation we ind A =1, B=0, and C = —1. Thus y = cjcosz + ¢c28inz + 2 — 1. From y(0) = 5
and y(1) = 0 we obtain
1 — 1=5
(cos1)cy + sin(1l)ep = 0.
Solving this system we find ¢; = 6 and ¢ = —6cot 1. The solution of the boundary-value problem

is
y=6cosz — 6(cot1)sinz 4+ z2 —~ 1.

We have y. = e®(c1 cosz + ¢y sinz) and we assume y, = Az + B. Substituting into the differential
equation we find A = 1 and B = 0. Thus y = e®(c1 cosz+cosinz)+z. From y(0) = 0and y(n) ==

we obtain
=0

m—e'cy =T,
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Solving this system we find ¢; = 0 and ¢s is any real number. The solution of the boundary-value
problem is

y=coe¥sinz + .

We have y. = c1cos 2z + cpsin 2z and we assume yp = Acosz + Bsinz on [0,7/2]. Substituting
into the differential equation we find A =0 and B = % . Thus y = ¢{ cos 2z + ¢y sin 2z + %sinn: on
[0,7/2]. On (7/2,00) we have y = c3cos 2z + ¢4 sin2z. From y(0) = 1 and 3/(0) = 2 we obtain

cp=1
1
S 420 =2.
37

Solving this system we find ¢; = 1 and ¢ = 3. Thus y = cos2z + 3sin2z + isinz on [0,7/2).
Now continuity of y at z = w/2 implies

5 . 1 .« .
cos7r+gsm7r+—sm§=C3c057r+04sm7r

3
or -1+ % = —c3. Hence ¢3 = % Continuity of ¥ at z = 7/2 implies
. 5 1 T .
—2sinm + § COST + § cos§ = —2¢c3sin7T + 2c4 cosT
or —% = —2¢4. Then ¢4 = g and the solution of the initial-value problem is

{c052x+gsin2x+ %sinz, 0<z<m/2
) =

2 5
%082z + 3 sin 2z, z>7/2.

40. We have y. = e*(c1cos3z + czsin3z) and we assume y, = A on [0,7]. Substituting into the

differential equation we find A = 2. Thus, y = e®(cj cos 3z + ¢zsin3z) + 2 on [0, 7). On (7, 00) we
have y = e®(c3 cos 3z + ¢4sin3z). From y(0) = 0 and ¢'(0) = 0 we obtain '

c1 = —2, c1+ 3¢ =0.

Solving this system, we find ¢; = —2 and ¢3 = %. Thus y = e"(—2cos 3z + £sin3z) + 2 on [0, 7).

Now, continuity of y at £ = 7 implies
e"(—2cos 37 + % sin3m) + 2 = e™(c3 cos 37 + ¢4 5in 37)
or 2+ 2e™ = —c3e™ or ¢3 = —2e7"(1 + e™). continuity of ¥’ at 7 implies
?e” sin 37 = e"[(e3 + 3cq) cos 3™ + (—3c3 + ¢4) sin 37

or —cze” — 3cq4e™ = 0. Since c3 = —2e7"(1 + e™) we have ¢y = %e‘”(l + e™). The solution of the
initial-value problem is
ex(—2c033x+—§-sin3x), 0z <
y(z) =

(1+eM)e* ™(—2cos3z + %sin 3z), z>m.
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From y, = Ae** we find yl’y = Ake** and yl'y’ = Ak%e¢**. Substituting into the differential
equation we get

aAk%e® 4 bAke® + A" = (ak? + bk + ¢) Ak = €F2,
so (ak? 4+ bk + ¢)A = 1. Since k is not a root of am? +bm +c =0, A = 1/(ak® + bk + c).
From y, = Aze*® we find Yp = Akze* + Aek* and Yp = Ak2zek 4+ 2 Akek®. Substituting into
the differential equation we get

aAk?ze*® + 20Ake"® + bAkze"® + bAEFT + cAze®
= (ak® + bk + ¢)Aze*® + (2ak + b) Ae*®
= (0)Aze™ + (2ak + b) A" = (2ak + b)Aer™ = **

where ak? + bk + ¢ = 0 because k is a root of the auxiliary equation. Now, the roots of the
auxiliary equation are —b/2a + v/b2 — 4ac, and since k is a root of multiplicity one, k # —b/2a
and 2ak + b # 0. Thus (2ak + b)A =1 and A = 1/(2ak +b).

If k is a root of multiplicity two, then, as we saw in part (b), ¥ = —b/2a and 2ak + b = 0.
From y, = Az?%e** we find Yp = Akz?e** + 2Aze*” and Yp = Ak2z2ekT 4 4 Akzek® = 2A4ek=.
Substituting into the differential equation, we get

aAk*z%e" + daAkze*” + 20AeF® + bAkz2 e + 20 Az + cAzeR”
= (ak® + bk + c)Az%e® + 2(2ak + b)Aze*® + 20 AeF®
= (0)Az%e*® + 2(0)Aze™® + 204" = 204k = 5=

Since the differential equation is second-order, a # 0 and A = 1/(2a).

42. Using the double-angle formula for the cosine, we have

2

sin z cos 2z = sin z(cos® £ — sin® z) = sinz(1 — 2sin?z) = sinz — 2sin® z.

Since sinz is a solution of the related homogeneous differential equation we look for a particular

solution of the form y, = Azsinz + Brcosz + C sin® z. Substituting into the differential equation

we obtain

3

2acosz + (6¢c — 2b)sinz — 8csin® z = sinz — 2sin’ z.

Equating coefficients we find a = 0, ¢ = % ,and b= % . Thus, a particular solution is

43. (a)
(b)

1 1 4
ypzzmcosm+zsm xz.

f(t) = e'sint. We see that y, — 0o as t — oo and yp — 0 as t — —oo.

f(t) = e~ t, We see that Yp — OO as t — oo and Yp — 0O as t — —oo.
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(c) f(t) =sin2t. We see that y, is sinusoidal.
(d) f(t) = 1. We see that y, is constant and simply translates y. vertically.
p

44. The complementary function is y. = e?*(c1 cos 2z + cg sin 2z). We assume a particular solution of
the form y, = (Az® + Bz? + Cz)e® cos2z + (Dz® + Ez? + F)e® sin2z. Substituting into the
differential equation and using a CAS to simplify yields

[12Dz? + (6A + 8E)x + (2B + 4F))e*® cos 2z
+[~124z% + (-8B + 6D)z + (—4C + 2E)]e** sin 2z
= (222 — 3z)e?® cos 2z + (1022 — z — 1)e** sin 2z.
This gives the system of equations
12D =2, 64 +8E = —3, 2B + 4F =0,
~124 = 10, -8B+ 6D = —1, —4C + 2E = —1,
from which we find A = —g, B = %, C = g, D = %, E = %, and F = —%. Thus, a particular
solution of the differential equation is
Yp = <—-g:1:3 + —14z2 + —Z—x) 2% cos 27 + (%xS + %x2 - %z)eh sin 2.

45. The complementary function is y. = ¢; cosz+cpsinx +c3z cos T+ caxr sinx. We assume a particular
solution of the form y, = Ax? cos z+ Bz® sinz. Substituting into the differential equation and usmg
a CAS to simplify yields

(—8a + 24b) cosz + 3bxsinz = 2cosz — 3zsinz.
This implies —8a + 24b = 2 and —24b = —3. Thus b = % , Q= % and yp = 8x2 cosz + 89: sinz.
Exercises 4.5
1. (9D? —4)y = (3D — 2)(3D + 2)y = sinz
2. (D> =5)y=(D~V5)(D+V5)y=2°-2
3. (D*~-4D - 12)y=(D~6)(D+2y=2z-6
4. 2D?-3D -2)y=(2D+1)(D~2)y=1
5. (D3 +10D? +25D)y = D(D +5)%y
6. (D®+4D)y = D(D? +4)y = eTcos 2z
7. (D3 +2D% — 13D + 10)y = (D — 1)(D = 2)(D + 5)y = ze %
8. (D®+4D% +3D)y = D(D +1)(D + 3)y = z?cosz — 3z
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11.
12.
13.
14.

15.

17.

19.

21.
22.
23.
24.
25.
26.
27,
28.
29.
30.
31.
32.
33.
34.
35.

Exercises 4.5

(D*+8D)y = D(D +2)(D? ~2D + 4)y = 4

(DY~ 8D? 4+ 16)y = (D — 2)%(D + 2)%y = (z° ~ 271)e*®

D%y = D4(102% - 22) = D3(302% — 2) = D%(60z) = D(60) = 0

(2D — 1)y = (2D — 1)4e%/2 = 8De*/? — 4¢%/? = 4e*/2 — 4e*/? = ()

(D—2)(D+5)(e2*+3e~5%) = (D—2)(22* —15¢ 57 +5e2*+15e5%) = (D—2)7e® = 14e**—14€** = 0
(D? + 64)(2cos 8z — 5sin8z) = D(—165sin 8z — 40 cos 8z) + 64(2 cos 8z — 5 sin 8z)

= ~128cos 8z + 320 sin 8z + 128 cos 8z — 320sin 8z = 0

D* because of z° 16. D because of z*
D(D — 2) because of 1 and e 18. D?(D — 6)? because of z and ze5?
D? + 4 because of cos 2z 20. D(D? + 1) because of 1 and sinz

D:']'(D2 + 16) because of z2 and sin 4z

D?(D? 4 1)(D? + 25) because of z, sinz, and cos 5z

(D +1)(D — 1)? because of e~* and z2¢?

D(D —1)(D — 2) because of 1, €%, and e?®

D(D? — 2D + 5) because of 1 and e® cos 2z

(D% + 2D + 2)(D? — 4D + 5) because of e~Zsinz and e cos
1, z, 22, 1:3, z?

D +4D=D(D+4); 1, e

bz o=3/2

D?-9D —36 = (D —12)(D+3); el%= e

cos Vb, sin \/3:5

D?-6D+10=D?-2(3)D + (32 +1?); e*cosz, e¥sinz
D3 ~10D? + 25D = D(D - 5); 1, %%, ze*

5:r7 7z

1, z,e, e

Applying D to the differential equation we obtain
D(D? - 9)y = 0.
Then

Y= (:163:lc + (:26—3:lc +c3
= A—
Ye
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37.

38.

39.
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and yp = A. Substituting y, into the differential equation yields —9A = 54 or A = —6. The general
solution is

y = 1> + cpe™ % — 6.
Applying D to the differential equation we obtain
D(2D? - 7D +5)y = 0.

Then
52/2 +coe® +c3
Ye
and yp, = A. Substituting y, into the differential equation yields 54 = —29 or A = —29/5. The

general solution is

Yy =cie

29
5z/2 x
+ Cpe 5

Yy = C1e

Applying D to the differential equation we obtain
D(D? + D)y = D*(D + 1)y = 0.
Then
y=oc)+coe * +c32
N —’
Ye

and y, = Az. Substituting y, into the differential equation yields A = 3. The general solution is

Y =cy + coe 3% + 3.

Applying D to the differential equation we obtain
D(D® +2D? + Dy = D¥D +1)%y = 0.
Then

y=c1+ce T +c3ze” + gy
Ye

and y, = Az. Substituting y, into the differential equation yields A = 10. The general solution is

y=c1+coe T+ cgze T+ 10z.

Applying D? to the differential equation we obtain
D¥D? +4D +4)y = D*(D+2)%y =0.

Then
y=cre” ¥ +coze™® + o3+ 4z
[P A —
Ye
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and y, = Az + B. Substituting y, into the differential equation yields 44z + (44 + 4B) = 2z + 6.
Equating coefficients gives
4A =2
4A+ 4B =6.
Then A =1/2, B =1, and the general solution is

1
y=cre” ¥ + coze ¥ + 5T + 1.

Applying D? to the differential equation we obtain
D*(D?+3D)y = D3(D +3)y = 0.

Then
y=ci+coe ¥ + 32+ cyz
N —
Ye
and yp = Az?+ Bz. Substituting Yp into the differential equation yields 6 Az + (24 +3B) = 4z - 5.

Equating coefficients gives

64 =4
2A+ 3B = -5.
Then A =2/3, B = —19/9, and the general solution is
- 19
y=c1+ e 3z+§xz—§x

Applying D3 to the differential equation we obtain
D¥D® + DY)y =D%D+ 1)y =0.

Then

Y =c1+ cox + cze™F + caz? + c57° + coz?
———

Ye

and yp, = Az* + B3 + Cz22. Substituting ¥, into the differential equation yields
124z% + (244 + 6B)z + (6B + 2C) = 8z2.

Equating coefficients gives

124=28
24A+6B=0
6B +2C =0.
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Then A =2/3, B = —-8/3, C = 8, and the general solution is

2 8
y=ci+cr+cze T+ §I4 - §x3 + 822,

Applying D* to the differential equation we obtain
DYD?—-2D+1)y=DYD~-1)% =0.

Then
= 16" + coxe® + c3x® + cax? + 5T + ¢
—
and y, = Az + Bz? 4+ Cz + D. Substituting Yp into the differential equation yields

Az® + (B —6A)22 + (6A~ 4B+ C)z+ (2B —2C + D) = 2° + 4x.

Equating coefficients gives
A=1

B-6A=0
6A—-4B+C =4

2B-2C+D=0.
Then A=1, B=6,C =22, D =32, and the general solution is

y=c1e° + coze® + 2% + 622 + 227 + 32.

Applying D — 4 to the differential equation we obtain
(D—-4)(D? - D —12)y = (D —4)*(D + 3)y = 0.

Then

y =c1e®® + e + cyze®®
[y
Ye
and y, = Aze!®. Substituting y, into the differential equation yields 7Ae* = e%%. Equating

coefficients gives A = 1/7. The general solution is

-3z dz

1
y = 1™ + e + e

Applying D — 6 to the differential equation we obtain
(D —6)(D*+2D +2)y = 0.

Then
y=e"(cicosz + casinz) + c3e

-

Ye
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and yp = Aebz. Substituting y, into the differential equation yields 50A4e87 = 5eb%. Equating
coefficients gives A = 1/10. The general solution is

1
y=-e “(cicosz + ¢psinz) + Eesz.

Applying D(D — 1) to the differential equation we obtain
D(D - 1)(D*-2D —3)y=D(D - 1)(D+1)(D - 3)y = 0.

Then
y =16 + coe™% + c3e” + ¢y
Ye
and yp, = Ae® + B. Substituting y, into the differential equation yields —4Ae® — 3B = 4e” — 9.

Equating coefficients gives A = —1 and B = 3. The general solution is
y=c1e% +cpe” — e+ 3.
Applying D?(D + 2) to the differential equation we obtain
D*(D+2)(D* + 6D +8)yy=D*D+2}D+4)y=0.

Then
y=c1e"% + cpe™®® + caze™ ¥ + ez + cs
—
and y, = Aze™?® + Bz + C. Substituting y, into the differential equation yields

2Ae™%% 4 8Bz + (6B + 8C) = 3¢~ % + 2z.

Equating coefficients gives

2A=3
8B =2
68 +8C =0.
Then A=3/2, B=1/4, C = -3/16 , and the general solution is
3 1 3
_ —2z —dz Q.2 AP
Yy = c1e + ce + 2276 + 4x 6

Applying D? + 1 to the differential equation we obtain
(D? +1)(D? + 25)y = 0.
Then

Yy = €1 COSOT + ¢osindz + c3cosSz + ¢4 8inz

Ye
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and y, = Acosz + Bsinz. Substituting y, into the differential equation yields
24A cosz + 24Bsinx = 6sinz.

Equating coefficients gives A =0 and B = 1/4. The general solution is

1
Yy = €1 C085Z + ¢cp Sin bx + Zsinx.

Applying D(D? + 1) to the differential equation we obtain
D(D*+1)(D? +4)y = 0.
Then

Y =1 C0S2T + ¢38in2x +C3¢C08T + ¢48inT + ¢35

Ye
and yp = A cosz + Bsinz + C. Substituting yp into the differential equation yields

3Acosz +3Bsinz +4C = 4cosxz + 3sinz — 8.

Equating coeficients gives A = 4/3, B =1, and C = —2. The general solution is

4 .
Yy = ¢1€os2x + ¢osin2x + 5cosx+smx—2.

Applying (D — 4)? to the differential equation we obtain
(D—4)%D?+6D+9)y=(D—4)%D+3)% =0.

Then
y=cre % + coze™3% + cyze®® + cqet®
| S —
Ye

and y, = Aze'® + Be'®. Substituting y, into the differential equation yields
49Aze™® + (14A + 49B)e*® = —ge'.

Equating coefficients gives
494 = -1

14A+49B = 0.

Then A = —1/49, B = 2/343, and the general solution is

1 W 2
157 T35t

3z 4z

y= cre 3% + coze”

Applying D?(D — 1)? to the differential equation we obtain
D*D - 1)>(D?*+3D — 10)y = D*(D — 1)2(D - 2)(D + 5)y = 0.
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Then
y = c1€°® + coe ™% + caze® + cq€® + 5T + co
e —
Ye
and yp = Aze® + Be® + Cx + D. Substituting y, into the differential equation yields

—6Aze® + (54 — 6B)e” — 10Cz + (3C — 10D) = ze” + z.

Equating coefficients gives

—6A=1
5A—-6B=20
-10C =1
3C — 10D =0.
Then A= -1/6, B=-5/36, C = —1/10, D = —3/100, and the general solution is
Y =c1e® + cpe™ ~ ézez - %ez - %x - T(?;—O

Applying D(D — 1)3 to the differential equation we obtain
D(D-13D?-1)y=DD-1)*(D+1)y=0.
Then
Y = c1€% + coe” % + 333 + caz’e® + csze® + cg
PR —
Ye
and y, = Az3e® + Bx2%e® + Cze® + D. Substituting Yyp into the differential equation yields

6Az%® + (6A + 4B)ze® + (2B + 20)e” ~ D = z2e® + 5.

Equating coefficients gives

6A =1
6A+4B=0
2B+2C=0
—-D =35.

Then A=1/6, B=—1/4, C =1/4, D = -5, and the general solution is

1 1 1
y=cje® +coe " + aavseI - ZzQeI + Z:;veI — 5.

52. Applying (D + 1)3 to the differential equation we obtain

(D+13(D?+2D+1)y= (D +1)%y =0.
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Then
3

— — _ —_ -
y =cie % + coze % +c3zte™ + cyzie ™% + cxze
e e
Ye

and yp = Azie™* + Bzle % + Cz2e~%. Substituting Yp into the differential equation yields

124z% % + 6Bze™% + 2Ce~% = g%,

L

i5: B =0, and C' = 0. The general solution is

Equating coefficients gives A =

4

1
y=-cie ¥ +coze T+ % e T

. Applying D? — 2D + 2 to the differential equation we obtain
(D? — 2D +2)(D? - 2D + 5)y = 0.

~ Then
y = e%(c1 cos 2z + cosin2z) + e®(cgcosz + ¢qsin )

Ye
and y, = Ae®cosz + Be®sinz. Substituting y, into the differential equation yields

3AeT cosz + 3Be®sinz = e sinz.

Equating coefficients gives A = 0 and B = 1/3. The general solution is
1
y = e®(c1 cos 2z + cysin 2z) + gez sin z.
. Applying D? — 2D + 10 to the differential equation we obtain

1 12
(D2—2D+10)<D2+D+Z)y=(D2_2D+1O)<D+§> Y=,

Then

—-z/2 -z/2

Yy = clre -+ ¢oze + c3e® cos 3z + c4e” sin 3z
Ye

and y, = Ae” cos 3z + Be”sin3z. Substituting y, into the differential equation yields

(9B — 27A/4)e% cos 3z — (9A + 27B/4)e” sin 3z = —e® cos 3z + ¥ sin 3z.

Equating coefficients gives
27

27
—94A - —B=1.
4
Then A = —4/225, B = —28/225, and the general solution is

4 28
—z/2 /2 e%os 31 — ——e”sin 3z.

+caze 225 225

Yy =cCe
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Applying D? + 25 to the differential equation we obtain
(D? + 25)(D* +25) = (D? +25)? = 0.
Then
Y =1 ¢cos 5T + co8in Sz + c3x cos Sz + 4T cos ST

and yp, = Az cos 5z + BzsinSz. Substztuting yp into the differential equation yields

10B cos 5z — 10A sin 5z = 20 sin 5z.
Equating coefficients gives A = —2 and B = 0. The general solution is

Yy = ¢1 cos 5x + cosin Sz — 2z cos bz.
Applying D? + 1 to the differential equation we obtain

(D*+1)(D*+1) = (D* +1)* =0.

Then

Y=0C1COST + CcpSinT + C32COST + 4T COST

Ye
and y, = Az cosz + Bzrsinz. Substituting y, into the differential equation yields

2Bcosz —2Asinz = 4cosz —sinz.
Equating coefficients gives A = 1/2 and B = 2. The general solution is
Yy =1C1C0ST + copsinzx + %xcosz — 2zsinz.
Applying (D? 4 1)? to the differential equation we obtain
(D*+1)3D*+D+1)=0.
Then

_ —:17/2 \/§ . 3 . .
y==e c1 cos—é—z+czs1n7:c +C3COST+ c4SINZT + C5ZCOST + CgTSINT

Ye
and yp = Acosz+ Bsinz+Czcosz+ Dz sinz. Substituting y, into the differential equation yields

(B+C+2D)cosz+ Drxcosz+ (—A—2C + D)sinz — Crsinz = zsinz.

Equating coefficients gives

B+C+2D=0
D=
—A-2C+D=
—C=1
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Then A=2, B=1,C = —1,and D =0, and the general solution is

. —-I/? \/g . \/g 9 .
y=ce CICOS—()—I+CQSIH‘2_I + 2coSx +sSlnx — X COSZ.

%

Writing cos?® z = %(1 + cos 2z) and applying D(D? + 4) to the differential equation we obtain

D(D? +4)(D? +4) = D(D* + 42 = 0.
Then

Y = €1 CO8 2T + cp Sin 2z + ¢37 cos 2% + c4x Sin 2z + ¢35

Ye

and yp = Az cos 2z + Bzsin2z + C. Substituting y, into the differential equation yields

1 1
—4Asin2x + 4B cos2z + 4C = 3 + 5 008 2x.
Equating coeflicients gives A = 0, B = 1/8, and C = 1/8. The general solution is

1 1
Y = €1 C08 2% + ¢y sin2x + gr sin 2z + 3

Applying D? to the differential equation we obtain
D3(D® +8D% = D5(D +8) = 0.
Then

y =1+ cax + c3e % 4+ 041'2 + 5z + coz?
Ye

and yp = Az? + Bz® + Czt. Substituting y, into the differential equation yields
164 + 6B + (48B + 24C)z + 96Cz? = 2 + 9z — 62°.

Equating coefficients gives

16A+6B =2
48B +24C' =9
96C = —6.
Then A =11/256, B = 7/32, and C = —1/16, and the general solution is

11 7 1
— 8z -2 "3 - 4
Yy =1+ +C3e +256x +32x 169:.

Applying D(D — 1)%(D + 1) to the differential equation we obtain

DD -1*D+1)(D*-D*+D—-1)=D(D - 13D+ 1}(D*+1)=0.

Then
y=c1e® +cycosz +c3sinz +cq + cze” T + cgre” + crzle®
Ye
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and y, = A + Be™% + Cre® + Dz%e®. Substituting yp into the differential equation yields
4Dze" + (2C + 4D)e* —4Be™* —~ A=ze" —e T+ 7.

Equating coeflicients gives

4D =1
2C0+4D=0
—4B = -1
—A=T.
Then A= -7, B=1/4,C = -1/2, and D = 1/4, and the general solution is
y=cie” +cocosz + c3sinz ~ 7+ Ze_z - ler + 1:vzem.

2 4
Applying D?(D — 1) to the differential equation we obtain
D*(D-1)(D®-3D?+3D-1)=D¥D -1 =0.

Then

y = c1€® + cpze® + caze® + 4 + c5T + cpze”

Ye
and yp = A + Bz + Cz3e®. Substituting y, into the differential equation yields

(~A+3B)— Bz +6Ce" =16 —z + €.

Equating coefficients gives

-A+3B=16
—-B=-1
6C = 1.

Then A= -13, B =1, and C = 1/6, and the general solution is

1
y = c1€° + coze® + c3z?e® — 13+ 2 + gxgez.
Writing (€% + e7%)% = 2 4+ e?* + e~%% and applying D(D — 2)(D + 2) to the differentia] equation we

obtain
D(D —2)(D + 2)(2D* = 3D? - 3D +2) = D(D — 2)*(D + 2)(D + 1)(2D — 1) = 0.

Then

z/2 2z

y=qe *+ 0e%® + c36/% + ¢4 + csze® + cge”

Ye
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and yp = A + Bze?® + Ce™ 2%, Substituting.y, into the differential equation yields
24 4+ 9Be®® —20Ce ™ =2+ 2 + 7%,
Equating coefficients gives 4 =1, B = 1/9, and C = —1/20. The general solution is

1 1
y=cie % + e’ + cse®? 41+ §x62“" - 566—22.

Applying D(D — 1) to the differential equation we obtain
DD -1)(D*-2D*+ D) = D¥D -1 =0.

Then

Y =01+ oz + 36 + caze® + c5z? + cgze”

Ye

and yp = Az? + Br2e®. Substituting v, into the differential equation yields 24 + 2Be® = 1 + €*.
Equating coefficients gives A = 1/2 and B = 1/2. The general solution is

1 1
Yy =c1 + cox + c3e® + cqze® + §x2 + —2—x26z.

Applying D?(D — 2) to the differential equation we obtain
D3(D -2)(D* —4D?) = D¥(D - 2)%(D +2) = 0.

Then

y=c1 + ot + 362 + cae™ + c5x? + sz + o7zt + cgze®

Ye

and yp = Az? + Bz® + Cz* + Dze®*. Substituting yp into the differential equation yields
~8A + 24C) - 24Bz — 48Cz” + 16De* = 53% — €%°.
( )

Equating coefficients gives

—8A4+24C =0
—24B =0
—48C =5

16D = —1.

Then A= -5/16, B =0, C = —5/48, and D = —1/16, and the general solution is

=c1+r+ee fege® - g2 - gt - Zze
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65. The complementary function is y. = ¢1e®® + coe~ 8. Using D to annihilate 16 we find yp = A

66.

67.

Substituting y, into the differential equation we obtain ~64A4 = 16. Thus A = —1/4 and

1
y=c1e®® + e — =
4
y' = 8c1€8* — 8epe™,
The initial conditions imply
)
c1+ ¢ = Z
8c1 — 8cp = 0.
Thus ¢1 = ¢p = 5/8 and
5 8z 9 —8z 1
= — —e - -
V=5 T3 4

The complementary function is y. = ¢; + cze™%. Using D? to annihilate z we find Yp = Az + Bz?.
Substituting y, into the differential equation we obtain (A + 2B) + 2Bz = z. Thus A = -1 and
B =1/2, and

1 o

— -z
x+2

y=rc1+coe *

Y = —ce ¥~ 1+z.

The initial conditions imply

c1+ecp=1
—cg=1.
Thus ¢; = 2 and ¢3 = —1, and
1
y=2—-e*—z+ -2

2

The complementary function is y, = c; +cpe5®. Using D? to annihilate —2 we find y, = 4z + Bz?.
Substituting y, into the differential equation we obtain (—54+2B)—10Bz = —2+z. Thus A = 9/25
and B = —1/10, and

9
— 52 Y .~ .2
y=c1+coe™ + 252: 10$
9 1
’r_ 5z ~ _ =
Yy = dcge” + 5 5:5
The initial conditions imply
c1+c2=0
By 41
EAEUTS
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Thus ¢; = —41/125 and cg = 41/125, and

Al 4l s 9 1o

V=" "1 257 710

The complementary function is y. = cie® + cze~%%. Using D — 2 to annihilate 10¢’® we find
yp = Ae?®. Substituting y, into the differential equation we obtain 8A4e®® = 10¢%*. Thus A = 5/4

and

5
y = c1e® + ce™%% + Zeh
1 z —bz 9 2z
y = c1e* — bege +§e .
The initial conditions imply
1
c1t+cg= —Z
3
¢ —6cy = —5-
Thus ¢; = —3/7 and ¢y = 5/28, and
. 3 z 9 —bz 9 2z
Yy = 76 + 286 + 4e

The complementary function is y, = cjcosz + casinz. Using (D? + 1)(D? + 4) to annihilate
8cos2z ~ 4sinz we find yp = Azcosz + Brsinz + Ccos2z + Dsin2z. Substituting g, into the
differential equation we obtain 2B cosz —3C cos 2z — 2Asinx — 3D sin 2z = 8 cos 2z — 4sinz. Thus
A=2,B=0,C=-8/3,and D =0, and

. 8
Yy =1¢1C0SZ + cysinz + 2z cosz — —3-00521:

/ . . 16 .
Y =—cisinz +cpcosz +2cosz — 2zsinz + ?sm2z.

The initial conditions imply

8
co + 3= -1
—c;—m=0.
Thus ¢; = ~7 and ¢3 = —11/3, and
Y= —TCoST — 1—31sina:+2a:cosa: - §COSQ$.

The complementary function is y. = ¢1 + coe® + c3ze®. Using D(D — 1)2 to annihilate
ze® + 5 we find yp, = Az + Bz?e® + Cz3e®. Substituting Yp into the differential equation
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we obtain A+ (2B + 6C)e* + 6Cze* = ze* + 5. Thus A=5, B=-1/2, and C = 1/6, and
z z 1 2,z 1 3 .z
Yy = ] + c2e” + c3zxe +5m—§m e +6m e
1
Y = coe” + c3(ze® + %) + 5 — ze” + 82:36’”

1 1
Y = coe” + c3(ze” + 267) — €F — ze” + 5226’” + 6236‘”.

The initial conditions imply
c1+co=2
co+c3+5=2
co+2c3—1=-1.

Thus ¢; = 8, cg = —6, and c3 = 3, and

1
y =8 —6e” + 3ze® + 5z — -2-2326’” + %a:Be‘”.
The complementary function is y. = e2%(c; cos 2z + co sin 2z). Using D* to annihilate 2% we
find yp = A + Br + Cz? + Dz®. Substituting Yp into the differential equation we obtain
(84 — 4B + 2C) 4 (8B ~ 8C + 6D)z + (8C — 12D)z? + 8D2® = 2% Thus A =0, B = 3/32,
C =3/16, and D = 1/8, and

3 3 1
2z - 2 3
= 2L) + =T + —12° + =
y = e“"(c1 cos2z + co sin m)+32m+16m tg?
/ 2z . . 3 3 3 2

y = e“®{c1(2cos 2z — 25sin 2z) + cp(2cos 2z + 2sin 2z)] + 3 + i + 3%

The initial conditions imply
ci =2

3
2 2¢0 + — = 4.
c1 + 2¢2 D

Thus ¢; = 2, ¢cg = —3/64, and

3 3 1
y=e®*(2cos 2z — 6%sin 2z) + - + Ez2 + §m3.

The complementary function is y, = ¢1 + ez + c3z? + cge®. Using DQ(D — 1) to annihilate
z +e® we find y, = Az® 4+ Bz* + Cze®. Substituting yp into the differential equation we obtain
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(-6A+24B) -~ 24Br+Ce®* =z +€*. Thus A= —1/6, B=-1/24,and C =1, and

1 1
y=c1+cx+ cs3z? + cqe® — éxB - ﬁx“ + ze®

1
Y = co+ 2037 + cqe” — §x2

1
— 2% 4 6% + 26"
6
1
Y =2c3 + c4e” — 1 ~ 512 + 2% + ze®.

Y =c4e® — 1 -z + 3" + ze”

The initial conditions imply

ci+cg=90
ca+c+1=0
2ec3+c4+2=0
24c¢4 =0
Thus 1 =2, =1,¢c3 =0, and ¢4 = ~2, and
y=2+x—26z—éx3——§11x4+xez.

73. To see in this case that the factors of L do not commute consider the operators (zD — 1)(D + 4)
and (D +4)(xD — 1). Applying the operators to the function z we find

(zD—1)(D +4)x = (zD? + 42D — D — 4)z
= zD% + 42Dz — Dz — 4z
=z(0) +4z(l) — 1 -4z = -1

and
(D+4)(zD - 1)z =(D+4)(zDz —z)

=(D+4)(z 1-12)=0.

Thus, the operators are not the same.

Exercises 4.6

The particular solution, ¥, = ui1y1 + ugye, in the following problems can take on a variety of forms,
especially where trigonometric functions are involved. The validity of a particular form can best be

checked by substituting it back into the differential equation.
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1. The auxiliary equation is m? 4+ 1 =0, s0 y. = ¢; cosz + cpsinz and

cosz sinz

—sinz cosz
Identifying f(z) = secz we obtain
, sinzsecz
U = ———— = —tanz
1
, COSISecz
Ug = —'—‘—1——— = 1.

Then w3 = In|cosz|, up = z, and
Yy=c1cosz +cpsinz -+ coszln|cosz| + rsinz.

. The auxiliary equation is m? + 1 =0, s0 y. = ¢ cosz + ¢y sinz and

cosz sinz
W = . =
—sinz cosz
Identifying f(z) = tan z we obtain
, . cos?z — 1
U] = —sinzrtanr = ————— = COSZ — Secx
cos T
1 .
Uy = sinz.
Then u; =sinz — In|secz + tanz|, up = — cosz, and

Y= ¢1C0ST + cosinz + cosz (sinz — In|seca + tanz|) — coszsinz.

. The auxiliary equation is m? +1 = 0, so yc = ¢1 cos T + ¢y sinx and

cosz sinz

W =

—sinz cosz
Identifying f(z) = sin z we obtain

Uy = — sin? z

Up = COS T Sin .
Then

U] = 1sin2:z: l:c~ 1sin:ccos:c—lzt:
1= 27 2 2

1 2
Up = —— COS” .
2

and

. 1. 1 1 )
y=cycosz+cosinz + Esm:ccoszzc— ~xcoszT — Ecos2:csm:c

. 1
= (€] COST+ C28INZT ~ Ezcosz:.
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4. The auxiliary equation is m? + 1 =0, s0 y. = c1 cos z + ¢z sinz and

cosr sinz

—sinz coszx

Identifying f(z) = sec ztanz we obtain

Wy = —sinz(secrtanz) = —tan’z = 1 —sec’z

uy = cosz(secrtanz) = tanz.
Then u; =z —tanz, ug = —In|cosz|, and
Yy =C1Co8ST + cgsinz +zcosz — sinz — sinzln|cos z|

=¢)1C0ST + c3sinz + zcosz — sinzln|cos z|.

5. The auxiliary equation is m? 41 =0, so y, = ¢ cos z + ¢y sinz and
cosz sinz

—sinx cosz

2

Identifying f{z) = cos* z we obtain

wy = —sinzcos’z

Uy = cos’z :cos:z:(l — sin® )

1

Then u; = %cos3 T, ug =s8inx — 3 sin3

z, and

. I g 1y
y=clcosm+6231nm+§cos T +sin x—gsm T

2 2

T — sin? m) + sin“

It

. 1 .
C1COSZT + ¢cosinz + 3 (0052 T + sin? m) (cos

. L, 2 .
=c1cosm+c251nx+§cos m+§sm x

. 1 1.
= clcosm+c251nx+§+§sm2m.

6. The auxiliary equation is m? +1 =0, so y, = ¢1 cosz + cysinz and

cosx sinx
W =

—sinx cosz

2 1 we obtain

Identifying f(z) = sec
p sinzx

cos?

£
I

uy = secT.
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Then
1
uy = — = —secz
cos
up = In|secz + tanz|
and

Yy = c1co8T + copsinx — coszsecz + sinz In | sec z + tan z|
=cjcosz +cosinz — 1 +sinzln|secz + tanz|.

7. The auxiliary equation is m? — 1 =0, s0 y. = c1€* + coe™* and

Then

and

1 1 1 1
- z _z__ -z -— — — — —
Yy = c1e” + o€ 86 +4:1:e 86 4:1:6

1
= c3e” + 4" + Z:v(ex —-e )

1
=c3e” + cqe” T + 5% sinh .

T

8. The auxiliary equation is m? — 1= 0, so y. = ;€% + coe™® and

Identifying f(z) = sinh 2z we obtain



10.

Exercises 4.6

Then .
1
o -3z i /
up = —126 + 46
_ 1 -z 1 3z
ug 46 756
and
1 1 1 1
y=cie® +ce " + - e + Zeh - Ze‘zz - —-1262z

1,9
_ T -z {2z __ -2z
= c1€” + 0pe ™" + (¥ —e7*)

1
=%+ e + 3 sinh 2z.

. The auxiliary equation is m? — 4 = 0, so y. = c1e2% + cpe™%* and

e2z 6—21:

W= 2622‘ _26—21

=4

Identifying f(z) = % /z we obtain u} = 1/4z and u} = —e?®/4z. Then

up = < In|z|,
1 = et
upg=—= | —dt
2T T4 s ¢
and
2z -2z 1 2z 2z [* e4t
y=cre +ce "+~ e“ln|z|—¢ / —dt], zo > 0.
4 zo ¢
The auxiliary equation is m? — 9 = 0, 50 yo = ¢1%% + c2¢ 7% and
632: 6—31:
W= 3e3z _36-—33: = —6.
Identifying f(z) = 9z/¢%® we obtain u} = %Ie‘“ and uh = —%I. Then
1 6 1 62
up = ———g ° — ze OF,
! 4
3 9
ug = -—Z.’L‘
and
1 1 3
y = CleBz + c26~3z _ __e—3z _ _Ie—3z _ _I2e—3z

24 4 4

1
= 1% + 337 — Za:e"%(l — 3z).
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The auxiliary equation is m? +3m +2 = (m+ 1)(m + 2) = 0, s0 Y = c1e”% + coe™ > and

11.
- -2
W = i e = —6_31.
—e % _26—21
Identifying f(z) = 1/(1 + &%) we obtain
I
, e
u =
17 14
2
u/ = — € i = ez — e
2 1+ef 1+e” .
Then uj = In(1 + €*), ug = In(1 + €%) — €%, and
y=cie *+ coe” X 47" In(1 +e*) + g% In(1+¢e")—e*
=c3e +cge”F 4+ (1+ e %)e " In(1 + €7).
12. The auxiliary equation is m? — 2m +1 = (m — 1)2 = 0, s0 y. = c1€” + coze® and
W o ze” _
e ze® + e
Identifying f(z) = e*/ (1 + .’L'2> we obtain
; ze®e” z
up = — =~
! e (1 + z2) 1+ z2
; ete” 1
Ug = 73 Zy Z
e’ (l+z%) 1+z
Then u; = —% In (1 + .’L'2>, up = tan") z, and
1 -
y = c1e° + coze” ~ -2-eﬂc In (1 + m2) + ze®tan" ! z.
13. The auxiliary equation is m? + 3m + 2 = (m + 1)(m + 2) = 0, s0 o = c1e™% + cpe ™% and
e~ 2 e—?z
W — — _e'—g.’E.
—e~ % _26—21
Identifying f(z) = sine” we obtain
=2z i T
, € “Fsine®
Uy = ——é:"g?—— = € " 8sIne
e *sgine” .
Uy = 0 —e?® sin e”.
Then u; = —cose®, ug = e* cosz — sin e, and
% e % cose® + e % cose® — e P sine”

y=ce T+ coe”

=cie™% + cpe” % — e 2 gine®.
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15.
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The auxiliary equation is m? —2m + 1 = (m — 1)2 =0, 50 y, = c1e’ + cotel and

t t
e te
W == = e2t.
et tet + et
Identifying f(t) = e’ tan™! ¢ we obtain
; tetet tan~! ¢ tian-lt
U = e = —
1 22t
, _eleftan™lt
Uy = T =tan ¢
Then \
1+ 1 t
= - tan™ "t + ¢
“ 2 2
Uy = ttan"lt — lln (1 + t2>
2
and

2

1+t t 1
y = cie’ + cate’ + (— * tan~lt + 5) et + <ttan—1t—§ln (1+t2>)tet

= clet + 03tet + %et [(tQ -~ 1) tan~'¢ — In (l + t2>] .

The auxiliary equation is m? +2m + 1 = (m + l)2 =0, 50 Yo = cie~t + cote™? and
~t ~t

W e te ot
= =€ .
—e7t —teti et
Identifying f(t) = e~*Int we obtain
,  tetetlnt
vy = ———— = ~tlnt
e te~tint
UIQ = —(-3-_—2?— = ln t.
Then ) )
up = —§t21nt+ Ztg
uy =tlnt —t
and

1 1
y=cret +cote ~ —2-t26—t Int + Zth—t +t%etint —tle?

1 3
=cre b+ cote”t + §t2e—t Int ~ Ztge—t.

16. The auxiliary equation is 2m2 4+ 2m 4+ 1 =0, s0 y, = e~*/%(c; cos /2 + casinz/2) and
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- e™/? cos 5 e~*/?sin 1,
= = - *

—le-z/2 qoz _ l~z/2o,2 1l,-z/2 z _ 1lo.x/24p0 2
7€ / cos 5 — 5e / sing  ge cos 3 — e/ “sin 5 2

Identifying f(z) = 21/ we obtain

e~ "2 gin(z/2)2/T .z
up =~ e‘(z/g )2Vz = —4¢*/\/x sin 5
—z/2 2)2 T
up = _¢ CSESL{ J2VE 4¢*/2\/z cos 5
Then
z 9 . t
u = —4 et/ Visin = dt
z0 2
z t
uy = 4 %/t cos = dt
z0 2
and
. z t x t
y = 6_2/2(01 cos % + ¢osin %) ~ 4772 cos g /xo et/2\/tsin 5 dt + 4e~%?gin % /IO et/?\/t cos 3 dt.

17. The auxiliary equation is 3m% — 6m + 6 = 0, s0 y. = e*(c1 cosz + e sinz) and

z T o}
€7 CoST ersinzx 2%

W = =e

e*cosr —e¥sinz e¥cosx + e¥sinz

Identifying f(z) = %ex secZ we obtain

o) = _ (e®sinz)(e"secz)/3 _ —ltanr
e 3
,  (e%cosz)(e¥secz)/3 1
Uy = 621 = § .

Then u; = %ln(cosr), Uy = %r, and

1 ’ 1
y =c1e”cosT + cpe” cos T + 3 In(cos z)e® cosz + §rez sin z.
18. The auxiliary equation is 4m? — 4m + 1 = (2m — 1)2 =0, 80 Y. = c16%/? + cpze*/? and

e.'2/2 ' Iez/Q

%62/2 %IEI/Q + ez/?

Identifying f(z) = %61/2\/1 — 22 we obtain

ze*/2e%/2\/1T = 22 1 \/_
= 1—zx2

x

W =

/_

up=— 1= —=z
z/2,2/2 /1 — D 1

ué:g_._g_zex—rzz,/l_lﬂ.
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20.

Exercises 4.6

Then

Uy = I% (1 - x2)3/2

Uy = %m+ ésin"lx
and

: 1 3/2 1 1
Yy = c1e? + cga:eg”/2 + Eez/g (1 - z2> / + §z2ez/2\/1 —z2 4+ garez/‘2 sin”! z.

The auxiliary equation is 4m? = 1 = (2m — 1)(2m +1) = 0, 50 ¥, = c16™/2 + coe™*/2 and

ez/2 e—/2

= —1.
%ez/2 _%e—z/Q

W =

Identifying f(z) = ze*/2/4 we obtain u} = z/4 and u = —ze® /4. Then u; = z°/8 and
up = —ze® /4 + e /4. Thus

1 1 1
y=c1e®? 4+ cpe™/? + —ézQez/? - ZzeI/Q + Zex/z

1 1
= c36%% 4 cgeT /% 4 Zq2e%/2 _ Zpe/2
8 4
and 1 1 1 1 1
Y = 56361/2 - Ech‘x/Q + TEzQeI/Q + gmeI/Q - ZeI/Q.

The initial conditions imply

c3+ ¢ =1
1 1 1
Ze3— zog— = = 0.
2% T2
Thus ¢3 = 3/4 and ¢ = 1/4, and
3 z/2 1 ~z/2 19 x/2 1 z/2
= ety o = — —ze®/?,
y=7e 3¢ + g e 1%¢
The auxiliary equation is 2m? +m — 1 = (2m — 1)(m + 1) = 0, 50 y. = c16%/2 4 cge™®
61/2 e~ % 3 )
W = %61/2 e —2e3/2,

Identifying f(z) = (z + 1)/2 we obtain

and



Exercises 4.6

Then 0
Uy = e~%/? <§a: - 2)
ug = ——xe”.
Thus
y=c1e"? + e~z —2
and
y = -21-c1c2:”/2 —cge %~ 1

The initial conditions imply

cg—cp—2=1

1
Zep—cp—1=0.
201 (]

Thus ¢; = 8/3 and ¢z = 1/3, and

8 1
y=§ez/2+§e_z—a:——2. |
21. The auxiliary equation is m2+92m—8= (m=2)(m+4)=0,s0yc= c1€%% + coe~4% and
— 62I 6—41 _ _66—21
T 2e% gt | '
Identifying f(z) = 2¢72% — e we obtain
1 1
ull — _6—411: _ _6—31:
1
u/2 — _1632: _ _6211:
Then .
— _ —4z -3z
R TA TS
1 3z 1 2z
= — e
U 186 z
Thus
1 1 1 1 _
y = c1e® + cpe™ — Ee'% + Iée_x + Tée—z -3¢ %
1 1
= c1e%® + cpe™4" — Ze—% + 56—1
and . .
y/ = 201621 — 4026—412: + _2_6-2:: _ 56—1.
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The initial conditions imply

5
c1 + 62_56::1

7
261—4CQ+1_8‘=O.

Thus ¢; = 25/36 and ¢y = 4/9, and

—~T

— géeh: 4 —4z 1 -2z e

36 +§€ ‘—ZG +

O =

Y

The auxiliary equation is m? — 4m +4 = (m — 2)2 =0, 50 ye = c1€°® + coze®® and

2z 2z
€ Te Az

2e2T  Qze?® 4 o2

Identifying f(z) = (123:2 — 6.7:) e%® we obtain
u) = 6% — 1223

uh = 1212 — 62.

Then
U = 213 — 324
Uy = 473 — 322,
Thus
y = c1e®® + cyze® + (2.7:3 - 3.7:4) e? 4+ (4.7:3 - 3x2) ze®
= c1e?® + cyze® + ¥ (x4 - x3>
and

Y = 2c1€%® + ¢y (erh + eh> + e (4.7:3 — 3x2> + 2% (x4 — .7:3) )

The initial conditions imply
c1 =1

2c1 +ca=0.
Thus ¢; =1 and ¢3 = —2, and
y = e — 2ze? 4 &> (x4 - x3> =¥ (x4 -3 -2z + 1) .
Write the equation in the form
1 1
ot ] — — —1/2
polye (=)o

1/2

and identify f(z) = =2 From y; = 272 cosz and yp = z71/?sin z we compute
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Y2 cosz z Y%sing 1
Wy va) = —27Y2sing — 127%2cosz 17V cosz — 27 ?sing Tz
Now
u) =sinz so wuj =cosz,
and
up = CcosT SO ug = sinz.
Thus
Y= clx_1/2 cosz + ca:v—l/2 sinx + m‘l/ﬁ cos? + - Y2gin? g
= cl:v"l/2 cosz + cz:v‘l/2 sinz + :v’l/ﬁ.
24. Write the equation in the form
1 1 sec(lnz
'+ Ey'—i-ﬁy: %*‘)‘

and identify f(z) = sec(lnz)/x%. From y; = cos(Inz) and y2 = sin(lnz) we compute

cos(lnz) sin(lnz)

1
W= _sin(lnz) cos(lnz) |~ 3
z T
Now
|
uy = _t_a{l(x_n:z:_) so u; = In]|cos(lnz)],
and

; 1
Uy =— 8o ug=lInz.
x
Thus, a particular solution is

yp = cos(Inz)In|cos(lnz)| + (Inz)sin(In z).

25. The auxiliary equation is m® + m = m(m2 +1) =0, so yc = ¢1 + cp cosz + casinx and
y y

1 cosz sinx
W=|0 —~sinz cosz |=1.
0 —coszx —sinz
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Idgntifying f(z) = tanz we obtfain

0 cos T sinz
uy=W;=| 0 —sinz cosz |=tanzx
tanr -—cosx —sinz
1 0 sinz
upy=Wo=|0 0 cosz | = —sinz
tanr —sinz
1 cosz 0 5
/ . . cos‘z — 1
ug = Ws = —sinz 0 |=-sinzrtanz = ————— = cosz — secz.
coszT
—Ccosz tancz

Then

u; = - 1n|cos x|

Uy = COST

ug =sinz — In|secz + tan z|
and

y=c1+cocosz +cysing — lnfcosz| +cos’z
+sin®z — sinzln|secz + tan z|
=c4+cpcosz + c3sinz —In|cosz| — sinz In|secz + tan x|
for —c0 < 2 < 0.

26. The auxiliary equation is m3+dm=m (m2 + 4) =0, 80 Yo = €1 + €3 c0s 2z + ¢y sin 2z and

cos2zx sin 2z

—2sin2x 2cos2z | = 8.

S
H
e I

—4cos2r —4sin2x
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Identifying f(z) = sec 2z we obtain

] ) 0 cos 2z sin 2z )
u'1=§W1=-8— 0  —2sin2zr 2cos2z =Zsec2x
sec2r —4cos2rx —4sin2x
1 0 sin 2z
u’—lW =1 0 0 2cos 2z _ 1
2787278 Ty
0 sec2r —4sin2z
) ) 1 cos 2x 0
uy = §W3 =3 —2sin2x 0 |= -7 tan 2z.
—4cos2z sec2x
Then 1
ur =g In| sec 2z + tan 2z
1
ug = —ZI
1
ug = -8—1n|cos2x|
and

1 1 1
Yy = ¢1 + ¢ €08 2z + c3 8in 2z + §1n|sec2x+tan2z[ - chos2x+ gsin2xln|cos2xf

for —7/4 <z < 7w/4.
The auxiliary equation is 3m? — 6m -+ 30 = 0, which has roots 1+ 31, so yc = e%(c; cos 3z -+ ¢ sin 3z).
We consider first the differential equation 3y” - 63’ + 30y = 15sinz, which can be solved using
undetermined coefficients. Letting y,, = Acosz + Bsinz and substituting into the differential
equation we get

(27A — 6B)cosz + (6a+ 27b)sinz = 15sin z.

Then
27TA—-6B=0 and 6a+ 27b =15,

so A= 1—27 and B = 1—97 . Thus, yp, = % cos T + % sinz. Next, we consider the differential equation
3y" — 6y’ + 30y, for which a particular solution y,, can be found using variation of parameters. The
Wronskian is . )
W e* cos 3z e*sin 3z . _gp2
eTcos3z — 3e®sin3z  3e” cos3z + e¥sin 3z

Identifying f(z) = %ez tan z we obtain

1 1
uj = -3 sin3ztan3z and uhy= §sin 3z.
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Then . )
U] = L sin 3x + L {l < 531lc sin 3x> ln(cos 3I+sin 3:3)}
1=57 27 [\ 2 2 2

Uy = —o7 cos 3.

Thus
= -l—e” $3 [l < s _ n3—x> —1 (C sg +sin3—x>}
Ups = 57¢ cos3z In{ cos = —sin - n{cos 3 5
and the general solution of the original differential equation is

y = e"(c1cos 3z + casin 3z) + yp, (z) + yp, ().

The auxiliary equation is m?—2m+1 = (m—l)2 = (), which has repeated root 1, so y. = c1€¥ +-coxze®.
We consider first the differential equation y” — 2y’ +y = 4x% — 3, which can be solved using
undetermined coefficients. Letting yp, = Az® + Bz + C and substituting into the differential
equation we get
Az? + (=4A + B)z + (2A — 2B+ C) = 422 - 3.
Then
A=4 —-4A+B =0, and 24-2B+C = -3,

so A =4, B =16, and C = 21. Thus, yp, = 4z? + 16z + 21. Next we consider the differential
equation 3" — 2y’ +y = 7 'e®, for which a particular solution Yp, can be found using variation of

parameters. The Wronskian is

W= e® ze® _ o2
e ze® +ef
Identifying f(z) = e®/x we obtain u| = —1 and up = 1/z. Then u; = —z and up = Inz, so that
Yp, = —z€” +z€” In7,

and the general solution of the original differential equation is
Y =Y+ Yp, + Yp, = C16¥ + coze” + 472 + 16z + 21 — ze® + ze¥Inz.

The interval of definition for Problem 1 is (—7/2,7/2), for Problem 7 is (—o0, co), for Problem 9
is (0, c0), and for Problem 18 is (—1,1). In Problem 24 the general solution is

y =c1cos(lnz) + casin(lnz) + cos(lnz) In | cos(ln z){ + (Inz) sin(lnz)

for —m/2 <Inz < 7/20r e”™2 < ¢ < ™2, The bounds on Inz are due to the presence of sec(ln x)

in the differential equation.

2 is a solution of z%y” + 23y’ — 42y = 0. To find a second solution we use

2

We are given that y; =z

reduction of order. Let ¥y = z“u(x). Then the product rule gives

Y =z +2zu and ¢ = 2% + dau’ + 2u,
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s0
oy + 23y — 42ty = 28 (zd” + 54)) = 0.

Letting w = v/, this becomes zw’ + 5w = 0. Separating variables and integrating we have

d 5
=24z and Injw}=-5mnz+c
w z
Thus, w = 7% and u = —%1‘4. A second solution is then yo = z%z7% = 1/z2, and the general

solution of the homogeneous differential equation is y. = c;2%+c2/ z2. To find a particular solution,

Yp, We use variation of parameters. The Wronskian is

W 2 1/2? 4
Cloz —2/2% oz
Identifying f(z) = 1/z* we obtain v{ = 1z7% and w4 = —3z7!. Then u; = —%z™* and
Uy = —% Inz, so
1 1 1 1
‘ Yp = ——Rz_‘le - Z(ln o)z 7% = —Rz_Q - Zz_anx.
The general solution is
1
y—c112+—2—i— Inx
2 1622 427

Exercises 4.7

2-m—-2=(m+1)(m—2)=0s0that y = c1z7} + cpz?.

1/2 1/2

The auxiliary equation is m

The auxiliary equation is 4m? — 4m + 1 = (2m ~ 1)2 = (0 so that y = ¢c;z*/* + coz*/“Inz.

The auxiliary equation is m? = 0 so that y = ¢; + ¢z Inz.
The auxiliary equation is m2 — 4m = m(m —4) =0 so that y = c; + coz?.

The auxiliary equation is m? + 4 = 0 so that y = ¢; cos(2Inz) + cosin(21ln z).

o
N = O

=
w

© ® NP o RN e

. The auxiliary equation is m? + 7m +6 = (m 4 1)(m + 6) = 0 so that y = 127! + coz75.

The auxiliary equation is m2 +4m + 3 = (m + 1)(m + 3) = 0 so that y = cjz~! + cpz 3.
The auxiliary equation is m? — 4m — 2 = 0 so that y = cla:Q“/6 + CQ.’L‘2+\/€.
The auxiliary equation is m? + 2m —4 = 0 so that y = c;zz“H‘/g + cgz~ V5,
The auxiliary equation is 25m2 + 1 = 0 so that Yy = €] COS (é In z:) + co (% In a:).
. The auxiliary equation is 4m? — 1 = (2m — 1)(2m + 1) = 0 so that y = c121/2 + cpz~ /2.
. The auxiliary equation is m? 4+ 4m 4 4 = (m + 2)? = 0 so that y = ca1z7? + coz 2 Inz.
6

3 3
. The auxiliary equation is 3m?+3m+1 = 0 so that y = z~1/2 [Cl cos (% In x) + cgsin (% In m)} .
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16.

o 17

18.

19.

20.
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The auxiliary equation is m? — 8m + 41 = 0 so that y = 2% [¢; cos(5In z) + cosin(5Inz)].
Assuming that y = z™ and substituting into the differential equation we obtain
m(m—-1)(m—-2)—6=m3—3m?+2m—-6=(m—3)(m?+2)=0.

Thus
Yy = e1z° + ¢y cos (ﬁlnx) + cgsin (\/§lnx) .

Assuming that y = ™ and substituting into the differential equation we obtain
mim—-1)(m-2)+m—-1=m®-3m?+3m—-1=(m—-1)>=0.
Thus
y =c1z + cpzlnz + czz(lnz)?.
Assuming that y = 2™ and substituting into the differential equation we obtain _
m(m — 1)(m — 2)(m = 3) + 6m(m — 1)(m — 2) = m* — Tm? + 6m = m(m — 1)(m — 2)(m +3) = 0.

Thus

Yy =] +Ccox + 03x2 + C4x"3.

Assuming that y = 2™ and substituting into the differential equation we obtain
m(m—1)(m—=2)(m—23)+6m(m—1)(m—2)+9m(m—1)+3m+1=m*+2m?+1 = (m?+1)2 = 0.

Thus
y =cicos(lnz) + cosin(lnz) + czInz cos(lnz) + ¢4 Inzsin(ln z).

The auxiliary equation is m2 — 5m = m(m —5) = 0 so that y. = ¢1 + coz° and
5

1 z
w(l,z% = = 5¢*.
(L") }o 5zt
Identifying f(z) = 23 we obtain v{ = —1z* and uj = 1/5z. Then u; = —425, up = {Inz, and

1 1 1
y=c1+ c2x5 — =2+ 27%Inz = 1+ c3zd + gxs Inz.

25 5
The auxiliary equation is 2m2? + 3m + 1 = (2m + 1)(m + 1) = 0 so that y, = c;z~! + coz~ /2 and
-1 —1/2
-1 -1y | T T _ 1 _5p
Wiz="z ) = g —%x_3/2 = 2m .
Identifying f(z) = % - % we obtain u}] =z — 22 and uh = 232 ~ 2Y/2 Then uy = %xQ - %x3,

Uug = %15/2 - %xS/Q, and

1 1 2 2 1 1
y=cz '+ ez V2 4 -éz - §x2 + 312 - gx =ciz7l f g2 535 + B£L‘2.

164



Exercises 4.7

21. The auxiliary equation is m? — 2m + 1 = (m — 1)? = 0 so that y. = c1z + cpzInz and

z zlnz
Wi(z,zlnz) = =
1 14Inz
Identifying f(z) = 2/z we obtain v} = —2Inz/z and vy = 2/z. Then u; = —(Inz)?, uo = 2Inz,
and

y=cz+ czinz — z(nz)? + 2z(ln z)?

=ciz + czlnz + z(ln :c)2.
22. The auxiliary equation is m? — 3m +2 = (m — 1)(m — 2) = 0 so that y. = 17 + cp2? and

2

T z
Wz, 2?) = = z2.
1 2z
Identifying f(z) = z%® we obtain uj = —z% and uh = ze®. Then u; = —z%e® + 2ze — 2%
ug = ze® — %, and

= 17 + coz? — 1% + 272" — 2z€% + 5% — 2"

=012 + cox? + £%€® — 2xe”.

23. The auxiliary equation is m? 4 2m = m(m + 2) = 0, so that
y=ci+cz % and ¢ =

¥
-3
= —2c0z™°. e
The initial conditions imply
c1+ep=0 10
—2¢9 = 4.
Thus, 1 = 2, ¢p = —2, and y = 2 — 2272,
-20
24.

y
The auxiliary equation is m? — 6m + 8 = (m — 2)(m — 4) = 0, so that .
A‘

20
Thus, c; = 16, co = —2, and y = 1622 — 224

y=c1z° +cpz® and ¢ = 2017 + deoz.
The initial conditions imply

4ec1 + 1609 = 32

4ey + 32¢0 = 0.
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Exercises 4.7

25. The auxiliary equation is m? + 1 = 0, so that

y = ¢y cos(lnz) + cosin(lnz)
and T\ NS T A T Y N SN S N Wy

LI 1 T LR T 1
1 1 50 00%
Y = —cy=sin(lnz) + cp = cos(In z). $ :
z z -3

The initial conditions imply ¢; = 1 and ¢g = 2. Thus
y = cos(lnz) + 2sin(lnz).

26. The auxiliary equation is m? — 4m +4 = (m — 2)%2 = 0, so that
y=c1zl +cz?lnz and ' =217 + co(z + 2z 1nz).

The initial conditions imply ¢; = 5 and cg + 10 = 3. Thus y = 522 — 72%Inz.

27. The auxiliary equation is m? = 0 so that y, = ¢; + coInz and

1 In 1
W(l,lnz) = o2
0 l/z| =
Identifying f(z) = 1 we obtain u] = —zlnz and v = z. Then

Uy = %xQ - %x2 Inz, up = %xQ, and

1 1 1 1
y:cl+021nm+zz2— —I21nx+§:c21nz_—.cl +621nx+1x2'

2
The initial conditions imply ¢y +% =land ¢y +% = —% . Thus, ¢; =

FS O8]

, cg = —1,

andyz%—lna:—i—%z?

28. The auxiliary equation is m? — 6m +8 = (m — 2)(m — 4) = 0,
so that y. = c122 + coz? and
2 2!

2w 4z

} = 2z°.

-1 P

Identifying f(z) = 8z* we obtain v} = —423 and 4} = 4z. Then

up = —2% ug = 222 and y = 122 + cozt + z8. The initial conditions imply
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29.

30.

31.

32.

33.

Exercises 4.7

1 1 1

T2 T

1 3

R LT
Thusc1=1—16,c2=—%,andy=1—161:2—%r4+1:6.

Substituting into the differential equation we obtain

dy  dy
2Y 8% _opy=0
a2 T8 2
The auxiliary equation is m? + 8m — 20 = (m + 10)(m — 2) = 0 so that

Y= cle‘lot + 6262t = clr"lo + C2$2.

Substituting into the differential equation we obtain

dy  dy
~2 - 10-2 4+ 25y = 0.
dt? dt T ooy

The auxiliary equation is m? — 10m + 25 = (m ~ 5)2 = 0 so that

Y= cleSt + czteSt = clrs + CQIS Inz.

Substituting into the differential equation we obtain

d’y dy o

— 4+ 90—= 4+ 8y =e"".

dt2 + dt Toy=e
The auxiliary equation is m2+9+8= (m +1)(m + 8) = 0 so that yc = c1e™" + cpe”

undetermined coefficients we try y, = Ae?. This leads to 304e? = e?, so that A = 1/30 and

8 Using

1 1
—t —8t 2t -1 -8 2
=c —e* =7 + o™ + —z1°.
Y 1€+ coe + 3 Oe C1 2 30
Substituting into the differential equation we obtain
dy  dy
— — 5— + 6y = 2t.
dt? a Y

The auxiliary equation is m2 — 5m + 6 = (m ~ 2)(m — 3) = 0 so that y. = c1e® + coe™.

undetermined coefficients we try y, = At + B. This leads to (=54 + 6B) + 6At = 2t, so that
A=1/3, B=5/18, and

Using

1 5 1 5
Yy = Cl€2t+62€3t+ §t+1_8 = 61$2+6213 +§1nx+ 5

Substituting into the differential equation we obtain
dy dy

_ t
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34.

Exercises 4.7

The auxiliary equation is m2—4m+13 = 0 so that y. = e*(c; cos 3t+cg sin 3t). Using undetermined

coefficients we try y, = A+ Be'. This leads to 134 + 10Be’ = 4 + 3¢, so that A = 4/13, B = 3/10,

and

4 3
%(cy cos 3t + cosin 3t) + — + —é

y=¢ 137 10

cicos(3lnz) + cosin(3lnz)] + — + —=z.

4 3
_ 2
= 137 10

From

it follows that

_ld/dy\ 1.d(dy) 2d% 24y
T2 dx \ de? 22 dz \ dt 3 42 3 dt

1@<1>_1@<l>_3@ 2 dy
z2 dt? \z

z 3 dt2 | 23 dt

Substituting into the differential equation we obtain

d3y d%y ay d%y dy dy
—_— 3= 2= =3 —= - = 6= —-6y=3 t
s Cdr T a2 a) TOq Gy=3F3

or
dy _dy dy
Y 6 4 11-2 —6y=3+3t
dt3 et 343
The auxiliary equation is m3 —6m2+11m—6 = (m—1)(m—2)(m—3) = 0so that y. = c1e’ +coe* +
c3e’. Using undetermined coefficients we try yp = A+ Bt. This leads to (11B —6A) —6Bt = 3+ 3t,
so that A = —-17/12, B = —-1/2, and

17 1 17 1
Yy = clet +chQt +6363t — E - §t = cla:+02:c2 +csa:3 - —1—2 - 5111:1:.
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Exercises 4.7

In the next two problems we use the substitution ¢t = —z since the initial conditions are on the interval

(—00,0). In this case

and

35.

36.

37.

dy _dydz _ _dy
dt  dz dt = dz

d¥ d [dy d [ dy d ., dy' dz d¥y dz  d%
3 iz =—a;(y)— =——a =

dt

T

diZ  dt T T4z dt | de? dt | da?’

The differential equation and initial conditions become

42 =5 4 y=0; y(t) L_lz 2, J'(t)

t=1
The auxiliary equation is 4m? — 4m + 1 = (2m — 1)2 = 0, so that

Yy = cltl/2 + CQt1/2 Int and % = %clt_l/Q + ¢ (t_l/Q + %t"l/Q lnt) .
The initial conditions imply ¢; = 2 and 1 + ¢o = —4. Thus
| y =22 — 5t121nt = 2(—2)"/? — 5(—2)"/%In(~2z), z <O0.
The differential equation and initial conditions become

dy dy
222 g2 =0 t \ = §, (¢ = 0.
dt? dt +oy =0 y(t) t=2 v t=2

The auxiliary equation is m? — 5m + 6 = (m — 2)(m — 3) = 0, so that
y=ct? + et and ' = 2c1t + 3ept’.
The initial conditions imply
4e1 + 8co = 8
4c1 +12¢0 =0
from which we find ¢y = 6 and ¢» = —2. Thus

y=6t2—-2t3=622+2$3, z <0.

Letting u = z 4+ 2 we obtain & = & and, using the chain rule,
dr du
By d (s dyde by 0y
dz? ~ dz\du) duldzr  du?'’  du?’
Substituting into the differential equation we obtain
2
u? j—fi +u % +y=0.

The auxiliary equation is m? + 1 = 0 so that

y = c1cos(lnu) + ¢y sin(lnu) = ¢j cos[In(z + 2)] + co sin[In(z + 2)).

169



38.

39.

40.

41.

42.

43.

44.

Exercises 4.7

If 1 — ¢ is a root of the auxiliary equation then so is 1 + 4, and the auxiliary equation is
(m=2)m-1+)]m-1-i)]=m®—4m?>+6m—4=0.

We need m3 —4m? 4+ 6m —4 to have the form m(m —1)(m—2) +bm(m—1)+cm+d. Expanding this

last expression and equating coefficients we get b = —1, ¢ = 3, and d = —4. Thus, the differential

equation is

3,11

3y — 2%y + 3z —4y=0.

For 2%y = 0 the auxiliary equation is m(m — 1) = 0 and the general solution is y = ¢; + c22. The
initial conditions imply ¢; = yo and ¢z = y1, so ¥y = yo + y1z. The initial conditions are satisfied

for all real values of yp and ;.

For z%y" — 2zy/ + 2y = 0 the auxiliary equation is m? —3m + 2 = (m — 1)(m — 2) = 0 and the
general solution is y = ¢1z + cpz?. The initial condition y(0) = o implies 0 = yo and the condition
y'(0) = y1 implies ¢; = y1. Thus, the initial conditions are satisfied for yo = 0 and for all real values
of 1.

For 1%y — 4zy' + 6y = 0 the auxiliary equation is m? — 5m + 6 = (m ~ 2)(m — 3) = 0 and the
general solution is y = c1z% + cpx3. The initial conditions imply y(0) = 0 = yo and y'(0) = 0. Thus,
the initial conditions are satisfied only for yg = y; = 0.

The function y(z) = —/zcos(Ilnz) is defined for z > 0 and has z-intercepts where Inz = 7/2 + k7
for k an integer or where z = ™2+*7 Solving 7/2 + kw = 0.5 we get k = —0.34, so ™2+ " < 0.5
for all negative integers and the graph has infinitely many z-intercepts in (0, 0.5).

The auxiliary equation is 2m(m — 1)(m — 2) — 10.98m(m — 1) + 8.5m + 1.3 = 0, so that m; =
~0.053299, mo = 1.81164, m3 = 6.73166, and

—0.053299

y=ar + oy 81164

+ 03$6.73166.

The auxiliary equation is m(m — 1)(m — 2) + 4m(m — 1) + 5m — 9 = 0, so that m; = 1.40819 and
the two complex roots are —1.20409 4 2.22291:. The general solution of the differential equation is

y = ¢ 40819 4 = 120409700 005(2.22291 In z) + ¢35in(2.22291 In z)].

The auxiliary equation is m(m —1)(m —2)(m —3) +6m(m - 1)(m —2) +3m(m —1) -3m+4 =0,
so that m; = mg = v/2 and m3 = my = —v/2. The general solution of the differential equation is

y= 01:1:‘/E + czxﬁlna: + c;;z'ﬂ + cw‘ﬂln z.

The auxiliary equation is m(m—1)(m—2)(m—3)—-6m(m—1)(m~2)+33m(m—1)—105m+169 = 0,
so that my = mo = 3+ 2¢ and m3 = my = 3 — 2. The general solution of the differential equation
is

3

y = z[c1 cos(2Inz) + cosin(2Inz)] + 23 In z(c3 cos(2In z) + ¢y sin(2In z)).
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Exercises 4.8

Exercises 4.8

. From Dz = 2z —y and Dy = z we obtain y = 2z — Dz, Dy = 2Dz — D%z, and (D* —2D+1)z = 0.
Then
z=crel +cote! and y = (c; —ca)et + cotel.

. From Dz = 4z 4+ 7y and Dy = z — 2y we obtain y = .l,Dx— %x, Dy

(D? -~ 2D — 15)z = 0. Then

I
=
o]

| ]
1S}
|
s
]
vH
)
=]
o

3t 3t

_ 1 -
$=01€5t+026 and y= 701651”—026 .

. From Dz = —y+tand Dy=2z —t we obtain y = t — Dz, Dy =1 — D%z, and (D*+ 1)z = 1 + .
Then

z=cycost+cosint+1+¢

and

y=cysint —cpcost+t—1
. From Dz —4y =1 and z+ Dy = 2 we obtain y = %Dm—%, Dy = %D2:L‘, and (D?+1)z = 2. Then

T =c1Ccost+ copsint + 2
and
-2 cost ! sint 1c sint E
y= 402 401 111 1 1 4.
. From (D?+5)z— 2y = 0 and —2z+ (D?+2)y = 0 we obtain y = §(D?+5)z, D%y = %(D4+5D2)z,
and (D? + 1)(D? + 6)z = 0. Then

= clcost+czsint+03cosx/€_5t+ 04sin\/6t
and . .
y = 2cycost + 2¢cosint — Ec:;cos\/f_it - §C4s'm\/6t.

. From (D+1)z+ (D~ 1)y = 2 and 3z + (D + 2)y = —1 we obtain z = —% - (D + 2)y,
Dz = —%(D? 4+ 2D)y, and (D?+ 5)y = —7. Then

7
y=c1cosx/5_t+c251n\/5t—g

2 ) 2 3
T = <—§cl - \/Tgcz> cos V5t + <%—_cl - §c2> sin V5t + .

. From D?z = 4y + ! and D2y = 4z — €' we obtain y = %DQI - %et, D3y = %D‘lx - 4let, and
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10.

Exercises 4.8

(D*+4)(D - 2)(D + 2)z = —3¢!. Then

1
T =1 cos 2t + casin 2t + 6362t + c4e‘2t + get
and

1
9y = ~—C1 Cos 2t — ¢y sin 2t + C362t + C46—2t - get.

. From (D2 +5)z + Dy = 0 and (D + 1)z + (D — 4)y = 0 we obtain (D — 5)(D? + 4)z = 0 and

(D —5)(D? +4)y = 0. Then

T = cleSt + ¢9 cos 2t + c3sin 2t
and

Y= C485t ~+ ¢5 cos 2t + cg sin 2t.
Substituting into (D + 1)z + (D — 4)y = 0 gives
(6c1 + c4)e® + (co + 2c3 — 4es + 2c6) cos 2t + (—2co + 3 — 25 — 4eg) sin 2t = 0

so that ¢4 = —6¢1, c5 = %cs,, e = —%cz, and
st L L
y = —6cre’ + §C3 cos 2t — §cz sin 2t.

From Dz + D% = €3 and (D + 1)z + (D — 1)y = 4€% we obtain D(D? + 1)z = 343 and
D(D?+ 1)y = —8¢%. Then

: 4 3
y=1c1 +cosint +c3cost — Be

and
3t

17
m=C4+cssint+c6cost+Ee .

Substituting into (D + 1)z + (D — 1)y = 4 gives
(cg —c1)+(c5 —cs—c3 —ca)sint + (cg + 5+ ca —c3)cost =0

so that ¢4 = ¢1, ¢5 = ¢3, g = —¢c9, and

: 17 st
r=2qC —czcost+C3smt+Ee .

From D%z — Dy =t and (D 4 3)z + (D + 3)y = 2 we obtain D(D + 1)(D + 3)z = 1 + 3t and
D(D+1)(D +3)y = -1 — 3t. Then

1
r=c1+cet+ C3e—3t —t+ §t2

and

—3t I

y=catoseT Hege +t— ot
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11.

12,

13.

14.

Exercises 4.8

Substituting into (D + 3)z + (D + 3)y = 2 and D%z — Dy = ¢ gives
3(c1 4+ cq) +2(co+cs)et =2

and
(ca+ cs)e™t + 3(3ea + ce)e™3t =0
so that ¢4 = —c¢1, 5 = —¢9, cg = —3c3, and
1
Yy=—C1— cze_t - BC3e'3t +t— —2—t2.

From (D? — 1)z —y = 0 and (D — 1)z + Dy = 0 we obtain y = (D? — 1)z, Dy = (D3 - D)z, and
(D~ 1)(D?>+ D + 1)z = 0. Then

3
z=cret + emt/2 {cz cos —\é—gt + c3sin \—é_—t}

and

y=<3 ﬁ)e_t/zmﬁ <\f3 3>e—t/2 V3

Ty e p it e sin —-t.

From (2D?~D-1)z—(2D+1)y = 1 and (D—1)z+Dy = —1 we obtain (2D+1)(D-1)(D+1)z = -1
and (2D + 1)(D + 1)y = —2. Then

—t/2

T =cle + et + czet +1

and
—t/2

Y = c4€ +cse”t — 2.

Substituting into (D — 1)z + Dy = —1 gives
3 1 —1/2 —t _
< 261 264) e + ( 2co C5)6 =0
so that ¢4 = —3¢1, c5 = —2¢9, and
Y= —-3cle_t/2 - 2626_t - 2.
From (2D—5)z+ Dy = e and (D—1)z+Dy = 5¢! we obtain Dy = (5—2D)z+¢€! and (4— D)z = 4e’.
Then 4
T = cle‘“ + §et
and Dy = —3c14 + 5¢t so that
Y= -§cle4t + ¢ + 5el.
From Dz+ Dy = et and (- D?+ D+1)z+y = 0 we obtain y = (D?*~D~1)z, Dy = (D*~D?- D)z,
and D*(D — 1)z = e!. Then

Tz=2c+ct+ C3€t + tet
and
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15.

16.

17.

18.

Exercises 4.8

y=—c1 —co —cot — cze’ —te’ + €.
Multiplying the first equation by D + 1 and the second equation by D? +1 and subtracting we
obtain (D* — D?)z = 1. Then
t —t 1o
T =c1 +cot +c3e” +cqe " — =t
Multiplying the first equation by D + 1 and subtracting we obtain D?(D + 1)y = 1. Then
o —t Lo
y =5 +cet+cre —it .
Substituting into (D — 1)z + (D? + 1)y = 1 gives
(~c1+cades—1)+(~2c4+2cr)e +(-1—~ca+ce)t=1

so that ¢ =c¢1 —co + 2, cg = ca + 1, and ¢7 = ¢4. The solution of the system is

¢ -t 1o
T =C1+cpt +c3e +cqe -Et

1
y=(c1~co+2)+(ca+1)t+cae”" - EtQ'

From D%z — 2(D? + D)y = sint and ¢ + Dy = 0 we obtain ¢ = —Dy, D’z = —D3y, and
D(D?*+ 2D + 2)y = —sint. Then

1 2
y=c1+626_tcost+c?,e"tsint+gcost+gsint
and
—t ~t 1 2
z = (c2+ c3)e " sint + (c2 — c3)e cost+:smt-—gcost.
5

From Dz =y, Dy = 2. and Dz = & we obtain 2z = D%y = D3z so that (D — 1)(D?+ D+ 1)z =0,

z=ce+ e~t/2 [62 sin \/7§t + c3 cos \gtJ ,

1 V3 V3 V3 1 _ NE}
Yy =cie + ( 262 2 C3> e sin 2 + ( 5 c9 2@,) e cos —2 z,
and

From Dz + 2 =¢', (D~ 1)z + Dy+ Dz =0, and = + 2y + Dz = €' we obtain 2 = —~Dz + ¢,
Dz = —D%z + ¢, and the system (~=D?+ D — 1)z + Dy = —¢’ and (=D? + 1)z + 2y = 0. Then
y=4(D? — 1)z, Dy = 1D(D? — 1)z, and (D — 2)(D? + 1)z = —2¢’ 50 that

9 .
I = cle't 4+ cocost +c3sint + et,

Yy = Ecle% — ¢gcost — c3sint,

and
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Exercises 4.8

z= ——2c1e2t — c3cost + cosint.
19. Write the system in the form
Dz —-6y=0
z—Dy+2=0
z+4+y—Dz=0.

Multiplying the second equation by D and adding to the third equation we obtain
(D+1)z - (D? - 1)y = 0. Eliminating y between this equation and Dz — 6y = 0 we find

(D*~D-6D—-6)z=(D+1)(D+2)(D-3)z=0.
Thus

T = c1e_t 4 CQe°2t + 0363t,

and, successively substituting into the first and second equations, we get

1 1 1

Y= —gcle”t - 502e”2t + 5036%
5 1 1

z= -—gcle_t - 502e—2t + 503e31.

20. Write the system in the form

21.

D+N)z—2z=0

(D+ly—2z=0

z—y+ Dz=0.
Multiplying the third equation by D + 1 and adding to the second equation we obtain (D + 1)z +
(D?+D-1)z = 0. Eliminating 2 between this equation and (D+1)z~z = 0 we find D(D+1)%z = 0.

Thus
rT=c + cze"t + c;;te"t,

and, successively substituting into the first and third equations, we get

y=c1+ (co — ca)e™" + cate”?

z=c0+ 03e't.
From (D+5)z+y = 0 and 4z — (D +1)y = 0 we obtain y = ~(D+5)z so that Dy = —(D?+5D)z.
Then 4z + (D?+ 5D)z + (D +5)z = 0 and (D + 3)%z = 0. Thus

T = cle_Bt + czte":“
and
y = —(2c; 4 cp)e™3 — 2¢pte

175



22.

23.

24.

Exercises 4.8

Using z(1) = 0 and y(1) = 1 we obtain

cle—3 + cge'3 =0

—(2¢c1 + 02)6‘3 - 2026—3 =1

or
c1+c2=0
2c1 + 3¢y = —e3
Thus ¢; = €® and ¢p = —e3. The solution of the initial value problem is
o= g 3t+3 _ 4343
y =~ ope+3

From Dz —y = —1 and 3z + (D —2)y = 0 we obtain z = —3(D — 2)y so that Dz = —1(D*-2D)y.

Then —1(D? —2D)y =y — 1 and (D? — 2D + 3)y = 3. Thus

y=et (clcosx/ﬁt+0251n\/§t) +1
and

z = %et [(01 — \/502) cos V2t + (\/§c1 +C2) sin\/it] + %

Using z(0) = y(0) = 0 we obtain
a+1=0

1 2
§<Cl~\/562)+§=0.
Thus ¢; = —1 and ¢y =\/§/ 2. The solution of the initial value problem is

z=¢e (—gcosx/it—l/é—isin\/it) +—§—

2
y=¢ét <—c05\/§t+%-—sin\/§t> + 1

2

d2

d
Equating Newton’s law with the net forces in the z- and y-directions gives md—x = 0 and mY =

t2

dt?

—mg, respectively. From mD?z = 0 we obtain z(t) = ¢1t+c2, and from mD?y = —mg or D%y = —g

we obtain y(t) = —5gt* + cst + ca.

From Newton’s second law in the z-direction we have

d%z ldz dr
— = —kcosf = —k=— = —|c|—.
e k cos v dt el dt
In the y-direction we have
dy , 1dy ay
mog =My - ksind = —mg — k;d—t =—-mg — [ClEE
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25.

Exercises 4.9

From mD?z + |¢|Dz = 0 we have D(mD + |c|)z = 0 so that (mD + |¢[)z = ¢;. This is a first-order
linear equation. An integrating factor is eJ Icldt/melelt/m o that

cft/m left/m

d

E[e| z] = cie
and etz = (c;m/|c})eldlt/™ + ¢y, The general solution of this equation is z(t) = c3+cpel®/™. From
(mD? + |¢| D)y = —mg we have D(mD + |c|)y = —mg so that (mD + |c|)y = —mgt +c;. This is a

first-order linear equation with integrating factor el“*/™ Thus

L elet/my] — (Zmgt + cp)eletim

dt
¢ m?g ¢ m3g It G elt/m
elelt/my — = 3 yelel /m+__2_elc /m 4 o€ +co
and ) .
m m -
y(t) = I¢+ 7g + ¢34 cge™lelt/m,

ol
Multiplying the first equation by D + 1 and the second equation by D we obtain
D(D + 1)z — 2D(D + 1)y = 2t + t2
DD+ 1)z -2D(D+ 1y =0.

This leads to 2t + t2 = 0, so the system has no solution.

Exercises 4.9

We have 3] = yf = €7, so
N2 z\2 2z _ 2
(11)" = (") =€ =41.
Also, yp = —sinz and y§ = —cosz, s0

(yé')2 = (- Cos:c)2 = cos?z = yg

However, if y = c1y1 + coyo, we have ()% = (c1¢® — cpcosz)? and y? = (c1€® + cpcos z)2. Thus
(y")? # 2 '

. We have g} = y{ =0, so

1 1
ny =1:0=0= 5(0)2 = 5(3/3)2-

Also, y5 = 2z and y§ = 2, so

1 1,0
vl = £(2) = 20° = L0012 = L af?
However, if y = ciy1 + coyo, we have yy” = (c1 - 1 + coz?)(c1 - 0 + 2¢0) = 2ca(ey + coz?) and

%(y')2 = %[cl -0 + co(21))? = 2c3z2. Thus yy” # %(y')Q.
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Exercises 4.9

. Let u =19/ so that ' =¢”. The equation becomes v’ = —u — 1 which is separable. Thus
du —-1 /
o ~dr = tanT u=-x+¢ = y =tan(c; —z) = y =In]|cos(c; — )| + cs.

. Let u =3/ so that u’ =¢”. The equation becomes v’ = 1 + u?. Separating variables we obtain

du

T s=dr => tanlu=z+¢ = u=tan(z+c) = y=—In|cos(z+c1) + 2.
u

. Let u =3/ so that u/ = 3”. The equation becomes z%u’ + u? = 0. Separating variables we obtain

du dr 1 1 cir+1 1 z 1 1
U z? u T z ca\z+1/q c1 \ciz+1

1 1
= y=—21nlclx+1|—c—a:+c2.

/ " du : du 2 : ;
. Let u = ¢ so that 3" = U The equation becomes (y + 1)u o = U Separating variables we
Y Y
obtain

d d

_ug = —y—_g—l = Infu/|=hly+1ll+lnag = u=c(y+1)
dy dy
—= = 1 ——=c1d

=>d$ cl(y-i- )=>y+1 c1ax

= hnjy+1ll=cazr+c = y+1=c3e?”

d d
. Let u = ¢/ so that ¢ = u d_u The equation becomes ud—u + 2yud = 0. Separating variables we
Y Y
obtain
du 1 1
—_+ 2 dy=0 = —=— —+ 2 = = = ! =
u? yay Ty =€ v Y2 + ¢ y Y2+

1
= (y2+c1>dy=da: = —y3+c1y=x+c2.

3
/ 1" du . 2 du . . .
. Let u=1y sothat y" =u o The equation becomes y uE— = u. Separating variables we obtain
Y Y
d 1 -1
duz—y=>u=——+01=>y’=cly = y dy = dz
2
Y ] Yy ay—1
1 1 1 1
= — {1+ dy=dz (forc; #0) = —y+shijy—1l=c+c.
€1 ey —1 c1 cf
If ¢; = 0, then y dy = —dz and another solution is %y2 = —z+ co.
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d d .
Let u = ¢ so that ¢/ = u d—u— . The equation becomes u as + yu = 0. Separating variables we

(b)
obtain
— _ 1o y_ Lo
du=—ydy = u=-3y +c = y ——iy + 1.
Whenz=0,y=1and ¢y = -1 so——1=—%+c1'andcl=—%.Then
d 1 1 d 1 1
4 2 i =——dr = tan“1y=——2~x+c;g

-2V T T P12

1
= Yy =tan <~§x+02>.

When z =0, y =1 s0 1 =tancy and cp = 7/4. The solution of the initial-value problem is
= tan (7{ 1x>
A VIR SN

The graph is shown in part (a).

(c) The interval of defintion is —7/2 < 7/4 —z/2 < m/2 or —7/2 < z < 37/2.
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Let u = 7/ so that u’ = y”. The equation becomes (u/)? +u? =1
which results in v/ = £v1—u?. To solve v/ = v1—u? we
separate variables:
du
———— =dz = sin”} i ’Z

- u=z+c = u=sin(z+c)
—u

>1

= 3y =sin(z + c1).

T \/§ \/§ T T
h = — I:——— — = 3§l <— ) = ——,
When z 2,y 5 , SO 5 sin 2—+—c1 and ¢ 5
Thus
'=sin<x—z> = =—cos<x—z>+c
Y 6 Y 6 2:
Whnx~7r —1501— s(w W)—f- = 1—f- d = 1. The solution of th
e —2,y—-2, 5 = co 57 % c2'— 5 ¢co and ¢o = 1. e soluti e

initial-value problem is y = 1 — cos (9: - g)

To solve v/ = —/1 —u? we separate variables:

dU -1
- =—dzr = cos  u=2z+¢]
— U

= u=cos(z+c1) = y =cos(z+c1).

T, \/§ \/§ <7T ) T
- =2 Y - — =——.Th
When z 5 Y 5 so 5 cos 5 +c1) and g 3 us
y’=cos<x——73£> = y=sin(x—§> + co.
1 1 1

When z = T ,Y = =,80 = =sin <7_r — E) +c2 = —+co and ¢g = 0. The solution of the initial-value

2 272 2 3 2
problem is y = sin ( g)

1 1 A . .
Let u = ¢/ so that v/ = y”. The equation becomes v’ — —u = ~u3, which is Bernoulli. Using
z z
dw 2 2 .
w = u~? we obtain — + =w = —— . An integrating factor is z2, so
dr =z z
—[ztu] = ~2t = Pw=-2t4+¢ = w——1+—2
dz z
— oy ?=14+ 8 = e
z2 Ve — 22
dy z
— — 2
== = y=—y/c1—x“+c¢
dz ey — 22 v ' 2
= a-=(a-y)? = +(a-y=a



Exercises 4.9

1 L . .
12. Let u = ¢ so that o/ = y”. The equation becomes v’ — —u = u?, which is Bernoulli. Using the
T

o . d 1 . . .
substitution w = u~1 we obtain d—w + —w = —1. An integrating factor is z, so
T
d 1 1 1 ¢ —z? 2z 9
—zw)=—1r = w=-—-zr+c = - = = u= 2=>y=—ln'c1—x‘+cz.
dx 2 z U 2z c1—z

In Problems 13-16 the thinner curve is obtained using a numerical solver, while the thicker curve is the

graph of the Taylor polynomial.

13. We look for a solution of the form y
W(o) = y(0) +(0) + 56" 0) + 579" (0) + 7@ + =y D). P 5
From 3"(z) = = + y* we compute
y"(z) =1+ 2yy ;
yW(z) =29y + 2(v/)? 2
v (z) = 299" + 64’y
Using y(0) = 1 and y'(0) = 1 we find 10 /
V(0 =1, ¢"(0)=3 y¥0) =4 y®0) =12
An approximate solution is T 0.6 11.522.53%
y(z)=1+z+ %zQ + %x‘? + éx‘i + I%xs,
14. We look for a solution of the form
2) = 3(0) + Y0+ W' O) + 200 + S+ 2O
From y”(z) = 1 — 4% we compute
y"(z) = ~2yy/' 5
v (@) = ~2yy" - 2(y') .
T 5IT.50 253
¥ () = —2yy" - 6y'y".
Using y(0) = 2 and ¢/(0) = 3 we find -5
y'(0)=-3, ¢"(0)=-12, ¢ (0)=-6, y®(0) =102
-10
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An approximate solution is

_ 3o 53 14 175

y(z) =2+ 3z 5% 2z yid + 552
15. We look for a solution of the form v
40

1 1 1 1
u(@) =y(0) + ¥/ (0) + 3¥"(0) + 739"(0) + 790 (@) + 7y (w)
2

From y"(z) = z* + y? — 2y’ we compute 30

v (z) =2z + 2y’ — 2"
yW(z) =2+ 2(y)% + 2" — 2"
v (z) = 6’y + 29" — 2.
Using y(0) = 1 and ¢/(0) = 1 we find
y'(0)=-1, ¥"0) =4 g9 0O)=-6 ¢O0)=14

An approximate solution is 0.511.522.533.5

1 2 1 7
yzy=1+z - §x2 + };IB - 124 + %15.

16. We look for a solution of the form

(@) = y(0) +¥/(0)+ 59/ (0)+ 30" (0) + 58V () +

From y”(z) = ¢¥ we compute

1
51

1

¥ @)+ 5790 (@),

I) - &Y y/)3 + 3eyy’y” + eyy///

(

yW(z) = (1) +evy”
( (
(

y & (z) = e¥(y)* + 6e¥ (1) 2y + 3e¥(y")? + de¥yy" + ey Y.
Using y(0) = 0 and 3/(0) = —1 we find
Y'(0)=1, ¢"(0)=-1, y¥(0)=2 ¢®0)=-5 ¢®0) =16

An approximate solution is
1o 13, 1 4,1 5 15
=—z+ =12 -~z + =t + =28+ o8
y(z) R +12£L‘ +24£L‘ +451

3/2
17. We need to solve [l-f— (y’)ﬂ ?_ y". Let u = 3/ so that ' = y”’. The equation becomes

32 _ du

3/2
(1 + u2> / = or (1 + u2) o Separating variables and using the substitution v = tan§
z
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we have
d 2 20
i — /_Se_“L_dg_l — [ w=s
(1+u?) <1+tan29)/ sec3 6
U
=> [cosfdf=z — sinf=2 — ——— =12
/ V1+u?
2
Y 2 2 "2 z
= ===z = () =2 [1+{)] =
1+( ) [ j‘ 1 — 22
I B
= 9y = forz>0) = y=—y1—22.
V== ) y=-v
d d? d d —k?
18. Let u = Ej— so that dtg; = uﬁ. The equation becomes uag =75 Separating variables we
obtain
.2 12 k? 5 .2
udu———ﬁdzﬁiuz—ﬁ- =>§v=—+c
k? k‘2
Whent=0,z=zpandv=0s500=— +cand ¢ = —— . Then
Zo zo
12_k2< _“1") and 32 o _v3, /BT
2 T z0 dt T

Separating variables we have

B dx—lnfdtﬁt_——,/ /
I — xo—a:

Using Mathematica to integrate we obtain

RN z0, _p (zo—22) z
b= 2[ 2(z0 = 2) - 5 tan 2z \zo-z

“HE )

19. x

A/\
iv \

d*z
For ) + sinz = 0 the motion appears to be periodic with amplitude 1 when z; = 0. The

amplitude and period are larger for larger magnitudes of z;.

IANANE
wvv

°y

x1=~15
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1 1 1

~— - = > = -
10 10 10 '
-1 x1=0 -1 xl=1 -1 x1 =-25
d’z dz

For yrl + T + sinz = 0 the motion appears to be periodic with decreasing amplitude. The dz/dt

term could be said to have a damping effect.

When y =sinz, ¢ = cosz, ¢y = —sinz, and

2 2

(") = y? =sin’z —sin?z = 0.

From (y")? — 42 = 0 we have y” = +y, which can be treated as two linear equations. Since linear
combinations of solutions of linear homogeneous differential equations are also solutions, we see that
y = c16” + coe”F and y = c3cos T + ¢4 sin z must satisfy the differential equation. However, linear
combinations that involve both exponential and trigonometric functions will not be solutions since
the differential equation is not linear and each type of function satisfies a different linear differential

equation that is part of the original differential equation.

Letting u = y”, separating variables, and integrating we have
1% g

d d
—gz\/l-i-u?, —————u——=d:r, and sinh_1u=:r+c1.

They are linearly independent over (—o0,o0) and linearly dependent over (0, c0).

& i
Then
u=1y" =sinh(z +¢1), ¥ =cosh(z+c1)+cy, and y=sinh(z+c1)+ oz +ec3.
Chapter 4 Review Exercises
1. y=0
2. Since yc = c1€® + ce” 7, a particular solution for ¥ —y =1+ €% is y, = A + Bze®.
3. True
4. True
5.
6.

(a) Since fa(z) = 2lnz = 2f1(z), the functions are linearly dependent.
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(b) Since z™*! is not a constant multiple of z™, the functions are linearly independent.

(c) Since z + 1 is not a constant multiple of z, the functions are linearly independent.

(d) Since fi(z) = coszcos(n/2) — sinzsin(n/2) = —sinz = — fa(z), the functions are linearly
dependent.

(e) Since fi(z) = 0- fo(z), the functions are linearly dependent.

(f) Since 2z is not a constant multiple of 2, the functions are linearly independent.

(g) Since 3(z?) + 2(1 — z%) — (2+ ) = 0, the functions are linearly dependent.

(h) Since ze**! + 0(4z — 5)e — exe® = 0, the functions are linearly dependent.

(a) The auxiliary equation is (m —3)(m+5)(m—1) = m®+m? — 17m+ 15 = 0, so the differential
equation is ¥’ +y" — 17y’ + 15y = 0.
(b) The form of the auxiliary equation is
mim—1)(m—2)+bm(m—1)+em+d=m>+ (b~ 3)m* + (c—b+2)m+d=0.
Since (m —3)(m+5)(m—1)=m3+m?2~1Tm+15=0, wehave b—3=1,c—b+2 = -17,
and d = 15. Thus, b = 4 and ¢ = —15, so the differential equation is v +4y” — 15y’ + 15y = 0.

. Variation of parameters will work for all choices of g{z), although the integral involved may not
always be able to be expressed in terms of elementary functions. The method of undetermined
coefficients will work for the functions in (b), (c), and (e).

. From m? — 2m — 2 = 0 we obtain m = 1 £+ /3 so that
y = etz 4 gpe1=V3)z,

. From 2m? 4 2m + 3 = 0 we obtain m = —1/2 % v/5/2 so that
5
y=e /2 (cl cos ?z + cosin \/T-x> .

. From m® + 10m? + 25m = 0 we obtain m = 0, m = —5, and m = —5 so that

y=c1 +coe 5% + c3Te 5%,

. From 2m® 4+ 9m? + 12m + 5= 0 we obtain m = —1, m = —1, and m = —5/2 so that

—5z/2 z

Yy =cle + cpe ™% + cgze™T.
. From 3m3 + 10m? + 15m + 4 = 0 we obtain m = -1/3and m=-3/2% \/7/2 so that

7 7
y = cre"%/3 4 ¢=32/2 (cz cos %——x + ¢3sin \—é——x> .
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From 2m* + 3m3 + 2m? + 6m — 4 = 0 we obtain m = 1/2, m=-2,and m = ++/214 so that

Yy = cle“”/2 + e 4 c3c08V2z + cysin V2.
Applying D4 to the differential equation we obtain D*(D? — 3D + 5) = 0. Then

V1l .ov1l
Yy = 632/2 <01 cos Tx + cosin —2~x> + c3 + 4T + csx2 + cexS

Ye

and y, = A + Bz + Cz? + Dz3. Substituting g, into the differential equation yields
b p
(54 — 3B +2C) + (5B — 6C +6D)x + (5C — 9D)z? + 5Dz® = —2z + 42>,

Equating coeficients gives A = —222/625, B = 46/125, C = 36/25, and D = 4/5. The general

solution is
y_e3$/2< V1T V11 ) 222 46 3

. 36 5 4
clcos~—2—x+0251n7x - @ +1—2—5x+%x +€x .
Applying (D ~ 1)3 to the differential equation we obtain (D —~ 1)3(D — 2D + 1) = (D - 1)% = 0.
Then
y=cie® + core® + c3z%e® + cqzPe® + cszie®
e

and y, = Az%e% + Bx3e® + Cze®. Substituting y, into the differential equation yields
12Cz%e® + 6Bze® + 24€” = €.
Equating coefficients gives A = 0, B =0, and C = 1/12. The general solution is

1
y = c1€% + coze® + —zte”.

12
Applying D(D? + 1) to the differential equation we obtain
D(D? +1)(D® —5D* +6D) = D*(D? +1)(D — 2)(D - 3) = 0.
Then
y=c1+ 02623c + 0363z + 04T + C5COST + CpSINT

Ye
and yp = Az 4+ Bcosz + Csinz. Substituting y, into the differential equation yields

64+ (5B +5C) cosz + (=5B +5C) sinz = 8 + 2sinz.
Equating coefficients gives A = 4/3, B = —1/5, and C = 1/5. The general solution is

4 1 1 .
y=q +6262I+0363$+§$— 5cosx+€s1nx.
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Applying D to the differential equation we obtain D(D?® — D?) = D3(D — 1) = 0. Then

y =1 + oz + c3e® + ¢4z’
N ———

Ye
and yp = Az?. Substituting yp into the differential equation yields —2A = 6. Equating coefficients
gives A = —3. The general solution is
y = c1 + e + c3e® — 322
The auxiliary equation is m? —2m+2 = [m— (1+4)}[m — (1— )] = 0, s0 yc = c1€” sinz + cpe” cos T
and
e¥sinz e*cosz
W= . _ = —e®,
e*cosz+ e sinz —e*sinz+ecosz

Identifying f(z) = e®tanz we obtain

(e® cosz){e® tan )

1 _ )
up = — % =sinz
, (e%sinz)(e” tanz) sin’ z
Uy = 5 = = COST — SecCT.
—e“T cos T
Then u; = ~cosz, ug = sinz — In|secz + tanz|, and

y=c1e”sinz + cpe” cosz — e sinzcosz + € sinxcosz — e“ coszIn |secx + tan z|

= c1€” sinx + cpe” cosz — e” coszln | sec z + tan z|.

The auxiliary equation is m2 — 1 =0, so y. = c;€* + coe™% and
et e %
W= = —2.
ef —eF
Identifying f(z) = 2e*/(e* + e™*) we obtain
/ 1 e¥
u = =
1T ezt 14e
2z 3z z
/ € € x
Uy = — = - =—€ + —3.
2 et +e~2 14 e%= 1+4e%
Then u; = tan™! €%, ug = —e® +tan~! e*, and

1 T

y=cie® +cpe % +etan"te® — 1+ e Ztan"le”.

The auxiliary equation is 6m? —m — 1 = 0 so that

1/2 1/3

y=cz '+ coz”
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The auxiliary equation is 2m3 4 13m?2 4 2dm + 9 = (m + 3)%(m + 1/2) = 0 so that

1
Yy = cla:—3 =+ CQI—B lnz + 123.

The auxiliary equation is m? — 5m 4+ 6 = (m ~ 2)(m — 3) = 0 and a particular solution is y, =
¥ — 221Inz so that

Y= 0122 + 02333 +zt - z?inz.
The auxiliary equation is m% —2m+ 1 = (m— 1)2 = 0 and a particular solution is yp = ia:3 so that

1
y=cz+cozlnz + 123.

a) The auxiliary equation is m% + w? = 0, 50 y, = ¢ coswt + cosinwt. When w # a, y, =
Y P
Acosat + Bsinat and
y = ci1coswt + casinwt + Acosat + Bsinat. -
When w = a, y, = Atcosat + Btsin ot and
Yy = ¢} coswt + cosinwt + At cosat + Bt sin ot.

2 _w?=0,507y: =cre*t + coe™!. When w # a, Yp = Ae® and

(b) The auxiliary equation is m
y = c1et + coe ™ + e
When w = «, y, = Ate* and
y = c1e“t + coe™ + Ate™.
(a) If y = sinz is a solution then so is y = cosz and m? + 1 is a factor of the auxiliary equation
m* 4+ 2m3 + 11m? + 2m + 10 = 0. Dividing by m? + 1 we get m? + 2m + 10, which has roots
—~1 4 34. The general solution of the differential equation is

Y =c1CosZT + casinz + e~ *(c3 cos 3z + ¢4 8in 3z).
(b) The auxiliary equation is m(m + 1) = m? +m = 0, so the associated homogeneous differential
equation is " + 9’ = 0. Letting y = ¢1 + coe™% + %22 — z and computing 3" + 3’ we get z.
Thus, the differential equation is " + 7/ = .

(a) The auxiliary equation is m* — 2m2 +1 = (m? — 1)2 = 0, so the general solution of the

differential equation is

y = cysinhx + ¢cacoshz + cszsinhz + cyzcosh z.

(b) Since both sinh z and z sinh z are solutions of the associated homogeneous differential equation,

a particular solution of y(4) — 2y" + y = sinh z has the form y, = Az?sinhz + Bz? coshz.

188



28.

29.

30.

31.

32.

Chapter 4 Review Exercises

Since y; = 1 and ¢ =0, 2%y} — (22 + 2z)y, + (z + 2)y1 = ~2? ~ 22+ 22+ 22 =0,and yy = z is
a solution of the associated homogeneous equation. Using the method of reduction of order, we let
y=uz. Then ¢’ = zuv' + v and ¢y = zu" + 2¢/, so

3 2

2y — (2 +22) + (z + 2y = 2" + 222 — 2% — 22% — 2%u — 2zu + 2P + 270

3

= u”—:l:s

o =23 - ).

To find a second solution of the homogeneous equation we note that u = e* is a solution of
v’ — 4 = 0. Thus, y. = 17 + coze®. To find a particular solution we set z3(u” — ') = z° so
that v — v’ = 1. This differential equation has a particular solution of the form Az. Substituting,
we find 4 = —1, so a particular solution of the original differential equation is y, = —z?2 and the
general solution is y = c1z + coze® — z2.

The auxiliary equation is m? — 2m+2 = 0 so that m = 1+ and y = e%(c; cos z + co sin z). Setting
y(7/2) =0 and y(n) = —1 we obtain ¢; = ¢~" and ¢y = 0. Thus, ¥ = e* " cos z.

The auxiliary equation is m? + 2m + 1 = (m + 1)2 = 0, so that y = c1e™% + cpze™%. Setting
y(=1) =0and y'(0) = 0 we get cre—coe = 0 and —c; +cy = 0. Thus ¢c; = cy and y = ce™* +cze™

is a solution of the boundary-value problem for any real number c.

T

The auxiliary equation is m? — 1 = (m — 1)(m + 1) = 0 so that m = *1 and y = c1e® + cpe™™.
Assuming yp, = Az + B + Csinz and substituting into the differential equation we find 4 = -1,
B=0,and C=-1. Thusy, =~z — }sinz and

1
y=ce¥ +egeF —x— Esina:.
Setting y(0) = 2 and 3/(0) = 3 we obtain
c1+ec=2
3
c1—cp—~=—=3.
1 2 5
Solving this system we find ¢; = % and ¢p = —4§ . The solution of the initial-value problem is
13 ) 1
y= —4—61 - Ze‘l -z — —Q—Sin:c.

The auxiliary equation is m?+1=0, so Ye = €1 cosz + co sinz and

cosx  sinz

—sinx cosz

3

Identifying f(z) = sec® z we obtain

, . 3 sinz
u; = —sinzrsec” T = —

cosd z

Uy = cosz sec’ z = sec? z.
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Then )
1 1 1 2
U] = —= = —=—sec’z
2 cos? g 2
ug = tanz.
Thus
. 1 2 .
y=clcosx+0251nx—-§cosa:sec T +sinztanz
) 1 1—cos?z
=(1COST+ C28INT — =Ssec T + ————
2 coszT
. 1
=03cosa:+02s1na:+—2-seca:.
and )
Yp = —C3SINT + C3COS T+ 5 secz tanz.

The initial conditions imply

caat+-=1

i
Do

2
Thus ¢3 = ¢c2 = 1/2 and

1cosa:+1s' z+1 C
= - — sin —secz.
¥y=3 2 2

du
Let u = ¢ so that w' = 9”. The equation becomes u == 4z. Separating variables we obtain
T ,

1
udu =4dzdr => 3u2=2x2+q = w2 =4z’ + ¢y

Whenz =1,y =u=2,804=4+4cp and cg = 0. Then
d d
u2=4x2=>—y=2x or —y-=—2x
dx dzx

=556 y:a:2+c;z, or y=——a:2+04.

Whenz=1,y=505=1+c3and 5=—1+4c¢4. Thusc3 =4 and ¢4y =6. We have y = 2% +4
and y = —z2 + 6. Note however that when y = —z2 + 6, ¢/ = —2z and %/(1) = —2 # 2. Thus, the
solution of the initial-value problem is y = z? + 4.

d ' d
Let u = ¢ so that ¢ = u d—u . The equation becomes 2u d_u = 3y2. Separating variables we obtain
Y Y

2udy=3y2dy = u2=y3+c1.
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Whenz=0,y=1landy =u=1s01=1+c¢; and ¢; = 0. Then

2
dx dx
~1/2 4
:?—21/ =I+C2:y=m.
Wh 0 1 1 4 = +2. Thus 4 and 4 Note
en r = s SO — — C f—d . u s = ————— . = —————
» Y ) C% 2 Y (.’17 T 2)2 Y (.’I? — 2)2
8 .
however that when y = = f2)2 Y == T+ 2 and y'(0) = —1 # 1. Thus, the solution of the
4

initial-value problem is y = m .

35. (a) The auxiliary equation is 12m* + 64m3 + 59m? — 23m — 12 = 0 and has roots —4, —3/2, —1/3,
and 1/2. The general solution is

y=cre ™ + e~/ 4 cze 3 + c4e®/?.
(b) The system of equations is
cr+ee+ce3t+eg=-1
—4c) — %CQ - %63 + %cll =2
16¢; + 202 + —;—ca + 204 =35
—64c; — 2—8702 — 51?03 + éq =0.
Using a CAS we find ¢; = —;1%, co = %, c3 = —%576, and ¢4 = %‘r’sz. The solution of the

initial-value problem is

3 o + @6—32/2 _ 37266-—2/3 + —25—762/2.

Y= "05° 35 385 45
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Chapter 4 Review Exercises

. Consider zy” + ¢/ = 0 and look for a solution of the form y = z™. y
Substituting into the differential equation we have 1 5 % 5
7 r_ m—1 m—-1 _ 2 -1
zy' +y =m(m—- 1)z +mz =m-z.
-2
Thus, the general solution of zy” +3y' =0isyc=c1 + colnz. Tofinda
particular solution of zy” + 4’ = —./T we use variation of parameters. \
The Wronskian is
1 Inz 1 -5
W = ==
0 1/z| =
Identifying f(z) = —z~ /2 we obtain
-1/2 _—1/2
P nz p z
Uy = ———— =+/zlnr and us; = = -z,
1 7z vz 2= 177 Ve

so that

2 4 2
uy = 1:3/2(§h11‘ — 5) and ug = —513/2.

Then y, = 13/2(%lnx-%)—§x

3/2

g = —-%CL‘B/ 2 and the general solution of the differential equation

. The initial conditions are y(1) = 0 and ¢/(1) = 0. These imply that

c1 = é and ¢g = -:2; The solution of the initial-value problem is y = % + %ln:c ~ 313/2.

. From (D —2)z+ (D - 2)y =1 and Dz + (2D — 1)y = 3 we obtain (D—-1)(D—-2)y = -6 and
Dz =3—-(2D - 1)y. Then

sy = c1+chn:c—~éx

3
Y= cle% + et —3 and z = —coel — Ecle% + c3.
Substituting into (D — 2)z + (D — 2)y = 1 gives ¢3 = 5/2 so that

3 5
t 2t

= —cge* — - + =
T 0e 2cle 5

. From (D - 2)z —y=t—2and -3z + (D — 4)y = —4¢t we obtain (D — 1)(D — 5)z = 9 — 8¢ Then

8 3

¢ 5t
= _._t_._
T = c1e + co¢e 5 %5

and 16 11
= (D - — 2 = —ciet + 3c0e® + — + =t
y=( Az —t+ c1e’ + 3coe +25+25

. From (D —2)z —y = —¢' and -3z + (D — 4)y = —7¢’ we obtain (D — 1)(D — 5)z = —4e' so that

T = clet + ch5£ + tet.
Then
y=(D—-2)z+e' = —cre’ + 3cae® — tet + 2et.
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Chapter 4 Review Exercises

40. From (D+2)z+(D+1)y = sin 2t and 5z+(D+3)y = cos 2t we obtain (D?+5)y = 2cos 2t~ 7sin 2¢.
Then

2 7
y=cijcost+cysint — gc052t+§sin2t

and . .
T = —g(D +3)y + gcos%

It

(lc § > t+( ! 3 >cost §s' 2t—lcos2t
5C1 5c2 sin 5cz 5c1 3 in 3 .
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5 Modeling with Higher-Order
Differential Equations

Exercises 5.1

1. From %:c” + 16z = 0 we obtain
T =cC cos8v2t + czsin8\/§t

so that the period of motion is 27/8v/2 = v/27/8 seconds.

2. From 20z” + kz = 0 we obtain
r=c cosl\/Et-i-c sin1 kt
T ATtV s

so that the frequency 2/m = }\/k/5 and k = 320 N/m. If 80z” + 320z = 0 then z = ¢ cos 2t +
c2sin 2t so that the frequency is 2/2m = 1/m vibrations/second.

3. From 22" + 72z =0, z(0) = —1/4, and z'(0) = 0 we obtain z = — 1 cos 4/61.
4. From 32" + 72z = 0, 2(0) = 0, and z/(0) = 2 we obtain z = 3§ sin4v/6¢.
5. From g:c” +40z = 0, z(0) = 1/2, and z/(0) = 0 we obtain z = § cos 8t.

(a) z(n/12) = —1/4, 2(7/8) = —1/2, z(n/6) = —1/4, z(n/8) = 1/2, z(97/32) = v/2/4.”
(b) =’ = —4sin8t so that 2/(3r/16) = 4 ft/s directed downward.
(c) fz=1cos8t=0thent=(2n+1)r/16forn=0,1,2, ....
6. From 50z” + 200z = 0, z(0) = 0, and z’(0) = —10 we obtain z = —~5sin 2t and 2’ = —10cos 2t.
7. From 202" + 20z = 0, z(0) = 0, and z/{0) = —10 we obtain ¢ = —10sint and ¢’ = —10cost.
(a) The 20 kg mass has the larger amplitude.
(b) 20 kg: '(n/4) = —5v/2 m/s, 2/(7/2) = 0m/s; 50 kg: z’'(7/4) = 0 m/s, '(7/2) = 10 m/s
(c) If —5sin2t = —10sint then 2sint(cost—1) = 0sothat t = nwr forn =0, 1, 2, .. ., placing both
masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg mass is

moving upward when 7 is even and downward when n is odd.

8. From z” + 16z = 0, z(0) = —1, and z/(0) = —2 we obtain

1 )
T = —cos4t — 3 sin4t = —\é——cos(élt - 3.6).

194



10.

11.

12.

13.

14.

Exercises 5.1

The period is 7/2 seconds and the amplitude is v/5/2 feet. In 47 seconds it will make 8 complete
vibrations.

From %z” +z =0, z(0) = 1/2, and z'(0) = 3/2 we obtain

V13

1 3
z = 5 cos 2t + 2 sin2¢ = e sin(2t + 0.588).
From 1.6z" + 40z = 0, z(0) = —1/3, and z/(0) = 5/4 we obtain

1 1 5
- Z s = — sin(5t .927).
z 3cos5t+451n5t 1251n(5 +0.927)

If z=5/24 then t = } (5 +0.927+ 2n7) and ¢ = § (% + 0927+ 2n7) forn=0,1,2, ...

From 22" 4+ 200z = 0, z(0) = —2/3, and 2/(0) = 5 we obtain

(a) z= —% cos 10t + %sin 10t = %sin(lOt - 0.927).

(b) The amplitude is 5/6 ft and the period is 27/10 = 7 /5

(c) 3m=m7k/5 and k = 15 cycles.

(d) If z = 0 and the weight is moving downward for the second time, then 10t — 0.927 = 27 or

t=0721s.
(e) Ifz' = % cos(10t — 0.927) = 0 then 10t ~ 0.927 = 7/2 + n7 or t = (2n + 1)7 /20 + 0.0927 for
n=201,2 ....

(f) =(3) = ~0.597 &t
(g) z'(3) = —5.814 ft/s
(h) z"(3) = 59.702 ft/s?
(i) fz=0thent= 5(0.927+nr)forn=0,1,2, ... and 2'(t) = £§ ft/s.
() fz=15/12 then t = %(n/6+0.927+ 2n7) and t = 75(57/6+0.927+ 2n7) forn=0,1,2, ....
(k) Ifz=15/12 and 2’ < 0 then t = §5(57/6 + 0.927 + 2n7) for n =0, 1, 2, ... .
From z” + 9z = 0, z(0) = —1, and z/(0) = —/3 we obtain
2 4

T = —cos3t ~ l/?—)—gsinBt = —\—[gsin (37+ %)
and z' = 2v/3cos(3t + 4n/3). If 2’ = 3 then t = —7n/18 + 2n7/3 and t = —7/2 + 2n7/3 for
n=123....
From k; = 40 and ko = 120 we compute the effective spring constant k = 4(40)(120)/160 = 120.
Now, m = 20/32 so k/m = 120(32)/20 = 192 and z” + 192z = 0. Using z(0) = 0 and z'(0) = 2 we
obtain z(t) = %ﬁ sin8v/3t.

Let m denote the mass in slugs of the first weight. Let k; and ko be the spring constants and
k = 4k1ko/(k1 + k2) the effective spring constant of the system. Now, the numerical value of the
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15.

16.

17.

18.

19.

20.

21.

Exercises 5.1

first weight is W = mg = 32m, so
32m = k1<%> and 32m = k2<%>.

From these equations we find 2k; = 3k3. The given period of the combined system is 27 /w = 7/15,

so w = 30. Since the mass of an 8-pound weight is 1/4 slug, we have from w? = k/m

302= % — 4k or k=225
1/4
We now have the system of equations
4k ko
— = 225
kit ke
2k1 = 3ks.

Solving the second equation for k1 and substituting in the first equation, we obtain
A(3ka/2ky  12k3 12k
3ko/2 +ky Bk

Thus, k3 = 375/4 and k; = 1125/8. Finally, the value of the first weight is

k1 _ M _ 375

W =39m = “L 200 4688 Ib.
™= 3 8

= 225.

For large values of ¢ the differential equation is approximated by z” = 0. The solution of this
equation is the linear function z = cit + ¢3. Thus, for large time, the restoring force will have
decayed to the point where the spring is incapable of returning the mass, and the spring will simply

keep on stretching.

As t becomes larger the spring constant increases; that is, the spring is stiffening. It would seem
that the oscillations would become periodic and the spring would oscillate more rapidly. It is likely

that the amplitudes of the oscillations would decrease as t increases.

(a) above (b) heading upward

(a) below (b) from rest

(a) below (b) heading upward

(a) above (b) heading downward

From §2” + 2’ + 2z = 0, z(0) = -1, and 2/(0) = 8 we obtain z = 4te™* — ¢ and 7’ =

8e=# — 16te™*. If z = 0 then t = 1/4 second. If 2 = 0 then t = 1/2 second and the extreme
displacement is = = e~2 feet.
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23.

24.

25.

26.

27.

Exercises 5.1

From jz” + /22 + 2z = 0, .’E(O) =0, and 2/(0) = 5 we obtain z = 5te=2v2t and

x

U

‘th( 2\/_t> 7’ = 0 then t = 1/2/4 second and the extreme displacement is

z=52e"1/4 feet.

(a) From z” + 10z’ + 16z = 0, 2(0) = 1, and 2(0) = 0 we obtain z = $e~2 — Le75
(b) From z” + 2’ + 16z = 0, z(0) = 1, and 2/(0) = —12 then z = —2e7% + e8¢
(a) z =38 (4€6t - 1) is never zero; the extreme displacement is z(0) = 1 meter.
(b) z = —:13— (5—2eet) = 0 when t = 11n2 =~ 0.153 second; if 2’ = % 'Bt( 6t _ O) = 0 then
t=1 g In10 ~ 0.384 second and the extreme displacement is z = —0.232 meter.
(a) From 0.1z” + 0.42" + 22 = 0, z(0) = —1, and 2/(0) = 0 we obtain = e~ [— cos4t — %sinﬁlt}.
5 2
(b) z= e‘2t—\—g—_ [—% cos4t — \/igsinﬁlt} = \/756_% sin(4t + 4.25).
(c) If z =0 then 4t + 4.25 = 27, 3w, 47, ... so that the first time heading upward is
t = 1.294 seconds.
(a) From jz”+ 2’ + 5z =0, z(0) = 1/2, and z'(0) = 1 we obtain z = e~ ( cosdt + 3 sm4t>
1 2 2 1
(b) z= e‘2t—ﬁ <\/7_ cos 4t + \/7— sin4t> = 756 tsin (4t + 4>
(c) Ifz =0then4t+n/4 =, 2m, 37, ... so that the times heading downward are t = (7+8n)7/16
forn=0,1,2,....
@ x
\
\
\
NISNAN
€ g : :‘:“_.:E-‘-'z--—t
-.5 ,’/
//
/
-1
From 62: '+ Bz'+5z = 0 we find that the roots of the auxiliary equation are m = — %ﬂi%, /4% — 25.

(a)
(b)
(c)

If 46% — 25 > 0 then 8 > 5/2.
If 482 — 25 = 0 then 8 = 5/2.
If 48° — 25 < 0 then 0 < 8 < 5/2.
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28.

29.

30.

31.

32.

33.
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From 0.75z" + 82! + 6z = 0 and B > 3+/2 we find that the roots of the auxiliary equation are

m= —%ﬁzi: %\/62 — 18 and
T = ¢~ 28t/3 [cl coshgwﬁ2 — 18t + ¢ sinh%ﬁﬁQ — 18t] )

If 2(0) = 0 and 2'(0) = —2 then ¢; = 0 and ¢ = —3//3% — 18.
If 12" + 2’ + 6z = 10cos 3t, z(0) = —2, and 2/(0) = 0 then

47 47
T, = e t/? <c1 cos gt + ¢osin g t)

and z, = 1To(cos 3t + sin 3t) so that the equation of motion is

_t/2< 4 47 64 V&7
r==e8 —§COS

3

si t]+ 10 (cos 3t + sin 3t)
- in — .
2 3VA4T 2 3

(a) Ifz”+22'+5z = 12cos 2¢+3sin 2t, z(0) = —1, and 2/(0) = 5 then z. = e~*(c1 cos 2t + ¢ sin 2¢)

and z, = 3sin 2t so that the equation of motion is

z = e tcos 2t + 3sin 2¢.

(b)

x
steady-state (C) 3 X=X+

NAGANS ANVANS
INAVARV/ VARV

transient

From 2" + 82’ + 16z = 8sin4t, z(0) = 0, and 2'(0) = 0 we obtain z. = cje”™* + cote™ and

Tp = —1 cos4t so that the equation of motion is
1 —at -4 1
T =€ te™™ — — cos 4t.
4 * 4

From z” + 8z’ + 16z = e tsin4t, z(0) = 0, and z/(0) = 0 we obtain z, = cie™* + cote™ and

Tp = —gf—se‘t cos 4t — %e‘t sin 4¢ so that

1 —4t 1 -t .
T 25 € (24 + OOt) 5 [ (2 cos 4t + 7sin 4t)

As t — oo the displacement x — 0.

From 2z” + 32z = 68e~* cos4t, £(0) = 0, and z’(0) = 0 we obtain z. = c| cos4t + cysin4t and

Tp = e"% cos 4t — 2e "% sin 4t so that

1 9 1
T = —3 cos 4t + 1 sin4t + 56_% cos 4t — 2e~* sin 4t.
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34.
35.

36.

37.

38.

39.

Exercises 5.1

Since x = -‘{%_5 sin(4t — 0.219) — -@e‘m sin(4t — 2.897), the amplitude approaches v/85/4 as t — oo.
(a) By Hooke’s law the external force is F(t) = kh(t) so that mz” + Sz’ + kx = kh(¢).

(b) From 3z + 2z’ + 4z = 20cost, z(0) = 0, and z'(0) = 0 we obtain z, = e~ (c; cos 2t + ¢y sin 2t)
and z, = -?—% cost + %g— sint so that

72 56 2
r=¢ 2 (—?gcos% 33 sin2t> + Ecost-# :13—3 sint.

(a) From 100z” + 1600z = 1600sin 8, z(0) = 0, and z'(0) = 0 we obtain z. = c; cos 4t + co sin 4t
and z, = ——% sin 8¢ so that

2 1
T = 3 sin 4t — 3 sin 8¢.

(b) fz= %sin4t(2 —~2cosdt)=0thent=nn/dforn=0,1,2,....
(c) Iz =8 cosdt—8cos8t = 8(1—cos4t)(1+2cosdt) = O thent = 7/3+nn/2and t = m/6+n7/2

forn =0, 1, 2, ... at the extreme values. Note: There are many other values of ¢ for which
' =0.

(d) z(r/6 +nn/2) =+/3/2 cm. and z(7/3 +n7/2) = —/3/2 cm.

(e) x

VAN
\VARAVA

From z” 4+ 4z = —5sin 2t 4+ 3cos2t, z(0) = —1, and z'(0) = 1 we obtain z. = ¢ cos 2t + co sin 2t,
Tp = 3tsin 2t + %t cos 2t, and

1 5
T = —cos2t— gsin2t+gtsin2t+ ZtcosZt.

From '’ + 9z = 5sin 3¢, (0) = 2, and z’(0) = 0 we obtain z. = ¢ cos 3t + o sin 3¢, Tp = —%t cos 3t,
and

5 5
r=2cos3t+ 1—851n3t - gtCOS3t.

(a) From z” + w?z = Fycosnt, z(0) = 0, and 2/(0) = 0 we obtain z, = ¢; coswt + ¢psinwt and
zp = (Fpcost)/ (w2 ~ 72) so that
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40.

41.

42.

43.
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. F —~Fptsinayt K
(b) lim — 0 5{cosyt — coswt) = lim TIOTY - it
TowW wE —y T —2v 2w

From z” + w?z = Fycoswt, z(0) = 0, and z/(0) = 0 we obtain z. = cjcoswt + casinwt and

Tp = (Fot/2w) sinwt so that z = (Fpt/2w) sinwt and A}% %tsinwt = %tsinwt.

(a) From cos(u — v) = cosucosv + sinusinv and cos(u + v) = cosucosv — sinusinv we obtain
sinusinv = §[cos(u — v) — cos(u + v)]. Letting u = $(y —w)t and v = %(7 + w)t, the result
follows.

(b) If e = (7 — w) then v = w so that z = (Fy/2e7) sinetsinyt.

See the article “Distinguished Oscillations of a Forced Harmonic Oscillator” by T.G. Procter in The

College Mathematics Journal, March, 1995. In this article the author illustrates that for Fy = 1,

A = 0.01, v = 22/9, and w = 2 the system exhibits beats oscillations on the interval [0, 97], but

that this phenomenon is transient as ¢t — oo.-

X

(a) The general solution of the homogeneous equation is

zo(t) = cre™™ cos(\w? — A2t) + cae M sin(y/w? — A2 )
= Ae™Msin]\/w? — X2t + ¢),

where A = /¢ + ¢}, sing = ¢1/A, and cos ¢ = cp/A. Now

Rw?—~%) . Fo(—2)\y) ,
zp(t) = Py sinyt + =7+ 072 cosvyt = Asin(yt + 6),
where
Fo(=2M)
. (wW? = 42)% + 47242 -2y
sinf = =
Fy \/(w2 — 42)2 4 4)242
\/w2 — 2+ 4r?
and
Fo(u)2 _ ,Y‘Z)
(W2 =722 + 4)242 w2 — 2
cosf = = .
Fy (W2 —72)2 + 42242

\/(wg — 42)2 4+ 47242
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(b)

(c)

44. (a)

(b)

Exercises 5.1

If ¢(7v) = 0 then v (72 +2)2 - w2> = 0 so that v = 0 or v = Vw? — 2)2. The first derivative
test shows that g has a maximum value at v = vw? — 2X2. The maximum value of g is

g (Ver=23) = Rofanu? =

We identify w? = k/m =4, A = 8/2, and 7y = Vw? —2X2 = /4 — 32/2. As B — 0, y1 — 2
and the resonance curve grows without bound at 41 = 2. That is, the system approaches pure
g

resonarnce.

B y1 g
2.00| 1.41 | 0.58
1.00| 1.87 | 1.03
0.75| 1.93 | 1.36
0.50 1.97 | 2.02
0.25} 1.99 | 4.01

For n = 2, sin>yt = %(1 — cos 27t). The system is in pure resonance when 2v;/27 = w/2m, or

when v = w/2.
Note that
1
sin® 4t = sin ¢ sin? vt = 5 [sin~yt — sin ¢ cos 2+t).
Now
sin(A + B) + sin(A — B) = 2sin Acos B
S0
1
sin vt cos 2t = 5 [sin 34t — sin t]
and
i3t = > sin~t — — sin 3t

sin” 7t = - sinyt — o 7t

Thus

3 1 .
'+l = 1 sinvyt — 1 sin 3yt.

The frequency of free vibration is w/2x. Thus, when /27 = w/27 or 71 = w, and when
dy2/2m = w/2m or 3y = w or y3 = w/3, the system will be in pure resonance.
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46.

47.

48.

49.
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{c) x Y1=1/2 x y1=1 x . y2=l3
10 n=2 10 n=3 / 10 n=3
5 5 5
AAN \ /\ i A N\ Z\ )
y 0 gg H3d\/x y 16\/ \7/ \/T/ y 2
-10 -10 -10

Solving %q” + 2¢' + 100g = 0 we obtain q(t) = e™2%(cy cos 40t + 2 5in40t). The initial conditions
q(0) = 5 and ¢/(0) = 0 imply ¢; = 5 and ¢2 = 5/2. Thus

q(t) = 20 (5 cos 40t + gsin40t) ~ /25 + 25/4 e 2% sin(40t + 1.1071)
and ¢(0.01) = 4.5676 coulombs. The charge is zero for the first time when 40t + 0.4636 = 7 or
t =~ 0.0509 second.
Solving %q” + 20¢' + 300q = 0 we obtain g(t) = c1e™2% + coe~8%. The initial conditions g(0) = 4
and ¢'(0) = 0 imply ¢; = 6 and ¢y = —2. Thus

q(t) = 6e=20t — 2760,
Setting ¢ = 0 we find e** = 1/3 which implies ¢t < 0. Therefore the charge is never 0.
Solving %q” +10q’ + 30g = 300 we obtain g(t) = e~3(c; cos 3t + ¢z sin 3t) + 10. The initial conditions
q(0) = ¢’(0) = 0 imply ¢; = c2 = —10. Thus
q(t) = 10 — 10e*(cos 3t + sin3t) and 4(t) = 60e* sin 3t.

Solving (t) = 0 we see that the maximum charge occurs when ¢ = 7/3 and ¢(w/3) = 10.432.
Solving ¢” + 100¢" 4+ 2500¢ = 30 we obtain g(t) = cie™5% + cate5% + 0.012. The initial conditions
q(0) = 0 and ¢’(0) = 2 imply ¢; = —0.012 and ¢y = 1.4. Thus

q(t) = —0.012¢7%% + 1.4te™3% £ 0.012 and i(t) = 2750 — 70te 50,
Solving i(t) = 0 we see that the maximum charge occurs when ¢ = 1/35 and ¢(1/35) ~ 0.01871.
Solving q” + 2¢' + 4q = 0 we obtain y. = e~* (cos V3t 4+ sin \/§t> The steady-state charge has the
form y, = Acost 4+ Bsint. Substituting into the differential equation we find

(3A+2B)cost + (3B — 2A) sint = 50 cos t.
Thus, A = 150/13 and B = 100/13. The steady-state charge is

150 100
gp(t) = T3 cost + 55} sint
and the steady-state current is
. 150 . 100
ip(t) = 13 sint + 13 Cos t.
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50. From
‘ t)—E°<R iyt — e t)
ip(t) = 7 |\ 7 sinvt — —cosy
and Z = /X2 + R? we see that the amplitude of i,(t) is

E2R?  E2X? Ey o3  Eo
AVt sV g

51. The differential equation is ¢” +20g’ +1000g = 100sint. To use Example 10 in the text we identify
Eg = 100 and v = 60. Then

1
X=ILy-— = 1 =~ 13.3333,
cy

5(00) - 0.001(60)

Z = /X2 + R2 = /X2 + 400 ~ 24.0370,
and
' Ey 100

VA VA 4

From Problem 50, then
ip(t) ~ 4.1603(60t + ¢)
where sin¢ = —X/Z and cos¢ = R/Z. Thus tan¢ = —X/R =~ —0.6667 and ¢ is a fourth quadrant
angle. Now ¢ ~ —0.5880 and
ip(t) ~ 4.1603(60t — 0.5880).

52. Solving 3¢” + 20g’ + 1000g = 0 we obtain q.(t) = (c; cos 40t + cp sin40t). The steady-state charge
has the form ¢,(t) = Asin60t + B cos 60t + Csin 40t + D cos 40¢. Substituting into the differential

equation we find
(—1600A — 2400B) sin 60t + (2400A — 16005) cos 60t
+ (400C — 1600D) sin 40t + (1600C + 400D) cos 40t
= 200 sin 60t 4- 400 cos 40t.

Equating coefficients we obtain A = ~1/26, B = ~3/52, C = 4/17, and D = 1/17. The steady-

state charge is

1 4 1
gp(t) = ~og sin 60t — % cos 60t + 7 sin 40t + T cos 40t

and the steady-state current is

. 30 45 | 160 40 .
ip(t) = —13 608 60t + 73 Sin 60t + 7 cos 40t 7 Sin 40t.
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54.

55.

56.
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Solving 3¢” + 10¢’ + 100g = 150 we obtain q(t) = e 1%(c; cos 10t + cosin 10¢) + 3/2. The initial
conditions ¢(0) = 1 and ¢/(0) = 0 imply ¢; = ¢g = —1/2. Thus

1
q(t) = —se“IOt(cos 10t + sin 10¢) +

Z

N

Ast — o0, q(t) — 3/2.

By Problem 50 the amplitude of the steady-state current is Eo/Z, where Z = v X2+ R? and
X = Ly — 1/C~. Since Ejy is constant the amplitude will be a maximum when Z is a minimum.
Since R is constant, Z will be a minimum when X = 0. Solving Ly — 1/Cv = 0 for v we obtain
~=1/+v/LC. The maximum amplitude will be Fy/R.

By Problem 30 the amplitude of the steady-state current is Ep/Z, where Z = vX 2+ R? and
X = Ly —1/C~. Since Fy is constant the amplitude will be a maximum when Z is a minimum,
Since R is constant, Z will be a minimum when X = 0. Solving Ly — 1/C~v = 0 for C we obtain
C =1/L¥%.

Solving 0.1¢"” + 10¢ = 100sin~t we obtain g(t) = c1cos 10t + cp8in 10t + gp(t) where gp(t) =
Asinvyt + Bcosvt. Substituting g,(t) into the differential equation we find

(100 — 4) A sin~t + (100 — 42) B cos vt = 100sin ~t.

Equating coefficients we obtain A4 = 100/(100 —~2) and B = 0. Thus, gp(t) = __1(1)__2 siny¢. The
-7

100
initial conditions ¢(0) = ¢/(0) = 0 imply ¢ = 0 and ¢g = —10v/(100 — +?). The charge is
q(t) = ﬁg—vi(m sin~yt — vsin 10t)
and the current is
(t) = 1—01)9?{!7—2(008 vt — cos 10¢).

In an L-C series circuit there is no resistor, so the differential equation is

d?¢ 1

L5 + = q=E(t).
2+t F9=E0

Then ¢(t) = ¢ cos (t/ % LC’) +c28in (t/\/ LC) +gp(t) where gp(t) = Asin~yt+ B cosvyt. Substituting
gp(t) into the differential equation we find

1
(5 - L'yQ) Asin~vyt + <é — L'yQ) Bcosvt = Eycosyt.

Equating coefficients we obtain A = 0 and B = EpC/(1 — LC¥?). Thus, the charge is
1 EyC
t+
VIC ' 1-LCy?

1 .
q(t) = c1cos —=—==t + casin

VIC

cosyt.
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The initial conditions ¢(0) = gg and ¢(0) = 4¢ imply ¢; = go — EoC/(1 — LC~?) and ¢y = igv/LC .
The current is ’ :

i(t) = sin EoCy sinyt
\/ \/— \/ \/ T 1-LCH?
—icos—l—t——i— EC >sn ! t—— OC’Y sin vt.
—RIEe T VIc —Lc2) " IC L2

58. When the circuit is in resonance the form of gp(t) is gp(t) = At cos kt + Btsin kt where k = 1/v/LC'.
Substituting g,(t) into the differential equation we find

E
qg + k%q = —2kAsin kt + 2kB cos kt = —fo cos kt.
Equating coefficients we obtain A = 0 and B = Eg/2kL. The charge is
Ey
q(t) = cj coskt + cpsinkt + L tsin kt.

The initial conditions ¢(0) = go and ¢/(0) = 4p imply c; = go and ¢z = 4o/k. The current is

i(t) = —c1ksin kt 4+ cok cos kt + ———(kt cos kt + sin kt)

Fo
2kL

Ey
(21;32 qok> sin kt + ig cos kt + 5L tcos kt.

Exercises 5.2

1. (a) The general solution is

4

_ 2 3 wo
y(a) 24ET"
The boundary conditions are y(0) = 0, ¢/(0) = 0, ¥”(L) = 0, ¥"(L) = 0. The first two
conditions give ¢; = 0 and ¢ = 0. The conditions at z = L give the system

I
203+6C4L+2E1 0

6cq + E1L=O.

Solving, we obtain ¢3 = wgL?/4EI and ¢4 = —woL/6EI. The deflection is

y(z) =

24EI(6L2 2 _4L2® 4+ 1)
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(b)

(b)

X
20.40.60.8 1
1
2
Ay
The general solution is

2 3 Wo 4
Tr)=c¢1+coxr+c¢ x —T.
y(z) =c1 +c2 37° + 048 + o

The boundary conditions are y(0) = 0, y’(0) = 0, y(L) = 0, y”(L) = 0. The first two conditions
give ¢; = 0 and ¢3 = 0. ‘The conditions at £ = L give the system

ool + cyl® + 20 14—

24E]
wo )
L+ —-L*=0.
6caL + QEfL 0
Solving, we obtain ¢y = woL3/24ET and ¢4 = —woL/12EI. The deflection is
_ _Wo ,r3_ 3 4
y(z) = 24EI(L r—2Lz° + 7).
X
0.20.40.6 0.8/1
Yy
The general solution is

wo :E4
24EI"

The boundary conditions are y(0) = 0, 3'(0) = 0, y(L) =0, y’(L) = 0. The first two conditions
give ¢; = 0 and ¢3 = 0. The conditions at x = L give the system

y(z) = ¢y + cox + 322 + ¢4z’ +

2 3 Wo r4
csL®+ eyl +24E[L =0

wo 2
— L% = 0.
263+664L+2E[ 0
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Solving, we obtain c3 = woL?/16EI and ¢4 = ~5woL/48E1. The deflection is

y(z) = 4;;)EO‘/,(3L2m2 ~ 5Lz3 + 2z%).
(b)
X
4 0.6 1
1,
Y
4. (a) The general solution is
4
- 2 3, wol® .7
y(z) = c1 + coz + c3z° + cyx” + ST

The boundary conditions are y(0) = 0, ¥'(0) = 0, y(L) = 0, ¥"(L) = 0. The first two conditions
give ¢; = 0 and ¢o = —wpL3/EI7%. The conditions at £ = L give the system

2 3 wo rq
3Ll + 4L +EI7T3L =0
2¢3 + 6cs L = 0.

Solving, we obtain c3 = 3wgL?/2EIn3 and ¢4 = —woL/2EIn3. The deflection is

v(z) = 553 p

x
20.40.60.81

213
woL (—21;% +3Lz% — 2% + = sin %z) :

(b)

1Jy

(c) Using a CAS we find the maximum deflection to be 0.270806 when z = 0.572536.

5. (a) The general solution is

wo I5
120E1 ™~

y(z) = 1 + ez + caz? + cqz® +
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(b)

(c)
6. (a)
(b)

(c)
(d)

The boundary conditions are y(0) = 0, ¥”(0) =0, y(L) = 0, ¥’ (L) = 0. The first two conditions
give ¢y = 0 and ¢3 = 0. The conditions at z = L give the system
wo

oErl =0

coL + cal® +

L+ 20 73—
6eal + L2 = 0.

Solving, we obtain cs = 7w0L4/360E[ and ¢y = ~woL?/36EI. The deflection is

y(z) = (7L'z — 10L%z® + 32°).

360E[

0.2 0.4 0.6 0.8

Using a CAS we find the maximum deflection to be 0.234799 when = = 0.51933.

= L =
Ymax = Y( SEI
Replacing both L and z by L/2 in y(z) we obtain woL*/128EI, which is 1/16 of the maximum

deflection when the length of the beam is L.

SwoL*
ymax = y(L/2) =

The maximum deflection in Example 1 is y(L/2) = (wo/24EI)LY/16 = woL*/384E1, which is

1/5 of the maximum displacement of the beam in Problem 2.

7. The general solution of the differential equation is

P . P wy o  woEl
y-01COShQ/EI+CQSlnh”-E‘,7I+2PIL‘ +—1:T'

Setting y(0) = 0 we obtain ¢; = —woEI/P?, so that

/ / I
y____onI I+C’)Slnh P z? w;E; .

Setting /(L) = 0 we find

) i
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8. The gencral solution of the differential equation is

2 ’LUOE.[
Y = (] COS I+0281n :c+— R

Setting y(0) = 0 we obtain ¢; = —onI/P so that

___onI 4 onI
Yy = cos z czsmﬂ 2P 57

Setting ¥'(L) = 0 we find

onI P wl P P,
“VEI sy g7l - p \VET “CVET

9. For A <0 the only solution of the boundary-value problem is y = 0. For A > 0 we have

y:clcosﬁx—%-c;gsin\&z.
Now y(0) = 0 implies ¢; = 0, so
y(7) = cgsin VAT =0
gives
Vim=nr or )\=n2,n=1,2,3,....

2

The eigenvalues n* correspond to the eigenfunctions sinnz forn=1, 2,3, ... .

10. For A <0 the only solution of the boundary-value problem is y = 0. For A > 0 we have
y = c1cos VAz + cpsinvAz.

Now y(0) = 0 implies ¢; = 0, so

y(%) =cgsin\/—2=0

gives
\/X%=n7r or A=16n%, n=1,23,....
The eigenvalues 16n? correspond to the eigenfunctions sindnz forn=1,2,3, ... .
11. For X <0 the only solution of the boundary-value problem is y = 0. For A > 0 we have
Y= cosVAz + cpsin V.
Now
Y(z) = —e1VA sin vz + covVAcos VAx

and 7/(0) = 0 implies ¢co = 0, so
y(L) =c1cos VAL =0
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12.

13.

14.

Exercises 5.2

gives
_ _122
VoW A Gt LN W el R AP S

2 4L2
. 9 9. 0 . . (2n — 7w
The eigenvalues (2n — 1)“w*/4L* correspond to the eigenfunctions cos ————

' 7L z for
n=1223 ....

For A < 0 the only solution of the boundary-value problem is y = 0. For A > 0 we have
y = c1cos VAT + cpsin VA z.

Now y(0) = 0 implies ¢; = 0, so
Yy (g) = cov/Acos /\g =0

gives

ﬁ%:gn—;l—”f or A=02n-1% n=123,....

The eigenvalues (2n — 1)? correspond to the eigenfunctions sin(2n — 1)z.

For A < 0 the only solution of the boundary-value problem is y = 0. For A = 0 we have y = c1x+co.
Now ¢/ = ¢1 and ¢/(0) = 0 implies ¢; = 0. Then y = ¢ and y/(7) = 0. Thus, A = 0 is an eigenvalue
with corresponding eigenfunction y = 1.
For A > 0 we have

Y =C] cos VAz + cosin VA z.

Now
Y(z) = —c1VAsin VAZ + cavVAcos VA z

and y/(0) = 0 implies c2 = 0, so
' (m) = —c1VAsin VA1 =0
gives

VAT =nr or A=n% n=1223,....

2

The eigenvalues n* correspond to the eigenfunctions cosnz for n =0, 1, 2, ... .

For A < 0 the only solution of the boundary-value problem is y = 0. For A > 0 we have
Yy =C cosx/Xz—f-czsin\/T\x.

Now y(—7) = y(7) = 0 implies
cwosx/Xw—czsin\/Xﬂ: 0
c1 COS\/XW-}-CQSJ'.II\/XW = 0.
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16.

Exercises 5.2

This homogeneous system will have a nontrivial solution when

cosVAT —sinVAw
i = 2sin VA wcos VAT =sin2vVAr = 0.
cosvVam sinvVaw

Then

n?

VAT = nr or Ad=—; n=1,223,....

4
When n = 2k — 1 is odd, the eigenvalues are (2k — 1)?/4. Since cos(2k — 1)7/2 = 0 and
sin(2k — 1)m/2 # 0, we see from either equation in (1) that co = 0. Thus, the eigenfunctions
corresponding to the eigenvalues (2k — 1)2/4 are y = cos(2k — 1)z/2 for k = 1, 2, 3, ... . Similarly,
when n = 2k is even, the eigenvalues are k2 with corresponding eigenfunctions y = sin kz for

=1,2,3....

The auxiliary equation has solutions

m=%(—2i#4—4()\+1)> - 1xV2h.

y=¢ °* (cl coshv =Xz + cosinhv—X\ x) .

The boundary conditions imply

For A < 0 we have

y(0)=c1=0

y(5) = coe P sinh 5v/ =X = 0

so ¢; = ¢ = 0 and the only solution of the boundary-value problem is y = 0.
For A = 0 we have

y=rcie * +coxe ”

and the only solution of the boundary-value problem is y = 0.
For X > 0 we have
. y=e‘x(clcosﬂx+czsin\/xx>.
Now y(0) = 0 implies ¢; = 0, so
y(5) = cpe~ B sin5vVA = 0

gives

n2n?

5V/A=nm or A=Y’ n=123,....

nw
The eigenvalues n27r2/25 correspond to the eigenfunctions e sin —5—1: forn=1,23,....

For A < —1 the only solution of the boundary-value problem is y = 0. For A = —1 we have
= ¢1z + cg. Now ¢’ = ¢1 and ¢/(0) = 0 implies ¢; = 0. Then y = ¢ and y'(1) = 0. Thus, A = —1

is an eigenvalue with corresponding eigenfunction y = 1.
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17.

18.

19.
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For A > —1 we.have

y=crcosvVA+1lz+cosinvAi+1zx.

Now

Y =—aVi+lsinvVAi+1lz+ceavVi+1lcosvVAi+1z
and ¢/(0) = 0 implies ¢z = 0, so '

V()= —avA+1lsinvVi+1=0

gives
A+l=nr or A=n’r’-1,n=123,....

2

The eigenvalues n?r? — 1 correspond to the eigenfunctions cosnrz forn =0, 1,2, ... .

For A = 0 the only solution of the boundary-value problem is y = 0. For A # 0 we have
Y = €1 COS AZ + casin Az.

Now y(0) = 0 implies ¢; =0, so
y(L) = casin AL =0

gives

AL =nm or /\=7}J—7r n=123....

)

nmw
The eigenvalues nm/L correspond to the eigenfunctions sin T2 forn=1,2,3,....

For A = 0 the only solution of the boundary-value problem is ¥ = 0. For A # 0 we have
Y = €] COS AZ + casin Az.
Now y(0) = 0 implies ¢; = 0, so
Y (3m) = caAcos3mA =0
gives
(2n - 1w 2n—1

377'/\:—"—2——'— or /\: 6

n—1

The eigenvalues (2n — 1}/6 correspond to the eigenfunctions sin 2 zforn=123,....
For A > 0 a general solution of the given differential equation is
y = c1cos(VA Inz) + casin(VA Inz).
Since In1 = 0, the boundary condition y(1) = 0 implies ¢; = 0. Therefore
y=cpsin(vVX Inz).
Using Ine™ = 7 we find that y (™) = 0 implies

czsin\/Xﬂzo
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21.

22.
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or Vir=nm,n=1,2,3,.... The eigenvalues and eigenfunctions are, in turn,

A=n? n=123 ... and y = sin{nlnz).

For A < 0 the only solution of the boundary-value problem is y = 0.
To obtain the self-adjoint form we note that the integrating factor is (1/22)efdr/r = 1/z. That is,
the self-adjoint form is
d, , A
E[zy I+ ~y=0
Identifying the weight function p(z) = 1/z we can then write the orthogonality relation

™

€
/1 lsin(n Inz)sin(mlnz)dz =0, m#n.
T

For A = 0 the general solution is y = c; + czInz. Now ' = ca/7, so y'(e™!) = coe = 0 implies
eo =0. Then y = ¢; and y(1) = 0 gives ¢; = 0. Thus y(z) = 0.

For A< 0,y = clz“/_—’\ + czzm. The initial conditions give cp = 0162‘/_—’\ and c; = 0, so that
cg =0 and y(z) = 0.

For A > 0, y = ¢; cos(v/A Inz) 4 cpsin(v/A Inz). From y(1) = 0 we obtain ¢; = 0 and

y = cosin(v/AInz). Now v = cp(v/A/z)cos(vA Inz), so ¢/(e”!) = coev/Acosv/A = 0 implies
cosvVA=0or A= (2n—1)272/4forn=1, 2, 3, ... . The corresponding eigenfunctions are

n—1

. (2
y=sm< 7rln:z>.

For A = 0 the general solution is y = ¢; + colnz. Now ¢ = co/z, 50 y'(1) = co = 0 and y = ¢3.
Since y'(eQ) = 0 for any c; we see that y(z) = 1 is an eigenfunction corresponding to the eigenvalue
A=0.

For A\ <0,y = c127V"* + ¢3zV=2. The initial conditions imply ¢; = ¢2 =0, so y{z) = 0.

For A > 0, y = ¢1 cos(vX Inz) + cpsin(vA Inz). Now

A
v = —cl—-z\/5 sin(vA Inz) + 62\/7‘ cos(vA Inz),

and ¥'(1) = cov/A = 0 implies ¢; = 0. Finally, ¥/(e?) = —(c1vV/A/e?)sin(2v/A) = 0 implies

A=n?r%/4 forn =1,2,3,.... The corresponding eigenfunctions are
<n7r In z)
= Ccos | — .
Y 2

For A > 1/4 a general solution of the given differential equation is

_ ~1/2 NZY ~1/2 .. Vvax—1
Y=z cos —é——lnz + ¢z sin ——Q—lnz .
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23.

24. {(a) The general solution of the differential equation is

Exercises 5.2

Since In1 = 0, the boundary condition y(1) = 0 implies ¢;'= 0. Therefore

12 (\/4/\—11 )
Yy = T sin ————2 nzcj.

Using Ine? = 2 we find that y(e?) = 0 implies
coe~sin (\/AK-——1> =0
or VAr—1= nt,n=1,2,3,.... The eigenvalues and eigenfunctions are, in turn,
/\=<n27r2+1)/4, n=1213 ... and y=$—1/2sin<%ln$).

For A < 0 the only solution of the boundary-value problem is y = 0.

For A = 1/4 a general solution of the differential equation is

Y= c1z_1/2 + 02$‘1/2 Inz.

From y(1) = 0 we obtain ¢; = 0, so y = coz~/?Inz. From y(e?) = 0 we obtain 2coe™! = 0 or

¢ = 0. Thus, there are no eigenvalues and eigenfunctions in this case.
To obtain the self-adjoint form we note that the integrating factor is
(1/z%)ef @@ dz = (1/22) . 22 = 1.

That is, the self-adjoint form is

d 2.1

T [z y] + Ay =0.
Identifying the weight function p(z) = 1 we can then write the orthogonality relation

e2
/1 1.-z7Y%5in (%ﬁln$> z~ Y 2%sin (%Elnx) dz=0, m#n,
or
e’ 1 mm nmw
/1 7" sin (—Q—Inz) sin (7 1nz) dr =0, m#n.

If restraints are put on the column at = = L/4, z = L/2, and = 3L/4, then the x
critical load will be Pj.

= \/P + ‘\/P +4
Y = C1 COS EI:L‘ Co S EI:L‘ .
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Since the column is embedded at z = 0, the initial conditions are y(0) = ¢'(0) = 0. If 6 = 0
this implies that ¢; = ¢g = 0 and y(z) = 0. That is, there is no deflection.

(b) If 6 # 0, the initial conditions give, in turn, ¢; = —¢ and ca = 0. Then

=6(1- ;P—x
y= COS”EI .

In order to satisfy the condition y(L) = § we must have

/P [ P
6=6<1—cos EL> or cos EL—O.

This gives /P/EIL =nrn/2 forn=1, 2,3, .... The smallest value of P,, the Euler load, is

then
b s 1 (72EI
— L== P=- .
VEI“=32 & 7 4( 1?2 )
Iy [ 2
Y = C] COS %—x—f—czsin B;)—,—z.

From y(0) = 0 we obtain ¢; = 0. Setting y(L) = 0 we find /pw?/T L =nn,n=1,2,3,.... Thus,
critical speeds are w, = nﬂ\/T/L\/,B, n=1,2,3,.... The corresponding deflection curves are

25. The general solution is

y(z) = c;gsinn—g—x, n=123,...,
where ¢2 # 0.
26. (a) When T'(z) = z? the given differential equation is the Cauchy-Euler equation
2y + 2zy’ + pwly = 0.
The solutions of the auxiliary equation

m(m—1) +2m+ pw? = m? + m+ pw? = 0

1 1 1 1

/ . [4 2 .
7”1——-—'—2'—5 4pw2—11, 7)l2——§+'2‘ 4de — 12
when pw? > 0.25. Thus

1/2

y=cz” "“cos(Alnz) + ez ?sin(Anz)

where A = 1/4pw? — 1/2. Applying y(1) = 0 gives ¢; = 0 and consequently

y = coz /2 sin(Alnz).
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28.

29.
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The condition y(e) = 0 requires cpe1/2sin\ = 0. We obtain a nontrivial solution when

A=nm,n=123,.... But
An = /dpw? — 1/2 =nnr.

Solving for wn, gives

1
W, = 5\/(4n27r2 +1)/p.
The corresponding solutions are
yn(z) = coz~ V2 sin(nr Inz).
(b) v y y
1] 1
S v A VA
-1 -1 -1

The auxiliary equation is m? + m = m(m + 1) = 0 so that u(r) = c177! 4+ co. The boundary
conditions u(a) = ug and u(b) = u; yield the system cja™ +co = ug, 16 +¢g = uy. Solving gives

_ b—
= (Ug_;il) ab and c¢9 = ———ulb_zoa.

Thus

uo—u1> ab  uib—upa
T b—a

u(r) = (

The auxiliary equation is m? = 0 so that u(r) = ¢; + caIn7. The boundary conditions u(a) = uo

b—a

and u(b) = u; yield the system c; + calna = ug, ¢; + ¢c2lnbd = u;. Solving gives

c _uilna—uglnd
' T In(a/b)

Uug — Uy
and ¢ = ———

In(a/b)"

Thus
_urlna—wulnb  up—u

u(r) = _ uoln(r/b) — u;In(r/a)

n(as) T n{aj) T In(a/b)

(a) The general solution of the differential equation is y = ¢; cosdz+cosindz. From gy = y(0) = ¢

we see that y = ypcosdz + cgsindz. From y; = y(n/2) = yp we see that any solution must
satisfy yo = y1. We also see that when yy = 31, ¥ = yo cos4z + cpsindz is a solution of the
boundary-value problem for any choice of ¢3. Thus, the boundary-value problem does not have

a unique solution for any choice of yg and y;.
(b) Whenever yy = y; there are infinitely many solutions.

(c) When yo # y1 there will be no solutions.
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(d)

30. (a)

(c)

(d)
31. (a)

(b)
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The boundary-value problem will have the trivial solution when yg = y; = 0. This solution
will not be unique.

The general solution of the differential equation is y = c¢; cosdz + ¢y sindz. From 1 = y(0) = ¢
we see that y = cosdz + cpsindz. From 1 = y(L) = cosdL + copsin4l we see that cp =
(1 —cos4L)/sin4L. Thus,

1 —cos4l

sin4L

will be a unique solution when sin4L # 0; that is, when L # kw/4 where k=1,2,3, ... .

y=cos4:c+< )sin4:c

There will be infinitely many solutions when sin4L = 0 and 1 — cos4L = 0; that is, when
L=kn/2 where k=1,2,3,....

There will be no solution when sin4L # 0 and 1 — cos4L # 0; that is, when L = kw/4 where
k=1,3,5....

There can be no trivial solution since it would fail to satisfy the boundary conditions.

A solution curve has the same y-coordinate at both ends of the interval [—7, 7] and the tangent

lines at the endpoints of the interval are parallel. ’
For A = 0 the solution of ¥ = 0 is y = c1z + ¢2. From the first boundary condition we have
y(—m) = —cr+cp =y(n) = 7w + ¢

or 2cim = 0. Thus, ¢; = 0 and y = ¢y. This constant solution is seen to satisfy the boundary-

value problem.

For A < 0 we have y = ¢1 cosh Az + co sinh Az. In this case the first boundary condition gives
y(—7) = ¢1 cosh(—A7) + co sinh(—A7)

= ¢1 cosh Am — co sinh Aw

= y(7) = ¢1 cosh AT + co sinh A7
or 2¢cysinh Aw = 0. Thus ¢g = 0 and y = ¢; cosh Ax. The second boundary condition implies in
a similar fashion that ¢; = 0. Thus, for A < 0, the only solution of the boundary-value problem
isy=0.
For A > 0 we have y = ¢1 cos Az + ¢9 sin Az. The first boundary condition implies

y(=m) = ¢1 cos(—Am) + cp sin(—Am)

= €1 COS AT — ¢osin Aw

= y(m) = c1 cos AT + cg sin Aw
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32. (a)

(b)

(c)

or 2cesin Ar = 0. Similarly, the second boundary condition implies 2ciAsinAm = 0. If ¢ =
¢o = 0 the solution is y = 0. However, if ¢; # 0 or c2 # 0, then sin Aw = 0, which implies that A
must be an integer, n. Therefore, for ¢; and ¢z not both 0, y = ¢1 cos nz+co sinnz is a nontrivial
solution of the boundary-value problem. Since cos(—nz) = cosnz and sin(—nz) = —sinnz,
we may assume without loss of generality that the eigenvalues are A, = n, for n a positive

integer. The corresponding eigenfunctions are y, = cosnz and y, = sinnz.

y = 2sin3x y = sindz — 2cos 3z
For A > 0 the general solution is y = ¢; cos VAz + casin v A z. Setting y(0) = 0 we find ¢; = 0,
so that ¥ = cosin v/Az. The boundary condition y(1) + /(1) = 0 implies

CQSiH\/X'f' 62\/XCOS\/X = 0.

Taking ¢y # 0, this equation is equivalent to tanvA = —+v/A. Thus, the eigenvalues are
Ap = x%, n=1,2 3, ..., where the z,, are the consecutive positive roots of tan VX = ~VX.
We see from the graph that tanz = —z has infinitely many tan x
. . 5
roots. Since A, = x2, there are no new eigenvalues when
2.5
zn < 0. For A = 0, the differential equation 3" = 0 has ’
X
general solution y = ¢1z +co. The boundary conditions imply s 4 B0 %2
c1=cp=0,80y=0. s
-7.5
~-10 \
N
Using a CAS we find that the first four nonnegative roots of tanz = —z are approximately

2.02876,4.91318,7.97867, and 11.0855. The corresponding eigenvalues are 4.11586,24.1393,
63.6591, and 122.889, with eigenfunctions sin(2.02876z),sin(4.91318z),sin(7.97867z), and
sin(11.0855z).
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Exercises 5.3

. The period corresponding to z(0) = 1, z/(0) = 1 is approxi- x
mately 5.6. The period corresponding to z(0) = 1/2, z/(0) = —~1

is approximately 6.2. 1'/\ m

-2
. The solutions are not periodic. lox
8
6
4
2
] t
Y S—
. The period corresponding to z(0) = 1, z'(0) = 1 is approx- x
10
imately 5.8. The second initial-value problem does not have 6
a periodic solution. ¢
4
2 N
o 6 5 ~a0
-2
. Both solutions have periods of approximately 6.3. x
3
2
2 4 6 8 10"
-1 \
-2
-3
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5. From the graph we see that |z} = 1.2. x

6. From the graphs we see that the interval is approximately
(-0.8,1.1).

7. Since
1
2001z _ z[1 4 0.01z + 5(0.01&:)2 + )=z

2
. . . . z
for small values of z, a linearization is - +z =0

8. 3:AL
"‘\;; ,Q >€7<. AW

-3 =4

For z(0) = 1 and z/(0) = 1 the oscillations are symmetric about the line z = 0 with amplitude
slightly greater than 1.

For z(0) = —2 and z/(0) = 0.5 the oscillations are symmetric about the line z = —2 with small
amplitude.

For £(0) = v/2 and £/(0) = 1 the oscillations are symmetric about the line z = 0 with amplitude a
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little greater than 2.

For z(0) = 2 and z/(0) = 0.5 the oscillations are symmetric about the line z = 2 with small
amplitude.

For z(0) = —2 and z'(0) = 0 there is no oscillation; the solution is constant.

For z(0) = —+/2 and z'(0) = —1 the oscillations are symmetric about the line z = 0 with amplitude

a little greater than 2.

. This is a damped hard spring, so all solutions should be oscilla-

X
tory with z — 0 as t — o0.
2
2\)(/( g ©
-2
10. This is a damped soft spring, so so we expect no oscillatory X
solutions. .
4
3]
2
1
[ 5 n t
-1
-2
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11.
1

1

x = 0.01
5

° /\/\ Mo

U\

\/\/20 30
-5
-10
-15
x k1l = 20
3
2

INIZANEPVAWANIN

n AN A
TREAS

kl = 100

JANRVANSA VA

\VAVIRGAVA

NAVARVAAVARVERAN

When k) is very small the effect of the nonlinearity is greatly diminished, and the system is close

to pure resonance.

12. (a)

(b)

X X

k = -0.000471 k=

-0. 000472

The system appears to be oscillatory for —0.000471 < k1 < 0 and nonoscillatory for

k1 < —0.000472.

X X

k = -0.078 k =

-0.079

The system appears to be oscillatory for —0.077 < k; < 0 and nonoscillatory for k; < 0.078.
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13. For A2 — w? > 0 we choose A = 2 and w = 1 with oA

14.

15.

16.

z(0) = 1 and z'(0) = 2. For A2 — w? < 0 we choose 31

2=1/3, w=1

A =1/3 and w = 1 with z(0) = ~2 and z(0) = 4. _m
In both cases the motion corresponds to the over- =2, 07l L

damped and underdamped cases for spring/mass -

systems.

(a)

}\/ 1 i
5 10 15

-

T

-3

Setting dy/dt = v, the differential equation in (13) becomes dv/dt = —gR?/y?. But, by the
chain rule, dv/dt = (dv/dy)(dy/dt) = vdv/dt, so vdv/dy = —gR?/y®. Separating variables

and integrating we obtain

d 1
vdu = —gRQ—g and =v?=Z"+¢
Y 2 Y

Settingv=vpandy=R wefind c= —gR + -21-1}(2) and

R2
v? = 29—~ — 2gR + 3.
Y

As y — oo we assume that v — 0F. Then v3 = 2¢gR and vp = v/2gR.
Using g = 32 ft/s and R = 4000(5280) ft we find

vo = 1/2(32)(4000)(5280) ~ 36765.2 ft/s & 25067 mi/hr.

vo = 1/2(0.165)(32)(1080) ~ 7760 ft /s =~ 5291 mi/hr
Intuitively, one might expect that only half of a 10-pound chain could be lifted by a 5-pound

force.
Since z = 0 when t = 0, and v = dz/dt = /160 — 64z /3, we have v(0) = /160 ~ 12.65 ft/s.

Since z should always be positive, we solve z(t) = 0, x
getting ¢ = 0 and ¢t = %\/575 ~ 2.3717. Since the *
graph of z(t) is a parabola, the maximum value occurs
at ty = %\/&75 . (This can also be obtained by solving
Z/(t) = 0.) At this time the height of the chain is
z(tm) = 7.5 ft. This is higher than predicted because
of the momentum generated by the force. When the chain is 5 feet high it still has a positive

LN e oo

velocity of about 7.3 ft/s, which keeps it going higher for a while.

Setting dz/dt = v, the differential equation becomes (L — z)dv/dt~v? = Lg. But, by the chain
rule, dv/dt = (dv/dz)(dz/dt) = vdv/dz, so (L — z)vdv/dz — v? = Lg. Separating variables
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(b)

(c)

and integrating we obtain

d dv =
v2+Lg L-zx

dr and %ln(v2 + Lg) = —In(L —z) +Inc,

s0 \/v2 + Lg = c¢/(L —z). When 2 =0, v =0, and ¢ = Ly/Lg. Solving for v and simplifying

we get
dz VLg(2Lz — z2)
il v(z) = —gTr
Again, separating variables and integrating we obtain-
Lo -t ana YEEECT i
Lg(2Lx — z?) VLg

Since z(0) = 0, we have ¢; = 0 and v2Lz — 22/+/Lg = t. Solving for z we get

t
z(t)=L— /L2~ Lgt*? and o(t)= 2—: = \/%_f—zg_—_;
-9

The chain will be completely on the ground when z(¢) = L or ¢t = /L/g.
The predicted velocity of the upper end of the chain when it hits the ground is infinity.

The weight of z feet of the chain is 2z, so the corresponding mass is m = 2x/32 = z/16. The
only force acting on the chain is the weight of the portion of the chain hanging over the edge
of the platform. Thus, by Newton’s second law,

”d*( U)_gf_<:z: >—i<azd—v+ dm)——l—< @+v2>—2
T a\1eY) T\ e TV E) T B\ & =

and zdv/dt + v?> = 32z. Now, by the chain rule, dv/dt = (dv/dz)(dz/dt) = vdv/dz, so
zvdv/dr +v® = 32z.

We separate variables and write the differential equation as (v? — 32z) dz + zvdv = 0. This is
not an exact form, but u(z) = z is an integrating factor. Multiplying by = we get

(zv? — 322%) dz + z?vdv = 0. This form is the total differential of u = %.’L‘Q'UQ - —33—2:153, S0 an
implicit solution is %$2v2 - %2:153 = ¢. Letting r = 3 and v = 0 we find ¢ = —288. Solving for

v we get

dx = 83 — 27

dt Viz

Separating variables and integrating we obtain

3<z <8

X

——dx
\/333 — 27

—8—dt and /x——s——ds——g—t+c
V3 3 /53 — 27 V3 '
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18. (a)

(b)

(c)

Exercises 5.3

Since £ = 3 when t = 0, we see that ¢ = 0 and

t = ﬁ / LR ds
8 J3 /3 —27
We want to find ¢ when z = 7. Using a CAS we find £(7) = 0.576 seconds.
There are two forces acting on the chain as it falls from the platform. One is the force due to
gravity on the portion of the chain hanging over the edge of the platform. This is F} = 2z.
The second is due to the motion of the portion of the chain stretched out on the platform. By
Newton’s second law this is

dt dtl 32 dtl 16
_8—zdv 1 dz 1 dv_QJ
TT16 @ 16 dr 16[(8 il
From %[mv] = F} — F, we have
d 2z 1 dv o
2l =92 — (8 — 2)— —
dt {324 ST [( i }
zdv 1 dz 1 dv o
Tt =R 69
dv 92 dv 2
xE—}-v =32z — (8 x)dt—}-v
dv dv dv
$E=32(E—8E{+.’IJE£
dv
82; = 32z.
By the chain rule, dv/dt = (dv/dz)(dz/dt) = vdv/dz, so
dv dv dv
8 p” 8v - 32z and w iz T
Integrating v dv = 4z dx we get %’U2 = 222 +¢. Since v = 0 when z = 3, we have ¢ = —18. Then

v? = 422 — 36 and v = V422 ~ 36. Using v = dz/dt, separating variables, and integrating we

obtain
dz

V12 =9
Solving for = we get z(t) = 3 cosh(2t + ¢;). Since £ = 3 when ¢ = 0, we have coshc; = 1 and
c1 = 0. Thus, z(t) = 3cosh 2t. Differentiating, we find v(t) = dzx/dt = 6sinh 2t.
To find when the back end of the chain will leave the platform we solve z(t) = 3cosh 2t
8. This gives t; = %cosh_lg ~ (.8184 seconds. The velocity at this instant is v(t¢1)
6sinh(cosh™ §) = 21/55 ~ 14.83 ft /s.

=2dt and cosh'1§=2t+cl.

I
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(d) Replacing 8 with L and 32 with g in part (a) we have Ldv/dt = gz. Then

dv dv dv g
LE—-LvE =gxr and Ud—x_fx'
Integrating we get %02 = %xQ + ¢. Setting z = z¢9 and v = 0, we find ¢ = —%xé. Solving
for v we find
g g
v(z) = sz - Ezg .

Then the velocity at which the end of the chain leaves the edge of the platform is

(L) = %(L2 —23).

19. Let (z,y) be the coordinates of Sy on the curve C. The slope at (z,y) is then
dy/dz = (nt —y)/(0—z) = (y —vit)/z or zy —y=—ut.

Differentiating with respect to z and using r = v1/va gives

dz

o =y B S

Y =M s dr
1

2y’ = o1 —(~/T+ W)?)
(%)

2y = ry/T+ W)

Letting u = 3’ and separating variables, we obtain

xj—:=r\/1+u2

du —zdm
Vi+d? oz

sinh™lu=rlnz +Inc=In(cz")

u = sinh(lncz")

dy_l(cxr_ 1 )
dr ~ 2 cx” )’

At t=0,dy/dxr =0and z =a, s0o 0 =ca” — 1/ca”. Thus ¢ =1/a" and

LoE -7

If r > 1 or r <1, integrating gives
a 1 o\ 1+7 1 o\1-r
y_§[1+r<5> —1—7'(5) ]+Cl'

226




20.

Exercises 5.3

Whent=0,y=0and r =a,s0 0= (a/2){1/(1+7)~1/(1 = 7)] +c1. Thus ¢; = ar/(1 — r2) and

a1 (m)l'” 1 (m)l'r N ar
¥y=3 147 \a 1-7\a 1—72"

To see if the paths ever intersect we first note that if r > 1, then v1 > vo and y — oo as ¢ — 0.

In other words, S always lags behind S;. Next. if 7 < 1, then v; < vg and y = ar/(1 — 72) when
z = 0. In other words, when the submarine’s speed is greater than the ship’s, their paths will
intersect at the point (0,ar/(1 — r2)).
Finally, if » = 1, then integration gives
y = L [ﬁ—llnm} + ca.
220 a
Whent=0,y=0and z =a,s00 = (1/2)[a/2—(1/a)Ina]+c2. Thus cg = —(1/2)[a/2—~(1/a)Ina]
e 122 1 lfa 1 171 1. a
v=75 [z—alnmJ -3 {§—Elna} =3 [5(12—a2)+aln; :
Since y — oo as £ — 07, Sy will never catch up with 5.
(a) Let (r,6) denote the polar coordinates of the destroyer S;. When S; travels the 6 miles from
(9,0) to (3,0) it stands to reason, since S travels half as fast as Si, that the polar coordinates
of Sy are (3,8,), where 62 is unknown. In other words, the distances of the ships from (0, 0)
are the same and r(t) = 15t then gives the radial distance of both ships. This is necessary if
Sy is to intercept Ss.

(b) The differential of arc length in polar coordinates is (ds)? = (r df)? + (dr)?, so that
ds\? 5 (do\* [dr)?
=) = =] + (=]
dt dt dt
Using ds/dt = 30 and dr/dt = 15 then gives

2
900 = 225¢2 (%) + 225

2
9
675 = 225t2 (‘—i—)

dt
@ _ 3
dt ¢
0(t)=x/§lnt+c=\/§lnl%+c.
When r = 3,6 =0,50 c=—+/3 In(1/5) and

0(t)=\/§<ln%—ln%> =\/§ln%.
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Thus r = 3e?/ ‘/5, whose graph is a logarithmic spiral.

(c) The time for S to go from (9,0) to (3,0) = £ hour. Now S; must intercept the path of Sy
for some angle 3, where 0 < 3 < 27. At the time of interception ¢2 we have 15ty = 3¢8/V3 or
t= eﬂ/‘/g/S. The total time is then

t = % + %eﬂ/‘/i < %(1 + e2/V3),

Since (dz/dt)? is always positive, it is necessary to use |dz/dt|(dz/dt) in order to account for the

fact that the motion is oscillatory and the velocity {or its square) should be negative when the

spring is contracting.

(a) The approximation is accurate to two decimal places for ¥
. 1
81 = 0.3, and accurate to one decimal place for 8; = 0.6.
0.8
0.6
0.4
0.2
0.2040.60.8 1 1.21.4 *
(b) o o
=] =]
0.5\ 0.5——\ 1\
0 0 A 0. o.s%
0.3———\ 0.3\ 0. O'GQ
R 0. Zr 0. 0.4
o 0 Y 0 0.2
— oz 08 ° oz o ¢ ¢ ozt

The thinner curves are solutions of the nonlinear differential equation, while the thicker curves

are solutions of the linear differential equation.

(a) Write the differential equation as 0
d29 . 2 oon
W + ‘-‘)2 sinf = 0, earth /\
where w? = g/£. To test for differences between the V% +— |\/% >
earth and the moon we take ¢ = 3, #(0) = 1, and 3
'(0) = 2. Using g = 32 on the earth and g = 5.5 on -2

the moon we obtain the graphs shown in the figure.
Comparing the apparent periods of the graphs, we see that the pendulum oscillates faster on

the earth than on the moon.
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(b) The amplitude is greater on the moon than on the earth.

(c) The linear model is

<D

d29 2 2 Jnoon
Ei tuwid= 0, earth /
where w? = g/f. When g = 32, £ = 3, 6(0) = 1, A A A >
and 6'(0) = 2, the general solution is \/ \/ \5/ \<{
8(t) = cos 3.266t + 0.612 sin 3.266t. -2

When g = 5.5 the general solution is

B(t) = cos 1.354¢ + 1.477 sin 1.354¢.
As in the nonlinear case, the pendulum oscillates faster on the earth than on the moon and
still has greater amplitude on the moon.

24. (a) The general solution of

' d6
-dTQ°+9-—O

is 6(t) = c1 cost + czsint. From #(0) = 7/12 and ¢'(0) = —1/3 we find
6(t) = (n/12) cost — (1/3) sint.
Setting 6(t) = 0 we have tant = 7/4 which implies t; = tan~!(7/4) ~ 0.66577.
(b) We set 6(t) = 6(0) + 6'(0)t + 36”(0)t + 36" (0)t + - - - and use 6”(t) = —sin 6(t) together with
6(0) = /12 and 6'(0) = —1/3. Then

6"(0) = —sin(n/12) = —v2(v/3 —1)/4

and
6" (0) = — cos 8(0) - 8'(0) = — cos(n/12)(—1/3) = V2 (v/3 + 1)/12.
Thus
e(t)=1l;:—%t— ﬂ(\/f_l) 2+ ﬂ(§+1)t3+~-.

(c) Setting 7/12 — t/3 = 0 we obtain t; = 7/4 ~ 0.785398.
(d) Setting

m_1 \/5(\/5“'1)152

273 8 =0
and using the positive root we obtain ¢; ~ 0.63088.
(e) Setting
Tl VAWE-D, VEGBED 5o
12 3 8 72
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we find ¢; = 0.661973 to he the first positive root.

(f) From the output we see that y(¢) is an interpolating function on 0.4
the interval 0 < ¢t < 5, whose graph is shown. The positive root

of y(t) = 0 near t = 1 is t; = 0.666404. o \\/4 5
~0.4

2 3
(g) To find the next two positive roots we change the interval used in 0.4
NDSolve and Plot from {t,0,5} to {t,0,10}. We see from the 0-2& /\

graph that the second and third positive roots are near 4 and 7, 0.2 2 /4 6 \8 10
respectively. Replacing {t,1} in FindRoot with {t,4} and then .

-0.4
{t,7} we obtain ty = 3.84411 and t3 = 7.0218.

From the table below we see that the pendulum first passes the vertical position between 1.7 and
1.8 seconds. To refine our estimate of £; we estimate the solution of the differential equation on
[1.7,1.8] using a step size of h = 0.01. From the resulting table we see that t; is between 1.76 and
1.77 seconds. Repeating the process with A = 0.001 we conclude that ¢; = 1.767. Then the period of
the pendulum is approximately 4¢; = 7.068. The error when using £; = 2w is 7.068 — 6.283 = 0.785
and the percentage relative error is (0.785/7.068)100 = 11.1.

h=0.1 h=0.01
tn en tn en

0.00 0.78540 1.70 0.07706
0.10 0.78523 1.71 0.06572
0.20 0.78407 1.72 0.05428
0.30 0.78092 1.73 0.04275
0.40 0.77482 1.74 0.03111
0.50 0.76482 1.75 0.01938
0.60 0.75004 1.76 0.00755
0.70 0.72962 1.77 -0.00438
0.80 0.70275 1.78 -0.01641
0.90 0.66872 1.79 -0.02854
1.00 0.62687 1.80 -0.04076
1.10 0.57660 '

1.20 0.51744] h=0.001

1.30 0.44895 1.763 0.00398
1.40 0.37085 1.764 0.00279
1.50 0.28289 1.765 0.00160
1.60 0.18497 1.766 0.00040
1.70 0.07706 1.767{ -0.00079
1.80 | -0.04076 1.7681 -0.00199
1.90 | -0.16831 1.769| -0.00318
2.00 | -0.30531 1.7704 ~-0.00438
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10.

11.
12.
13.
14.

15.

T - R e

®» N @
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8 ft., since k = 4.
27 /5, since 12" + 6.251 = 0.

5/4 m, since £ = — cos4t + %—sin 4.
True

False; since an external force may exist.
False

overdamped

From z(0) = (v/2/2)sin$ = —~1/2 we see that sing = —1/+/2, so ¢ is an angle in the third or
fourth quadrant. Since /() = v/2cos(2t + ¢), z'(0) = v/2cos ¢ = 1 and cos ¢ > 0. Thus ¢ is in the
fourth quadrant and ¢ = —7/4.
The period of a spring mass system is given by T = 27 /w where w? = k/m = kg/W, where k is the
spring constant, W is the weight of the mass attached to the spring, and g is the acceleration due
to gravity. Thus, the period of oscillation is T = (27/+/kg )v/W . If the weight of the original mass
is W, then (27/v/kg)vW = 3 and (27/vkg)vW — 8 = 2. Dividing, we get vW /W — 8 = 3/2
or W= %(W — 8). Solving for W we find that the weight of the original mass was 14.4 pounds.
(a) Solving -g—x” + 6z = 0 subject to £(0) = 1 and z/(0) = —4 we obtain

T = cos4t — sin4t = v/2sin (4t + 37/4).

(b) The afnplitude is v/2, period is 7/2, and frequency is 2/7.

(¢) fz=1thent=nr/2andt=—7n/8+nn/2forn=1,2,3,....

(d) Ifz =0 thent = 7/16 + nw/4 for n = 0, 1, 2, .... The motion is upward for n even and
downward for n.odd.

(e) 7/(37/16) =0

(f) If 2/ = 0 then 4t + 37/4 = 7/2+ nw or t = 37/16 + n.

From %z” + 32’ + 2z = 0, z(0) = 1/3, and 2'(0) = 0 we obtain z = %2 — le=4.

From z” + Bz’ + 64z = 0 we see that oscillatory motion results if 42 — 256 < 0 or 0 < |8 < 16.

From mz" + 4z' + 2z = 0 we see that non-oscillatory motion results if 16 — 8m > 0or 0 < m < 2.

From 1z” + 2’ + z = 0, 2(0) = 4, and 2'(0) = 2 we obtain z = 4e™% + 10te™%. If 2/(t) = 0, then

t = 1/10, so that the maximum displacement is z = 50 ~ 4.094.

Writing %x” + %x = cosvyt + sint in the form z” + %—4x = 8cosyt + 8sinyt we identify A = 0 and

w? = 64/3. The system is in a state of pure resonance when y = w = \/64—/3 =8//3.
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Clearly z, = A/w? suffices.
From 1 "+ 2 +3z = et 2(0) = 2, and 2’ (0) = 0 we obtain z, = e~ (cl c0s 2v/2t + cosin 2\/§t>,

— 8-t
T, = 7€, and

4t i - t
= —_ + 22t | + .
x € <17 COSQ\/Et 7 sin \/— ) 178

(a) Let k be the effective spring constant and z1 and z9 the elongation of springs &y and ko. The
restoring forces satisfy k121 = kozo so zo = (k1 /k2)z1. From k(z1 + z9) = k121 we have

k <111 + ﬂ 112) =k
kg

ko + k1
k| ~———] =k
( ks ) :

_ kik

T k14 ke
1 1 1
E=7€—1+k—2'

(b) From k; = 2W and kp = 4W we find 1/k = 1/2W +1/4W = 3/4W. Then k = 4W/3 = 4mg/3.
The differential equation maz” + kz = 0 then becomes z” + (4¢g/3)z = 0. The solution is

t) =ci cos2\/§t + ¢cosin 2\/’% t.

The initial conditions z(0) = 1 and #/(0) = 2/3 imply ¢; = 1 and ¢ = 1//39.

(c) To compute the maximum speed of the weight we compute

4 2
’t)=2\/§sin2\/§t+§c082\/gt and Iz’(t)|=1/4§+§=§\/3g+1.

From ¢” + 10% = 100sin50¢, ¢(0) = 0, and ¢'(t) = 0 we obtain g, = c1 cos 100t + cosin 100¢,
qp = %5 sin 50¢, and

(a) g = —1k5sin 100t + % sin 50t,
(b) i=—%cos100t +  cos 50t, and
(¢) ¢=0 when sin50¢(1 —cos50t) =0or ¢t =nn/50forn=0,1,2,....

(a) By Kirchoff’s second law,
d%q dg 1
L Et—Q + R + ° qg=

Using ¢/(t) = i(t) we can write the differentlal equation in the form

E(t).

L + Ri+ E(t).

cq'
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Then differentiating we obtain

d%i di 1
— — 4+ —i=FE'(t).
Ldt2+Rdt+Cz (t)

(b) From Li'(t) + Ri(t) + (1/C)q(t) = E(t) we find Li'(0) + Ri(0) + (1/C)q(0) = E(0) or Li'(0) +
Rig + (1/C)go = E(0). Solving for ¢'(0) we get
1

#(0) = 7 [B(O) - 5 a0~ Rio] .

For A > 0 the general solution is y = c1cosVAz + cpsinviz. Now y(0) = ¢1 and y(27) =
¢1 c08 27V A + g sin 27v/ X, so the condition y(0) = y(27) implies

€] = €] COS 2V + ¢o sin 2V A

which is true when VA =norA=n?forn=1,2 3,.... Since

y’ =—VvAc sin\/Xa:+ \/Xcz cosVz = —ncp sinnx + neg cosnz,
we see that y/(0) = neg = ¢/(27) for n = 1, 2, 3, ... . Thus, the eigenvalues are n? for n =
1, 2,3, ..., with corresponding eigenfunctions cosnz and sinnz. When A = 0, the general solution

is y = c1z + ¢ and the corresponding eigenfunction is y = 1.

For A < 0 the general solution is y = ¢; coshv/—Az + ¢psinh+v/—Az. In this case y(0) = ¢; and
y(2m) = ¢1 cosh 2mv/—X + cosinh 2my/— X, so y(0) = y(27) can only be valid for A = 0. Thus, there
are no eigenvalues corresponding to A < 0.

2_w?=0,s0

(a) The differential equation is d?r/dt? —w?r = —gsinwt. The auxiliary equation is m
Te = c1e“t 4 coe™t. A particular solution has the form Tp = Asinwt 4+ B coswt. Substituting
into the differential equation we find —2A4w?sinwt — 2Bw? coswt = —gsinwt. Thus, B =
0, A = g/2u?% and r, = (g/2w?)sinwt. The general solution of the differential equation
is 7(t) = c1e*t + cpe™* + (9/2w?)sinwt. The initial conditions imply ¢; + co = 7o and

9/2w — wcy + wep = vy Solving for ¢; and cp we get
1 = (2wPrg + 2wy — g)/4w? and cp = (2w?re — 2wuo + g)/4w?,

so that

2w?rg + 2wy — 9 ot 2wPrg — 2wug + g wt g
= € e sin wi.
42 + 42 * 202 Y

r(t)

(b) The bead will exhibit simple harmonic motion when the exponential terms are missing. Solving

c1 =0, co =0 for rg and vy we find 79 = 0 and vy = g/2w.

To find the minimum length of rod that will accommodate simple harmonic motion we deter-
mine the amplitude of 7(t) and double it. Thus L = g/w?.
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(c) As t increases, e** approaches infinity and e ! approaches 0. Since sinwt is bounded, the
distance, r(t), of the bead from the pivot point increases without bound and the distance of
the bead from P will eventually exceed L/2.
(d) r
20
‘ A /.
-20
(e) For each vy we want to find the smallest value of ¢ for which r(t) = £20. Whether we look for
r(t) = —20 or r(t) = 20 is determined by looking at the graphs in part (d). The total times
that the bead stays on the rod is shown in the table below.
Vo 0 10 15 16.1 17
r -20 -20 -20 20 20
t 1.55007 2.35494 3.43088 6.11627 4.22339
When vg = 16 the bead never leaves the rod.
Chapter 5 Related Exercises
1. (a) The auxiliary equation is m®+4 = 0 so z. = ¢; cos 2t +cosin 2¢. Letting z, = Asin4t+ B cos 4t

and substituting into the differential equation, we get —12Asin 4t — 128 cos 4t = sin 4t. Thus,
A —
12 |

T = c1 cos 2t + 3 sin 2t — 15 sin4¢. The initial conditions imply ¢; = 0 and ¢3 = %(a -+

B =0, and xp = —1—12- sindt. The general solution of the differential equation is
%) Thus

1 1 1
z(t) = E(a + 5) sin 2¢ — - sin 4t

1 1 1
= E(a + §> sin 2t — 5(2 sin 2t cos 2t)
1 1 1
=gin2t|~= - - = 2t], 0<t<L
sin {2(a+3> 6cos } <t<L

For 2" + z = sin4t the auxiliary equation is m2+1=0,s0 2, = cycost+ cosint. Letting
= Asin4t + Bcos4t and substituting into the differential equation we get ~15Asin4t —
153 cos4t = sin4t. Thus, A =

—+%, B =0, and z, = —7csindt. The general solution of
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the differential equation is z = ¢; cost + ¢gsint — —113 sin4t. The initial conditions z(7/2) = 0,
'(7/2) = —(a+ %) imply ¢1 = o + % and ¢p = 0. Thus

2 1
z(t) = <a+ 3) cost — Esmllt
= <a+ 2> cost — ! (2sin 2t cos 2t)
B 5 15

2 2
= (a + 5) cost — E(QSintCOStCOSQt)

37

2 4
=cost[(a+—>——ﬁsintc052t}, 5t_<_—2—.

5

(b) The velocity at the start of the second cycle is z/(37/2) = o + 1—25 :

(c) Using results from part (a), z = ¢ cos2t + cosin 2t — 11—2 sin4t. The initial conditions are now
z(37/2) =0 and 2/(37/2) = a + —1% , which imply ¢; = 0 and ¢ = —§(a + 1z ). Thus

1 7 1
:r(t)=—§< 15>s1n2t—ﬁsm4t
1 7 1 .
= ~»< 15) sin 2t — 12(251n2tc052t)

1 7 1 3T
= gi R —_ ] - = — <t < .
sm2t[ 2(a+15> 6c052t}, 7 S <27

For t > 2m we have z = cjcost + cpsint — & sin4t, as in part (a). The initial conditions are
z(27) =0 and z'(27) = —(a + ), which 1mply ca=0and s =~(a+ 1%) Thus

z(t) = (

>s1nt— — sin 4¢
= (a—{- )smt—- —(2sin 2t cos 2t)
o+

sint — ; (2sint cost cos 2t)

o

4
=sint[—( %)—l—scostcos.?t}, 2r <t < 3m.

+

(d)
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2. (a)

We have z, = cjcost + cpsint and we let z, = Atcost + Btsint. Substituting into the
differential equation we get 2B cost —2Asint = cost. Thus A =0, B = —% ,and z, = —21-t sint.
The general solution of the differential equation is z(¢) = ¢; cost +cosint + %—t sint. The initial
conditions imply ¢; = 0 and ¢2 = 0, so the solution of the initial-value problem is z(¢) = %t sint.
We have z. = cjcost + cpsint and we let 1, = Acos2t + Bsin2t. Substituting into the
differential equation we get —3Acos2t — 3Bsint = cos2t. Thus A = —1, B =0, and Tp =
—% cos 2t. The general solution of the differential equation is z(t) = c1 cost + cosint — %cos 2t.
The initial conditions imply ¢; = % and ¢g = 0, so the solution of the initial-value problem is
z(t) = Lcost — L cos2t.

In the first case the differential equations are " + z = sin 4t when z > 0 and z” + 4z = sin 4¢
when = < 0. Since the initial velocity is positive, we solve first for z > 0. The solution of
=’ + ¢ = sindt is z(t) = cicost + cysint — £ sin4t, as seen in Problem 1(a). The initial
conditions z(0) = 0 and 2/(0) = 1 imply ¢; = 0 and ¢g = % , 50 the solution of the initial-value

problem is
z(t) = %sint - 1—15— sin 4¢
= —1% sint — 1~15(2 sin 2t cos 2t)
= % sint — %(2sintcostcos 2t)
= (sint)(% - 14—5005tc082t>, 0Lt
The first positive value of ¢ for which z(¢) is zero is ¢ = 7, at which time z'(r) = —%% <0,

so ¢ < 0 immediately after ¢ = w. The new initial-value problem is then z” + 4z = sindt,
z(n) =0, 2'(n) = —%g— . The solution of this initial-value problem is

z(t) = —-gsin2t— 1—1251n4t = (sin2z€)<—-§)3 - écos2t>, T<t< %—
The next value of ¢ for which z(t) = 0 is t = 37/2, at which time 2'(37/2) = %— > 0, so
r > 0 immediately after ¢ = 37/2. The next initial-value problem is then z” + z = sin4t,
¢(3r/2) =0, £'(37/2) = % . The solution of this initial-value problem is

z(t) = 17 cost L in 4t = (co t)(17 4 sintcos 2t> 37 <t< o7
T 15 R A TR A
The next value of ¢ for which z(¢) = 0 is ¢t = 57/2, at which time z/(57/2) = —~I < 0, so

z < 0 immediately after ¢ = 57/2. The next initial-value problem is then 2z + 4z = sin4t,
z(5m/2) =0, /(57/2) = —g . The solution of this initial-value problem is

1
z(t) = —sin 2t —

1 . . 1 1 o
5 ﬁsmélt:(sm2t)<i—5———cos2t>, — <t<b

6 2
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where b is the value of ¢ for which z(t) = 0. In this case, 11—5 - %cos 2t is 0 for ¢ = 8.84514,
which is between 57/2 and 3w. Thus, for the first two cycles,

(sint)(%—%costcos?t), 0<t<n

2(1) '= (sin2t)(=3 — cos2t), T<t<
(cost)(?—%sintcos?t), 37” Stg%ﬂ
(sin2t)(f5 — §cos2t), ¥ <t < 884514,

The first part of the next cycle is the solution of the initial-value problem z” + z = sin4t,
z(8.84514) = 0, z(8.84514) = 0.28. This solution is approximately z(t) = —0.013cost —
0.109sint — 0.067 sin 4¢ and is positive on (8.84514, 9.42478) with amplitude 0.042.

In the second case, the differential equations are z” + 64z = sin 4t when z > 0 and 2" + 4z =
sin 4t when z < 0. Since the initial velocity is positive we solve first for z > 0. [The following
computations are done with the aid of a CAS having a differential equation solver and graphing
capability.] The solution of z” 4 64z = sin 4¢, z(0) = 0, z’(0) = 1 is

1 11
z(t) = Z§<sin4t+—2—sin8t>, 0<t<m,

where 7y = 0.415458 is found using the root-finding capability of the CAS. The next initial-
value problem is z” + 4z = sin4t, z(r1) = 0, 2’(r1) = —0.909091. The solution is

z(t) = 0.403 cos 2t — 0.255sin 2t — 0.083sin4t, 1 <t < ro,

where 79 = 2.1403. The next initial-value problem is " + 64z = sin4t, z(r2) = 0, z'(rg) =
1.16206. The solution is

z(t) = 0.153cos 8¢ + 0.021 sin4t — 0.008sin 8¢, 79 <t < 13,

where 73 = 2.53479. The next initial-value problem is z” + 4z = sin4t, z(r3) = 0, z'(r3) =
—1.28086. The solution is

z(t) = —0.737cos 2t — 0.217sin 2t — 0.083sin4t, r3 <t < 7y,

where T4 = 4.0453.

In the third case, the differential equations are z” + 36z = sin4t when z > 0 and 2/ + 25z =
sin 4t when z < 0. Since the initial velocity is positive, we solve first for z > 0. The solution
of 2/ + 36z = sindt, z(0) = 0, '(0) = 1 is

1 2
2(t) = ssindt + = sin6t, 0<t<m,

237



Chapter 5 Related Exercises
where 73 = 0.571447. Subsequent solutions are

z(t) =0.115 cos5t +0.111sin4¢ +0.093sin5¢, m <t < rp=1.24203
z(t) = —0.068 cos 6t + 0.05 sin 4t + 0.082sin6t, 719 <t < r3 = 1.73555

z(t) = 0.159cos 5t + 0.111sin4t + 0.072sin6t, 13 <t <71y = 2.21355.

(b) lxi e li PP 81?)6%’\{/\./\%/\.
j T S

b=64, a=4 b=236, a=25

~¥

b=1, a=4

In each case it appears that z(t) has increasing amplitude as ¢ increases.

(c) When o = 0.5 the following graphs are cobtained.

When « = 3 the following graphs are obtained.

— /\ '

VARV

_3 A

b=1, a=4 b=64, a=4 b=236, a=25

st

In both situations, it appears that the amplitude decreases for b = 1 and a = 4, but increases
in the other two cases.
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4. (a) The solutions are obtained numerically in CAS and plotted below in part (b). Since z/(0) =
1 > 0, in each case the first differential equation used is " + Sz’ + 4z = sin 4t, followed by
z' + Bz’ + z = sin4t, and alternating thereafter.

(b)

B=001 B=01 8=05

As t increases, the amplitude appears to increase for § = 0.01 and decrease for 8 = 0.1 and
B =0.5.
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6 Series Solutions of Linear Equations

Exercises 6.1

1.

2n+1 n+1 1 2

lim |22+ = lim /(4 1) = n lz| = 2|z|
n—oo| g, n—=oo 2gn /n n—0ooq 4 1

oo X (=1
The series is absolutely convergent for 2|z| < 1 or |z| < 1/2. At z = —1/2, the series »_

n=1 "
1
converges by the alternating series test. At z = 1/2, the series Z — is the harmonic series which
n=1
diverges. Thus, the given series converges on [—1/2,1/2).
lanst| _ 100" (z + 7)™ /(n+ 1) 100 B

LN e nl—{%ol 1007(z + 7))l =i, gle +7=0

The series is absolutely convergent on (—oo, 00).
(I . 5)1c+1/101c+1

lim (2L —
(z — 5)k/10%

k—oo | ag k—oo

1 1
1—6l$—5l = 1—0|$—5l

1
The series is absolutely convergent for l—Oix -5l <1, |z—5] <10, or on (—5,15). At z = —35, the

(=DF(=10F & A & (-nF10F
series Z 10k 2 1 diverges by the k-th term test. At z = 15, the series :L;l T
o ,
Z dlverges by the k-th term test. Thus, the series converges on (-5, 15).
k=1
lim |25+ = jim (k+ Die — DF lim(k+1)jz—1l=o00, z#1
ki»oo ap | k—oo kK (z — 1),C Jy e o

The radius of convergence is 0 and the series converges only for z = 1.

_ 3 2’ z’ 2 ozt 48 21 225 427
. SINTCOST = | —— + = — =+ " 1——5+—————+~-- =r——+t—-—— 7=+

120 5040 24 720 3 15 315

2 3 4 2 4 3 4

xr x x x x

z - 1—— —_—— —— — — — —— -_— — — e —

e Tcosz ( CL‘+2 5 54 )(1 2+24 ) 1 :10-1—3 6-1—
I 1 _1+22+5z4 618
B 2 2t 48 2 @ T e
Trhaooert
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Since cos(7/2) = cos(—mn/2) = 0, the series converges on (—7/2,7/2).

1-z 1 3 3, 3,
8. —- = -2
7rz 2 1°TET Tt T

Since the function is undefined at z = —2, the series converges on (—2,2).

oo oo
9. Z 2nenz™ ! + Z 6enz™ P =2-1-¢2% + Z 2ncnz™ 4 Z Bcpz™™

n=2 n=0

k=n-1 k=n+1

=2c + Z 2(k + 1)Ck+1.’13 + Z 6¢k 1.’13}”
k=1 k=1

00
= Z k+1ck+1+66k ﬂ}”

oo

o0
Z (n—1)cpz™ +QZ n—l)cnn:"_2+32ncn3:"

n="2 n=2 n=1

oo oo oo
=2.2-1c2° +2-3-2c32' +3-1- 12’ + Y onln—1)enz™+2 Y n(n— Denz™ 2 43 > nepz”

n=2 n=4 n=2

k=n k=n—2 k=n

oo oo oo
=dep + (12¢3 + (12¢3 4+ 3c1)z + D k(k — epz® +2 S (k+2)(k+ Dekpoz®+3 > kegz®
n=2

n=2 n=2
oo
= dcg + (3c1 + 12e3)z+ S ([k(k — 1) + 3k]eg + 2(k + 2)(k + 1)cxi0)z”
n=2
oo
=dey + (3c1 + 12¢3)z + S [k(k + 2)ck + 2(k + 1) (k + 2)cke0)z”

n=2
o0

00
11. y/ — Z(_l)n+lzn-—l’ yll - Z(_l)n—i-l(n_ 1)171—2

n=1 n=2

(z+1)y" +y =(z+1) i( D" n —1)z"2 + i(—l)"*‘lm"'l

n=2 n=1
0o 0o oo
- Z(_l)n+l(n 1):1:71—1 + Z( 1)n+l(n 1)_,1:71—2_'_ Z( 1)n+1 n—1
n=2 n=2 n=1
0o 0o
‘—CITO+.’EO+ Z( 1)n+1( 1)In—1+Z( 1)n+1( 1) n 2+Z( 1)n+1 n—1
n=2 n=3 n=2
k=n-1 k=n—2 k=n-1
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b=l k=1 k=1
= i [( 1)R+2k — (—1)F 2k — (—1)F+2 4 1)k+2] =0
k=1

(=1)"2n(2n - 1) 2n—1 i (=1)"2n 21 i (=" L2t

it 2l 22 (nl)2 2 naie
k=n k=n k=n+1
- é {(””53?22&3' = (2;;()/:3]; " 22k—(2—((1/c)k__ 11)!]2} o
E e
o[

13. Substituting y = ¥ neg cpz™ into the differential equation we have

o o0 oo o
Y —zy= > nn-1ca" 2= cua™ = 3 (k +2)(k + L)egozt = 3 Ch_12"
n=2 n=0 k=0 k=1

k=n—2 k=n+1
o0
=2+ S [(k+2)(k+ 1)ckpa — ck_1]z* = 0.
k=1
Thus
co=0
(k+2)(k+ 1)ckpo — k-1 =0

and
1

Ck42 = (k+2>(k+1) Ck—1,

Choosing cg = 1 and ¢; = 0 we find

k=1,2,3,....

L
575
C4==C5==0
L
8~ 180
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14.

and so on. For ¢g = 0 and ¢; = 1 we obtain

c3 =0
1

“=1

cs=cg =0
1

7= 504

and so on. Thus, two solutions are
1 1 1
y1=1+6x3+i§6x6+~-- and y2=x+ﬁx4+

Substituting y = 392 ¢,z™ into the differential equation we have

o0 o> o0
v +aty =3 n(n -1z ?+ Y ez = Y (k+2)(k+1)
n=2 n=0 k=0

k=n—2 k=n+2

oo
=2co+6c3z+ Y _[(k+2)(k+ Dckro + Ck_g]frk =0.

k=2
Thus
co=c3=10
(k+2)(k+1)ckyo+ k=10
and )
= k9, k=23,4,...
T T )+ 1)
Choosing ¢g = 1 and ¢; = 0 we find
1
Cq4 = '—E

ecs=cg=cr=0

_ 1
)
and so on. For ¢g = 0 and ¢; = 1 we obtain
cy =0
_ 1
%=
cg=cr=cg=0
_ 1
@~ 140

Exercises 6.1

5047 '

o0
k k
Ck+2% +§ Ck—2T
k=2
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and so on. Thus, two solutions are

1 1 1 1
y=1-—z+—28— .. and =g ——z+—2z— ...
u 12" T 672 vz 207 T 1440
15. Substituting y = Y_neg cnz” into the differential equation we have
< o0 o0
v =22y +y=3 nln— ez ? =23 neag™ + Y cag™
n=2 n=1 n=0

(SR e —
k=n-2 k=n k=n

o0 o]
(k + 2)(k + 1)cpoz® — 2 > kerzk + > cxz®
0 k=1 k=0

™38

k

= 2co+co+ i{(/{ +2)(k + V)ckys — (2k - 1)Ck]:13k =0.

k=1
Thus
2c0+ ¢ =0
(k+2)(k + L)ckro — (2k = 1)k =0
and
co = 1c
2= 20
2k —1
Chag = 7 e, k=1,2,3,....
T k) k+1) "
Choosing cp = 1 and ¢; =0 we find
o = 1
277
03205207:: :O
1
C4——§
. 7
67 336
and so on. For ¢g = 0 and ¢; = 1 we obtain
Co = C4 = Cg == =0
I —}.
178
1
05252
. 1
=112
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and so on. Thus, two solutions are

l—lrc2 14 [ and :c—f—lx +ix +—1—x+
=275 T 78T T 33T e BREITET T TR

16. Substituting y = >°22 cpz™ into the differential equation we have

o0

v —zy + 2y = Zn(n—l Jenz™” chnx +220nx
n=2
k=n-2 k=n k=n

(k+2)(k+ 1)cg oz — Z kepz® + 2 Z crzt
0 k=1 k=0

Mg

k

li

=20+ 20+ S [(k+ 2)(k + Dekss — (k - 2zt = 0.

k=1
Thus
2¢co+2c =0
(k+2)(k+1)cksa — (k= 2)cp =0
and
Co = —Cp
k—2

= t_Z k=1,23,....

Choosing ¢p = 1 and ¢; = 0 we find

co = —1
c3=C¢5=cy= =0
cs =0
Ccg=cg=Ci1g= =0
For ¢g = 0 and ¢1 = 1 we obtain
Cy = Cq4 = Cg = =0
. 1
c3 = 5
_ 1
%= "0
and so on. Thus, two solutions are
1 1
=1- 2 - 3 __ - .5
Y1 T and Yy =1 627 30
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17. Substituting y = 3 neg cpz™ into the differential equation we have

(o9} o0 o0
v +zh ray =Y nn - Depa™ T+ 3 neas™ ™ + Y cpz
n=2 n=1 n=0

k=n—2 k=n+1 k=n+1

Mg

(k+2)(k + 1)cksoz” +Z — ek +ch 17"

k=0 k=2 k=1

[(k +2)(k + 1)cgrn + keg_q]z = 0.

Mg

= 2co + (63 + co)z +

k=2
Thus
cg = 06cg +cog =0
(k+ 2}k + 1)ckso + ke =0
and
c -——lc
3 = 60
c k k=234
=1, =2,3,4,....
T Tk 2kt 1)
Choosing ¢y = 1 and ¢; = 0 we find
r = 1
3778
cg=c¢5=0
. 1
7 45
and so on. For ¢p = 0 and ¢; = 1 we obtain
c3 =20
. _ 1
1778
cs=cg =0
N
7= 953
and so on. Thus, two solutions are
1 1 4 1y 5 4
=1-= alpo - B d - - P
U1 62: +45:c an Yo =7T 63: +232m
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18. Substituting y = > 024 ¢,z™ into the differential equation we have

oo o0 oo
'+ 22y + 2y = Z n(n — 1)on1:"~2 +2 Z nepx” + 2 Z cenz™
n=2 n=1 n=0
—————’
k=n-2 k=n k=n

o0 oo
(k + 2)(k + 1)cppoz® +2 > kerz® + 2 > cpzt
0 k=1 k=0

gk

k

= 2cy+ 2c0 + Y [(k + 2)(k + Verya + 2(k + Degle® = 0,

k=1
Thus
2¢0 + 2¢0 =0
(k+2)(k+ Dckyo+2(k+ 1) =0
and
co = —cg
2

Ck+2=—mck, k=1,2,3,..u

Choosing ¢cp = 1 and ¢; = 0 we find

cp = -1
3=c=cr=---=0

1

C4=§

1

6= —=

T 7%

and so on. For ¢g = 0 and ¢; = 1 we obtain

Ch=C4=cg = =0

2

c _z

3T 73

4

5 = —

15

8
7= ———
‘ 105

and so on. Thus, two solutions are
1 1 2 4 8
=1—g2 4484, d —r— S 25 2 T
Y1 x+2x 6x+ an Yoy =2 31: +15x 105x+
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19. Substituting y = > g c.2™ into the differential equation we have

(n—1)cyz™” 2y chna: -1
n=1

x
(z-1y"+y =3 n(n—1cz™! Z
n=2 | n=2
k=n—1 k=n—-2 k=n-1
x x
= S (k+ Dhcrp1z® — S (k+2)(k + Degroz™ + > (k + Depp1
k=0 k=0

k=1
(o]
=—2co+c1+ I [(k+ Dkckrr — (k+2)(k + cgso + (k + Dcgy1)z® =0

k=1

Thus
—2c0+c¢1 =0
(k+1)%cer1 — (k+2)(k + Dega =0

and
c —lc
2= 5
k+1
Ck+2= mck-}—l) k:1:2731"
Choosing cg = 1 and ¢1 =0 we find ¢o = c3 = ¢4 -=0. For ¢g = 0 and ¢; = 1 we obtain
c—1 c—l c—1
2_27 3—3, 4—47

and so on. Thus, two solutions are
15 14 1
P=T+ -+ +-x +--

=1 and
v 2" T3t g
20. Substituting y = > no.q cr2™ into the differential equation we have
[e 9]
@+ +zy —y=>_ nln— 1.z +Z2nn—1cna: +chnx —chm"
=2 =
n n=2 =0
k=n—2 k=n k=n

k=n—1

k+ kcr1z® + Z 2(k+ 2)(k + Dexpaz® + Z kegz® — Z cxzt
k=0

-3
k=1 k=0 k=1
=4cy —cp + Z k+ Dkcgrr +2(k+ 2)(k+ 1)ckya + (b — Deglz® =0

k=1

Thus
49 ~cg =10
(k+ Dkckp1 +2(k+2)(k+ ego+ (k=1 =0, k=1,2,3,...
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and
c—lc
2= 1%
(k 4+ LYkcgq1 + (k= 1)cx
= - k=1,2,3,....
2 k+2)(k+1)
Choosing ¢g = 1 and ¢; = 0 we find
PSS S S
Cl-—— H CQ—Zy 3 = 24> 4 — U, o T 480
and so on. For ¢g = 0 and ¢; = 1 we obtain
co =0
c3=0
Cqp = C5 = C6 = =0

Thus, two solutions are

Y1 =20

1 1 1
1hgete ot bt ] and -z
+4x 242: +48Ox + a Y2 =1

21. Substituting y = Y924 ¢cxz™ into the differential equation we have

o0 o0 o0 oo
Y —(z+1)y —y= Z nin — 1)cn:t"_2 — Z nea, T’ — Z nepz™ - Z cna™
n=2 n=1 n=1 n=0
[ ——
k=n—2 k=n k=n-1 k=n
oo o0 et i k
= S (k+2)(k+ Dogsozt = Y kega? = Y (k+ Dogiz® = 3 a
k=0 k=1 k=0 k=0

o0
=2c0—c1—co+ I [(k+2)(k+ 1)ckso — (k+ L)ces1 — (K + Dez* = 0.

k=1
Thus
2c0 —c1—cg =0
(k+2)(k + L)egso — (k= 1)(cp+1 +cx) =0
and
c _tta
)
Cky1+ Gk
g = LR k=034, .
ck+2 k+2 ks »
Choosing ¢g = 1 and ¢; = 0 we find
1 1 . 1
c2—2) c3_67 4*6
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and so on. For ¢g = 0 and ¢; = 1 we obtain

1 1 1
CHo = — Cy = -, Cp = —
2= 5 375 4= 7
and so on. Thus, two solutions are
1 1 1 1 1 1
y]_=1+§3§2+-6‘333+61‘4+“' and y2=$+§332+‘2‘333+a$4+""
22. Substituting ¥ = 252 c,2™ into the differential equation we have
o0} oQ
<x2+1)y"—6y=Zn(n—l)cn:r”-!—z (n~1)eaz™” —6cha:
n="2 n=2 n=0
[ S——
k=n k=n-2 k=n
o0
Z —lck:r +Z (k+2)( /€+1)0k+23§ —6201,;33
k=2 k=0 k=0
o0

= 2¢y — B¢ + (6c3 — 6c1)z Z [(K2 = & = 6) ci + (k +2)(k + L)cesa| 2* = 0.

Thus
2¢g — 6cg =0
6cy —6¢yp =0
(k—=3)k+2ck+ (k+2)(k+1)ckro =0
and
¢y = 3co
c3 =
ck+2=—%;—?ck, k=23,4,....
Choosing ¢y = 1 and ¢; = 0 we find
¢y =3
cg=czg=cr=---=0
c4g =1
o — 1
=3
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and so on. For ¢y = 0 and ¢; = 1 we obtain

Ch=Cq4=0Cg= =0
cg =1
s =C7=Cg= = 0.

Thus, two solutions are
1
y1=1+3x2+x4——5x6+--- and y2=$+$3.
23. Substituting y = 3225 cpz” into the differential equation we have

oo oo
(a:2+2>y”+3xy/—y=Zn(n—l)cna:"+2Z (n—1)epz™™ +32ncna:~§:cna:

n=2 n=2 n=0
S —
k=n k=n-2 k=n k=n
oo o0
Z —lckx +22 (k+2)( k+1)ck+2x +32kcka: cha:k
k=2 k=0 k=1 k=0
oo

= (4co — o) + (12¢3 + 2¢1)z Z[ (k + 2)(k + 1cgso + (K + 2k — 1) o] z° = 0.

Thus
deo—cg =0
12¢3+2¢1 =0
2k +2)(k + exsa + (k2 +2k—1) e = 0
and
c —1c
2= 4%
c3 = 1c
3= —g4
k2 42k — 1
= —— k=2,3,4,....
H2E Tk )k + 1)
Choosing ¢y = 1 and ¢; = 0 we find
o L
S
C3 = C5 = C7 = =0

4= —=

251



Exercises 6.1

and so on. For ¢g = 0 and ¢; = 1 we obtain

o=cg=cg=-=0
1
3=—=
T8
7
“ = 120
and so on. Thus, two solutions are
1 7 1 7
y1=1+1z2—%z4+-~- and yz—z—gz +mz5—
24. Substituting y = 3202 c,z™ into the differential equation we have
o (v
(9:2 - 1) Y +ay —y=Y nn-1cz"— Y nln— ez 2 + Z nepz™ — Z cnz™
n=2 n=2
k=n k=n-2 k=n k=n

I
18

(v
k(k-1) cka: Z (k+2)(k + 1)Ck+2I + Z kepz® —~ Z CkI
k=0 k=1 k=0

a
1|

2

= (- 262—60)—663I+Z[ k+2)(k+1)ck+2+(k —l)ck]z =0.

k=2
Thus
—209—cg=10
—6c3 =0
—(k+2){k+ g+ (k= 1){k+ 1), =0
and
1,
Cy = 5 0
c3=10
k-1
Ck+2 = A +9 Ck, k 2)3)4)
Choosing ¢y = 1 and ¢; = 0 we find
o = 1
2T
c3=c¢C5 =cC7 = =0
o = 1
1778
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and so on. For ¢p = 0 and ¢; = 1 we obtain

co=cg=¢c='-=0
cg=cs=cy=---=0.
Thus, two solutions are
Lo 14
=1—-=-z°— -z . and =1z
(1 5 ) Y2

25. Substituting y = > 72 ¢yz™ into the differential equation we have

o o
(-1 2y +y=> nn—Deaz™ ' = > n(n—ea™ 2 - Z neaz" + Z Cnx™
n=2 n=2
k=n~1 k=n~-2 k=n k=n
o0 o0 o o0
Z (k4 Dkepyrz® — STk +2)(k+ Degpozt — > kepzh + > cpz®
k=1 k=0 k=1 k=0
= —2¢c9+co + Z (k+2)(k + egqo + (k+ Dkegr — (K — l)ck} = 0.
k=1
Thus
—2¢c0+cp=0
—(k+2)(k+ Degro + (b — Dkegy; — (k=1L =0
and
1
Cog = 560
ket (k —Deg
Chyo = - , k=1,23,....
TR 2 T k+ )kt 1)
Choosing ¢g = 1 and ¢; = 0 we find
1 1
c2 = 5, C3 67 cg=10
and so on. For ¢g = 0 and ¢; = 1 we obtain ¢ = c¢3 = ¢4 = --- = 0. Thus,

1 1
y=0C (1—1—5:52—1-6:53-1-“-)-&-02:5

and

1
y’:Cl (I+§$2+>+CQ

The initial conditions imply C; = —2 and Cy = 6, so

1 1
y=—2<1+§l‘2+61‘3+~~')+6I=8$—26m.
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Substituting y = 3524 ¢nz™ into the differential equation we have

(z+1)y" = 2 -2)y +y
oQ o o o0 >0
= Z n(n — e, 2™ + Z n(n — 1)cna:"'2 -2 Z ne,z™ "+ Z nepz™ + Z CnT
n=2 n=2 n=1 n=1 n=0
———
k=n-1 k=n-2 k=n—1 k=n k=n
o0 >0 0 >0 0
=> (k+ Dkcgerz® + > (k+2)(k+ 1)cpaoz® — 2 d(k+ Degrrz® + > kegz® + > cxz®
k=0 k=0 k=1 k=0
= 0.

x
]
—_

>0
=2co—2c1 +co+ O [(k+2)(k+ D)egra ~ (k + ek + (k+ 1epla”
k=1

Thus
2¢9 —2c1+¢g =
(k+2)(k+1)cken —(k+ V)cgs1 + (K + 1), =0
and
co=c¢ —lc
2=C 5 0
c i L c k=1,2,3
k+2—k+2ck‘+1 k'+2 ky — Ly Ly 9y
Choosing cg = 1 and ¢; = 0 we find
1 1 1
62— 27 63— 67 C4——12
and so on. For ¢g =0 and ¢; = 1 we obtain
1
c3 =0, C4=—~é—1

co =1,

and so on. Thus,
1
)+02 <m+z2—zz4+---)

1 1 1
=C<1——2———3 —z4 4.
Y 1 22: 62: +122:+

1
_z3+.‘

and .
y’=01<—z—§9:2+3 ~>+Cg(1+22:—2:3+-~-).

The initial conditions imply C1 = 2 and C3 = —1, so
1 o 3, 1 4 ) ( 2 1 4 )

=2(1—-242_2 ) = _=

Yy < 22: 6 +122: + r+zx 42: +

1 5
=9 g o2 _ 2.3, 24,
T — 2z 3z +122:+
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27. Substituting y = Y72 cnz™ into the differential equation we have

o0 oo o0
y'~2zy' +8y=> n(n- Denz™ 2 23 nea™ +83 cpaz”
n=2 n=1 n=0
N —
k=n—2 k=n k=n

[e @) [e @)
(k+ 2)(k + 1egpoz® — 2 > ke + 8 > crz”
0 k=1 k=0

]38

k

o0
= 2cp +8co+ S [(k +2)(k + Vepya + (8 — 2k)ck)z* = 0.

k=1
Thus
29+ 8co =0
(k+2)(k +1)ckr2 + (8 — 2k)cx = 0
and
co = —4cy
2k —8
[ —— k=1,2,3,....
Ck+2 (k+2)(k+1) Ck, y Ly 9y

Choosing ¢y = 1 and ¢ = 0 we find

cp=—4
ca=cs=¢cr= =0
4
e ==
173
cg=Cg=Clp= =0
For ¢y = 0 and ¢; = 1 we obtain
Co=C4=cCg= =0
c3 = —1
1
5 = —
T 10

and so on. Thus,

4 1
y=Cl(1—4I2+—.’E4>+CQ<IE-—13—|—_15+...>
' 3 10
and

1 1
v =C <~Sz+§x3>+02(1—3m2+§z4+~-->.
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The initial conditions imply C1 = 3 and C =0, so
4
y=3 (1 — 422 + gx"‘) =3 —122% + 4z

28. Substituting y = 3752 c,z™ into the differential equation we have

o o o
(2> + 1)y + 22y = Y nn— ez + 3 n(n— e z” 2+ 3 2ncnz”
n=2 n=2 n=1
k=n k=n—2 k=n
o o
Z k— 1)cpa® +> k+2)(k + 1)epyozt +22kckx
k= k=0 k=1

(o)
=2cy + (Bcs + 2c1)z + S [k(k + ey + (k +2)(k + Vegaple® = 0.

k=2
Thus
2¢9 =0
Bcg +2c1 =0
E(k+ Ve + (k+2)(k + ek =0
and
cp=0
1
c3 = —-3—01
k
Ck+2=—m0k, k=2 3,4,....
Choosing cp = 1 and ¢y =0 we find c3 = ¢4 =c5 = --- = 0. For ¢g = 0 and ¢; = 1 we obtain
1
3 = -3
C4=CG::CS= :0
1
cs = ~z
i
Cr = =
7

and so on. Thus

and
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The initial conditions imply ¢g = 0 and ¢; = 1, so

1 1 1.
y=z—§x3+5x5—?x’+v--.

29. Substituting y = 3524 ¢,z™ into the differential equation we have

. e 1 1
y'+ (sinz)y =Y n(n- ez 2 + (I - 6x3 + m:r5 - ) (co + 1z + ezt + - )

n=2

’ 1
= [2C2 + 6c3x + 1264.’132 + 20C5I3 + - ] + |coz + c1:r2 + <C2 — 6c0> 2+ }

3

1
= 2c9 + (B3 + o)z + (12¢4 + c1)3;2 + <2OC5 +c¢9 — —6—co> 2 +..-=0.
Thus
2¢o =0
6cg +cpg =10
12¢4+c¢; =0
1
2065+C2——ECO=0
and co =0
e 1c
3 6 0
e —ic
1= -—5a
cy = 1c + ! ¢
5T 7207 120
Choosing ¢cg = 1 and ¢; = 0 we find
1 1
=O = —— _O = —
2 ) €3 6’ Cq ) cs 150
and so on. For ¢y = 0 and ¢; = 1 we obtain
co=0 c3=20 c ———l c5=0
2 = 3 3 = U, 4 = 12) 5 =
and so on. Thus, two solutions are
1 1 1
=13 — g5 4. d =z——zi4-..
Y1 GI +120x + an Yo =2 12x +
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30. Substituting y = 3524 cp2™ into the differential equation we have

0
y”-i—ezy'—y: Zn(n—l)cnx”—2
n=2
1 1 >
+<1+x+§x2+6$3+---> (61+2CQ$‘+3631‘2+4C41‘3+"'>—chl‘n
n=0

= [202 + 6c3z + 12¢47% + 20c57° + - - ]

1
+ [cl + (2c2 +c1)z + <3C3+202 + —cl> x2+~-J ~ [co+ 12 + cor® + -+

2
1 2
= (2ca+¢1 — co) + (6c3 + 2¢9)x + <12€4 + 3¢c3 +co + 501> ¢+ =0.
Thus
2c0+¢c1 —c=20
6cg +2c3 =0
1

IZC4+3C3+62+501=O

and
1 1

c2 2C0 2C1

c3 = —lc

3 = 3 2

c ——lc -i—ic —ic

G TSR TR T
Choosing ¢g = 1 and ¢; = 0 we find

1 1
=3 =% ¢4 =10
and so on. For ¢cg = 0 and ¢y = 1 we obtain
1 1 1
Cy = 2 C3 = 6’ C4 = 24
and so on. Thus, two solutions are
1 1 1 1 1
y1=1+§x2~6x3+-~- and ygzx—§x2+6z3—ﬂz4+--~
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31. Substituting y = 3224 cnz™ into the first differential equation leads to

[o 0] o0 > (o]
V' —zy=Y n(n-1eaz" 2= caz™ = 3 (k+2)(k + Dcproz® — 3 cpyzt
n=2 n=0 k=0 k=1

k=n-2 k=n+1
(o]
= 2¢2 + Z[(k + 2}k + 1)cgyo — c;;_l]zk =1
k=1
Thus
2c0 =1
(k+2)(k+ Degso — cx—1 =0
and
o = 1
S

C—1
=Tkl k=1,23,....
ST T T k1)

Let cg and ¢; be arbitrary and iterate to find

1
02—5
1
032600
1
C4=1—201
1 1
C5=§6C2=?4—0

and so on. The solution is

c+cz+12+1 273+1 4+1 +
= -I°+ =c¢ —c1z" + —c5+ -
Yy=cota 5 50 151 0%

1 4 1 4 ) 1, 15
= 1+ = - = Sl
co<+6x+ >+c1<z+12x+ +2I +4OI+

Substituting y = 3224 ¢,z into the second differential equation leads to

(o] o0 (o]
Y =dzy —dy =3 n(n—1)caz™ =Y dncaz™ - Y dcpz”
n=2 n=1 n=0
~~ S ——’
k=n-2 k=n k=n
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o0
=Y (k+2)(k+ eppoz® — Z dkepzh — Z depz®
k=0 k=1 k=0

= 2¢9 —4dco + i[(k + 2)(k + 1)ckrg — 4(k + 1))z

k=1
_ i 1k
=
Thus
2C2 - 4C0 =1
1
and
1
Cy = 5 + 2¢g

1

4
L. k=1,23, ...
TEDIRE 3

Chy2 =

Let ¢g and ¢; be arbitrary and iterate to find

62=%+200
1 4 4
c3 §+§c §,T+3Cl
Ca l~}-§02——1~~}—1~}—2co—-13~}—20()
4! 4 4! 2 4!
cs l+§c3—1+ : +1§1 LS
55 53! sl 15
polo4, 1 413 8 961 4
6! 6 6! 6.4 6 6! 3

oL 4 _1+417 64 _ 409 64
T TS T A T T s T 105 T I T 105°¢

and so on. The solution is
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34.

35.

Exercises 6.1

ot

=c +cz+(l+2c> 2+(1+4c>$3 (13+2c>$ +(17+16c>$
y=cqao 1 5 0T 3] 1 m 0 51 51

261 4 5 409 64 7
+(——+§co>z +(——+——c1> + -

6! 7! 105
=co{1+2z2+2z4+%z6+ }-I—q $+§$ +1—§ 5+% 7+-~~}
plppy L B M 206 2090
2 3! 4] 5! 6! 7!
We identify P(z) = 0 and Q(x) = sinz/z. The Taylor series representation for sinz/z is 1 —z%/3!+
z4/5! — .-, for |z| < oo. Thus, Q(z) is analytic at z = 0 and z = 0 is an ordinary point of the

differential equation.

The differential equation zy” = 0 has a singular point at z = 0. It also has two solutions, y; = 1
and yp = r, that are analytic at z = 0.

If £ >0andy >0, then v = —zy < 0 and the graph of a solution curve is concave down. Thus,
whatever portion of a solution curve lies in the first quadrant is concave down. When z > 0 and
y <0,y = —zy > 0, so whatever portion of a solution curve lies in the fourth quadrant is concave
up.
(a) Substituting y = Y22 ¢,z" into the differential equation we have
oo oo oo
vV +ay +y= Z n(n — l)cnz”'2 + Z nepr” + Z cnz”
n=2 n=1 n=0
N, e’
k=n—2 k=n ) k=n

oo
Zk+2 (k + 1)cpoz” +chkx +chz
k=0 k=1 k=0

= (2¢0 + ¢g) + i [(k +2)(k + 1)egqn + (k +1)ep]z* = 0.
k=1

Thus
20+ cg =0
(k+2)(k+1)cgpo+ (k+ 1) =0
and
1
¢y = —ECO
c = L ¢
k42 = k1o k

Choosing cp = 1 and ¢; = 0 we find
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C2=C4=C6= =O
12
B=737 7y
1, 1 1 4.2
s=-5(-3) =535
1,4-2 6-4.2
o =—7(5) =7

and so on. Thus, two solutions are

2 (=DF o 2 (—1)%2%k! 5y
yl‘,§)2k-k!x and ”‘%(%H)!x '

(b) For yi, S = Sz and S5 = Sy, so we plot Sa, Sy4, S6, S, and Sio.

4 4 4 4
o N=2 2 2 N=6 2

I * Ti:3Z 7 4 X Tz
- -2
2 N=4
-4 -4

For y9, S3 = Sy and S5 = Sg, so we plot Sg, S4, S, Ss, and Sio.

Y Y Y Y Y
4 4 4 4 4
2 g N=4 2 o N=8 2
oy ) 2 4 * I 1 X% Ti- Z 4 X /- X —Tc 72 4 %
"2 N=2 -2 "2 Neg 3 N=10
-4 -4 -4 -4 -4
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(C) vl y2
4 4
2 2
-4 -2 2 a3 = A 2z 4 *
-2 -2
-4 -4

The graphs of y; and 3, obtained from a numerical solver are shown. We see that the partial
sum representations indicate the even and odd natures of the solution, but don’t really give a
very accurate representation of the true solution. Increasing N to about 20 gives a much more
accurate representation on [—4, 4].

(d) From e® = T2, 2%/k! we see that e="/2 = T o(—z2/2)k k! = T2 0(—1)k2%* /25Kl . From
(5) of Section 4.2 we have

—f:cd:c —12/2 -
y2=yl/e 7 dz=e‘zz/2/—(e dz=e—12/2/e

k=0 k=0 k=0 k=0
_ i (=1)* EARES 1 L2kH

= ok & 2k 1 1)2F!
_ 1o 1 4 1 & 1 3 1 5 1 7
=(- gt - m gt )t T e E et )
N 2 4 4-2 45 6-4-2, & (=DkRK
I - R T =L 5

36. (a) We have

y" + (cosz)y = 2c3 + Be3zr + 12c4z° 4 20c52° + 30cez? + 42072°

2zt S

2 3 4 5
+(1—E+E—a+~-)(co+clz+02z + 32" + ez + o527 0 0)

1 1
= (2co+cp) + (6es + 1)z + (1204 +c — §co)x2 + (2005 +c3 — 501)153

1 1 4 1 1 5
+ (3006 +cq + -2—400 - 502)2 + (4207 +c5 + 2j4-01 — —2—03).’17 + -
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Then . . .
1
g — =cg = d 42 —1 - zcg =
30¢ce +cq + 2400 202 0 an cr+c5+ 2401 203 0,
which gives ¢g = —c/80 and ¢y = —19¢1/5040. Thus
I N SIS SR
yi(z) =1 58t 5T Tt t
and 1 1 19
plr) =z — 22+ =2 — ——2" 4+,

6 30 5040
(b) From part (a) the general solution of the differential equation is y = ciy1 + coy2. Then
y(0) = c1+¢2-0=cy and y/(0) = ¢1 - 0+ c2 = ¢, so the solution of the initial-value problem is

152 153 14 1 5 1 6 19 -
= =1 — =2 =+ =+ =2 - =T =
V=t =1t or o gl o Tt T %t 50400 T
(c)
Y Y Y
4 4 4
2/\ 2 2
~6 -4 -2 7\4 6 % —6—‘.—7/\ T 5 * 6 -4 | 2 4 6 %
-2 -2 -2
-4 -4 -4
Y Y Y
4 4 4
2 2 2
=6 -4 =3 2 4§ 6 ¥ 6 -4 -2 /?4 g ¥ 641 =2 A 2 6 ¥
-2 -2 -2
-4 -4 -4
(d) v
6
4
2
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Exercises 6.2

© o NP e R @ N e

_
- O

12.

13.

Irregular singular point: z =0

Regular singular points: z =0, -3

Irregular singular point: z = 3; regular singular point: z = —3
Irregular singular point: z = 1; regular singular point: z =0
Regular singular points: z =0, +2¢

Irregular singular point: z = 5; regular singular point: z =0
Regular singular points: z = —3, 2

Regular singular points: = = 0, =i

Irregular singular point: z = 0; regular singular points: = = 2, &5

Irregular singular point: z = —1; regular singular points: z =0, 3

. Writing the differential equation in the form

"
+—y=0
vt z-1 y z+1 y
we see that o = 1 and 9 = —1 are regular singular points. For zp = 1 the differential equation
can be put in the form
- 1)2
12y 4 5z — 1)y + 22Dy g
(z-1%"+5(z -1y + ——F~v

In this case p(z) = 5 and ¢(z) = z(x ~ 1)?/(z + 1). For zo = —1 the differential equation can be
put in the form
(@+1)%" +5(z+1)Z +1y+x@+1w 0.
In this case p(z) = (z + 1)/(z — 1) and ¢(z) = z(z + 1).
Writing the differential equation in the form
Y + 3y +7zy =0

we see that o = 0 is a regular singular pomt. Multiplying by z2, the differential equation can be
put in the form
2y + z(@ + 3y + Ty = 0.

We identify p(z) = = + 3 and q(z) = 72°.

We identify P(z) = 5/3z + 1 and Q( = ~1/322, so that p(z) = zP(z) = %+ z and g(z) =
22Q(z) = —% . Then ag = g—, by = 3 , and the indicial equation is
1 2 1 1 1
r(r—l)+§r———§=r2+§r-—§ 5(31” +2r-1)= 3(3r— )(r+1)=0.
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The indicial roots are % and —1. Since these do not differ by an integer we expect to find two series
solutions using the method of Frobenius.

We identify P(z) = 1/z and Q(z) = 10/z, so that p(z) = zP(z) = 1 and q(z) = 22Q(z) = 10z.
Then ap =1, by = 0, and the indicial equation is

rir=1)+r=r2=0.
The indicial roots are 0 and 0. Since these are equal, we expect the method of Frobenius to yield a
single series solution.
Substituting y = 5024 c,z™" into the differential equation and collecting terms, we obtain

22y’ —y/ + 2 = (2 = 3r) 0"+ T [2k+7 = D)k +r)ep ~ (k+7)e + 2ee]e" T =0,
k=1

which implies
or? —3r=r(2r=3)=0
and

(k + r)(2k + 2r — 3)cg + 2¢,—-1 = 0.

The indicial roots are 7 = 0 and r = 3/2. For r = 0 the recurrence relation is

2¢K-1
=——— k=1273,...
ck k(2k _ 3) ) ) !37 K
and
4
Cc1 = 260, Cy) = —260, Cc3 = §CO.
For r = 3/2 the recurrence relation is
2Ck~1
=—— k=1,23,...,
k= T2k + 30k
and
= —2 ¢y = Ec c3 = — 4 C
1 = 5CO’ 2 = 35 0, 3 945 0

The general solution on (0, o0) is

4 2 2 4
=C<1 2 — 222 + ~ 43 ) C 3/2<1__ 2 2 3 )
Yy 1 + 2z 9:+99:+ + Cox 5x+35x 9459:+

Substituting y = 502 cnz™*" into the differential equation and collecting terms, we obtain

2wy + 5y + 2y = (2r% +3r) coz™ ! + (2r% + Tr +5) c12”

2k +7r)(k+7—1)cg + 5(k+r)ck + ck_g]xk”L"_l

18

+

el
1l
)
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which implies
2r? +3r = r(2r +3) = 0,
(22 + 71 +5) 1 = 0,

and
(k+7)(2k+ 2r + 3)¢i, + cfn = 0.
The indicial roots are r = —3/2 and r = 0, so ¢; = 0 . For r = —3/2 the recurrence relation is
Ck~2
=2 k=234 ...,
%= Tk =3k
and
c 1c 0 c ! c
= e — cq = = - .
2 2 0, 3 ) 4 20 0
For r = 0 the recurrence relation is
Ck—2
=——" k=2,34,...
ck: k(2k+3) ) ) b ] )
and
_ 2 C c3 =0 = Lc
62_A140) 3=\, c4_6160
The general solution on (0, 00) is
1 1 1 1
-C —3/2< L S ) <__2 L )
Y 1T 1 5% +4Oz+ +Cs (1 i +616I -+

Substituting y = 3924 ¢,z™*" into the differential equation and collecting terms, we obtain

1 7 sl 1
4zy” + Ey' +y= (47‘2 - -2-r) coz” " + Sk +r)k+r— 1)+ E(k + ), + qu} gkl
k=1

=0,
which implies
7
4T2—-§T=T<4T——) =0
and
%(k +7)(8k+8r — Tep + cx_1 = 0.
The indicial roots are 7 = 0 and r = 7/8. For r = 0 the recurrence relation is

2ck_1

—_— k=1,2,3,...
k(8}€‘-7)7 la 731 )

= —
and

2
c1 = —2c¢p, c2 = 5o, €3 = ~755%:
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For r = 7/8 the recurrence relation is

20k

ck (8k + 7)k b b ) ) )
and
2 2 4
C = ——=C0, C2 = ——=C0, 3= Co -
15 345 32,085

The general solution on (0, 00) is

2 4 9 9 4
=C (1_2 Sp? o 23 ) Cox™ (1~ Zpr 222 = 8.,
y=o T T et Tt 55T 357 " 32085° T

Substituting y = Y-5° 4 ¢,z into the differential equation and collecting terms, we obtain
2%y — zy + <x2 + 1) Y= (27‘2 —3r+ 1) cox” + (27‘2 + r) c1z™t!

o]
+ > [2k+r)(k+7r—1)ck — (k+7)ck + ok + Cp—]zFtT

which implies
22 —3r+1=(2r—1)(r—1)=0,
(27'2 + r) c1 =0,

and
((k+7)(2k+2r —3) + l]ck + ck—n = 0.

The indicial roots are r = 1/2 and r = 1, so ¢; = 0. For r = 1/2 the recurrence relation is

Ck-2

= k=2 ce
Ck k(2k . 1) ) )3147 )
and
1 1
Cy = —gco, c3 =0, C4 = ﬁco.
For r = 1 the recurrence relation is
Ck—2
= -~ k=234
Ck k(2k + 1) ) 731 ) Y
and
= C 0 _ 1
2 = lO 0 C3 - 3 C4 - 360C0

The general solution on (0, 00) is

1 1 1 1
y=C’1x1/2<1—6x2+16§x4+~->+C’2x<1———x2+—x4+--->.
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19. Substituting y = 3% 5 ¢,2™"" into the differential equation and collecting terms, we obtain
3y + (2 —xz)y ~y = (3r2 — r) coz” !

+ i Bk +7 — 1)k +7)ck + 2(k + r)ck — (k + r)ep_1)z"!
k=1

which implies
3r2—r:r(3r—1)=0

and
(k+7)Bk+3r—1)ck, — (k+7)ck—1 = 0.

The indicial roots are 7 = 0 and r = 1/3. For r = 0 the recurrence relation is

o= = =123

(3k—-1)'
and
c _ 1 cy = —1—c c3 = ic
1= 5¢0, 2 = 75 3= ggco
For 7 = 1/3 the recurrence relation is
Ck—1
=—, k=123,...,
ck 3k ? )
and
c -1 -2 c3 = L c
1= 3003 C2 18007 3= 162 0-

The general solution on (0, c0) is

1 1 1 1 1 1
y=C1 <1+—m+—132+—z:3+-~->+ng:1/3<1+—m+—x2+——x3+--->.

2 10 80 3 18 162
20. Substituting y = 3225 ¢,z™"" into the differential equation and collecting terms, we obtain
2,1 2 2 2 r = 2 k+r
%y’ - (I—§>y= (r -r+ §> oz + Y (k+r)(k+r—1)ck+§ck—ck_1 z

k=1
which implies

and

2
(k+r)(k+r—-1)+§}ck—ck_1=0.
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The indicial roots are r = 2/3 and r == 1/3. For r = 2/3 the recurrence relation is

3Ck—
e = ET;IIE k=1,2,3,...,
and
1 = §CO Cy = —9—00 c3 = iCQ.
47 56 560
For r = 1/3 the recurrence relation is
= 3i§k:1k, k=1,2,3,...,
and
3 9 9
oL = 5o, c2 = 55, €3 = Jp5C0

The general solution on (0, c0) is

3 9 9 3 9 9
(1 a2, 22, 9 3 ) 1/3(1 S 22,9 3 )
y=Clz ( +4x+56x +560x + + Chz —{—21:—!—201: +160$ +

. Substitutin =52 o ¢, z™* into the differential equation and collecting terms, we obtain
gy n=0 q

o0
2zy" — B+ 2z +y = (27‘2 - 57‘) cor”t+ S[2(k+ )k +1 - 1)ck
k=1

—3(k+r)ck — 20k + 7 — Degoy + cpy)z™H !

=0,
which implies
w2 —5r =r(2r—35)=0
and
(k+7)(2k+2r —5)ck, — (2k+ 2r — 3)cx_q = 0.

The indicial roots are 7 = 0 and r = 3/2. For r = 0 the recurrence relation is

(2k = 3)ck—1
= 0, k=1,2,3,...,
%= Tk2k - 5)
and
¢ = 1c = lc c3 = 1c
1_30y 62_ 60) 3 = 60
For r = 5/2 the recurrence relation is
2(k+1)0k_1
= —2— £=1223,...
Ck k<2k+5) ) 3 il ) 1
and
o= 40 4 _ 320
1= 7 0, 2 = 2100, 3 = 693 0-
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The general solution on (0, 00) is

1 1 1 4 4 32
=C<1 Lo 1o 13 ) CS/2<1 4 4 o2 8 )
Yy 1 +3x 6x 6x + - + Cozx +7x+21x +693 + -

22. Substituting y = Y52 ¢,x™*" into the differential equation and collecting terms, we obtain
4 4 5
22y + 2y + (m - §> y= <r2 - §> cox” + <r2 +2r + §> ozt

oo
4
Z[k-l—r k+r—1)ck+(k+r)ck—§ck+ck o| 2R

which implies

9
and
g 4
(k+7) -3 cp+cp—2=0
The indicial roots are r = —2/3 and r = 2/3, so ¢; = 0. For r = —2/3 the recurrence relation is
9c—2
= ——>— k=234,...
C}\l 3k(3k . 4) Y 73) b )
and
cp = —-¢C c3=0 c —g——c
2= 4 0, .3 =Y 4= 128 0-
For r = 2/3 the recurrence relation is
9ck-o
=Tk p_934, ...,
T TRkt 4)
and
ey = ¢ c3=0 cq4 = Lc
2 = 2007 3=V, 4—1,2800
The general solution on (0, c0) is
- —2/3<1_§2 9 4 ) o332, 9 4.
y=Ciz 4x +128x + + Cyzx 20:5 +1’280x + .
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Substituting y = $.92g ¢pz™" into the differential equation and collecting terms, we obtain

9x2y” + 9x2y' + 2y = (9r2 - 9r + 2) cox”

[9(k + 7)(k + 7 — Ve + 2¢ + 9(k +7 — V)ep_1)z™"

8

-+

k=1

=0,
which implies
9t —9r+2=03r—1)(3r-2)=0
and
Ok+r)k+r—1)+2]ck + 9k + 7~ 1)cg—1 = 0.
The indicial roots are r = 1/3 and r = 2/3. For r = 1/3 the recurrence relation is

(3k — 2)cp—1

_ k=1,2,3,...,
Ck k(3k—1)
and
-1 ey = 1c c3 = ! c
cl = 2007 2 = 5 (' 3= 120 0.
For r = 2/3 the recurrence relation is
(3k — 1)ck—1
o R TGSl 193
Gk k(3k+1)
and
€1 = 1c ey = 5c c ——l—c

The general solution on (0, co

)
y = Cyz'/3 <1—la:+l

7 1 5 1
> 5&—EWMM>+@ﬁ”@—w+—ﬁ——ﬁ+m)

2 28 21
Substituting ¥ = £52; ¢,z™"" into the differential equation and collecting terms, we obtain
202y + 3z + (2z — 1)y = (27‘2 +7 - 1) cox”

o

+ > 2k+r)k+7— ek +3(k+r)ck — ok + 2ep_1]z*tT

which implies
22 4r—1=(2r~1)(r+1) =0

and
[(k+7)(2k +2r + 1) — lleg + 2c,—1 = 0.
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The indicial roots are r = —1 and r = 1/2. For r = —1 the recurrence relation is
2ck—q
= ek =1,2,3,...,
= TRk - 3)
and
4
c1 = 2¢o, ¢ = —20, c3 = §co.
For r = 1/2 the recurrence relation is
2¢—1
p= ———— k=123, ...,
* = TRk +3)
and
2 2 4
= —— = — cq = ———Cn.
€1 5007 €2 35007 3 945 0

The general solution on (0, 00) is

4 2 2 4
y=Cyz7} <1+2$-2z2+§x3+~-->+sz]/2<1—gz+£12—9—4—5—23+~~>.

Substituting y = 32525 ¢,z™"" into the differential equation and collecting terms, we obtain
zy + 2 — 2y = (r2 + r> coz™ " + (r2 -+ 3r + 2) azx
oo
+ ST [k +r)(k 41— ek + 2(k + r)eg, — cp_gla™7 !
k=2
=,
which implies
rPir=r(r+1)=0,

(r2+3r+2)c1=0,

and
(k+r)k+7+ 1)k~ cg—o =0.
The indicial roots are r; = 0 and r9 = —1, so ¢; = 0. For r1 = 0 the recurrence relation is
Ci—2
= ———— k=234,...,
*= %+ D)
and
1
c2 = 550
cs=c=c¢cr=-=0
1
C4:=Eico
_ 1
= O 1Y
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For 79 = —1 the recurrence relation is
Ck—-2
= k=2,3,4,...,
kT Rk—1)
and
_ 1
Cy = 500
cg3=cs=cr=---=0
1
Cq4 = Z!‘CO
Cop = ! ¢
The general solution on (0, 00) is
—Ci L x2"+Cx—1§: L "
V=M L on ) 2 24 (o)
— l Cl i 1 I2n+1 + CQ io: 1 :L,Qn
T = @2n+1)! =0 (2n)!

1
= —[C1sinhz + Cycosh z].
z
26. Substituting y = 5005 ¢,z™™" into the differential equation and collecting terms, we obtain

1 3
o2y + oy + <x2 - Z) Y= <r2 — %) coz” + <r2 +2r + Z) cpz™t!

00 1 .
+ Z [(k-l—'f‘)(k-l-’l‘— l)ck—i—(k—i—r)ck — ch+ck_2 :Z?k+r
k=2

which implies

and )
[(k +7)? - Z} ¢k + g = 0.
The indicial roots are r; = 1/2 and rp = —1/2, so ¢1 = 0. For r; = 1/2 the recurrence relation is
Ck—2
= - k=234,...,
*E TRkt
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and
1
(&) *500
3 =C5=C7 = =0
1
Cq4 = 500
="
= ————qp.
Con (277.—!—1)! 0
For ro = —1/2 the recurrence relation is
Ck—2
= — 0, k=2,3,4,.,.,
= T ER- 1)
and
1
Ccy = —E?C()
c3=cs=cyr=---=0
1
Cq = ZCO
—1)»
Con = 'Q(Q—ng"Co.

The general solution on (0, co) is

y = Cyzi/? i D" on Coz=1/? i (=1)" on
@n+ 1) 2 an)]

n=0

0 ~1\n o0 —1 n
= C]$_1/2 Z (2(n i)l)!xZn-H + 0213—1/2 Z ( ) n

n=0 n=0

=272y sinz + Cycosz).

27. Substituting y = 302, ¢cpz™" into the differential equation and collecting terms, we obtain

o0
oy’ —zy +y = <r2 — 7‘) cor” V4 STk + 7+ 1)(k+7)ckpr — (K +7)ex + ck]xk“ =0
© k=0

which implies
er=r(r—1)=0
and
(k+r+D(k+7)cger — (k+7—1)ex = 0.

The indicial roots are r1 = 1 and 5 = 0. For r1 = 1 the recurrence relation is
ke
=k __ k=012...,
= e+ 2k + 1)

275



28.

Exercises 6.2

and one solution is y; = ¢pz. A second solution is

~[-d= z 1 1 1
92=$/—e——2——d$=$/e-2dz=z/—2<1+x+—12+—xs+--->dz
T T T 3!

-

=zlnz

2

1+1+£+11‘+11‘2+ )dz—x{ l-f—lnzr-f—lx-f—l 2+11:
2z 273 T Tz 27T T

1 5 1 5 1
-1+ S+ = —
+2l‘ +12l‘ +72l‘ +

The general solution on (0, 0) is

y = Ciz + Caya(z).

3+...}

Substituting y = 3524 ¢,z into the differential equation and collecting terms, we obtain

1

+ gy’ — 2y = (rQ + 2r) coz” 2 + (T2 +4r + 3) ezl

Y
(o0}
+ > (k+r)k+r—1ex +3(k+r)ck — 2ozt
k=2
=0,
which implies
2+ 2r=r(r+2)=0
(T2+4r+3)c1 =0
(k+r)(k+7r+2)ck — 2ck—2=0.
The indicial roots are 7y =0 and 7 = =2, so ¢; = 0. For r; = 0 the recurrence relation ié
2cr_2
=——"— k=234,...
ck k(k + 2) ? ¥ 2 1 b
and
co = 1c
2= 760
Cg=C5=C7=~‘=0
g = L c
4 = 43 0
ce = ! ¢
6= 112

The result is

1 1
y1=00(1+—z2+—x4+

1
17 T8 1,1526”"')‘
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A second solution is

e—f(B/:c)d:cd dr
y2=y1/—2—-— z=y1/ 5
G z3<1+%12+4—1814+-~>

y/ dz Yy /1 <1 1x2+ 7x4+ 0 + )
= 1 = = 1 — _— —_— — e

~ /(1 1,719 4 )_ 11 T, 18,
TUN\E T T 57T TV T 9%6° ~ 2304

-1 Inz + ——L+7x2 ~£14+ :
¥ Y1722 T96" T 230" '

The general solution on (0, c0) is
y = C1y1(z) + Caya(2).

29. Substituting y = 5524 ¢,2™"" into the differential equation and collecting terms, we obtain
o0
oy + (1 =2 —y=ricz" + Slk+r)k+r—Dex+ (k+r)ek— (k+ r)ck_1]xk+r~1 =0,
k=0
which implies 72 = 0 and
(k+ T)Qck —(k+r)ek—1=0.

The indicial roots are r; = ro = 0 and the recurrence relation is

=1 k=123 ...

One solution is
1 2 1 3 T
Y1 =Co<1+x+§.’17 +§I + ) = cpe”.
A second solution is

- [(1/z—1)dz z/ 1
e e“/x -
?JQ=?J1/——*————62I dx=ex/ o dmzex/ge Tdx

e
1 1 1 1 1 1
= I — — _2_-—_3 DIy —_ I — — — ——2 e
=e /:c<1 :E+2:C 3!:1: + )d:c-e/(x 1+2:c 3!$ + )dz
1 1 & (=1
— oz _ -2 4.3 o = T LT \=/  on
e [ln:z: x+2.2:z: 3’3!13-1— ] eflnz enX::l — "

The general solution on (0, co) is

y=C1€° + Coe® | Inz — i ﬂnjix" )
n-n!

n=1
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30. Substituting y = 3225 c,z™™" into the differential equation and collecting terms, we obtain
o0
oy’ +y +y=ricr Tl + Slk+r)k+7—=1)ce + (k+7)ck + ce—1)z®T =0
k=1
which implies 72 = 0 and
(k +7)%ck + co—q = 0.
The indicial roots are r1 = r9 = 0 and the recurrence relation is

ckz—c’;‘cgl, k=1,2,3,....

One solution is

1 o 1 3 L 4 (
1=c|l 22 (30)2 (42 2. (nt)2 =~
A second solution is

e—f(l/z)d:zd . dz
y2=y1/———2——— $=y1/ 5
Ui x(l—x+%x2—-3%a:3+~')

y/ dx
=1
x<1—2x+%x2—%x3+2—38%x4—-~)

_ 1 5 o 23 5 6T 4
-—y1/$<1+2:r+2:r + 9$ +288x +- )d:r
5 23 o 677

1
*y1/(5+2+5x+—§x +%§.’L‘ +"'>d$

= lnz + 2z + 5:r2+ 23:r3+ 677 zd+
=un 2 Tt T2

5 23 677
=l 2 Sy o)
Y1 nx+y1(x+4x +27.E +17152x +

The general solution on (0, c0) is

y = Cry1(z) + Coya(2).
31. Substituting y = 02 5 ¢,z™"" into the differential equation and collecting terms, we obtain

o
oy +(z—6)y — 3y = (r® — Tr)coz" ! + Yk +r)k+r— e+ (k+7 = L)ck—1
k=1
_ . _ k+r—1 _
6(k +T‘)Ck 3Ck_1]$ = (),

which implies
7“2—-77“=7“(7“—7)=0
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and
(k4+r)k+r—Tcp+ (k+7r—4)ck1 =0.

The indicial roots are r1 = 7 and r9 = (0. For r{ = 7 the recurrence relation is

(k4+Tkep + (k+3)c_1 =0, k£=1,2,3,...,

or
k+3
— = c=1,2,3,....
Ck o7 Gkl k
Taking co # 0 we obtain
= 1c
1=—5¢%
c 5c
2 180
cg = 1c
3_ 607

and so on. Thus, the indicial root r; = 7 yields a single solution. Now, for 79 = 0 the recurrence

relation is

k(k—T)er + (k—4)eg-1 =0, k=1,23,....

Then
~6c; — 3¢cp =0
—10cg = 2¢1 =0
—12c3—c0 =0
—12¢4+0c3=0 = ¢4 =0
—10¢c54+¢c4=0 = ¢c5=0
—6cg+2c5 =0 = cg=10
Oc7 4+ 3ce =0 == c7 is arbitrary
and
Ck = _F(}.‘il;_él?)%_h k=8,910,....
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Taking cg # 0 and ¢; = 0 we obtain

1 = 1c
1= 20
lc
g = —
2 100
1
€3 = ———¢
37T 71207
cy=cs=cg=---=0
Taking ¢p = 0 and ¢7 # 0 we obtain
cp=cy=cy3=c4=c¢c5=cg =0
1
g = —=cC
8 5C7
5
cg = —¢C
9= 364
1
c1p = ——C7.
10 367
In this case we obtain the two solutions ‘
1 1 1 1 5 1
=1-= +_2____3 d — 7___8_+___9____10
vi 27T Tt MY BTE ST T Tt T

32. Substituting y = 352 ¢,z™"" into the differential equation and collecting terms, we obtain

z(z - )y +3y — 2

NgE

=(4r—r e+ D[k +r - Dk +r = 12)ckm1 — (k+7)(k +7 - e

k=1

+3(k +7)eg — 20y )z

:0,

which implies
4r—r2=r(4—r) =0

and
—k+r)k+r -4+ [(k+7—1){k+r—2) —2Jcg_1 = 0.

The indicial roots are 71 = 4 and ro = 0. For r; = 4 the recurrence relation is
—(k+ ke + [(k+3)(k+2) — 2]cg—1 =0

or
ck=(k+1Dcg1, k=1,2/3,....
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Taking cg # 0 we obtain

c1 = 2¢p
co = 3leg
c3 = 4lcg,

and so on. Thus, the indicial root r1 = 4 yields a single solution. For rs = 0 the recurrence relation
is

-—k(k—4)ck+k(k—3)0};_1=0, k=1,2,3,...,

or
—(k—4)er, +(k—=3)ckg1 =0, k=123, ....
Then
3ci —2¢0=0
2c0 —c1 =0
c3+0c=0 = c3=0
Ocg +c3=0 = c4is arbitrary
and L
C}C':( _B)Ck-ly k=576,77""
c—4
Taking cg # 0 and ¢4 = 0 we obtain
2
¢} = =Cp
. 1
2—300
cg=cg=c5=---=0.

Taking ¢y = 0 and ¢4 # 0 we obtain
Cl=Cyp=2¢(C3 = 0

Cg = 204
cg = 3¢y
cr = 4cy4.

In this case we obtain the two solutions

2 1
y1=1+§m+§m2 and y2=x4+215+3m6+4m7+--~.

33. (a) From t = 1/z we have dt/dz = —1/2? = —t>. Then
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dy dydt = ody
dr  dt dz dt
and
d? d [d d d Py dt  d d d? d
sy (2 L R N P R L
dr? ~ dz \dz) ~ dz dt dt?2 dz  dt dz dt? dt
Now
d? d? d d*y 24
4 Q7Y 4 y 3 aY Y Y
—= + X t 2t Ay=—+--—"+Ay=0
TRt T t< " dt>+y @ T Y
becomes
d%  _dy
t2 2 L 0% L =0
e T Ay
(b) Substituting y = 322 5 ¢,t™t" into the differential equation and collecting terms, we obtain
dy dy 2
t2Y Loy = 2)ert”
gz ity = (r? +r)eot™ ™t + (r* + 3r + 2)cy

i[(k +r)k+7r—1)ck +2(k + r)ek + Ack—a)t ghtr-1

which implies
rPtr=r(r+1)=0,
(r2+3r+2)c1 =0,

and
(k+7r)(k+7+ 1)k + Acg—a = 0.
The indicial roots are r| = 0 and v = —1, so ¢; = 0. For r; = 0 the recurrence relation is
Ack_g
= — k=23,4,...
Ck k(k + 1) b 7 3 k) b)
and
A
c2 —ECO
c3=c¢5=c7= =0
/\2
C4 ‘5—!60
A‘n.
= (=1)"
en = (" 501y
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For 79 = —1 the recurrence relation is
ACk_2
= — k=23,4,...,
%= Tkk-1)
and
. A
Cy = —ECO
03=05=c7=...=20
)\2
Cq4 = —4—'C()
ATL
Con = ( ) (ZT’L)

)

The general solution on

(VA)?" + Cat™ IZ

—|-1 g n)

\/_t)

n (0,
- %

H—])——'

[Qi(( D (\/_t2"+1+C'2Z( L \/_t)Q"]

2n + 1)!

1
= ?[Cl sin VAt + Cocos \/Xt]
(c) Using t = 1/z, the solution of the original equation is
A A
y(z)C1z sin £ + Coz cos —[— .
z z
34. (a) From the boundary conditions y(a) = 0, y(b) = 0 we find

A A
Clsin%_——kCgcos% =0

A A
Clsin%—l-Cgcos——\/b—_— = 0.

Since this is a homogeneous system of linear equations, it will have nontrivial solutions if

Y2 VA
S ST ViV VAW
= sin — c0$ — — €OS — sin —
vV vV a b a b
sin—b— cosT

o () i (22) o
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This will be the case if .
b— ) Aab
\/X< a>=n7r or \/—zn\abzna n=1,2

y ey

ab b—a L
or, if
R
" L2 7 EIT
The critical loads are then P, = n’w%(a/b)>Ely/L% Using C = —Cysin(v/A/a)/ cos(v/A/a)

we have
{ . VX sin(vX/a) \/X}
y = Cizlsin — — ————*%cos —
z  cos(vV)a) z
{. A VA JX.JW
= (C3z|sin — cos — — cos — sin —
z a z a
= ngsin\/x <l - -1—> ,
z a
and ) )
. nmab /1 1 . nmwa a
yn(z) = Caz sin I <; - E) = Cyzsin T <1 - E) .
(b) Whenn =1, b =11, and a = 1, we have, A
for Cqy =1,
1 2T
yi{z) =zsinl.lx <1 - —> .
z
1 —_——
i e
5

35. Express the differential equation in standard form:
y" + Py’ + Qa)y + R(z)y = 0.
Suppose zg is a singular point of the differential equation. Then we say that g is a regular singular
point if (z — 20) P(z), (z — 20)2Q(x), and (z — 20)®R(z) are analytic at = zg.
36. Substituting y = Y02 gc, 2™ into the first differential equation and collecting terms, we obtain

o
Y +y=cor” + S [ex + (k+7— Dk +71 —2)cp-1]ztT = 0.
k=1

It follows that cg = 0 and
cx=—(k+r—1){k+7r—2)cp_1.

The only solution we obtain is y(z) = 0.
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Substituting y = 352 ¢, 2™ into the second differential equation and collecting terms, we obtain
o0
22y’ + Bz~ 1)y +y = —reo + S [(k+7+1)%ck — (k+ 7+ Dcgy1)z* =0,
k=0

which implies
—reg =0
(k+7+ 1), — (k+7 4 ek = 0.

If cg = 0, then the solution of the differential equation is y = 0. Thus, we take » = 0, from which

we obtain
cer1 = (k+ ek, k=0,1,2,....

Letting cg = 1 we get ¢ = 2, cg = 3!, c3 = 4!, and so on. The solution of the differential equation

is then y = 322 g(n + 1)!z™, which converges only at z = 0.

We write the differential equation in the form z%y" + (b/a)zy’ + (c/a)y = 0 and identify ap = b/a
and bg = ¢/a as in (12) in the text. Then the indicial equation is

r(r—1)+9r+£=0 or  ar’+(b—a)r+c=0,
a a

which is also the auxiliary equation of az®y” + by’ + cy = 0.

Exercises 6.3

© ©° N e o p @ N

Since v? = 1/9 the general solution is y = c1Jyy3(z) + cod_qy3(z).

Since 12 = 1 the general solution is y = ¢;J1(z) + oY1 (z).

Since v? = 25/4 the general solution is y = c1dspo(z) 4+ c2d5/0(2).
Since v? = 1/16 the general solution is y = ¢; J1/4(x)' + c2J_q/4(2).
Since v? = 0 the general solution is y = ¢1Jo(z) 4+ coYo(z).

Since v? = 4 the general solution is y = ¢;Jo(z) + coYa(z).

Since v? = 2 the general solution is y = ¢1J2(3z) + c2Y2(3z).

Since v? = 1/4 the general solution is y = c1J1/2(6':c) + caJ_1/2(67).
If y = 271/20(z) then

Y =z~ Y%/ () - %x"g’/%(:v),

y// - 1—1/2‘0//(1) _ :D—B/Q'U/(:E) + 21_5/2’0(%),
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11.

12.
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and
xzy” +2zy + /\23:2y = /%" + V2% 4 (/\23:3/2 — %x—1/2> V.
Multiplying by z'/? we obtain
2" + v + </\23:2 - i) v =20,
whose solution is v = ¢1J12(Az) + caJ_1/2(Az). Then y = clx“l/le/g(/\x) + czx‘l/QJ_l/Q()\z).
From y = z"J,(z) we find
Y =z"J, +nz" v, and " =2™JY + 202V L+ n(n — 1)z 2,
Substituting into the differential equation, we have
"V 4 20z T 4+ n(n — D)z, + (1= 20) (2L + nz™ L ,) + 27T,
=" 2n+ 1 - 20)2" T, + (n? —n 40— 202", + x”+iJn
= 2" 2! 4 2], - 02, + 220
= "2 4+ 2] + (2% — n?)Jy)
=z""1.0 (since J, is a solution of Bessel’s equation)
=0.
Therefore, z™J, is a solution of the original equation.
From y = z7™J, we find
Y =z, —nz ™, and o =z — 20z +n(n+ 1)z 2,
Substituting into the differential equation, we have
oy +(L+2n) +zy=3"""" [xQJ,/{ +zJ,, + (3:2 - n2) Jn]
=z 1.0 (since Jp, is a solution of Bessel’s equation)
=0

Therefore, 277 J, is a solution of the original equation.

From y = /z J,(Az) we find

v =MWz J, (A1) + %x"l/sz(/\z)
and .
v = N3 I (Az) + A2 (Mx) - Zz"B/QJ,,(Az).
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Substituting into the differential equation, we have
oy + (A%Q -4 %) y= vz [N (Ax) + Aed, () + (Na? = v2) 4, (As)]
=0 (since Jy, is a solution of Bessel’s equation)
=0.
Therefore, v/z J,(Az) is a solution of the original equation.
13. From Problem 10 with n = 1/2 we find y = I1/2J1/2($), From Problem 11 with n = —1/2 we find
y =220 1 p().
14. From Problem 10 with n = 1 we find y = zJi(z). From Problem 11 with n = —1 we find
y=zJ-1(z) = —zJ1(z).
15. From Problem 10 with n = —1 we find y = z7'J_1(z). From Problem 11 with n = 1 we find
y =z i(z) = —z7 1 (2).
16. From Problem 12 with A = 2 and v = 0 we find y = /z Jo(2z).
17. From Problem 12 with A = 1 and v = +3/2 we find y = /z J3/5(z) and y = /T J_3/5(2).
18. From Problem 10 with n = 3 we find y = z3J3(z). From Problem 11 with n = —3 we find
= 123J_3(z) = —z3J3(x).

19. (a) The recurrence relation follows from

o0 -1\ 2n+4-v 0 _1\n T 2n+v-—1
—vJu(e) +2dpa(z) = = n§0 n!l"((l j—)v +n) (%) T ngo n!lg(z/ll— n) (5)

= _gﬁﬁ (%>2n+l’ + é}% P (%) (§>2n+u—l

n

(=1)*@n+v) rz\
(n!T(1+v+n) (_> = aJu(z).

(18

2

i

m

(b) The formula in part (a) is a linear first-order differential equation in J,(z). An integrating

factor for this equation is ¥, so
d
—[z"Jy =z"J,—1(z).
= (2 (@) = 21 (2)
20. Subtracting the formula in part (a) of Problem 19 from the formula in Example 4 we obtain
0=2vd,(z) — zdpy1(z) — zJp—1(2) or vd,(z) = zdus1(z) + 2du—1(2).
21. Letting v =1 in (15) in the text we have

r=z
0

zJo(z) = Edg[mJl(:r)] 50 /: rJo(r)dr = rJi(r) L: = zJi(z).
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22. From (14) we obtain Jj(z) = —Ji(z), and from (15) we obtain Jj(z) = J-i(z). Thus Ji(z) =
J_.1($) = ——Jl(a:).

23. Since
1 (2n - 1)!
r{i-: ) S Ciinih)
(1 27" T o DT
we obtain
o) >n21/2 -1/2 on 9
1/2 g——————2 —1)'\/7—1' = ECOS"L‘.

24. (a) By Problem 20, with v = 1/2, we obtain Jy jo(x) = zJ3/9(x) + 2J_1/2(x) so that

2 (sinz
Jaja(z) = p (T - cosx) ;

with v = —1/2 we obtain ~J_y/5(z) = zJy/2(z) + 2J_3/2(x) so that

2 /cosz

Tosp@) == = (2=

T

+ sin r> ;

and with v = 3/2 we obtain 3J3/5(z) = zJ5/2(z) + zJ1/2(z) so that

{2 r3sinz J3cosz .
.]5/2(1‘): E( 22 ————I———smr).

(b) Y Y %
1 1
.o y=1/2 0_5\ v=-1/2 0.5‘ v=13/2
G N 1520F U5 g % 20F %_7 10 g *
-0.5 . -0.5 -0.5
-1 -1 -1
' '
1 - 1 _
0.5 v=-3/2 0.5 v="5/2
VAN x x
/ SN0 N5 20 5 10 &5 20
-0.5 -0.5
-1 -1

25. Letting

we have

dz _drds _dz |2 ﬁ(—ﬁ)e-atﬂ _do _ﬁ )2
dt dsdt  dt |aVm\ 2 s\ Vm©
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and
@z _d (dz) _do gﬁe-am Ld(az\ [Tk e
dt?  dt \ dt ds \2Vm dt \ ds m
_dzfa |k _un d’z ds ko a2
ds (2\[;6 T @\ TVme
_ @ 2\/E —at/2 dz ﬁ —at
ds \2Vm°© ds? \'m
Then
d? d’z ma [k dz
Y ke %y e T L T —at/2 ke~ %z =0
m i + ke x = ke p 5\ o + T

Multiplying by 22/a?m we have
2k _gdt 2 [k _gpde 2k g
L a2 2 L 2 2 pmat/277 | 22 oty
2me d52+a m dt—’_oﬂme ¥

or, since s = (2/a)\/k/me=242,

d?z dz
2_‘ - 2 = (.
s d82+sds+s:c 0

26. Differentiating y = z1/%w (%am?’ﬂ) with respect to %am?’/Q we obtain

Y =g/ (Za$3/2> azl/? + 112, (Za$3/2>
3 2 3
and
y" = azw” (§a$3/2> az'/? + o' (§a$3/2>

1,72 3/2) 1 3/ (2 3/2)
+2aw (3a:1: 4:5 w 3az .

Then, after combining terms and simplifying, we have

' 3 1
" 2 . 3/2, 1 / 3/2 —
Y +axy—a[ax/w'+§w+(ax ——-————4ax3/2>w}-0.

3/2

Letting t = %am or az®/? = %t this differential equation becomes

3a

53 {th”(t) + tw'(t) + (t2 - é) w(t)} =0, >0

27. The general solution of Bessel’s equation is
w(t) = crJya(t) + c2d_qya(t), >0

Thus, the general solution of Airy’s equation for z > 0 is

v =21/ (§a$3/2> = V2, (gama/z) el P Ty (%axm) .
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29.

30.
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Setting y = v/ J1(2y/7) and differentiating we obtain

V' = VER(VE) s+ \/-J1<2f) HVE) + 5= hi2Va)
and
- \/%J(’(NE) o HOVE) = o H(2VE).
Substituting intc the differential equation and letting ¢ = 2/ we have
oy’ +y =z J{(2VZ)+ = J1(2\/- —7—J1 (2vz) + vz 1(2v/7)

= % [xj{’(Q\/E) + ‘/75 J1(2vz) + <x - %) J1(2\/—5)i

2 2
-3 S g+ (5 -3) 0]

- Qlt (20 + 1 71(8) + (& = 1) ().

Since Ji(t) is a solution of t24 +ty/ + (t* ~ 1)y = 0, we see that the last expression above is 0 and

y =z J1(2/Z) is a solution of zy” +y = 0.

(a) Using the expressions for the two linearly independent power series solutions, y;(z) and y2(z),
given in the text we obtain

— 1 6 4 2
Ps(r) = 12 (23125 — 3152* + 10522 - 5)
and .
Pr(z) = £ (42927 — 6932° + 3152° — 35z) .

(b) Ps(z) satisfies (1 - :1:2> y" — 2zy’ + 42y = 0 and Pr(z) satisfies (1 - x2> y" — 2zy + 56y = 0.

The recurrence relation can be written

% +1 k
- =92
Py () k+137Pk() P} e—1(), k=2 3,4,
1
k=1 Pg(:z:)=§2—x2—§
2
~ 7 /545 3N 373, 1y 35, 30, 3
k=3 P4(x)“4x<2x 2‘”) 4(295 2)‘8"’ g% T8
9 /35, 30, 3\ 4/5, 3 63 . 35 . 15
k=4 A =T -5 g) -5 (305 =P - T T



31.

32.

33.

k=5.' PS(IE):F;E(g:E _zm _+__8_$>_6

k=6 Pyz)= 13$<

Exercises 6.3

11 /63 ¢ 35 5 15

B TR TR T T8 T8 T 16
231 , 315 , 105 , 5) 5(635 35 15)
6 "6 T16Y T16) Ts\st T2t Ty
_ 429, 6B 5 35, 3

5(354_@2 3)_@6 315 , 105 5 5

If £ = cosé then

and
2

6" T 16 6° 16"
gﬂ = —sinf—,
d?y 2 4%y dy
202 = sin QW—COS%,

s1n9—+cos€ y+n(n+1)(sm9) = sind <1—c0529)éQ—y—Qcoséd—y+n(n+1)y =0
v dz? dz '

dé?
That is,

ag

dy  d
(1-2?) 5 ~2l +nln+ 1y =0.

From y = u/+/z we find

Then

, 2z —u d v 475/% — 4232 4 321/%y
V=0 and Y= iz
2" 4 oyl + (2 — ) 4z — 4532 4 321/ % N 270’ —u N (z202)u
y 2y’ + (2 =)y = 4z 2r1/2 z1/2
/%) +4$'1/2u+$3/2u—VQz'1/2u=0.

Multiplying by z'/2 we obtain

or

2// 2

1
+4u+z u—viu=20

d*u v2—1/4
—+{l—-——]u=0.
dz +< z? v

For large values of z this equation can be approximated by »” +u = 0 whose solutions are sinz

and cosz.

Rolle’s the

Thus, we expect the solutions to oscillate with increasing frequency for larger z.

orem states that for a differentiable function f(z), for which f(a) = f(b) = 0, there

exists a number ¢ between a and b such that f'(¢) = 0. From Problem 20 with v = 0 we have

Jolz) =

Ji(z). Thus, if a and b are successive zeros of Jo(z), then there exists a ¢ between a and b

for which Jy(z) = Ji(z) =
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34. Since

ff f(z) dxl < f:lf(a:)|dx, we have
| Ja(z)] < %/Ow|cos(a:sint—nt)|dt < %/Owldtz L

35. (a) We identify m =4, k=1, and o = 0.1. Then
2(t) = c1Jo(10e7005) 1 ¢y ¥ (106005
and
£'(t) = —0.5¢1J§(10e709%) — 0.5¢o Vg (10e~005%),
Now z(0) = 1 and z'(0) = —1/2 imply
c1Jo(10) + CQYO(IO) =1
c1J5(10) + co¥3(10) = 1.

Using Cramer’s rule we obtain

_ ¥3(10) — Yp(10)

; = Jo(10)¥5(10) — J5(10)Yo(10)

- B Jo(10) — J4(10)
2= T6(10)Y3(10) — J4(10)Yo(10)

Using Yy = —Y; and Jj = —J; and Table 6.1 we find ¢; = —4.7860 and c3 = —3.1803. Thus
z(t) = —4.7860.Jp(10e~0%5¢) — 3.1803Yp(10e~00%%).
(b) x

10

A | | |
N T
50

100 150 200

36. (a) Identifying o = % , the general solution of = + %ta: =0is

z(t) =c1z /2.]1/3 ( 3/2> + 62$1/2J 1/3 (1 3/2>

Solving the system z(0.1) = 1, /(0.1) = 2 we find ¢y = —0.809264 and cg = 0.782397.
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37. (a) Letting t = L — z, the boundary-value problem becomes

a6 0 §'(0) = 0(L) =
=5 + 0% =0, 0)=0, 6(L)=0,

where o = §g/EI. This is Airy’s differential equation, so by Problem 27 its solution is
Y= Clt1/2J1/3 ( at3/2> + CQtl/QJ 1/3 ( at®/? > = 101(t) + c2b2(2).

b) Looking at the series forms of #; and 82 we see that 8](0) # 0, while 85(0) = 0. Thus, the
1 2

boundary condition ¢'(0) = 0 implies ¢; = 0, and so

—szle/s( 3/2>~
From (L) = 0 we have
CQ\/'J 1/3 ( L3/2> O,

so either ¢z = 0, in which case §(¢t) = 0, or J_l/g(%aL?’/Q) = 0. The column will just start
to bend when L is the length corresponding to the smallest positive zero of J_j/3. Using
Mathematica, the first positive root of J_j/3(z) is z1 ~ 1.86635. Thus 2aL3/? = 1.86635
implies

2/3 1/3
I <3(1.86635)> {9E1(1 86635) }
2a 469

_ [9(2.6 x 107)7(0.05)4 /4

1/3
4(0.28)m(0.05)2 (1~86635)2} %~ 76.9 in.

38. (a) Writing the differential equation in the form zy” + (PL/M)y = 0, we identify A = PL/M.

From Problem 28 the solution of this differential equation is

y=cvzd (2/PLa/M ) + o/ ¥i (2/PLa/M ).

Now J1(0) = 0, so y(0) = 0 implies ¢co = 0 and
v=cVih (2,/PL:¢/M> .

(b) From y(L) = 0 we have y = J;(2Lv/PM ) = 0. The first positive zero of J; is 3.8317 so, solving
2L,/P1/M = 3.8317, we find P; = 3.6705M/L?. Therefore,

3.6705z
L

3.8317

yi(z) = e1vz Ny <2 ) =1V Ji ( \/5>
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(c) Forcy =1and L =1 the graph of y1 = /z J1(3.8317/T ) y
is shown. 03
0.2
0.1

| Il | | -
I T | ¥ l Ty

02 04 06 08 1

39. Zeros and differences of Jy, Jy, and Jy
Jo AJy Jp A J AJy
2.4048 0.0000 0.0000

5.5201 3.1153 3.8317 3.8317 5.1356 5.1356
8.6537 3.1336 7.0156 3.1839 8.4172 3.2816
11.7915 3.1378 10.1735 3.1579 11.6198 3.2026
14.9309 3.1394 13.3237 3.1502 14.73960 3.1762

Successive zeros of J, for n = 0, 1, 2 appear to be approximately equally spaced for larger values
of z. Furthermore, this spacing appears to be approximately w. To check this conjecture a CAS
can be used to determine that successive roots of Jy near x = 200 are 200.277156 and 203.418739,
with difference 3.141583. This is consistent with the observation in Problem 32 that the frequency

of the solutions for large z is approximately 1/2x.

40. (a) Using a CAS we find

Pl(x)=%£( 2 oy

dz!
2(2) = sy (2 = 1)° = S(32% -1
Py(z) = 2—315 3‘15—3 (22— 1) = %(5:53 — 32)
Py(e) = 5 52—4 (2 —1)* = %(35:54 - 3022 + 3)
Ps(z) = 2% gg (22— 1)° = %(63?55 — 7023 + 152)
Ps(z) = 2—615 dd—; (z2 - 1)8 = %(231:56 — 3152 + 1052% - 5)
Pr(z) = % j—; (z2-1)" = %(429:57 — 693z° + 3152° — 351)
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I
o
]
o
N -
o\ v
%)
[
w
=
b
|
)
1
]
o/ u
¥
w
=
b
1
N
1
o
.
o u
%)
o
o)
=
b
1
s
1
o
¥
o
w
é
i
b

_f_\Z‘z \ / _\OAZ‘: | \ ‘l x
]_ VTN

0.5 -0.5

~1 -1

Pi(z): 0

Py(x): £0.57735

Py(z): 0, £0.77460

Py(z) : £0.33998, +£0.86115

Ps(z): 0, £0.53847, +£0.90618

Ps(z) : £0.23862, £0.66121, +0.93247
Pr(z): 0, £0.40585, +£0.74153 | £0.94911

Pio(z) : +0.14887, +0.43340, +0.67941, +0.86506, £0.097391

The zeros of any Legendre polynomial are in the interval (—1, 1) and are symmetric with respect
to 0.
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. The interval of convergence is centered at 4. Since the series converges at —2, it converges at least
on the interval [—2,10). Since it diverges at 13, it converges at most on the interval [—5, 13). Thus,

at —7 it does not converge, at 0 and 7 it does converge, and at 10 and 11 it might converge.

. We have
EE +-i§i 3 5
sinz z- 6 120 T 2z
f“)—cosx-l &gt B T I
2 24

. Solving 2% — 2z + 10 = 0 we obtain z = 1 £ /11, which are singular points. Thus, the minimum
radius of convergence is |1 — /11| = /11 — L.

. Setting 1 —sinz = 0 we see the singular points closest to 0 are —37/2 and 7/2. Thus, the minimum
radius of convergence is 7/2.

3

. The differential equation (z3 — z%)y” + 9’ + y = 0 has a regular singular point at z = 1 and an

irregular singular point at z = 1.
. The differential equation (z — 1)(z + 3)y” +y = 0 has regular singular points at z = 1 and z = —3.

. Substituting y = Y224 ¢, ™" into the differential equation we obtain
x
2zy’ +y +y = (27‘2 - r) coz™ Y [2(k + )k +7 — L)ek + (k +7)ck + cp—1]zFTT =0
k=1
which implies
2 —r=r(2r=1)=0
and
(k+7)(2k+2r — 1D)eg + -1 = 0.

The indicial roots are 7 = 0 and r = 1/2. For r = 0 the recurrence relation is

Ck—1
Ck::-—Zngijij) k ==1,2,3,.”,
SO
1 1
c1 = —co, cy = 600, c3 = —%co.
For r = 1/2 the recurrence relation is
Ck—1
Cp = -EZizr;TIS, k= 1,2,3,.“,
S0
1 1
cl = ~§co, g = %co, c3 = ——6%60.
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Two linearly independent solutions are

19 13 )
= 1— Zxt - —
Y1 C1< $+6$ 902: +
and

1 1 1
= vyely_ 2 2_ 3 )
y2 = Cozx ( 3x+30x T +

8. Substituting y = 3°° ; c,z™ into the differential equation we have

o0 o0 o0
' —zy —y=> n(n- ez 2 — doncaz™ = Y caz”
n=2 n=1 n=0
[—
k=n-2 k=n k=n

o0 o0
(k + 2)(k + 1)ckrozk — > kega® — > crz®
k=1 k=0

8

>
I
o

=20 —co+ i[(ls +2)(k + 1erso — (k+ Deplz® = 0.

k=1
Thus
2¢p —~¢cg=0
(k+2)(k+1)ckao ~— (k+1)ex =0
and
1
Co = 560
= ——— E=1,2,3,....
Ck+2 k+2ck1
Choosing ¢y = 1 and ¢; = 0 we find
1
Ccy = 5
c3=c¢5=cC7 = =0
1
C4 = g
1
%= 18
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and so on. For ¢g = 0 and ¢; = 1 we obtain .

cp=cg=ce="-+=0
1
Cg—g
1
05=1—5‘
1
07—ﬁ

and so on. Thus, two solutions are

1o, 14,135
=1 p — + —
Y1 +2:1: +8:c 483:-0—
and 1 1 1
— 23 b T T
Yo :c+3:n +15:n +105x + .

9. Substituting y = 522 ¢,z™ into the differential equation we obtain

o
(z—1)y" +3y = (=2c2+3c0) + Y _ (k= 1)(k — 2)ck—1 — k(k — D)ey, + 30k_2]mk_2 =0
k=3
which implies ¢y = 3¢/2 and
(k—1)(k —2)ci_1 + 3ck—2

k=345,....
k(k —1) ’

Ck =
Choosing ¢cg = 1 and ¢; = 0 we find

=5,
2

and so on. For ¢g = 0 and ¢; = 1 we obtain
c2 =0, c3 =
and so on. Thus, two solutions are

— 32 13 54
y1—01<1+'2—33 +§$ +§x +>
and

15 1
y2=C’2<x+§x3+Zx4+--~>.

10. Substituting y = 300 ; cnz™ into the differential equation we obtain
o0
' — 2%y + 2y =2 + (Bes + o)z + Y ((k + 3)(k + 2)cpss — (k- eg]z" =0
k=1
which implies ¢y = 0, ¢3 = —¢o/6, and
k-1
:——4) k=1,2’37....
T k)"
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Choosing ¢y = 1 and ¢; = 0 we find

1
3= —=
776
C4=c7=010= :0
cszcszcll.:...:o
1
6= ——
87 790
and so on. For ¢g = 0 and ¢; = 1 we obtain
03=06=09= =0
cqg=Cr=2cCl0= =0
5 =cg =Ci1 = =0
and so on. Thus, two solutions are
13 14 >
=cg|l—=2"— —2" —--- and ¥y =T
n 0( 6 90 Y

Substituting y = .92 5 cpz™*" into the differential equation, we obtain

[e.e]
oy’ — (4 2)y +2y.= (r? = 3r)coz” L+ S [k +r)(k+ 71— 3)ck
k=1
—(k+7=3)cp]z" 1 =0,
which implies
rP—3r=r(r—3)=0
and
(k+r)k+r—3)ck—(k+7—3)ck—1=0.

The indicial roots are ry = 3 and 79 = 0. For ro = 0 the recurrence relation is

k(k=-3)cr— (k=3)cpey =0, k=1,2,3,....

Then
c1—cp=0
2cp—c1 =0
Ocg — 0cp =0 = c3 is arbitrary
and

1
Ck:ECk_l’ k=456,....
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Taking ¢o # 0 and ¢3 = 0 we obtain

€1 =¢g
¢y = 1c
2 = D) 0
C3 =C4 =C5 = = 0.
Taking ¢y = 0 and ¢3 # 0 we obtain
cg=c1=¢c=>0
1 6
€4 = —=C3 = —¢C
STAR T g
cy = L €3 = —¢C
ST 54 T
1 6
cg = €3 = —c3,
76 5.4 617
and so on. In this case we obtain the two solutions
1
yy=1l+z+ 53:2
and 6 , 65 6 5. 1
— 3 2.4 2.5 2.6 = T _ s .2
Yo =T +4Ia: +5!a: +6!a:+ Be 6<1+a:+2a:>.
12. Substituting y = Y neqcrz” into the differential equation we have
1 1 1
(cosz)y’ +y = <1 - 5332 + ﬂx‘l - %a:6 + - > (2¢ + 6c3z + 12¢4x% + 20cs52® + 30cez® + - -
oQ
+ Z cnx”
n=0

1
= [2c2 + 6c3z + (12¢4 — CQ)a:2 + (20cs — 3c;:,)a:3 + <3066 —6cy + EQ) o+ }

+ [co + c1z + caz® + c3z® + cqzt 4+ -]

1
= (cg + 2¢2) + (c1 + Be3)z + 12c4z2 + (20cs — 2C3)a:3 + <30c6 — 5S¢4 + -—cz> ot

12
= 0.
Thus
co+ 2¢co =0
1+ 6c3 =90
12¢4 =0
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20c5 — 2¢3 =0

1
30cg — 5¢q + ECQ =

and
1
co = —§c0
1
cg = —661
cqg =0
1
cs = 16%
1 1
ce = 664 - 3%62

Choosing c¢g = 1 and ¢; = 0 we find
1 1
CQ'__§1 C3=O, C4—O7 CS—O) CG-%

and so on. For ¢g =0 and ¢; = 1 we find

1 1
C=O’ = -, =O’ = ——,
2 c3 6 Cq Cs 60
and so on. Thus, two solutions are
1 1 1
=1—2g2 = 8. .. d e B - BT
U1 2:6 + 720:5 -+ an Y=z 6:c : z° +
13. Substituting y = 372 chz™ into the differential equation we have
[ee) [ee) oo
Y+ zy + 2y =3 n(n— ez 2+ 3 nepz™+ 2> cpz®
n=2 n=1 n=0

N
k=n-2 k=n k=n

[ee) [ee)
(k + 2)(k + 1)cgpoz”™ + > kerz® + 2 > crz”
0 k=1 k=0

8

k

1l

oo
=2c0 +2co+ > [(k 4+ 2)(k + Dogy + (k + 2)exlz® = 0.

k=1
Thus
2c04+2¢0 =0

(k+2)(k+1)ckyo+ (K +2)ck =0

and
co = —cp
= - k=1,2,3,....
Ck+2 k+ 1 Ck, )
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Choosing ¢g = 1 and ¢y = 0 we find

¢ =1
63=65=C7=“'=0
c__l
173
1
g = ——
5= 715
and so on. For ¢g = 0 and ¢; = 1 we obtain
cg=cg=cs=-=0
1
c3=—=
3T 79
1
cr = =
73
1
c —
[T

and so on. Thus, the general solution is

1 1 1 1
=co<1—x2+lx4——xﬁ+~->+c1 <$~—13+—$5—_r7+~~->

3 15 2 8 48
and 4 2 3 5 7
v =co (—23:+§a:3—515+---> +c (1—§x2+§x4— Exs%—m).
Setting (0) = 3 and ¥/(0) = —2 we find o = 3 and ¢; = ~2. Therefore, the solution of the
initial-value problem is
1 1 1
—a_ 0. _a2,..3. .4_2+5 L6, 1 7.
y=3—-2z-3z°+z° +z 433 5:1: +24a:+
14. Substituting y = 522 c,z" into the differential equation we have
o0 o0 [o,9]
(z+2)y" +3y=S nn-1cz" ' +2> n(n— Deaz" 2+ 33 cpz™
n=2 n=2 n=0
L —

o0 o0
(k+ Dkcpsz® +2 3 (k+ 2)(k + Lckaoz® +3 Y cpa
1 k=0 k=0

8

k

[

=deo +3co+ Y _[(k+ Dkck+1 + 2(k +2)(k + 1)cky2 + 3ex)z® = 0.
k=1

Thus
dcyg +3¢p =0

(k+Dkcgpr +2(k+2)(E+ L)ckya +3ck =0
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and

e =2
2 = 40

k 3
2= T+ o) T T 2+ ) (k+ 1)
Choosing ¢g = 1 and ¢; = 0 we find

e, k=1,2,3,....

o= 3
2Ty
c_l
T8
Lo
1716
o= 9
5T T30
and so on. For ¢y = 0 and ¢; = 1 we obtain
cp =10
c__l
8Ty
C4'—=R
Cy =
and so on. Thus, the general solution is
32131495‘><1314>
= 1—-- - — % - —— — =z 4+ —z 4.
Yy co< 4x +8x +16x 320$+ +cilz 435 16$

and

;o 3 3, 14 9 4 > < 345 14 >
y—co< 2x+8x+2x 64:c+ +c il 4:r,+4:r,+ .

Setting y(0) = 0 and ¥'(0) = 1 we find ¢o = 0 and ¢1 = 1. Therefore, the solution of the initial-value
problem is

13,1 4
=rp——p34+ i
Yy T 41: 161:

15. Writing the differential equation in the form
1—
O L

and noting that
2 1

1-—-cosz 4
24 720

T
T T2

is analytic at £ = 0, we conclude that z = 0 is an ordinary point of the differential equation.
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16. Writing the differential equation in the form
" z
"+ o =0
Y <ez -1 r) v

T 2 2 T 2

and noting that
_ =Ty
e—-1—-z =z 3 18 270
we see that z = 0 is a singular point of the differential equation. Since
2 3 4
5 T 2x T T
) =2 - T+ ..
< ) 3 18 270
we conclude that z = (0 is a regular singular point.

17. Substituting y = 352 g chz™ into the differential equation we have

oo o] o]
Y+t +2my = S nn - 1)z 2+ Y nepr™ T +2 ) ¢t

k=n-—2 k=n+1 k=n+1

Mg

(k+2)(k+1)ck+22 +Z — Deg_1z -i—QZc;c 1r

1l

Ms

= 2cy + (6c3 +2c0)z + > [(k + 2)(k + Vepsn + (k + Deg_i]z® = 5 — 2z + 103,

k=2
Thus
2c0 =5
Bcy + 2cp = =2
12¢4 + 3¢1 =0
20cs + 4co = 10
(k+ 24k + Degyo+ (k+Dexy =0, k=4,5,6,...,
and
C—-§
279
c3 = 1c 1
3T 73973
_ L
Cy = 401
1 lc_l 1<5)_O
B=375%T 37 5\2) T
k+2 = k+2 k—1



Chapter 6 Review Exercises

Using the recurrence relation, we find

1 1 1 1
%= 53 g0t ) =m0ty
1 1
1= e = 0
cg=cii=c4="--=0
Co= —egm ot g
9% = T3 30 T 33 g
1 1
“0 =~ =~ 3"
C12 = —icg ! o+ 1
127 T 34 40T 37
1 1
3= TR T 0. 139

and so on. Thus

1 4 1 9 1 1
32 a1Y T 35.31Y T34t _}

1 7 1 10 1 13_,._]

1
y=co{1—§$3+

1
+cl[m_2$ Tt T Tt T1710018°

9 2

13 1 s 1 9 1 10
RT3 eyt Twat Tt _}

18. (a) From y = ——11; Z—u we obtain
T

Then dy/dz = 2% + y? becomes

Ldu (a1 (e
vdrr T2 \dz) T F T2 \dz)
d2
o) —Jx—g+x2u=0.
(b) Ifu=z1yw (32?) then

1 1
o = 232 <%$2> " 5I-1/:zw <§ 2)

1
W = 52" (—;—ﬂ) 4 0g1/2y (%ﬁ) _ zl_x—s/z <2x2> ’
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SO
' 1/2

1 1 1 1
w4+ 2y =22 2% <§x2> +2u' <§x2> + <x2 - Zx_2> w <§x2>} =0
Letting t = %12 we have

NG [2tw”(t) +2u/(0) + (20 - ﬁ) w(t)} ~0

or
2" (t) + tw' () + <t2 - i%) w(t) = 0.

This is Bessel’s equation with v = 1/4, so
w(t) = 61J1/4(t) + CQJ_1/4(t).

(c) We have
1 du 1 d 1/2
- - 2 ¢
u dz T/ 2w(t) dz zu(?)

_ ]. 1/2dw dt ‘ ]. _1/2
{x oz 20 Y

Now

d d
at d—ltu +w =4t —erya(t) + cadoyya(W] + e1diyat) + 2l o1/4(2)

1 1
=4t Ll (J—3/4(t) - ItJl/4(t)> e (—E‘]‘V‘*(t) N J3/4(t)>}
+ C1J1/4(t) + C2J—1/4(t)
= dert_g q(t) — deatJy ()

1 1
= 201x2J_3/4 <§x2> — 202x2J3/4 (51152) ,

S0
201132J_3/4(%x2) — 202$2J3/4(%.’L‘2)

2zferJy /4 (322) + cJ_14(522)]

y:

—clJ_3/4(%x2) + 02J3/4(%:r2)
c1Ji/a(52%) + c2J_1/a(52%)
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Letting ¢ = ¢1/cp we have

19. Let .
Yy = ax[ln(l +z)-In(1-2)]-1
so that
, 1 [ 1 1 ] 1
= = ~[In(1 —In(1 -
V2 =52 (o T o) Tain( +2) —In(1 - 2)]
and
p 1 11 +l{1+1]+l[1+1}
RE T At T a2 T2l s 12 T2 T T 122
_ 1 1,1 1,1
2 (14+4z)2 (1-2)2] 1+z 11—z
Then

(1-2)(1 + z)ys — 2zys + 2y2 = 0.

20. (a) By the binomial theorem we have

9 =y2 1., 3 /.9 2 124
[+ (@ =2t)] =15 (- 2at) + 2 (P - 2at) o =1t (31: 1) ¢+
(b) Letting z =1 in (1 — 2zt +t2)"Y/2, we have
1
(1~2t+t2)‘1/2=(1—t)”1=—1—£=1+t+t2+t3+... (t] < 1)
o0
=> "
n=0
From part (a) in the text we have
ZPn 1-2t+13)712 = Zt"
n=0 n=0

Equating the coefficients of corresponding terms in the two series, we see that Pp(1) = 1.

Similarly, letting z = —1 we have
1
(1+2+t7 2 =1 +1)” =T—t—1—t+t2—3t3+... (It < 1)
o0 o0
ZZ ntn_ZPn )
n=0

so that Pp(—1) = (-1)™.
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7 The Laplace Transform

Exercises 7.1

1 1 1
1. Z{f(t)} =/ e*Stdt—i-/ e”Sdt = —e~% e
0 s 0o s 1
2
—le_s——1——<0—le‘s>=——e—s———, s§>0
s s s s
4
2 ff{f(t)}:/ de=tdt et = (e 1), s>0
0 0o s
0 I g o0
3. Z{f(t)} =/ te sth/ e‘“dt—( Liemst —st> | — et
1 s 0 s 1
B 1_31_s>( 1)1__5_i__s
—< Se ok 0 = 3(0 e )—32(1 e™®), s>0
1 LU0} = [ @+ e = (< hemt - Semot - 2e) ’1
=/ e = e 2¢ Se .
2 _ 2 _ 1 _ 2 1 1 _
=<——s‘€s—s—2€s——€ s)—(O—-s—z——>=;(1—3e s>+—2
K T
5 ${f(t)}:/ (sint)e Stdt—<_32 e”*sint o 1e_“cost> .
1 1 1
= (0 ‘“)—(0— >= TT+1), s>0
( Tt 241 32+1(e T
6. ZL{f(t) —/oo(cost)e‘“dt— (— s e‘“cost—i——l—e_“sint) *
' Ay T\ s2 41 s2+1 /2
1 1
=0—-1{0 ‘7"3/2> - - Ws/2 >0
<+32+16 SZTr1° 8
0, 0<t<l
7. f(t) =
t, t>1
N4 HY = oot stdt_ lt —st 1 —st *_1 s -5 0
{f ()} = e St - e LT3 + e s>
0, 0<t«<l
8. f(t)=
£ {2t—2, t>1

Z{ft)} = 2/1°°(t —1)e "t dt =2 (_l(t Cnet— L e—st) J°°= 2 s



10.

11.

12.

13.

14.

15.

16.

. f(t)={

2{f(t)} = /01(1 —t)e tdt = <_%(1 —t)e~t + ée-5t> ‘ -

-]

L@} = [ etTetar=e
LI} = /0°° e~ H5ost gy — o

o0 00 1
L{f(t)} =/0 tette ™t dt =A teld=o0gt = (4

-8

1-t,

0,

0,
¢,
0,

t>0

O<t<a
a<t<b;
t>b

0<t<«l

L) = [ cetar= -

7/°° o190t gt —
0

5 [ ~(s+2)tgy —
et

LU= [P star = [T ety

Z{f (1)}

(~s+2

2
t2 —(s+2)t _
’ (s+2)?

te—(5+2)t

7 o0
e(1——5)15
-8

|

0
-5
——€

s+ 2

(s+2)3

/ (sint)e™sldt = /(;oo(sin t)e~ ety

s+1
s+12+1

e+ Dtgin g —

1

(s+1)2+1

oo
/(; et(cost)e_“dt=/Ooo(cost)e(l—S)tdt

24+ 25+2’

1-3s 1—s)t
me( ) cost +

1-s _os—1
(1—s?+1 s2—2s+2'

1

(s+1)2+

s> —1

(1-5)2+1

s§>1
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~(s+2)t 00:

1

_ ___2___.6—(s+2)t> looz 2
) 0

]
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Exercises 7.1

6_5

0o s+2

(4 - 5)26(4—S)t> ‘o

(s+2)3’

)
e—-(s+l)t coS t) ‘
0

, s> =2

s> =2



17.

18.

.19,

21.

23.

25.

27.

29.

31.

33.

35.

36.

37.

Exercises 7.1

LLF)) = /0 * Hcos t)e*tdt

st -1 —st t 2s P

= [<_s2+1_(32+1)2>(005t)e +<32+1 (32+1) >(sxnt) L
s -1
(32+ )%’

F{f(t)} / t(sint)e ™ dt

K 28 ) (cost)e™t — ( st + £l ) (sin zf)e'“]00
SPH1 (24 1) s24+1 0 (s24 1) .

s> 0

s>0
(32+1)
4l 51
4\ _ 5 _
{2t} = 2 20. #{t°} = 5
4 10 7 3
${4t—10}=;§——- 22. ${7t+3}"—2 ;
2 6 3 2 16 9
P2 +6t-3) = 5+ —— = 24, P-4t +16t+9} = —4= + = + =
{t* + 3} 33+52 . { + 16t + 9} 83+82+S
3! 2 3 1 3! 2 6
L3+ 382 + 3¢ == 435 + o4+ = 26. P83 -12t2+6t—1} =82 — 125+ ——
{t°+3t°+3t + 1} s4+3s3+32+s 6. Z{ +6t—1} 834 3T
1 1 2 1 5
1+et) == 28. P{t* —e 45l = 5 - —— 4=
{1+ e} S+8_4 2 e "' +5} =3 S+9+S
1 2 1 1 2 1
22t 4 = — 30. $ 2t_2 -2 = - -
LA+2T T = o T 0. Ze SIS Bl S
2 3 S 2
2 ; i =
L{4t —5sxn3t}=4s—3—5m 32. i’{cos5t+sm2t}—82+25+82+4
i k 34 i’{coshkt}:——s—
i’{smh kt} = m * 52 - k?

=2 [0 €2 el 11
L{e smht}—i’{e 5 }_j 5 3 =TT 5

t 4 -t
Pletcosht} =% {e‘te te }:_Sf{l_,_le—?t} = i_,_ 1

1
L{sin2tcos2t} = &F {5 sin4t} =57
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38.

39.

40.

41.

42,

Exercises 7.1

1 1 1 1 s
Plcost =,‘f{— Z zt}z_ 25
{cos*t} 2+2<:os 23+232+4
(a) Using integration by parts for o > 0,

oo
MNa+1)= ootae—t dt = -t |7 + o t*le7tdt = al(a).
0 0 0

(b) Let u = st so that du = sdt. Then

Y oo—stcv _ oo__ugal -————1 —_
gy = [Tetear= [T (2) Ldu= olat+D), a> -l
- I'(1/2) T
/2y - =/~
@ 2=
L@3/2) =
12y _ _
(b) Z{t"/*} = /2 05
I'(s/2) 37
3/2y - -
(C) ${t }_ 85/2 - 485/2
Identifying f(t) = t" we have f/(t) = nt""!, n=1,2, 3, ... . Then, since f(0) =0,

n L} = L{nt" 1) = s L{t"} and ,‘f{t”}=%${t"“1}.

For n =1, 2{t}=%${1}=£§.

Forn=2, X£{t’}= %,‘f{t} = —;25

Forn=3, %{’}= g,‘f{tz} = %.

Let F(t) = t1/3. Then F(t) is of exponential order, but f(t) = F'(t) = %t‘2/3 is unbounded near

t = 0 and hence is not of exponential order.

311



Exercises 7.1

_ 2 2 d ) 2 . , . . .
Let f(t) = 2te! cose! = pr sine’ . This function is not of exponential order, but we can show that

43.
44.

45.

46.

its Laplace transform exists. Using integration by parts we have

2 2 o d 2 2 a 2
Z{2te! cosel }=/ e™t [ —sine’” | dt = lim [e‘“ sine”” |” + s/ e Stsinet dt]
0 dt a->00 0 0

o st . 2 Of wi 2
=s | e “sine dt = s £{sine" }.

Since sine®” is continuous and of exponential order, #{sin etz} exists, and therefore £ {2tet2 cos etz}
exists.

The relation will be valid when s is greater than the maximum of ¢; and ¢s.

Since e! is an increasing function and ¢? > In M + ct for M > 0 we have e’ > elnM+et = prect for
t sufficiently large and for any ¢. Thus, et’ is not of exponential order.

By part (c) of Theorem 7.1

${e(a+ib)t}_ 1 _ 1 (s—a)+ib  s—a+ib
T s—(atib) (s—a)—ib(s—a)+ib (s—a)2+b2"

By Euler’s formula, e® = cosé + isin 6, so
PleletiOy = PLeteBt} LLe (cosbt + isinbt)}
=% {e® cosbt} + i L{e sin bt}

_ s—a i b
TGoalabl ' soalrer

Equating real and imaginary parts we get

ZL{e cosbt} = ( 5

a ot
—m and ${€ tSlnbt} = (S

b
— a)2 +b2 .
We want f(az + Oy) = af(z) + 8f(y) or
m(az + By) + b= a(mz + b) + Blmy + b) = m(az + By) + (o + B)b

for all real numbers & and 3. Taking o = 3 = 1 we see that b = 2b, so b = 0. Thus, f(z) =mz+b

will be a linear transformation when b = 0.
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10.

11.

12.
13.
14.

15.

Exercises 7.2

1 1/2 1 1
=$_l{— / }=§sm§t

{

{s“ 6 6
T P R X
$~1{<§_Si3>2}=$—1{4.é—%-%+%.j—é}=4t—§t3+i~;6t5
.5,”‘1{(8_:41)3}=$_1{%+3~Si2+g-3%+é-f—i}=1+3t+gt2+ét3
$_1{(s+32)2}=$_1{l+4.i2+2.%}=1+4t+2t2

& S S S

fie g 3o s
$—1{4s: 1} =T {% S+11/4} -
$~1{581,2}=$—1{é's—lz/s}zéews
$_l{s2i49 =$_l{; 32149}=gsm7t

{

{

{

{

28"6}22_1{2 S 2 3

T .82+9} = 2cos 3 — 2sin 3¢
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. £

27.

28.

29.

Exercises 7.2

-1 S -1 V2 V2
— = 2t+ — 2t
{ } {32+2+\/532+2} cos V2t + 5 sin V2
1{ } g—l{l.l_l. ! }zl_le—at
$2+3 3 s 3 s5+4+3 3 3
ST BV G N S O
{s B 15T sSa T T
1 1 3 1 1
-1 f—l . i — ot Q=3
{32-%—23— } {4 s—1 4 s+3} ¢ T g°
1{ } g—l{l.;_l._i_}=le4t_le—5t
32-%—3—20 9 s—4 9 s+5 9 9
0.9s 1 1
-1 =£714(03)- 6)- = 0.3¢""* + 0.6e70%
o {3—01 s+02)} - {(03) ;o109 s+0.2} e Thee
-1 a5 B nEt— V3 s
A { s+\/_} L~ {32_3 V3 32—3} cosh v/3t — /3 sinh v/3
1 1 1 1 1 1 1
P! = —1{_. _ L }_,__21: Gty L e
{3—2 s —3)( 6)} a Ul R Sk Ry el & T3¢
s“+1 11 1 1 1 5 1
:$_l{—-.——-_——. —_ }
{ s—1) s+1(s—2)} 2 s s—1 3 s+1+6 §—2

1 1 11 1 s 11
) ) ) b et
¥+ 5s s(s2+5) S v Al L

-1 > = “1{1 > -%—l 2 1 1}—1c052t+1sin2t—le
(s2+4)(s+2)) 4 s2+4 4 244 4 s+2) 4 4 4

25 —4 25 —4 4 3 s 3
KA SR Gy 7 bl R G ) {—— }
{(32+s)(32+1)} {3(324-1)2} P S S b R B
=—4+3e7t +cost+3sint

o) 2 ) - o

sinh V3t — sinv/3t
\/_

s 1 s 1 2 1 1.y 1 1 1
n(f—l =$—‘1{*, e — . }:— 2t —sin2t — —e~
{(32+4)(s+2)} R R i S S A S e
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6s+ 3 s 1 s 1 2
. =l Y= ¥l —2. __.___}
0.2 {(52-1-1)(52-1-4)} = { 32+1+52+1 s2+4 2 244

1
= 2cost +sint — 2cos 2t — BsinZt

31. The Laplace transform of the differential equation is
1
s Z{y} —y(0) = L{y} = <.
Solving for Z£{y} we obtain

1 1
Z =—-= i
vh=--+:3
Thus
y=—1+¢"

32. The Laplace transform of the differential equation is
2sL{y} — 2y(0) = £L{y} =0.

Solving for £{y} we obtain

6 3
W=sm =T
Thus
y = 3e72.
33. The Laplace transform of the differential equation is
1
s&{y} —y(0) +6L{y} = ek
Solving for £{y} we obtain ‘
1 2 1 1 19 1
Py} = = . =, )
W =GoereTs76 10 5-4710 556
Thus . 19
_ 4 1Y et
V=10 T 1o°
34. The Laplace transform of the differential equation is
2s
- & = ———
sy - Lyl = 55
Solving for Z£{y} we obtain
2 1 1 1 s 5 5
L7 07) PER S S S PRI
W=y " B 501 Barn 1 1%
Thus . ) 5
=—e - = t 4+ — sin 5¢.
Y 136 13(:055 +13sm5
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35.

36.

37.

38.

Exercises 7.2

The Laplace transform of the differential equation is
s*Z{y} - sy(0) — ¢/ (0) + 5 [s £{y} —y(O)] + 4L {y} = 0.

Solving for £{y} we obtain

5+5 4 1 1 1
iy = s2+65+4 3s+1 3s+4

Thus .

Y= ge"t - %e"“.
The Laplace transform of the differential equation is

6 3
2Ly} - —/(0) —4[s L{y} —y(0)] = ~ :
s" Ly}~ sy(0) =y (0) —4[s L{y} —y(0)] = -~ -7
~ Solving for Z{y} we obtain
6 3 s—35

(s—3)(s? —4s) (s+ 1)(s2—4s) T I L
5 1 2 3 1 11 1
+

Thus . 3 I
=2_9 3t 2 -t —- 4t )
Y 5 e 6e + 106
The Laplace transform of the differential equation is
2
2 _
s“Z{yt - sy(0) + Z{y} = 75

Solving for £{y} we obtain
2 10s 10s 2 2

$ = = — .
{v} (32+1)(32+2)+32+1 32+1+32+1 52 +2

Thus
y = 10cost + 2sint — V2sin V2t.

The Laplace transform of the differential equation is

1
32${y}+9${y}=m~
Solving for £{y} we obtain
1 1 1 1 1 1 s
x{y}_(s—l)(32+9)—E.s—lﬂﬁ.32+9~i—6.32+9.
Thus ) . )
= —¢' — —sin3t — — cos 3t.
Y 10@ 3051n3t 10cos3
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39.

40.

41.

42,

43.

Exercises 7.2

The Laplace transform of the differential equation is

2[s* 2y} - $20) - s/ (0) = ¥"(0)] +3[* Ly}~ sy(0)~y (0))=3[s £{y} ~v(O)) -2 £{v} = — =

Solving for Z{y} we obtain

Py} = 25 +3 _11 .5 1 8 1 11
Y T T s —D(@2s+ 1(s+2) 2s+1 18s—1 9s+1/2 9s+2°
Thus
1l 5 8y 1o

y-—26 +186 96 +96 .

The Laplace transform of the differential equation is
3

$* L{y} — s*(0) — sy'(0) — " (0) + 2[s* L{y} — sy(0) — ¢'(0)] — [s L{v} — w(0)] -2 £{u} = 255

Solving for Z£{y} we obtain

2
s¢+12
A =
{w} (s =D (s+1)(s+2)(s2+9)
B 1 B 1 161 3 s 1 3
T60s—1 20s4+1 39s+2 130s24+9 65s524+9°
Thus 6 3
13, 13 _, 16 _,, 1
= et — = — — cos 3t — — sin 3t.
60¢ 30° T39° T30 g

Let f(t) =1 and g(t) = {(1)’ zi (1)’ t# 1. Then Z{f(t)} =£{g(t)} =1, but f(t) # g(t).

The Laplace transform of the differential equation is

+3 5+ 3
& . = .
sZyl+ £v) (s+3)2+4 s2+6s+13

Solving for £{y} we obtain

s+3 1 1 1 s+1
#o} = ¢ 1T T

11 1 s+3 2
T4 s+1 4\(s+3)2+4 (s+3)2+4)°
Thus
1 t

1
Y= Ze‘ — e 3t cos 2t + Ze—‘% sin 2¢.

For y" — 41/ = 63t — 3e™? the transfer function is W(s) = 1/(s? — 4s). The zero-input response is

—5 51 1 1 5 1
e
vo(t) 2~ ds 4's 1 s-—afT 171
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and the zero-state response is

-1 6 3
nt) =2 {(s —3)(s2—4s) (s+1)(s2— 43)}

_efE L2518 Ly
- 20 s—4 s-3 4 s 5 s+1
=§e4t 263£+§~§6—£

20 4 5

1
4 108 _
1 {te } G- 10)°
1
2 t —6¢ —
2™} = ooy
3!
3, -2t
3 ff{t e } 1o
10!
410 =Tt
4. {7 < L
t, 20\2) _ 2 3t a1 2 1
5. ff{t(e +e ) }—ff{te + 2te”* +te }_ (8_2)2-1- (5*3)24-(5_4)2
6. ff{e%(t — 1)2} = é‘,o{t262t — 2t(32t + e2t} = 2 - 2 + !
(s—2)3 (s—2)2 5-2
bain3t) —
7 ff{e Sln3t} BRCESE:
2
Pl - st
8 {e cos4t} GT27+16
9. PL{(1-e' +3e ) cos5t} = £ {cos5t — et cos 5t + 3e~4 cos 5t}
_ s s—1 3(s+4)
Cs2425 (s— 12425 (s+4)2+25
9 4 5

¢ ¢
10. ff{e?’t<9 — 4t + 10sin 5)} =% {9e3t — 4te®* + 10e% sin 5}:

12 1
-——f—l - =—t2 -2t
{2(s+2)3} 2 ¢
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

1 1 3! 1
-1 - -1J 2 =_3t
z {(3—1)4} o {6(3—1)4} 5
1 1
2—1{ }=$—1 _ Bt
s —6s+10 {(3—3)2+12} e st
1 1 2 1
2—1{_________}___2——1 4 LIty
$2+2s+5 {2(s+1)2+22} ge st
2_1{ s }_ - (s+2) 1
s2+4s+5) (s+2)2+12 “(s+2)2+12
2_1{ 25+ 5 }_ —1 (s+3) 1 5
s2+6s+34) (s+3)2+52 5 (s+3)2+52
1-1 1 1
o1 s - -1 5+ - -l _
{(s+1)2} {(s+1)2 s+1 (s+1)2
_ 5s _, [5(s—2)+10 _ 5 10
1 = -1 = p-1 Y
£ {(3—2)2} z { (s —2)2 } £ {s-2+(s-—2)2
25 ~1 5 1 5 4 3 2
-1 — -1z __ = _ — - =
z {32(s+1)3}—$ { 2 s+1 (s+1)2 2(s+1)°

-t

e " —te

= 5—t—be I —4te?

Exercises 7.3

} = e % cost — 2e sint

1 .
} = 2¢ 3 cos bt — ge*Bt sin 5t

= 5e? + 10te*

3
_§t2e—t

DA 12 13 -2t 22t Lo
g {(s+2)4 =T\ Grop Toway) T THe g

The Laplace transform of the differential equation is
1

sZ{y} —y(0) + 4 L{y} = —.

s5+4
1

Solving for #{y} we obtain #{y} = (_s'_;‘__4)—2' +

Y= te™4 4+ 2¢

2
——— . Th
s+ 4 ue

—4t

The Laplace transform of the differential equation is
1

s £y} - £y} =5+

Solving for Z{y} we obtain

1 1 1 1
E A ETS R Py Al

s—1
Thus

1
y=—-1l+¢e+ itht.
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23.

24.

25.

26.

27.

Exercises 7.3

The Laplace transform of the differential equation is
s* £{y} — sy(0) = y'(0) + 2s L{y} — y(0)] + L {y} = 0.
Solving for Z{y} we obtain
s+ 3 1 2

G Al eV A R Py

Thus
y=e b+ 2e”t.

The Laplace transform of the differential equation is
6

s* L{y} - sy(0) — ¥/ (0) — 4[s L{y} —v(0)] + 4 £L{y} = oo
Solving for #{y} we obtain P{y} = L3 Thus, y = itse%
20 (s—2)8° YTt ¢
The Laplace transform of the differential equation is
1
s* Z{y} = sy(0) — y'(0) = 6 s £{y} ~ y(0)] + 9 L{y} = .

Solving for Z{y} we obtain

1+ 52 21
£ = = Z
(v} s2(s—3)2  27s

Thus
AR N A)
The Laplace transform of the differential equation is
6
s? 2{y} ~ sy(0) — 9/ (0) — 4[s L{y} ~y(O)] + 4 L (v} = .

Solving for Z£{y} we obtain

${}_35—4s4+6_31+91+§2+13_'+l 1 13
yr= 4s—2)2 45 8s2 453 45t 45-2 8 (s—2)72
Thus

PP L T

VELTE T T Ty g

The Laplace transform of the differential equation is
s?£{y} - su(0) = y/(0) - 6 [s L{} — y(0)] + 13 ZL{y} =0.

Solving for £{y} we obtain

PIRPR 3 2

s2—6s+13  2(s—3)2+22’
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Exercises 7.3

Thus

3 3t
== 2t.
Y 5€" sin

28. The Laplace transform of the differential equation is
2[s*L{y} — sy(0)] + 20[s L{y} — y(0)] + 51 L{y} = 0.

Solving for £ {y} we obtain

4s+40 25420  2(s+5) N 10
262 +20s+51  (s+5)24+1/2 (s+5)2+1/2 (s+52+1/2°

L{y} =
Thus
y = 2e % cos(t/v2) + 10v2e 3 sin(t/v/2).

29. The Laplace transform of the differential equation is
s* £{y} — sy(0) — ¥'(0) — [s £{y} - y(0)] =

Solving for £{y} we obtain

x{y}=s(32_25+2) T s T aGoTral 2

Thus

= 1et cost + let sint
¥=35773 2 '

1
2

30. The Laplace transform of the differential equation is

» | =

s L{y} ~ sy(0) —y'(0) — 2[s Z{y} —y(O)] + 5 L{y} = ~ + 3—12 .
Solving for £{y} we obtain

_75/25 + 109,25
s2—~25+45

_7_ s—1 51

Thus
1 7 51
75+t gpeicos2t+ peelsin2t

31. Taking the Laplace transform of both sides of the differential equation and letting ¢ = y(0) we
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32.

Exercises 7.3

obtain .
L+ L2y} + L{y} =0
s*Z{y} - sy(0) — ¥'(0) + 25 L{y} ~ (0) + L{y} =0
2Py —cs —2+2s Ly} — 2+ L{y} =0
(52+2s+1>${y} =cs+2c+2
2c+2
Py o CS
W=y orip
_os+1-1 + 2c+2
TG0 st
~.& L ct2
Ts+1 0 (s+1)2
Therefore,
1

y(t) =c$‘1{$}+(c+2)$‘1{ }=ce_t+(c+2)te—t.

(s +1)2
To find ¢ we let y(1) = 2. Then 2 =ce™ !+ (c+2)e"! =2(c+ 1)e~! and c =e — 1. Thus

y(t) = (e = 1) + (e +1)te™".

Taking the Laplace transform of both sides of the differential equation and letting ¢ = /(0) we

obtain
iy +2{8/) + £{20y} =0
2Ly} = (0) +8s Ly} + 20 £ {y} =0
2Ly} —c+8s Ly} +20F{y} =0
(s +85+20) L{y} =c
c c
W= o rm T (s+4)2+4
Therefore,

c

y(t) =21 {m‘)m} = ce " sin 2t.

To find ¢ we let y/(7) = 0. Then 0 = ¥/(r) = ce™*™ and ¢ = 0. Thus, y(t) = 0. (Since the

differential equation is homogeneous and both boundary conditions are 0, we can see immediately
that y(¢t) = 0 is a solution. We have shown that it is the only solution.)
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33.

34.

35.

Exercises 7.3

Recall from Section 5.1 that mz” = —kz ~ fz’. Now m = W/g = 4/32 = } slug, and 4 = 2k so
that £ = 2 Ib/ft. Thus, the differential equation is z” + 7z’ + 16z = 0. The initial conditions are
z(0) = —3/2 and 2’(0) = 0. The Laplace transform of the differential equation is

1
PL(x) + 25+ s la} + 5 + 162z} =0,

Solving for Z{z} we obtain

g T35/2-21/2 3 s+7/2 _TVi5 V15/2
2} = 7s16 =73 (s+7/2)2+ (V15/2)2 10 (s+7/2)2+ (v/15/2)*

Thus
ge_"/Q €os —\/1_515 - —7\1/01_5 e" " 2sin —\/21_5t.

T=—= 5

The differential equation is

d2q dgq /
— + 20— + 200¢ = 150, 0)=¢(0)=0.
| T2 20— +200¢ q(0) = ¢'(0)
The Laplace transform of this equation is
150
s2L{q} + 20s£{q} + 200¢{q} = —.
Solving for Z£{q} we obtain
P} = 150 31 3 s+10 3 10
U T S(s7F20s+200) 4s 4(s+102+102 4 (s+10)2+ 102
Thus 3 3 3
q(t) = i Ze—lot cos 10t — Ze‘wt sin 10¢
and

i(t) = ¢'(t) = 15e71% sin 10¢.

The differential equation is

d’q g, 2 _Eo )
o T2 twie=—, ¢(0)=4¢(0)
The Laplace transform of this equation is
' Eyl
SL{q} + 22 L{q} +w L{q} = TO B
or Bl
2 2 =202
(s +2Xs +w ),‘f{q} =73
Solving for &£{q} and using partial fractions we obtain
(g} = By (1/o®  (1fw?)s+2)/w®\ By (1 s+2X
=7 s 24+ 22s+w?2 | Lw?l\s s24+2xs+w?)’
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For A > w we write 52 4+ 2\s + w? = (s + A)2 ~ </\2 - wQ), so (recalling that w? = 1/LC)
1 s+ A A
Z{q} = EoC| = - — .
la) = Eo <s s+ N2— (M —w?) (s+/\)2——(/\2—w2)>
Thus for A > w,

A
q(t) = EOC<1 — e *cosh VA2 — w2t — ﬁ sinh /A2 — 2 t) )

w

For A < w we write 5% + 2As + w? = (s + A)? + (wQ-—/\Q), S0

1 s+ A A
ﬂq}*’%(;* G+ N2+ (W2 =0T <s+A>2+<w2—A2)>‘
Thus for A < w,

A
q(t) = Eoc(l —eMeos /w2 — A2 — ﬁsin Vw? — A2 t) )

— W

For A =w, s24+ 2\ + w? = (s + \)? and

g{}_@ 1 E(1x 1N A\ _ B (1 1 A
=T s+02 T\ s  s+x (+02)  Ixa\s s+x (s+N2)
Thus for A = w,

q(t) = BoC(1— e = he™) .

36. The differential equation is

dg Lo
i clT
The Laplace transform of this equation is

R Ege™*, ¢(0) = 0.

1 1
R${q}+5${q} =E0m~

Solving for #{q} we obtain
EyC Ey/R
2lq) = 0 _ o/ ‘
(s+k)(RCs+1) (s+k)(s+1/RC)
When 1/RC # k we have by partial fractions

wig) = By (1/(1/RC—k) 1/Q/RC—k)\ Eo 1 1
U =g Stk s+1)RC ) R 1/RC—k\s+k s+1/RC)
Thus B
_ Lo —kt _ _—t/RC
ot) = T—gp (7 ).
When 1/RC = k we have
_ Ey 1
Hd =7 oo
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37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

55.

56.

57.

Exercises 7.3

Thus E E
q(t) = ﬁote"kt = ﬁote‘t/ﬂc.
e-‘s
L -DUC -1} = —

6—23

et -2} = £{e D -2)) =

L{UE-2)=ZL{t-2)UE-2)+2U(t-2)} = .

LB+ DU -1} =3L{t - DUt -1} +4L{UE~-1)} = e 4e”f

52 s

e (1 2 _ 1

1 — 92512 1 928 —4s _ Y
,Sf—l{( iiz ) }=$—1{3+2+ se+2 +:+2} = e %4272 D (1-2) + 7D (1 -4)

—mSs

fﬂ{;+1}=$Mbwﬂ%@—ﬂ
{

- -l e }=$—1{e__s_ e’ }:Q[(t— 1)—e_(t—1)02[(t~1)
S

—2s e—2s e—2s e~2s o
$_1{52(s— }=$—1{_ - + }=—0U(t-2)—(t_2)%(t_2)+e Y (t—2)

s 52 s—1

(c) 50. (e) 51. (f) 52. (b) 53. (a) 54. (d)

2 4
Lo a3 = 2 B3
(2-4%(E-3) =2~
—4s —5s
xu-%@—®+%@-m}=§-e ¢

S S

grae-1))=2{{t-12+2a-1ue-1}=£{{c-12+20-1)-1]u -1}
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58.

59.

60.

61.

62.

63.

64.

65.

Exercises 7.3

—<3+3+1> —s
“\EFT2T)¢

. 3 3 37 3@‘3773/2
plome (=5 )} = 2{~eos (= 7)1 F) =~

Ll-tUE-D} = L{-(6-UCE-2) - 2UE-D} = 5 - -

L{sint —sint U(t — 27)} = L {sint —sin(t —2m) U(t — 27)} = —— —

e~ 08 e—-bs
LU= L{UC-0) U -8} = - T
e~ s 6—23 e—3s 1 e=$
Z{fO=2L{UC -+ UCE-2)+UE -3+ } = Pl =TT
The Laplace transform of the differential equation is
S5 _
sZ{yt —y(0) + Z{y} = —e™*.
Solving for £{y} we obtain
o %e™ [1 1 ]
‘x{y}_s(sﬁ—l)—56 s s+1]°
Thus
y=5%Ut—1)—5e" D 1)
The Laplace transform of the differential equation is
1 2 _
sZ{y} —y(0) +L{y} = S —~e™
Solving for £{y} we obtain
1 2e7° 1 1 1 1
v} s(s+1) s(s+1) s s+1 ¢ 5T s+t
Thus
y=1l—-e"t-2 [1 — e_(t‘l)]%(t - 1).
The Laplace transform of the differential equation is
: 1 _sS5+1
syl —y(0) +22{yt = 5~
Solving for £{y} we obtain
1 s+1 11 11 1 1 11 11 1 1
Pl =t s SEL ML 11 L T —s[__ LI S
{v} s2(s +2) ¢ s2(s+1) 4s+232+4s+2 S i e By g
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Thus

1 1. 1 4 1 1 1 _gpo)
gty ed | S S(t—1) - t—1).
Y 4+2t+4e 4-1-2(15 1) 46 U( )

66. The Laplace transform of the differential equation is
1 e f
$ ZL{y} - sy(0) - ¥/ (0) + 4 L{y} = = -

S S

Solving for £{y} we obtain

1-s 1 1

vk = s(s2+4) 6_53(32 +4) T

1 1 s 1 2 _5{11 1 s
-_: _ = e |2z

s 48244 25244

Thus

Y= % - %coth— —;-sith— %—30052(15—1)}021(1&—1).

67. The Laplace transform of the differential equation is
—cTSs 1
s2 L{y} — sy(0) =¥/ (0) + 4 L{y} = e 2 251
Solving for Z{y} we obtain

Z{y} =

$ —27s
+ -_— —_—
214 ¢ 35241 65244

1 1 | 1 2 }
Thus .
y = cos 2t + % sin(t — 27) — 6 sin 2(t — 2%)]@[(1& — 2m).
68. The Laplace transform of the differential equation is
s> L{y} - sy(0) - y'(0) — 5[s L{y} — y(0)] + 6 L{y} =

Solving for Z{y} we obtain

e——s

p .

Thus

I 1oy, 1 3(z-1)} 3t 2t
-z + - Ut —1) +e* — e
Yy [6 5¢ 3¢ (t-1)+e e
69. The Laplace transform of the differential equation is -

—Ts ~27s

€ €

s* L{y} — sy(0) — ' (0) + £L{y} =

Solving for £{y} we obtain

1 S 1 S 1
A — =TS [_ _ } _ ,—2ms {_ _ } )
{ut=e s 241 °© s s2+1 +32+1

S 8
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Thus
y=[1—cos(t —m)] Ut —m)—[1 — cos(t — 2m)]U(t — 27r) + sint.

70. The Laplace transform of the differential equation is

1 e——?s 6—43 6—65

s* {y} - sy(0) = v/(0) + s () — w0 +3 Ly} = -~ — —+

S S 38 S

Solving for Z{y} we obtain

11 1 1 1 1 11 1 1 1 1
-3t db e b b
W=35-551%6533 ¢ 135 3551 63513

11 1 1 1 1 11 1 1 1

_—4s 2= et -6s |- - -~ -

€ [33 23+1+63+3}+e {33 2s+1+ s+3}
Thus
LU S VO B T ) 1—3(t—2)}
T= - —— — —_— ] - — — t—
y=3-3¢ +6e [3 5€ +6e AUt —2)

1 1 1 1 1 1

I N e ey _-3(7:—4)}%25_4 {___—(t—G) _—3(:-6)]%25_6.
{3 2@ +6e ( )-i—3 26 +6e ( )

71. Recall from Section 5.1 that mz” = —kz + f(t). Now m = W/g = 32/32 = 1 slug, and 32 = 2k
so that k = 16 Ib/ft. Thus, the differential equation is z” + 16z = f(t). The initial conditions are

z(0) =0, /(0) = 0. Also, since
20t, 0<t<5
-]

0, t>5
and 20t = 20(¢t — 5) + 100 we can write
f(t) =20t — 20t U (¢t — 5) = 20t — 20(¢t — 5) U (t — 5) — 100U (¢t — 5).

The Laplace transform of the differential equation is

20 20 100
2$ 16$ =_____~—55_____—53.
s*Z{z} + {z} 2 2t e

Solving for Z{z} we obtain

20 20 100
$ = — —55_____—55
{=} s%(s* + 16) 52(32+16)e 3(32+16)e
5 1 5 4 » 25 1 25 s\ _
=[2. = = = (15 _<_ _____ _.___> Ss.
<4 s2 16 32+16>( ) \T T T T )e
Thus
5. 5 5 5 25 25
£) = ot — — sindt — |2(t - 5) — —sind(t - 5)| Ut —5) — | =2 - 22 —5)| -
5(t) = 3t — ¢ sind {4@ 5) — == sind(s 5ﬂfua 5) [4 = cosd(t 5ﬂ*ua 5)

5 5 5 5 25
=2 2 sindt— 24U —5) + — sind(t — 5)U(t — 5) + = —5)AU(t — 5).
1t~ gsin 4t 4t (t—5)+ Ig Sin 4(t - 5)U(t - 5) + T cos 4(t — 5)U(t — 5)
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72. Recall from Section 5.1 that mz" = —kz + f(t). Now m = W/g = 32/32 = 1 slug, and 32 = 2k
so that k = 16 1b/ft. Thus, the differential equation is z” + 16z = f(t). The initial conditions are
z(0) = 0, 2/(0) = 0. Also, since

sint, 0<t<2m
1t = {0, t> 2%

and sint = sin(t — 27) we can write
f(t) =sint — sin(t — 2m)U(t — 27).

The Laplace transform of the differential equation is

1 1 6—2773.

s2F{z} +16¥£{z} =

241 241

Solving for £{z} we obtain
1 1
# — _ —2ms
=iy e Es”
s VIS Vi I e VA IS V) G e
T st+16 0 s2+1 (2416 sP+1 '

Thus

1 1 1 1
= —— g = i P - - — —ginlt —2mU(t -2
z(t) 50 Sib 4t + T sint + &g Sin 4(t — 2m)U(t — 2m) B sin(t — 2m)U(t — 2m)

_ —dgsindt + fgsint, 0<t¢<2r
0, t> 27

73. The differential equation is

2.5 % +12.5¢ = 5%U(t — 3).

The Laplace transform of this equation is
2
sZ{q} +5F{q} = ;e‘ss.
Solving for Z{q} we obtain

sl =i = (21t ) e

Thus

74. The differential equation is

10‘2—? +10g = 30e* — 30e" U(t — 1.5).
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The Laplace transform of this equation is

3 361'5 B
e 1.55_

s —w+Z{d=— - =13

Solving for Z£{q} we obtain

f{q}=(qo—§ 2 s+1 s-15

3>. L8 L s —2/5+ 2/5 o155
s+1 2 s-—1

Thus

3 3
oft) = (qo 3 5) et _2_et n geLs (e—(t—l.s) _ el.5(t—1.5)) Ut - 1.5).

75. (a) The differential equation is

di ) ) 3m 3m .
7 + 101 = sint + cos <t - 7>W<t - 7) , 0)=0.
The Laplace transform of this equation is
1 Se—37r3/2
N1 N
s&{i} + 10£{1} o + 1
Solving for Z{i} we obtain
1 S
Ll = —37s/2
b= "o o0 °
1 1 s 10 1/ -10  10s 1\ _arep2
_101<s+10 32+1+52+1>+101<s+10+52+1+32+1>e '
Thus
o Lo ot :
i(t) = 01 (e —cost + 10sin t) |
1 —10(t=37/2) ( _ %E) : ( _ %ﬁ)} ( _ 37r>
+101{ 10e +10cos |t 2 +sintt 5 Ut 5 )
(b) i

. : y ' t

l l i 3 o~ /5 6
-0.2

The maximum value of i(t) is approximately 0.1 at ¢ = 1.7, the minimum is approximately
—0.1 at 4.7.

76. (a) The differential equation is

dg 1
—_ - = “ - -_ t— =
50dt+0.01q Eo{Ut—-1)-%U(t-13)], ¢(0)=0
or
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50%? +100q = Bo[U(t — 1) —U(t—3)), q(0) = 0.

The Laplace transform of this equation is

1
50s Z{q} + 100 Z{q} = Ep (ée‘s - ge_33> :

Solving for £{q} we obtain

Eg [ e® e™3s Egyl/1 1 e 171 1\ _ss
Hab =55 { 5+2) s(s+2)} ~ 50 [5 (E_s+2>e “'2'(2— s—|—2>e 3}'
Thus
glt) = 28 [(1 - X D) - 1) - (1= X9 (e - 3).
(b) q
1

. . . "
| 1 2 3 4 5 6

The maximum value of ¢(t) is approximately 1 at ¢ = 3.
77. The differential equation is
EIi‘l—g =wo[l —U(z — L/2)].
dz!
Taking the Laplace transform of both sides and using y(0) = ¢/(0) = 0 we obtain
4 " moy _ Wo Lo e
Sy} - sy (0 - " (0) = 575 (1~ 7).
Letting 3 (0) = ¢; and 3"’ (0) = ¢y we have
_ wo 1 0 e
Ply) = —+—+E15(1 e~Le/?)
so that

N T R P T
y(z) 2c1z —|-6cz:1: +24EI[ z-3 Ulz .

To find ¢y and ¢o we compute

e =it et 5 3 [ (== 5) - %)}

R )
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Then y”(L) = (L) = 0 yields the system.

1 I 3 woL?
c1+c2L+——w—°[L2—<—>J=c1+c2L+—wL—=0

2 EI 2 8 EI
wo /L _ 1 woL _
C”E(?) =etygr =0
Solving for ¢; and ¢y we obtain ¢; = %woLQ/EI and ¢y = —%woL/EI. Thus

wo (1 50 1 _ 4 1 4 1< L>4 ( L)
ey R G R S Py ~2)).
vie) = g7 (16Lx i Tt T\t g) N

The differential equation is
dy

Taking the Laplace transform of both sides and using »(0) = 3/(0) = 0 we obtain

1
S4${y} _ S’y”(O) _ y”’(O) — %(} _; (e—LS/S _ e—2L5/3> '

Letting y”(0) = ¢1 and y"(0) = c2 we have

ci ¢ w1l _rom _oress
f{y}=;3-+—s-4+zj—[s—5(e /3 _¢ s/)

so that

1l 51 i}ﬂg<_£>4<_£>_<_2_f:>4<*_
y($)—201$+602$+24E1{CL‘ 3 Yl 3 T 3 Y x

To find ¢; and ¢y we compute

oares 8 e B - (o2
y(CII)—Cl+CQCII+2 I{x 3 Uz 3 T3 Ul x

0w 3 (o= D= ) (- (-2

Then y”(L) = y"(L) = 0 yields the system

1 2L 2 L 2 1 L2
cl-%-ch-;-—EQ_{(__) —<—>}=61+CQL+—E9—=0

and

2 EI 3 3 6 EI
wo [2L L] Lwl
CH_E[[T 3}‘6”3 Er =
Solving for ¢1 and ¢y we obtain ¢; = %woLQ/EI and ¢y = —%woL/EI, Thus

_wo 1,29 1,5 1 ( _£>“ ( _£>_< _2£>“ (-2
y(x)-—El<12Lx 18Lx +24 T 3 Yl x 3 x 3 Y|z
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80.
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The differential equation is

Bt =P [5-er (- 3)2(-3)]

Taking the Laplace transform of both sides and using y(0) = y'(0) = 0 we obtain

2wy [L 1 1
4 AN M — 0 [__ = —Ls/Q}
s*L{yt = sy (0) 97 (0) = 277 2t

Letting 3" (0) = ¢1 and y"’(0) = ¢; we have

c1 ¢y 2wy [ L 1 1 /2}
=@ 2t b L L L
{v} s3+ EIL [2s5 &% &6
so that ! 0 . I I
= geis”+ gour’ + o o~ 5 + 33 (= 3) U= )]

y(a) = gauz’ + oz’ + g 120° T\ 2)\F T3

1 o 1 4wy [BL 4 5 ( L>5 ( L>
== Z R AN -

201x +602x +60E1L{2x r + |z 5 bes 5

To find ¢; and ¢y we compute

L\3 L
'(#) = ~20s'+20(s - 3) (2 5)
y'(z) c1+02x+60E1L {30Lz 20z° + 5 z 5

[60Lx — 602 + 60 (x - £>20u (x - 5)} .

and

ym(z) =9+

GOEIL 2

Then ¢’'(L) = 3’ (L) = 0 yields the system

e+ col + [30L3—20L3+ L3]—c+cL+5w°L2—o
1T e 6OEIL LT YT BT T
2 2 2 woL
1% = 22 o
c2+60E1L[60L —60L° + 15L°) = i

Solving for ¢; and cg we obtain ¢; = woL2/24EI and cg = —woL/4EI. Thus

= - O SV a(z-2)].
v(®) = %51 ~ 3aEl T G0EIL [ pr T FTy) T\

The differential equation is

diy
dzt
Taking the Laplace transform of both sides and using y(0) = y'(0) = 0 we obtain

wy 1 —Ls
Sy} - sy"(0) — v (0) = 25 ¢ (1-ete2).

EI =wg[l — U (z ~ L/2))].

Letting 4" (0) = ¢1 and y"'(0) = co we have

__c1 2 wg 1 —Ls/2
Lly=g+a+5re = (1-e75/7)
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so that

2 6 24 ET
To find ¢; and ¢y we compute

y'(z )—c1+c2x+;EI { 2—<x—§>2m<x—§>}.

Then y(L) = y”(L) = 0 yields the system

1 1 1 wo AN
e+ = I3 I4_ < > —
21V T Ty EI{ 5

y(z) = lC1:I: + 162:1: +iﬂ{ 4 <x—£>40?l<a:—;£>}.

1 1 Swo
- L2 - 3 L4 —
gal” Tgal e =0

2
1w |2 £> 3wo o
i+ el oo [L (2 }—-c1+ch+8EIL =0

Solving for ¢; and ¢y we obtain ¢ = —1% woLg/EI and ¢g = 128 woL/EI Thus
_ W (9 50 19 1 4_i< £>4oy< _£>
vio) = 77 <256L w ol Ty ) Weog))

81. In order to apply Theorem 7.7 we need the function to have the form f(t—a)U(t—a). To accomplish

this rewrite the functions given in the forms shown below.

(a) 2t+1=20t—-1+1)+1=2(t—-1)+3
(b) et = et=5+5 — ¢Bet=5
(c) cost = —cos(t —m)
(d) 2 =3t=(t~-2)2+(t—2) -2
82. (a) From Theorem 7.6 we have £{te*} = 1/(s — ki)%. Then, using Euler’s formula,

Pftef} = L {tcoskt + itsinkt} = £ {tcoskt} + i L{tsin kt}

_ 1 s+ k)? P — P g 2ks
o (s—k)? (24 k227 (s24+K2)2 0 (s24+k2)27
Equating real and imaginary parts we have

— k2 . 2ks
____];2.5_ and ZL{tsinkt} = m

ZL{tcoskt} =

(b) The Laplace transform of the differential equation is
s Lz} + Wt L{z} =

S
s2 w2’

Solving for £{z} we obtain £{z} = s/(s? +w?)%. Thus z = (1/2w)tsinwt.
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10.

11.

12.

13.

14.

15.

Exercises 7.4

d [ s s -4
L{tcos2t} = s <52 +4) - (s2 + 4)2

,‘f{tsinhBt}=—i( ’ )‘ =

ds \s7=9/) " (52 -9y
d2? 1 652 + 2
2 . - =
f{t Slnht} d52 <52_ 1> (52_ 1)3
2 s d(1-s2\ 2(s-3)
L1 :__( >=— =
{t COSt} 42 \s2+1 ds <(52+1)2> (52+1)3
. d 6 12(s — 2)
Plie2t - _2 =
{te sm6t} ds (5_2)?+36> [(5_2)2+36]2
. d(_s+3 \_ (54329
#{te 3 cos 3t =———< >=
{e cos } L\ GF3250 (s+3)2+ 9]
13 6
listl=-= =<
{12} s
,‘f{tQ*tet}: ___2___
s3(s—1)?
—t t — s 1
jf{e * e cost}— G+D[s—12+1]
1

${62t * sin t} = m_l)

t_r _1 A 1
}f{/oe dT}—;ff{e}_S(s__l)
t 1 s 1
.‘f{/o COSTdT}—Ef{COSt}_ s(s24+1) s24+1
t _1 -t 1 s+l st
.‘f{/oe cos¢dT}~s${e COSt}*s(s+1)2+1_5(52+25+2)
t 1 . 1(_ d 1 L% 2
jf{/o 7-sm7'd7'} = Lltsint} = 3 <_d_s ;m) -7 (s2+1)%  (s2+1)°
t t—1 ¢ !
jf{/o Te dT}=${t}${e}=m
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16.

17.

18.

19.

20.

Exercises 7.4

t
${/0 sin 7 cos(t — 7) dr} ¥ {sint} L{cost} =

¢
${t/0 smrdr}
¢
${t/0 Te_TdT} =

${/ smrdr} -
d t_
_Eg{t/o Te dr}

R R DR

1

o {oiy

s—1)

1

(©) :f—l{-g——-—-—

s (s—1)
(a) The result in (4

Then

SO

-1

38

}

S

)is LTHEF(s)G(s)} = f
2k3

)= vy

* g, so identify

and G(s) = 45

st +

f—l{—l——/j(i-—l)}=/ot(eq'—-l)dr=et—t—l

k2’

f(t) =sinkt — ktcoskt and g¢(t) =4coskt

9O = frg=a [ fir

t
= 4/0 (sin kr — kr cos kt) cos k(t — 7)dr

Using a CAS to evaluate the integral we get

8k3s
DA
{(32 +k%)3

(b) Observe from part (a) that

Z{t(sinkt — ktcoskt)} =

2k%/(s? + k%), so

Z{t(sinkt — ktcoskt)} = —

} = tsin kt — kt* cos

8k3s

d 2k3

kt.

(s2+k2)3°
and from Theorem 7.8 that Z{tf(¢t)} = —F'(s). We saw in (5) that Z£{sinkt — ktcoskt} =

8k3s

5

(s2+1)°
d (1 1 ) 3% +1
ds \s s2+1/  §2(s2+1)°
Cd1 1\ 3+l
ds\s (s+1)2)  s2(s+1)3

}=$—1{————-—l/32(3_1)}=/Ot(ef—r~1)dr=et—%t2—t—1

t—T

ds (s2 + k2)2
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21.

22.

23.

24.

25.

26.

27.

28.

(1 _ e—as)Q 1 — g—a$

1 a 2a —s
W)= 1 ¢2as [/0 et _/a ¢ tdt} - s(1 — e~2a9) - s(1 4+ e~es)

1 @« 4.1
LU0 = Tz |y €= e

Z{ft)} = 1—_1;_&/0 pie "l = (bls e 51—1>

l—e*
—st —t —st
L) [/ te dt+/ e
_ 1 LA 1 em/? 4 e=7/2 1 s
f{f(t)}-—-‘l—_'ﬁ/o‘ € Slntdt—82+1'eﬂs/2_e_7rs/2 —52+1 coth 5

3 1 Tt 1 1
f{f(t)}_l_e—%rs/o € Slntdt=52+1.1-—€_7rs

The Laplace transform of the differential equation is

s L)+ L) =

Solving for £{y} we obtain

Exercises 7.4

3{}_ 2s 1 1 1 1 +E s 4 N s
U T2+ 12 " 25+1 28241 282+1 (2412 (12
Thus

(t)—-—le"t Ly t+lcost+l(sint—tcost)+ltsint

v =73 ST 2 2

= 1‘t+1 ost ltcost-i—ltsint
=Tt TRtstTy ptemt

The Laplace transform of the differential equation is

2(s—1
sZ{y} - ZL{y}= (@—Qéﬁﬁi
Solving for Z£{y} we obtain
2
=G

Thus

y = e'sint — tef cost.

29. The Laplace transform of the differential equation is

s
s2+9°

s L{y} - sy(0) - y/(0) + 9 L{y} =
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30.

31.

32.

Exercises 7.4

Letting y(0) = 2 and ¢/(0) = 5 and solving for £{y} we obtain

233+532+193—45_ 2s + 5 + s
(s2+9)2 S s24+9 249 (s249)%°

Z{y} =

Thus 5 .
y = 2cos 3t + gsinBt + gtsinBt.

The Laplace transform of the differential equation is

s22{y} — sy(0) —¢/(0) + L{y} =

2417

Solving for Z£{y} we obtain

32
§7—8°+s s 1 1
Ly} = = - + .
v} (s24+1)2  s24+1 s2+1  (s?+1)2

Thus ) !
Yy = cost — Esint — -2-tcost.

The Laplace transform of the differential equation is

s2L{y} - sy(0) — i/ (0) + 16 L{y} = &L {cosdt — cos 4t U(t — )}

or
2 — s -
(s°+16) L{y} =1+ 7516 ¢ ™ L{cosd(t +m)}
S o™ Pleosdt
+ 5 T ¢ {cos 4t}
=1+ S S e~
- s2+16 %2+ 16
Thus .
B s 3 s s
=gt e e e
and

1 1 1
y= Zsin4t+ gtsin4t - g(t —m)sind(t - m)U({ — w).

The Laplace transform of the differentidl equation is

52 £{y} - sy(0) — y/(0) + £ {y} =«5f{1 —W<t - %) +Sinm<t - g>}

or (52+1)${y}=S+%—%e‘“/2+e"“/2${sin<t+g)}

1 1
=s+=—2e ™24 e7™/2 Llcost)
s s

=S+£_le—7rs/2+___‘_s___

- e—7rs/2.
s s s+ 1
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33.

34.

Exercises 7.4

Thus
x{ }: S + 1 _ 1 e—frs/2_+_ S e—ﬂ's/Q
e s(s2+1)  s(s?2+1) (s241)2
S 1 S 1 S -—773/2 S —773/2
= et el e +
Srits T 21 <s 32+1) (s241)2
1 1 S -7s/2 S -7s/2
=—-—(~-- ——— €
s <s 32+1>e +(32+1)2
and

i3 )

. s 1 T
=1—(1—smt)all(t—§>+§<t—§

The Laplace transform of the differential equation is
' 1 2s

2 LIV E
(s2+1) (s*+1)

SE{y}+ £y} =

Thus
1 28
W= ey

and, using Problem 20,

1 1
y=5(sint —tcost) + Z(tsint—zt?cost).

DANANWAWAYE
N IAVEAVARVARY.
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35.

36.

37.

38.

39.

Exercises 7.4

The Laplace transform of the given equation is

Z{y+ Z2{t} Z{f} = £{1}.

Solving for Z{f} we obtain Z{f} = ;% Thus, f(t) = sint.

The Laplace transform of the given equation is
F{f} = L{2t} -4 ¥ {sint} £{f}.
Solving for Z{f} we obtain

252+2 21 8 /35
Ply=tt 2L, 8 V5
s2(s2+5) 552 5/552+5
Thus
f(t) = 204 8 _sinvBe
5 5V5 '
The Laplace transform of the given equation is
L} = L{te'} + L {1} L{f}.
Solving for Z{f} we obtain
5? 11

1 2

1

1

3 1
‘f{f}z(s—l)B(sH)=§s—1+1(s—1)2+1(s—1)3*§‘s+1'

Thus

1 3 1 1
fe) = get + Ztet + Ztht - ge't

The Laplace transform of the given equation is
L{f}+2L{cost} L{f} = 4£{e7t} + L{sint}.
Solving for Z{f} we obtain

2
x{f}z% +s+5_ 4 7 2

Thus
F(t) = 4e™t — Tte”t + 4tPet,

The Laplace transform of the given equation is
L{f}+L{1y2{f} = £{1}.

Solving for Z{f} we obtain £{f} = si—l Thus, f(t) = et
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40.

41.

42,

43.

44.

Exercises 7.4

The Laplace transform of the given equation is
P{f} = Pleosty + {7} £{f}.

Solving for £{f} we obtain
s

=gt ar

Thus
f(t) = cost + sint.
The Laplace transform of the given equation is
8
L{fy =2 {1} + 2 {t} - 5 L} L)
Solving for Z£{f} we obtain

s?(s+1) s s?
ZL{f} = = + :
v U st+16 si+16  si416
Thus .
f(t) = cosv/2tcoshv/2t + m(sm V2t cosh V2t + cos V2t sinh v21).

The Laplace transform of the given equation is
Ly —22{f} = {e' — 7'} £{f}.
Solving for Z{f} we obtain
-1 11 1 3

S
=g =2 na
Thus 1 )
=t ——3

The Laplace transform of the given equation is o
s&{y} - y(0) = £{1} - L{sint} - Z{1} Z{y}.
Solving for £{f} we obtain

2s
(s2+1)2°

3 2
s —8“+s 1
Z = =
v} s(s2+1)2  $2+1

N 1
2
Thus .
y =sint — §tsint.
The Laplace transform of the given equation is

s L{y} — y(0) + 6 L{y} +9L{1} L{y} = £{1}.
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45.

46.

Exercises 7.4

1
Solving for Z£{f} we obtain Z{y} = GTaE Thus, y = te™3.
The differential equation is 30l
20
l— =100[U(t—-1)-U(t -2
0. +3z+005/ dr = 100[%U(t — 1) U (¢ — 2)] -
or i .
0.5 . .
—-—+30z+200/ T)dr = 1000[ (¢ — 1) = (¢ — 2)], » R A
-20
where ¢(0) = 0. The Laplace transform of the differential equation is 20
) 200 1000
sZ{i} —y(0 )+30${z}+—${ } = (e7° —e™%).

Solving for £{i} we obtain

1000e™* — 1000e~2s 100 100
L = — < _ ) -5 _ ,—2s )
{1} 52+ 305 + 200 s710 5520/t )
Thus
i(t) = 100(e™ 001 =201y Q¢ — 1) — 100(e~ 1002 — =02y (¢ — 7).
The differential equation is i

di 1t
0.005— + 1+ — (T)dT=100[t—(t—1)0u(t—1)]

at 0.02 s
or
dz !
+ 2004 + 10 000/ P)dr = 20,0000t — (t — 1)U — 1)),
0.5
where i(0) = 0. The Laplace transform of the differential equation is 65 T 1.5 2°

s L{i} +200 £{i} + 200

L{i} =20 000( ;12—@-3)

Solving for £{:} we obtain

2 2 2
0,000 (1—e) = 200

Py = 20000 2_ _
fo} s(s + 100)2 s s+100  (s+ 100

)2} (1~e®).
Thus
i(t) = 2 — 2e7 100 — 20027100 — 29y (£ — 1) + 271D 9t — 1) 4 200(¢ — 1)~ 10D gy (¢ — 1).
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47. The differential equation is

di 1
S i=E
7 +1 (t), .
where ¢(0) = 0. The Laplace transform of this
equation is 1 2 3 i
-0.5
sZ{i} + L{i} = L{E(t)}.
-1
From Problem 21 we have
LBH) = ——
s{(1+e=s)
Thus
1)Ly =
(s U= s(l1+e%)
and
1-— 1—e"*% 1
L) = =
e} = s(s+1)( Te ) ssrl)ltes
=<1 1 )1_6 1—e S e 38 yomis L)
s
= (1 ) (1—2e7° +2e72 —2e7% 42745 — ... ).
s
Therefore

=[1-2UE-1)+2UE-2)—-2UE-3) +2Ut —4) — - -]
—lemt 2D — 1) — 2~ 2>ozz( 2)

42D - 3) — e Dy — ) 4]

_1—e-‘+22 n(1— e )9t — n).
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49.

Exercises 7.4

The differential equation is i
di 1
—+i=FE(t
di o ) 0.5

where 1(0) = 0. The Laplace transform of this

equation is L 2
-0.5
sZ{i} + Z{i} = L{E®)}.
-1
From Problem 23 we have :
171 1 1 1 1
P{E(t =-<__ )=_*-
{E®) s\s e —1 s2 ses—1
Thus .
NE{ ===
and . . .
Fli} =
b s2(s+1) s{s+1)es—1
_<1 1,1 )_(3_ 1 ) 1
T\s2 s s+l s s+1/es—1
_ 1 1 1 1 1 —s —2s —-3s —4s
_<32 s+s+1> <s s-|—1>(e e THe e
Therefore

i) =@t-1+et)—(1—e MUt -1) - (1 -e =)y - 2)

The differential equation is =/ + 2z’ 4+ 10z = 20f(t), where f(¢) is the meander function with a = 7.
Using the initial conditions z(0) = z/(0) = 0 and taking the Laplace transform we obtain

20 1
\ B -
(87 +25 +10) L{z(t)} = — (1~ ™) 73
2
- —3—0(1 —e ) (1 — e eI eI
2
- ?0(1 — 267" +2e77 — 270 410 )
oo
=20 B e,
o S =1
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40

Then
20
=
=)} s(sz+23+10)
_2_ 2s +4
T s s2425+10
2 20+
s (s+ )
and

B NEIIE

oo
Tl —nms
s(s? + 25+ 10) 2 (-

n=1

4s + 8

}e—mrs
2
= s s+ 2s+10

i:: L_ (s+1)+1}8_m

(s+1)2+9

oo

z(t) =2 <1 — e tcos 3t — %e‘tsin 3t> +4 Z(—l)”[l — e~ () cos 3(t — nr)

1

n=1

- ge_(t‘”’r) sin 3(t — mr)} Ut — nw).

The graph of z(t) on the interval [0, 27) is shown below.

X

50. The differential equation is 2”7 + 22’ +z = 5f(t), where f(¢) is the square wave function with ¢ = 7

Using the initial conditions z(0) =

z'(0) = 0 and taking the Laplace transform, we obtain

(s + 25+ 1)"%{1( )} = g 1 +1€_ﬂ_5 =Z(1-eT+ e 2ms _ g=3ms | —dms )
5 ks n_-nms
=<2 (-1
n=0
Then
5 = x 1 1 1
A ¢ n,—nms B AL _ —n7s
tal0)] S(s+1)2,§0( 2 5;::0( ) (s s+1 (s+1)2)e

and
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The graph of z(¢) on the interval [0, 47) is shown below.

51. f(t) = —%f'l{%[ln(s —-3)~In(s+ 1)]} = —%3—1{8_1_3 - Sj_ 1} = —% (e?’t — e‘t>

52. By definition, t ¥ (t — a) = f{(t — 7) % (7 — a) dr. We consider separately the cases when a < ¢
and when a > t. When a < ¢, then

¢ ¢ (t-‘T)2t 1 2
A(t—f)m(f—a)df_/(l(t—f)df_— I | =5t - a2,
When a > ¢t, then U (7 —a) =0since 7 <t < a and
¢
/O(t—-T)OU(T—a)deo.
Therefore . ,
1t — 1
t*ou(t—a)z{Q(t 2" t>a=—(t—a)2Ql(t—a).
0, t<a 2

53. First method: By the definition of the Laplace transform and integration by parts we have

x{/otf(f) dT} - /0°°e-st (/Otf(f) dT> it

e 00

i [Pk [T et a
5

F

8

= l/Ooo e f(t) dt =

8

Second Method: Let g(t) = ¢ f(7)dr; then ¢/(t) = f(t) and g(0) = 0. By Theorem 7.8
Z{g )} = s L{g(t)} - 9(0) = s Z{g(0)},

s 0 =s§£{/0tf(7-) dT},

F(s)

8

and 2{ [} riryar} = S 2700) -
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54. Let u =1t — 7 so that du = dr and
t 0
frxg= /0 f(n)glt—7)dr = ——/t ft—u)g(u)du =g * f.
55. (a) Using Theorem 7.8, the Laplace transform of the differential equation is

LY = y(0) ~ (0] + ¥ — 3(0) + & [5¥ —y(0)] + nY

d ., d
= —— [s*Y — [sY Y
dx[s ]+sY+ds{s |+n

=—32<—d—Y> —25Y+sY+s<—d—Y> +Y +nY
ds ds
=(s—s2)<—d%Y> +(1+n-98Y =0.

Separating variables, we find

g_}:=1+n—sdsz< n _1+n>ds

Y s2—s s—1 s

InY =nln(s=1)-(1+n)lns+c
(s—1)"
Y=01?'_:n—.

Since the differential equation is homogeneous, any constant multiple of a solution will still
be a solution, so for convenience we take ¢1 = 1. The following polynomials are solutions of

Laguerre’s differential equation:

s &2
n=2 Lg(t)=§é’_1{(s;1)2}=fé’"1{é—s—22+si3}=1—2t+—t2
n=3 Ls(t)=$‘1{(5;1)3}=$‘1{é—%+%—§}=1—3t+%t2 3
=1—4t+3t2—§-t3+.§12t4

(b) Letting f(¢) = t"e~t we note that f*)(0) = 0 for k = 1,2,3,...,n— 1 and f™(0) = nl.
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56. (a)

(b)

Now, by the first translation theorem,

t dm 1 1
f{% Ezztne—t} _ Ex{etf(n)(t)} - Haf{f(n)(t)} s

1 V£3 n,_— n— n— n—
= [ 2™y = s TO) =m0 - - V)
1 n n_—t
= E—l[s :f{t € }L—vs—l
17, n o (s=1)*
B T‘J[s (s + 1)+l L_~S—1 = T
where Y =% {L,(¢)}. Thus
Ln(t) = e—tﬂ(t"e_t) n=0,1,2
Tl den T T
The output for the first three lines of the program are
Wt] + 6y'[t] + y"[t] == ¢t sin]{]
2s
2
- —248Y) == — 5=
1-2549Y +5°Y +6(—2+sY) e

—11 — 45 — 22s% — 453 — 11s%* — 265
Y ——
(14 52)2(9 + 65 + s2)

The fourth line is the same as the third line with Y — removed. The final line of output shows
a solution involving complex coefficients of e and e~*. To get the solution in more standard

form write the last line as two lines:

euler = {E"(I t)-> Cos[t] +1I Sin[t], E"(-I t)-> Cos[t]-I Sin[t]}
InverseLaplaceTransform(Y,s,t]/.euler//Expand

We see that the solution is

487 247 1
y(t) = (%O + —5675> e~ 4 %50 (13cost — 15tcost — 9sint + 20tsint).

The solution is

\/3/5
y(t) = %et — ée‘m cosV15¢ — T/ e t/?sinV15¢.
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(c) The solution is
g(t) =1—cost+ (6 —6cost)U(t — 3m) — (4 +4cost) U(t — ).

q

’\/‘T\AL/T/T\T;

1 ! I I I
-5:1: “\/M

Exercises 7.5

=t

. The Laplace transform of the differential equation yields

1 — &8
L{yy = ¢

so that
y =Dyt —2).

2. The Laplace transform of the differential equation yields

2 +e_s
s+1 s+1

Ly} =

so that
y=2e"t e Dy —1).

3. The Laplace transform of the differential equation yields

Llyh = s (14677)

so that
y=sint +sintU(t — 27).

4. The Laplace transform of the differential equation yields

1 4

L{v} = 452416

6—-27rs

so that .
y= Zsinél(t —2m)U(t — 2m).

%)

. The Laplace transform of the differential equation yields

ff{y} - 821 - (e—ws/Q + e—37rs/2)
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11.

Exercises 7.5

so that 3 3
m m i ™
= sl T2 OU ) ‘ ) GU( __>
Y sm(t 2> (t 2>+sm(t 2> t 5
m
— —costU(t— T % )
cost (t 2>+cost ( 5

The Laplace transform of the differential equation yields

1
‘:_1 1( —-2rs + e—47r5)

Ly} = 2

so that
y = cost + sint[U(t — 2r) + Ut — 47)].

The Laplace transform of the differential equation yields

11 1 1

{y} 2+2(1+e—s)=[§—‘;—-2.s+2](1+e—5)

so that

L1y [l _1 —2<t—1>]ou _
y=7 2@ +2 5e (t—1).

. The Laplace transform of the differential equation yields

+1 1 3 1 31 11 1 1
f = 5 —2s = - ——— =~ — — — J— [
W= 55-9° 15—2 45 252 |25-2
so that 3 - A
g2t _ 32 2At—2) ]ou _
= =t t—2).
v=3¢ Tt {2 2/ tE=2)
. The Laplace transform of the differential equation yields
_ 1 —2rs
v} = G+22+l’

so that
y = e 22 sin t AU (¢ — 2m).

The Laplace transform of the differential equation yields

{y}_(8+1) —S

so that
y=(t—1e Dy —1).

The Laplace transform of the differential equation yields

4+s e~ 4 g7 3ms
s At s yersy R Sy
2 3 s+ 2

1
3G+ T2t E 3
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12.

13.

14.

Exercises 7.5

so that 5 .
y= ge_% sin 3t + e~ % cos 3t + 56-2“—”) sin3(t — m)U(t — )
+ %6‘2“_3”) sin3(t — 3m)U(t — 37).
The Laplace transform of the differential equation yields
1 e™% 4748
£ =
W= 6T T o D6 -9
1111 1 1 1 1 1 1 7/ o, 4
= TH o1 5(s~1)2+25s—6+[ 5s—1+5s~6} (7 +e7)
so that ) ) )
I T PO N - 6(t— 2)}02”__2
y 7€ 5te + 75¢ + { € 24 56 ( )

_1- 6(t— 4)} _
+|-ze +5e Yt — 4).

The Laplace transform of the differential equation yields

_12 " 13! " 1&2 —Ls/2
${y} a (O)+ 6 S4y (O)+ 6 EI 846

so that
3

_1L moygd + L 2o ( - £> ( - £>
y-—2y(0)z+6y(0) +6EIX 5 U( z 5 )
Using ¥”(L) = 0 and y"(L) = 0 we obtain

1P0L2 1P03 1P< L) < L)

R R T

=1ErY TsEl” TsEI\"T2) "3
<

B EI< T 6:5 , O_:10<2
)l PrI?/1 L L
2 (- 2 —<z<L.
4E] <2I 12)’ yszsl

From Problem 13 we know that

_ Ll L0)23 1_P£< _£> <_£>
y—2y(0)z+6y (0)z +6EIX U z .

Using y(L) = 0 and 3/(L) = 0 we obtain

_1RL, 1R li(I_L>ouI_£>

V=16 EI 12EI° T8 EI 2 2
L, 1 3> L
—_ — < i
<16I A 0sz<3
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15. The Laplace transform of the differential equation yields

Z{y} = !

2+ 2
so that y(t) = sinwt. Note that 3/(0) = 1, even though the initial condition was 3/(0) = 0.

Exercises 7.6

1. Taking the Laplace transform of the system gives
s Z{z} = -L{z} + L{y}
sP{y} -1 =2%{z}

so that
1 11 11
Lz} = == Y
{z} (s—1)(s+2) 3s—1 3s+2
and 2 2 1 1 1
Lyt == = - =
{v} +s(s—1)(s+2) 3s—1 3s+2
Then ) )
_ St -2t 2t L -2t
z—3e e and vy 36 +3e .

2. Taking the Laplace transform of the system gives

sZ{z} —1=22{y}+ 1

s—1

s iy —1 =8${z}—sl2

so that
g{y}=53+732‘3+1zil_i 1 s 1 88 1
s(s—1)(s2-16) 16s 15s—1 96 s—4 160s+4
and 1 8, 173, 5 _,
TR AL T L
Then

1, 1. 1, 1, 173, 5 _i
Sy p b= ot ety gl 00 it
TEY YT T Tt Tt

3. Taking the Laplace transform of the system gives
sZ{z}+1=ZL{z} -22{y}
sZ{y}t —2=52{z} - Z{y}
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so that
5 s 5 3
¥ — 2

{z} = 2+9 249 38249

and :
= —cos3t — gsinBt.

Then ) ) .

y=52- Em' = 2cos 3t — gsinBt.

4. Taking the Laplace transform of the system gives

(s+3) PL{z} +sZL{y} = %

(s = 1) 2{zh+ (s - 1) £fu} = ——

-1
so that
—1 11 1 1 4 1
Pyt I 1 1
{u} 35(3 1)2 35 (35-1 3 (s~ 1)2
and 1-2 11 1 1 1 1
—2s
,((,p = ——— e e e —_ - .
B =t =35 3501 3G
Then 1 1 1 1 1 4
r==z—-e—-te! and y=—=+ e +-te".

3 3 3 33 3
5. Taking the Laplace transform of the system gives

1
(25 —2) F{z} + s L{y} = B
2
(s~ 8) £{z) + (5= 8) 2y} = -
so that
-5—3 11 5 1 2
e} = 3—2)(8-—3) 23+ 2s—2 s-3
and 3s—1 11 5 1 8 1
S—
2 = — == e — = —_ .
W=~ 75 3:-3735-3
Then s s 5
oY 2t 53t —_ I _ 9 2t ° 3t
z 2+2€ 2 and y 6 5€ +3€.

6. Taking the Laplace transform of the system gives
(s+ 1) L{z} - (s —-1)&{y} =-1
sE{z}+(s+2)L{y} =1
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so that )
s+1/2 s+1/2
Ly} = =
tv} sP+s+1 (s+1/2)2+ (V3/2)2
and /2 /
-3 -3/2
Lz} = = .
b= (s +1/2)2 + (/3/2)?
Then
y = e"t/2 cos \/7§t and z=e"*/%sin —-\g—gt.

7. Taking the Laplace transform of the system gives
(s2+1) L{z} - L{y} = -2
~Plr}+(P+ 1) Py =1

so that
—-25° -1 11 3 1
Z{z} 11952 242 242+2
and ) 5
r=—=t— ——sinV2t.
27 2% !
Then

1 3
=2 = —=t+ —=sin V2t
y=z+z 2t+2\/§s1n\/—

8. Taking the Laplace transform of the system gives
(s+1)Z{z}+ZL{y} =1
18(z}~ (s+1) Ly} =1

so that
s+ 2 s+1 1 2
f = = —
{z} 2 +2s+5 (s+l)2+22+2(5+1)2+22
and 5 ) 5
-5+ s+
Yy = = 2 .
(v} §2+25+5 (s+1)2+22+ (s +1)%+22
Then

1
z=e"cos2t + Ee‘t sin2t and y = —e tcos2t + 2e" sin 2¢.

9. Adding the equations and then subtracting them gives

dQI' 1 2
=ttt 42
a2 2 +
d?y 2

i = ltf 2t
dtz2 2



10.

11.

Taking the Laplace transform of the system gives

1 14" 13!
Hep =8+ st3a
end 14 13!
f=us 3y
so that
1a 13 La_ 13
=8+ —t! 4= = —tf— 245
z 8+24t +3t and vy 24t 3
Taking the Laplace transform of the system gives
6
AN 3Py =
(s 4) Lo} + 20} = 5

(s +2) Lz} - 288 Ly} =0

Exercises 7.6

so that
4 4 1 4 s 8 1
£ = = = i
{z} (s—2)(s2+1) 5s—2 5s&+1 5g2+1
and
2{}_ 2s+4 _1 2 224_1 1 _§ S § 1
y—_s3(s—2)(52+1)_s 2 "g8 55—2 58241 5s2+1°
Then
4., 4 8
= —e" — —cost— —sint
5 5 5
and

8
y=1—2t—2t2+%em—gcost+gsint. _

Taking the Laplace transform of the system gives

_ s?F{z} +3(s+ 1) L{y} =2

2 4 —
s Lz} + 3%{y} I
so that
2s+1 1 1 12 1
2 = —_—— =~ —_ 4 = — —
{z} s3(s+1) S AR R
Then
1
m=1+t+§t2—e’t
and ) ) )
y= te_t—gz:“— te "+§e_t——§.
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Taking the Laplace transform of the system gives

12.
2e~*

(s —4) Z{z} +22{y} = —

t']

=3 F{z} + (s + 1) Z{y} =%+

so that
~1/2 _ 1
£ [ A S
12l o s S P Y Py
_11_11]+e_s[_1 1]
T2s-1 2s-2 s—1 -2
and
—s 4-1 —5/2 +2
< _e s/ s
{w} TG -2) G- =2)
B WO W) U S
4s5—1 2s5-2 s 2s—1 s5-—2
Then
1, 2t t—1 |, _2(t=1)1g
=g -3 +[e +e ]W(t 1)
and 5 .
yzzet—52t+[1 et_1+e2(t‘1)}021(t—1)
13. The system is
I’ll =311 + 2(12 - Il)
Ty = —2(z9 — 1)
Il(O)ZO
zy(0) =1
z2(0) =
75(0) = 0.

Taking the Laplace transform of the system gives

(s2 +5)L{x1} —2&{z} = 1
—2${Il} + (32 +2) ff{IQ} =3

so that
s24+ 2542 s 1 1 2 s

4 B

2
x = == — - —_
{z1} A 172456 552+1 55211 55246

and
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3
+5s+2 4 2 1 1 2 6
Flao) = 52 = tra it o 2\/_ :
(24 1)(s24+6) 5s2+1 5s82+1 552+6 5/6s2+6
Then
2 1 2 4
zl=gcost-l—gsint—BCOS\/ét—l-S—\/ésin\/ét
and 4 2 1 2
zg=5cost+-5—sint+gcosx/6t—5——\/ésin\/6t.

14. In this system z; and zo represent displacements of masses mj and meg from their equilibrium

positions. Since the net forces acting on mj and my are
—kizy + ko(zo — z1) and  — ko(zo — 1) — k3zo,

respectively, Newton’s second law of motion gives

miz] = —kiz1 + ka(z2 — 21)

mazy = —ka(zo — 1) — kazo.
Using k1 = ky = kg = 1, my = mp = 1, 21(0) = 0, 1(0) = —1, z2(0) = 0, and z4(0) = 1, and
taking the Laplace transform of the system, we obtain

(2+52) L{a1) - Lz} = -1

Plar) — 2+ ) L{zg) = -1

so that
L{z1} =~

1

£ = .

2y3 e {e2) s2+3
Then

1 1
T = —-—\/Esin\@t and zo = 7_§sin\/§t.

15. (a) By Kirchoff’s first law we have i1 = 4o + i3. By Kirchoff’s second law, on each loop we have
E(t) = Ri1+L1i/2 and E(t) = R’L'1+L2’L'g or L1i12+Ri2+Ri3 = E(t) and LQig+Ri2+Ri3 = E(t).
(b) Taking the Laplace transform of the system
0.0145 + 5ig + 5ig = 100

0.0125¢5 + 5ip + 5ig = 100
gives

10,000
(5 + 500) L{iz} + 500L]is} = 0_3_

0
400£{in} + (s + 400) L{is} = §9£_
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so that - . 0
1 8 1
Pliat = 22 222 '
{23} 52 + 900s 9 s —9 57 900
Then
5= 0 80,- : , . 100 100 _
3= 5 =€ 900t and iy =20 — 0.0025¢% — i3 = 5 "5 ¢ 900¢

(c) i1 =iy +13 = 20 — 20e~900¢
16. (a) Taking the Laplace transform of the system

i + 15 + 1049 = 120 — 120U(t — 2)

—~1045 + 55 + 5ig = 0

gives
(s + 10) L{iz} + sL{is} = ESZQ <1 - 6_28)
—10s&{in} + 5(s + 1) L{is} =0

so that

Zliz} = (33213—()5?:4—1)10)3 <1 a 6—28> - L fi/B - 5?2 * g} <1 B EQQ)
and

Plis) = sy s (1-¢7) = [ 2 _?j_og} (1-c2).
Then

i = 12+ 48¢7%/% — 60e ™% —.[12 + 487D/ — 0e A= Ut — 2)

and

i3 = 240e™%/% — 240e™% — [240e-5<t—2>/3 - 240e—2<t—2>] Y(t - 2).

(b) 41 = iy 4143 = 12 + 288¢™%/3 — 300e™% — [12 +288e~5(t-2)/3 _ 300e-2<t—2>] AUt —2)
17. Taking the Laplace transform of the system

i+ 11ig + 6i3 = 50sint

i3 + 619 + 6i3 = 50sint

gives
(s + 11) L{ig} +6£{iz} = —
s+ 1
6.L{in) + (s +6) L{ig) =
s4+1
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18.

19.

Exercises 7.6

50s 20 1 375 1 145 s 8 1

so that
Lz} = (
Then
ip =
and

i3 =

s+2)(s+15)(s?2 + 1) TT3s42 14605115 118241 T8 E4T

20 >
22y 375 e 15t 4 E?cost + E— sint

13 1469 113 113
25 1, 11 30 250 280 81
2Dgpr Ly 30 —or 290 g5 280 810
3Ot g T 3¢ T g6¢ 113 8t Tz om

Taking the Laplace transform of the system

0.5i; + 50i2 = 60

0.0054 + 49 — i1 = 0

gives
120
—200%£{i1} + (s +200) #{is} =0
so that
i) = 24,000 _61 6 s+ 100 6 100
277 §(s2 ¥ 2005 +20,000) 55 5 (s+100)2+1002 5 (s+ 100)% + 1002 "
Then
i = g - ge"mt cos 100t — ge*“"” sin 100t
and

i1 = 0.005% + iy = g - ge—w‘” cos 100t.

Taking the Laplace transform of the system

21} + 50ig = 60

0.005%5 +ip — i1 = 0

gives
. , 60
2sF{i1} +50L{ir} = <
—200Z {11} + (s +200) £{i} =0
so that
6,000
Llig) = ’
{ia} s(s2 + 200s + 5,000)
_61 6 s + 100 62 502
5s 5 (s+100)2 - (50v/2)2 5 (s+100)2 — (50/2)2°
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Then

612

2
jog = = — ge_IOOt cosh 50v2¢ — Te—IOOt sinh 50v/2¢

Tl O

and

D)
ge‘lom cosh 50v/2¢ — 9—;—/()——e‘100t sinh 50v/2¢.

Tt O

11 = 0.0057:12 + 19 =

20. (a) Using Kirchoff’s first law we write 41 = i +13. Since ip = dg/dt we have i —i3 = dg/dt. Using

Kirchoff’s second law and summing the voltage drops across the shorter loop gives

1
E(t)=1R1 + = 1
() = iR+ 54 ¢y
so that
1 1
1= —E(t) - =—=q.
VR Nok
Then
dg . . 1 1 )
o —a = —F(t) — ——q —
g~ BT Pl - gEe-n
and
dg 1
— 4+ = 3 = E(2).
R pn + Cq+R123 E'( )
Summing the voltage drops across the longer loop gives
di
E(t) =i, R, +L£— + Rais.

Combining this with (1) we obtain
3 . . 1
=3 4 Ryig = i1R1 + =¢

R L
Rt c

or

dig X 1
L‘E + R223 - Eq =0.

(b) Using L =Ry = Ry=C =1, E(t) = 50e "t U(t — 1) = 50e~le~ =D U(t — 1), ¢(0) = 13(0) = 0,
and taking the Laplace transform of the system we obtain
50e~!
e
s+1

(s +1)Z{is} — L {q} =0,

-3

(s+1) g} + &L {is} =

so that

50e~le~*
o} = (s+1)2+1

and
q(t) = 50e e~V gin(t — 1)U (¢ — 1) = 50e  sin(t — 1)Ut — 1).
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21. (a)

(b)

Exercises 7.6

Taking the Laplace transform of the system

46! + 64 + 86, =0

8 + 64 +26, =0

gives

4(s*+2) {61} + " L{62} = 3

L2} + (2 +2) £{62} = 0

so that

(352 + 4) <52 + 4) LB} = —3s°
or

1 s 3 s

Z{62} T292+4/3 252+4

Then
1 2 3
O = 5 cos -\/—gt - §cos2t and 6 = —645 — 26,
so that
1 2 3
= - — . 2t.
61 1 cos \/§t + 1 cos
GlA
1 —
3n on !
IEAYANARVEL A,
D

Mass my has extreme displacements of greater magnitude. Mass m; first passes through its
equilibrium position at about ¢ = 0.87, and mass my first passes through its equilibrium
position at about ¢ = 0.66. The motion of the pendulums is not periodic since cos 2t/\/§ has
period v/3 7, cos 2t has period =, and the ratio of these periods is /3, which is not a rational

number.
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(c) The Lissajous curve is plotted for 0 < ¢ < 30. T8

(d) t=0 t=1 £=2
t 01 6
1 -0.2111 0.8263
2 -0.6585 0.6438
37 0.4830 -1.9145
4 -0.1325 0.1715
5 -0.4111 1.6951
=3 e — 6 0.8327 -0.8662
7 0.0458 -0.3186
8 -0.9639 0.9452
9 0.3534 -1.2741
10 0.4370 -0.3502
t=6 t=7 £=8 £=9 £=10
(e) Using a CAS to solve 81(t) = 2(t) we see that 1 = 02 (so that the double  tz5 3

pendulum is straight out) when ¢ is about 0.75 seconds.
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Chapter 7 Review Exercises

(f) To make a movie of the pendulum it is necessary to locate the mass in the plane as a function
of time. Suppose that the upper arm is attached to the origin and that the equilibrium position
lies along the negative y-axis. Then mass m; is at (z, (¢), y1(¢)) and mass mo is at (z2(t), y2(t)),
where

z1(t) = 16sin6;(t) and yi(t) = —16cosbi(t)
and
zo(t) = z1(t) + 16sinbo(t) and yot) = y1(t) — 16 cosba(t).
A reasonable movie can be constructed by letting ¢ range from 0 to 10 in increments of 0.1

seconds.

Chapter 7 Review Exercises

10.

11.

12.

' L s o0 . 12
LW} = [ et [T 2- e tdt = 5 - e

S

LU0} = [t =1 (e - )

. False; consider f(t) =t"1/2.

False, since f(t) = (e)10 = 10,

. True, since limg,o0 F(s) = 1 # 0. (See Theorem 4.5 in the text.)

. False; consider f(t) =1 and g(t) = 1.

_ 1
f{e 7t} = ;_-f——?

_ 1
e} = o
F{sin2t) = 50—

st 2
fé’{e 3tsm2t} = m

. d 2 4s
L{tsin2t) = T ds [32 + 4} T (2 + )

LU AUt~ 7)) = L{sin2(t — MUE — 1)} = e




Chapter 7 Review Exercises

L ! } L -vse, 1 8

|
|
{
|
|
|

S _ -1 s—95 § 2 = 3t 2t §5t in 2¢
}_j {(5—5)2+22+2(s—5)2+22 ¢ cosstdgersin

S+ _s} _ S — —s
_ l{ et e }
€ T2t Taime

=cosm(t— D)U(t - 1) +sinm(t — U -1)

- 1 } 1L nm/L 1 sin ™"y
{L2s2 +n2r2f T L2 pr 52 + (n?m2)/L? Inm ™ L
. ${e‘5t} exists for s > —5.

L 2ttt} = —%F(s —8).

. Pl F(t—R)U(t — k)} = e7Rs L{edtFR) f(1)} = e7Fse®k L f(t)} = e k= F(s —a)
F(s -

a
, whereas

c#{ [eriryar] = L2} -

x{eat /Otf(r) dr} =${/Otf(r)dr}

s—s—a S s—s—a s—a

@)Ut — to)
f&) = FRYUE — t0)
(¢ —t0) U(t — to)
F@) = FOUE —to) + fR)U[E -~ t1)
SO =t -0+ HUC- 1) +UE - D) - UE-4) =t - (- DUR - 1) Ut - 4)
LUO} = 5~ e~ e
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30.

31.

32.

33.

34.

Chapter 7 Review Exercises

) P S SRR B SV IE )
O} = oo~ o o1t

ft) =sintU(t —7) —sintU(t — 37) = —sin(t — M)U(t — 7) + sin(t — 37)U(t — 37)
1
21 s2+1

t _ 1 —7(s—1) 1 ~3m(s—1)
£{ei} = (s—12+1° RS

—37s )

2{f(t)} = -

FE)=2-2U(E—2)+[(t-2)+2U(t—2) =2+ (t — ULt —2)

LUOY ==+ e

et f(t)} = 2y L _eaen

F) =t —tUE— 1)+ (2= )UE = 1) = (2= )UE = 2) =t — 2(t — 1)Ut ~ 1) + (¢t ~ 2)U(t — 2)

2
,Sf{f(t)}:;—Q—;fe‘s—i-;lge'zs

1 2 —(5— —2(s—
.ff{etf(t)} = Goie — o 1)2(3 (s=1) 4 = 1)2(3 2(s-1)

Taking the Laplace transform of the differential equation we obtain

5 1 2
R Al ey N POy

so that

1
y = 5te’ + §t2et.

Taking the Laplace transform of the differential equation we obtain

1
Llv} = (s — 1)2(s% — 8s + 20)
6 1 1 1 6 s—4 5 2

6051 13(—-17 169 (—4F+22 3B (s 4212

so that
1

6 4 t 6 4 5 a.
y 169e + 13te 1698 cos 2t + 3388 sin
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35. Taking.the Laplace transform of the given differential equation we obtain

2{y} = 32

s +6s°+1 1 25 _ 2 2
(s+1)(s+5) s%(s+1)(s+5) s(s +1)(s +5)
6 1 1 1 3 1 13 1

5% 375 273 551 50 545
(611111 11)6_25

% s T5 2T 551 100 555
21 1 1 1 1\
_<5'€ 5 s+1710 s+5>e

so that

6 1t2 + §e—t — 1_916—5t - iau(t_ ) — %(t —2)2%(t - 2)

1 9
e =y 9y - 2 5=y _9).
+ 1° (t —2) 100 e ({ )

36. Taking the Laplace transform of the differential equation we obtain

$$+2 2425487 _
£t = s$3(s—5)  s3(s—5) ¢

1255 2552 558 12552

21 2 1 12+1271 [371 12 1 12 37 1:'6_5
1255 2582 58  125s5-—5 5
so that

7.

37 s(-1)

127 5, [ 37 12
125

1 2
o R ) = St —
125 25 5 125 125 25( 1) 5( 1) +

37. Taking the Laplace transform of the integral equation we obtain
1 1 12
yt=-+5+-—=
{u} s TETEa
so that

1
y(t)=1+t+—2-t2.

38. Taking the Laplace transform of the integral equation we obtain

(2} =65 o 2{f}=%6-

52
so that f(t) = x6t.

39. Taking the Laplace transform of the system gives
1
sz} +L{y} = 2 +1

4z} + s F{y} =2
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40.

41.

42.

Chapter 7 Review Exercises

so that
2
§“—2s5+1 11 1 1 9 1
oy = =5~ + ¢ +=
W = e oer9 - 15 T8s-2 78542
Then . . .
—_ _Z L o -2t _ / _J -2 121:
T = 4+8e +8€ and y= $+t—4e 4e +t.
Taking the Laplace transform of the system gives
1
22(z) + Ly} =
§—2
9 1
2sL{z} + s ZL{y} = P
so that
2 11 1 1 1
e} = (s—2)2 2s 2s-2 (s—2)?
and
Ly} = s=2 31 11 3 1 1
Y=o —22" T4s 22 ds5—2 (s—29
Then
1 3 3
=3 e? +te® and y=—Z—§t+Ze2t te?t,

The integral equation is
t
107 + 2/0 i(r)dr = 22 + 2t.
Taking the Laplace transform we obtain

. 4 2 2 4 9
${2}2<s_3+ ) s §+2 9 5 2 9

= = “ZiZ4 =+ 5+ "
s2)10s+2 s%(55+2) s T E T B s+32+s+1/5
Thus

i(t) = —9 + 2t + 9e™/5.
The differential equation is
1 d%q dq
224,02
s T dt
Taking the Laplace transform we obtain

_ 20 —5s
“lak = 2(s? + 20s + 200) (1 ¢ )

+100g = 10 — 10%U(t — 5).

N il_l S+1O __1_ 10 (1—-6-55>
T [10s 10 (s+10)2+102 10 (s + 10)2 + 102
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so that

1
q(t) = — — —e % cos 10t — —1166_1(” sin 10¢
- {i _ L m100-9) o 10(t — 5) — L o-100-5) 10(t — 5)} At - 5).
10 10 10
43. Taking the Laplace transform of the given differential equation we obtain
2wg (L 4 1 3 158 g 2 ¢ 3!
Ly = 22 A A 7 A
tv} EIL<48 ST 120 S 1 $° TS TE S

so that
5

v= EIL[ ot To\"T7) T\ TRt T

where y(0) = ¢; and y""(0) = cp. Using y"(L) = 0 and y"'(L) = 0 we find
. c1 =woL?/24EI, ¢y = —woL/4EL

Hence

_wg 1, L, I[?, L%, 1(_£>5J(_£>
_12E1L[5 +21 2x+4x+5x Uz :

44. (a) In this case the boundary conditions are y(0) = y”(0) = 0 and y(7) = ¢"(7) = 0. If we let
¢1 = y'(0) and c2 = 3"(0) then

st Z{y} - $*y(0) — s%'(0) — sy(0) — y"(0) + 4 £{y} =% {wo/EI}

and
1 282 15 4 wo [2 s—1 s+1
Py} = L. b - -
{v} 2 #rd 4 s4+4+8E1< (s—=1)2+1 (s+1)2+1>
From the table of transforms we get
y= c—2l(sinx coshz + coszsinhz) + c42(s1nx coshz — cosz sinh z) + m( — coszcoshz)

Using y(7) = 0 and y"(7) = 0 we find

wo wo
c1 = 4}:H(l-i—coshw)cschw C2—~2—ﬁ(1+cosh7r)csch7r
Hence
y= 81271(1 + cosh ) csch7(sin z cosh z + cos z sinh z)
- @(1 + cosh7) cschw(sinz coshz — coszsinhz) + m(l — cos z cosh z).

(b) In this case the boundary conditions are y(0) = %'(0) = 0 and y(n) = ¢/'(7) = 0. If we let
c1 =y"(0) and cp = y"’(0) then

s* L{y} — s%y(0) ~ 5%/ (0) — sy(0) — ¥ (0) + 4 L{y} = £ {6(t — 7/2)}
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and

2s o 4 wo 4 _sn/2

Ll =2 22 :
W=g a7 951715 T4

From the table of transforms we get

€1 . . €2, . .
y= - sinz sinhz + T (sinz coshz — coszsinh z)

wo [ . 7w 7 ™ . s s
+4—E? [sm <z—§> cosh <z—§> — oS <z—§> sinh <z-—§>]% <x— 5)

Using y(n) = 0 and y/(7) = 0 we find

wo sinh § wp cosh §
= Bl sinbn = "FIsnhr’
Hence
Y= o Ezlh—% Sinzsinhz — —o i(Ell—%—(sinzcoshz — cos z sinh z)
2FT sinhn 4F]7 sinhnw

wo . s s T\ . s s
=2 -z S - = IV (z= 2.
+ iET [sm <.’E 2> cosh <2: 2) cos <z 2) sinh <:z 2” (:z 2)
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8 Systems of Linear First-Order
Differential Equations

Exercises 8.1

x

1. LetX:(
Y

) . Then

-3 4 -9
X = 6 -1 0 |X.
10 4 3
1 =1 0
X'=]11 0 2|X
-1 0 1
1 -1 1 0 t -1
X = 1 =1 |[X+}|=32|+] 0+ 0].
1 1 1 12 —t 2
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Exercises 8.1

8

. Let X=|y | Then

dz
dt
dz
T dt
dz
dt
dz

z
-3 4 0 e tsin2t
X = 5 9 0 | X+ 4etcos2t
_..e-t
d
=4z + 2y + €'; d—i’z—x—%?)y—et
~ ot QY s, 42 5t -2t
=Tz 4+ 5y — 9z — 8™ E=4x+y+z+2e; E=*2y+3z+e — 3e
—t dy —t dz ~t
=z—y+2z+e "~ 3t E=3x—4y+z+2e + 1 d~t=—2m+5y+62+2e —t
dt=3x—7y+4sint+(t—4)e4t; %=x+y+8sint+(2t+1)e‘“
. Since
-5 3 —4 -5
X' = e~ and X= et
—10 4 -7 -10
we see that
3 —4
X’:( >X.
4 -7
. Since
5cost — 5sint -2 5 Scost — 5sint
X' = * and X = et
(2cost-—4sint>e - (—2 4> <2cost—4sint>‘
we see that
. -2 5
X' = X.
-2 4
. Since
. X' = 3/2 32 ang -1 1/4 X = 3/2 o-3t/2
-3 1 -1 -3
we see that
-1 1/4
X' = / X.
1 -1
. Since
, 5Y 4 4 : 2 1 5\ , 4 :
X' = 1e+ 4te and 10X= 1e+ 4te
we see that



15.

16.

17.
18.
19.
20.

21.

22.

23.

Exercises 8.1

Since
0 1 2 1 0
X' =10 and 6 -1 0{X=1]0
0 -1 -2 -1 0
we see that
1 2 1
X' = 6 -1 0| X
-1 -2 -1
Since
cost 1 0 1 cost
X = %sint—%cost and 11 0|X= %sint—%cost
—cost —sint -2 0 -1 —cost —sint
we see that
1 0 1
X=| 11 0|X
-2 0 -1

Yes, since W (X1, Xz) = —2¢8 #£ 0 and X; and X3 are linearly independent on —co < t < co.
Yes, since W(X;, Xa) = 8e?t # 0 and X and X are linearly independent on —oo < t < 0.

No, since W (X, X9, X3) = 0 and Xy, Xpo, and X3 are linearly dependent on —oo < t < 0.

Yes, since W (X, X2,X3) = —84e™* # 0 and X;, X9, and X3 are linearly independent on

-0 <t <00
Since
X! 2 a (P B x4 s 2
= an =
Pr\-1 3 2)°7 \~4 ~18 -1
we see that
Al R B R PO
P33 2/ 4 -18
Since .
0 2 1 -5 0
x=(o) = (7 )+ ()= (o)
we see that
. (2 1 -
X, = L1 X, +
Since



Exercises 8.1

we see that
X! = 2 1 X ! et
Po\3 4)7P \7)
24. Since
3cos 3t 1 2 3 -1 3cos 3t
X, = 0 and | -4 2 0 |X,+| 4 |sin3t= 0
—3sin 3t -6 1 0 3 —3sin3t
we see that
1 -1
Xp=1]~-4 2 0|X,+{| 4 sin3t.
-6 1 0 3
25. Let
6 -3 2 0 6 0
Xi=|-1]e?t, Xo=| 1|e¥ Xz=|1|e¥ and A=|1 0 1
-5 1 1 110
Then
-6
Xll = 1 e—t = AX11
5
6
Xy=1-2e%=AX,,
-2
6
Xl3= 3 63t=AX3>
3
and VV(Xl,XQ,Xg) = 20 # 0 so that X1, X9, and X3 form a fundamental set for X’ = AX on
—00 <t < 0.
26. Let



Exercises 8.1

and
-1 -1
A= .
Then /3
2
1 _ \/it_
X1—-<_2_\/-2—>6 —AX},
"\/5 \/—
o —V2t _
X2—<_2_\/-2->6 ——AXZ,

y N L PO B BTSN e I (L PO
P \0 4) 7P\ -6 5)°
and W (Xy, X2) = 2v/2 # 0 so that X,, is a particular solution and X; and X2 form a fundamental

set on —oo <t < 0.

Exercises 8.2

. The system is

X’—12X
“\4 3

and det(A — AI) = (A — 5)(A + 1) = 0. For A\; =5 we obtain

(2SR i - ()
4 —2|o 0 0 ]o 2

For Ao = —1 we obtain
2 2|0 11]o0 ~1
= so that Ko = .
4 4 [ 0 00 | 0 1
1 -1
X = ) 5t+ —t.
01<2>6 [87] 1 [

, <‘2 2)
X' = X
13

and det(A — AI) = (A — 1)(A —4) = 0. For A; = 1 we obtain

THEEHERE o)

For Ay = 4 we obtain
~2 2|0 1 1\0 1
= so that Ky = .
1 —1|o 0 0}0 1
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Then

-2 1
X = t elt.
01( 1)8 +cg<1>

X'= <—Z/12 §> X

and det(A — AI) = (A — 1)(A + 3) = 0. For A\; = 1 we obtain

(G o) =0 ajo) = = ()

For Ao = —3 we obtain
-1 2]0 -1 20 2
= so that Ko = .
~5/2 5|0 0 00 1
2 2
X=c1<5>et+cz<1>e"3t.

(0 2)x

and det(A — AI) = (A+ 1)(2X + 7) = 0. For A; = —7/2 we obtain

(on anfo)= (o ofa) e 1= (7))

For Ay = —1 we obtain
-3/2 20 -3 4]0 4
= so that Ko = .
3/4 —1]0 0 0f0 3
-2 4
X=cl< 1)6_7t/2+C2<3)6~t.

1 -5
X' = 0 X
8 —12

and det(A — M) = (A - 8)(A +10) = 0. For A; = 8 we obtain

(. _‘250}2>=,<; ‘5/0212) sothas ¥:= ().

For Ay = —10 we obtain
20 =50 1 -1/4]0 1
= so that Ko = .
8 -2]0 0 0o 4

375
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. The system is



Exercises 8.2

Then

. The system is

|

-6 2
-3 1

)

and det(A — M) = A(A +5) = 0. For A\ = 0 we obtain

For A\g =

Then

. The system is

and det(A — AI) =

so that

. The system is

and det(A — AI) =

<—6 2
-3 1

—5 we obtain

(A=-1)(2-

|0 1 -1/3]0
]o>:’<o 0 |
2]0 1—2]0
6\0):<0 0\0

- A

I
o O© = =

A+

1
0

1) =0.

Ky =

et+02

2
X'=|5
0

2
1

-1

X

) et

or/\1—1 A=2 and A3 =

31,
1

(%)

and K3 =

2t

-7 0
10 41X

-

s}

2

1

“4+c3]0

€

1
0
2

?

—t

1
) so that K = < ) .
0 3

2
C C
1 E

—1 we obtain

2=XNA=5){A—=T7)=0. For Ay =2, Ao =5, and A3 = 7 we obtain

4

-7
3
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so that
-7 -7
X=q 0 |e?+ 1)) 3|+ c3 5 |e™.
—5 5 5

9. We have det(A — AI) = —(A+1)(A=3)(A+2) =0. For \; = -1, Ao =3, and A3 = —2 we obtain

-1 1 1
K, = 0, Kg=14|, and Ks=| —-1],
3 3
so that
-1 1 1
X=¢ 0 let+er| 4 et + c3 | —1 e,
3 3
10. We have det(A — AI) = ~A(A—=1)(A —2) = 0. For Ay =0, A2 =1, and A3 = 2 we obtain
1 0 1
K; = 0, Ke=1|1], and Kz=]0/,
-1 0 1
so that
1 0 1
X=rc 0j+c| 1l e +c3} 0 et
-1 0 1

11. We have det(A — AI) = —(A+ 1)(A+1/2)(A+3/2) = 0. For A\ = —1, Ay = —1/2, and A3 = —3/2

we obtain
4 —12
K; = 0], K= 6], and K3= 214,
-1 5 -1
so that
4 —-12
X=q 0 |et+co 6 |e %+ c3 2 |32,
-1 5 -1
12. We have det(A — AI) = (A= 3)(A+5)(6 —A) = 0. For A1 = 3, A, = —5, and A3 = 6 we obtain
1 1 2
Ky = 1), Ko=|~-11}, and Kz=| -2{,
0 0 11
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so that .
1 1 2
X=c | 1]|ed+ca]| ~1]e+eg| -2
0 0 11

13. We have det(A — AI) = (A + 1/2)(A = 1/2) = 0. For A\; = —1/2 and Ao = 1/2 we obtain

= a =
1 1 n 2 1 )

so that
If

then ¢; = 2 and ¢g = 3.
14. We have det(A — AI) = (2= X)(A = 3)(A+1) =0. For Ay =2, XAp = 3, and A3 = —1 we obtain

5 2 -2
K1 = -3 s K2 =0 , and K3 = 0 y
2 1 1
so that
5 2 -2
X=¢c | -3 e 4 co | 0 e+ c3 0]e?
2 1 1
If
1
X(0)= |3
0
then ¢; = =1, ¢ = 5/2, and c3 = —1/2.
0.382175 0.405188 —0.923562
15. X =¢ (0.851161 858979 4 oo | _0.676043 | 225684 | o5 | —0.132174 | ¢~ 0-0466321¢
0.359815 0.615458 0.35995
0.0312209 —0.280232 0.262219
0.949058 ~0.836611 ~0.162664
16. X =¢) | 0.239535 | 305452 1 oo | —0.275304 | 209561 4¢3 | —0.826218 | ¢ 292362
0.195825 0.176045 ~0.346439
0.0508861 0.338775 0.31957

continued
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18.

0.313235 —0.301294
0.64181 0.466599

g | 031754 | 202882 4 oo | 0.202136 | e O-195338
0.173787 0.0534311
—0.599108 —0.799567

:

: -
=
,,(/:\

N

Exercises 8.2

(b) Letting c; = 1 and ¢g = 0 we get = = 5¢%, y = 2¢8. Eliminating the parameter we find

y=§z,z>0. Whenc1=—1andCQ=Oweﬁndy=%:r,:r<0. Letting ¢y = 0and cp = 1 we

get z = e~10¢

and co = —1 we find y = 4z, z < 0.

, ¥ = 4e~1%, Eliminating the parameter we find y = 4z, z > 0. Letting ¢; = 0

(c) The eigenvectors K; = (5,2) and Ko = (1,4) are shown in the figure in part (a).

In Problem 2, letting ¢; = 1 and ¢p = 0 we get = = —2¢!, y = €.
Eliminating the parameter we find y = —%:c, z < 0. When
c1=-1and cg =0 we find y = -—%:c, z > 0. Letting ¢; =
and ¢z = 1 we get z = €%, y = ¢*. Eliminating the parameter
wefind y =1z, 2> 0. Whenc; =0 and ¢ = -1 we find y = z,
z <0

In Problem 4, letting ¢; = 1 and cp = 0 we get z = —2e‘7t/2,
y = e~"%/2_ Eliminating the parameter we find y = —%:r, z < 0.
When ¢; = —1 and ¢ = 0 we find y = —%:r, z > 0. Letting

c1=0and co = 1 we get = 4e!, y = 3e~!. Eliminating the
parameter we find y = %.’E, z>0. Whenc¢; =0and cog = —1 we

ﬁndy=%:r,a:<0.
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19.

20.

21.

22,

Exercises 8.2

We have det(A — AI) = A2 = 0. For A; = 0 we obtain
(o)
K= .
3
(5
P=
2
X=c | Vra|( )es(?
s T s 2)]

We have det(A — AI) = (A +1)2 = 0. For \; = —1 we obtain
(1)
K= :

1
P 0

S \1/5

X Netra|(Hete [0 )e
= e e e’ .
‘1 2\ 1/5

We have det(A — M) = (A — 2)2 = 0. For A\; = 2 we obtain
)
K= .
1
-1/3
2= (")
0
1 1 -1/3
X=c e + ¢ te? + / et .
1 1 0

We have det(A — AI) = (A — 6)% = 0. For \; = 6 we obtain

3

K=< )
2
1/2

*=(%)
0

3 3 1/2
X=c <2>66t+02 [<2>t66t+< /O)eetl

380

A solution of (A — MI)P =K is

so that

A solution of (A — MI)P =K is

so that

A solution of (A — M I)P = K is

so that

A solution of (A — MI)P =K is

so that



23. We have det(A — AI) = (1 — A)(A = 2)2 = 0. For A\; = 1 we obtain

1
Ki=11
1
For Xy = 2 we obtain .
Koy=10 and Kg= |1
0
Then
1 1 1
X=c|1|e'+e|0 ezt-{—ce, 1| e%.
1 1 0

24. We have det(A — AI) = (A — 8)(A + 1)? = 0. For \; = 8 we obtain

2
Ki=j|1
2
For Ay = —1 we obtain
0 1
Ky=| -2 and Ks=| -2
1 0
Then

1

2 0
X=¢]|1 68t+C2 -2 €_t+63 —2 et
2 1

0

25. We have det(A — A\I) = —A(5 — \)? = 0. For A\; = 0 we obtain
—4
Ki=|-5
2

For Ao = 5 we obtain
-2

K=} 0
A solution of (A — MI)IP =K is

5/2
P=|1/2

381
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so that
—4 -2 -2 5/2
X=c| -57+c 0|+ c3 0 |ted + 1/2 et
2 1 1 0

26. We have det(A — A\I) = (1 — A\)(A —2)2 = 0. For \; = 1 we obtain
1
Ki=1{0
0

For Ay = 2 we obtain
A solution of (A — AI)P =K is

so that
1 0 0 0

X=c|0lef+e] -1 62t+63 -1 1te® + | =1 |e¥].
0 1 1 0

27. We have det(A — M) = —(A — 1)3 = 0. For A\; = 1 we obtain

0
K=1|1
1
Solutions of (A — A\ I)P =K and (A — MI)Q =P are
0 1/2
P=|1| and Q=] 0
0 0
so that
0 0 0 0\ , 0 1/2
X=c|1|+c|]|1]tet+]1]et]+cs 1 %et-l- 1| tet + 0
1 1 0 1 0 0

28. We have det(A — AI) = (A — 4)% = 0. For \; = 4 we obtain
1
K=1{0
0

382



29.

30.

Solutions of (A — \I)P =K and (A — \I)Q = P are

0 0

P=]1 and Q=10

0 1

so that
0 1
£ 4
X=c|0!le*+c 0 fzet+ |1 ]e* + c3 0 Ee +

0 0 0 0

A solution of (A —~ MIDP =K s

so that

If

then ¢; = —7 and ¢g = 13.
We have det(A — M) = —(A 4 1)(A — 1)2 = 0. For A\; = —1 we obtain

-1
K= 0
For Ag = 1 we obtain
0
Ky=1|0 and Kz=]1
1 0
so that
-1 0
X=0 0|et+cp|0|et+esl1]e
1 1 0
If
1
X(0)y=12
5

0
1
0

Exercises 8.2

0
te*t + 1 0.
1
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then ¢ =2, cg =3, and ¢cg = 2.

31. In this case det(A — AI) = (2 — A\)5, and A\; = 2 is an eigenvalue of multiplicity 5. Linearly

independent eigenvectors are

Ki and Kj

i

©C o o0 o =
&
I

o o~ o o
i

S ==

32. Letting ¢; = 1 and ¢y = 0 we get z = €t, y = ¢'. Eliminating

the parameter we find y =z, z > 0. When¢; = ~landca =0

we find y =1z, < 0. ////

7

Phase portrait for Problem 20

Letting ¢; = 1 and ¢y = 0 we get z = %, y = ¢*. Eliminating the parameter we find y = z, £ > 0.
Whenc; =—-landce=0wefindy =z,  <0.

/

Phase portrait for Problem 21

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example,

1
in Problem 33, if Ky is chosen to be <2 .
—1

cost 4t sint 4
X=¢ . e+ . €.
2cost +sint 2sint — cost

33. We have det(A — AI) = A2 — 8) + 17 = 0. For A; = 4 + i we obtain

) the solution has the form

384



34.

35.

36.

Exercises 8.2

54
K1=< +z>
5 .

X = 2414 G4+ _ 2cost —sint Gt cost + 2sint Lt
5 5cost 5sint

so that

Then

2cost —sint 2sint 4 cost
X=c e* + o . e,
S5cost 5sint

We have det(A — MI) = A2 + 1 = 0. For \; = ¢ we obtain

K — -1—3
T 2
-1-3\ 4 sint — cost [ —cost—sint
X1 = et = +1 . .
2 2cost 2sint
sint — cost —cost —sint
X=c +c . )
2cost 2sint
We have det(A — M) = A2 — 8\ + 17 = 0. For A; = 4 + ¢ we obtain
K = -1—1
T 9
X = —1—3 G+t _ sint ~ cost oty —sint — cost Gt
2 2cost 2sint

sint — cost —sint — cost
X=¢ : et + e . e,
2cost ~2sint

so that

Then

so that

Then

We have det(A — AI) = A? — 10\ + 34 = 0. For A; = 5+ 3i we obtain

<1—3i>
K; =
2

X, = <1 —232> L5430t _ <c083t+38in3t> oy <sin3t— 3c053t> o5t

so that

2cos 3t 2cos 3t
Then

3t + 3sin 3t sin 3t — 3 cos 3t
X =0 cos sin o . in co o5t
2cos 3t 2cos 3t

385



37.

38.

39.

Exercises 8.2

We have det(A — AI) = A2 + 9 = 0. For A\; = 3i we obtain

4+ 3
K1=< + z)
5

so that

4430
X1=< o
5

Then
X=c

)

4cos 3t — 3sin 3t
5cos 3t

4cos 3t — 3sin 3t
5cos 3t

4sin 3t
+

)

4sin 3t + 3 cos 3t
5sin 3t

5sin 3t

+3cos3t>

We have det(A — AI) = A2 + 2\ + 5 = 0. For A\; = —1 + 27 we obtain

242
<= ()
1.

so that

2
x= (]
, 1

={2cos2t — 2sin2tcos2t)e_t+i<

Then

2 2t — 2sin 2t
X = o ( cos

2i

cos 2t

) o(=1+2i)¢

)e‘t+02<
S

2cos 2t + 2sin 2t

. et
sin 2t )

2cos2t+2sin2t\ _,
e’
in 2¢

We have det(A — AI) = -\ (/\2 + 1) = 0. For A} = 0 we obtain

" For A9 = 1 we obtain

so that
—1
X9 = )
i 1

Then

1
X=cl0
0

1
Ki=10
0
—1
Ky = 1
1
sint
e = | —sint
cost
sint

+1

cost
cost

sint

—cost

+co| —sint | +¢3

cost

386

cost

sint
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40. We have det(A — A\I) = —(\ + 3)(A2 — 2X + 5) = 0. For A\; = —3 we obtain

0
Ki=1|-2
1
For A3 = 1+ 2i we obtain
-2-1
Ko = -3
2
so that
—2cos2t + sin 2t ~cos 2t — 2sin 2t
Xg = 3sin 2t el +1 —3cos 2t el.
2cos 2t 2sin 2t
Then
0 —2cos2t + sin 2t —cos2t — 2sin 2t
X=c|-2|e¥+e 3sin 2t et +¢3 —3cos 2t el.
1 2cos 2t 2sin 2t

41. We have det(A — AI) = (1 — A\)(A%2 — 2X +2) = 0. For A\; = 1 we obtain

0
Ki=|2
1
For Ay = 1+ 7 we obtain
1
Ko= 11
1
so that
1 . cost sint
Xo= |1 et =] —sint | el +i| cost | €.
1 —sint cost
Then
0 cost sint
X=ci|2e +co{ —sint { e’ +c3| cost el.
1 —sint cost

42. We have det(A — AI) = —()\ — 6)(A\? — 8\ +20) = 0. For A; = 6 we obtain
0



43.

44.

Exercises 8.2

For Ay = 4 + 27 we obtain

Ky = 0
2
so that
—1 sin 2¢ —cos2t
Xo=1| 0|2t =| 0 le4i 0 e,
2 2cos 2t 2sin 2t
Then
0 sin 2t —cos 2t
X=c|1]|e¥+0 0 et + c3 0 et
0 2cos 2t 2sin 2t

We have det(A — AI) = (2 — A(A2 +4) +13) = 0. For A\; = 2 we obtain

28
Ki=|-5
25
For Ao = —2 + 37 we obtain
443
Ko = -5
0
SO that
4+3z 4 cos 3t — 3sin 3¢ 4sin 3t + 3cos 3t
(=230t - ~5cos 3t e 4 —5sin 3t e,
0 0 '
Then
4cos 3t — 3sin3t 4sin 3t + 3cos 3t
= %y ca —5cos 3t e %+ c3 —5sin 3t e 2.
0 0
We have det(A ~ AI) = —(A +2)(A\2 +4) = 0. For A\; = —2 we obtain
0
Ki=1| -1
1
For Ay = 27 we obtain
—2-2
Ky = 1
1



45.

46.

so that
-2 -2
Xy = 1 et =
1
Then
0
X=c|-1{eH+e
1

—2cos2t + 2sin 2t

cos 2t
cos 2t

—2cos 2t + 2sin 2t

cos 2t
cos 2t

+1

+c3

—2cos2t — 2sin 2t

sin 2¢
sin 2t

—2cos 2t — 2sin 2t

sin 2¢
sin 2t

We have det(A — M) = (1 = A\)(A* 4+ 25) = 0. For A\; = 1 we obtain

For Ay = 57 we obtain

so that
14 5¢
X, = 1 it —
1
Then
25
X=c|-7|et+c
6
If
then ¢; = cg = —1 and ¢3 = 6.

25

cos 5t — 5sin 5t
cos 5t
cos 5t

cos 5t — 5sin 5t

cos 5t
cos 5t
4
X{(0) = 6
-7

+1

+c3

sin 5t + 5 cos 5t
sin 5t
sin 5t

sin 5t + 5 cos 5t
sin 5t
sin 5t

We have det(A — AI) = A2 — 10\ + 29 = 0. For A\; = 5 + 2i we obtain

so that

X1=< 1 4>e(5+2i)t=<
1—2:

cos 2t
X=q .
. (0052t+2sm2t

and

w (!
Tl -

cos 2t

e5t +12
cos 2t + 2sin 2t

>e51+03(

389

sin 2t
sin 2t — 2cos 2t

sin 2t 5t
e
sin 2t — 2 cos 2t
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If

then ¢; = —2 and ¢ = 5.

"\ A

} o7

Phase portrait for Problem 36 Phase portrait for Problem 37 Phase portrait for Problem 38

0
N

48. (a) Letting 23 = y1, 2] = 2, T2 = y3, and 4 = y4 we have
yp =z = —10z1 + 479 = —10y1 + dy3
yﬁ = 2'2' =4z — 429 = 4y — 4y3.
The corresponding linear system is
Y1 =1

vy = —10y; + dys

Y3 = U4
Yy = 4y1 — 4y3
or
0 1 0 0
o l-100 40
Y = Y.
0 0 1
4 0 -4 0

Using a CAS, we find eigenvalues ++/2i and £2+/3i with corresponding eigenvectors

FV2i/4 0 FV2/4

1/2 1/2 L0
= 1
FV/2i/2 0 F/2/2
1 1 0

390
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and
+v/3i/3 0 -V3/3
-2 -2 . 0
) = T
F/3i/6 0 V3/6
1 1 0
Thus
0 —V2/4
Y(t)=c 1é2 cos V2t — _\%/2 sin /2t
0
—V2/4 0
+ ¢o ~;§/2 cos V2t + 1é2 sin V2t
0 1
0 V3/3
-2 0 .
+ c3 0 cos 2v/3t — —\/3/6 sin 2v/3t
0
V3/3 0
0 21 .
+ ¢y ~\/§/6 cos 2v/3t + 0 sin 2/3¢
0 1
The initial conditions y1(0) = 0, y2(0) = 1, y3(0) = 0, and y4(0) = —1 imply ¢ = —% ,c2 =0,
c3 = —%, and ¢4 = 0. Thus, )
z1(t) = yi1(t) = —% sinv/2t + ? sin 2v/3t

To(t) = y3(t) = —g sin v/2t — \1/—03 sin 2v/3t.

(b) The second-order system is
xlll = —10z; + 429

Ty = 4T1 — 4T2

or
X" = [—10 4] X.
4 —4
We assume solutions of the form X = V coswt and X = V sinwt. Since the eigenvalues are —2
and —12, w; = 4/—(=2) = v/2 and wy = {/—(—12) = 2¢/3. The corresponding eigenvectors

391
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ol e e[

Then, the general solution of the system is

1 1 -2 -2
X=c1{Jcosﬁt—l—@h}sin\@t—l—csli 1}cos2\/§t+c4;[ lein2\/§t.

The initial conditions

0 -1
imply ¢; = 0, ¢a = —v/2/10, ¢3 = 0, and ¢4 = —+/3/10. Thus
2 3
1(t) = —\—1/—(-)- sin v/2t + \—é—— sin 2v/3¢
3
zo(t) = —g sin V/2t — \—1/—6-sin 2+/3t.

49. (a) From det(A — AI) = A(A —2) =0 we get A\; =0 and A2 = 2. For Ay = 0 we obtain
1 1]o 1 1]0 -1
== so that K, = )
110 0 0fo0 1
For Ay = 2 we obtain

-1 1|0 -1 1|0 1
N so that Ko = .
1 —1|o 0 0|0 1
-1 1
X=c1< 1>+CQ<1>62t.

Then

The line y = —z is not a trajectory of the system. / /

Trajectories are z = —¢; + czegt, y=rc+ 6262t or

y = z + 2¢1. This is a family of lines perpendicular
to the line y = —x. All of the constant solutions

of the system do, however, lie on the line y = —z.

(b) From det(A — AI) = A2 = 0 we get A\; = 0 and

A solution of (A — A I)P =K is
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so that

x=a(7)va[(T)e (2]

All trajectories are parallel to y = —z, but
Yy = —Z is not a trajectory. There are constant \ \\

solutions of the system, however, that do lie

on the line y = ~=z.

50. The system of differential equations is

7] = 279 + T2
/

Ty = 29
/

Tg = 23

Ty = 274 + T

Ty = 2T5.

2 2t

We see immediately that 2o = coe?, £3 = c3e?, and z5 = cse?’. Then

) =211 + cpe?t = 17 = cate? + cret

and

2t

t = T4 = 05t62t+C46 .

Ty = 214 + cse’

393



Exercises 8.2

The general-solution of the system is

cote? + cre?t

et
X = c3e?t
cstth + C462t
cse?t
1 (/1 0
0 0 1
=c; |0 |eX+e|]0 te® + | 0|
0 0 0
0 L 0 0
0 0 0 0
0 0 0 0
+c3(1 62t+C4 0| e +cs 0t +|0]e®
0 1 1 0
0 0 0 1
[ 0
1
= clKlth + ¢ Kltth +10|e*
0
L 0
0
0
+ C3K262t + C4K362t + ¢y thezt +]0]e*
0
1

There are three solutions of the form X = Ke%, where K is an eigenvector, and two solutions of
the form X = Kte? + Pe?. See (12) in the text. From (13) and (14) in the text

(A—2DK; =0

and
(A -2)Ks = K;.
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o1.

This implies

01000 p1 1
0 00 0O p2 0
0 0 0O0O =101,
0 0001 D4 0
0 00 0O Ps 0

Exercises 8.2

so po = 1 and ps = 0, while p;, p3, and p4 are arbitrary. Choosing p; = p3 = ps = 0 we have

1
0
P=1}0
0
0
Therefore a solution is
1 1
0 0
X=|0[te¥+|0[e
0 0
0 0
Repeating for K3 we find
0
0
P=10],
0
1
so another solution is
0 0
0 0
X=10/te®+]|0]|e*
1 0
0 1

From z = 2cos2t — 2sin2t, y = — cos 2t we find z + 2y = —2sin2t. Then

(z +2y)% = 4sin? 2t = 4(1 — cos® 2t) = 4 — 4 cos® 2t = 4 — 4y/?

and

2% + dzy + 4y° = 4 — 4y? or z? + dzy + 8y = 4.
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This is a-rotated conic section and, from the discriminant b2 — 4ac = 16 — 32 < 0, we see that the
curve is an ellipse.

Suppose the eigenvalues are o £+ i3, 3 > 0. In Problem 36 the eigenvalues are 5 & 3¢, in

Problem 37 they are 37, and in Problem 38 they are —1 £ 2¢. From Problem 47 we deduce that
the phase portrait will consist of a family of closed curves when a = 0 and spirals when o # 0. The

origin will be a repellor when o > 0, and an attractor when a < 0.

Exercises 8.3

From
. (3 =3 4
X' = X+
2 =2 -1
we obtain
1 3\ ,
X, =c1 ) + ¢ 5 e
Then ; ) ;
1 3 -
o= ) and o1=( ,
1 2t e —e~
so that
U—/<I>‘1th—/ AT I
B B 5t | —5¢t
and
X, =aU=| )78
P T \l-1 —-10
From
x=(% Nx(%):
3 -2 4
we obtain }
1, 1\
| Xc=2¢ ) e+ 3 e
Then y » 3t 1,
(b:(t t) and (I)_IZ(?lt 21t)
e —76 56
S0 that
1 —2te? 2te~t + 2e7¢
U= [eFat= [ =70 T
2te 2te’ — 2e
and
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3. From
p_ 3 3 X + 1Y e
3/4 ~1 -1
we obtain
10 2
X, = o < )eBt/2+c2 <1>et/2
Then 3t/2 t)2 1,-3t/2 __1,-3t/2
10e 2 se” —5e”
=< 3t/2 et/2> and @-1=< % —t/2 52—t/2 )
3e e —3e Se
so that s s
U—/@‘let—/<Ze )dt— <7€ )
- - gk} T 13y
4 1
and
-13/2 -15/2
X, =oU = /2Y getrz 4 12) s,
~13/4 -9/4
4. From
X/ 2 -1 X+ sin 2t
T \4 2 2 cos 2t
we obtain
—sin 2t cos 2t
Xc - 2t 2t.
cl<20052t>e +C2(23in2t>e
Then
—e%sin2t  e?cos2t i —5e~2sin2t le 2 cos2t
d = ot ot . and &7 =|{ | 3
2e*t cos2t 2e%tsin 2t §e“2t cos2t e %sin2t
so that
1 1.
U=/¢>‘1th=/ geosdt) [ gsindt
%sin 4¢ ——écos 4t
and .
X U <~%sin2tcos4t——%cos2tcos4t) 0
= = e,
P %cos 2t sin 4t — %sin 2t cos 4t
5. From
0 2 1
X' = X et
(2= (4)
we obtain
2 1
Xe =0 (1>et+c2 <1>€2t.
Then

2¢t 1 et —et
(I)'—;( ot e2t) and @7 = <_8—2t 26—2t>
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so that :
U /@—1th—/ 2 Ya=[
- B —3e7t T\ 3et
and
4\, (3,
Xp=®U= te* + et
2 3
6. From
x={° %)x o2
T \-1 3 et
we obtain
2 1
c=C] <1> et + ¢ <1> e2t.
Then
2¢t 2 - e”t  —et
@ = < ot th) and @7° = (_6—21: 2e“2t>
so that
1 et _ o4t —2et 4 211-6_4t
U=/¢)‘th=/ dt = '
<_2e—2t 4 26—-5t> < =2 _ 205 )
and 1 -3¢
e -3
xp=<1>U=< B >
—%e -1
7. From
, (1 8 12
X' = X+ t
1 -1 12
we obtain
4 -2
Xc=c1<1>e3t+C2< 1>e‘3t.
Th
en 463t —26—3t . %G—St %G—St
d = d & =
< o3t e—3t> an ( _Led 2 )
so that 1 Bre—3t 93t _ %e—Bt
U= [e'Fa= [ dt =
( 6ted’ ) < 2te3 — Ze3t )
and
X,=oU = )iy (43
P R —4/3)°
8. From



10.

we obtain

Then

so that

and

we obtain

Then

so that

and

From

we obtain

Then

so that

Exercises 8.3

4 -2
Xc—cl(l)egt-{-@( ) e 3t
4€3t __263t le'—Bt le"Bt
q)z( 3t 3t> and q)_1=< 61 ) )
€ e __6_63t %egt
1,—4t | 1,,-2t 1 —4t _ l,,-2t_ 1 _,-2
ze” "+ gte —55€ glte”™ " — e
U= / -1 _ / 6 3 _ [T 12
o7 F dt 102 4 2404t L2t lyeat 1ot
3 12 24
—tel — Let
3 2 2
XI . X -t
(—2 —1> i (1) °
1 1
e ()¢ a5 e ()
& — ( et tet ond @1 = e~t — 2te™t —2te?
—et %et — tet 2¢t 2e?
2¢~2t — Gte 2 Lle=2t 4 3te2
— -1 _ _ {2
U_/<1> th_/( oo )dt—< gt )
1/2
xp=c1>U=< / )e”t.
-2
3 2 1
X' = X
(2 ) ()
1 1
X.=a el + co tel + et
- -1 1/2
& < el tel nd -1 = et —2te”t —2te!
—et let —tet 2et 2e~t

U= /Q_let _ / et —4te? it = 3e~t + 4tet
2et —2e7!



11.

12.

13.

Exercises 8.3

and

From

we obtain

Then

so that

and

From

we obtain

Then

so that

and

From

we obtain

cost sint
Xe=cal | +co :
sint —cost

& — (cost sint) and ®-L = <cost sint)

sint —cost sint —cost

Uz/@—let=/<tailt>dt= <ln|stectl)

tcost +sintln|sect|
tsint —costln|sect|/

, (1 -1 3\ ,
X' = X+ e
1 1 3
<—smt> (cost) :
el . e’
cost sint

—sint cost) -

cost sint

xp=¢,U=<

—sint cost
P =

cos t sint

and & != (

—3sint + 3cost 3 t+ 3sint
U= [aripa o [ (RS0t ) (costs e
3cost + 3sint 3sint — 3cost

_.3 ¢
X, =®U = et
3
X'——-(l —1>X+<c?st)et
1 1 sint
(—sint) : (cost) .
Xe=c1 e+l | et
cost sint
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14.

15.

Exercises 8.3

Then
® (—smt c?st>et N (—smt c9st>6_t
cost sint cost sint
so that
0 0
U=/<I>—1th=/< >dt=( >
1 t
and
cost ‘
X, =2U=| . te'.
sint
From
2 -2 1\ 1
Xl — X+ __e—Qt
8 —6 3/ 1
we obtain
1 1 1/2
Xe=¢ e+ te™2 4+ / e .
2 2 1/2
Then
1 2t+1 —(4t+1) 2t+1
P = e and &= ( ) et
2 4t+1 2 -1
so that
2t + 2Int
U=/<I>‘1th=/< >dt
—Int
and
2t +Int—2tint
X, = oU = ? ) e
4t 4+ 31nt — 4tint
From
, 0 1 0
X' = X+
-1 0 secttant
we obtain
cost sint
X.=01 . + co .
<—smt> (cost)
Then
&= cc'>st sint ¢+ and @' = C?St —sint
—sint cost sint cost
so that )
—tan“t t—tant
U= [o7Fa= [T ")dt= o
tant In | sect|
and

cost —sint sint
X, =0U = . t+| . + In|sect|.
—sint sinttant cost

401



16.

17.

18.

Exercises 8.3

From
X' = 01 X+ !
T\-1 0 cott
we obtain
cost sint
xc=cl< _ )m( )
—sint cost
Then
cost sint -1 cost —sint
® = , and ® "= |
—sint cost sint cost
so that
_1 0 0
U= /«p Fdt = / dt =
csct In|ecsct — cot tf
and
sintln|csct — cott|.
X, =0U= .
costln|ecsct — cott]
From
, 1 2 cscty
X' = X+ e
-1/2 1 sect
we obtain
2sint\ , 2cost ) ,
Xe=rc1 e +ca i e.
cost —sint
Then ‘ L
& 2sint 2c<.)st & and ! = <?smt c?st)e_t
cost =—sint 5Cost —sint
so that
3 3¢
U=/<I>‘1th=/(1 2 )dt=<1 _t >
_ 5cost—tant 5In|sint| ~ In|sect|
and
3sint ¢ cost . —2cost
Xp=0U={, te"+ | 4 . In|sint| + ) In|sect|.
§cost —3sint sint
From
, 1 -2 tant
X' = X +
1 -1 1
we obtain
(cost—sint) <cost+sint>
Xe=rcy + ¢2 . .
cost sint
Then

cost —sint cost+sint 1 —sint cost+sint
. and ® " = )
cost sint cost sint —cost
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18.

20.

Exercises 8.3

so that

_ 2cost +sint — sect 2sint —cost — In|sect +tant
U=/<1>1th=/ dt = s |
2sint — cost —2cost —sint

and X, = 9U - <3sintcost - c2052t ~2sint + (sint — cost) In | sect +tant[>
sin?t — cos®t — cost(In |sect + tant|)
From
1 10 el
X'=|11 0|X+| &
00 3 te3t
we obtain
1 1 0
Xe=cy| -1 |4c|1]|e®+cs|0]e
0 0 1
Then
1 e* 0 i = 0
d=1|-1 &t 0 and @7 1= fe® leo2 0
0 0 €% 0 0 e
so that
%et_%eﬂ Lot Le2
U=/<I>“1th=/ Lty l de= | —let4 4t
t %tQ
and 1,2t 1.2
—ze + gte
X, =®U = | —et + 1 + Jte?
%t263t
From
3 -1 -1 0
X =11 1 -1 {X+ t
1 -1 1 2¢et
we obtain
1 1 1
Xe=c1|1]et+efl e+ 3| 0| e
1 0 1
Then
et o2t g2t et et et
d=1|e % 0 and ®r=1]e2 0 —e~2t
et 0 e 2 _eg=2
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21.

22.

23.

Exercises 8.3

so that

te™t 42 —te~t — et + 2t
U=/<I>“1th=/ —2e7t | dt = 2¢~
—te— 2t %te—m + 416—27:
and
—1/2 -3/4 2 2
X,=®U=| -1 |t+| -1 |+|2]|e+]|2]|te
—1/2 -3/4 0 2
From
< (3 1 X+ 4e?
S\-1 3 4et
we obtain v Lot 1 o—at
— ¢ —ze” " se”
‘I’=< e4t em:)’ 'I)*l=< 12-—27: f —2t>’
e e 5€ €
and
X @@‘1(0)X(0)+@/t sras=a () re (¢, TH1
- S = . .
0 1 e +2t—1
2 -1 -2 2
=(2>t€2t+( 1)62t+< 2>te4t+<0>e4t.
From /
1 -1 1/t
X' =
[ D))
we obtain
1 1+t —-t 1+t
e=( T, el ,
1 ¢ 1 -1
and
X <I’<I>‘1(1)X(1)+<I)/t<‘1"‘le P T T il T A PO R PN L P
= s=&- - = - nt.
1 3 0 3 4 1
Solving
2—=A 3
=X -1=M-1)(A+1)=0
NN (- 10+
we obtain eigenvalues A\; = —1 and Ay = 1. Corresponding eigenvectors are
K -l d K -3
= ar = .
! 1 2 1
Thus

-1 —t -3 t
Xe=c1 ] e "+ ) e.
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24.

Exercises 8.3
Substituting

%= (5)
P b1

into the system yields

2014+ 301 =7
—aj — 2by = =95,
from which we obtain a; = —1 and b; = 3. Then
S )
Solving
6? 31/\<=/\2—9/\+14:(/\—2)(/\—7)=O

we obtain the eigenvalues A\ = 2 and Ay = 7. Corresponding eigenvectors are

K ! d Ko (|

1= 4 an 9 = 1)
1 1

Xc=c1<_4>e%+cg(l>e7t‘

Thus

Substituting

into the system yields
bag +by +6=0

dag +3bp - 10=0
6a1+ b1 —a2=0

4a; +3b1 — by +4=0Q.

Solving the first two equations simultaneously yields ap = —2 and b = 6. Substituting these two
values into the second pair of equations and solving for a; and b1 give a1 = —547— and b = 170. Then
1 1 -2 4
X(t)=c e? +c et + t+ 7>.
= <~4) ’ <1> 6 ¥
25. Solving

,44 1/3

=210 +21=(A=3)A=7)=0
9 6-2A
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26.

Exercises 8.3

we obtain the eigenvalues A\; = 3 and g = 7. ‘Corresponding eigenvectors are

K ! d K !
= an = .
T3 > \o

1 1
Xe=1c1 <-_3>63t+82 <9> e’

a1y .
X, =
i (b1>e

1
3a1+§b1 =3

Thus
Substituting
into the system yields

Qa1 + 561 = =10
from which we obtain a; = 55/36 and b; = —19/4. Then

X(t) =1 <_;> e+ e (;) e+ <_5_51/9:ji> et

Solving
A Y =
-1 1-A] B
we obtain the eigenvalues A1 = 2i and As = —2i. Corresponding eigenvectors are
5 5
K; = ) and Ks = .
1+2i 1—2i
Thus
5cos 2t Ssin 2t
Xe=0 . +c2 . :
cos 2t — 2sin 2¢ 2cos 2t +sin 2¢
Substituting

into the system yields
—ag +5bp —a; =0

—ag+by—by—2=0
—a1 +5b1+as+1=0

—a1+b+b2=0
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Exercises 8.3
from which we obtain ap = —3, by = —2/3, a; = —1/3, and b; = 1/3. Then

5cos 2t 5sin 2t -3 -1/3\ .
Xt)=a ) + e . + cost + sint.
cos 2t — 2sin 2¢ 2cos 2t + sin 2t -2/3 1/3
;3
27. Let I = < > so that
22

po (T3, (100sint
B 3 -3
and
1 3
Xe=oa1 (3) e_2t+02 <~1> e 12t
Then

—2t —12t
3
D= < ¢ ¢
3

1.2 3.2
Q-——l _ _1-—0—6 ‘ _Oe ‘
=2t -1t )0 T\ 3 12t 12t
U= /@_1th _ / ( 10e% sint > gt = ( 2e(2sint — cost)

30e? sint el (12sint — cost)) ’
and 332 76
L= &U = ( g st — 75 cost )
22796 sint — % cost
so that

1 3
I=¢ (3)6“2t+02( 1> e“mt-i-lp.

0
If1(0) = <0> then ¢1 = 2 and ¢g = —26—9,

28. (a) Solving

1-x -1 '
=2 -_22=21~-2)=0
-1 1-A

we obtain the eigenvalues A\; = 0 and g = 2. Corresponding eigenvectors are

1 -1
w-[] we -]
Thus

1 -1
Xc——-cl[l}-i-cg[ 1]6%.
If we substitute




Exercises 8.3
into the system, we get
0 _ 1 =1]1ag N 3] a1 —b61+3
o] |-1 1 b1 -5 —a;+b1—5 '
which cannot be solved for a; and b1. The difference in the systems is that in Problem 23 the

homogeneous system does not have a constant solution, whereas in this problem it does.
a1
X, = { } :
b1

as al
X, = t+ .
7 [52} [bl}

Substituting into the system, we obtain

(b) Trying a solution of the form

fails, so we instead try

(a1 -b +3) + (a2 - bQ)t = a9

(—a1 +b — 5) + (—ag + bo)t = ba

and note that ag = by. Adding the equations, we find —2 = ay + by = 2a2, so a3 = —1 and
hence by = —1. From the first equation, we have a; — by +3 = —1, and from the second

equation, we have —aj; + by — 5 = —1. These are both equivalent to a; — by = —4, so we take

a1 =0 and b; = 4. Thus
-1 0
X, (t) = t+ X
CRINIEN

29. (a) The eigenvalues are 0, 1, 3, and 4, with corresp