
Introduction to Software Engineering
Edited by R.P. Lano
(Version 0.1)

Table of Contents

Introduction to Software Engineering..1
Introduction..13

Preface...13
Introduction..13
History...14
References..15
Software Engineer..15
Overview..15
Education...16
Profession...17
Debates within software engineering...18
References..18

UML...19
Introduction..19
Overview..19
Modeling..19
Diagrams overview..20
UML Modelling Tools...21
References..21
Examples..22
Example: Bill at the Restaurant...22
Use Case Diagram...22
Activity Diagram...22
Sequence Diagram...23
Collaboration Diagram..23
Class Diagram..23

Process & Methodology...25
Introduction..25
Software Development Activities..25
References..26
External links...27
Methodology..27
History...27
Verb approaches..29
Subtopics..33
See also..38
References..38
External links...39
V-Model...39
Verification Phases..40
Validation Phases...41
References..43
Further reading...43
External links...43
Agile Model...44
History...44
Characteristics..46

2

Comparison with other methods..47
Agile methods..48
Measuring agility...49
Experience and reception...49
References..51
Further reading...53
External links...54
Standards..54
External Links..55
Life Cycle..55
Overview..56
History...56
Systems development phases...57
Systems Analysis and Design..60
Systems development life cycle topics..60
Strengths and weaknesses..62
References..63
Further reading...64
External links...64
Rapid Application Development...64
Overview..64
History...65
Relative effectiveness..65
Criticism...67
Practical implications...67
References..67
Further reading...68
Extreme Programming...68
History...69
Concept..70
Practices...75
Controversial aspects...76
Criticism...78
References..78
Further reading...79
External links...79

Planning..81
Requirements...81
Overview..81
Requirements engineering...82
Requirements analysis topics...82
Types of Requirements..86
Requirements analysis issues...87
References..88
Further reading...88
External links...89
Requirements Management...89
Overview..89
Traceability..90
Requirements activities..90

3

Tools..92
References..93
Further reading...93
External links...93
Specification..94
Overview..94
Functional specification topics..95
Types of software development specifications..96
References..96
External links...96

Architecture & Design..97
Introduction..97
Overview..97
History...98
Software architecture topics...98
Examples of architectural styles and patterns..100
References..101
Further reading...101
External links...102
Design..102
Overview..102
Software Design Topics...103
Design Patterns..105
History...106
Practice...107
Structure...107
Classification and list...108
Documentation...112
References..113
Further reading...115
External links...116
Anti-Patterns..117
Known anti-patterns...118
References..121
Further reading...121
External links...121

Implementation...122
Introduction..122
Definition...122
Overview..122
History...123
Modern programming..125
Programming languages..127
Programmers..128
References..128
Further reading...129
External links...129
Code Convention...129
Software maintenance..130
Task automation...131

4

Language factors..131
Common conventions..132
Examples..132
References..135
External links...135
Good Coding..136
Documentation...136
Involvement of people in software life..136
Notes..141
External links...141

Testing..142
Introduction..142
Overview..142
History...143
Software testing topics...143
Testing methods...146
Testing levels...148
Non-functional testing...149
The testing process...151
Automated testing..153
Testing artifacts..154
Certifications..155
Controversy..155
References..156
External links...159
Unit Tests...159
Benefits..160
Separation of interface from implementation..161
Unit testing limitations...162
Applications...163
Notes..164
External links...165
Profiling...165
Gathering program events..165
Use of profilers..165
History...166
Profiler types based on output...167
Methods of data gathering...167
References..169
External links...169
Test-driven Development..170
Requirements...170
Test-driven development cycle..170
Development style...171
Benefits..172
Vulnerabilities..173
Code Visibility...174
Fakes, mocks and integration tests..174
References..175
External links...176

5

Refactoring...176
Overview..177
List of refactoring techniques..177
Hardware refactoring...178
History...178
Automated code refactoring...179
References..179
Further reading...181
External links...182

Software Quality...183
Introduction..183
Definition...183
History...184
Software reliability..185
Software quality factors...189
User's perspective..193
References..193
Further reading...193
External links...194
Static Analysis...194
Formal methods...194
References..195
Bibliography..195
External links...196
Metrics...196
Common software measurements..196
Limitations...197
Acceptance and Public Opinion...197
References..197
External links...198
Software Package Metrics...198
References..199
External links...199
Visualization..199
Types..200
References..200
Further reading...201
External links...201
Code Review..202
Introduction..202
Types..202
Criticism...203
References..203
External links...204
Code Inspection...204
Introduction..204
The process..204
Inspection roles..205
Related inspection types..205
External links...206

6

Deployment & Maintenance...207
Introduction..207
Deployment activities..207
Deployment roles...208
Examples..209
References..209
External links...209
Maintenance...209
Software maintenance processes...210
Categories of maintenance in ISO/IEC 14764...211
References..211
Further reading...212
External links...212
Evolution..213
General introduction..213
Types of software maintenance...213
Lehman's Laws of Software Evolution..214
References..214

Project Management...216
Introduction..216
History...216
Software development process..217
Project planning, monitoring and control..218
Issue...218
Philosophy...219
External links...219
References..219
Software Estimation...220
State-of-practice...220
History...220
Estimation approaches...221
Selection of estimation approach...222
Uncertainty assessment approaches...222
Assessing and interpreting the accuracy of effort estimates..223
Psychological issues related to effort estimation...223
References..223
External links...224
Cost Estimation..224
Methods...224
External links...225
Development Speed...225

Tools...226
Introduction..226
Modelling and Case Tools...226
Overview..227
History...227
Supporting software...228
Applications...231
Risks and associated controls..231
References..232

7

External links...232
Compiler..233
History...234
Compilation...234
Compiler output...235
Compiler construction..236
Compiler correctness...240
Related techniques...240
International conferences and organizations..240
Notes..240
References..241
External links...241
Language dependency..243
Memory protection..243
Hardware support for debugging...243
List of debuggers...244
Debugger front-ends..245
List of debugger front-ends..245
References..246
External links...246
IDE...247
Overview..247
History...248
Topics...249
References..250
GUI Builder...250
List of GUI builders...251
List of development environments..252
Source Control...253
Overview..254
Source-management models..255
Distributed revision control...256
Integration..257
Common vocabulary..257
References..259
External links...259
Build Tools..259
History...260
New breed of solutions..260
Advanced build automation...260
Advantages...261
Types..261
Makefile...261
Requirements of a build system...262
References..262
Software Documentation...262
Involvement of people in software life..263
Notes..267
External links...267
Static Code Analysis..267

8

Historical products...268
Open-source or Non-commercial products..268
Commercial products...269
Formal methods tools...272
References..272
External links...273
Profiling...273
Gathering program events..273
Use of profilers..273
History...274
Profiler types based on output...275
Methods of data gathering...275
References..277
External links...277
Code Coverage...278
Coverage criteria..278
In practice..281
Notes..283
External links...283
Project Management..283
Tasks or activities of project management software..283
Approaches to project management software..284
Criticisms of project management software..286
Books...287
Continuous Integration..287
Theory..287
Recommended practices..287
History...290
Advantages and disadvantages..290
Software...291
Further reading...292
References..292
External links...292
Bug Tracking...292
Components...293
Usage...293
Bug tracking systems as a part of integrated project management systems................................294
Distributed bug tracking..294
Bug tracking and test management..294
References..294
External links...295
Decompiler...295
Introduction..295
Design..295
Legality..299
References..300
External links...300
Obfuscation..300
Overview..300
Recreational obfuscation..301

9

Disadvantages of obfuscation..302
Obfuscating software...303
Notes..303
References..303
External links...303

Re-engineering..305
Introduction..305
See also..305
References..305
External links...311
Reverse Engineering..311
Motivation..312
Reverse engineering of machines..312
Reverse engineering of software..313
Source code..314
Reverse engineering of protocols..314
Reverse engineering of integrated circuits/smart cards...315
Reverse engineering for military applications...315
Legality..316
See also..316
References..317
Further reading...317
External links...317
Round-trip Engineering...318
Examples of round-trip engineering..318
References..319
External links...319

Authors...320
GNU Free Documentation License..328

0. PREAMBLE..328
1. APPLICABILITY AND DEFINITIONS..328
2. VERBATIM COPYING..329
3. COPYING IN QUANTITY...330
4. MODIFICATIONS..330
5. COMBINING DOCUMENTS..332
6. COLLECTIONS OF DOCUMENTS..332
7. AGGREGATION WITH INDEPENDENT WORKS...332
8. TRANSLATION...333
9. TERMINATION..333
10. FUTURE REVISIONS OF THIS LICENSE...333

10

NOTE: THIS IS STILL WORK IN PROGRESS!!!

Note: current version of this book can be found at
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering

11

http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering

12

Introduction

Preface

When preparing an undergraduate class on Software Engineering, I found two things: First, there
are quite a few good articles in Wikipedia covering different aspects related to software
engineering, and second, that for a beginner those articles contain too much information and too
few examples. Hence the idea for this book came about, to take the relevant articles from
Wikipedia, combine them, edit them, fill in the missing pieces, put them in context and create an
introductory wikibook out of them.

The hope is that this can be used as a textbook for an introductory software engineering class. This
is also, why in the final version I want to have a pdf version and a printed version, since this will
make it more useful for a textbook.

As for the philosophy behind this book: brevity is preferred to completeness, and examples are
preferred to theory. If this effort was successful, you be the judge of it, and if you have suggestions
for improvement, just use the ’Edit’ button!

My special thanks go to Adrignola and Kayau who did the tedious work of importing the original
articles (with all their history) from Wikipedia to Wikibooks!

Introduction

Let us first look into the question of what is software engineering? It is based on software
development, sometimes also called ’programming’, but software development is just a part of
software engineering, it is a pre-requisite to it.

Developers Work in Teams

In your beginning semesters you were coding as individuals. The problems you were solving were
small enough so one person could master them. In the real world this is different: the problem sizes
and time constraints are such that only teams can solve those problems.

For teams to work effectively they need a language to communicate (UML). Also teams do not
consist only of developers, but also of testers, architects, system engineers and most importantly the
customer. So we need to learn about what makes good teams, how to communicate with the
customer, and how to document not only the source code, but everything related to the software
project.

13

http://en.wikibooks.org/wiki/User:Kayau
http://en.wikibooks.org/wiki/User:Adrignola

New Language

In previous courses we learned languages, such as Java or C++, and how to turn ideas into code.
But these ideas are independent of the language. With UML we will see a way to describe code
language independant, and more importantly, we learned to think in one higher level of abstraction.
UML can be an invaluable communication and documentation tool.

We will learn to see the big picture: patterns. This gives us even one higher level of abstraction.
Again this increases our vocabulary to give us the means to communicate with our peers more
effectively. Also it is a fantastic way to learn from our seniors. This is essential for designing large
software systems.

Measurement

Also just being able to write software, doesn’t mean that the software is any good. Hence, we will
discover what makes good software, and how to measure software quality. On one hand we should
be able to analyse existing source code though static analysis and measuring metrics, but also how
do we guarantee that our code meets certain quality standards? Testing is also important in this
context, it guarantees high quality products.

New Tools

Up to now, you may known about an IDE, a compiler and a debugger. But there are many more
tools at the disposal of a software engineer. There are tools that allow us to work in teams, to
document our software, to assist and monitor the whole development effort. There are tools for
software architects, tools for testing and profiling, automation and re-engineering.

History

When the first modern digital computers appeared in the early 1940s,[1] the instructions to make
them operate were wired into the machine. Practitioners quickly realized that this design was not
flexible and came up with the "stored program architecture" or von Neumann architecture. Thus the
first division between "hardware" and "software" began with abstraction being used to deal with the
complexity of computing.

Programming languages started to appear in the 1950s and this was also another major step in
abstraction. Major languages such as Fortran, ALGOL, and COBOL were released in the late 1950s
to deal with scientific, algorithmic, and business problems respectively. E.W. Dijkstra wrote his
seminal paper, "Go To Statement Considered Harmful",[2] in 1968 and David Parnas introduced the
key concept of modularity and information hiding in 1972[3] to help programmers deal with the
ever increasing complexity of software systems. A software system for managing the hardware
called an operating system was also introduced, most notably by Unix in 1969. In 1967, the Simula
language introduced the object-oriented programming paradigm.

These advances in software were met with more advances in computer hardware. In the mid 1970s,
the microcomputer was introduced, making it economical for hobbyists to obtain a computer and
write software for it. This in turn led to the now famous Personal Computer (PC) and Microsoft

14

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-0

Windows. The Software Development Life Cycle or SDLC was also starting to appear as a
consensus for centralized construction of software in the mid 1980s. The late 1970s and early 1980s
saw the introduction of several new Simula-inspired object-oriented programming languages,
including Smalltalk, Objective-C, and C++.

Open-source software started to appear in the early 90s in the form of Linux and other software
introducing the "bazaar" or decentralized style of constructing software.[4] Then the World Wide
Web and the popularization of the Internet hit in the mid 90s, changing the engineering of software
once again. Distributed systems gained sway as a way to design systems, and the Java programming
language was introduced with its own virtual machine as another step in abstraction. Programmers
collaborated and wrote the Agile Manifesto, which favored more lightweight processes to create
cheaper and more timely software.

The current definition of software engineering is still being debated by practitioners today as they
struggle to come up with ways to produce software that is "cheaper, better, faster". Cost reduction
has been a primary focus of the IT industry since the 1990s. Total cost of ownership represents the
costs of more than just acquisition. It includes things like productivity impediments, upkeep efforts,
and resources needed to support infrastructure. [5] [6]

References

1. ↑ Leondes (2002). intelligent systems: technology and applications. CRC Press.
ISBN 9780849311215.

2. ↑ Dijkstra, E. W. (March 1968). "Go To Statement Considered Harmful".
Wikipedia:Communications of the ACM 11 (3): 147–148. doi:10.1145/362929.362947.
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF. Retrieved 2009-08-10.

3. ↑ Parnas, David (December 1972). "On the Criteria To Be Used in Decomposing Systems
into Modules". Wikipedia:Communications of the ACM 15 (12): 1053–1058.
doi:10.1145/361598.361623. http://www.acm.org/classics/may96/. Retrieved 2008-12-26.

4. ↑ Raymond, Eric S. The Cathedral and the Bazaar. ed 3.0. 2000.
5. ↑ Software engineering
6. ↑ History of software engineering

Software Engineer

A software engineer is an engineer who applies the principles of software engineering to the
design, development, testing, and evaluation of the software and systems that make computers or
anything containing software work.

Overview

Prior to the mid-1990s, software practitioners called themselves programmers or developers,
regardless of their actual jobs. Many people prefer to call themselves software developer and
programmer, because most widely agree what these terms mean, while software engineer is still
being debated. A prominent computing scientist, E. W. Dijkstra, wrote in a paper that the coining of
the term software engineer was not a useful term since it was an inappropriate analogy, "The

15

http://en.wikipedia.org/wiki/History_of_software_engineering
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-5
http://en.wikipedia.org/w/index.php?title=Software_engineering&oldid=412785733
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-3
http://www.acm.org/classics/may96/
http://dx.doi.org/10.1145%2F361598.361623
http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://www.acm.org/classics/may96/
http://www.acm.org/classics/may96/
http://en.wikipedia.org/wiki/David_Parnas
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-2
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
http://dx.doi.org/10.1145%2F362929.362947
http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-1
http://en.wikibooks.org/wiki/Special:BookSources/9780849311215
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-3

existence of the mere term has been the base of a number of extremely shallow --and false--
analogies, which just confuse the issue...Computers are such exceptional gadgets that there is good
reason to assume that most analogies with other disciplines are too shallow to be of any positive
value, are even so shallow that they are only confusing."[1]

The term programmer has often been used as a pejorative term to refer to those without the tools,
skills, education, or ethics to write good quality software. In response, many practitioners called
themselves software engineers to escape the stigma attached to the word programmer. In many
companies, the titles programmer and software developer were changed to software engineer, for
many categories of programmers.

These terms cause confusion, because some denied any differences (arguing that everyone does
essentially the same thing with software) while others use the terms to create a difference (because
the terms mean completely different jobs).

A state of the art

In 2004, Keith Chapple of the U. S. Bureau of Labor Statistics counted 760,840 software engineers
holding jobs in the U.S.; in the same period there were some 1.4 million practitioners employed in
the U.S. in all other engineering disciplines combined.[2] The label software engineer is used very
liberally in the corporate world. Very few of the practicing software engineers actually hold
Engineering degrees from accredited universities. In fact, according to the Association for
Computing Machinery, "most people who now function in the U.S. as serious software engineers
have degrees in computer science, not in software engineering".

Education

About half of all practitioners today have computer science degrees. A small, but growing, number
of practitioners have software engineering degrees. In 1987 Imperial College London introduced the
first three-year software engineering Bachelor's degree in the UK and the world. Since then,
software engineering undergraduate degrees have been established at many universities. A standard
international curriculum for undergraduate software engineering degrees was recently defined by
the CCSE. As of 2004, in the U.S., about 50 universities offer software engineering degrees, which
teach both computer science and engineering principles and practices. Steve McConnell opines that
because most universities teach computer science rather than software engineering, there is a
shortage of true software engineers.[3] ETS University and UQAM were mandated by IEEE to
develop the SoftWare Engineering BOdy of Knowledge SWEBOK, which has become an ISO
standard describing the body of knowledge covered by a software engineer.

Other degrees

In business, some software engineering practitioners have Management Information Systems (MIS)
degrees. In embedded systems, some have electrical engineering or computer engineering degrees,
because embedded software often requires a detailed understanding of hardware. In medical
software, practitioners may have medical informatics, general medical, or biology degrees. Some
practitioners have mathematics, science, engineering, or technology degrees. Some have philosophy
(logic in particular) or other non-technical degrees. And, others have no degrees.

16

http://en.wikibooks.org/w/index.php?title=SWEBOK&action=edit&redlink=1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-8
http://en.wikibooks.org/w/index.php?title=CCSE&action=edit&redlink=1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-6

Profession

Employment

Most software engineers work as employees or contractors. Software engineers work with
businesses, government agencies (civilian or military), and non-profit organizations. Some software
engineers work for themselves as freelancers. Some organizations have specialists to perform each
of the tasks in the software development process. Other organizations required software engineers
to do many or all of them. In large projects, people may specialize in only one role. In small
projects, people may fill several or all roles at the same time. Specializations include: in industry
(requirements analysts, software architects, software developers, software testers, technical support,
project managers) and in academia (educators and researchers).

There is considerable debate over the future employment prospects for Software Engineers and
other Information Technology (IT) Professionals. For example, an online futures market called the
Future of IT Jobs in America attempts to answer whether there will be more IT jobs, including
software engineers, in 2012 than there were in 2002.

Certification

Professional certification of software engineers is a contentious issue. Some see it as a tool to
improve professional practice. Most successful certification programs in the software industry are
oriented toward specific technologies, and are managed by the vendors of these technologies. These
certification programs are tailored to the institutions that would employ people who use these
technologies.

The Association for Computing Machinery (ACM) had a professional certification program in the
early 1980s, which was discontinued due to lack of interest. Actually the ACM made an explicit
decision not to continue with certification. As of 2006, the IEEE had certified over 575 software
professionals.[4]

Impact of globalization

Many students in the developed world have avoided degrees related to software engineering
because of the fear of offshore outsourci]] (importing software products or services from other
countries) and of being displaced by foreign visa workers.[5] Although government statistics do not
currently show a threat to software engineering itself; a related career, computer programming does
appear to have been affected.[6] [7] Often one is expected to start out as a computer programmer
before being promoted to software engineer. Thus, the career path to software engineering may be
rough, especially during recessions.

17

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-12
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-11
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-10
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-9
http://www.ideosphere.com/fx-bin/Claim?claim=ITJOBS

Some career counselors suggest a student also focus on "people skills" and business skills rather
than purely technical skills because such "soft skills" are allegedly more difficult to offshore.[8] It is
the quasi-management aspects of software engineering that appear to be what has kept it from being
impacted by globalization.[9]

Debates within software engineering

Controversies over the term Engineer

Some people believe that software engineering implies a certain level of academic training,
professional discipline, adherence to formal processes, and especially legal liability that often are
not applied in cases of software development. A common analogy is that working in construction
does not make one a civil engineer, and so writing code does not make one a software engineer. It is
disputed by some - in particular by the Canadian Professional Engineers Ontario (PEO) body, that
the field is mature enough to warrant the title "engineering". The PEO's position was that "software
engineering" was not an appropriate name for the field since those who practiced in the field and
called themselves "software engineers" were not properly licensed professional engineers, and that
they should therefore not be allowed to use the name.[10]

References

1. ↑ http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD690.html
E.W.Dijkstra Archive: The pragmatic engineer versus the scientific designer

2. ↑ Bureau of Labor Statistics, U.S. Department of Labor, USDL 05-2145: Occupational
Employment and Wages, November 2004

3. ↑ McConnell, Steve (July 10, 2003. Professional Software Development: Shorter Schedules,
Higher Quality Products, More Successful Projects, Enhanced Careers. ISBN 978-
0321193674.

4. ↑ IEEE Computer Society. "2006 IEEE COMPUTER SOCIETY REPORT TO THE IFIP
GENERAL ASSEMBLY". http://www.ifip.org/minutes/GA2006/Tab18b-US-IEEE.pdf.
Retrieved 2007-04-10.

5. ↑ As outsourcing gathers steam, computer science interest wanes
6. ↑ Computer Programmers
7. ↑ Software developer growth slows in North America | InfoWorld | News | 2007-03-13 | By

Robert Mullins, IDG News Service
8. ↑ Hot Skills, Cold Skills
9. ↑ Dual Roles: The Changing Face of IT
10.↑ Sayo, Mylene. "[http://www.peo.on.ca/enforcement/June112002newsrelease.html What's

in a Name? Tech Sector battles Engineers on "software engineering""].
http://www.peo.on.ca/enforcement/June112002newsrelease.html. Retrieved 2008-07-24

18

http://www.peo.on.ca/enforcement/June112002newsrelease.html
http://www.peo.on.ca/enforcement/June112002newsrelease.html
http://www.peo.on.ca/enforcement/June112002newsrelease.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-15
http://itmanagement.earthweb.com/career/article.php/3523066
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-14
http://www.computerworld.com/action/article.do?command=viewArticleTOC&specialReportId=9000100&articleId=112360
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-13
http://www.infoworld.com/article/07/03/13/HNslowsoftdev_1.html
http://www.infoworld.com/article/07/03/13/HNslowsoftdev_1.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-12
http://www.bls.gov/oco/ocos110.htm#outlook
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-11
http://www.computerworld.com/printthis/2006/0,4814,111202,00.html
http://www.computerworld.com/printthis/2006/0,4814,111202,00.html
http://www.computerworld.com/printthis/2006/0,4814,111202,00.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-10
http://www.ifip.org/minutes/GA2006/Tab18b-US-IEEE.pdf
http://www.ifip.org/minutes/GA2006/Tab18b-US-IEEE.pdf
http://www.ifip.org/minutes/GA2006/Tab18b-US-IEEE.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-9
http://en.wikibooks.org/wiki/Special:BookSources/9780321193674
http://en.wikibooks.org/wiki/Special:BookSources/9780321193674
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-8
ftp://ftp.bls.gov/pub/news.release/ocwage.txt
ftp://ftp.bls.gov/pub/news.release/ocwage.txt
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-7
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD690.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-15
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-14
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-13

UML

Introduction

Unified Modeling Language (UML) is a standardized general-purpose modeling language in the
field of software engineering. The standard is managed, and was created by, the Object
Management Group. UML includes a set of graphic notation techniques to create visual models of
software-intensive systems.[1]

Overview

The Unified Modeling Language (UML) is used to specify, visualize, modify, construct and
document the artifacts of an object-oriented software-intensive system under development.[2] UML
offers a standard way to visualize a system's architectural blueprints, including elements such as:

• activities
• actors
• business processes
• database schemas
• (logical) components
• programming language statements
• reusable software components.[3]

UML combines techniques from data modeling (entity relationship diagrams), business modeling
(work flows), object modeling, and component modeling. It can be used with all processes,
throughout the software development life cycle, and across different implementation technologies.
[4] UML has synthesized the notations of the Booch method, the Object-modeling technique
(OMT) and Object-oriented software engineering (OOSE) by fusing them into a single, common
and widely usable modeling language.[citation needed] UML aims to be a standard modeling
language which can model concurrent and distributed systems. UML is a de facto industry standard,
and is evolving under the auspices of the Object Management Group (OMG).

UML models may be automatically transformed to other representations (e.g. Java) by means of
QVT-like transformation languages. UML is extensible, with two mechanisms for customization:
profiles and stereotypes.

Modeling

It is important to distinguish between the UML model and the set of diagrams of a system. A
diagram is a partial graphic representation of a system's model. The model also contains
documentation that drive the model elements and diagrams (such as written use cases).

UML diagrams represent two different views of a system model [5]:

19

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-20
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-19
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-OMG00-18
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Foldoc01-17
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-16

• Static (or structural) view: emphasizes the static structure of the system using objects,
attributes, operations and relationships. The structural view includes class diagrams and
composite structure diagrams.

• Dynamic (or behavioral) view: emphasizes the dynamic behavior of the system by showing
collaborations among objects and changes to the internal states of objects. This view
includes sequence diagrams, activity diagrams and state machine diagrams.

UML models can be exchanged among UML tools by using the XMI interchange format.

Diagrams overview

UML 2.2 has 14 types of diagrams divided into two categories.[6] Seven diagram types represent
structural information, and the other seven represent general types of behavior, including four that
represent different aspects of interactions.

UML does not restrict UML element types to a certain diagram type. In general, every UML
element may appear on almost all types of diagrams; this flexibility has been partially restricted in
UML 2.0. UML profiles may define additional diagram types or extend existing diagrams with
additional notations.

Structure diagrams

Structure diagrams emphasize the things that must be present in the system being modeled. Since
structure diagrams represent the structure, they are used extensively in documenting the software
architecture of software systems.

• Class diagram: describes the structure of a system by showing the system's classes, their
attributes, and the relationships among the classes.

• Component diagram: describes how a software system is split up into components and
shows the dependencies among these components.

• Composite structure diagram: describes the internal structure of a class and the
collaborations that this structure makes possible.

• Deployment diagram: describes the hardware used in system implementations and the
execution environments and artifacts deployed on the hardware.

• Object diagram: shows a complete or partial view of the structure of a modeled system at a
specific time.

• Package diagram: describes how a system is split up into logical groupings by showing the
dependencies among these groupings.

• Profile diagram: operates at the metamodel level to show stereotypes as classes with the
<<stereotype>> stereotype, and profiles as packages with the <<profile>> stereotype. The
extension relation (solid line with closed, filled arrowhead) indicates what metamodel
element a given stereotype is extending.

20

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-21

Behaviour diagrams

Behavior diagrams emphasize what must happen in the system being modeled. Since behavior
diagrams illustrate the behavior of a system, they are used extensively to describe the functionality
of software systems.

• Activity diagram: describes the business and operational step-by-step workflows of
components in a system. An activity diagram shows the overall flow of control.

• state machine diagram: describes the states and state transitions of the system.
• Use case diagram: describes the functionality provided by a system in terms of actors, their

goals represented as use cases, and any dependencies among those use cases.

Interaction diagrams

Interaction diagrams, a subset of behaviour diagrams, emphasize the flow of control and data
among the things in the system being modeled:

• Communication diagram: shows the interactions between objects or parts in terms of
sequenced messages. They represent a combination of information taken from Class,
Sequence, and Use Case Diagrams describing both the static structure and dynamic behavior
of a system.

• Interaction overview diagram: provides an overview in which the nodes represent
communication diagrams.

• Sequence diagram: shows how objects communicate with each other in terms of a sequence
of messages. Also indicates the lifespans of objects relative to those messages.

• Timing diagrams: a specific type of interaction diagram where the focus is on timing
constraints.

UML Modelling Tools

The most well-known UML modelling tool is IBM Rational Rose.[citation needed] Other tools
include Rational Rhapsody, MagicDraw UML, StarUML, ArgoUML, Umbrello, BOUML,
PowerDesigner, and Dia. Some of popular development environments also offer UML modelling
tools, i. e. Eclipse, NetBeans, and Visual Studio. [7]

References

1. ↑ http://en.wikipedia.org/w/index.php?
title=Unified_Modeling_Language&oldid=413683022 Unified Modeling Language

2. ↑ Wikipedia:FOLDOC (2001). Unified Modeling Language last updated 2002-01-03.
Accessed 6 feb 2009.

3. ↑ Grady Booch, Ivar Jacobson & Jim Rumbaugh (2000) OMG Unified Modeling Language
Specification, Version 1.3 First Edition: March 2000. Retrieved 12 August 2008.

4. ↑ Satish Mishra (1997). "Visual Modeling & Unified Modeling Language (UML) :
Introduction to UML". Rational Software Corporation. Accessed 9 Nov 2008.

21

http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS_SWQS/20050107_Ex_UML.ppt
http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS_SWQS/20050107_Ex_UML.ppt
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-19
http://www.omg.org/docs/formal/00-03-01.pdf
http://www.omg.org/docs/formal/00-03-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-OMG00_18-0
http://foldoc.org/index.cgi?query=UML&action=Search
http://en.wikipedia.org/wiki/FOLDOC
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Foldoc01_17-0
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=413683022
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=413683022
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-16
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-22

5. ↑ Jon Holt Institution of Electrical Engineers (2004). UML for Systems Engineering:
Watching the Wheels IET, 2004, ISBN 0863413544. p.58

6. ↑ UML Superstructure Specification Version 2.2. OMG, February 2009.
7. ↑ http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools List of Unified

Modeling Language Tools

Examples

From the previous example, you may have noticed that software engineers speak a funny language:
UML. After this little introduction to UML, hopefully you will see that designing software is a little
like writing a screenplay for a Holywood movie.

Example: Bill at the Restaurant

Bill is at a restaurant and wants to eat dinner. His waiter is Linus, who takes the orders and brings
the food. In the kitchen is Larry the cook. Steve is the cashier.

Use Case Diagram

The first thing a software engineer does is to draw a Use Case diagram. All the actors are
represented by little stick figures, all the ’actions’ are represented by ovals and are called use cases.
The actors and use cases are connected by lines. Very often there is also one or more system
boundaries. Actors which are not part of the system are drawn outside the system area.

Game Time

Draw a Use Case diagram for our restaurant example.

Activity Diagram

The Activity Diagram captures the workflow of a process. In the Use Case diagram we have no
timely order, the Activity Diagram gives more detail to the Use Case. An Activity Diagram has a
beginning and an end, and it also depicts decisions and repetitions. It often depicts the flow of
information, hence it is also called Flowchart. Activity Diagrams are not so important.

Game Time

Draw an Activity Diagram diagram for our restaurant example.

22

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-22
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-21
http://en.wikibooks.org/wiki/Special:BookSources/0863413544
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-20

Sequence Diagram

The next step of refinement is the Sequence Diagram. It lists the actors/objects horizontally and
then depicts the messages going back and forth between the objects. The timeline is progressing
downwards.

This diagram is so important, because on the one hand it identifies our objects/classes and on the
other hand it also gives us the methods of each of the classes, because each message turns into a
method.

Game Time

Draw a Sequence Diagram for our restaurant example.

Collaboration Diagram

The Collaboration Diagram is similar to the Sequence Diagram, but it has a different layout. Instead
of worrying about the timeline, we worry about the interactions between the objects. Each object is
represented by a box, and interactions between the objects are shown by an arrow. This diagram
shows the responsibility of objects. If an object has too much responsibility, probably something is
wrong in your

Game Time

Draw a Collaboration Diagram for our restaurant example.

Class Diagram

For us as software engineers, the Class Diagram is the most important one. First, it shows classes
(objects) as boxes, with attributes and methods as compartments. Second, it shows relationships
between the objects as arrows, where a subtle distinction is being made between three different kind
of relationships:

• Association (’has a’): a static relationship, usually one class is attribute of another class, or
one class uses another class

• Aggregation (’consists of’’): for instance an order consists of order details
• Inheritance (’is a’): describes a hierarchy between classes

There are many more, but for now we do not need to worry about them.

Game Time

Draw a Class Diagram for our restaurant example.

23

24

Process & Methodology

Introduction

First we need to take a brief look at the big piture. The software development process is a structure
imposed on the development of a software product. It is made up of a set of activities and steps with
the goal to find repeatable, predictable processes that improve productivity and quality.

Software Development Activities

Model of the Systems Development Life Cycle with the Maintenance bubble highlighted.

The software development process consists of a set of activities and steps, which are

• Requirements
• Specification
• Architecture
• Design
• Implementation
• Testing
• Deployment
• Maintenance

Planning

The important task in creating a software product is extracting the requirements or requirements
analysis. Customers typically have an abstract idea of what they want as an end result, but not what
software should do. Incomplete, ambiguous, or even contradictory requirements are recognized by
skilled and experienced software engineers at this point. Frequently demonstrating live code may
help reduce the risk that the requirements are incorrect.

25

http://en.wikibooks.org/wiki/File:SDLC-Maintenance-Highlighted.png
http://en.wikibooks.org/wiki/File:SDLC-Maintenance-Highlighted.png

Once the general requirements are gathered from the client, an analysis of the scope of the
development should be determined and clearly stated. This is often called a scope document.

Certain functionality may be out of scope of the project as a function of cost or as a result of unclear
requirements at the start of development. If the development is done externally, this document can
be considered a legal document so that if there are ever disputes, any ambiguity of what was
promised to the client can be clarified.

Implementation, Testing and Documenting

Implementation is the part of the process where software engineers actually program the code for
the project.

Software testing is an integral and important part of the software development process. This part of
the process ensures that defects are recognized as early as possible.

Documenting the internal design of software for the purpose of future maintenance and
enhancement is done throughout development. This may also include the writing of an API, be it
external or internal. It is very important to document everything in the project.

Deployment and Maintenance

Deployment starts after the code is appropriately tested, is approved for release and sold or
otherwise distributed into a production environment.

Software Training and Support is important and a lot of developers fail to realize that. It would not
matter how much time and planning a development team puts into creating software if nobody in an
organization ends up using it. People are often resistant to change and avoid venturing into an
unfamiliar area, so as a part of the deployment phase, it is very important to have training classes
for new clients of your software.

Maintaining and enhancing software to cope with newly discovered problems or new requirements
can take far more time than the initial development of the software. It may be necessary to add code
that does not fit the original design to correct an unforeseen problem or it may be that a customer is
requesting more functionality and code can be added to accommodate their requests. If the labor
cost of the maintenance phase exceeds 25% of the prior-phases' labor cost, then it is likely that the
overall quality of at least one prior phase is poor. In that case, management should consider the
option of rebuilding the system (or portions) before maintenance cost is out of control.

References

26

External links

• Don't Write Another Process
• No Silver Bullet: Essence and Accidents of Software Engineering ", 1986
• Gerhard Fischer, "The Software Technology of the 21st Century: From Software Reuse to

Collaborative Software Design", 2001
• Lydia Ash: The Web Testing Companion: The Insider's Guide to Efficient and Effective

Tests, Wiley, May 2, 2003. ISBN 0-471-43021-8
• SaaSSDLC.com — Software as a Service Systems Development Life Cycle Project
• Software development life cycle (SDLC) [visual image], software development life cycle
• Selecting an SDLC ", 2009
• Heraprocess.org — Hera is a light process solution for managing web projects

Methodology

A software development methodology or system development methodology in software
engineering is a framework that is used to structure, plan, and control the process of developing an
information system.

History

The software development methodology framework didn't emerge until the 1960s. According to
Elliott (2004) the systems development life cycle (SDLC) can be considered to be the oldest
formalized methodology framework for building information systems. The main idea of the SDLC
has been "to pursue the development of information systems in a very deliberate, structured and
methodical way, requiring each stage of the life cycle from inception of the idea to delivery of the
final system, to be carried out in rigidly and sequentially".[1] within the context of the framework
being applied. The main target of this methodology framework in the 1960s was "to develop large
scale functional business systems in an age of large scale business conglomerates. Information
systems activities revolved around heavy data processing and number crunching routines".[1]

As a noun

As a noun, a software development methodology is a framework that is used to structure, plan, and
control the process of developing an information system - this includes the pre-definition of specific
deliverables and artifacts that are created and completed by a project team to develop or maintain an
application.[2]

27

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Ell04-23
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Ell04-23
http://www.heraprocess.org/
http://www.gem-up.com/PDF/SK903V0-WP-ChoosingSDLC.pdf
http://www.notetech.com/images/software_lifecycle.jpg
http://saassdlc.com/
http://en.wikibooks.org/wiki/Special:BookSources/0471430218
http://l3d.cs.colorado.edu/~gerhard/papers/isfst2001.pdf
http://l3d.cs.colorado.edu/~gerhard/papers/isfst2001.pdf
http://virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html
http://www.methodsandtools.com/archive/archive.php?id=16

The three basic approaches applied to software development methodology frameworks.

A wide variety of such frameworks have evolved over the years, each with its own recognized
strengths and weaknesses. One software development methodology framework is not necessarily
suitable for use by all projects. Each of the available methodology frameworks are best suited to
specific kinds of projects, based on various technical, organizational, project and team
considerations.[2]

These software development frameworks are often bound to some kind of organization, which
further develops, supports the use, and promotes the methodology framework. The methodology
framework is often defined in some kind of formal documentation. Specific software development
methodology frameworks (noun) include

• Rational Unified Process (RUP, IBM) since 1998.
• Agile Unified Process (AUP) since 2005 by Scott Ambler

As a verb

As a verb, the software development methodology is an approach used by organizations and project
teams to apply the software development methodology framework (noun). Specific software
development methodologies (verb) include:

1970s

• Structured programming since 1969
• Cap Gemini SDM, originally from PANDATA, the first English translation was published in

1974. SDM stands for System Development Methodology

28

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24
http://en.wikibooks.org/wiki/File:Three_software_development_patterns_mashed_together.svg
http://en.wikibooks.org/wiki/File:Three_software_development_patterns_mashed_together.svg

1980s

• Structured Systems Analysis and Design Methodology (SSADM) from 1980 onwards
• Information Requirement Analysis/Soft systems methodology

1990s

• Object-oriented programming (OOP) has been developed since the early 1960s, and
developed as a dominant programming approach during the mid-1990s

• Rapid application development (RAD) since 1991
• Scrum, since the late 1990s
• Team software process developed by Watts Humphrey at the SEI
• Extreme Programming since 1999

Verb approaches

Every software development methodology framework acts as a basis for applying specific
approaches to develop and maintain software. Several software development approaches have been
used since the origin of information technology. These are:[2]

• Waterfall: a linear framework
• Prototyping: an iterative framework
• Incremental: a combined linear-iterative framework
• Spiral: a combined linear-iterative framework
• Rapid application development (RAD): an iterative framework
• Extreme Programming

Waterfall development

The Waterfall model is a sequential development approach, in which development is seen as
flowing steadily downwards (like a waterfall) through the phases of requirements analysis, design,
implementation, testing (validation), integration, and maintenance. The first formal description of
the method is often cited as an article published by Winston W. Royce[3] in 1970 although Royce
did not use the term "waterfall" in this article.

The basic principles are:[2]

• Project is divided into sequential phases, with some overlap and splashback acceptable
between phases.

• Emphasis is on planning, time schedules, target dates, budgets and implementation of an
entire system at one time.

• Tight control is maintained over the life of the project via extensive written documentation,
formal reviews, and approval/signoff by the user and information technology management
occurring at the end of most phases before beginning the next phase.

29

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-25
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24

Prototyping

Software prototyping, is the development approach of activities during software development, the
creation of prototypes, i.e., incomplete versions of the software program being developed.

The basic principles are:[2]

• Not a standalone, complete development methodology, but rather an approach to handling
selected parts of a larger, more traditional development methodology (i.e. incremental,
spiral, or rapid application development (RAD)).

• Attempts to reduce inherent project risk by breaking a project into smaller segments and
providing more ease-of-change during the development process.

• User is involved throughout the development process, which increases the likelihood of user
acceptance of the final implementation.

• Small-scale mock-ups of the system are developed following an iterative modification
process until the prototype evolves to meet the users’ requirements.

• While most prototypes are developed with the expectation that they will be discarded, it is
possible in some cases to evolve from prototype to working system.

• A basic understanding of the fundamental business problem is necessary to avoid solving the
wrong problem.

Incremental development

Various methods are acceptable for combining linear and iterative systems development
methodologies, with the primary objective of each being to reduce inherent project risk by breaking
a project into smaller segments and providing more ease-of-change during the development process.

The basic principles are:[2]

• A series of mini-Waterfalls are performed, where all phases of the Waterfall are completed
for a small part of a system, before proceeding to the next increment, or

• Overall requirements are defined before proceeding to evolutionary, mini-Waterfall
development of individual increments of a system, or

• The initial software concept, requirements analysis, and design of architecture and system
core are defined via Waterfall, followed by iterative Prototyping, which culminates in
installing the final prototype, a working system.

30

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24

Spiral development

The spiral model.

The spiral model is a software development process combining elements of both design and
prototyping-in-stages, in an effort to combine advantages of top-down and bottom-up concepts.

The basic principles are:[2]

• Focus is on risk assessment and on minimizing project risk by breaking a project into
smaller segments and providing more ease-of-change during the development process, as
well as providing the opportunity to evaluate risks and weigh consideration of project
continuation throughout the life cycle.

• "Each cycle involves a progression through the same sequence of steps, for each part of the
product and for each of its levels of elaboration, from an overall concept-of-operation
document down to the coding of each individual program."[4]

• Each trip around the spiral traverses four basic quadrants: (1) determine objectives,
alternatives, and constraints of the iteration; (2) evaluate alternatives; Identify and resolve
risks; (3) develop and verify deliverables from the iteration; and (4) plan the next iteration.
[4] [5]

• Begin each cycle with an identification of stakeholders and their win conditions, and end
each cycle with review and commitment.[6]

Rapid application development

Rapid application development (RAD) is a software development methodology, which involves
iterative development and the construction of prototypes. Rapid application development is a term
originally used to describe a software development process introduced by James Martin in 1991.

The basic principles are:[2]

• Key objective is for fast development and delivery of a high quality system at a relatively
low investment cost.

• Attempts to reduce inherent project risk by breaking a project into smaller segments and
providing more ease-of-change during the development process.

31

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-28
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-27
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-BB86-26
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-BB86-26
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-CMS08-24
http://en.wikibooks.org/wiki/File:Software_Development_Spiral.svg
http://en.wikibooks.org/wiki/File:Software_Development_Spiral.svg

• Aims to produce high quality systems quickly, primarily via iterative Prototyping (at any
stage of development), active user involvement, and computerized development tools. These
tools may include Graphical User Interface (GUI) builders, Computer Aided Software
Engineering (CASE) tools, Database Management Systems (DBMS), fourth-generation
programming languages, code generators, and object-oriented techniques.

• Key emphasis is on fulfilling the business need, while technological or engineering
excellence is of lesser importance.

• Project control involves prioritizing development and defining delivery deadlines or
“timeboxes”. If the project starts to slip, emphasis is on reducing requirements to fit the
timebox, not in increasing the deadline.

• Generally includes joint application design (JAD), where users are intensely involved in
system design, via consensus building in either structured workshops, or electronically
facilitated interaction.

• Active user involvement is imperative.
• Iteratively produces production software, as opposed to a throwaway prototype.
• Produces documentation necessary to facilitate future development and maintenance.
• Standard systems analysis and design methods can be fitted into this framework.

Other practices

Other methodology practices include:

• Object-oriented development methodologies, such as Grady Booch's object-oriented design
(OOD), also known as object-oriented analysis and design (OOAD). The Booch model
includes six diagrams: class, object, state transition, interaction, module, and process.[7]

• Top-down programming: evolved in the 1970s by IBM researcher Harlan Mills (and Niklaus
Wirth) in developed structured programming.

• Unified Process (UP) is an iterative software development methodology framework, based
on Unified Modeling Language (UML). UP organizes the development of software into four
phases, each consisting of one or more executable iterations of the software at that stage of
development: inception, elaboration, construction, and guidelines. Many tools and products
exist to facilitate UP implementation. One of the more popular versions of UP is the
Rational Unified Process (RUP).

• Agile software development refers to a group of software development methodologies based
on iterative development, where requirements and solutions evolve via collaboration
between self-organizing cross-functional teams. The term was coined in the year 2001 when
the Agile Manifesto was formulated.

• Integrated software development refers to a deliverable based software development
framework using the three primary IT (project management, software development, software
testing) life cycles that can be leveraged using multiple (iterative, waterfall, spiral, agile)
software development approaches, where requirements and solutions evolve via
collaboration between self-organizing cross-functional teams.

32

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-29

Subtopics

View model

The TEAF Matrix of Views and Perspectives.

A view model is framework which provides the viewpoints on the system and its environment, to be
used in the software development process. It is a graphical representation of the underlying
semantics of a view.

The purpose of viewpoints and views is to enable human engineers to comprehend very complex
systems, and to organize the elements of the problem and the solution around domains of expertise.
In the engineering of physically intensive systems, viewpoints often correspond to capabilities and
responsibilities within the engineering organization.[8]

Most complex system specifications are so extensive that no one individual can fully comprehend
all aspects of the specifications. Furthermore, we all have different interests in a given system and
different reasons for examining the system's specifications. A business executive will ask different
questions of a system make-up than would a system implementer. The concept of viewpoints
framework, therefore, is to provide separate viewpoints into the specification of a given complex
system. These viewpoints each satisfy an audience with interest in some set of aspects of the
system. Associated with each viewpoint is a viewpoint language that optimizes the vocabulary and
presentation for the audience of that viewpoint.

Business process and data modelling

Graphical representation of the current state of information provides a very effective means for
presenting information to both users and system developers.

33

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-NIST2003-30
http://en.wikibooks.org/wiki/File:TEAF_Matrix_of_Views_and_Perspectives.jpg
http://en.wikibooks.org/wiki/File:TEAF_Matrix_of_Views_and_Perspectives.jpg

example of the interaction between business process and data models.[9]

• A business model illustrates the functions associated with the business process being
modeled and the organizations that perform these functions. By depicting activities and
information flows, a foundation is created to visualize, define, understand, and validate the
nature of a process.

• A data model provides the details of information to be stored, and is of primary use when the
final product is the generation of computer software code for an application or the
preparation of a functional specification to aid a computer software make-or-buy decision.
See the figure on the right for an example of the interaction between business process and
data models.[9]

Usually, a model is created after conducting an interview, referred to as business analysis. The
interview consists of a facilitator asking a series of questions designed to extract required
information that describes a process. The interviewer is called a facilitator to emphasize that it is the
participants who provide the information. The facilitator should have some knowledge of the
process of interest, but this is not as important as having a structured methodology by which the
questions are asked of the process expert. The methodology is important because usually a team of
facilitators is collecting information across the facility and the results of the information from all the
interviewers must fit together once completed.[9]

The models are developed as defining either the current state of the process, in which case the final
product is called the "as-is" snapshot model, or a collection of ideas of what the process should
contain, resulting in a "what-can-be" model. Generation of process and data models can be used to
determine if the existing processes and information systems are sound and only need minor
modifications or enhancements, or if re-engineering is required as a corrective action. The creation
of business models is more than a way to view or automate your information process. Analysis can
be used to fundamentally reshape the way your business or organization conducts its operations.[9]

34

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SS93-31
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SS93-31
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SS93-31
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SS93-31
http://en.wikibooks.org/wiki/File:Process_and_data_modeling.jpg
http://en.wikibooks.org/wiki/File:Process_and_data_modeling.jpg

Computer-aided software engineering

Computer-aided software engineering (CASE), in the field software engineering is the scientific
application of a set of tools and methods to a software which results in high-quality, defect-free, and
maintainable software products.[10] It also refers to methods for the development of information
systems together with automated tools that can be used in the software development process.[11]
The term "computer-aided software engineering" (CASE) can refer to the software used for the
automated development of systems software, i.e., computer code. The CASE functions include
analysis, design, and programming. CASE tools automate methods for designing, documenting, and
producing structured computer code in the desired programming language.[12]

Two key ideas of Computer-aided Software System Engineering (CASE) are:[13]

• Foster computer assistance in software development and or software maintenance processes,
and

• An engineering approach to software development and or maintenance.

Typical CASE tools exist for configuration management, data modeling, model transformation,
refactoring, source code generation, and Unified Modeling Language.

Integrated development environment

Anjuta, a C and C++ IDE for the GNOME environment

An integrated development environment (IDE) also known as integrated design environment or
integrated debugging environment is a software application that provides comprehensive facilities
to computer programmers for software development. An IDE normally consists of a:

• source code editor,
• compiler and/or interpreter,
• build automation tools, and
• debugger (usually).

35

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-35
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-34
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-33
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-32
http://en.wikibooks.org/wiki/File:Anjuta-2.0.0-2.png
http://en.wikibooks.org/wiki/File:Anjuta-2.0.0-2.png

IDEs are designed to maximize programmer productivity by providing tight-knit components with
similar user interfaces. Typically an IDE is dedicated to a specific programming language, so as to
provide a feature set which most closely matches the programming paradigms of the language.

Modeling language

A modeling language is any artificial language that can be used to express information or
knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used
for interpretation of the meaning of components in the structure. A modeling language can be
graphical or textual.[14] Graphical modeling languages use a diagram techniques with named
symbols that represent concepts and lines that connect the symbols and that represent relationships
and various other graphical annotation to represent constraints. Textual modeling languages
typically use standardised keywords accompanied by parameters to make computer-interpretable
expressions.

Example of graphical modelling languages in the field of software engineering are:

• Business Process Modeling Notation (BPMN, and the XML form BPML) is an example of a
process modeling language.

• EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose
data modeling language.

• Extended Enterprise Modeling Language (EEML) is commonly used for business process
modeling across layers.

• Flowchart is a schematic representation of an algorithm or a stepwise process,
• Fundamental Modeling Concepts (FMC) modeling language for software-intensive systems.
• IDEF is a family of modeling languages, the most notable of which include IDEF0 for

functional modeling, IDEF1X for information modeling, and IDEF5 for modeling
ontologies.

• LePUS3 is an object-oriented visual Design Description Language and a formal
specification language that is suitable primarily for modelling large object-oriented (Java,
C++, C#) programs and design patterns.

• Specification and Description Language(SDL) is a specification language targeted at the
unambiguous specification and description of the behaviour of reactive and distributed
systems.

• Unified Modeling Language (UML) is a general-purpose modeling language that is an
industry standard for specifying software-intensive systems. UML 2.0, the current version,
supports thirteen different diagram techniques, and has widespread tool support.

Not all modeling languages are executable, and for those that are, using them doesn't necessarily
mean that programmers are no longer needed. On the contrary, executable modeling languages are
intended to amplify the productivity of skilled programmers, so that they can address more difficult
problems, such as parallel computing and distributed systems.

36

http://en.wikibooks.org/w/index.php?title=C_Sharp_(programming_language)&action=edit&redlink=1
http://en.wikibooks.org/wiki/C%2B%2B
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-36

Programming paradigm

A programming paradigm is a fundamental style of computer programming, in contrast to a
software engineering methodology, which is a style of solving specific software engineering
problems. Paradigms differ in the concepts and abstractions used to represent the elements of a
program (such as objects, functions, variables, constraints...) and the steps that compose a
computation (assignation, evaluation, continuations, data flows...).

A programming language can support multiple paradigms. For example programs written in C++ or
Object Pascal can be purely procedural, or purely object-oriented, or contain elements of both
paradigms. Software designers and programmers decide how to use those paradigm elements. In
object-oriented programming, programmers can think of a program as a collection of interacting
objects, while in functional programming a program can be thought of as a sequence of stateless
function evaluations. When programming computers or systems with many processors, process-
oriented programming allows programmers to think about applications as sets of concurrent
processes acting upon logically shared data structures.

Just as different groups in software engineering advocate different methodologies, different
programming languages advocate different programming paradigms. Some languages are designed
to support one paradigm (Smalltalk supports object-oriented programming, Haskell supports
functional programming), while other programming languages support multiple paradigms (such as
Object Pascal, C++, C#, Visual Basic, Common Lisp, Scheme, Python, Ruby, and Oz).

Many programming paradigms are as well known for what methods they forbid as for what they
enable. For instance, pure functional programming forbids using side-effects; structured
programming forbids using goto statements. Partly for this reason, new paradigms are often
regarded as doctrinaire or overly rigid by those accustomed to earlier styles.[citation needed] Avoiding
certain methods can make it easier to prove theorems about a program's correctness, or simply to
understand its behavior.

Software framework

A software framework is a re-usable design for a software system or subsystem. A software
framework may include support programs, code libraries, a scripting language, or other software to
help develop and glue together the different components of a software project. Various parts of the
framework may be exposed via an API.

Software development process

A software development process is a framework imposed on the development of a software product.
Synonyms include software life cycle and software process. There are several models for such
processes, each describing approaches to a variety of tasks or activities that take place during the
process.

A largely growing body of software development organizations implement process methodologies.
Many of them are in the defense industry, which in the U.S. requires a rating based on 'process
models' to obtain contracts. The international standard describing the method to select, implement
and monitor the life cycle for software is ISO 12207.

37

http://en.wikibooks.org/wiki/Wikibooks:OR

A decades-long goal has been to find repeatable, predictable processes that improve productivity
and quality. Some try to systematize or formalize the seemingly unruly task of writing software.
Others apply project management methods to writing software. Without project management,
software projects can easily be delivered late or over budget. With large numbers of software
projects not meeting their expectations in terms of functionality, cost, or delivery schedule, effective
project management appears to be lacking.

See also

Lists

• List of software engineering topics
• List of software development philosophies

Related topics

• Domain-specific modeling
• Lightweight methodology
• Object modeling language
• Structured programming
• Integrated IT Methodology

References

1. ↑ a b Geoffrey Elliott (2004) Global Business Information Technology: an integrated
systems approach. Pearson Education. p.87.

2. ↑ a b c d e f g h Centers for Medicare & Medicaid Services (CMS) Office of Information
Service (2008). Selecting a development approach. Webarticle. United States Department of
Health and Human Services (HHS). Revalidated: March 27, 2008. Retrieved 27 Oct 2008.

3. ↑ Wasserfallmodell > Entstehungskontext, Markus Rerych, Institut für Gestaltungs- und
Wirkungsforschung, TU-Wien. Accessed on line November 28, 2007.

4. ↑ a b Barry Boehm (1996., "A Spiral Model of Software Development and Enhancement ".
In: ACM SIGSOFT Software Engineering Notes (ACM) 11(4):14-24, August 1986

5. ↑ Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project
management. Computer Society Press of the IEEE. p.130

6. ↑ Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.
7. ↑ Georges Gauthier Merx & Ronald J. Norman (2006). Unified Software Engineering with

Java. p.201.
8. ↑ Edward J. Barkmeyer ea (2003). Concepts for Automating Systems Integration NIST 2003.
9. ↑ a b c d Paul R. Smith & Richard Sarfaty (1993). Creating a strategic plan for configuration

management using Computer Aided Software Engineering (CASE) tools. Paper For 1993
National DOE/Contractors and Facilities CAD/CAE User's Group.

10.↑ Kuhn, D.L (1989). "Selecting and effectively using a computer aided software engineering
tool". Annual Westinghouse computer symposium; 6-7 Nov 1989; Pittsburgh, PA (USA);
DOE Project.

38

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-32
http://www.osti.gov/energycitations/servlets/purl/10160331-YhIRrY/
http://www.osti.gov/energycitations/servlets/purl/10160331-YhIRrY/
http://www.osti.gov/energycitations/servlets/purl/10160331-YhIRrY/
http://www.osti.gov/energycitations/servlets/purl/10160331-YhIRrY/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SS93_31-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SS93_31-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SS93_31-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SS93_31-0
http://www.mel.nist.gov/msidlibrary/doc/AMIS-Concepts.pdf
http://www.mel.nist.gov/msidlibrary/doc/AMIS-Concepts.pdf
http://www.mel.nist.gov/msidlibrary/doc/AMIS-Concepts.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-NIST2003_30-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-29
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-28
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-27
http://doi.acm.org/10.1145/12944.12948
http://doi.acm.org/10.1145/12944.12948
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-BB86_26-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-BB86_26-0
http://cartoon.iguw.tuwien.ac.at/fit/fit01/wasserfall/entstehung.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-25
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-CMS08_24-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Ell04_23-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Ell04_23-0

11.↑ P. Loucopoulos and V. Karakostas (1995). System Requirements Engineering. McGraw-
Hill.

12.↑ CASE definition In: Telecom Glossary 2000. Retrieved 26 Oct 2008.
13.↑ K. Robinson (1992). Putting the Software Engineering into CASE. New York : John Wiley

and Sons Inc.
14.↑ Xiao He (2007). "A metamodel for the notation of graphical modeling languages". In:

Computer Software and Applications Conference, 2007. COMPSAC 2007 - Vol. 1. 31st
Annual International, Volume 1, Issue , 24–27 July 2007, pp 219-224.

External links

Wikimedia Commons has media related to: Software development methodology

• Selecting a development approach at cms.hhs.gov.
• Software Methodologies Book Reviews An extensive set of book reviews related to software

methodologies and processes

V-Model

The V-model of the Systems Engineering Process.[1]

The V-model represents a software development process (also applicable to hardware development)
which may be considered an extension of the waterfall model. Instead of moving down in a linear
way, the process steps are bent upwards after the coding phase, to form the typical V shape. The V-
Model demonstrates the relationships between each phase of the development life cycle and its
associated phase of testing. The horizontal and vertical axes represents time or project completeness
(left-to-right) and level of abstraction (coarsest-grain abstraction uppermost), respectively.

39

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-FHWA_05-37
http://www.techbookreport.com/SoftwareIndex.html
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://commons.wikimedia.org/wiki/Category:Software_development_methodology
http://commons.wikimedia.org/wiki/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-36
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-35
http://www.its.bldrdoc.gov/projects/devglossary/
http://www.its.bldrdoc.gov/projects/devglossary/_case.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-34
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-33
http://en.wikibooks.org/wiki/File:Systems_Engineering_Process_II.svg
http://en.wikibooks.org/wiki/File:Systems_Engineering_Process_II.svg

Verification Phases

Requirements analysis

In the Requirements analysis phase, the requirements of the proposed system are collected by
analyzing the needs of the user(s). This phase is concerned about establishing what the ideal system
has to perform. However it does not determine how the software will be designed or built. Usually,
the users are interviewed and a document called the user requirements document is generated.

The user requirements document will typically describe the system’s functional, interface,
performance, data, security, etc requirements as expected by the user. It is used by business analysts
to communicate their understanding of the system to the users. The users carefully review this
document as this document would serve as the guideline for the system designers in the system
design phase. The user acceptance tests are designed in this phase. See also Functional
requirements. this is parallel processing

There are different methods for gathering requirements of both soft and hard methodologies
including; interviews, questionnaires, document analysis, observation, throw-away prototypes, use
cases and status and dynamic views with users.

System Design

Systems design is the phase where system engineers analyze and understand the business of the
proposed system by studying the user requirements document. They figure out possibilities and
techniques by which the user requirements can be implemented. If any of the requirements are not
feasible, the user is informed of the issue. A resolution is found and the user requirement document
is edited accordingly.

The software specification document which serves as a blueprint for the development phase is
generated. This document contains the general system organization, menu structures, data structures
etc. It may also hold example business scenarios, sample windows, reports for the better
understanding. Other technical documentation like entity diagrams, data dictionary will also be
produced in this phase. The documents for system testing are prepared in this phase.

Architecture Design

The phase of the design of computer architecture and software architecture can also be referred to as
high-level design. The baseline in selecting the architecture is that it should realize all which
typically consists of the list of modules, brief functionality of each module, their interface
relationships, dependencies, database tables, architecture diagrams, technology details etc. The
integration testing design is carried out in the particular phase.

40

Module Design

The module design phase can also be referred to as low-level design. The designed system is broken
up into smaller units or modules and each of them is explained so that the programmer can start
coding directly. The low level design document or program specifications will contain a detailed
functional logic of the module, in pseudocode:

• database tables, with all elements, including their type and size
• all interface details with complete API references
• all dependency issues
• error message listings
• complete input and outputs for a module.

The unit test design is developed in this stage.

Validation Phases

Unit Testing

In computer programming, unit testing is a method by which individual units of source code are
tested to determine if they are fit for use. A unit is the smallest testable part of an application. In
procedural programming a unit may be an individual function or procedure. Unit tests are created
by programmers or occasionally by white box testers. The purpose is to verify the internal logic
code by testing every possible branch within the function, also known as test coverage. Static
analysis tools are used to facilitate in this process, where variations of input data are passed to the
function to test every possible case of execution.

Integration Testing

In integration testing the separate modules will be tested together to expose faults in the interfaces
and in the interaction between integrated components. Testing is usually black box as the code is
not directly checked for errors.

System Testing

System testing will compare the system specifications against the actual system.After the
integration test is completed, the next test level is the system test. System testing checks if the
integrated product meets the specified requirements. Why is this still necessary after the component
and integration tests? The reasons for this are as follows:

41

Reasons for system test

1. In the lower test levels, the testing was done against technical specifications, i.e., from the
technical perspective of the software producer. The system test, though, looks at the system
from the perspective of the customer and the future user. The testers validate whether the
requirements are completely and appropriately met.

• Example: The customer (who has ordered and paid for the system) and the user (who
uses the system) can be different groups of people or organizations with their own
specific interests and requirements of the system.

2. Many functions and system characteristics result from the interaction of all system
components, consequently, they are only visible on the level of the entire system and can
only be observed and tested there.

User Acceptance Testing

Acceptance testing is the phase of testing used to determine whether a system satisfies the
requirements specified in the requirements analysis phase. The acceptance test design is derived
from the requirements document. The acceptance test phase is the phase used by the customer to
determine whether to accept the system or not.

Acceptance testing helps

• to determine whether a system satisfies its acceptance criteria or not.
• to enable the customer to determine whether to accept the system or not.
• to test the software in the "real world" by the intended audience.

Purpose of acceptance testing:

• to verify the system or changes according to the original needs.

Procedures

1. Define the acceptance criteria:
• Functionality requirements.
• Performance requirements.
• Interface quality requirements.
• Overall software quality requirements.

2. Develop an acceptance plan:
• Project description.
• User responsibilities.
• Acceptance description.
• Execute the acceptance test plan.

42

References

1. ↑ Clarus Concept of Operations. Publication No. FHWA-JPO-05-072, Federal Highway
Administration (FHWA), 2005

Further reading

• Roger S. Pressman:Software Engineering: A Practitioner's Approach, The McGraw-Hill
Companies, ISBN 007301933X

• Mark Hoffman & Ted Beaumont: Application Development: Managing the Project Life
Cycle, Mc Press, ISBN 1883884454

• Boris Beizer: Software Testing Techniques. Second Edition, International Thomson
Computer Press, 1990, ISBN 1-85032-880-3

External links

Wikimedia Commons has media related to: V-models

• A paper by Christian Bucanac
• The SDLC and SixSigma
• SDLC for small and medium DB applications

43

http://www.elucidata.com/refs/sdlc.pdf
http://www.iacis.org/iis/2004_iis/PDFfiles/Boggs.pdf
http://www.bucanac.com/documents/The_V-Model.pdf
http://commons.wikimedia.org/wiki/Category:V-models
http://commons.wikimedia.org/wiki/
http://en.wikibooks.org/wiki/Special:BookSources/1850328803
http://en.wikibooks.org/wiki/Special:BookSources/1883884454
http://en.wikibooks.org/wiki/Special:BookSources/007301933X
http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-FHWA_05_37-0

Agile Model

Agile software development poster

Agile software development is a group of software development methodologies based on iterative
and incremental development, where requirements and solutions evolve through collaboration
between self-organizing, cross-functional teams. The Agile Manifesto[1] introduced the term in
2001.

History

Predecessors

44

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Agile_Manifesto-38
http://en.wikibooks.org/wiki/File:Agile_Software_Development_methodology.jpg
http://en.wikibooks.org/wiki/File:Agile_Software_Development_methodology.jpg
http://en.wikibooks.org/wiki/File:Jeff_Sutherland.JPG
http://en.wikibooks.org/wiki/File:Jeff_Sutherland.JPG

Jeff Sutherland, one of the developers of the Scrum agile software development process

Incremental software development methods have been traced back to 1957.[2] In 1974, a paper by
E. A. Edmonds introduced an adaptive software development process.[3]

So-called "lightweight" software development methods evolved in the mid-1990s as a reaction
against "heavyweight" methods, which were characterized by their critics as a heavily regulated,
regimented, micromanaged, waterfall model of development. Proponents of lightweight methods
(and now "agile" methods) contend that they are a return to development practices from early in the
history of software development.[2]

Early implementations of lightweight methods include Scrum (1995), Crystal Clear, Extreme
Programming (1996), Adaptive Software Development, Feature Driven Development, and Dynamic
Systems Development Method (DSDM) (1995). These are now typically referred to as agile
methodologies, after the Agile Manifesto published in 2001.[4]

Agile Manifesto

In February 2001, 17 software developers[5] met at a ski resort in Snowbird, Utah, to discuss
lightweight development methods. They published the "Manifesto for Agile Software
Development"[1] to define the approach now known as agile software development. Some of the
manifesto's authors formed the Agile Alliance, a nonprofit organization that promotes software
development according to the manifesto's principles.

Agile Manifesto reads, in its entirety, as follows:[1]

We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

Twelve principles underlie the Agile Manifesto, including:[6]

• Customer satisfaction by rapid delivery of useful software
• Welcome changing requirements, even late in development
• Working software is delivered frequently (weeks rather than months)
• Working software is the principal measure of progress
• Sustainable development, able to maintain a constant pace
• Close, daily co-operation between business people and developers

45

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-manifestoprinciples-43
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Agile_Manifesto-38
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Agile_Manifesto-38
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-42
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Larman2004-41
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-craig2003-39
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-edmonds1974-40
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-craig2003-39

• Face-to-face conversation is the best form of communication (co-location)
• Projects are built around motivated individuals, who should be trusted
• Continuous attention to technical excellence and good design
• Simplicity
• Self-organizing teams
• Regular adaptation to changing circumstances

In 2005, a group headed by Alistair Cockburn and Jim Highsmith wrote an addendum of project
management principles, the Declaration of Interdependence,[7] to guide software project
management according to agile development methods.

Characteristics

Pair programming, an XP development technique used by agile

There are many specific agile development methods. Most promote development, teamwork,
collaboration, and process adaptability throughout the life-cycle of the project.

Agile methods break tasks into small increments with minimal planning, and do not directly involve
long-term planning. Iterations are short time frames (timeboxes) that typically last from one to four
weeks. Each iteration involves a team working through a full software development cycle including
planning, requirements analysis, design, coding, unit testing, and acceptance testing when a
working product is demonstrated to stakeholders. This minimizes overall risk and allows the project
to adapt to changes quickly. Stakeholders produce documentation as required. An iteration may not
add enough functionality to warrant a market release, but the goal is to have an available release
(with minimal bugs) at the end of each iteration.[8] Multiple iterations may be required to release a
product or new features.

Team composition in an agile project is usually cross-functional and self-organizing without
consideration for any existing corporate hierarchy or the corporate roles of team members. Team
members normally take responsibility for tasks that deliver the functionality an iteration requires.
They decide individually how to meet an iteration's requirements.

Agile methods emphasize face-to-face communication over written documents when the team is all
in the same location. Most agile teams work in a single open office (called a bullpen), which
facilitates such communication. Team size is typically small (5-9 people) to simplify team
communication and team collaboration. Larger development efforts may be delivered by multiple

46

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-embracing_change-45
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-44
http://en.wikibooks.org/wiki/File:Pair_programming_1.jpg
http://en.wikibooks.org/wiki/File:Pair_programming_1.jpg

teams working toward a common goal or on different parts of an effort. This may require a co-
ordination of priorities across teams. When a team works in different locations, they maintain daily
contact through videoconferencing, voice, e-mail, etc.

No matter what development disciplines are required, each agile team will contain a customer
representative. This person is appointed by stakeholders to act on their behalf and makes a personal
commitment to being available for developers to answer mid-iteration problem-domain questions.
At the end of each iteration, stakeholders and the customer representative review progress and re-
evaluate priorities with a view to optimizing the return on investment (ROI) and ensuring alignment
with customer needs and company goals.

Most agile implementations use a routine and formal daily face-to-face communication among team
members. This specifically includes the customer representative and any interested stakeholders as
observers. In a brief session, team members report to each other what they did the previous day,
what they intend to do today, and what their roadblocks are. This face-to-face communication
exposes problems as they arise.

Agile development emphasizes working software as the primary measure of progress. This,
combined with the preference for face-to-face communication, produces less written documentation
than other methods. The agile method encourages stakeholders to prioritize wants with other
iteration outcomes based exclusively on business value perceived at the beginning of the iteration.

Specific tools and techniques such as continuous integration, automated or xUnit test, pair
programming, test driven development, design patterns, domain-driven design, code refactoring and
other techniques are often used to improve quality and enhance project agility.

Comparison with other methods

Agile methods are sometimes characterized as being at the opposite end of the spectrum from "plan-
driven" or "disciplined" methods; agile teams may, however, employ highly disciplined formal
methods.[9] A more accurate distinction is that methods exist on a continuum from "adaptive" to
"predictive".[10] Agile methods lie on the "adaptive" side of this continuum. Adaptive methods
focus on adapting quickly to changing realities. When the needs of a project change, an adaptive
team changes as well. An adaptive team will have difficulty describing exactly what will happen in
the future. The further away a date is, the more vague an adaptive method will be about what will
happen on that date. An adaptive team cannot report exactly what tasks are being done next week,
but only which features are planned for next month. When asked about a release six months from
now, an adaptive team may only be able to report the mission statement for the release, or a
statement of expected value vs. cost.

Predictive methods, in contrast, focus on planning the future in detail. A predictive team can report
exactly what features and tasks are planned for the entire length of the development process.
Predictive teams have difficulty changing direction. The plan is typically optimized for the original
destination and changing direction can require completed work to be started over. Predictive teams
will often institute a change control board to ensure that only the most valuable changes are
considered.

47

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-boehm2004App-47
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-black2009-46

Formal methods, in contrast to adaptive and predictive methods, focus on computer science theory
with a wide array of types of provers. A formal method attempts to prove the absence of errors with
some level of determinism. Some formal methods are based on model checking and provide counter
examples for code that cannot be proven. Generally, mathematical models (often supported through
special languages see SPIN model checker) map to assertions about requirements. Formal methods
are dependent on a tool driven approach, and may be combined with other development approaches.
Some provers do not easily scale. Like agile methods, manifestos relevant to high integrity software
have been proposed in Crosstalk.

Agile methods have much in common with the "Rapid Application Development" techniques from
the 1980/90s as espoused by James Martin and others.

Agile methods

Well-known agile software development methods include:

• Agile Modeling
• Agile Unified Process (AUP)
• Dynamic Systems Development Method (DSDM)
• Essential Unified Process (EssUP)
• Extreme Programming (XP)
• Feature Driven Development (FDD)
• Open Unified Process (OpenUP)
• Scrum
• Velocity tracking

Method tailoring

In the literature, different terms refer to the notion of method adaptation, including ‘method
tailoring’, ‘method fragment adaptation’ and ‘situational method engineering’. Method tailoring is
defined as:

A process or capability in which human agents through responsive changes in, and
dynamic interplays between contexts, intentions, and method fragments determine a
system development approach for a specific project situation.[11]

Potentially, almost all agile methods are suitable for method tailoring. Even the DSDM method is
being used for this purpose and has been successfully tailored in a CMM context.[12] Situation-
appropriateness can be considered as a distinguishing characteristic between agile methods and
traditional software development methods, with the latter being relatively much more rigid and
prescriptive. The practical implication is that agile methods allow project teams to adapt working
practices according to the needs of individual projects. Practices are concrete activities and products
that are part of a method framework. At a more extreme level, the philosophy behind the method,
consisting of a number of principles, could be adapted (Aydin, 2004).[11]

48

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Aydin2004-48
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Abrahamsson2003-49
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Aydin2004-48
http://elsmar.com/pdf_files/A%20Manifesto%20for%20High-Integrity%20Software.pdf

Extreme Programming (XP) makes the need for method adaptation explicit. One of the fundamental
ideas of XP is that no one process fits every project, but rather that practices should be tailored to
the needs of individual projects. Partial adoption of XP practices, as suggested by Beck, has been
reported on several occasions.[13] A tailoring practice is proposed by Mehdi Mirakhorli which
provides sufficient roadmap and guideline for adapting all the practices. RDP Practice is designed
for customizing XP. This practice, first proposed as a long research paper in the APSO workshop at
the ICSE 2008 conference, is currently the only proposed and applicable method for customizing
XP. Although it is specifically a solution for XP, this practice has the capability of extending to
other methodologies. At first glance, this practice seems to be in the category of static method
adaptation but experiences with RDP Practice says that it can be treated like dynamic method
adaptation. The distinction between static method adaptation and dynamic method adaptation is
subtle.[14] The key assumption behind static method adaptation is that the project context is given
at the start of a project and remains fixed during project execution. The result is a static definition of
the project context. Given such a definition, route maps can be used in order to determine which
structured method fragments should be used for that particular project, based on predefined sets of
criteria. Dynamic method adaptation, in contrast, assumes that projects are situated in an emergent
context. An emergent context implies that a project has to deal with emergent factors that affect
relevant conditions but are not predictable. This also means that a project context is not fixed, but
changing during project execution. In such a case prescriptive route maps are not appropriate. The
practical implication of dynamic method adaptation is that project managers often have to modify
structured fragments or even innovate new fragments, during the execution of a project (Aydin et
al., 2005).[14]

Measuring agility

While agility can be seen as a means to an end, a number of approaches have been proposed to
quantify agility. Agility Index Measurements (AIM)[15] score projects against a number of agility
factors to achieve a total. The similarly-named Agility Measurement Index,[16] scores
developments against five dimensions of a software project (duration, risk, novelty, effort, and
interaction). Other techniques are based on measurable goals.[17] Another study using fuzzy
mathematics[18] has suggested that project velocity can be used as a metric of agility. There are
agile self assessments to determine whether a team is using agile practices (Nokia test,[19]
Karlskrona test,[20] 42 points test[21]).

While such approaches have been proposed to measure agility, the practical application of such
metrics has yet to be seen.

Experience and reception

One of the early studies reporting gains in quality, productivity, and business satisfaction by using
Agile methods was a survey conducted by Shine Technologies from November 2002 to January
2003.[22] A similar survey conducted in 2006 by Scott Ambler, the Practice Leader for Agile
Development with IBM Rational's Methods Group reported similar benefits.[23] In a survey
conducted by VersionOne in 2008, 55% of respondents answered that Agile methods had been
successful in 90-100% of cases.[24] Others claim that agile development methods are still too
young to require extensive academic proof of their success.[25]

49

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-62
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-61
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-60
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-59
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-58
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-57
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-56
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Kurian_2006-55
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-54
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-53
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-52
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Aydin2005-51
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Aydin2005-51
http://portal.acm.org/citation.cfm?id=1370143.1370149&coll=ACM&dl=ACM&CFID=69442744&CFTOKEN=96226775,
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Abrahamsson2002-50

Suitability

Large-scale agile software development remains an active research area.[26] [27]

Agile development has been widely documented (see Experience Reports, below, as well as
Beck[28] pg. 157, and Boehm and Turner[29]) as working well for small (<10 developers) co-
located teams.

Some things that may negatively impact the success of an agile project are:

• Large-scale development efforts (>20 developers), though scaling strategies[27] and
evidence of some large projects[30] have been described.

• Distributed development efforts (non-colocated teams). Strategies have been described in
Bridging the Distance[31] and Using an Agile Software Process with Offshore
Development[32]

• Forcing an agile process on a development team[33]
• Mission-critical systems where failure is not an option at any cost (e.g. software for surgical

procedures).

Several successful large-scale agile projects have been documented.Template:Where BT has had
several hundred developers situated in the UK, Ireland and India working collaboratively on
projects and using Agile methods.[citation needed]

In terms of outsourcing agile development, Michael Hackett, Sr. Vice President of LogiGear
Corporation has stated that "the offshore team. . . should have expertise, experience, good
communication skills, inter-cultural understanding, trust and understanding between members and
groups and with each other."[34]

Barry Boehm and Richard Turner suggest that risk analysis be used to choose between adaptive
("agile") and predictive ("plan-driven") methods.[29] The authors suggest that each side of the
continuum has its own home ground as follows:

Agile home ground:[29]

• Low criticality
• Senior developers
• Requirements change often
• Small number of developers
• Culture that thrives on chaos

Plan-driven home ground:[29]

• High criticality
• Junior developers
• Requirements do not change often
• Large number of developers
• Culture that demands order

50

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-boehm2004-66
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-boehm2004-66
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-boehm2004-66
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PC_World_Viet_Nam-71
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Template:Where&action=edit&redlink=1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-The_Art_of_Agile_Development-70
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AgileOffshore-69
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-BridgingTheDistance-68
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-sstc2007-67
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ambler2006-64
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-boehm2004-66
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-beck1999-65
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ambler2006-64
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-oopsla2002-63

Formal methods:

• Extreme criticality
• Senior developers
• Limited requirements, limited features see Wirth's law
• Requirements that can be modeled
• Extreme quality

Experience reports

Agile development has been the subject of several conferences. Some of these conferences have had
academic backing and included peer-reviewed papers, including a peer-reviewed experience report
track. The experience reports share industry experiences with agile software development.

As of 2006, experience reports have been or will be presented at the following conferences:

• XP (2000,[35] 2001, 2002, 2003, 2004, 2005, 2006,[36] 2010 (proceedings published by
IEEE)[37])

• XP Universe (2001[38])
• XP/Agile Universe (2002,[39] 2003,[40] 2004[41])
• Agile Development Conference[42] (2003,2004,2007,2008) (peer-reviewed; proceedings

published by IEEE)

References

1. ↑ a b c Beck, Kent; et al. (2001). " Manifesto for Agile Software Development" . Agile
Alliance. http://agilemanifesto.org/. Retrieved 2010-06-14.

2. ↑ a b Gerald M. Weinberg, as quoted in Larman, Craig; Basili, Victor R. (June 2003).
"Iterative and Incremental Development: A Brief History". Computer 36 (6): 47–56.
doi:10.1109/MC.2003.1204375. ISSN 0018-9162. "We were doing incremental
development as early as 1957, in Los Angeles, under the direction of Bernie Dimsdale [at
IBM's ServiceBureau Corporation]. He was a colleague of John von Neumann, so perhaps
he learned it there, or assumed it as totally natural. I do remember Herb Jacobs (primarily,
though we all participated) developing a large simulation for Motorola, where the technique
used was, as far as I can tell All of us, as far as I can remember, thought waterfalling of a
huge project was rather stupid, or at least ignorant of the realities. I think what the waterfall
description did for us was make us realize that we were doing something else, something
unnamed except for 'software development.'".

3. ↑ Edmonds, E. A. (1974). "A Process for the Development of Software for Nontechnical
Users as an Adaptive System". General Systems 19: 215–18.

4. ↑ Larman, Craig (2004). Agile and Iterative Development: A Manager's Guide. Addison-
Wesley. p. 27. ISBN 9780131111554

5. ↑ Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Stephen J. Mellor, Ken Schwaber, Jeff Sutherland, and
Dave Thomas

51

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-42
http://en.wikibooks.org/wiki/Special:BookSources/9780131111554
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Larman2004_41-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-edmonds1974_40-0
http://www.worldcat.org/issn/0018-9162
http://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://dx.doi.org/10.1109%2FMC.2003.1204375
http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-craig2003_39-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-craig2003_39-0
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Agile_Manifesto_38-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Agile_Manifesto_38-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Agile_Manifesto_38-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-79
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-78
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-77
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-76
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-75
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-74
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-73
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-72

6. ↑ Beck, Kent; et al. (2001). "Principles behind the Agile Manifesto " . Agile Alliance.
http://www.agilemanifesto.org/principles.html. Retrieved 2010-06-06.

7. ↑ Anderson, David (2005). "Declaration of Interdependence". http://pmdoi.org.
8. ↑ Beck, Kent (1999). "Embracing Change with Extreme Programming". Computer 32 (10):

70–77. doi:10.1109/2.796139.
9. ↑ Black, S. E.; Boca., P. P.; Bowen, J. P.; Gorman, J.; Hinchey, M. G. (September 2009).

"Formal versus agile: Survival of the fittest". IEEE Computer 49 (9): 39–45.
10.↑ Boehm, B.; R. Turner (2004). Balancing Agility and Discipline: A Guide for the

Perplexed. Boston, MA: Addison-Wesley. ISBN 0-321-18612-5. Appendix A, pages 165-
194

11.↑ a b Aydin, M.N., Harmsen, F., Slooten, K. v., & Stagwee, R. A. (2004). An Agile
Information Systems Development Method in use. Turk J Elec Engin, 12(2), 127-138

12.↑ Abrahamsson, P., Warsta, J., Siponen, M.T., & Ronkainen, J. (2003). New Directions on
Agile Methods: A Comparative Analysis. Proceedings of ICSE'03, 244-254

13.↑ Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software
Development Methods: Review and Analysis. VTT Publications 478

14.↑ a b Aydin, M.N., Harmsen, F., Slooten van K., & Stegwee, R.A. (2005). On the
Adaptation of An Agile Information(Suren) Systems Development Method. Journal of
Database Management Special issue on Agile Analysis, Design, and Implementation, 16(4),
20-24

15.↑ "David Bock's Weblog : Weblog" . Jroller.com. http://jroller.com/page/bokmann?
entry=improving_your_processes_aim_high. Retrieved 2010-04-02.

16.↑ "Agility measurement index". Doi.acm.org. http://doi.acm.org/10.1145/1185448.1185509.
Retrieved 2010-04-02.

17.↑ Peter Lappo; Henry C.T. Andrew. "Assessing Agility".
http://www.smr.co.uk/presentations/measure.pdf. Retrieved 2010-06-06.

18.↑ Kurian, Tisni (2006). "Agility Metrics: A Quantitative Fuzzy Based Approach for
Measuring Agility of a Software Process" ISAM-Proceedings of International Conference
on Agile Manufacturing'06(ICAM-2006), Norfolk, U.S.

19.↑ Joe Little (2007-12-02). "Nokia test, A Scrum specific test".
Agileconsortium.blogspot.com. http://agileconsortium.blogspot.com/2007/12/nokia-
test.html. Retrieved 2010-06-06.

20.↑ Mark Seuffert, Piratson Technologies, Sweden. "Karlskrona test, A generic agile adoption
test". Piratson.se. http://www.piratson.se/archive/Agile_Karlskrona_Test.html. Retrieved
2010-06-06.

21.↑ "How agile are you, A Scrum specific test". Agile-software-development.com.
http://www.agile-software-development.com/2008/01/how-agile-are-you-take-this-42-
point.html. Retrieved 2010-06-06.

22.↑ "Agile Methodologies Survey Results" (PDF). Shine Technologies. 2003.
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf.
Retrieved 2010-06-03. "95% [stated] that there was either no effect or a cost reduction . . .
93% stated that productivity was better or significantly better . . . 88% stated that quality
was better or significantly better . . . 83% stated that business satisfaction was better or
significantly better"

23.↑ Ambler, Scott (August 3, 2006). "Survey Says: Agile Works in Practice". Dr. Dobb's.
http://www.drdobbs.com/architecture-and-
design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?
queryText=agile+survey. Retrieved 2010-06-03. "Only 6 percent indicated that their
productivity was lowered . . . No change in productivity was reported by 34 percent of

52

http://www.drdobbs.com/architecture-and-design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey
http://www.drdobbs.com/architecture-and-design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey
http://www.drdobbs.com/architecture-and-design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey
http://www.drdobbs.com/architecture-and-design/191800169;jsessionid=2QJ23QRYM3H4PQE1GHPCKH4ATMY32JVN?queryText=agile+survey
http://en.wikipedia.org/wiki/Scott_Ambler
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-60
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf
http://www.shinetech.com/
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-59
http://www.agile-software-development.com/2008/01/how-agile-are-you-take-this-42-point.html
http://www.agile-software-development.com/2008/01/how-agile-are-you-take-this-42-point.html
http://www.agile-software-development.com/2008/01/how-agile-are-you-take-this-42-point.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-58
http://www.piratson.se/archive/Agile_Karlskrona_Test.html
http://www.piratson.se/archive/Agile_Karlskrona_Test.html
http://www.piratson.se/archive/Agile_Karlskrona_Test.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-57
http://agileconsortium.blogspot.com/2007/12/nokia-test.html
http://agileconsortium.blogspot.com/2007/12/nokia-test.html
http://agileconsortium.blogspot.com/2007/12/nokia-test.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-56
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Kurian_2006_55-0
http://www.smr.co.uk/presentations/measure.pdf
http://www.smr.co.uk/presentations/measure.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-54
http://doi.acm.org/10.1145/1185448.1185509
http://doi.acm.org/10.1145/1185448.1185509
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-53
http://jroller.com/page/bokmann?entry=improving_your_processes_aim_high
http://jroller.com/page/bokmann?entry=improving_your_processes_aim_high
http://jroller.com/page/bokmann?entry=improving_your_processes_aim_high
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-52
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Aydin2005_51-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Aydin2005_51-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Abrahamsson2002_50-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Abrahamsson2003_49-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Aydin2004_48-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Aydin2004_48-0
http://en.wikibooks.org/wiki/Special:BookSources/0-321-18612-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-boehm2004App_47-0
http://en.wikipedia.org/wiki/Michael_Hinchey
http://en.wikipedia.org/wiki/Jonathan_Bowen
http://en.wikipedia.org/wiki/Sue_Black_(computer_scientist)
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-black2009_46-0
http://dx.doi.org/10.1109%2F2.796139
http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-embracing_change_45-0
http://pmdoi.org/
http://pmdoi.org/
http://en.wikipedia.org/wiki/David_Anderson
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-44
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-manifestoprinciples_43-0

respondents and 60 percent reported increased productivity. . . . 66 percent [responded] that
the quality is higher. . . . 58 percent of organizations report improved satisfaction, whereas
only 3 percent report reduced satisfaction."

24.↑ "The State of Agile Development" (PDF). VersionOne, Inc.. 2008.
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf. Retrieved
2010-07-03. "Agile delivers"

25.↑ "Answering the "Where is the Proof That Agile Methods Work" Question".
Agilemodeling.com. 2007-01-19. http://www.agilemodeling.com/essays/proof.htm.
Retrieved 2010-04-02.

26.↑ Agile Processes Workshop II Managing Multiple Concurrent Agile Projects. Washington:
OOPSLA 2002

27.↑ a b W. Scott Ambler (2006) "Supersize Me" in Dr. Dobb's Journal, February 15, 2006.
28.↑ Beck, K. (1999). Extreme Programming Explained: Embrace Change. Boston, MA:

Addison-Wesley. ISBN 0-321-27865-8.
29.↑ a b c d Boehm, B.; R. Turner (2004). Balancing Agility and Discipline: A Guide for the

Perplexed. Boston, MA: Addison-Wesley. pp. 55–57. ISBN 0-321-18612-5.
30.↑ Schaaf, R.J. (2007). "Agility XL", Systems and Software Technology Conference 2007,

Tampa, FL
31.↑ "Bridging the Distance". Sdmagazine.com. http://www.drdobbs.com/architecture-and-

design/184414899. Retrieved 2011-02-01.
32.↑ Martin Fowler. "Using an Agile Software Process with Offshore Development".

Martinfowler.com. http://www.martinfowler.com/articles/agileOffshore.html. Retrieved
2010-06-06.

33.↑ [The Art of Agile Development James Shore & Shane Warden pg 47]
34.↑ [1] LogiGear, PC World Viet Nam, Jan 2011
35.↑ 2000
36.↑ "2006". Virtual.vtt.fi. http://virtual.vtt.fi/virtual/xp2006/. Retrieved 2010-06-06.
37.↑ "2010". Xp2010.org. http://www.xp2010.org/. Retrieved 2010-06-06.
38.↑ 2001
39.↑ 2002
40.↑ 2003
41.↑ 2004
42.↑ "Agile Development Conference". Agile200x.org. http://www.agile200x.org/. Retrieved

2010-06-06.

Further reading

• Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development
Methods: Review and Analysis. VTT Publications 478.

• Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods. In Advances
in Computers (pp. 1–66). New York: Elsevier Science.

• Dingsøyr, Torgeir, Dybå, Tore and Moe, Nils Brede (ed.): Agile Software Develoment:
Current Research and Future Directions, Springer, Berlin Heidelberg, 2010.

• Fowler, Martin. Is Design Dead?. Appeared in Extreme Programming Explained, G. Succi
and M. Marchesi, ed., Addison-Wesley, Boston. 2001.

• Larman, Craig and Basili, Victor R. Iterative and Incremental Development: A Brief History
IEEE Computer, June 2003

53

http://www.highproductivity.org/r6047.pdf
http://www.highproductivity.org/r6047.pdf
http://www.highproductivity.org/r6047.pdf
http://www.highproductivity.org/r6047.pdf
http://www.highproductivity.org/r6047.pdf
http://www.martinfowler.com/articles/designDead.html
http://www.amazon.co.uk/Agile-Software-Development-Research-Directions/dp/3642125743
http://www.amazon.co.uk/Agile-Software-Development-Research-Directions/dp/3642125743
http://www.agile200x.org/
http://www.agile200x.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-79
http://www.xpuniverse.com/2004/schedule/index
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-78
http://www.xpuniverse.com/2003/schedule/index
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-77
http://www.xpuniverse.com/2002/schedule/schedule
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-76
http://www.xpuniverse.com/2001/xpuPapers.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-75
http://www.xp2010.org/
http://www.xp2010.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-74
http://virtual.vtt.fi/virtual/xp2006/
http://virtual.vtt.fi/virtual/xp2006/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-73
http://ciclamino.dibe.unige.it/xp2000/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-72
http://www.logigear.com/in-the-news/973-agile.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PC_World_Viet_Nam_71-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-The_Art_of_Agile_Development_70-0
http://www.martinfowler.com/articles/agileOffshore.html
http://www.martinfowler.com/articles/agileOffshore.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AgileOffshore_69-0
http://www.drdobbs.com/architecture-and-design/184414899
http://www.drdobbs.com/architecture-and-design/184414899
http://www.drdobbs.com/architecture-and-design/184414899
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-BridgingTheDistance_68-0
http://www.sstc-online.org/Proceedings/2007/pdfs/RJS1722.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-sstc2007_67-0
http://en.wikibooks.org/wiki/Special:BookSources/0-321-18612-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-boehm2004_66-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-boehm2004_66-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-boehm2004_66-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-boehm2004_66-0
http://en.wikibooks.org/wiki/Special:BookSources/0-321-27865-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-beck1999_65-0
http://www.drdobbs.com/184415491
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ambler2006_64-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ambler2006_64-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-oopsla2002_63-0
http://www.agilemodeling.com/essays/proof.htm
http://www.agilemodeling.com/essays/proof.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-62
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-61

• Riehle, Dirk. A Comparison of the Value Systems of Adaptive Software Development and
Extreme Programming: How Methodologies May Learn From Each Other. Appeared in
Extreme Programming Explained, G. Succi and M. Marchesi, ed., Addison-Wesley, Boston.
2001.

• Rother, Mike (2009). Toyota Kata. McGraw-Hill. ISBN 0071635238.
http://books.google.com/?id=_1lhPgAACAAJ&dq=toyota+kata

• M. Stephens, D. Rosenberg. Extreme Programming Refactored: The Case Against XP.
Apress L.P., Berkeley, California. 2003. (ISBN 1-59059-096-1)

External links

• Manifesto for Agile Software Development
• The Agile Alliance
• The Agile Executive
• Article Two Ways to Build a Pyramid by John Mayo-Smith
• Agile Software Development: A gentle introduction
• The New Methodology Martin Fowler's description of the background to agile methods
• Agile Journal - Largest online community focused specifically on agile development
• [9]]
• Agile Cookbook
• Ten Authors of The Agile Manifesto Celebrate its Tenth Anniversary

Standards

There are a few industry standards related to process improvement models we should mention
briefly. For you as a beginner, it is enough to know they exist. However, if you start working for
large corporations, you will find that many will follow one or the other of these standards.

Capability Maturity Model Integration

The Capability Maturity Model Integration (CMMI) is one of the leading models and based on best
practice. Independent assessments grade organizations on how well they follow their defined
processes, not on the quality of those processes or the software produced. CMMI has replaced
CMM.

ISO 9000

ISO 9000 describes standards for a formally organized process to manufacture a product and the
methods of managing and monitoring progress. Although the standard was originally created for the
manufacturing sector, ISO 9000 standards have been applied to software development as well. Like
CMMI, certification with ISO 9000 does not guarantee the quality of the end result, only that
formalized business processes have been followed.

54

http://en.wikipedia.org/wiki/ISO_9000
http://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
http://www.pragprog.com/magazines/2011-02/agile--
http://www.pragprog.com/magazines/2011-02/agile--
http://www.pragprog.com/magazines/2011-02/agile--
http://agilecookbook.com/
http://www.agilejournal.com/
http://martinfowler.com/articles/newMethodology.html
http://www.agile-process.org/
http://www.informationweek.com/news/software/development/showArticle.jhtml?articleID=6507351
http://theagileexecutive.com/
http://www.agilealliance.org/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://en.wikibooks.org/wiki/Special:BookSources/1590590961
http://books.google.com/?id=_1lhPgAACAAJ&dq=toyota+kata
http://en.wikibooks.org/wiki/Special:BookSources/0071635238
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://books.google.com/?id=_1lhPgAACAAJ&dq=toyota+kata
http://www.riehle.org/computer-science/research/2000/xp-2000.html
http://www.riehle.org/computer-science/research/2000/xp-2000.html

ISO 15504

ISO 15504, also known as Software Process Improvement Capability Determination (SPICE), is a
"framework for the assessment of software processes". This standard is aimed at setting out a clear
model for process comparison. SPICE is used much like CMMI. It models processes to manage,
control, guide and monitor software development. This model is then used to measure what a
development organization or project team actually does during software development. This
information is analyzed to identify weaknesses and drive improvement. It also identifies strengths
that can be continued or integrated into common practice for that organization or team.

External Links

• CMMI Official Website
• Introduction to Software Engineering/Print version at the Open Directory Project
• ISO 9000 at the Open Directory Project
• Introduction to ISO 9000 and ISO 14000
• ISO 15504 News (isospice)
• Automotive SPICE

Life Cycle

Model of the Systems Development Life Cycle with the Maintenance bubble highlighted.

The Systems Development Life Cycle (SDLC), or Software Development Life Cycle in systems
engineering, information systems and software engineering, is the process of creating or altering
systems, and the models and methodologies that people use to develop these systems. The concept
generally refers to computer or information systems.

In software engineering the SDLC concept underpins many kinds of software development
methodologies. These methodologies form the framework for planning and controlling the creation
of an information system[1]: the software development process.

55

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-80
http://www.automotivespice.com/
http://www.isospice.com/
http://www.iso.org/iso/iso_catalogue/management_standards/iso_9000_iso_14000.htm
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Science/Reference/Standards/Individual_Standards/ISO/ISO_9000/
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Programming/Methodologies/Capability_Maturity_Model/
http://www.sei.cmu.edu/cmmi
http://en.wikipedia.org/wiki/ISO_15504
http://en.wikibooks.org/wiki/File:SDLC-Maintenance-Highlighted.png
http://en.wikibooks.org/wiki/File:SDLC-Maintenance-Highlighted.png

Overview

Systems Development Life Cycle (SDLC) is a process used by a systems analyst to develop an
information system, including requirements, validation, training, and user (stakeholder) ownership.
Any SDLC should result in a high quality system that meets or exceeds customer expectations,
reaches completion within time and cost estimates, works effectively and efficiently in the current
and planned Information Technology infrastructure, and is inexpensive to maintain and cost-
effective to enhance.[2]

Computer systems are complex and often (especially with the recent rise of Service-Oriented
Architecture) link multiple traditional systems potentially supplied by different software vendors.
To manage this level of complexity, a number of SDLC models have been created: "waterfall";
"fountain"; "spiral"; "build and fix"; "rapid prototyping"; "incremental"; and "synchronize and
stabilize". [3]

SDLC models can be described along a spectrum of agile to iterative to sequential. Agile
methodologies, such as XP and Scrum, focus on light-weight processes which allow for rapid
changes along the development cycle. Iterative methodologies, such as Rational Unified Process
and Dynamic Systems Development Method, focus on limited project scopes and expanding or
improving products by multiple iterations. Sequential or big-design-up-front (BDUF) models, such
as Waterfall, focus on complete and correct planning to guide large projects and risks to successful
and predictable results [citation needed]. Other models, such as Anamorphic Development, tend to
focus on a form of development that is guided by project scope and adaptive iterations of feature
development.

In project management a project can be defined both with a project life cycle (PLC) and an SDLC,
during which slightly different activities occur. According to Taylor (2004) "the project life cycle
encompasses all the activities of the project, while the systems development life cycle focuses on
realizing the product requirements".[4]

History

The Systems Life Cycle (SLC) is a type of methodology used to describe the process for building
information systems, intended to develop information systems in a very deliberate, structured and
methodical way, reiterating each stage of the life cycle. The systems development life cycle,
according to Elliott & Strachan & Radford (2004), "originated in the 1960s,to develop large scale
functional business systems in an age of large scale business conglomerates. Information systems
activities revolved around heavy data processing and number crunching routines".[5]

Several systems development frameworks have been partly based on SDLC, such as the Structured
Systems Analysis and Design Method (SSADM) produced for the UK government Office of
Government Commerce in the 1980s. Ever since, according to Elliott (2004), "the traditional life
cycle approaches to systems development have been increasingly replaced with alternative
approaches and frameworks, which attempted to overcome some of the inherent deficiencies of the
traditional SDLC".[5]

56

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Ell04-84
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Ell04-84
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-83
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-82
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-81

Systems development phases

The System Development Life Cycle framework provides a sequence of activities for system
designers and developers to follow. It consists of a set of steps or phases in which each phase of the
SDLC uses the results of the previous one.

A Systems Development Life Cycle (SDLC) adheres to important phases that are essential for
developers, such as planning, analysis, design, and implementation, and are explained in the section
below. A number of system development life cycle (SDLC) models have been created: waterfall,
fountain, spiral, build and fix, rapid prototyping, incremental, and synchronize and stabilize. The
oldest of these, and the best known, is the waterfall model: a sequence of stages in which the output
of each stage becomes the input for the next. These stages can be characterized and divided up in
different ways, including the following[6]:

• Project planning, feasibility study: Establishes a high-level view of the intended project
and determines its goals.

• Systems analysis, requirements definition: Refines project goals into defined functions
and operation of the intended application. Analyzes end-user information needs.

• Systems design: Describes desired features and operations in detail, including screen
layouts, business rules, process diagrams, pseudocode and other documentation.

• Implementation: The real code is written here.
• Integration and testing: Brings all the pieces together into a special testing environment,

then checks for errors, bugs and interoperability.
• Acceptance, installation, deployment: The final stage of initial development, where the

software is put into production and runs actual business.
• Maintenance: What happens during the rest of the software's life: changes, correction,

additions, moves to a different computing platform and more. This, the least glamorous and
perhaps most important step of all, goes on seemingly forever.

In the following example (see picture) these stage of the Systems Development Life Cycle are
divided in ten steps from definition to creation and modification of IT work products:

57

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-85

The tenth phase occurs when the system is disposed of and the task performed is either eliminated
or transferred to other systems. The tasks and work products for each phase are described in
subsequent chapters. [7]

Not every project will require that the phases be sequentially executed. However, the phases are
interdependent. Depending upon the size and complexity of the project, phases may be combined or
may overlap.[7]

System analysis

The goal of system analysis is to determine where the problem is in an attempt to fix the system.
This step involves breaking down the system in different pieces to analyze the situation, analyzing
project goals, breaking down what needs to be created and attempting to engage users so that
definite requirements can be defined.

Requirements analysis sometimes requires individuals/teams from client as well as service provider
sides to get detailed and accurate requirements; often there has to be a lot of communication to and
from to understand these requirements. Requirement gathering is the most crucial aspect as many
times communication gaps arise in this phase and this leads to validation errors and bugs in the
software program.

58

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-US_DJ03-86
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-US_DJ03-86
http://en.wikibooks.org/wiki/File:Systems_Development_Life_Cycle.jpg
http://en.wikibooks.org/wiki/File:Systems_Development_Life_Cycle.jpg

Design

In systems design the design functions and operations are described in detail, including screen
layouts, business rules, process diagrams and other documentation. The output of this stage will
describe the new system as a collection of modules or subsystems.

The design stage takes as its initial input the requirements identified in the approved requirements
document. For each requirement, a set of one or more design elements will be produced as a result
of interviews, workshops, and/or prototype efforts.

Design elements describe the desired software features in detail, and generally include functional
hierarchy diagrams, screen layout diagrams, tables of business rules, business process diagrams,
pseudocode, and a complete entity-relationship diagram with a full data dictionary. These design
elements are intended to describe the software in sufficient detail that skilled programmers may
develop the software with minimal additional input design.

Implementation

Modular and subsystem programming code will be accomplished during this stage. Unit testing and
module testing are done in this stage by the developers. This stage is intermingled with the next in
that individual modules will need testing before integration to the main project.

Testing

The code is tested at various levels in software testing. Unit, system and user acceptance testings are
often performed. This is a grey area as many different opinions exist as to what the stages of testing
are and how much if any iteration occurs. Iteration is not generally part of the waterfall model, but
usually some occur at this stage. In the testing the whole system is test one by one

Following are the types of testing:

• Defect testing
• Path testing
• Data set testing
• Unit testing
• System testing
• Integration testing
• Black box testing
• White box testing
• Regression testing
• Automation testing
• User acceptance testing
• Performance testing

59

Operations and maintenance

The deployment of the system includes changes and enhancements before the decommissioning or
sunset of the system. Maintaining the system is an important aspect of SDLC. As key personnel
change positions in the organization, new changes will be implemented, which will require system
updates.

Systems Analysis and Design

The Systems Analysis and Design (SAD) is the process of developing Information Systems (IS)
that effectively use of hardware, software, data, process, and people to support the company’s
business objectives.

Systems development life cycle topics

Management and control

SDLC Phases Related to Management Controls.[8]

The Systems Development Life Cycle (SDLC) phases serve as a programmatic guide to project
activity and provide a flexible but consistent way to conduct projects to a depth matching the scope
of the project. Each of the SDLC phase objectives are described in this section with key
deliverables, a description of recommended tasks, and a summary of related control objectives for
effective management. It is critical for the project manager to establish and monitor control
objectives during each SDLC phase while executing projects. Control objectives help to provide a
clear statement of the desired result or purpose and should be used throughout the entire SDLC
process. Control objectives can be grouped into major categories (Domains), and relate to the SDLC
phases as shown in the figure.[8]

60

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USHR99-87
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USHR99-87
http://en.wikibooks.org/wiki/File:SDLC_Phases_Related_to_Management_Controls.jpg
http://en.wikibooks.org/wiki/File:SDLC_Phases_Related_to_Management_Controls.jpg

To manage and control any SDLC initiative, each project will be required to establish some degree
of a Work Breakdown Structure (WBS) to capture and schedule the work necessary to complete the
project. The WBS and all programmatic material should be kept in the “Project Description” section
of the project notebook. The WBS format is mostly left to the project manager to establish in a way
that best describes the project work. There are some key areas that must be defined in the WBS as
part of the SDLC policy. The following diagram describes three key areas that will be addressed in
the WBS in a manner established by the project manager.[8]

Work breakdown structured organization

Work Breakdown Structure.[8]

The upper section of the Work Breakdown Structure (WBS) should identify the major phases and
milestones of the project in a summary fashion. In addition, the upper section should provide an
overview of the full scope and timeline of the project and will be part of the initial project
description effort leading to project approval. The middle section of the WBS is based on the seven
Systems Development Life Cycle (SDLC) phases as a guide for WBS task development. The WBS
elements should consist of milestones and “tasks” as opposed to “activities” and have a definitive
period (usually two weeks or more). Each task must have a measurable output (e.x. document,
decision, or analysis). A WBS task may rely on one or more activities (e.g. software engineering,
systems engineering) and may require close coordination with other tasks, either internal or external
to the project. Any part of the project needing support from contractors should have a Statement of
work (SOW) written to include the appropriate tasks from the SDLC phases. The development of a
SOW does not occur during a specific phase of SDLC but is developed to include the work from the
SDLC process that may be conducted by external resources such as contractors and struct.[8]

Baselines in the SDLC

Baselines are an important part of the Systems Development Life Cycle (SDLC). These baselines
are established after four of the five phases of the SDLC and are critical to the iterative nature of the
model .[9] Each baseline is considered as a milestone in the SDLC.

• Functional Baseline: established after the conceptual design phase.
• Allocated Baseline: established after the preliminary design phase.
• Product Baseline: established after the detail design and development phase.
• Updated Product Baseline: established after the production construction phase.

61

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-88
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USHR99-87
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USHR99-87
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USHR99-87
http://en.wikibooks.org/wiki/File:SDLC_Work_Breakdown_Structure.jpg
http://en.wikibooks.org/wiki/File:SDLC_Work_Breakdown_Structure.jpg

Complementary to SDLC

Complementary Software development methods to Systems Development Life Cycle (SDLC) are:

• Software Prototyping
• Joint Applications Design (JAD)
• Rapid Application Development (RAD)
• Extreme Programming (XP); extension of earlier work in Prototyping and RAD.
• Open Source Development
• End-user development
• Object Oriented Programming

Comparison of Methodology Approaches (Post, & Anderson 2006)[10]

SDLC RAD
Open
Source

Objects JAD Prototyping
End
User

Control Formal MIS Weak Standards Joint User User

Time Frame Long Short Medium Any Medium Short Short

Users Many Few Few Varies Few One or Two One

MIS staff Many Few Hundreds Split Few One or Two None

Transaction/DSS Transaction Both Both Both DSS DSS DSS

Interface Minimal Minimal Weak Windows Crucial Crucial Crucial

Documentation
and training

Vital Limited Internal In Objects Limited Weak None

Integrity and
security

Vital Vital Unknown In Objects Limited Weak Weak

Reusability Limited Some Maybe Vital Limited Weak None

Strengths and weaknesses

Few people in the modern computing world would use a strict waterfall model for their Systems
Development Life Cycle (SDLC) as many modern methodologies have superseded this thinking.
Some will argue that the SDLC no longer applies to models like Agile computing, but it is still a
term widely in use in Technology circles. The SDLC practice has advantages in traditional models
of software development, that lends itself more to a structured environment. The disadvantages to
using the SDLC methodology is when there is need for iterative development or (i.e. web
development or e-commerce) where stakeholders need to review on a regular basis the software

62

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Post.2C_G._2006-89

being designed. Instead of viewing SDLC from a strength or weakness perspective, it is far more
important to take the best practices from the SDLC model and apply it to whatever may be most
appropriate for the software being designed.

A comparison of the strengths and weaknesses of SDLC:

Strength and Weaknesses of SDLC [10]
Strengths Weaknesses

Control. Increased development time.

Monitor Large projects. Increased development cost.

Detailed steps. Systems must be defined up front.

Evaluate costs and completion targets. Rigidity.

Documentation. Hard to estimate costs, project overruns.

Well defined user input. User input is sometimes limited.

Ease of maintenance.

Development and design standards.

Tolerates changes in MIS staffing.

An alternative to the SDLC is Rapid Application Development, which combines prototyping, Joint
Application Development and implementation of CASE tools. The advantages of RAD are speed,
reduced development cost, and active user involvement in the development process.

References

1. ↑ SELECTING A DEVELOPMENT APPROACH. Retrieved 27 October 2008.
2. ↑ "Systems Development Life Cycle". In: Foldoc(2000-12-24)
3. ↑ http://docs.google.com/viewer?

a=v&q=cache:bfhOl8jp1S8J:condor.depaul.edu/~jpetlick/extra/394/Session2.ppt+&hl=en&
pid=bl&srcid=ADGEEShCfW0_MLC4wRbczfUxrndHTkbwguF9fZuaUCe0RDyOCWyO2
PTmaPhHnZ4jRhZZ75maVO_7gVAD2ex5-QIhrj1683hMefBNkak7FkQJCAwd-i0-
_aQfEVEEKP177h4mmkvMMWJ7&sig=AHIEtbRhMlZ-TUyioKEhLQQxXk1WoSJXWA

4. ↑ James Taylor (2004). Managing Information Technology Projects. p.39..
5. ↑ a b Geoffrey Elliott & Josh Strachan (2004) Global Business Information Technology.

p.87.
6. ↑ http://www.computerworld.com/s/article/71151/System_Development_Life_Cycle
7. ↑ a b US Department of Justice (2003). INFORMATION RESOURCES MANAGEMENT

Chapter 1. Introduction.

63

http://www.usdoj.gov/jmd/irm/lifecycle/ch1.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-US_DJ03_86-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-US_DJ03_86-0
http://www.computerworld.com/s/article/71151/System_Development_Life_Cycle
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-85
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Ell04_84-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Ell04_84-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-83
http://docs.google.com/viewer?a=v&q=cache:bfhOl8jp1S8J:condor.depaul.edu/~jpetlick/extra/394/Session2.ppt+&hl=en%CF%80d=bl&srcid=ADGEEShCfW0_MLC4wRbczfUxrndHTkbwguF9fZuaUCe0RDyOCWyO2PTmaPhHnZ4jRhZZ75maVO_7gVAD2ex5-QIhrj1683hMefBNkak7FkQJCAwd-i0-_aQfEVEEKP177h4mmkvMMWJ7&sig=AHIEtbRhMlZ-TUyioKEhLQQxXk1WoSJXWA
http://docs.google.com/viewer?a=v&q=cache:bfhOl8jp1S8J:condor.depaul.edu/~jpetlick/extra/394/Session2.ppt+&hl=en%CF%80d=bl&srcid=ADGEEShCfW0_MLC4wRbczfUxrndHTkbwguF9fZuaUCe0RDyOCWyO2PTmaPhHnZ4jRhZZ75maVO_7gVAD2ex5-QIhrj1683hMefBNkak7FkQJCAwd-i0-_aQfEVEEKP177h4mmkvMMWJ7&sig=AHIEtbRhMlZ-TUyioKEhLQQxXk1WoSJXWA
http://docs.google.com/viewer?a=v&q=cache:bfhOl8jp1S8J:condor.depaul.edu/~jpetlick/extra/394/Session2.ppt+&hl=en%CF%80d=bl&srcid=ADGEEShCfW0_MLC4wRbczfUxrndHTkbwguF9fZuaUCe0RDyOCWyO2PTmaPhHnZ4jRhZZ75maVO_7gVAD2ex5-QIhrj1683hMefBNkak7FkQJCAwd-i0-_aQfEVEEKP177h4mmkvMMWJ7&sig=AHIEtbRhMlZ-TUyioKEhLQQxXk1WoSJXWA
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-82
http://foldoc.org/foldoc.cgi?Systems+Development+Life+Cycle
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-81
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-80
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Post.2C_G._2006-89

8. ↑ a b c d e U.S. House of Representatives (1999). Systems Development Life-Cycle Policy.
p.13.

9. ↑ Blanchard, B. S., & Fabrycky, W. J.(2006) Systems engineering and analysis (4th ed.)
New Jersey: Prentice Hall. p.31

10.↑ a b Post, G., & Anderson, D., (2006). Management information systems: Solving business
problems with information technology. (4th ed.). New York: McGraw-Hill Irwin.

Further reading

• Blanchard, B. S., & Fabrycky, W. J.(2006) Systems engineering and analysis (4th ed.) New
Jersey: Prentice Hall.

• Cummings, Haag (2006). Management Information Systems for the Information Age.
Toronto, McGraw-Hill Ryerson

• Beynon-Davies P. (2009). Business Information Systems. Palgrave, Basingstoke. ISBN 978-
0-230-20368-6

• Computer World, 2002 , Retrieved on June 22, 2006 from the World Wide Web:
• Management Information Systems, 2005 , Retrieved on June 22, 2006 from the World Wide

Web:

External links

Wikimedia Commons has media related to: Systems Development Life Cycle

• The Agile System Development Lifecycle
• Pension Benefit Guaranty Corporation - Information Technology Solutions Lifecycle

Methodology
• HHS Enterprise Performance Life Cycle Framework

Rapid Application Development

Rapid application development (RAD) refers to a type of software development methodology that
uses minimal planning in favor of rapid prototyping. The "planning" of software developed using
RAD is interleaved with writing the software itself. The lack of extensive pre-planning generally
allows software to be written much faster, and makes it easier to change requirements.

Overview

Rapid application development is a software development methodology that involves methods like
iterative development and software prototyping. According to Whitten (2004), it is a merger of
various structured techniques, especially data-driven Information Engineering, with prototyping
techniques to accelerate software systems development.[1]

64

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-WBD04-90
http://www.hhs.gov/ocio/eplc/eplc_framework_v1point2.pdf
http://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf
http://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf
http://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf
http://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.ambysoft.com/essays/agileLifecycle.html
http://commons.wikimedia.org/wiki/Category:Systems_Development_Life_Cycle
http://commons.wikimedia.org/wiki/
http://www.cbe.wwu.edu/misclasses/MIS320_Spring06_Bajwa/Chap006.ppt
http://www.computerworld.com/developmenttopics/development/story/0,10801,71151,00.html
http://en.wikibooks.org/wiki/Special:BookSources/9780230203686
http://en.wikibooks.org/wiki/Special:BookSources/9780230203686
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Post.2C_G._2006_89-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Post.2C_G._2006_89-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-88
http://www.house.gov/cao-opp/PDFSolicitations/SDLCPOL.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USHR99_87-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USHR99_87-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USHR99_87-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USHR99_87-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USHR99_87-0

In rapid application development, structured techniques and prototyping are especially used to
define users' requirements and to design the final system. The development process starts with the
development of preliminary data models and business process models using structured techniques.
In the next stage, requirements are verified using prototyping, eventually to refine the data and
process models. These stages are repeated iteratively; further development results in "a combined
business requirements and technical design statement to be used for constructing new systems".[1]

RAD approaches may entail compromises in functionality and performance in exchange for
enabling faster development and facilitating application maintenance.

History

Rapid application development is a term originally used to describe a software development process
introduced by James Martin in 1991. Martin's methodology involves iterative development and the
construction of prototypes. More recently, the term and its acronym have come to be used in a
broader, general sense that encompasses a variety of methods aimed at speeding application
development, such as the use of software frameworks of varied types, such as web application
frameworks.

Rapid application development was a response to non-agile processes developed in the 1970s and
1980s, such as the Structured Systems Analysis and Design Method and other Waterfall models.
One problem with previous methodologies was that applications took so long to build that
requirements had changed before the system was complete, resulting in inadequate or even unusable
systems. Another problem was the assumption that a methodical requirements analysis phase alone
would identify all the critical requirements. Ample evidence[citation needed] attests to the fact that this
is seldom the case, even for projects with highly experienced professionals at all levels.

Starting with the ideas of Brian Gallagher, Alex Balchin, Barry Boehm and Scott Shultz, James
Martin developed the rapid application development approach during the 1980s at IBM and finally
formalized it by publishing a book in 1991, Rapid Application Development.

Relative effectiveness

The shift from traditional session-based client/server development to open sessionless and
collaborative development like Web 2.0 has increased the need for faster iterations through the
phases of the SDLC.[2] This, coupled with the growing use of open source frameworks and
products in core commercial development, has, for many developers, rekindled interest in finding a
silver bullet RAD methodology.

Although most RAD methodologies foster software re-use, small team structure and distributed
system development, most RAD practitioners recognize that, ultimately, no one “rapid”
methodology can provide an order of magnitude improvement over any other development
methodology.

All types of RAD have the potential for providing a good framework for faster product
development with improved software quality, but successful implementation and benefits often
hinge on project type, schedule, software release cycle and corporate culture. It may also be of

65

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-RAD1-91
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-WBD04-90

interest that some of the largest software vendors such as Microsoft[3] and IBM[4] do not
extensively use RAD in the development of their flagship products and for the most part, they still
primarily rely on traditional waterfall methodologies with some degree of spiraling.[5]

This table contains a high-level summary of some of the major types of RAD and their relative
strengths and weaknesses.

Agile software development (Agile)

Pros
Minimizes feature creep by developing in short intervals resulting in miniature software projects and releasing the
product in mini-increments.

Cons

Short iteration may add too little functionality, leading to significant delays in final iterations. Since Agile
emphasizes real-time communication (preferably face-to-face), using it is problematic for large multi-team
distributed system development. Agile methods produce very little written documentation and require a significant
amount of post-project documentation.

Extreme Programming (XP)

Pros
Lowers the cost of changes through quick spirals of new requirements. Most design activity occurs incrementally
and on the fly.

Cons
Programmers must work in pairs, which is difficult for some people. No up-front “detailed design” occurs, which
can result in more redesign effort in the long term. The business champion attached to the project full time can
potentially become a single point of failure for the project and a major source of stress for a team.

Joint application design (JAD)

Pros
Captures the voice of the customer by involving them in the design and development of the application through a
series of collaborative workshops called JAD sessions.

Cons
The client may create an unrealistic product vision and request extensive gold-plating, leading a team to over- or
under-develop functionality.

Lean software development (LD)

Pros
Creates minimalist solutions (i.e., needs determine technology) and delivers less functionality earlier; per the policy
that 80% today is better than 100% tomorrow.

Cons
Product may lose its competitive edge because of insufficient core functionality and may exhibit poor overall
quality.

Rapid application development (RAD)

Pros
Promotes strong collaborative atmosphere and dynamic gathering of requirements. Business owner actively
participates in prototyping, writing test cases and performing unit testing.

Cons Dependence on strong cohesive teams and individual commitment to the project. Decision making relies on the
feature functionality team and a communal decision-making process with lesser degree of centralized PM and

66

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-RAD3-94
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-RAD2-93
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SpecsOnLine-92

engineering authority.

Scrum

Pros
Improved productivity in teams previously paralyzed by heavy “process”, ability to prioritize work, use of backlog
for completing items in a series of short iterations or sprints, daily measured progress and communications.

Cons
Reliance on facilitation by a master who may lack the political skills to remove impediments and deliver the sprint
goal. Due to relying on self-organizing teams and rejecting traditional centralized "process control", internal power
struggles can paralyze a team.

Table 1: Pros and Cons of various RAD types

Criticism

Since rapid application development is an iterative and incremental process, it can lead to a
succession of prototypes that never culminate in a satisfactory production application. Such failures
may be avoided if the application development tools are robust, flexible, and put to proper use. This
is addressed in methods such as the 2080 Development method or other post-agile variants.

Practical implications

When organizations adopt rapid development methodologies, care must be taken to avoid role and
responsibility confusion and communication breakdown within a development team, and between
team and client. In addition, especially in cases where the client is absent or not able to participate
with authority in the development process, the system analyst should be endowed with this
authority on behalf of the client to ensure appropriate prioritisation of non-functional requirements.
Furthermore, no increment of the system should be developed without a thorough and formally
documented design phase.[6]

References

1. ↑ a b Whitten, Jeffrey L.; Lonnie D. Bentley, Kevin C. Dittman. (2004). Systems Analysis
and Design Methods. 6th edition. ISBN 025619906X.

2. ↑ Maurer and S. Martel. (2002). "Extreme Programming: Rapid Development for Web-
Based Applications". IEEE Internet Computing, 6(1) pp 86-91 January/February 2002.

3. ↑ Andrew Begel, Nachiappan Nagappan. "Usage and Perceptions of Agile Software
Development in an Industrial Context: An Exploratory Study, Microsoft Research " .
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf. Retrieved 2008-11-
15.

4. ↑ E. M. Maximilien and L. Williams. (2003). "Assessing Test-driven Development at IBM".
Proceedings of International Conference of Software Engineering, Portland, OR, pp. 564-
569, 2003.

5. ↑ M. Stephens, Rosenberg, D. (2003). "Extreme Programming Refactored: The Case
Against XP". Apress, 2003.

67

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-RAD3_94-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-RAD2_93-0
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://research.microsoft.com/pubs/56015/AgileDevatMS-ESEM07.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SpecsOnLine_92-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-RAD1_91-0
http://en.wikibooks.org/wiki/Special:BookSources/025619906X
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-WBD04_90-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-WBD04_90-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-95

6. ↑ Gerber, Aurona; Van der Merwe, Alta; Alberts, Ronell; (2007), Implications of Rapid
Development Methodologies, CSITEd 2007, Mauritius, November 2007 [2]

Further reading

• Steve McConnell (1996). Rapid Development: Taming Wild Software Schedules, Microsoft
Press Books, ISBN 978-1556159008

• Kerr, James M.; Hunter, Richard (1993). Inside RAD: How to Build a Fully-Functional
System in 90 Days or Less. McGraw-Hill. ISBN 0070342237.

• Ellen Gottesdiener (1995). "RAD Realities: Beyond the Hype to How RAD Really Works"
Application Development Trends

• Ken Schwaber (1996). Agile Project Management with Scrum, Microsoft Press Books, ISBN
978-0735619937

• Steve McConnell (2003). Professional Software Development: Shorter Schedules, Higher
Quality Products, More Successful Projects, Enhanced Careers, Microsoft Prese s Books,
ISBN 978-0321193674

• Dean Leffingwell (2007). Scaling Software Agility: Best Practices for Large Enterprises,
Addison-Wesley Professional, ISBN 978-0321458193

Extreme Programming

Planning and feedback loops in Extreme Programming.

Extreme Programming (XP) is a software development methodology which is intended to
improve software quality and responsiveness to changing customer requirements. As a type of agile
software development,[1] [2] [3] it advocates frequent "releases" in short development cycles
(timeboxing), which is intended to improve productivity and introduce checkpoints where new
customer requirements can be adopted.

Other elements of extreme programming include: programming in pairs or doing extensive code
review, unit testing of all code, avoiding programming of features until they are actually needed, a
flat management structure, simplicity and clarity in code, expecting changes in the customer's
requirements as time passes and the problem is better understood, and frequent communication with
the customer and among programmers.[2] [3] [4] The methodology takes its name from the idea that
the beneficial elements of traditional software engineering practices are taken to "extreme" levels,

68

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-MASD-99
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USFCA601-98
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-UPenn49-97
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-USFCA601-98
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-UPenn49-97
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Informatics85-96
http://en.wikibooks.org/wiki/Special:BookSources/9780321458193
http://en.wikibooks.org/wiki/Special:BookSources/9780321193674
http://en.wikibooks.org/wiki/Special:BookSources/9780735619937
http://en.wikibooks.org/wiki/Special:BookSources/9780735619937
http://ebgconsulting.com/Pubs/Articles/RAD_Realities_Beyond_the_Hype_Gottesdiener.pdf
http://en.wikibooks.org/wiki/Special:BookSources/0070342237
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/9781556159008
http://ksg.meraka.org.za/~agerber/publications.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-95
http://en.wikibooks.org/wiki/File:XP-feedback.gif
http://en.wikibooks.org/wiki/File:XP-feedback.gif

on the theory that if some is good, more is better. It is unrelated to "cowboy coding", which is more
free-form and unplanned. It does not advocate "death march" work schedules, but instead working
at a sustainable pace.[5]

Critics have noted several potential drawbacks,[6] including problems with unstable requirements,
no documented compromises of user conflicts, and a lack of an overall design specification or
document.

History

Extreme Programming was created by Kent Beck during his work on the Chrysler Comprehensive
Compensation System (C3) payroll project.[6] Beck became the C3 project leader in March 1996
and began to refine the development method used in the project and wrote a book on the method (in
October 1999, Extreme Programming Explained was published).[6] Chrysler cancelled the C3
project in February 2000, after the company was acquired by Daimler-Benz.[7]

Although extreme programming itself is relatively new, many of its practices have been around for
some time; the methodology, after all, takes "best practices" to extreme levels. For example, the
"practice of test-first development, planning and writing tests before each micro-increment" was
used as early as NASA's Project Mercury, in the early 1960s (Larman 2003). To shorten the total
development time, some formal test documents (such as for acceptance testing) have been
developed in parallel (or shortly before) the software is ready for testing. A NASA independent test
group can write the test procedures, based on formal requirements and logical limits, before the
software has been written and integrated with the hardware. In XP, this concept is taken to the
extreme level by writing automated tests (perhaps inside of software modules) which validate the
operation of even small sections of software coding, rather than only testing the larger features.
Some other XP practices, such as refactoring, modularity, bottom-up design, and incremental design
were described by Leo Brodie in his book published in 1984.[8]

Origins

Software development in the 1990s was shaped by two major influences: internally, object-oriented
programming replaced procedural programming as the programming paradigm favored by some in
the industry; externally, the rise of the Internet and the dot-com boom emphasized speed-to-market
and company-growth as competitive business factors. Rapidly-changing requirements demanded
shorter product life-cycles, and were often incompatible with traditional methods of software
development.

The Chrysler Comprehensive Compensation System was started in order to determine the best way
to use object technologies, using the payroll systems at Chrysler as the object of research, with
Smalltalk as the language and GemStone as the data access layer. They brought in Kent Beck,[6] a
prominent Smalltalk practitioner, to do performance tuning on the system, but his role expanded as
he noted several problems they were having with their development process. He took this
opportunity to propose and implement some changes in their practices based on his work with his
frequent collaborator, Ward Cunningham. Beck describes the early conception of the methods:[9]

The first time I was asked to lead a team, I asked them to do a little bit of the things I
thought were sensible, like testing and reviews. The second time there was a lot more on

69

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-104
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-103
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#CITEREF_Larman_2003
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-102
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-tr-100

the line. I thought, "Damn the torpedoes, at least this will make a good article," [and]
asked the team to crank up all the knobs to 10 on the things I thought were essential and
leave out everything else.

Beck invited Ron Jeffries to the project to help develop and refine these methods. Jeffries thereafter
acted as a coach to instill the practices as habits in the C3 team.

Information about the principles and practices behind XP was disseminated to the wider world
through discussions on the original Wiki, Cunningham's WikiWikiWeb. Various contributors
discussed and expanded upon the ideas, and some spin-off methodologies resulted (see agile
software development). Also, XP concepts have been explained, for several years, using a hypertext
system map on the XP website at "http://www.extremeprogramming.org" circa 1999.

Beck edited a series of books on XP, beginning with his own Extreme Programming Explained
(1999, ISBN 0-201-61641-6), spreading his ideas to a much larger, yet very receptive, audience.
Authors in the series went through various aspects attending XP and its practices. Even a book was
written, critical of the practices.

Current state

XP created quite a buzz in the late 1990s and early 2000s, seeing adoption in a number of
environments radically different from its origins.

The high discipline required by the original practices often went by the wayside, causing some of
these practices, such as those thought too rigid, to be deprecated or reduced, or even left unfinished,
on individual sites. For example, the practice of end-of-day integration tests, for a particular project,
could be changed to an end-of-week schedule, or simply reduced to mutually agreed dates. Such a
more relaxed schedule could avoid people feeling rushed to generate artificial stubs just to pass the
end-of-day testing. A less rigid schedule allows, instead, for some complex features to be more fully
developed over a several-day period. However, some level of periodic integration testing can detect
groups of people working in non-compatible, tangent efforts before too much work is invested in
divergent, wrong directions.

Meanwhile, other agile development practices have not stood still, and XP is still evolving,
assimilating more lessons from experiences in the field, to use other practices. In the second edition
of Extreme Programming Explained, Beck added more values and practices and differentiated
between primary and corollary practices.

Concept

Goals

Extreme Programming Explained describes Extreme Programming as a software development
discipline that organizes people to produce higher quality software more productively.

70

http://en.wikibooks.org/wiki/Special:BookSources/0201616416
http://www.extremeprogramming.org/

In traditional system development methods (such as SSADM or the waterfall model) the
requirements for the system are determined at the beginning of the development project and often
fixed from that point on. This means that the cost of changing the requirements at a later stage (a
common feature of software engineering projects[citation needed]) will be high. Like other agile
software development methods, XP attempts to reduce the cost of change by having multiple short
development cycles, rather than one long one. In this doctrine changes are a natural, inescapable
and desirable aspect of software development projects, and should be planned for instead of
attempting to define a stable set of requirements.

Extreme programming also introduces a number of basic values, principles and practices on top of
the agile programming framework.

Activities

XP describes four basic activities that are performed within the software development process:
coding, testing, listening, and designing. Each of those activities is described below.

Coding

The advocates of XP argue that the only truly important product of the system development process
is code - software instructions a computer can interpret. Without code, there is no working product.

Coding can also be used to figure out the most suitable solution. Coding can also help to
communicate thoughts about programming problems. A programmer dealing with a complex
programming problem and finding it hard to explain the solution to fellow programmers might code
it and use the code to demonstrate what he or she means. Code, say the proponents of this position,
is always clear and concise and cannot be interpreted in more than one way. Other programmers can
give feedback on this code by also coding their thoughts.

Testing

One can not be certain that a function works unless one tests it. Bugs and design errors are
pervasive problems in software development. Extreme programming's approach is that if a little
testing can eliminate a few flaws, a lot of testing can eliminate many more flaws.

• Unit tests determine whether a given feature works as intended. A programmer writes as
many automated tests as they can think of that might "break" the code; if all tests run
successfully, then the coding is complete. Every piece of code that is written is tested before
moving on to the next feature.

• Acceptance tests verify that the requirements as understood by the programmers satisfy the
customer's actual requirements. These occur in the exploration phase of release planning.

A "testathon" is an event when programmers meet to do collaborative test writing, a kind of
brainstorming relative to software testing.

71

http://en.wikibooks.org/wiki/Wikibooks:OR

Listening

Programmers must listen to what the customers need the system to do, what "business logic" is
needed. They must understand these needs well enough to give the customer feedback about the
technical aspects of how the problem might be solved, or cannot be solved. Communication
between the customer and programmer is further addressed in the Planning Game.

Designing

From the point of view of simplicity, of course one could say that system development doesn't need
more than coding, testing and listening. If those activities are performed well, the result should
always be a system that works. In practice, this will not work. One can come a long way without
designing but at a given time one will get stuck. The system becomes too complex and the
dependencies within the system cease to be clear. One can avoid this by creating a design structure
that organizes the logic in the system. Good design will avoid lots of dependencies within a system;
this means that changing one part of the system will not affect other parts of the system.

Values

Extreme Programming initially recognized four values in 1999. A new value was added in the
second edition of Extreme Programming Explained. The five values are:

Communication

Building software systems requires communicating system requirements to the developers of the
system. In formal software development methodologies, this task is accomplished through
documentation. Extreme programming techniques can be viewed as methods for rapidly building
and disseminating institutional knowledge among members of a development team. The goal is to
give all developers a shared view of the system which matches the view held by the users of the
system. To this end, extreme programming favors simple designs, common metaphors,
collaboration of users and programmers, frequent verbal communication, and feedback.

Simplicity

Extreme Programming encourages starting with the simplest solution. Extra functionality can then
be added later. The difference between this approach and more conventional system development
methods is the focus on designing and coding for the needs of today instead of those of tomorrow,
next week, or next month. This is sometimes summed up as the "you ain't gonna need it" (YAGNI)
approach.[5] Proponents of XP acknowledge the disadvantage that this can sometimes entail more
effort tomorrow to change the system; their claim is that this is more than compensated for by the
advantage of not investing in possible future requirements that might change before they become
relevant. Coding and designing for uncertain future requirements implies the risk of spending
resources on something that might not be needed. Related to the "communication" value, simplicity
in design and coding should improve the quality of communication. A simple design with very
simple code could be easily understood by most programmers in the team.

72

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-tr-100

Feedback

Within extreme programming, feedback relates to different dimensions of the system development:

• Feedback from the system: by writing unit tests,[6] or running periodic integration tests, the
programmers have direct feedback from the state of the system after implementing changes.

• Feedback from the customer: The functional tests (aka acceptance tests) are written by the
customer and the testers. They will get concrete feedback about the current state of their
system. This review is planned once in every two or three weeks so the customer can easily
steer the development.

• Feedback from the team: When customers come up with new requirements in the planning
game the team directly gives an estimation of the time that it will take to implement.

Feedback is closely related to communication and simplicity. Flaws in the system are easily
communicated by writing a unit test that proves a certain piece of code will break. The direct
feedback from the system tells programmers to recode this part. A customer is able to test the
system periodically according to the functional requirements, known as user stories.[6] To quote
Kent Beck, "Optimism is an occupational hazard of programming, feedback is the
treatment."[citation needed]

Courage

Several practices embody courage. One is the commandment to always design and code for today
and not for tomorrow. This is an effort to avoid getting bogged down in design and requiring a lot
of effort to implement anything else. Courage enables developers to feel comfortable with
refactoring their code when necessary.[6] This means reviewing the existing system and modifying
it so that future changes can be implemented more easily. Another example of courage is knowing
when to throw code away: courage to remove source code that is obsolete, no matter how much
effort was used to create that source code. Also, courage means persistence: A programmer might
be stuck on a complex problem for an entire day, then solve the problem quickly the next day, if
only they are persistent.

Respect

The respect value includes respect for others as well as self-respect. Programmers should never
commit changes that break compilation, that make existing unit-tests fail, or that otherwise delay
the work of their peers. Members respect their own work by always striving for high quality and
seeking for the best design for the solution at hand through refactoring.

Adopting the four earlier values leads to respect gained from others in the team. Nobody on the
team should feel unappreciated or ignored. This ensures a high level of motivation and encourages
loyalty toward the team and toward the goal of the project. This value is very dependent upon the
other values, and is very much oriented toward people in a team.

73

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101

Rules

The first version of rules for XP was published in 1999 by Don Wells[10] at the XP website. 29
rules are given in the categories of planning, managing, designing, coding, and testing. Planning,
managing and designing are called out explicitly to counter claims that XP doesn't support those
activities.

Another version of XP rules was proposed by Ken Auer[11] in XP/Agile Universe 2003. He felt XP
was defined by its rules, not its practices (which are subject to more variation and ambiguity). He
defined two categories: "Rules of Engagement" which dictate the environment in which software
development can take place effectively, and "Rules of Play" which define the minute-by-minute
activities and rules within the framework of the Rules of Engagement.

Principles

The principles that form the basis of XP are based on the values just described and are intended to
foster decisions in a system development project. The principles are intended to be more concrete
than the values and more easily translated to guidance in a practical situation.

Feedback

Extreme programming sees feedback as most useful if it is done rapidly and expresses that the time
between an action and its feedback is critical to learning and making changes. Unlike traditional
system development methods, contact with the customer occurs in more frequent iterations. The
customer has clear insight into the system that is being developed. He or she can give feedback and
steer the development as needed.

Unit tests also contribute to the rapid feedback principle. When writing code, the unit test provides
direct feedback as to how the system reacts to the changes one has made. If, for instance, the
changes affect a part of the system that is not in the scope of the programmer who made them, that
programmer will not notice the flaw. There is a large chance that this bug will appear when the
system is in production.

Assuming simplicity

This is about treating every problem as if its solution were "extremely simple". Traditional system
development methods say to plan for the future and to code for reusability. Extreme programming
rejects these ideas.

The advocates of extreme programming say that making big changes all at once does not work.
Extreme programming applies incremental changes: for example, a system might have small
releases every three weeks. When many little steps are made, the customer has more control over
the development process and the system that is being developed.

74

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-106
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-105

Embracing change

The principle of embracing change is about not working against changes but embracing them. For
instance, if at one of the iterative meetings it appears that the customer's requirements have changed
dramatically, programmers are to embrace this and plan the new requirements for the next iteration.

Practices

Extreme programming has been described as having 12 practices, grouped into four areas:

Fine scale feedback

• Pair programming[6]
• Planning game
• Test-driven development
• Whole team

Continuous process

• Continuous integration
• Refactoring or design improvement[6]
• Small releases

Shared understanding

• Coding standards
• Collective code ownership[6]
• Simple design[6]
• System metaphor

Programmer welfare

• Sustainable pace

Coding

• The customer is always available
• Code the Unit test first
• Only one pair integrates code at a time
• Leave Optimization till last
• No Overtime

75

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101

Testing

• All code must have Unit tests
• All code must pass all Unit tests before it can be released.
• When a Bug is found tests are created before the bug is addressed (a bug is not an error in

logic, it is a test you forgot to write)
• Acceptance tests are run often and the results are published

Controversial aspects

The practices in XP have been heavily debated.[6] Proponents of extreme programming claim that
by having the on-site customer[6] request changes informally, the process becomes flexible, and
saves the cost of formal overhead. Critics of XP claim this can lead to costly rework and project
scope creep beyond what was previously agreed or funded.

Change control boards are a sign that there are potential conflicts in project objectives and
constraints between multiple users. XP's expedited methodology is somewhat dependent on
programmers being able to assume a unified client viewpoint so the programmer can concentrate on
coding rather than documentation of compromise objectives and constraints. This also applies when
multiple programming organizations are involved, particularly organizations which compete for
shares of projects.[citation needed]

Other potentially controversial aspects of extreme programming include:

• Requirements are expressed as automated acceptance tests rather than specification
documents.

• Requirements are defined incrementally, rather than trying to get them all in advance.
• Software developers are usually required to work in pairs.
• There is no Big Design Up Front. Most of the design activity takes place on the fly and

incrementally, starting with "the simplest thing that could possibly work" and adding
complexity only when it's required by failing tests. Critics compare this to "debugging a
system into appearance" and fear this will result in more re-design effort than only re-
designing when requirements change.

• A customer representative is attached to the project. This role can become a single-point-of-
failure for the project, and some people have found it to be a source of stress. Also, there is
the danger of micro-management by a non-technical representative trying to dictate the use
of technical software features and architecture.

• Dependence upon all other aspects of XP: "XP is like a ring of poisonous snakes, daisy-
chained together. All it takes is for one of them to wriggle loose, and you've got a very
angry, poisonous snake heading your way."[12]

76

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-107
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-101

Scalability

Historically, XP only works on teams of twelve or fewer people. One way to circumvent this
limitation is to break up the project into smaller pieces and the team into smaller groups. It has been
claimed that XP has been used successfully on teams of over a hundred developers[citation needed].
ThoughtWorks has claimed reasonable success on distributed XP projects with up to sixty
people[citation needed].

In 2004 Industrial Extreme Programming (IXP)[13] was introduced as an evolution of XP. It is
intended to bring the ability to work in large and distributed teams. It now has 23 practices and
flexible values. As it is a new member of the Agile family, there is not enough data to prove its
usability, however it claims to be an answer to what it sees as XP's imperfections.

Severability and responses

In 2003, Matt Stephens and Doug Rosenberg published Extreme Programming Refactored: The
Case Against XP which questioned the value of the XP process and suggested ways in which it
could be improved. This triggered a lengthy debate in articles, internet newsgroups, and web-site
chat areas. The core argument of the book is that XP's practices are interdependent but that few
practical organizations are willing/able to adopt all the practices; therefore the entire process fails.
The book also makes other criticisms and it draws a likeness of XP's "collective ownership" model
to socialism in a negative manner.

Certain aspects of XP have changed since the book Extreme Programming Refactored (2003) was
published; in particular, XP now accommodates modifications to the practices as long as the
required objectives are still met. XP also uses increasingly generic terms for processes. Some argue
that these changes invalidate previous criticisms; others claim that this is simply watering the
process down.

RDP Practice is a technique for tailoring extreme programming. This practice was initially proposed
as a long research paper in a workshop organized by Philippe Kruchten and Steve Adolph(See
APSO workshop at ICSE 2008) and yet it is the only proposed and applicable method for
customizing XP. The valuable concepts behind RDP practice, in a short time provided the rationale
for applicability of it in industries. RDP Practice tries to customize XP by relying on technique XP
Rules.

Other authors have tried to reconcile XP with the older methods in order to form a unified
methodology. Some of these XP sought to replace, such as the waterfall method; example: Project
Lifecycles: Waterfall , Rapid Application Development, and All That . JPMorgan Chase & Co. tried
combining XP with the computer programming methodologies of Capability Maturity Model
Integration (CMMI), and Six Sigma. They found that the three systems reinforced each other well,
leading to better development, and did not mutually contradict.[14]

77

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-109
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
http://icse08.upb.de/
http://www.lero.ie/apso08/introduction.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-108
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR

Criticism

Extreme programming's initial buzz and controversial tenets, such as pair programming and
continuous design, have attracted particular criticisms, such as the ones coming from McBreen[15]
and Boehm and Turner.[16] Many of the criticisms, however, are believed by Agile practitioners to
be misunderstandings of agile development.[17]

In particular, extreme programming is reviewed and critiqued by Matt Stephens's and Doug
Rosenberg's Extreme Programming Refactored.[18]

Criticisms include:

• A methodology is only as effective as the people involved, Agile does not solve this
• Often used as a means to bleed money from customers through lack of defining a deliverable
• Lack of structure and necessary documentation
• Only works with senior-level developers
• Incorporates insufficient software design
• Requires meetings at frequent intervals at enormous expense to customers
• Requires too much cultural change to adopt
• Can lead to more difficult contractual negotiations
• Can be very inefficient—if the requirements for one area of code change through various

iterations, the same programming may need to be done several times over. Whereas if a plan
were there to be followed, a single area of code is expected to be written once.

• Impossible to develop realistic estimates of work effort needed to provide a quote, because
at the beginning of the project no one knows the entire scope/requirements

• Can increase the risk of scope creep due to the lack of detailed requirements documentation
• Agile is feature driven; non-functional quality attributes are hard to be placed as user stories

References

1. ↑ "Human Centred Technology Workshop 2005", 2005, PDF webpage: Informatics-UK-
report-cdrp585.

2. ↑ a b "Design Patterns and Refactoring", University of Pennsylvania, 2003, webpage:
UPenn-Lectures-design-patterns.

3. ↑ a b "Extreme Programming" (lecture paper), USFCA.edu, webpage: USFCA-edu-601-
lecture.

4. ↑ "Manifesto for Agile Software Development", Agile Alliance, 2001, webpage: Manifesto -
for-Agile-Software-Dev

5. ↑ a b "Everyone's a Programmer" by Clair Tristram. Technology Review, Nov 2003. p. 39
6. ↑ a b c d e f g h i j k l m "Extreme Programming", Computerworld (online), December 2001,

webpage: Computerworld-appdev-92.
7. ↑ Extreme Programming Refactored: The Case Against XP. ISBN 1590590961.
8. ↑ Brodie, Leo (1984) (paperback). Thinking Forth. Prentice-Hall. ISBN 0-13-917568-7.

http://thinking-forth.sourceforge.net. Retrieved 2006-06-19.
9. ↑ Interview with Kent Beck and Martin Fowler
10.↑ Don Wells
11.↑ Ken Auer

78

http://www.rolemodelsoftware.com/moreAboutUs/publications/rulesOfXp.php
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-106
http://www.extremeprogramming.org/rules.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-105
http://www.informit.com/articles/article.aspx?p=20972
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-104
http://thinking-forth.sourceforge.net/
http://en.wikibooks.org/wiki/Special:BookSources/0-13-917568-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://thinking-forth.sourceforge.net/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-103
http://en.wikibooks.org/wiki/Special:BookSources/1590590961
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-102
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-12
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-11
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-10
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-9
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-8
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_101-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-tr_100-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-tr_100-0
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-MASD_99-0
http://www.cs.usfca.edu/~parrt/course/601/lectures/xp.html
http://www.cs.usfca.edu/~parrt/course/601/lectures/xp.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USFCA601_98-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-USFCA601_98-0
http://www.cis.upenn.edu/~matuszek/cit591-2003/Lectures/49-design-patterns.ppt
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-UPenn49_97-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-UPenn49_97-0
ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp585.pdf
ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp585.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Informatics85_96-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ExtremeProgrammingRefactored-113
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-sdmagazine1811-112
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-boehm2004-111
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-mcbreen-110

12.↑ The Case Against Extreme Programming: A Self-Referential Safety Net
13.↑ Cutter Consortium :: Industrial XP: Making XP Work in Large Organizations
14.↑ Extreme Programming (XP) Six Sigma CMMI.
15.↑ McBreen, P. (2003). Questioning Extreme Programming. Boston, MA: Addison-Wesley.

ISBN 0-201-84457-5.
16.↑ Boehm, B.; R. Turner (2004). Balancing Agility and Discipline: A Guide for the

Perplexed. Boston, MA: Addison-Wesley. ISBN 0-321-18612-5.
17.↑ sdmagazine
18.↑ Extreme Programming Refactored, Matt Stephens and Doug Rosenberg, Publisher: Apress

L.P.

Further reading

• Ken Auer and Roy Miller. Extreme Programming Applied: Playing To Win, Addison-
Wesley.

• Kent Beck: Extreme Programming Explained: Embrace Change, Addison-Wesley.
• Kent Beck and Martin Fowler: Planning Extreme Programming, Addison-Wesley.
• Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change,

Second Edition, Addison-Wesley.
• Alistair Cockburn: Agile Software Development, Addison-Wesley.
• Martin Fowler: Refactoring: Improving the Design of Existing Code, Addison-Wesley.
• Harvey Herela (2005). Case Study: The Chrysler Comprehensive Compensation System.

Galen Lab, U.C. Irvine.
• Jim Highsmith. Agile Software Development Ecosystems, Addison-Wesley.
• Ron Jeffries, Ann Anderson and Chet Hendrickson (2000), Extreme Programming Installed,

Addison-Wesley.
• Mehdi Mirakhorli (2008). RDP technique: a practice to customize xp, International

Conference on Software Engineering, Proceedings of the 2008 international workshop on
Scrutinizing agile practices or shoot-out at the agile corral, Leipzig, Germany 2008, Pages
23–32.

• Craig Larman & V. Basili (2003). "Iterative and Incremental Development: A Brief
History", Computer (IEEE Computer Society) 36 (6): 47-56.

• Matt Stephens and Doug Rosenberg (2003). Extreme Programming Refactored: The Case
Against XP, Apress.

• Waldner, JB. (2008). "Nanocomputers and Swarm Intelligence". In: ISTE, 225-256.

External links

Wikimedia Commons has media related to: Extreme Programming

• Extreme Programming
• A gentle introduction
• Industrial eXtreme Programming
• XP magazine
• Problems and Solutions to XP implementation

79

http://c2.com/cgi/wiki?ExtremeProgrammingImplementationIssues
http://www.xprogramming.com/
http://www.industrialxp.org/
http://www.extremeprogramming.org/
http://c2.com/cgi/wiki?ExtremeProgramming
http://commons.wikimedia.org/wiki/Category:Extreme_Programming
http://commons.wikimedia.org/wiki/
http://calla.ics.uci.edu/histories/ccc/
http://www.softwarereality.com/ExtremeProgrammingRefactored.jsp
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ExtremeProgrammingRefactored_113-0
http://www.sdmagazine.com/documents/s=1811/sdm0112h/0112h.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-sdmagazine1811_112-0
http://en.wikibooks.org/wiki/Special:BookSources/0-321-18612-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-boehm2004_111-0
http://en.wikibooks.org/wiki/Special:BookSources/0-201-84457-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-mcbreen_110-0
http://www.sei.cmu.edu/library/assets/jarvis-gristock.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-109
http://www.cutter.com/content-and-analysis/resource-centers/agile-project-management/sample-our-research/apmr0502.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-108
http://www.softwarereality.com/lifecycle/xp/safety_net.jsp
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-107

• Using an Agile Software Process with Offshore Development - ThoughtWorks' experiences
with implementing XP in large distributed projects

80

http://www.martinfowler.com/articles/agileOffshore.html

Planning

Requirements

Requirements analysis is the first stage in the systems engineering process and software
development process.[1]

Requirements analysis in systems engineering and software engineering, encompasses those tasks
that go into determining the needs or conditions to meet for a new or altered product, taking account
of the possibly conflicting requirements of the various stakeholders, such as beneficiaries or users.

Requirements analysis is critical to the success of a development project.[2] Requirements must be
documented, actionable, measurable, testable, related to identified business needs or opportunities,
and defined to a level of detail sufficient for system design. Requirements can be architectural,
structural, behavioral, functional, and non-functional.

Overview

Conceptually, requirements analysis includes three types of activity:

• Eliciting requirements: the task of communicating with customers and users to determine
what their requirements are. This is sometimes also called requirements gathering.

• Analyzing requirements: determining whether the stated requirements are unclear,
incomplete, ambiguous, or contradictory, and then resolving these issues.

• Recording requirements: Requirements might be documented in various forms, such as
natural-language documents, use cases, user stories, or process specifications.

Requirements analysis can be a long and arduous process during which many delicate psychological
skills are involved. New systems change the environment and relationships between people, so it is
important to identify all the stakeholders, take into account all their needs and ensure they
understand the implications of the new systems. Analysts can employ several techniques to elicit
the requirements from the customer. Historically, this has included such things as holding
interviews, or holding focus groups (more aptly named in this context as requirements workshops)

81

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-115
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114
http://en.wikibooks.org/wiki/File:SE_Process.jpg
http://en.wikibooks.org/wiki/File:SE_Process.jpg

and creating requirements lists. More modern techniques include prototyping, and use cases. Where
necessary, the analyst will employ a combination of these methods to establish the exact
requirements of the stakeholders, so that a system that meets the business needs is produced.

Requirements engineering

Systematic requirements analysis is also known as requirements engineering.[3] It is sometimes
referred to loosely by names such as requirements gathering, requirements capture, or requirements
specification. The term requirements analysis can also be applied specifically to the analysis proper,
as opposed to elicitation or documentation of the requirements, for instance. Requirements
Engineering can be divided into discrete chronological steps:

• Requirements elicitation,
• Requirements analysis and negotiation,
• Requirements specification,
• System modeling,
• Requirements validation,
• Requirements management.

Requirement engineering according to Laplante (2007) is "a subdiscipline of systems engineering
and software engineering that is concerned with determining the goals, functions, and constraints of
hardware and software systems."[4] In some life cycle models, the requirement engineering process
begins with a feasibility study activity, which leads to a feasibility report. If the feasibility study
suggests that the product should be developed, then requirement analysis can begin. If requirement
analysis precedes feasibility studies, which may foster outside the box thinking, then feasibility
should be determined before requirements are finalized.

Requirements analysis topics

Stakeholder identification

See Stakeholder analysis for a discussion of business uses. Stakeholders (SH) are people or
organizations (legal entities such as companies, standards bodies) which have a valid interest in the
system. They may be affected by it either directly or indirectly. A major new emphasis in the 1990s
was a focus on the identification of stakeholders. It is increasingly recognized that stakeholders are
not limited to the organization employing the analyst. Other stakeholders will include:

• anyone who operates the system (normal and maintenance operators)
• anyone who benefits from the system (functional, political, financial and social

beneficiaries)
• anyone involved in purchasing or procuring the system. In a mass-market product

organization, product management, marketing and sometimes sales act as surrogate
consumers (mass-market customers) to guide development of the product

• organizations which regulate aspects of the system (financial, safety, and other regulators)
• people or organizations opposed to the system (negative stakeholders; see also Misuse case)

82

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PAL07-117
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-116

• organizations responsible for systems which interface with the system under design
• those organizations who integrate horizontally with the organization for whom the analyst is

designing the system

Stakeholder interviews

Stakeholder interviews are a common technique used in requirement analysis. Though they are
generally idiosyncratic in nature and focused upon the perspectives and perceived needs of the
stakeholder, very often without larger enterprise or system context, this perspective deficiency has
the general advantage of obtaining a much richer understanding of the stakeholder's unique business
processes, decision-relevant business rules, and perceived needs. Consequently this technique can
serve as a means of obtaining the highly focused knowledge that is often not elicited in Joint
Requirements Development sessions, where the stakeholder's attention is compelled to assume a
more cross-functional context. Moreover, the in-person nature of the interviews provides a more
relaxed environment where lines of thought may be explored at length.

Joint Requirements Development (JRD) Sessions

Requirements often have cross-functional implications that are unknown to individual stakeholders
and often missed or incompletely defined during stakeholder interviews. These cross-functional
implications can be elicited by conducting JRD sessions in a controlled environment, facilitated by
a trained facilitator, wherein stakeholders participate in discussions to elicit requirements, analyze
their details and uncover cross-functional implications. A dedicated scribe and Business Analyst
should be present to document the discussion. Utilizing the skills of a trained facilitator to guide the
discussion frees the Business Analyst to focus on the requirements definition process.

JRD Sessions are analogous to Joint Application Design Sessions. In the former, the sessions elicit
requirements that guide design, whereas the latter elicit the specific design features to be
implemented in satisfaction of elicited requirements.

Contract-style requirement lists

One traditional way of documenting requirements has been contract style requirement lists. In a
complex system such requirements lists can run to hundreds of pages.

An appropriate metaphor would be an extremely long shopping list. Such lists are very much out of
favour in modern analysis; as they have proved spectacularly unsuccessful at achieving their aims;
but they are still seen to this day.

Strengths

• Provides a checklist of requirements.
• Provide a contract between the project sponsor(s) and developers.
• For a large system can provide a high level description.

83

Weaknesses

• Such lists can run to hundreds of pages. It is virtually impossible to read such documents as
a whole and have a coherent understanding of the system.

• Such requirements lists abstract all the requirements and so there is little context

• This abstraction makes it impossible to see how the requirements fit or work together.
• This abstraction makes it difficult to prioritize requirements properly; while a list does

make it easy to prioritize each individual item, removing one item out of context can
render an entire use case or business requirement useless.

• This abstraction increases the likelihood of misinterpreting the requirements; as more
people read them, the number of (different) interpretations of the envisioned system
increase.

• This abstraction means that it's extremely difficult to be sure that you have the
majority of the requirements. Necessarily, these documents speak in generality; but the
devil, as they say, is in the details.

• These lists create a false sense of mutual understanding between the stakeholders and
developers.

• These contract style lists give the stakeholders a false sense of security that the developers
must achieve certain things. However, due to the nature of these lists, they inevitably miss
out crucial requirements which are identified later in the process. Developers can use these
discovered requirements to renegotiate the terms and conditions in their favour.

• These requirements lists are no help in system design, since they do not lend themselves to
application.

Alternative to requirement lists

As an alternative to the large, pre-defined requirement lists Agile Software Development uses User
stories to define a requirement in every day language.

Measurable goals

Best practices take the composed list of requirements merely as clues and repeatedly ask "why?"
until the actual business purposes are discovered. Stakeholders and developers can then devise tests
to measure what level of each goal has been achieved thus far. Such goals change more slowly than
the long list of specific but unmeasured requirements. Once a small set of critical, measured goals
has been established, rapid prototyping and short iterative development phases may proceed to
deliver actual stakeholder value long before the project is half over.

Prototypes

In the mid-1980s, prototyping was seen as the best solution to the requirements analysis problem.
Prototypes are Mockups of an application. Mockups allow users to visualize an application that
hasn't yet been constructed. Prototypes help users get an idea of what the system will look like, and
make it easier for users to make design decisions without waiting for the system to be built. Major

84

improvements in communication between users and developers were often seen with the
introduction of prototypes. Early views of applications led to fewer changes later and hence reduced
overall costs considerably.

However, over the next decade, while proving a useful technique, prototyping did not solve the
requirements problem:

• Managers, once they see a prototype, may have a hard time understanding that the finished
design will not be produced for some time.

• Designers often feel compelled to use patched together prototype code in the real system,
because they are afraid to 'waste time' starting again.

• Prototypes principally help with design decisions and user interface design. However, they
can not tell you what the requirements originally were.

• Designers and end-users can focus too much on user interface design and too little on
producing a system that serves the business process.

• Prototypes work well for user interfaces, screen layout and screen flow but are not so useful
for batch or asynchronous processes which may involve complex database updates and/or
calculations.

Prototypes can be flat diagrams (often referred to as wireframes) or working applications using
synthesized functionality. Wireframes are made in a variety of graphic design documents, and often
remove all color from the design (i.e. use a greyscale color palette) in instances where the final
software is expected to have graphic design applied to it. This helps to prevent confusion over the
final visual look and feel of the application.

Use cases

A use case is a technique for documenting the potential requirements of a new system or software
change. Each use case provides one or more scenarios that convey how the system should interact
with the end-user or another system to achieve a specific business goal. Use cases typically avoid
technical jargon, preferring instead the language of the end-user or domain expert. Use cases are
often co-authored by requirements engineers and stakeholders.

Use cases are deceptively simple tools for describing the behavior of software or systems. A use
case contains a textual description of all of the ways which the intended users could work with the
software or system. Use cases do not describe any internal workings of the system, nor do they
explain how that system will be implemented. They simply show the steps that a user follows to
perform a task. All the ways that users interact with a system can be described in this manner.

Software requirements specification

A software requirements specification (SRS) is a complete description of the behavior of the system
to be developed. It includes a set of use cases that describe all of the interactions that the users will
have with the software. Use cases are also known as functional requirements. In addition to use
cases, the SRS also contains nonfunctional (or supplementary) requirements. Non-functional
requirements are requirements which impose constraints on the design or implementation (such as
performance requirements, quality standards, or design constraints).

85

Recommended approaches for the specification of software requirements are described by IEEE
830-1998. This standard describes possible structures, desirable contents, and qualities of a software
requirements specification.

Types of Requirements

Requirements are categorized in several ways. The following are common categorizations of
requirements that relate to technical management:[1]

Customer Requirements
Statements of fact and assumptions that define the expectations of the system in terms of
mission objectives, environment, constraints, and measures of effectiveness and suitability
(MOE/MOS). The customers are those that perform the eight primary functions of systems
engineering, with special emphasis on the operator as the key customer. Operational
requirements will define the basic need and, at a minimum, answer the questions posed in the
following listing:[1]

• Operational distribution or deployment: Where will the system be used?
• Mission profile or scenario: How will the system accomplish its mission objective?
• Performance and related parameters: What are the critical system parameters to accomplish

the mission?
• Utilization environments: How are the various system components to be used?
• Effectiveness requirements: How effective or efficient must the system be in performing its

mission?
• Operational life cycle: How long will the system be in use by the user?
• Environment: What environments will the system be expected to operate in an effective

manner?

Architectural Requirements
Architectural requirements explain what has to be done by identifying the necessary system
architecture of a system.

Structural Requirements
Structural requirements explain what has to be done by identifying the necessary structure of
a system.

Behavioral Requirements
Behavioral requirements explain what has to be done by identifying the necessary behavior of
a system.

Functional Requirements
Functional requirements explain what has to be done by identifying the necessary task, action
or activity that must be accomplished. Functional requirements analysis will be used as the
toplevel functions for functional analysis.[1]

Non-functional Requirements
Non-functional requirements are requirements that specify criteria that can be used to judge
the operation of a system, rather than specific behaviors.

Performance Requirements
The extent to which a mission or function must be executed; generally measured in terms of
quantity, quality, coverage, timeliness or readiness. During requirements analysis,
performance (how well does it have to be done) requirements will be interactively developed

86

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114

across all identified functions based on system life cycle factors; and characterized in terms of
the degree of certainty in their estimate, the degree of criticality to system success, and their
relationship to other requirements.[1]

Design Requirements
The “build to,” “code to,” and “buy to” requirements for products and “how to execute”
requirements for processes expressed in technical data packages and technical manuals.[1]

Derived Requirements
Requirements that are implied or transformed from higher-level requirement. For example, a
requirement for long range or high speed may result in a design requirement for low weight.
[1]

Allocated Requirements
A requirement that is established by dividing or otherwise allocating a high-level requirement
into multiple lower-level requirements. Example: A 100-pound item that consists of two
subsystems might result in weight requirements of 70 pounds and 30 pounds for the two
lower-level items.[1]

Well-known requirements categorization models include FURPS and FURPS+, developed at
Hewlett-Packard.

Requirements analysis issues

Stakeholder issues

Steve McConnell, in his book Rapid Development, details a number of ways users can inhibit
requirements gathering:

• Users do not understand what they want or users don't have a clear idea of their requirements
• Users will not commit to a set of written requirements
• Users insist on new requirements after the cost and schedule have been fixed
• Communication with users is slow
• Users often do not participate in reviews or are incapable of doing so
• Users are technically unsophisticated
• Users do not understand the development process
• Users do not know about present technology

This may lead to the situation where user requirements keep changing even when system or product
development has been started.

Engineer/developer issues

Possible problems caused by engineers and developers during requirements analysis are:

• Technical personnel and end-users may have different vocabularies. Consequently, they may
wrongly believe they are in perfect agreement until the finished product is supplied.

• Engineers and developers may try to make the requirements fit an existing system or model,
rather than develop a system specific to the needs of the client.

87

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-114

• Analysis may often be carried out by engineers or programmers, rather than personnel with
the people skills and the domain knowledge to understand a client's needs properly.

Attempted solutions

One attempted solution to communications problems has been to employ specialists in business or
system analysis.

Techniques introduced in the 1990s like prototyping, Unified Modeling Language (UML), use
cases, and Agile software development are also intended as solutions to problems encountered with
previous methods.

Also, a new class of application simulation or application definition tools have entered the market.
These tools are designed to bridge the communication gap between business users and the IT
organization — and also to allow applications to be 'test marketed' before any code is produced. The
best of these tools offer:

• electronic whiteboards to sketch application flows and test alternatives
• ability to capture business logic and data needs
• ability to generate high fidelity prototypes that closely imitate the final application
• interactivity
• capability to add contextual requirements and other comments
• ability for remote and distributed users to run and interact with the simulation

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

Further reading

• Laplante, Phil (2009). Requirements Engineering for Software and Systems (1st ed.).
Redmond, WA: CRC Press. ISBN 1-42006-467-3.
http://beta.crcpress.com/product/isbn/9781420064674.

88

http://beta.crcpress.com/product/isbn/9781420064674
http://en.wikibooks.org/wiki/Special:BookSources/1-42006-467-3
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://beta.crcpress.com/product/isbn/9781420064674
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

• McConnell, Steve (1996). Rapid Development: Taming Wild Software Schedules (1st ed.).
Redmond, WA: Microsoft Press. ISBN 1-55615-900-5. http://www.stevemcconnell.com/.

• Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft Press.
ISBN 0-7356-1879-8. http://www.processimpact.com.

• Andrew Stellman and Jennifer Greene (2005). Applied Software Project Management.
Cambridge, MA: O'Reilly Media. ISBN 0-596-00948-8. http://www.stellman-greene.com.

• Brian Berenbach, Daniel Paulish, Juergen Katzmeier, Arnold Rudorfer (2009). Software &
Systems Requirements Engineering: In Practice. New York: McGraw-Hill Professional.
ISBN 0-07-1605479. http://www.mhprofessional.com.

• Walter Sobkiw (2008). Sustainable Development Possible with Creative System
Engineering. New Jersey: CassBeth. ISBN 0615216307. http://books.google.com/books?
id=7WJppXs-LzEC.

External links

Wikimedia Commons has media related to: Requirements analysis

• Software Requirement Analysis using UML article by Dhiraj Shetty.
• Requirements Engineering Process "Goodies"
• Requirements Engineering: A Roadmap (PDF) article by Bashar Nuseibeh and Steve

Easterbrook, 2000.

Requirements Management

Requirements management is the process of documenting, analyzing, tracing, prioritizing and
agreeing on requirements and then controlling change and communicating to relevant stakeholders.
It is a continuous process throughout a project. A requirement is a capability to which a project
outcome (product or service) should conform.

Overview

The purpose of requirements management is to assure the organization documents, verifies and
meets the needs and expectations of its customers and internal or external stakeholders[1].
Requirements management begins with the analysis and elicitation of the objectives and constraints
of the organization. Requirements management further includes supporting planning for
requirements, integrating requirements and the organization for working with them (attributes for
requirements), as well as relationships with other information delivering against requirements, and
changes for these.

The traceability thus established is used in managing requirements to report back fulfillment of
company and stakeholder interests, in terms of compliance, completeness, coverage and
consistency. Traceabilities also support change management as part of requirements management in

89

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Stellman05-118
http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf
http://www.processimpact.com/goodies.shtml#reqs
http://www.slideshare.net/dhirajmusings/software-requirement-analysis-using-uml
http://commons.wikimedia.org/wiki/Category:Requirements_analysis
http://commons.wikimedia.org/wiki/
http://books.google.com/books?id=7WJppXs-LzEC
http://books.google.com/books?id=7WJppXs-LzEC
http://en.wikibooks.org/wiki/Special:BookSources/0615216307
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://books.google.com/books?id=7WJppXs-LzEC
http://books.google.com/books?id=7WJppXs-LzEC
http://www.mhprofessional.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-07-1605479
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.mhprofessional.com/
http://www.mhprofessional.com/
http://www.stellman-greene.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-596-00948-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.stellman-greene.com/
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://www.stevemcconnell.com/
http://en.wikibooks.org/wiki/Special:BookSources/1-55615-900-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.stevemcconnell.com/

understanding the impacts of changes through requirements or other related elements (e.g.,
functional impacts through relations to functional architecture), and facilitating introducing these
changes.[2]

Requirements management involves communication between the project team members and
stakeholders, and adjustment to requirements changes throughout the course of the project[3]. To
prevent one class of requirements from overriding another, constant communication among
members of the development team is critical. For example, in software development for internal
applications, the business has such strong needs that it may ignore user requirements, or believe that
in creating use cases, the user requirements are being taken care of.

Traceability

Requirements traceability is concerned with documenting the life of a requirement. It should be
possible to trace back to the origin of each requirement and every change made to the requirement
should therefore be documented in order to achieve traceability. Even the use of the requirement
after the implemented features have been deployed and used should be traceable[4].

Requirements come from different sources, like the business person ordering the product, the
marketing manager and the actual user. These people all have different requirements for the
product. Using requirements traceability, an implemented feature can be traced back to the person
or group that wanted it during the requirements elicitation. This can, for example, be used during
the development process to prioritize the requirement, determining how valuable the requirement is
to a specific user. It can also be used after the deployment when user studies show that a feature is
not used, to see why it was required in the first place.

Requirements activities

At each stage in a development process, there are key requirements management activities and
methods. To illustrate, consider a standard five-phase development process with Investigation,
Feasibility, Design, Construction and Test, and Release stages.

Investigation

In Investigation, the first three classes of requirements are gathered from the users, from the
business and from the development team. In each area, similar questions are asked; what are the
goals, what are the constraints, what are the current tools or processes in place, and so on. Only
when these requirements are well understood can functional requirements be developed.

A caveat is required here: no matter how hard a team tries, requirements cannot be fully defined at
the beginning of the project. Some requirements will change, either because they simply weren’t
extracted, or because internal or external forces at work affect the project in mid-cycle. Thus, the
team members must agree at the outset that a prime condition for success is flexibility in thinking
and operation.

90

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-121
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PMBOK08-120
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-119

The deliverable from the Investigation stage is a requirements document that has been approved by
all members of the team. Later, in the thick of development, this document will be critical in
preventing scope creep or unnecessary changes. As the system develops, each new feature opens a
world of new possibilities, so the requirements specification anchors the team to the original vision
and permits a controlled discussion of scope change.

While many organizations still use only documents to manage requirements, others manage their
requirements baselines using software tools. These tools allow requirements to be managed in a
database, and usually have functions to automate traceability (e.g., by allowing electronic links to
be created between parent and child requirements, or between test cases and requirements),
electronic baseline creation, version control, and change management. Usually such tools contain an
export function that allows a specification document to be created by exporting the requirements
data into a standard document application.

Feasibility

In the Feasibility stage, costs of the requirements are determined. For user requirements, the current
cost of work is compared to the future projected costs once the new system is in place. Questions
such as these are asked: “What are data entry errors costing us now?” Or “What is the cost of scrap
due to operator error with the current interface?” Actually, the need for the new tool is often
recognized as these questions come to the attention of financial people in the organization.

Business costs would include, “What department has the budget for this?” “What is the expected
rate of return on the new product in the marketplace?” “What’s the internal rate of return in
reducing costs of training and support if we make a new, easier-to-use system?”

Technical costs are related to software development costs and hardware costs. “Do we have the
right people to create the tool?” “Do we need new equipment to support expanded software roles?”
This last question is an important type. The team must inquire into whether the newest automated
tools will add sufficient processing power to shift some of the burden from the user to the system in
order to save people time.

The question also points out a fundamental point about requirements management. A human and a
tool form a system, and this realization is especially important if the tool is a computer or a new
application on a computer. The human mind excels in parallel processing and interpretation of
trends with insufficient data. The CPU excels in serial processing and accurate mathematical
computation. The overarching goal of the requirements management effort for a software project
would thus be to make sure the work being automated gets assigned to the proper processor. For
instance, “Don’t make the human remember where she is in the interface. Make the interface report
the human’s location in the system at all times.” Or “Don’t make the human enter the same data in
two screens. Make the system store the data and fill in the second screen as needed.”

The deliverable from the Feasibility stage is the budget and schedule for the project.

91

Design

Assuming that costs are accurately determined and benefits to be gained are sufficiently large, the
project can proceed to the Design stage. In Design, the main requirements management activity is
comparing the results of the design against the requirements document to make sure that work is
staying in scope.

Again, flexibility is paramount to success. Here’s a classic story of scope change in mid-stream that
actually worked well. Ford auto designers in the early ‘80s were expecting gasoline prices to hit
$3.18 per gallon by the end of the decade. Midway through the design of the Ford Taurus, prices
had centered to around $1.50 a gallon. The design team decided they could build a larger, more
comfortable, and more powerful car if the gas prices stayed low, so they redesigned the car. The
Taurus launch set nationwide sales records when the new car came out, primarily because it was so
roomy and comfortable to drive.

In most cases, however, departing from the original requirements to that degree does not work. So
the requirements document becomes a critical tool that helps the team make decisions about design
changes.

Construction and test

In the construction and testing stage, the main activity of requirements management is to make sure
that work and cost stay within schedule and budget, and that the emerging tool does in fact meet
requirements. A main tool used in this stage is prototype construction and iterative testing. For a
software application, the user interface can be created on paper and tested with potential users while
the framework of the software is being built. Results of these tests are recorded in a user interface
design guide and handed off to the design team when they are ready to develop the interface. This
saves their time and makes their jobs much easier.

Release

Requirements management does not end with product release. From that point on, the data coming
in about the application’s acceptability is gathered and fed into the Investigation phase of the next
generation or release. Thus the process begins again.

Tools

There exist both desktop and Web-based tools for requirements management. A Web-based
requirements tool can be installed at the customer′s datacenter or can be offered as an on-demand
requirements management platform which in some cases is completely free.[5]

Modeling Languages

The system engineering modeling language SysML incorporates a requirements diagram allowing
the developer to graphically organize, manage, and trace requirements.

92

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-122

On-demand requirements management platforms

An on-demand requirements management platform is a fully hosted requirements management
solution, where the only system requirements would normally be Internet access and a standard
Web browser.

The service would normally include all special hardware and software. Other services may include
technology and processes designed to secure your data against physical loss and unauthorized use,
24×7 data availability, and assurance that the service will scale as you add users, applications, and
additional activities.

Some on-demand requirements management platforms charge a fee while others are free to use.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

Further reading

• CMMI Product Team (August 2006) (PDF). CMMI for Development, Version 1.2. Technical
Report CMU/SEI-2006-TR-008. Software Engineering Institute.
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm. Retrieved 2008-01-22.

• Colin Hood, Simon Wiedemann, Stefan Fichtinger, Urte Pautz Requirements Management:
Interface Between Requirements Development and All Other Engineering Processes
Springer, Berlin 2007, ISBN 354047689X

External links

• Critical Issues in Requirements Management - Panel Discussion with Executives from IBM/
Rational, Cognition Corporation, PTC, Chrysler, and Siemens.

• Web 2.0 Requirements Management - What does it look like and why is it relevant?
• Forbes Requirements Management Software Directory
• INCOSE Requirements Tools Survey
• Jiludwig Requirements Management Tools Directory

93

http://www.jiludwig.com/Requirements_Management_Tools.html
http://www.paper-review.com/tools/rms/read.php
http://software.forbes.com/requirements-management-software
http://www.cognition.us/Presentations/RequirementsManagementSite.html
http://www.cognition.us/news/industry_report_142845a.html
http://www.cognition.us/news/industry_report_142845a.html
http://en.wikibooks.org/wiki/Special:BookSources/354047689X
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

• Requirements Management Tool Resources
• Washington State Information Services Board (ISB)policy: CMM Key Practices for Level 2

- Requirements Management
• U.K. Office of Government Commerce (OGC) - Requirements management
• Requirement Writing 101 for Product Management

Specification

Systems engineering model of Specification and Levels of Development. During system
development a series of specifications are generated to describe the system at different levels of
detail. These program unique specifications form the core of the configuration baselines. As shown
here, in addition to referring to different levels within the system hierarchy, these baselines are
defined at different phases of the design process.[6]

A functional specification (also, functional spec, specs, functional specifications document (FSD),
or Program specification) in systems engineering and software development is the documentation
that describes the requested behavior of an engineering system. The documentation typically
describes what is needed by the system user as well as requested properties of inputs and outputs
(e.g. of the software system).

Overview

In systems engineering a specification is a document that clearly and accurately describes the
essential technical requirements for items, materials, or services including the procedures by which
it can be determined that the requirements have been met. Specifications help avoid duplication and
inconsistencies, allow for accurate estimates of necessary work and resources, act as a negotiation
and reference document for engineering changes, provide documentation of configuration, and
allow for consistent communication among those responsible for the eight primary functions of
Systems Engineering. They provide a precise idea of the problem to be solved so that they can
efficiently design the system and estimate the cost of design alternatives. They provide guidance to
testers for verification (qualification) of each technical requirement.[6]

94

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-123
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SEF01-123
http://www.nainil.com/blog/requirement-writing-for-product-management/
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://isb.wa.gov/policies/portfolio/tr25/tr25_l2a.html
http://isb.wa.gov/policies/portfolio/tr25/tr25_l2a.html
http://jonathanbabcock.com/2008/09/04/requirements-management-tool-resources/
http://en.wikibooks.org/wiki/File:Specification_and_Levels_of_Development.jpg
http://en.wikibooks.org/wiki/File:Specification_and_Levels_of_Development.jpg

A functional specification does not define the inner workings of the proposed system; it does not
include the specification how the system function will be implemented. Instead, it focuses on what
various outside agents (people using the program, computer peripherals, or other computers, for
example) might "observe" when interacting with the system. A typical functional specification
might state the following:

When the user clicks the OK button, the dialog is closed and the focus is returned to the main
window in the state it was in before this dialog was displayed.

Such a requirement describes an interaction between an external agent (the user) and the software
system. When the user provides input to the system by clicking the OK button, the program
responds (or should respond) by closing the dialog window containing the OK button.

It can be informal, in which case it can be considered as a blueprint or user manual from a
developer point of view, or formal, in which case it has a definite meaning defined in mathematical
or programmatic terms. In practice, most successful specifications are written to understand and
fine-tune applications that were already well-developed, although safety-critical software systems
are often carefully specified prior to application development. Specifications are most important for
external interfaces that must remain stable.

Functional specification topics

Purpose

There are many purposes for functional specifications. One of the primary purposes on team
projects is to achieve some form of team consensus on what the program is to achieve before
making the more time-consuming effort of writing source code and test cases, followed by a period
of debugging. Typically, such consensus is reached after one or more reviews by the stakeholders
on the project at hand after having negotiated a cost-effective way to achieve the requirements the
software needs to fulfill.

Process

In the ordered industrial software engineering life-cycle (waterfall model), functional specification
describes what has to be implemented. The next system specification document describes how the
functions will be realized using a chosen software environment. In not industrial, prototypical
systems development, functional specifications are typically written after or as part of requirements
analysis.

When the team agrees that functional specification consensus is reached, the functional spec is
typically declared "complete" or "signed off". After this, typically the software development and
testing team write source code and test cases using the functional specification as the reference.
While testing is performed the behavior of the program is compared against the expected behavior
as defined in the functional specification.

95

Types of software development specifications

• Advanced Microcontroller Bus Architecture
• Bit specification
• Design specification
• Diagnostic design specification
• Multiboot Specification
• Product design specification
• Real-time specification for Java
• Software Requirements Specification

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• Writing functional specifications Tutorial
• Painless Functional Specifications, 4-part series by Joel Spolsky

96

http://www.joelonsoftware.com/articles/fog0000000036.html
http://www.mojofat.com/tutorial/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Architecture & Design

Introduction

The software architecture of a system is the set of structures needed to reason about the system,
which comprise software elements, relations among them, and properties of both. [7] The term also
refers to documentation of a system's software architecture. Documenting software architecture
facilitates communication between stakeholders, documents early decisions about high-level design,
and allows reuse of design components and patterns between projects.[8]

Overview

The field of computer science has come across problems associated with complexity since its
formation.[9] Earlier problems of complexity were solved by developers by choosing the right data
structures, developing algorithms, and by applying the concept of separation of concerns. Although
the term “software architecture” is relatively new to the industry, the fundamental principles of the
field have been applied sporadically by software engineering pioneers since the mid 1980s. Early
attempts to capture and explain software architecture of a system were imprecise and disorganized,
often characterized by a set of box-and-line diagrams.[10] During the 1990s there was a
concentrated effort to define and codify fundamental aspects of the discipline. Initial sets of design
patterns, styles, best practices, description languages, and formal logic were developed during that
time.

The software architecture discipline is centered on the idea of reducing complexity through
abstraction and separation of concerns. To date there is still no agreement on the precise definition
of the term “software architecture”.[11]

As a maturing discipline with no clear rules on the right way to build a system, designing software
architecture is still a mix of art and science. The “art” aspect of software architecture is because a
commercial software system supports some aspect of a business or a mission. How a system
supports key business drivers is described via scenarios as non-functional requirements of a system,
also known as quality attributes, determine how a system will behave.[12] Every system is unique
due to the nature of the business drivers it supports, as such the degree of quality attributes
exhibited by a system such as fault-tolerance, backward compatibility, extensibility, reliability,
maintainability, availability, security, usability, and such other –ilities will vary with each
implementation.[12] To bring a software architecture user's perspective into the software
architecture, it can be said that software architecture gives the direction to take steps and do the
tasks involved in each such user's speciality area and interest e.g. the stakeholders of software
systems, the software developer, the software system operational support group, the software
maintenance specialists, the deployer, the tester and also the business end user[citation needed]. In this
sense software architecture is really the amalgamation of the multiple perspectives a system always
embodies. The fact that those several different perspectives can be put together into a software
architecture stands as the vindication of the need and justification of creation of software
architecture before the software development in a project attains maturity.

97

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-softwareqa-129
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-softwareqa-129
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-128
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-127
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-126
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-125
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-DSA2-124

History

The origin of software architecture as a concept was first identified in the research work of Edsger
Dijkstra in 1968 and David Parnas in the early 1970s. These scientists emphasized that the structure
of a software system matters and getting the structure right is critical. The study of the field
increased in popularity since the early 1990s with research work concentrating on architectural
styles (patterns), architecture description languages, architecture documentation, and formal
methods[13].

Research institutions have played a prominent role in furthering software architecture as a
discipline. Mary Shaw and David Garlan of Carnegie Mellon wrote a book titled Software
Architecture: Perspectives on an Emerging Discipline in 1996, which brought forward the concepts
in Software Architecture, such as components, connectors, styles and so on. The University of
California, Irvine's Institute for Software Research's efforts in software architecture research is
directed primarily in architectural styles, architecture description languages, and dynamic
architectures.

The IEEE 1471: ANSI/IEEE 1471-2000: Recommended Practice for Architecture Description of
Software-Intensive Systems is the first formal standard in the area of software architecture, and was
adopted in 2007 by ISO as ISO/IEC 42010:2007 (IEEE 1471).

Software architecture topics

Architecture description languages

Architecture description languages (ADLs) are used to describe a Software Architecture. Several
different ADLs have been developed by different organizations, including AADL (SAE standard),
Wright (developed by Carnegie Mellon), Acme (developed by Carnegie Mellon), xADL (developed
by UCI), Darwin (developed by Imperial College London), DAOP-ADL (developed by University
of Málaga), and ByADL (University of L'Aquila, Italy). Common elements of an ADL are
component, connector and configuration.

Views

Software architecture is commonly organized in views, which are analogous to the different types
of blueprints made in building architecture. A view is a representation of a set of system
components and relationships among them. [7] Within the ontology established by ANSI/IEEE
1471-2000, views are responses to viewpoints, where a viewpoint is a specification that describes
the architecture in question from the perspective of a given set of stakeholders and their concerns.
The viewpoint specifies not only the concerns addressed but the presentation, model kinds used,
conventions used and any consistency (correspondence) rules to keep a view consistent with other
views.

Some possible views (actually, viewpoints in the 1471 ontology) are:

• Functional/logic view

98

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-DSA2-124
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-130

• Code/module view
• Development/structural view
• Concurrency/process/runtime/thread view
• Physical/deployment/install view
• User action/feedback view
• Data view/data model

Several languages for describing software architectures ('architecture description language' in
ISO/IEC 42010 / IEEE-1471 terminology) have been devised, but no consensus exists on which
symbol-set or language should be used to describe each architecture view. The UML is a standard
that can be used for "for analysis, design, and implementation of software-based systems as well as
for modeling business and similar processes." Thus, the UML is a visual language that can be used
to create software architecture views.

Architecture frameworks

Frameworks related to the domain of software architecture are:

• 4+1
• RM-ODP (Reference Model of Open Distributed Processing)
• Service-Oriented Modeling Framework (SOMF)

Other architectures such as the Zachman Framework, DODAF, and TOGAF relate to the field of
Enterprise architecture.

The distinction from functional design

The IEEE Std 610.12-1990 Standard Glossary of Software Engineering Terminology defines the
following distinctions:

• Architectural Design: the process of defining a collection of hardware and software
components and their interfaces to establish the framework for the development of a
computer system.

• Detailed Design: the process of refining and expanding the preliminary design of a system or
component to the extent that the design is sufficiently complete to begin implementation.

• Functional Design: the process of defining the working relationships among the components
of a system.

• Preliminary Design: the process of analyzing design alternatives and defining the
architecture, components, interfaces, and timing/sizing estimates for a system or
components.

Software architecture, also described as strategic design, is an activity concerned with global
requirements governing how a solution is implemented such as programming paradigms,
architectural styles, component-based software engineering standards, architectural patterns,
security, scale, integration, and law-governed regularities. Functional design, also described as

99

tactical design, is an activity concerned with local requirements governing what a solution does
such as algorithms, design patterns, programming idioms, refactorings, and low-level
implemenation.

According to the Intension/Locality Hypothesis[14], the distinction between architectural and
detailed design is defined by the Locality Criterion[14], according to which a statement about
software design is non-local (architectural) if and only if a program that satisfies it can be expanded
into a program which does not. For example, the client–server style is architectural (strategic)
because a program that is built on this principle can be expanded into a program which is not client–
server; for example, by adding peer-to-peer nodes.

Architecture is design but not all design is architectural.[7] In practice, the architect is the one who
draws the line between software architecture (architectural design) and detailed design (non-
architectural design). There aren't rules or guidelines that fit all cases. Examples of rules or
heuristics that architects (or organizations) can establish when they want to distinguish between
architecture and detailed design include:

• Architecture is driven by non-functional requirements, while functional design is driven by
functional requirements.

• Pseudo-code belongs in the detailed design document.
• UML component, deployment, and package diagrams generally appear in software

architecture documents; UML class, object, and behavior diagrams appear in detailed
functional design documents.

Examples of architectural styles and patterns

There are many common ways of designing computer software modules and their communications,
among them:

• Blackboard
• Client–server model (2-tier, n-tier, peer-to-peer, cloud computing all use this model)
• Database-centric architecture (broad division can be made for programs which have

database at its center and applications which don't have to rely on databases, E.g. desktop
application programs, utility programs etc.)

• Distributed computing
• Event-driven architecture
• Front end and back end
• Implicit invocation
• Monolithic application
• Peer-to-peer
• Pipes and filters
• Plugin
• Representational State Transfer
• Rule evaluation
• Search-oriented architecture (A pure SOA implements a service for every data access point.)
• Service-oriented architecture
• Shared nothing architecture

100

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-DSA2-124
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-edenkazman-131
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-edenkazman-131

• Software componentry
• Space based architecture
• Structured (module-based but usually monolithic within modules)
• Three-tier model (An architecture with Presentation, Business Logic and Database tiers)

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

Further reading

• Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, Judith Stafford: Documenting Software Architectures: Views and
Beyond, Second Edition. Addison-Wesley, 2010, ISBN 0321552687. This book describes
what is software architecture and shows how to document it in multiple views, using UML
and other notations. It also explains how to complement the architecture views with
behavior, software interface, and rationale documentation. Accompanying the book is a wiki
that contains an example of software architecture documentation.

• Len Bass, Paul Clements, Rick Kazman: Software Architecture in Practice, Second Edition.
Addison Wesley, Reading 5/9/2003 ISBN 0-321-15495-9 (This book, now in second edition,
eloquently covers the fundamental concepts of the discipline. The theme is centered around
achieving quality attributes of a system.)

• Amnon H. Eden, Rick Kazman. Architecture, Design, Implementation. On the distinction
between architectural design and detailed design.

• Garzás, Javier, and Piattini, Mario. An ontology for micro-architectural design knowledge,
IEEE Software Magazine, Volume: 22, Issue: 2, March-April 2005. pp. 28 – 33.

• Philippe Kruchten: Architectural Blueprints - the 4+1 View Model of Software Architecture.
In: IEEE Software. 12 (6) November 1995, pp. 42–50 (also available online at the Rational
website(PDF))

• Tony Shan and Winnie Hua (2006). Solution Architecting Mechanism. Proceedings of the
10th IEEE International EDOC Enterprise Computing Conference (EDOC 2006), October
2006, p23-32

• SOMF: Bell, Michael (2008). "Service-Oriented Modeling: Service Analysis, Design, and
Architecture". Wiley. http://www.amazon.com/Service-Oriented-Modeling-Service-
Analysis-Architecture/dp/0470141115/ref=pd_bbs_2.

101

http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-Architecture/dp/0470141115/ref=pd_bbs_2
http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-Architecture/dp/0470141115/ref=pd_bbs_2
http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-Architecture/dp/0470141115/ref=pd_bbs_2
http://www.amazon.com/Service-Oriented-Modeling-Service-Analysis-Architecture/dp/0470141115/ref=pd_bbs_2
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.54
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf
http://www.eden-study.org/articles/2003/icse03.pdf
http://en.wikibooks.org/wiki/Special:BookSources/0321154959
https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD
https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD
http://en.wikibooks.org/wiki/Special:BookSources/0321552687
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

External links

• Excellent explanation on IBM Developerworks
• Collection of software architecture definitions at Software Engineering Institute (SEI),

Carnegie Mellon University (CMU)
• Software architecture vs. software design: The Intension/Locality Hypothesis
• Worldwide Institute of Software Architects (WWISA)
• International Association of Software Architects (IASA)
• SoftwareArchitecturePortal.org — website of IFIP Working Group 2.10 on Software

Architecture
• Software Architecture — practical resources for Software Architects
• SoftwareArchitectures.com — independent resource of information on the discipline
• Microsoft Architecture Journal
• Architectural Patterns
• Software Architecture , chapter 1 of Roy Fielding's REST dissertation
• DiaSpec , an approach and tool to generate a distributed framework from a software

architecture
• When Good Architecture Goes Bad
• Software Architecture and Related Concerns , What is Software Architecture? And What

Software Architecture Is Not
• Handbook of Software Architecture
• The Spiral Architecture Driven Development - the SDLC based on Spiral model is to reduce

the risks of ineffective architecture
• Rationale focused software architecture documentation method

Design

Software design is a process of problem-solving and planning for a software solution. After the
purpose and specifications of software are determined, software developers will design or employ
designers to develop a plan for a solution. It includes low-level component and algorithm
implementation issues as well as the architectural view.

Overview

The software requirements analysis (SRA) step of a software development process yields
specifications that are used in software engineering. If the software is "semiautomated" or user
centered, software design may involve user experience design yielding a story board to help
determine those specifications. If the software is completely automated (meaning no user or user
interface), a software design may be as simple as a flow chart or text describing a planned sequence
of events. There are also semi-standard methods like Unified Modeling Language and Fundamental
modeling concepts. In either case some documentation of the plan is usually the product of the
design.

A software design may be platform-independent or platform-specific, depending on the availability
of the technology called for by the design.

102

http://gupea.ub.gu.se/bitstream/2077/10490/1/gupea_2077_10490_1.pdf
http://sadd.codeplex.com/
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main
http://www.bredemeyer.com/whatis.htm
http://www.methodsandtools.com/archive/archive.php?id=85
http://diaspec.bordeaux.inria.fr/
http://www.ics.uci.edu/~fielding/pubs/dissertation/software_arch.htm
http://www.jools.net/archives/44
http://www.jools.net/archives/44
http://www.architecturejournal.net/
http://www.softwarearchitectures.com/
http://blog.softwarearchitecture.com/
http://www.softwarearchitectureportal.org/
http://www.iasahome.org/iasaweb/appmanager/home/home/
http://www.iasahome.org/iasaweb/appmanager/home/home/
http://www.iasahome.org/iasaweb/appmanager/home/home/
http://www.wwisa.org/
http://www.eden-study.org/articles/2006/abstraction-classes-sw-design_ieesw.pdf
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.ibm.com/developerworks/rational/library/feb06/eeles/
http://www.ibm.com/developerworks/rational/library/feb06/eeles/
http://www.ibm.com/developerworks/rational/library/feb06/eeles/

Software Design Topics

Design concepts

The design concepts provide the software designer with a foundation from which more
sophisticated methods can be applied. A set of fundamental design concepts has evolved. They are:

1. Abstraction - Abstraction is the process or result of generalization by reducing the
information content of a concept or an observable phenomenon, typically in order to retain
only information which is relevant for a particular purpose.

2. Refinement - It is the process of elaboration. A hierarchy is developed by decomposing a
macroscopic statement of function in a stepwise fashion until programming language
statements are reached. In each step, one or several instructions of a given program are
decomposed into more detailed instructions. Abstraction and Refinement are complementary
concepts.

3. Modularity - Software architecture is divided into components called modules.
4. Software Architecture - It refers to the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system. A good software architecture
will yield a good return on investment with respect to the desired outcome of the project,
e.g. in terms of performance, quality, schedule and cost.

5. Control Hierarchy - A program structure that represent the organization of a program
components and implies a hierarchy of control.

6. Structural Partitioning - The program structure can be divided both horizontally and
vertically. Horizontal partitions define separate branches of modular hierarchy for each
major program function. Vertical partitioning suggests that control and work should be
distributed top down in the program structure.

7. Data Structure - It is a representation of the logical relationship among individual elements
of data.

8. Software Procedure - It focuses on the processing of each modules individually
9. Information Hiding - Modules should be specified and designed so that information

contained within a module is inaccessible to other modules that have no need for such
information.

Design considerations

There are many aspects to consider in the design of a piece of software. The importance of each
should reflect the goals the software is trying to achieve. Some of these aspects are:

• Compatibility - The software is able to operate with other products that are designed for
interoperability with another product. For example, a piece of software may be backward-
compatible with an older version of itself.

• Extensibility - New capabilities can be added to the software without major changes to the
underlying architecture.

• Fault-tolerance - The software is resistant to and able to recover from component failure.
• Maintainability - The software can be restored to a specified condition within a specified

period of time. For example, antivirus software may include the ability to periodically
receive virus definition updates in order to maintain the software's effectiveness.

103

• Modularity - the resulting software comprises well defined, independent components. That
leads to better maintainability. The components could be then implemented and tested in
isolation before being integrated to form a desired software system. This allows division of
work in a software development project.

• Packaging - Printed material such as the box and manuals should match the style designated
for the target market and should enhance usability. All compatibility information should be
visible on the outside of the package. All components required for use should be included in
the package or specified as a requirement on the outside of the package.

• Reliability - The software is able to perform a required function under stated conditions for
a specified period of time.

• Reusability - the software is able to add further features and modification with slight or no
modification.

• Robustness - The software is able to operate under stress or tolerate unpredictable or invalid
input. For example, it can be designed with a resilience to low memory conditions.

• Security - The software is able to withstand hostile acts and influences.
• Usability - The software user interface must be usable for its target user/audience. Default

values for the parameters must be chosen so that they are a good choice for the majority of
the users.

Modeling language

A modeling language is any artificial language that can be used to express information or
knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used
for interpretation of the meaning of components in the structure. A modeling language can be
graphical or textual. Examples of graphical modelling languages for software design are:

• Business Process Modeling Notation (BPMN) is an example of a Process Modeling
language.

• EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose
data modeling language.

• Extended Enterprise Modeling Language (EEML) is commonly used for business process
modeling across a number of layers.

• Flowchart is a schematic representation of an algorithm or a stepwise process,
• Fundamental Modeling Concepts (FMC) modeling language for software-intensive systems.
• IDEF is a family of modeling languages, the most notable of which include IDEF0 for

functional modeling, IDEF1X for information modeling, and IDEF5 for modeling
ontologies.

• Jackson Structured Programming (JSP) is a method for structured programming based on
correspondences between data stream structure and program structure

• LePUS3 is an object-oriented visual Design Description Language and a formal
specification language that is suitable primarily for modelling large object-oriented (Java,
C++, C#) programs and design patterns.

• Unified Modeling Language (UML) is a general modeling language to describe software
both structurally and behaviorally. It has a graphical notation and allows for extension with a
Profile (UML).

• Alloy (specification language) is a general purpose specification language for expressing
complex structural constraints and behavior in a software system. It provides a concise
language based on first-order relational logic.

104

• Systems Modeling Language (SysML) is a new general-purpose modeling language for
systems engineering.

flexibility

Design patterns

A software designer or architect may identify a design problem which has been solved by others
before. A template or pattern describing a solution to a common problem is known as a design
pattern. The reuse of such patterns can speed up the software development process, having been
tested and proved in the past.

Usage

Software design documentation may be reviewed or presented to allow constraints, specifications
and even requirements to be adjusted prior to programming. Redesign may occur after review of a
programmed simulation or prototype. It is possible to design software in the process of
programming, without a plan or requirement analysis, but for more complex projects this would not
be considered a professional approach. A separate design prior to programming allows for
multidisciplinary designers and Subject Matter Experts (SMEs) to collaborate with highly-skilled
programmers for software that is both useful and technically sound.

Design Patterns

In software engineering, a design pattern is a general reusable solution to a commonly occurring
problem in software design. A design pattern is not a finished design that can be transformed
directly into code. It is a description or template for how to solve a problem that can be used in
many different situations. Object-oriented design patterns typically show relationships and
interactions between classes or objects, without specifying the final application classes or objects
that are involved. Many patterns imply object-orientation or more generally mutable state, and so
may not be as applicable in functional programming languages, in which data is immutable or
treated as such.

Design patterns reside in the domain of modules and interconnections. At a higher level there are
architectural patterns that are larger in scope, usually describing an overall pattern followed by an
entire system.[15]

There are many types of design patterns including: structural design patterns, computational design
patterns, algorithm strategy patterns, implementation strategy patterns and execution patterns.
Structural patterns address concerns related to the high level structure of an application being
developed . Computational patterns address concerns related to the identification of key
computations. Algorithm strategy patterns address concerns related to high level strategies that
describe how to exploit application characteristic on a computation platform. Implementation
strategy patterns address concerns related to the realization of the source code to support (i) how the
program itself is organized and (ii) the common data structures specific to parallel programming.

105

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-R.C.Martin-132

Execution patterns address concerns related to the support of the execution of an application,
including the strategies in executing streams of tasks and building blocks to support the
synchronization between tasks.

History

Patterns originated as an architectural concept by Christopher Alexander (1977/79). In 1987, Kent
Beck and Ward Cunningham began experimenting with the idea of applying patterns to
programming and presented their results at the OOPSLA conference that year.[16] [17] In the
following years, Beck, Cunningham and others followed up on this work.

Design patterns gained popularity in computer science after the book Design Patterns: Elements of
Reusable Object-Oriented Software was published in 1994 by the so-called "Gang of Four"
(Gamma et al.). That same year, the first Pattern Languages of Programming Conference was held
and the following year, the Portland Pattern Repository was set up for documentation of design
patterns. The scope of the term remains a matter of dispute. Notable books in the design pattern
genre include:

• Gamma, Erich ; Richard Helm, Ralph Johnson, and John Vlissides (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2.

• Buschmann, Frank ; Regine Meunier, Hans Rohnert, Peter Sommerlad (1996). Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons.
ISBN 0-471-95869-7.

• Schmidt, Douglas C. ; Michael Stal, Hans Rohnert, Frank Buschmann (2000). Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects.
John Wiley & Sons. ISBN 0-471-60695-2.

• Fowler, Martin (2002). Patterns of Enterprise Application Architecture. Addison-Wesley.
ISBN 978-0321127426.

• Hohpe, Gregor; Bobby Woolf (2003). Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley. ISBN 0-321-20068-3.

• Freeman, Eric T; Elisabeth Robson, Bert Bates, Kathy Sierra (2004). Head First Design
Patterns. O'Reilly Media. ISBN 0-596-00712-4.

Although design patterns have been applied practically for a long time, formalization of the concept
of design patterns languished for several years.[18]

In 2009 over 30 contributors collaborated with Thomas Erl on his book, SOA Design Patterns [19].
The goal of this book was to establish a de facto catalog of design patterns for SOA and service-
orientation[20]. (Over 200+ IT professionals participated world-wide in reviewing Erl's book and
patterns.) These patterns are also published and discussed on the community research site
soapatterns.org

106

http://www.soapatterns.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SOA_World_Magazine-137
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-SOA_Design_Patterns-136
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Baroni2003-135
http://en.wikibooks.org/wiki/Special:BookSources/0-596-00712-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-321-20068-3
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/978-0321127426
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/wiki/Special:BookSources/0-471-60695-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Douglas_C._Schmidt
http://en.wikibooks.org/wiki/Special:BookSources/0-471-95869-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Frank_Buschmann
http://en.wikibooks.org/wiki/Special:BookSources/0-201-63361-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Beck1987-134
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Smith1987-133

Practice

Design patterns can speed up the development process by providing tested, proven development
paradigms. Effective software design requires considering issues that may not become visible until
later in the implementation. Reusing design patterns helps to prevent subtle issues that can cause
major problems, and it also improves code readability for coders and architects who are familiar
with the patterns.

In order to achieve flexibility, design patterns usually introduce additional levels of indirection,
which in some cases may complicate the resulting designs and hurt application performance.

By definition, a pattern must be programmed anew into each application that uses it. Since some
authors see this as a step backward from software reuse as provided by components, researchers
have worked to turn patterns into components. Meyer and Arnout were able to provide full or
partial componentization of two-thirds of the patterns they attempted.[21]

Often, people only understand how to apply certain software design techniques to certain problems
[citation needed]. These techniques are difficult to apply to a broader range of problems. Design
patterns provide general solutions, documented in a format that does not require specifics tied to a
particular problem.

Structure

Design patterns are composed of several sections (see Documentation below). Of particular interest
are the Structure, Participants, and Collaboration sections. These sections describe a design motif: a
prototypical micro-architecture that developers copy and adapt to their particular designs to solve
the recurrent problem described by the design pattern. A micro-architecture is a set of program
constituents (e.g., classes, methods...) and their relationships. Developers use the design pattern by
introducing in their designs this prototypical micro-architecture, which means that micro-
architectures in their designs will have structure and organization similar to the chosen design
motif.

In addition to this, patterns allow developers to communicate using well-known, well understood
names for software interactions. Common design patterns can be improved over time, making them
more robust than ad-hoc designs.

Domain-specific patterns

Efforts have also been made to codify design patterns in particular domains, including use of
existing design patterns as well as domain specific design patterns. Examples include user interface
design patterns,[22] information visualization [23], secure design[24], "secure usability"[25], web
design [26] and business model design.[27]

The annual Pattern Languages of Programming Conference proceedings [28] include many
examples of domain specific patterns.

107

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-145
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-144
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-143
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-142
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-141
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-140
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-139
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Meyer2006-138

Classification and list

Design patterns were originally grouped into the categories: creational patterns, structural patterns,
and behavioral patterns, and described using the concepts of delegation, aggregation, and
consultation. For further background on object-oriented design, see coupling and cohesion,
inheritance, interface, and polymorphism. Another classification has also introduced the notion of
architectural design pattern that may be applied at the architecture level of the software such as the
Model-View-Controller pattern.

Name Description
In Design
Patterns

In Code
Complete[29
]

Other

Creational patterns

Abstract factory
Provide an interface for creating families of
related or dependent objects without
specifying their concrete classes.

Yes Yes N/A

Builder

Separate the construction of a complex object
from its representation allowing the same
construction process to create various
representations.

Yes No N/A

Factory method

Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.

Yes Yes N/A

Lazy initialization
Tactic of delaying the creation of an object, the
calculation of a value, or some other expensive
process until the first time it is needed.

No No
PoEAA[
30]

Multiton
Ensure a class has only named instances, and
provide global point of access to them.

No No N/A

Object pool

Avoid expensive acquisition and release of
resources by recycling objects that are no
longer in use. Can be considered a
generalisation of connection pool and thread
pool patterns.

No No N/A

Prototype
Specify the kinds of objects to create using a
prototypical instance, and create new objects
by copying this prototype.

Yes No N/A

Resource Ensure that resources are properly released by No No N/A

108

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PoEAA-147
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PoEAA-147
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-McConnell2004-146
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-McConnell2004-146

acquisition is
initialization

tying them to the lifespan of suitable objects.

Singleton
Ensure a class has only one instance, and
provide a global point of access to it.

Yes Yes N/A

Structural patterns

Adapter or
Wrapper

Convert the interface of a class into another
interface clients expect. Adapter lets classes
work together that could not otherwise because
of incompatible interfaces.

Yes Yes N/A

Bridge
Decouple an abstraction from its
implementation allowing the two to vary
independently.

Yes Yes N/A

Composite

Compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

Yes Yes N/A

Decorator

Attach additional responsibilities to an object
dynamically keeping the same interface.
Decorators provide a flexible alternative to
subclassing for extending functionality.

Yes Yes N/A

Facade

Provide a unified interface to a set of
interfaces in a subsystem. Facade defines a
higher-level interface that makes the
subsystem easier to use.

Yes Yes N/A

Front Controller

Provide a unified interface to a set of
interfaces in a subsystem. Front Controller
defines a higher-level interface that makes the
subsystem easier to use.

No Yes N/A

Flyweight
Use sharing to support large numbers of fine-
grained objects efficiently.

Yes No N/A

Proxy
Provide a surrogate or placeholder for another
object to control access to it.

Yes No N/A

Behavioral patterns

Blackboard Generalized observer, which allows multiple
readers and writers. Communicates

No No N/A

109

information system-wide.

Chain of
responsibility

Avoid coupling the sender of a request to its
receiver by giving more than one object a
chance to handle the request. Chain the
receiving objects and pass the request along
the chain until an object handles it.

Yes No N/A

Command

Encapsulate a request as an object, thereby
letting you parameterize clients with different
requests, queue or log requests, and support
undoable operations.

Yes No N/A

Interpreter

Given a language, define a representation for
its grammar along with an interpreter that uses
the representation to interpret sentences in the
language.

Yes No N/A

Iterator
Provide a way to access the elements of an
aggregate object sequentially without exposing
its underlying representation.

Yes Yes N/A

Mediator

Define an object that encapsulates how a set of
objects interact. Mediator promotes loose
coupling by keeping objects from referring to
each other explicitly, and it lets you vary their
interaction independently.

Yes No N/A

Memento
Without violating encapsulation, capture and
externalize an object's internal state allowing
the object to be restored to this state later.

Yes No N/A

Null object
Avoid null references by providing a default
object.

No No N/A

Observer or
Publish/subscribe

Define a one-to-many dependency between
objects where a state change in one object
results with all its dependents being notified
and updated automatically.

Yes Yes N/A

Servant
Define common functionality for a group of
classes

No No N/A

Specification
Recombinable business logic in a boolean
fashion

No No N/A

State Allow an object to alter its behavior when its
internal state changes. The object will appear

Yes No N/A

110

to change its class.

Strategy

Define a family of algorithms, encapsulate
each one, and make them interchangeable.
Strategy lets the algorithm vary independently
from clients that use it.

Yes Yes N/A

Template method

Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.
Template Method lets subclasses redefine
certain steps of an algorithm without changing
the algorithm's structure.

Yes Yes N/A

Visitor

Represent an operation to be performed on the
elements of an object structure. Visitor lets
you define a new operation without changing
the classes of the elements on which it
operates.

Yes No N/A

Name Description
In
POSA2[3
1]

Other

Concurrency patterns

Active Object

Decouples method execution from method invocation that
reside in their own thread of control. The goal is to introduce
concurrency, by using asynchronous method invocation and a
scheduler for handling requests.

Yes N/A

Balking
Only execute an action on an object when the object is in a
particular state.

No N/A

Binding
Properties

Combining multiple observers to force properties in different
objects to be synchronized or coordinated in some way.[32]

No N/A

Messaging
pattern

The messaging design pattern (MDP) allows the interchange
of information (i.e. messages) between components and
applications.

No N/A

Double-checked
locking

Reduce the overhead of acquiring a lock by first testing the
locking criterion (the 'lock hint') in an unsafe manner; only if
that succeeds does the actual lock proceed.

Can be unsafe when implemented in some language/hardware
combinations. It can therefore sometimes be considered an
anti-pattern.

Yes N/A

111

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-149
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-POSA2-148
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-POSA2-148

Event-based
asynchronous

Addresses problems with the Asynchronous pattern that occur
in multithreaded programs.[33]

No N/A

Guarded
suspension

Manages operations that require both a lock to be acquired
and a precondition to be satisfied before the operation can be
executed.

No N/A

Lock
One thread puts a "lock" on a resource, preventing other
threads from accessing or modifying it.[34]

No
PoEAA[
30]

Monitor object
An object whose methods are subject to mutual exclusion,
thus preventing multiple objects from erroneously trying to
use it at the same time.

Yes N/A

Reactor
A reactor object provides an asynchronous interface to
resources that must be handled synchronously.

Yes N/A

Read-write lock
Allows concurrent read access to an object but requires
exclusive access for write operations.

No N/A

Scheduler
Explicitly control when threads may execute single-threaded
code.

No N/A

Thread pool

A number of threads are created to perform a number of tasks,
which are usually organized in a queue. Typically, there are
many more tasks than threads. Can be considered a special
case of the object pool pattern.

No N/A

Thread-specific
storage

Static or "global" memory local to a thread. Yes N/A

Documentation

The documentation for a design pattern describes the context in which the pattern is used, the forces
within the context that the pattern seeks to resolve, and the suggested solution.[35] There is no
single, standard format for documenting design patterns. Rather, a variety of different formats have
been used by different pattern authors. However, according to Martin Fowler certain pattern forms
have become more well-known than others, and consequently become common starting points for
new pattern writing efforts.[36] One example of a commonly used documentation format is the one
used by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (collectively known as the
"Gang of Four", or GoF for short) in their book Design Patterns. It contains the following sections:

• Pattern Name and Classification: A descriptive and unique name that helps in identifying
and referring to the pattern.

• Intent: A description of the goal behind the pattern and the reason for using it.
• Also Known As: Other names for the pattern.

112

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Fowler2006-153
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-GabrielHillside-152
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PoEAA-147
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PoEAA-147
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-151
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-PC.232008-150

• Motivation (Forces): A scenario consisting of a problem and a context in which this pattern
can be used.

• Applicability: Situations in which this pattern is usable; the context for the pattern.
• Structure: A graphical representation of the pattern. Class diagrams and Interaction

diagrams may be used for this purpose.
• Participants: A listing of the classes and objects used in the pattern and their roles in the

design.
• Collaboration: A description of how classes and objects used in the pattern interact with

each other.
• Consequences: A description of the results, side effects, and trade offs caused by using the

pattern.
• Implementation: A description of an implementation of the pattern; the solution part of the

pattern.
• Sample Code: An illustration of how the pattern can be used in a programming language.
• Known Uses: Examples of real usages of the pattern.
• Related Patterns: Other patterns that have some relationship with the pattern; discussion of

the differences between the pattern and similar patterns.

References

1. ↑ Stellman, Andrew; Greene, Jennifer (2005). Applied Software Project Management.
O'Reilly Media. ISBN 978-0-596-00948-9. http://www.stellman-greene.com/aspm/.

2. ↑ "Requirements management". UK Office of Government Commerce.
http://www.ogc.gov.uk/delivery_ lifecycle _requirements_management.asp . Retrieved 2009-
11-10.

3. ↑ A Guide to the Project Management Body of Knowledge (4th ed.). Project Management
Institute. 2008. ISBN 978-1-933-89051-7. http://www.pmi.org/.

4. ↑ Gotel, O., Finkelstein, A. An Analysis of the Requirements Traceability Problem Proc. of
First International Conference on Requirements Engineering, 1994, pages 94-101

5. ↑ "Requirements Management Tools Survey". International Council on Systems
Engineering. http://www.incose.org/ProductsPubs/products/rmsurvey.aspx. Retrieved 2009-
11-10.

6. ↑ a b Systems Engineering Fundamentals. Defense Acquisition University Press, 2001
7. ↑ a b c Clements, Paul; Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Paulo Merson, Robert Nord, Judith Stafford (2010). Documenting Software Architectures:
Views and Beyond, Second Edition. Boston: Addison-Wesley. ISBN 0321552687.

8. ↑ Bass, Len; Paul Clements, Rick Kazman (2003). Software Architecture In Practice,
Second Edition. Boston: Addison-Wesley. pp. 21–24. ISBN 0-321-15495-9.

9. ↑ University of Waterloo (2006). "A Very Brief History of Computer Science".
http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html. Retrieved 2006-09-23.

10.↑ IEEE Transactions on Software Engineering (2006). "Introduction to the Special Issue on
Software Architecture". http://csdl2.computer.org/persagen/DLAbsToc.jsp?
resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.
10003. Retrieved 2006-09-23.

11.↑ SEI (2006). "How do you define Software Architecture?".
http://www.sei.cmu.edu/architecture/start/definitions.cfm. Retrieved 2006-09-23.

113

http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-128
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/1995/04/e4toc.xml&DOI=10.1109/TSE.1995.10003
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-127
http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html
http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-126
http://en.wikibooks.org/wiki/Special:BookSources/0-321-15495-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-125
http://en.wikibooks.org/wiki/Special:BookSources/0321552687
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-DSA2_124-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-DSA2_124-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-DSA2_124-0
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_123-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_123-0
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-122
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-121
http://www.pmi.org/
http://en.wikibooks.org/wiki/Special:BookSources/978-1-933-89051-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.pmi.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PMBOK08_120-0
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://www.ogc.gov.uk/delivery_lifecycle_requirements_management.asp
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-119
http://www.stellman-greene.com/aspm/
http://en.wikibooks.org/wiki/Special:BookSources/978-0-596-00948-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.stellman-greene.com/aspm/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Stellman05_118-0

12.↑ a b SoftwareArchitectures.com (2006). "Intro to Software Quality Attributes".
http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx. Retrieved
2006-09-23.

13.↑ Garlan & Shaw (1994). "An Introduction to Software Architecture".
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf. Retrieved
2006-09-25.

14.↑ a b Amnon H. Eden, Rick Kazman (2003). "Architecture Design Implementation".
http://www.eden-study.org/articles/2003/icse03.pdf.

15.↑ Martin, Robert C.. "Design Principles and Design Patterns".
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf. Retrieved
2000.

16.↑ Smith, Reid (October 1987). "Panel on design methodology". OOPSLA '87 Addendum to
the Proceedings. OOPSLA '87. doi:10.1145/62138.62151. , "Ward cautioned against
requiring too much programming at, what he termed, 'the high level of wizards.' He pointed
out that a written 'pattern language' can significantly improve the selection and application
of abstractions. He proposed a 'radical shift in the burden of design and implementation'
basing the new methodology on an adaptation of Christopher Alexander's work in pattern
languages and that programming-oriented pattern languages developed at Tektronix has
significantly aided their software development efforts."

17.↑ Beck, Kent; Ward Cunningham (September 1987). "Using Pattern Languages for Object-
Oriented Program". OOPSLA '87 workshop on Specification and Design for Object-Oriented
Programming. OOPSLA '87. http://c2.com/doc/oopsla87.html. Retrieved 2006-05-26.

18.↑ Baroni, Aline Lúcia; Yann-Gaël Guéhéneuc and Hervé Albin-Amiot (June 2003). "Design
Patterns Formalization" (PDF). Nantes: École Nationale Supérieure des Techniques
Industrielles et des Mines de Nantes.
http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeli
ng+June03.doc.pdf. Retrieved 2007-12-29.

19.↑ Erl, Thomas (2009). SOA Design Patterns. New York: Prentice Hall/PearsonPTR.
pp. 864. ISBN 0-13-613516-1.

20.↑ http://soa.sys-con.com/node/809800
21.↑ Meyer, Bertrand; Karine Arnout (July 2006). "Componentization: The Visitor Example".

IEEE Computer (IEEE) 39 (7): 23–30.
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf.

22.↑ Laakso, Sari A. (2003-09-16). "Collection of User Interface Design Patterns". University
of Helsinki, Dept. of Computer Science.
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html. Retrieved 2008-01-31.

23.↑ Heer, J.; M. Agrawala (2006). "Software Design Patterns for Information Visualization".
IEEE Transactions on Visualization and Computer Graphics 12 (5): 853.
doi:10.1109/TVCG.2006.178. PMID 17080809.
http://vis.berkeley.edu/papers/infovis_design_patterns/.

24.↑ Chad Dougherty et al (2009). Secure Design Patterns.
http://www.cert.org/archive/pdf/09tr010.pdf.

25.↑ Simson L. Garfinkel (2005). Design Principles and Patterns for Computer Systems That
Are Simultaneously Secure and Usable. http://www.simson.net/thesis/.

26.↑ "Yahoo! Design Pattern Library". http://developer.yahoo.com/ypatterns/. Retrieved 2008-
01-31.

27.↑ "How to design your Business Model as a Lean Startup?".
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/.
Retrieved 2010-01-06.

28.↑ Pattern Languages of Programming, Conference proceedings (annual, 1994—) [3]

114

http://hillside.net/plop/pastconferences.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-145
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-144
http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-143
http://www.simson.net/thesis/
http://www.simson.net/thesis/
http://www.simson.net/thesis/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-142
http://www.cert.org/archive/pdf/09tr010.pdf
http://www.cert.org/archive/pdf/09tr010.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-141
http://vis.berkeley.edu/papers/infovis_design_patterns/
http://www.ncbi.nlm.nih.gov/pubmed/17080809
http://en.wikipedia.org/wiki/PubMed_Identifier
http://dx.doi.org/10.1109%2FTVCG.2006.178
http://en.wikipedia.org/wiki/Digital_object_identifier
http://vis.berkeley.edu/papers/infovis_design_patterns/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-140
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-139
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://en.wikipedia.org/wiki/Bertrand_Meyer
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Meyer2006_138-0
http://soa.sys-con.com/node/809800
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SOA_World_Magazine_137-0
http://en.wikibooks.org/wiki/Special:BookSources/0-13-613516-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SOA_Design_Patterns_136-0
http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeling+June03.doc.pdf
http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeling+June03.doc.pdf
http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeling+June03.doc.pdf
http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeling+June03.doc.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Baroni2003_135-0
http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Beck1987_134-0
http://dx.doi.org/10.1145%2F62138.62151
http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Smith1987_133-0
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://en.wikipedia.org/wiki/Robert_C._Martin
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-R.C.Martin_132-0
http://www.eden-study.org/articles/2003/icse03.pdf
http://www.eden-study.org/articles/2003/icse03.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-edenkazman_131-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-edenkazman_131-0
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-130
http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx
http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-softwareqa_129-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-softwareqa_129-0

29.↑ McConnell, Steve (June 2004). "Design in Construction". Code Complete (2nd ed.).
Microsoft Press. pp. 104. ISBN 978-0735619678. "Table 5.1 Popular Design Patterns"

30.↑ a b Fowler, Martin (2002). Patterns of Enterprise Application Architecture. Addison-
Wesley. ISBN 978-0321127426. http://martinfowler.com/.

31.↑ Schmidt, Douglas C.; Michael Stal, Hans Rohnert, Frank Buschmann (2000). Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects.
John Wiley & Sons. ISBN 0-471-60695-2.

32.↑ http://c2.com/cgi/wiki?BindingProperties
33.↑ Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, and Morgan Skinner (2008).

"Event-based Asynchronous Pattern". Professional C# 2008. Wiley. pp. 570–571.
ISBN 0470191376.

34.↑ http://c2.com/cgi/wiki?LockPattern
35.↑ Gabriel, Dick. "A Pattern Definition". Archived from the original on 2007-02-09.

http://web.archive.org/web/20070209224120/http://hillside.net/patterns/definition.html.
Retrieved 2007-03-06.

36.↑ Fowler, Martin (2006-08-01). "Writing Software Patterns". http://www.martinfowler.com/
articles/writingPatterns.html. Retrieved 2007-03-06.

Further reading

Books

• Alexander , Christopher ; Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-
King, Shlomo Angel (1977). A Pattern Language: Towns, Buildings, Construction. New
York: Oxford University Press. ISBN 978-0195019193.

• Alur, Deepak; John Crupi, Dan Malks (May 2003). Core J2EE Patterns: Best Practices and
Design Strategies (2nd Edition). Prentice Hall. ISBN 0131422464.

• Beck, Kent (October 2007). Implementation Patterns. Addison-Wesley. ISBN 978-
0321413093.

• Beck, Kent ; R. Crocker, G. Meszaros, J.O. Coplien, L. Dominick, F. Paulisch, and J.
Vlissides (March 1996). Proceedings of the 18th International Conference on Software
Engineering. pp. 25–30.

• Borchers, Jan (2001). A Pattern Approach to Interaction Design. John Wiley & Sons.
ISBN 0-471-49828-9.

• Coplien, James O. ; Douglas C. Schmidt (1995). Pattern Languages of Program Design.
Addison-Wesley. ISBN 0-201-60734-4.

• Coplien, James O. ; John M. Vlissides, and Norman L. Kerth (1996). Pattern Languages of
Program Design 2. Addison-Wesley. ISBN 0-201-89527-7.

• Fowler, Martin (1997). Analysis Patterns: Reusable Object Models. Addison-Wesley.
ISBN 0-201-89542-0.

• Fowler, Martin (2002). Patterns of Enterprise Application Architecture. Addison-Wesley.
ISBN 978-0321127426.

• Freeman, Eric; Elisabeth Freeman, Kathy Sierra, and Bert Bates (2004). Head First Design
Patterns. O'Reilly Media. ISBN 0-596-00712-4.

• Hohmann, Luke; Martin Fowler and Guy Kawasaki (2003). Beyond Software Architecture.
Addison-Wesley. ISBN 0-201-77594-8.

• Alur, Deepak; Elisabeth Freeman, Kathy Sierra, and Bert Bates (2004). Head First Design
Patterns. O'Reilly Media. ISBN 0-596-00712-4.

115

http://en.wikibooks.org/wiki/Special:BookSources/0-596-00712-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-201-77594-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-596-00712-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/978-0321127426
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/wiki/Special:BookSources/0-201-89542-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/wiki/Special:BookSources/0-201-89527-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Jim_Coplien
http://en.wikibooks.org/wiki/Special:BookSources/0-201-60734-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Jim_Coplien
http://en.wikibooks.org/wiki/Special:BookSources/0-471-49828-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikibooks.org/wiki/Special:BookSources/978-0321413093
http://en.wikibooks.org/wiki/Special:BookSources/978-0321413093
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikibooks.org/wiki/Special:BookSources/0131422464
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/978-0195019193
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Christopher_Alexander
http://en.wikipedia.org/wiki/Christopher_Alexander
http://www.martinfowler.com/articles/writingPatterns.html
http://www.martinfowler.com/articles/writingPatterns.html
http://www.martinfowler.com/articles/writingPatterns.html
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Fowler2006_153-0
http://web.archive.org/web/20070209224120/http://hillside.net/patterns/definition.html
http://hillside.net/patterns/definition.html
http://web.archive.org/web/20070209224120/http://hillside.net/patterns/definition.html
http://en.wikipedia.org/wiki/Richard_Gabriel
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-GabrielHillside_152-0
http://c2.com/cgi/wiki?LockPattern
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-151
http://en.wikibooks.org/wiki/Special:BookSources/0470191376
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PC.232008_150-0
http://c2.com/cgi/wiki?BindingProperties
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-149
http://en.wikibooks.org/wiki/Special:BookSources/0-471-60695-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Douglas_C._Schmidt
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-POSA2_148-0
http://martinfowler.com/
http://en.wikibooks.org/wiki/Special:BookSources/978-0321127426
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://martinfowler.com/
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PoEAA_147-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PoEAA_147-0
http://en.wikibooks.org/wiki/Special:BookSources/978-0735619678
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Steve_McConnell
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-McConnell2004_146-0

• Gabriel, Richard (1996) (PDF). Patterns of Software: Tales From The Software Community.
Oxford University Press. pp. 235. ISBN 0-19-512123-6.
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf.

• Gamma, Erich ; Richard Helm, Ralph Johnson, and John Vlissides (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2.

• Hohpe, Gregor; Bobby Woolf (2003). Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley. ISBN 0-321-20068-3.

• Holub, Allen (2004). Holub on Patterns. Apress. ISBN 1-59059-388-X.
• Kircher, Michael; Markus Völter and Uwe Zdun (2005). Remoting Patterns: Foundations of

Enterprise, Internet and Realtime Distributed Object Middleware. John Wiley & Sons.
ISBN 0-470-85662-9.

• Larman, Craig (2005). Applying UML and Patterns. Prentice Hall. ISBN 0-13-148906-2.
• Liskov, Barbara ; John Guttag (2000). Program Development in Java: Abstraction,

Specification, and Object-Oriented Design.. Addison-Wesley. ISBN 0-201-65768-6.
• Manolescu, Dragos; Markus Voelter and James Noble (2006). Pattern Languages of

Program Design 5. Addison-Wesley. ISBN 0-321-32194-4.
• Marinescu, Floyd (2002). EJB Design Patterns: Advanced Patterns, Processes and Idioms.

John Wiley & Sons. ISBN 0-471-20831-0.
• Martin, Robert Cecil ; Dirk Riehle and Frank Buschmann (1997). Pattern Languages of

Program Design 3. Addison-Wesley. ISBN 0-201-31011-2.
• Mattson, Timothy G; Beverly A. Sanders and Berna L. Massingill (2005). Patterns for

Parallel Programming. Addison-Wesley. ISBN 0-321-22811-1.
• Shalloway, Alan; James R. Trott (2001). Design Patterns Explained, Second Edition: A New

Perspective on Object-Oriented Design. Addison-Wesley. ISBN 0-321-24714-0.
• Vlissides, John M. (1998). Pattern Hatching: Design Patterns Applied. Addison-Wesley.

ISBN 0-201-43293-5.
• Weir, Charles; James Noble (2000). Small Memory Software: Patterns for systems with

limited memory. Addison-Wesley. ISBN 0201596075.
http://www.cix.co.uk/~smallmemory/.

Web sites

• "History of Patterns" . Portland Pattern Repository. http://www.c2.com/cgi-bin/wiki?
HistoryOfPatterns. Retrieved 2005-07-28.

• "Are Design Patterns Missing Language Features?" . Cunningham & Cunningham, Inc..
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures. Retrieved 2006-
01-20.

• "Show Trial of the Gang of Four" . Cunningham & Cunningham, Inc..
http://www.c2.com/cgi/wiki?ShowTrialOfTheGangOfFour. Retrieved 2006-01-20.

• "Design Patterns in Modern Day Software Factories (WCSF)" . XO Software, Ltd.
http://www.xosoftware.co.uk/Articles/WCSFDesignPatterns/. Retrieved 2010-02-22.

External links

• Directory of websites that provide pattern catalogs at hillside.net.
• Ward Cunningham's Portland Pattern Repository .

116

http://c2.com/cgi/wiki?CategoryPattern
http://c2.com/cgi/wiki?CategoryPattern
http://c2.com/cgi/wiki?CategoryPattern
http://hillside.net/patterns/onlinepatterncatalog.htm
http://www.xosoftware.co.uk/Articles/WCSFDesignPatterns/
http://www.xosoftware.co.uk/Articles/WCSFDesignPatterns/
http://www.c2.com/cgi/wiki?ShowTrialOfTheGangOfFour
http://www.c2.com/cgi/wiki?ShowTrialOfTheGangOfFour
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi-bin/wiki?HistoryOfPatterns
http://www.c2.com/cgi-bin/wiki?HistoryOfPatterns
http://www.c2.com/cgi-bin/wiki?HistoryOfPatterns
http://www.cix.co.uk/~smallmemory/
http://en.wikibooks.org/wiki/Special:BookSources/0201596075
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.cix.co.uk/~smallmemory/
http://www.cix.co.uk/~smallmemory/
http://en.wikibooks.org/wiki/Special:BookSources/0-201-43293-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikibooks.org/wiki/Special:BookSources/0-321-24714-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-321-22811-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-201-31011-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Robert_Cecil_Martin
http://en.wikibooks.org/wiki/Special:BookSources/0-471-20831-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-321-32194-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-201-65768-6
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Barbara_Liskov
http://en.wikibooks.org/wiki/Special:BookSources/0-13-148906-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Craig_Larman
http://en.wikibooks.org/wiki/Special:BookSources/0-470-85662-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/1-59059-388-X
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Allen_I._Holub
http://en.wikibooks.org/wiki/Special:BookSources/0-321-20068-3
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-201-63361-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Erich_Gamma
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf
http://en.wikibooks.org/wiki/Special:BookSources/0-19-512123-6
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf
http://en.wikipedia.org/wiki/Richard_P._Gabriel

• Messaging Design Pattern Published in the 17th conference on Pattern Languages of
Programs (PLoP 2010).

• Patterns and Anti-Patterns at the Open Directory Project
• PerfectJPattern Open Source Project Design Patterns library that aims to provide full or

partial componentized version of all known Patterns in Java.
• Lean Startup Business Model Pattern Example of design pattern thinking applied to business

models
• Jt J2EE Pattern Oriented Framework
• Printable Design Patterns Quick Reference Cards
• 101 Design Patterns & Tips for Developers
• On Patterns and Pattern Languages by Buschmann, Henney, and Schmidt
• Patterns for Scripted Applications
• Design Patterns Reference at oodesign.com
• Design Patterns for 70% programmers in the world by Saurabh Verma at slideshare.com

Anti-Patterns

In software engineering, an anti-pattern (or antipattern) is a pattern that may be commonly used
but is ineffective and/or counterproductive in practice.[1] [2]

The term was coined in 1995 by Andrew Koenig,[3] inspired by Gang of Four's book Design
Patterns, which developed the concept of design patterns in the software field. The term was widely
popularized three years later by the book AntiPatterns, which extended the use of the term beyond
the field of software design and into general social interaction. According to the authors of the
latter, there must be at least two key elements present to formally distinguish an actual anti-pattern
from a simple bad habit, bad practice, or bad idea:

• Some repeated pattern of action, process or structure that initially appears to be beneficial,
but ultimately produces more bad consequences than beneficial results, and

• A refactored solution exists that is clearly documented, proven in actual practice and
repeatable.

Often pejoratively named with clever oxymoronic neologisms, many anti-pattern ideas amount to
little more than mistakes, rants, unsolvable problems, or bad practices to be avoided if possible.
Sometimes called pitfalls or dark patterns, this informal use of the term has come to refer to classes
of commonly reinvented bad solutions to problems. Thus, many candidate anti-patterns under
debate would not be formally considered anti-patterns.

By formally describing repeated mistakes, one can recognize the forces that lead to their repetition
and learn how others have refactored themselves out of these broken patterns.

117

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-156
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-155
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-154
http://www.slideshare.net/saurabh.net/design-patterns-for-70-of-programmers-in-the-world
http://www.oodesign.com/
http://www.doc.ic.ac.uk/~np2/patterns/scripting/
http://media.wiley.com/product_data/excerpt/28/04700590/0470059028.pdf
http://sourcemaking.com/design-patterns-and-tips
http://www.mcdonaldland.info/2007/11/28/40/
http://jt.dev.java.net/
http://torgronsund.wordpress.com/2010/01/06/lean-startup-business-model-pattern/
http://perfectjpattern.sourceforge.net/
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Programming/Methodologies/Patterns_and_Anti-Patterns//
http://jt.dev.java.net/files/documents/5553/150311/designPatterns.pdf

Known anti-patterns

Organizational anti-patterns

• Analysis paralysis: Devoting disproportionate effort to the analysis phase of a project
• Cash cow: A profitable legacy product that often leads to complacency about new products
• Design by committee: The result of having many contributors to a design, but no unifying

vision
• Escalation of commitment: Failing to revoke a decision when it proves wrong
• Management by perkele: Authoritarian style of management with no tolerance of dissent
• Matrix Management: Unfocused organizational structure that results in divided loyalties and

lack of direction
• Moral hazard: Insulating a decision-maker from the consequences of his or her decision
• Mushroom management: Keeping employees uninformed and misinformed (kept in the dark

and fed manure)
• Stovepipe or Silos: A structure that supports mostly up-down flow of data but inhibits cross

organizational communication
• Vendor lock-in: Making a system excessively dependent on an externally supplied

component[4]

Project management anti-patterns

• Death march: Everyone knows that the project is going to be a disaster – except the CEO.
However, the truth remains hidden and the project is artificially kept alive until the Day Zero
finally comes ("Big Bang"). Alternative definition: Employees are pressured to work late
nights and weekends on a project with an unreasonable deadline.

• Groupthink: During groupthink, members of the group avoid promoting viewpoints outside
the comfort zone of consensus thinking

• Smoke and mirrors: Demonstrating how unimplemented functions will appear
• Software bloat: Allowing successive versions of a system to demand ever more resources
• Waterfall model: An older method of software development that inadequately deals with

unanticipated change

Analysis anti-patterns

• Bystander apathy: When a requirement or design decision is wrong, but the people who
notice this do nothing because it affects a larger number of people

Software design anti-patterns

• Abstraction inversion: Not exposing implemented functionality required by users, so that
they re-implement it using higher level functions

• Ambiguous viewpoint: Presenting a model (usually Object-oriented analysis and design
(OOAD)) without specifying its viewpoint

118

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-157

• Big ball of mud: A system with no recognizable structure
• Database-as-IPC: Using a database as the message queue for routine interprocess

communication where a much more lightweight mechanism would be suitable
• Gold plating: Continuing to work on a task or project well past the point at which extra

effort is adding value
• Inner-platform effect: A system so customizable as to become a poor replica of the software

development platform
• Input kludge: Failing to specify and implement the handling of possibly invalid input
• Interface bloat: Making an interface so powerful that it is extremely difficult to implement
• Magic pushbutton: Coding implementation logic directly within interface code, without

using abstraction
• Race hazard: Failing to see the consequence of different orders of events
• Stovepipe system: A barely maintainable assemblage of ill-related components

Object-oriented design anti-patterns

• Anemic Domain Model: The use of domain model without any business logic. The domain
model's objects cannot guarantee their correctness at any moment, because their validation
and mutation logic is placed somewhere outside (most likely in multiple places).

• BaseBean: Inheriting functionality from a utility class rather than delegating to it
• Call super: Requiring subclasses to call a superclass's overridden method
• Circle-ellipse problem: Subtyping variable-types on the basis of value-subtypes
• Circular dependency: Introducing unnecessary direct or indirect mutual dependencies

between objects or software modules
• Constant interface: Using interfaces to define constants
• God object: Concentrating too many functions in a single part of the design (class)
• Object cesspool: Reusing objects whose state does not conform to the (possibly implicit)

contract for re-use
• Object orgy: Failing to properly encapsulate objects permitting unrestricted access to their

internals
• Poltergeists: Objects whose sole purpose is to pass information to another object
• Sequential coupling: A class that requires its methods to be called in a particular order
• Yo-yo problem: A structure (e.g., of inheritance) that is hard to understand due to excessive

fragmentation

Programming anti-patterns

• Accidental complexity: Introducing unnecessary complexity into a solution
• Action at a distance: Unexpected interaction between widely separated parts of a system
• Blind faith: Lack of checking of (a) the correctness of a bug fix or (b) the result of a

subroutine
• Boat anchor: Retaining a part of a system that no longer has any use
• Busy spin: Consuming CPU while waiting for something to happen, usually by repeated

checking instead of messaging
• Caching failure: Forgetting to reset an error flag when an error has been corrected
• Cargo cult programming: Using patterns and methods without understanding why

119

• Coding by exception: Adding new code to handle each special case as it is recognized
• Error hiding: Catching an error message before it can be shown to the user and either

showing nothing or showing a meaningless message
• Hard code: Embedding assumptions about the environment of a system in its

implementation
• Lava flow: Retaining undesirable (redundant or low-quality) code because removing it is too

expensive or has unpredictable consequences[5] [6]
• Loop-switch sequence: Encoding a set of sequential steps using a switch within a loop

statement
• Magic numbers: Including unexplained numbers in algorithms
• Magic strings: Including literal strings in code, for comparisons, as event types etc.
• Soft code: Storing business logic in configuration files rather than source code[7]
• Spaghetti code: Programs whose structure is barely comprehensible, especially because of

misuse of code structures

Methodological anti-patterns

• Copy and paste programming: Copying (and modifying) existing code rather than creating
generic solutions

• Golden hammer: Assuming that a favorite solution is universally applicable (See: Silver
Bullet)

• Improbability factor: Assuming that it is improbable that a known error will occur
• Not Invented Here (NIH) syndrome: The tendency towards reinventing the wheel (Failing to

adopt an existing, adequate solution)
• Premature optimization: Coding early-on for perceived efficiency, sacrificing good design,

maintainability, and sometimes even real-world efficiency
• Programming by permutation (or "programming by accident"): Trying to approach a

solution by successively modifying the code to see if it works
• Reinventing the wheel: Failing to adopt an existing, adequate solution
• Reinventing the square wheel: Failing to adopt an existing solution and instead adopting a

custom solution which performs much worse than the existing one
• Silver bullet: Assuming that a favorite technical solution can solve a larger process or

problem
• Tester Driven Development: Software projects in which new requirements are specified in

bug reports

Configuration management anti-patterns

• Dependency hell: Problems with versions of required products
• DLL hell: Inadequate management of dynamic-link libraries (DLLs), specifically on

Microsoft Windows
• Extension conflict: Problems with different extensions to pre-Mac OS X versions of the Mac

OS attempting to patch the same parts of the operating system
• JAR hell: Overutilization of the multiple JAR files, usually causing versioning and location

problems because of misunderstanding of the Java class loading model

120

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-160
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-159
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-158

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

Further reading

1. Laplante, Phillip A.; Colin J. Neill (2005). Antipatterns: Identification, Refactoring and
Management. Auerbach Publications. ISBN 0-8493-2994-9.

2. Brown, William J. ; Raphael C. Malveau, Hays W. "Skip" McCormick, Scott W. Thomas,
Theresa Hudson (ed). (2000). Anti-Patterns in Project Management. John Wiley & Sons,
ltd. ISBN 0-471-36366-9.

External links

• Anti-pattern at WikiWikiWeb
• Anti-patterns catalog
• AntiPatterns.com Web site for the AntiPatterns book
• Patterns of Toxic Behavior

121

http://www.personal.psu.edu/cjn6/Personal/Antipatterns-%20Patterns%20of%20Toxic%20Behavior.htm
http://www.antipatterns.com/
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://c2.com/cgi/wiki?AntiPattern
http://en.wikibooks.org/wiki/Special:BookSources/0-471-36366-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/William_J._Brown_(writer)
http://en.wikibooks.org/wiki/Special:BookSources/0-8493-2994-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Implementation

Introduction

Computer programming (often shortened to programming or coding) is the process of
designing, writing, testing, debugging / troubleshooting, and maintaining the source code of
computer programs. This source code is written in a programming language. The purpose of
programming is to create a program that exhibits a certain desired behaviour. The process of writing
source code often requires expertise in many different subjects, including knowledge of the
application domain, specialized algorithms and formal logic.

Definition

Hoc and Nguyen-Xuan define computer programming as "the process of transforming a mental plan
in familiar terms into one compatible with the computer." [8] Said another way, programming is the
craft of transforming requirements into something that a computer can execute.

Overview

Within software engineering, programming (the implementation) is regarded as one phase in a
software development process.

There is an ongoing debate on the extent to which the writing of programs is an art, a craft or an
engineering discipline.[9] In general, good programming is considered to be the measured
application of all three, with the goal of producing an efficient and evolvable software solution (the
criteria for "efficient" and "evolvable" vary considerably). The discipline differs from many other
technical professions in that programmers, in general, do not need to be licensed or pass any
standardized (or governmentally regulated) certification tests in order to call themselves
"programmers" or even "software engineers." However, representing oneself as a "Professional
Software Engineer" without a license from an accredited institution is illegal in many parts of the
world. However, because the discipline covers many areas, which may or may not include critical
applications, it is debatable whether licensing is required for the profession as a whole. In most
cases, the discipline is self-governed by the entities which require the programming, and sometimes
very strict environments are defined (e.g. United States Air Force use of AdaCore and security
clearance).

Another ongoing debate is the extent to which the programming language used in writing computer
programs affects the form that the final program takes. This debate is analogous to that surrounding
the Sapir–Whorf hypothesis [10] in linguistics, which postulates that a particular spoken language's
nature influences the habitual thought of its speakers. Different language patterns yield different
patterns of thought. This idea challenges the possibility of representing the world perfectly with
language, because it acknowledges that the mechanisms of any language condition the thoughts of
its speaker community.

122

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-163
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-162
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-161

History

Wired plug board for an IBM 402 Accounting Machine.
The Antikythera mechanism from ancient Greece was a calculator utilizing gears of various sizes
and configuration to determine its operation,[11] which tracked the metonic cycle still used in
lunar-to-solar calendars, and which is consistent for calculating the dates of the Olympiads.[12] Al-
Jazari built programmable Automata in 1206. One system employed in these devices was the use of
pegs and cams placed into a wooden drum at specific locations. which would sequentially trigger
levers that in turn operated percussion instruments. The output of this device was a small drummer
playing various rhythms and drum patterns.[13] [14] The Jacquard Loom, which Joseph Marie
Jacquard developed in 1801, uses a series of pasteboard cards with holes punched in them. The hole
pattern represented the pattern that the loom had to follow in weaving cloth. The loom could
produce entirely different weaves using different sets of cards. Charles Babbage adopted the use of
punched cards around 1830 to control his Analytical Engine. The synthesis of numerical
calculation, predetermined operation and output, along with a way to organize and input
instructions in a manner relatively easy for humans to conceive and produce, led to the modern
development of computer programming. Development of computer programming accelerated
through the Industrial Revolution.

In the late 1880s, Herman Hollerith invented the recording of data on a medium that could then be
read by a machine. Prior uses of machine readable media, above, had been for control, not data.
"After some initial trials with paper tape, he settled on punched cards..."[15] To process these
punched cards, first known as "Hollerith cards" he invented the tabulator, and the keypunch
machines. These three inventions were the foundation of the modern information processing
industry. In 1896 he founded the Tabulating Machine Company (which later became the core of
IBM). The addition of a control panel (plugboard) to his 1906 Type I Tabulator allowed it to do
different jobs without having to be physically rebuilt. By the late 1940s, there were a variety of
plug-board programmable machines, called unit record equipment, to perform data-processing tasks
(card reading). Early computer programmers used plug-boards for the variety of complex
calculations requested of the newly invented machines.

123

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-168
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-167
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-166
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-165
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-164
http://en.wikibooks.org/wiki/File:IBM402plugboard.Shrigley.wireside.jpg
http://en.wikibooks.org/wiki/File:IBM402plugboard.Shrigley.wireside.jpg

Data and instructions could be stored on external punched cards, which were kept in order and
arranged in program decks.

The invention of the von Neumann architecture allowed computer programs to be stored in
computer memory. Early programs had to be painstakingly crafted using the instructions
(elementary operations) of the particular machine, often in binary notation. Every model of
computer would likely use different instructions (machine language) to do the same task. Later,
assembly languages were developed that let the programmer specify each instruction in a text
format, entering abbreviations for each operation code instead of a number and specifying addresses
in symbolic form (e.g., ADD X, TOTAL). Entering a program in assembly language is usually more
convenient, faster, and less prone to human error than using machine language, but because an
assembly language is little more than a different notation for a machine language, any two machines
with different instruction sets also have different assembly languages.

In 1954, FORTRAN was invented; it was the first high level programming language to have a
functional implementation, as opposed to just a design on paper.[16] [17] (A high-level language is,
in very general terms, any programming language that allows the programmer to write programs in
terms that are more abstract than assembly language instructions, i.e. at a level of abstraction
"higher" than that of an assembly language.) It allowed programmers to specify calculations by
entering a formula directly (e.g. Y = X*2 + 5*X + 9). The program text, or source, is converted into
machine instructions using a special program called a compiler, which translates the FORTRAN
program into machine language. In fact, the name FORTRAN stands for "Formula Translation".
Many other languages were developed, including some for commercial programming, such as
COBOL. Programs were mostly still entered using punched cards or paper tape. (See computer
programming in the punch card era). By the late 1960s, data storage devices and computer terminals
became inexpensive enough that programs could be created by typing directly into the computers.
Text editors were developed that allowed changes and corrections to be made much more easily
than with punched cards. (Usually, an error in punching a card meant that the card had to be
discarded and a new one punched to replace it.)

As time has progressed, computers have made giant leaps in the area of processing power. This has
brought about newer programming languages that are more abstracted from the underlying
hardware. Although these high-level languages usually incur greater overhead, the increase in speed
of modern computers has made the use of these languages much more practical than in the past.
These increasingly abstracted languages typically are easier to learn and allow the programmer to

124

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-170
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-169
http://en.wikibooks.org/wiki/File:PunchCardDecks.agr.jpg
http://en.wikibooks.org/wiki/File:PunchCardDecks.agr.jpg

develop applications much more efficiently and with less source code. However, high-level
languages are still impractical for a few programs, such as those where low-level hardware control
is necessary or where maximum processing speed is vital.

Throughout the second half of the twentieth century, programming was an attractive career in most
developed countries. Some forms of programming have been increasingly subject to offshore
outsourcing (importing software and services from other countries, usually at a lower wage),
making programming career decisions in developed countries more complicated, while increasing
economic opportunities in less developed areas. It is unclear how far this trend will continue and
how deeply it will impact programmer wages and opportunities. [citation needed]

Modern programming

Quality requirements

Whatever the approach to software development may be, the final program must satisfy some
fundamental properties. The following properties are among the most relevant:

• Efficiency/performance: the amount of system resources a program consumes (processor
time, memory space, slow devices such as disks, network bandwidth and to some extent
even user interaction): the less, the better. This also includes correct disposal of some
resources, such as cleaning up temporary files and lack of memory leaks.

• Reliability: how often the results of a program are correct. This depends on conceptual
correctness of algorithms, and minimization of programming mistakes, such as mistakes in
resource management (e.g., buffer overflows and race conditions) and logic errors (such as
division by zero or off-by-one errors).

• Robustness: how well a program anticipates problems not due to programmer error. This
includes situations such as incorrect, inappropriate or corrupt data, unavailability of needed
resources such as memory, operating system services and network connections, and user
error.

• Usability: the ergonomics of a program: the ease with which a person can use the program
for its intended purpose, or in some cases even unanticipated purposes. Such issues can
make or break its success even regardless of other issues. This involves a wide range of
textual, graphical and sometimes hardware elements that improve the clarity, intuitiveness,
cohesiveness and completeness of a program's user interface.

• Portability: the range of computer hardware and operating system platforms on which the
source code of a program can be compiled/interpreted and run. This depends on differences
in the programming facilities provided by the different platforms, including hardware and
operating system resources, expected behaviour of the hardware and operating system, and
availability of platform specific compilers (and sometimes libraries) for the language of the
source code

• Maintainability: the ease with which a program can be modified by its present or future
developers in order to make improvements or customizations, fix bugs and security holes, or
adapt it to new environments. Good practices during initial development make the difference
in this regard. This quality may not be directly apparent to the end user but it can
significantly affect the fate of a program over the long term.

125

http://en.wikibooks.org/wiki/Wikibooks:OR

Algorithmic complexity

The academic field and the engineering practice of computer programming are both largely
concerned with discovering and implementing the most efficient algorithms for a given class of
problem. For this purpose, algorithms are classified into orders using so-called Big O notation,
O(n), which expresses resource use, such as execution time or memory consumption, in terms of the
size of an input. Expert programmers are familiar with a variety of well-established algorithms and
their respective complexities and use this knowledge to choose algorithms that are best suited to the
circumstances.

Methodologies

The first step in most formal software development projects is requirements analysis, followed by
testing to determine value modeling, implementation, and failure elimination (debugging). There
exist a lot of differing approaches for each of those tasks. One approach popular for requirements
analysis is Use Case analysis. Nowadays many programmers use forms of Agile software
development where the various stages of formal software development are more integrated together
into short cycles that take a few weeks rather than years. There are many approaches to the
Software development process

Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-
Driven Architecture (MDA). The Unified Modeling Language (UML) is a notation used for both
the OOAD and MDA.

A similar technique used for database design is Entity-Relationship Modeling (ER Modeling).

Implementation techniques include imperative languages (object-oriented or procedural), functional
languages, and logic languages.

Measuring language usage

It is very difficult to determine what are the most popular of modern programming languages. Some
languages are very popular for particular kinds of applications (e.g., COBOL is still strong in the
corporate data center, often on large mainframes, FORTRAN in engineering applications, scripting
languages in web development, and C in embedded applications), while some languages are
regularly used to write many different kinds of applications.

Methods of measuring programming language popularity include: counting the number of job
advertisements that mention the language,[18] the number of books teaching the language that are
sold (this overestimates the importance of newer languages), and estimates of the number of
existing lines of code written in the language (this underestimates the number of users of business
languages such as COBOL).

126

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-171

Debugging

A bug, which was debugged in 1947.

Debugging is a very important task in the software development process, because an incorrect
program can have significant consequences for its users. Some languages are more prone to some
kinds of faults because their specification does not require compilers to perform as much checking
as other languages. Use of a static analysis tool can help detect some possible problems.

Debugging is often done with IDEs like Eclipse, Kdevelop, NetBeans, and Visual Studio.
Standalone debuggers like gdb are also used, and these often provide less of a visual environment,
usually using a command line.

Programming languages

Different programming languages support different styles of programming (called programming
paradigms). The choice of language used is subject to many considerations, such as company
policy, suitability to task, availability of third-party packages, or individual preference. Ideally, the
programming language best suited for the task at hand will be selected. Trade-offs from this ideal
involve finding enough programmers who know the language to build a team, the availability of
compilers for that language, and the efficiency with which programs written in a given language
execute. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level"
languages are typically more machine-oriented and faster to execute, whereas "high-level"
languages are more abstract and easier to use but execute less quickly.

Allen Downey, in his book How To Think Like A Computer Scientist, writes:

The details look different in different languages, but a few basic instructions appear in just
about every language:

• input: Get data from the keyboard, a file, or some other device.
• output: Display data on the screen or send data to a file or other device.
• arithmetic: Perform basic arithmetical operations like addition and multiplication.
• conditional execution: Check for certain conditions and execute the appropriate

sequence of statements.
• repetition: Perform some action repeatedly, usually with some variation.

127

http://en.wikibooks.org/wiki/File:H96566k.jpg
http://en.wikibooks.org/wiki/File:H96566k.jpg

Many computer languages provide a mechanism to call functions provided by libraries. Provided
the functions in a library follow the appropriate run time conventions (e.g., method of passing
arguments), then these functions may be written in any other language.

Programmers

Computer programmers are those who write computer software. Their jobs usually involve:

• Coding
• Compilation
• Debugging
• Documentation
• Integration
• Maintenance
• Requirements analysis
• Software architecture
• Software testing
• Specification

References

1. ↑ Budgen, D. (2003). Software design. Harlow, Eng.: Addison-Wesley. p. 225. ISBN 0-201-
72219-4. http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern
%22+date:1990-2003. "As described in Long (2001), design anti-patterns are 'obvious, but
wrong, solutions to recurring problems'."

2. ↑ Scott W. Ambler (1998). Process patterns: building large-scale systems using object
technology. Cambridge, UK: Cambridge University Press. p. 4. ISBN 0-521-64568-9. http://
books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-
2001. "...common approaches to solving recurring problems that prove to be ineffective.
These approaches are called antipatterns."

3. ↑ Koenig, Andrew (March/April 1995). "Patterns and Antipatterns". Journal of Object-
Oriented Programming 8, (1): 46–48. ; was later re-printed in the: Rising, Linda (1998). The
patterns handbook: techniques, strategies, and applications. Cambridge, U.K.: Cambridge
University Press. p. 387. ISBN 0-521-64818-1. http://books.google.com/?
id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1. "Anti-pattern is just like pattern,
except that instead of solution it gives something thats looks superficially like a solution, but
isn't one."

4. ↑ Vendor Lock-In at antipatterns.com
5. ↑ Lava Flow at antipatterns.com
6. ↑ "Undocumented 'lava flow' antipatterns complicate process". Icmgworld.com. 2002-01-14.

http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp. Retrieved 2010-05-03.
7. ↑ Papadimoulis, Alex (2007-04-10). "Soft Coding". Worsethanfailure.com.

http://worsethanfailure.com/Articles/Soft_Coding.aspx. Retrieved 2010-05-03.
8. ↑ Hoc, J.-M. and Nguyen-Xuan, A. Language semantics, mental models and analogy. J.-M.

Hoc et al., Eds. Psychology of Programming. Academic Press. London, 1990, 139–156,
cited through Brad A. Myers , John F. Pane , Andy Ko, Natural programming languages and
environments, Communications of the ACM, v.47 n.9, September 2004

128

http://dx.doi.org/10.1145/1015864.1015888
http://dx.doi.org/10.1145/1015864.1015888
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-161
http://worsethanfailure.com/Articles/Soft_Coding.aspx
http://worsethanfailure.com/Articles/Soft_Coding.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-160
http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp
http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-159
http://www.antipatterns.com/lavaflow.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-158
http://www.antipatterns.com/vendorlockin.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-157
http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1
http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1
http://en.wikibooks.org/wiki/Special:BookSources/0-521-64818-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1
http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-156
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://en.wikibooks.org/wiki/Special:BookSources/0-521-64568-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-155
http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern%22+date:1990-2003
http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern%22+date:1990-2003
http://en.wikibooks.org/wiki/Special:BookSources/0-201-72219-4
http://en.wikibooks.org/wiki/Special:BookSources/0-201-72219-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern%22+date:1990-2003
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-154

9. ↑ Paul Graham (2003). Hackers and Painters. http://www.paulgraham.com/hp.html.
Retrieved 2006-08-22.

10.↑ Kenneth E. Iverson, the originator of the APL programming language, believed that the
Sapir–Whorf hypothesis applied to computer languages (without actually mentioning the
hypothesis by name). His Turing award lecture, "Notation as a tool of thought", was devoted
to this theme, arguing that more powerful notations aided thinking about computer
algorithms. Iverson K.E.,"Notation as a tool of thought", Communications of the ACM, 23:
444-465 (August 1980).

11.↑ "Ancient Greek Computer's Inner Workings Deciphered". National Geographic News.
November 29, 2006.

12.↑ Freeth, Tony; Jones, Alexander; Steele, John M.; Bitsakis, Yanis (July 31, 2008).
"Calendars with Olympiad display and eclipse prediction on the Antikythera Mechanism".
Nature 454 (7204): 614–617. doi:10.1038/nature07130. PMID 18668103.
http://www.nature.com/nature/journal/v454/n7204/full/nature07130.html.

13.↑ A 13th Century Programmable Robot, University of Sheffield
14.↑ Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical

Instruments". Music Educators Journal (Music Educators Journal, Vol. 54, No. 2) 54 (2):
45–49. doi:10.2307/3391092. http://jstor.org/stable/3391092

15.↑ "Columbia University Computing History - Herman Hollerith". Columbia.edu.
http://www.columbia.edu/acis/history/hollerith.html. Retrieved 2010-04-25.

16.↑ 12:10 p.m. ET (2007-03-20). "Fortran creator John Backus dies - Tech and gadgets-
msnbc.com". MSNBC. http://www.msnbc.msn.com/id/17704662/. Retrieved 2010-04-25.

17.↑ "CSC-302 99S : Class 02: A Brief History of Programming Languages" . Math.grin.edu.
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html.
Retrieved 2010-04-25.

18.↑ Survey of Job advertisements mentioning a given language>

Further reading

• Weinberg, Gerald M., The Psychology of Computer Programming, New York: Van
Nostrand Reinhold, 1971

External links

• How to Think Like a Computer Scientist - by Jeffrey Elkner, Allen B. Downey and Chris
Meyers

Code Convention

Coding conventions are a set of guidelines for a specific programming language that recommend
programming style, practices and methods for each aspect of a piece program written in this
language. These conventions usually cover file organization, indentation, comments, declarations,
statements, white space, naming conventions, programming practices, programming principles,
programming rules of thumb, etc. Software programmers are highly recommended to follow these
guidelines to help improve the readability of their source code and make software maintenance
easier. Coding conventions are only applicable to the human maintainers and peer reviewers of a

129

http://openbookproject.net/thinkCSpy
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-171
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-170
http://www.msnbc.msn.com/id/17704662/
http://www.msnbc.msn.com/id/17704662/
http://www.msnbc.msn.com/id/17704662/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-169
http://www.columbia.edu/acis/history/hollerith.html
http://www.columbia.edu/acis/history/hollerith.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-168
http://jstor.org/stable/3391092
http://dx.doi.org/10.2307%2F3391092
http://en.wikipedia.org/wiki/Digital_object_identifier
http://jstor.org/stable/3391092
http://jstor.org/stable/3391092
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-167
http://www.shef.ac.uk/marcoms/eview/articles58/robot.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-166
http://www.nature.com/nature/journal/v454/n7204/full/nature07130.html
http://www.ncbi.nlm.nih.gov/pubmed/18668103
http://en.wikipedia.org/wiki/PubMed_Identifier
http://dx.doi.org/10.1038%2Fnature07130
http://en.wikipedia.org/wiki/Digital_object_identifier
http://www.nature.com/nature/journal/v454/n7204/full/nature07130.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-165
http://news.nationalgeographic.com/news/2006/11/061129-ancient-greece.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-164
http://elliscave.com/APL_J/tool.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-163
http://www.paulgraham.com/hp.html
http://www.paulgraham.com/hp.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-162

software project. Conventions may be formalized in a documented set of rules that an entire team or
company follows, or may be as informal as the habitual coding practices of an individual. Coding
conventions are not enforced by compilers. As a result, not following some or all of the rules has no
impact on the executable programs created from the source code.

Software maintenance

Reducing the cost of software maintenance is the most often cited reason for following coding
conventions. In their introduction to code conventions for the Java Programming Language, Sun
Microsystems provides the following rationale:[1]

Code conventions are important to programmers for a number of reasons:

• 80% of the lifetime cost of a piece of software goes to maintenance.
• Hardly any software is maintained for its whole life by the original author.
• Code conventions improve the readability of the software, allowing engineers to

understand new code more quickly and thoroughly.
• If you ship your source code as a product, you need to make sure it is as well

packaged and clean as any other product you create.

Quality

Software peer review frequently involves reading source code. This type of peer review is primarily
a defect detection activity. By definition, only the original author of a piece of code has read the
source file before the code is submitted for review. Code that is written using consistent guidelines
is easier for other reviewers to understand and assimilate, improving the efficacy of the defect
detection process.

Even for the original author, consistently coded software eases maintainability. There is no
guarantee that an individual will remember the precise rationale for why a particular piece of code
was written in a certain way long after the code was originally written. Coding conventions can
help. Consistent use of whitespace improves readability and reduces the time it takes to understand
the software.

Refactoring

Refactoring refers to a software maintenance activity where source code is modified to improve
readability or improve its structure. Software is often refactored to bring it into conformance with a
team's stated coding standards after its initial release. Any change that does not alter the behavior of
the software can be considered refactoring. Common refactoring activities are changing variable
names, renaming methods, moving methods or whole classes and breaking large methods (or
functions) into smaller ones.

Agile software development methodologies plan for regular (or even continuous) refactoring
making it an integral part of the team software development process.[2]

130

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-173
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-172

Task automation

Coding conventions allow to have simple scripts or programs whose job is to process source code
for some purpose other than compiling it into an executable. It is common practice to count the
software size (Source lines of code) to track current project progress or establish a baseline for
future project estimates.

Consistent coding standards can, in turn, make the measurements more consistent. Special tags
within source code comments are often used to process documentation, two notable examples are
javadoc and doxygen. The tools specifies the use of a set of tags, but their use within a project is
determined by convention.

Coding conventions simplify writing new software whose job is to process existing software. Use of
static code analysis has grown consistently since the 1950s. Some of the growth of this class of
development tools stems from increased maturity and sophistication of the practitioners themselves
(and the modern focus on safety and security), but also from the nature of the languages themselves.

Language factors

All software practitioners must grapple with the problems of organizing and managing very many
detailed instructions, each of which will eventually be processed in order to perform the task for
which it was written. For all but the smallest software projects, source code (instructions) are
partitioned into separate files and frequently among many directories. It was natural for
programmers to collect closely related functions (behaviors) in the same file and to collect related
files into directories. As software development evolved from purely procedural programming (such
as found in FORTRAN) towards more object-oriented constructs (such as found in C++), it became
the practice to write the code for a single (public) class in a single file (the 'one class per file'
convention).[3] [4] Java has gone one step further - the Java compiler returns an error if it finds
more than one public class per file.

A convention in one language may be a requirement in another. Language conventions also affect
individual source files. Each compiler (or interpreter) used to process source code is unique. The
rules a compiler applies to the source creates implicit standards. For example, Python code is much
more consistently indented than, say Perl, because whitespace (indentation) is actually significant to
the interpreter. Python does not use the brace syntax Perl uses to delimit functions. Changes in
indentation serve as the delimiters.[5] [6] Tcl, which uses a brace syntax similar to Perl or C/C++ to
delimit functions, does not allow the following, which seems fairly reasonable to a C programmer:

set i 0
while {$i < 10}
{
 puts "$i squared = [expr $i*$i]"
 incr i
}

131

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-177
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-176
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-175
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-174

The reason is that in Tcl, curly braces are not used only to delimit functions as in C or Java. More
generally, curly braces are used to group words together into a single argument.[7] [8] In Tcl, the
word while takes two arguments, a condition and an action. In the example above, while is missing
its second argument, its action (because the Tcl also uses the newline character to delimit the end of
a command).

Common conventions

As mentioned above, common coding conventions may cover the following areas:

• Comment conventions
• Indent style conventions
• Naming conventions
• Programming practices
• Programming principles
• Programming rules of thumb
• Programming style conventions

Examples

Only one statement should occur per line

For example, in Java this would involve having statements written like this:

a++;
b = a;

But not like this:

a++; b = a;

Boolean values in decision structures

Some programmers suggest that coding where the result of a decision is merely the computation of
a Boolean value, are overly verbose and error prone. They prefer to have the decision in the
computation itself, like this:

return (hours < 24) && (minutes < 60) && (seconds < 60);

The difference is entirely stylistic, because optimizing compilers may produce identical object code
for both forms. However, stylistically, programmers disagree which form is easier to read and
maintain.

132

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-179
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-178

Arguments in favor of the longer form include: it is then possible to set a per-line breakpoint on one
branch of the decision; further lines of code could be added to one branch without refactoring the
return line, which would increase the chances of bugs being introduced; the longer form would
always permit a debugger to step to a line where the variables involved are still in scope.

Left-hand comparisons

In languages which use one symbol (typically a single equals sign, (=)) for assignment and another
(typically two equals signs, (==) for comparison (e.g. C/C++, Java, ActionScript 3, PHP, Perl
numeric context, and most languages in the last 15 years), and where assignments may be made
within control structures, there is an advantage to adopting the left-hand comparison style: to place
constants or expressions to the left in any comparison. [9] [10]

Here are both left and right-hand comparison styles, applied to a line of Perl code. In both cases,
this compares the value in the variable $a against 42, and if it matches, executes the code in the
subsequent block.

if ($a == 42) { ... } # A right-hand comparison checking if $a equals 42.
if (42 == $a) { ... } # Recast, using the left-hand comparison style.

The difference occurs when a developer accidentally types = instead of ==:

if ($a = 42) { ... } # Inadvertent assignment which is often hard to debug
if (42 = $a) { ... } # Compile time error indicates source of problem

The first (right-hand) line now contains a potentially subtle flaw: rather than the previous
behaviour, it now sets the value of $a to be 42, and then always runs the code in the following
block. As this is syntactically legitimate, the error may go unnoticed by the programmer, and the
software may ship with a bug.

The second (left-hand) line contains a semantic error, as numeric values cannot be assigned to. This
will result in a diagnostic message being generated when the code is compiled, so the error cannot
go unnoticed by the programmer.

Some languages have built-in protections against inadvertent assignment. Java and C#, for example,
do not support automatic conversion to boolean for just this reason.

The risk can also be mitigated by use of static code analysis tools that can detect this issue.

Looping and control structures

The use of logical control structures for looping adds to good programming style as well. It helps
someone reading code to better understand the program's sequence of execution (in imperative
programming languages). For example, in pseudocode:

i = 0

while i < 5
 print i * 2
 i = i + 1

133

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-181
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-phpcook-180

end while

print "Ended loop"

The above snippet obeys the naming and indentation style guidelines, but the following use of the
"for" construct may be considered easier to read:

for i = 0, i < 5, i=i+1
 print i * 2

print "Ended loop"

In many languages, the often used "for each element in a range" pattern can be shortened to:

for i = 0 to 5
 print i * 2

print "Ended loop"

In programming languages that allow curly brackets, it has become common for style documents to
require that even where optional, curly brackets be used with all control flow constructs.

for (i = 0 to 5) {
 print i * 2;
}

print "Ended loop";

This prevents program-flow bugs which can be time-consuming to track down, such as where a
terminating semicolon is introduced at the end of the construct (a common typo):

 for (i = 0; i < 5; ++i);
 printf("%d\n", i*2); /* The incorrect indentation hides the fact
 that this line is not part of the loop body. */

 printf("Ended loop");

...or where another line is added before the first:

 for (i = 0; i < 5; ++i)
 fprintf(logfile, "loop reached %d\n", i);
 printf("%d\n", i*2); /* The incorrect indentation hides the fact
 that this line is not part of the loop body. */

 printf("Ended loop");

Lists

Where items in a list are placed on separate lines, it is sometimes considered good practice to add
the item-separator after the final item, as well as between each item, at least in those languages
where doing so is supported by the syntax (e.g., C, Java)

const char *array[] = {
 "item1",
 "item2",
 "item3", /* still has the comma after it */
};

134

This prevents syntax errors or subtle string-concatenation bugs when the list items are re-ordered or
more items are added to the end, without the programmer's noticing the "missing" separator on the
line which was previously last in the list. However, this technique can result in a syntax error (or
misleading semantics) in some languages. Even for languages that do support trailing commas, not
all list-like syntactical constructs in those languages may support it.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

Coding conventions for languages

Also see the Ada Style Guide book.

• ActionScript: Flex SDK coding conventions and best practices
• Ada: Ada 95 Quality and Style Guide: Guidelines for Professional Programmers
• Ada: Guide for the use of the Ada programming language in high integrity systems

(ISO/IEC TR 15942:2000)
• Ada: NASA Flight Software Branch — Ada Coding Standard
• Ada: European Space Agency's Ada Coding Standard (BSSC(98)3)
• C: Ganssle Group's Firmware Development Standard
• C: Netrino Embedded C Coding Standard
• C: Micrium C Coding Standard
• C++: Quantum Leaps C/C++ Coding Standard
• C++: GeoSoft's C++ Programming Style Guidelines
• C++: Google's C++ Style Guide
• C#: Design Guidelines for Developing Class Libraries
• C#: Microsoft, Philips Healthcare
• D: The D Style
• Erlang: Erlang Programming Rules and Conventions
• Flex: Code conventions for the Flex SDK

135

http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions
http://www.erlang.se/doc/programming_rules.shtml
http://www.digitalmars.com/d/1.0/dstyle.html
http://www.tiobe.com/standards/gemrcsharpcs.pdf
http://blogs.msdn.com/brada/articles/361363.aspx
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://geosoft.no/development/cppstyle.html
http://www.state-machine.com/doc/AN_QL_Coding_Standard.pdf
http://micrium.com/download/an2000.pdf
http://www.netrino.com/Coding-Standard
http://www.ganssle.com/fsm.pdf
ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/bssc983.pdf
http://software.gsfc.nasa.gov/AssetsApproved/PA2.4.1.1.1.pdf
http://www.dit.upm.es/ork/documents/adahis.pdf
http://www.dit.upm.es/ork/documents/adahis.pdf
http://www.dit.upm.es/ork/documents/adahis.pdf
http://www.adaic.com/docs/95style/html/cover.html
http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions
http://en.wikibooks.org/wiki/Ada_Style_Guide
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

• GML: Game Maker Language
• Java: Ambysoft's Coding Standards for Java
• Java: Code Conventions for the Java Programming Language
• Java: GeoSoft's Java Programming Style Guidelines
• Java: Java Coding Standards at the Open Directory Project
• Lisp: Riastradh's Lisp Style Rules
• Mono: Programming style for Mono
• Object Pascal: Object Pascal Style Guide
• Perl: Perl Style Guide
• PHP::PEAR: PHP::PEAR Coding Standards
• Python: Style Guide for Python Code
• Ruby: The Unofficial Ruby Usage Guide
• Ruby: Good API Design

Coding conventions for projects

• Apache Developers' C Language Style Guide
• Drupal PHP Coding Standards
• Linux Kernel Coding Style (or Documentation/CodingStyle in the Linux Kernel source tree)
• ModuLiq Zero Indent Coding Style
• Mozilla Coding Style Guide
• Road Intranet's C++ Guidelines
• The NetBSD source code style guide (formerly known as the BSD Kernel Normal Form)
• "GNAT Coding Style: A Guide for GNAT Developers" . GCC online documentation. Free

Software Foundation. http://gcc.gnu.org/onlinedocs/gnat-style/. Retrieved 2009-01-19.
(PDF)

Good Coding

Introduction to Software Engineering/Implementation/Good Coding

Documentation

Software documentation or source code documentation is written text that accompanies
computer software. It either explains how it operates or how to use it, and may mean different
things to people in different roles.

Involvement of people in software life

Documentation is an important part of software engineering. Types of documentation include:

1. Requirements - Statements that identify attributes, capabilities, characteristics, or qualities of
a system. This is the foundation for what shall be or has been implemented.

136

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Implementation/Good_Coding&action=edit&redlink=1
http://gcc.gnu.org/onlinedocs/gnat-style.pdf
http://gcc.gnu.org/onlinedocs/gnat-style/
http://gcc.gnu.org/onlinedocs/gnat-style/
ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/share/misc/style
http://www.qhull.org/road/road-faq/xml/cpp-guideline.xml
http://www.mozilla.org/hacking/mozilla-style-guide.html
http://moduliq.org/documentation/moduliq_zero_indent_coding_style.html
http://lxr.linux.no/source/Documentation/CodingStyle
http://drupal.org/coding-standards
http://httpd.apache.org/dev/styleguide.html
http://rpa-base.rubyforge.org/wiki/wiki.cgi?GoodAPIDesign
http://www.caliban.org/ruby/rubyguide.shtml
http://www.python.org/peps/pep-0008.html
http://pear.php.net/manual/en/standards.php
http://perldoc.perl.org/perlstyle.html
http://bdn.borland.com/article/10280
http://www.mono-project.com/Coding_Guidelines
http://mumble.net/~campbell/scheme/style.txt
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org//Computers/Programming/Languages/Java/Coding_Standards//
http://geosoft.no/development/javastyle.html
http://java.sun.com/docs/codeconv/
http://www.ambysoft.com/essays/javaCodingStandards.html
http://yoyogames.com/

2. Architecture/Design - Overview of softwares. Includes relations to an environment and
construction principles to be used in design of software components.

3. Technical - Documentation of code, algorithms, interfaces, and APIs.
4. End User - Manuals for the end-user, system administrators and support staff.
5. Marketing - How to market the product and analysis of the market demand.

Requirements documentation

Requirements documentation is the description of what a particular software does or shall do. It is
used throughout development to communicate what the software does or shall do. It is also used as
an agreement or as the foundation for agreement on what the software shall do. Requirements are
produced and consumed by everyone involved in the production of software: end users, customers,
product managers, project managers, sales, marketing, software architects, usability engineers,
interaction designers, developers, and testers, to name a few. Thus, requirements documentation has
many different purposes.

Requirements come in a variety of styles, notations and formality. Requirements can be goal-like
(e.g., distributed work environment), close to design (e.g., builds can be started by right-clicking a
configuration file and select the 'build' function), and anything in between. They can be specified as
statements in natural language, as drawn figures, as detailed mathematical formulas, and as a
combination of them all.

The variation and complexity of requirements documentation makes it a proven challenge.
Requirements may be implicit and hard to uncover. It is difficult to know exactly how much and
what kind of documentation is needed and how much can be left to the architecture and design
documentation, and it is difficult to know how to document requirements considering the variety of
people that shall read and use the documentation. Thus, requirements documentation is often
incomplete (or non-existent). Without proper requirements documentation, software changes
become more difficult—and therefore more error prone (decreased software quality) and time-
consuming (expensive).

The need for requirements documentation is typically related to the complexity of the product, the
impact of the product, and the life expectancy of the software. If the software is very complex or
developed by many people (e.g., mobile phone software), requirements can help to better
communicate what to achieve. If the software is safety-critical and can have negative impact on
human life (e.g., nuclear power systems, medical equipment), more formal requirements
documentation is often required. If the software is expected to live for only a month or two (e.g.,
very small mobile phone applications developed specifically for a certain campaign) very little
requirements documentation may be needed. If the software is a first release that is later built upon,
requirements documentation is very helpful when managing the change of the software and
verifying that nothing has been broken in the software when it is modified.

Traditionally, requirements are specified in requirements documents (e.g. using word processing
applications and spreadsheet applications). To manage the increased complexity and changing
nature of requirements documentation (and software documentation in general), database-centric
systems and special-purpose requirements management tools are advocated.

137

Architecture/Design documentation

Architecture documentation is a special breed of design document. In a way, architecture
documents are third derivative from the code (design document being second derivative, and code
documents being first). Very little in the architecture documents is specific to the code itself. These
documents do not describe how to program a particular routine, or even why that particular routine
exists in the form that it does, but instead merely lays out the general requirements that would
motivate the existence of such a routine. A good architecture document is short on details but thick
on explanation. It may suggest approaches for lower level design, but leave the actual exploration
trade studies to other documents.

Another breed of design docs is the comparison document, or trade study. This would often take the
form of a whitepaper. It focuses on one specific aspect of the system and suggests alternate
approaches. It could be at the user interface, code, design, or even architectural level. It will outline
what the situation is, describe one or more alternatives, and enumerate the pros and cons of each. A
good trade study document is heavy on research, expresses its idea clearly (without relying heavily
on obtuse jargon to dazzle the reader), and most importantly is impartial. It should honestly and
clearly explain the costs of whatever solution it offers as best. The objective of a trade study is to
devise the best solution, rather than to push a particular point of view. It is perfectly acceptable to
state no conclusion, or to conclude that none of the alternatives are sufficiently better than the
baseline to warrant a change. It should be approached as a scientific endeavor, not as a marketing
technique.

A very important part of the design document in enterprise software development is the Database
Design Document (DDD). It contains Conceptual, Logical, and Physical Design Elements. The
DDD includes the formal information that the people who interact with the database need. The
purpose of preparing it is to create a common source to be used by all players within the scene. The
potential users are:

• Database Designer
• Database Developer
• Database Administrator
• Application Designer
• Application Developer

When talking about Relational Database Systems, the document should include following parts:

• Entity - Relationship Schema, including following information and their clear definitions:
• Entity Sets and their attributes
• Relationships and their attributes
• Candidate keys for each entity set
• Attribute and Tuple based constraints

• Relational Schema, including following information:
• Tables, Attributes, and their properties
• Views
• Constraints such as primary keys, foreign keys,
• Cardinality of referential constraints
• Cascading Policy for referential constraints

138

• Primary keys

It is very important to include all information that is to be used by all actors in the scene. It is also
very important to update the documents as any change occurs in the database as well.

Technical documentation

This is what most programmers mean when using the term software documentation. When creating
software, code alone is insufficient. There must be some text along with it to describe various
aspects of its intended operation. It is important for the code documents to be thorough, but not so
verbose that it becomes difficult to maintain them. Several How-to and overview documentation are
found specific to the software application or software product being documented by API Writers.
This documentation may be used by developers, testers and also the end customers or clients using
this software application. Today, we see lot of high end applications in the field of power, energy,
transportation, networks, aerospace, safety, security, industry automation and a variety of other
domains. Technical documentation has become important within such organizations as the basic
and advanced level of information may change over a period of time with architecture changes.
Hence, technical documentation has gained lot of importance in recent times, especially in the
software field.

Often, tools such as Doxygen, NDoc, javadoc, EiffelStudio, Sandcastle, ROBODoc, POD,
TwinText, or Universal Report can be used to auto-generate the code documents—that is, they
extract the comments and software contracts, where available, from the source code and create
reference manuals in such forms as text or HTML files. Code documents are often organized into a
reference guide style, allowing a programmer to quickly look up an arbitrary function or class.

The idea of auto-generating documentation is attractive to programmers for various reasons. For
example, because it is extracted from the source code itself (for example, through comments), the
programmer can write it while referring to the code, and use the same tools used to create the source
code to make the documentation. This makes it much easier to keep the documentation up-to-date.

Of course, a downside is that only programmers can edit this kind of documentation, and it depends
on them to refresh the output (for example, by running a cron job to update the documents nightly).
Some would characterize this as a pro rather than a con.

Donald Knuth has insisted on the fact that documentation can be a very difficult afterthought
process and has advocated literate programming, writing at the same time and location as the source
code and extracted by automatic means.

Elucidative Programming is the result of practical applications of Literate Programming in real
programming contexts. The Elucidative paradigm proposes that source code and documentation be
stored separately. This paradigm was inspired by the same experimental findings that produced
Kelp. Often, software developers need to be able to create and access information that is not going
to be part of the source file itself. Such annotations are usually part of several software development
activities, such as code walks and porting, where third party source code is analysed in a functional
way. Annotations can therefore help the developer during any stage of software development where
a formal documentation system would hinder progress. Kelp stores annotations in separate files,
linking the information to the source code dynamically.

139

http://kelp.sf.net/
http://kelp.sf.net/

User documentation

Unlike code documents, user documents are usually far more diverse with respect to the source
code of the program, and instead simply describe how it is used.

In the case of a software library, the code documents and user documents could be effectively
equivalent and are worth conjoining, but for a general application this is not often true.

Typically, the user documentation describes each feature of the program, and assists the user in
realizing these features. A good user document can also go so far as to provide thorough
troubleshooting assistance. It is very important for user documents to not be confusing, and for
them to be up to date. User documents need not be organized in any particular way, but it is very
important for them to have a thorough index. Consistency and simplicity are also very valuable.
User documentation is considered to constitute a contract specifying what the software will do. API
Writers are very well accomplished towards writing good user documents as they would be well
aware of the software architecture and programming techniques used. See also Technical Writing.

There are three broad ways in which user documentation can be organized.

1. Tutorial: A tutorial approach is considered the most useful for a new user, in which they are
guided through each step of accomplishing particular tasks [11].

2. Thematic: A thematic approach, where chapters or sections concentrate on one particular
area of interest, is of more general use to an intermediate user. Some authors prefer to
convey their ideas through a knowledge based article to facilitating the user needs. This
approach is usually practiced by a dynamic industry, such as Information technology, where
the user population is largely correlated with the troubleshooting demands [12], [13].

3. List or Reference: The final type of organizing principle is one in which commands or
tasks are simply listed alphabetically or logically grouped, often via cross-referenced
indexes. This latter approach is of greater use to advanced users who know exactly what sort
of information they are looking for.

A common complaint among users regarding software documentation is that only one of these three
approaches was taken to the near-exclusion of the other two. It is common to limit provided
software documentation for personal computers to online help that give only reference information
on commands or menu items. The job of tutoring new users or helping more experienced users get
the most out of a program is left to private publishers, who are often given significant assistance by
the software developer.

Marketing documentation

For many applications it is necessary to have some promotional materials to encourage casual
observers to spend more time learning about the product. This form of documentation has three
purposes:-

1. To excite the potential user about the product and instill in them a desire for becoming more
involved with it.

2. To inform them about what exactly the product does, so that their expectations are in line
with what they will be receiving.

3. To explain the position of this product with respect to other alternatives.

140

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-bwaa-184
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kbad-183
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kdp-182

One good marketing technique is to provide clear and memorable catch phrases that exemplify the
point we wish to convey, and also emphasize the interoperability of the program with anything else
provided by the manufacturer.

Notes

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• kelp - a source code annotation framework for architectural, design and technical
documentation.

• ISO documentation standards committee - International Organization for Standardization
committee which develops user documentation standards.

141

http://www.hci.com.au/iso
http://kelp.sf.net/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Testing

Introduction

Software testing is an investigation conducted to provide stakeholders with information about the
quality of the product or service under test.[14] Software testing also provides an objective,
independent view of the software to allow the business to appreciate and understand the risks of
software implementation. Test techniques include, but are not limited to, the process of executing a
program or application with the intent of finding software bugs.

Software testing can also be stated as the process of validating and verifying that a software
program/application/product:

1. meets the business and technical requirements that guided its design and development;
2. works as expected; and
3. can be implemented with the same characteristics.

Software testing, depending on the testing method employed, can be implemented at any time in the
development process. However, most of the test effort occurs after the requirements have been
defined and the coding process has been completed. As such, the methodology of the test is
governed by the software development methodology adopted.

Different software development models will focus the test effort at different points in the
development process. Newer development models, such as Agile, often employ test driven
development and place an increased portion of the testing in the hands of the developer, before it
reaches a formal team of testers. In a more traditional model, most of the test execution occurs after
the requirements have been defined and the coding process has been completed.

Overview

Testing can never completely identify all the defects within software. Instead, it furnishes a
criticism or comparison that compares the state and behavior of the product against oracles—
principles or mechanisms by which someone might recognize a problem. These oracles may include
(but are not limited to) specifications, contracts,[15] comparable products, past versions of the same
product, inferences about intended or expected purpose, user or customer expectations, relevant
standards, applicable laws, or other criteria.

Every software product has a target audience. For example, the audience for video game software is
completely different from banking software. Therefore, when an organization develops or otherwise
invests in a software product, it can assess whether the software product will be acceptable to its
end users, its target audience, its purchasers, and other stakeholders. Software testing is the process
of attempting to make this assessment.

142

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-186
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-185

A study conducted by NIST in 2002 reports that software bugs cost the U.S. economy $59.5 billion
annually. More than a third of this cost could be avoided if better software testing was performed.
[16]

History

The separation of debugging from testing was initially introduced by Glenford J. Myers in 1979.
[17] Although his attention was on breakage testing ("a successful test is one that finds a bug"[17]
[18]) it illustrated the desire of the software engineering community to separate fundamental
development activities, such as debugging, from that of verification. Dave Gelperin and William C.
Hetzel classified in 1988 the phases and goals in software testing in the following stages:[19]

• Until 1956 - Debugging oriented[20]
• 1957–1978 - Demonstration oriented[21]
• 1979–1982 - Destruction oriented[22]
• 1983–1987 - Evaluation oriented[23]
• 1988–2000 - Prevention oriented[24]

Software testing topics

Scope

A primary purpose of testing is to detect software failures so that defects may be discovered and
corrected. This is a non-trivial pursuit. Testing cannot establish that a product functions properly
under all conditions but can only establish that it does not function properly under specific
conditions.[25] The scope of software testing often includes examination of code as well as
execution of that code in various environments and conditions as well as examining the aspects of
code: does it do what it is supposed to do and do what it needs to do. In the current culture of
software development, a testing organization may be separate from the development team. There
are various roles for testing team members. Information derived from software testing may be used
to correct the process by which software is developed.[26]

Functional vs non-functional testing

Functional testing refers to activities that verify a specific action or function of the code. These are
usually found in the code requirements documentation, although some development methodologies
work from use cases or user stories. Functional tests tend to answer the question of "can the user do
this" or "does this particular feature work".

Non-functional testing refers to aspects of the software that may not be related to a specific function
or user action, such as scalability or security. Non-functional testing tends to answer such questions
as "how many people can log in at once".

143

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kolawa-197
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Kaner1-196
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Gelperin_1988-195
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-194
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-193
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-192
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-191
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-190
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-189
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Myers_1979-188
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Myers_1979-188
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-187

Defects and failures

Not all software defects are caused by coding errors. One common source of expensive defects is
caused by requirement gaps, e.g., unrecognized requirements, that result in errors of omission by
the program designer.[27] A common source of requirements gaps is non-functional requirements
such as testability, scalability, maintainability, usability, performance, and security.

Software faults occur through the following processes. A programmer makes an error (mistake),
which results in a defect (fault, bug) in the software source code. If this defect is executed, in
certain situations the system will produce wrong results, causing a failure.[28] Not all defects will
necessarily result in failures. For example, defects in dead code will never result in failures. A
defect can turn into a failure when the environment is changed. Examples of these changes in
environment include the software being run on a new hardware platform, alterations in source data
or interacting with different software.[28] A single defect may result in a wide range of failure
symptoms.

Finding faults early

It is commonly believed that the earlier a defect is found the cheaper it is to fix it.[29] The
following table shows the cost of fixing the defect depending on the stage it was found.[30] For
example, if a problem in the requirements is found only post-release, then it would cost 10–100
times more to fix than if it had already been found by the requirements review.

Cost to fix a defect

Time detected

Requirements Architecture Construction
System
test

Post-
release

Time
introduced

Requirements 1× 3× 5–10× 10× 10–100×

Architecture - 1× 10× 15× 25–100×

Construction - - 1× 10× 10–25×

Compatibility

A common cause of software failure (real or perceived) is a lack of compatibility with other
application software, operating systems (or operating system versions, old or new), or target
environments that differ greatly from the original (such as a terminal or GUI application intended to
be run on the desktop now being required to become a web application, which must render in a web
browser). For example, in the case of a lack of backward compatibility, this can occur because the
programmers develop and test software only on the latest version of the target environment, which
not all users may be running. This results in the unintended consequence that the latest work may
not function on earlier versions of the target environment, or on older hardware that earlier versions
of the target environment was capable of using. Sometimes such issues can be fixed by proactively
abstracting operating system functionality into a separate program module or library.

144

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-201
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-200
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ctfl-199
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ctfl-199
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-198

Input combinations and preconditions

A very fundamental problem with software testing is that testing under all combinations of inputs
and preconditions (initial state) is not feasible, even with a simple product.[25] [31] This means that
the number of defects in a software product can be very large and defects that occur infrequently are
difficult to find in testing. More significantly, non-functional dimensions of quality (how it is
supposed to be versus what it is supposed to do)—usability, scalability, performance, compatibility,
reliability—can be highly subjective; something that constitutes sufficient value to one person may
be intolerable to another.

Static vs. dynamic testing

There are many approaches to software testing. Reviews, walkthroughs, or inspections are
considered as static testing, whereas actually executing programmed code with a given set of test
cases is referred to as dynamic testing. Static testing can be (and unfortunately in practice often is)
omitted. Dynamic testing takes place when the program itself is used for the first time (which is
generally considered the beginning of the testing stage). Dynamic testing may begin before the
program is 100% complete in order to test particular sections of code (modules or discrete
functions). Typical techniques for this are either using stubs/drivers or execution from a debugger
environment. For example, spreadsheet programs are, by their very nature, tested to a large extent
interactively ("on the fly"), with results displayed immediately after each calculation or text
manipulation.

Software verification and validation

Software testing is used in association with verification and validation:[32]

• Verification: Have we built the software right? (i.e., does it match the specification).
• Validation: Have we built the right software? (i.e., is this what the customer wants).

The terms verification and validation are commonly used interchangeably in the industry; it is also
common to see these two terms incorrectly defined. According to the IEEE Standard Glossary of
Software Engineering Terminology:

Verification is the process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start of that
phase.
Validation is the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.

The software testing team

Software testing can be done by software testers. Until the 1980s the term "software tester" was
used generally, but later it was also seen as a separate profession. Regarding the periods and the
different goals in software testing,[33] different roles have been established: manager, test lead, test
designer, tester, automation developer, and test administrator.

145

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-204
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-tran-203
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-202
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Kaner1-196

Software quality assurance (SQA)

Though controversial, software testing is a part of the software quality assurance (SQA) process.
[25] In SQA, software process specialists and auditors are concerned for the software development
process rather than just the artefacts such as documentation, code and systems. They examine and
change the software engineering process itself to reduce the amount of faults that end up in the
delivered software: the so-called defect rate.

What constitutes an "acceptable defect rate" depends on the nature of the software; A flight
simulator video game would have much higher defect tolerance than software for an actual airplane.

Although there are close links with SQA, testing departments often exist independently, and there
may be no SQA function in some companies.

Software testing is a task intended to detect defects in software by contrasting a computer program's
expected results with its actual results for a given set of inputs. By contrast, QA (quality assurance)
is the implementation of policies and procedures intended to prevent defects from occurring in the
first place.

Testing methods

The box approach

Software testing methods are traditionally divided into white- and black-box testing. These two
approaches are used to describe the point of view that a test engineer takes when designing test
cases.

White box testing

White box testing is when the tester has access to the internal data structures and algorithms
including the code that implement these.

Types of white box testing
The following types of white box testing exist:

• API testing (application programming interface) - testing of the application using
public and private APIs

• Code coverage - creating tests to satisfy some criteria of code coverage (e.g., the test
designer can create tests to cause all statements in the program to be executed at least
once)

• Fault injection methods - improving the coverage of a test by introducing faults to test
code paths

• Mutation testing methods
• Static testing - White box testing includes all static testing

Test coverage
White box testing methods can also be used to evaluate the completeness of a test suite that

146

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Kaner1-196

was created with black box testing methods. This allows the software team to examine parts
of a system that are rarely tested and ensures that the most important function points have
been tested.[34]

Two common forms of code coverage are:
• Function coverage, which reports on functions executed
• Statement coverage, which reports on the number of lines executed to complete the

test

They both return a code coverage metric, measured as a percentage.

Black box testing

Black box testing treats the software as a "black box"—without any knowledge of internal
implementation. Black box testing methods include: equivalence partitioning, boundary value
analysis, all-pairs testing, fuzz testing, model-based testing, exploratory testing and specification-
based testing.

Specification-based testing: Specification-based testing aims to test the functionality of
software according to the applicable requirements.[35] Thus, the tester inputs data into, and
only sees the output from, the test object. This level of testing usually requires thorough test
cases to be provided to the tester, who then can simply verify that for a given input, the output
value (or behavior), either "is" or "is not" the same as the expected value specified in the test
case.

Specification-based testing is necessary, but it is insufficient to guard against certain risks.
[36]

Advantages and disadvantages: The black box tester has no "bonds" with the code, and a
tester's perception is very simple: a code must have bugs. Using the principle, "Ask and you
shall receive," black box testers find bugs where programmers do not. On the other hand,
black box testing has been said to be "like a walk in a dark labyrinth without a flashlight,"
because the tester doesn't know how the software being tested was actually constructed. As a
result, there are situations when (1) a tester writes many test cases to check something that
could have been tested by only one test case, and/or (2) some parts of the back-end are not
tested at all.

Therefore, black box testing has the advantage of "an unaffiliated opinion", on the one hand, and the
disadvantage of "blind exploring", on the other. [37]

Grey box testing

Grey box testing (American spelling: gray box testing) involves having knowledge of internal
data structures and algorithms for purposes of designing the test cases, but testing at the user, or
black-box level. Manipulating input data and formatting output do not qualify as grey box, because
the input and output are clearly outside of the "black-box" that we are calling the system under test.
This distinction is particularly important when conducting integration testing between two modules
of code written by two different developers, where only the interfaces are exposed for test.

147

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-208
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-207
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-206
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-205

However, modifying a data repository does qualify as grey box, as the user would not normally be
able to change the data outside of the system under test. Grey box testing may also include reverse
engineering to determine, for instance, boundary values or error messages.

Testing levels

Tests are frequently grouped by where they are added in the software development process, or by
the level of specificity of the test.

Unit testing

Unit testing refers to tests that verify the functionality of a specific section of code, usually at the
function level. In an object-oriented environment, this is usually at the class level, and the minimal
unit tests include the constructors and destructors.[38]

These type of tests are usually written by developers as they work on code (white-box style), to
ensure that the specific function is working as expected. One function might have multiple tests, to
catch corner cases or other branches in the code. Unit testing alone cannot verify the functionality
of a piece of software, but rather is used to assure that the building blocks the software uses work
independently of each other.

Unit testing is also called component testing.

Integration testing

Integration testing is any type of software testing that seeks to verify the interfaces between
components against a software design. Software components may be integrated in an iterative way
or all together ("big bang"). Normally the former is considered a better practice since it allows
interface issues to be localised more quickly and fixed.

Integration testing works to expose defects in the interfaces and interaction between integrated
components (modules). Progressively larger groups of tested software components corresponding to
elements of the architectural design are integrated and tested until the software works as a system.
[39]

System testing

System testing tests a completely integrated system to verify that it meets its requirements.[40]

System integration testing

System integration testing verifies that a system is integrated to any external or third-party systems
defined in the system requirements.[citation needed]

148

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ieee-211
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-210
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-209

Regression testing

Regression testing focuses on finding defects after a major code change has occurred. Specifically,
it seeks to uncover software regressions, or old bugs that have come back. Such regressions occur
whenever software functionality that was previously working correctly stops working as intended.
Typically, regressions occur as an unintended consequence of program changes, when the newly
developed part of the software collides with the previously existing code. Common methods of
regression testing include re-running previously run tests and checking whether previously fixed
faults have re-emerged. The depth of testing depends on the phase in the release process and the risk
of the added features. They can either be complete, for changes added late in the release or deemed
to be risky, to very shallow, consisting of positive tests on each feature, if the changes are early in
the release or deemed to be of low risk.

Acceptance testing

Acceptance testing can mean one of two things:

1. A smoke test is used as an acceptance test prior to introducing a new build to the main
testing process, i.e. before integration or regression.

2. Acceptance testing performed by the customer, often in their lab environment on their own
hardware, is known as user acceptance testing (UAT). Acceptance testing may be performed
as part of the hand-off process between any two phases of development. [citation needed]

Alpha testing

Alpha testing is simulated or actual operational testing by potential users/customers or an
independent test team at the developers' site. Alpha testing is often employed for off-the-shelf
software as a form of internal acceptance testing, before the software goes to beta testing.[41]

Beta testing

Beta testing comes after alpha testing and can be considered a form of external user acceptance
testing. Versions of the software, known as beta versions, are released to a limited audience outside
of the programming team. The software is released to groups of people so that further testing can
ensure the product has few faults or bugs. Sometimes, beta versions are made available to the open
public to increase the feedback field to a maximal number of future users.[citation needed]

Non-functional testing

Special methods exist to test non-functional aspects of software. In contrast to functional testing,
which establishes the correct operation of the software (correct in that it matches the expected
behavior defined in the design requirements), non-functional testing verifies that the software
functions properly even when it receives invalid or unexpected inputs. Software fault injection, in
the form of fuzzing, is an example of non-functional testing. Non-functional testing, especially for
software, is designed to establish whether the device under test can tolerate invalid or unexpected

149

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-212
http://en.wikibooks.org/wiki/Wikibooks:OR

inputs, thereby establishing the robustness of input validation routines as well as error-handling
routines. Various commercial non-functional testing tools are linked from the software fault
injection page; there are also numerous open-source and free software tools available that perform
non-functional testing.

Software performance testing and load testing

Performance testing is executed to determine how fast a system or sub-system performs under a
particular workload. It can also serve to validate and verify other quality attributes of the system,
such as scalability, reliability and resource usage. Load testing is primarily concerned with testing
that can continue to operate under a specific load, whether that be large quantities of data or a large
number of users. This is generally referred to as software scalability. The related load testing
activity of when performed as a non-functional activity is often referred to as endurance testing.

Volume testing is a way to test functionality. Stress testing is a way to test reliability. Load testing is
a way to test performance. There is little agreement on what the specific goals of load testing are.
The terms load testing, performance testing, reliability testing, and volume testing, are often used
interchangeably.

Stability testing

Stability testing checks to see if the software can continuously function well in or above an
acceptable period. This activity of non-functional software testing is often referred to as load (or
endurance) testing.

Usability testing

Usability testing is needed to check if the user interface is easy to use and understand.It approach
towards the use of the application.

Security testing

Security testing is essential for software that processes confidential data to prevent system intrusion
by hackers.

Internationalization and localization

The general ability of software to be internationalized and localized can be automatically tested
without actual translation, by using pseudolocalization. It will verify that the application still works,
even after it has been translated into a new language or adapted for a new culture (such as different
currencies or time zones).[42]

Actual translation to human languages must be tested, too. Possible localization failures include:

150

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-213

• Software is often localized by translating a list of strings out of context, and the translator
may choose the wrong translation for an ambiguous source string.

• If several people translate strings, technical terminology may become inconsistent.
• Literal word-for-word translations may sound inappropriate, artificial or too technical in the

target language.
• Untranslated messages in the original language may be left hard coded in the source code.
• Some messages may be created automatically in run time and the resulting string may be

ungrammatical, functionally incorrect, misleading or confusing.
• Software may use a keyboard shortcut which has no function on the source language's

keyboard layout, but is used for typing characters in the layout of the target language.
• Software may lack support for the character encoding of the target language.
• Fonts and font sizes which are appropriate in the source language, may be inappropriate in

the target language; for example, CJK characters may become unreadable if the font is too
small.

• A string in the target language may be longer than the software can handle. This may make
the string partly invisible to the user or cause the software to fail.

• Software may lack proper support for reading or writing bi-directional text.
• Software may display images with text that wasn't localized.
• Localized operating systems may have differently-named system configuration files and

environment variables and different formats for date and currency.

To avoid these and other localization problems, a tester who knows the target language must run the
program with all the possible use cases for translation to see if the messages are readable, translated
correctly in context and don't cause failures.

Destructive testing

Destructive testing attempts to cause the software or a sub-system to fail, in order to test its
robustness.

The testing process

Traditional CMMI or waterfall development model

A common practice of software testing is that testing is performed by an independent group of
testers after the functionality is developed, before it is shipped to the customer.[43] This practice
often results in the testing phase being used as a project buffer to compensate for project delays,
thereby compromising the time devoted to testing.[44]

Another practice is to start software testing at the same moment the project starts and it is a
continuous process until the project finishes.[45]

151

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-216
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-215
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-214

Agile or Extreme development model

In counterpoint, some emerging software disciplines such as extreme programming and the agile
software development movement, adhere to a "test-driven software development" model. In this
process, unit tests are written first, by the software engineers (often with pair programming in the
extreme programming methodology). Of course these tests fail initially; as they are expected to.
Then as code is written it passes incrementally larger portions of the test suites. The test suites are
continuously updated as new failure conditions and corner cases are discovered, and they are
integrated with any regression tests that are developed. Unit tests are maintained along with the rest
of the software source code and generally integrated into the build process (with inherently
interactive tests being relegated to a partially manual build acceptance process). The ultimate goal
of this test process is to achieve continuous deployment where software updates can be published to
the public frequently. [46] [47]

A sample testing cycle

Although variations exist between organizations, there is a typical cycle for testing.[48] The sample
below is common among organizations employing the Waterfall development model.

• Requirements analysis: Testing should begin in the requirements phase of the software
development life cycle. During the design phase, testers work with developers in
determining what aspects of a design are testable and with what parameters those tests work.

• Test planning: Test strategy, test plan, testbed creation. Since many activities will be
carried out during testing, a plan is needed.

• Test development: Test procedures, test scenarios, test cases, test datasets, test scripts to use
in testing software.

• Test execution: Testers execute the software based on the plans and test documents then
report any errors found to the development team.

• Test reporting: Once testing is completed, testers generate metrics and make final reports
on their test effort and whether or not the software tested is ready for release.

• Test result analysis: Or Defect Analysis, is done by the development team usually along
with the client, in order to decide what defects should be treated, fixed, rejected (i.e. found
software working properly) or deferred to be dealt with later.

• Defect Retesting: Once a defect has been dealt with by the development team, it is retested
by the testing team. AKA Resolution testing.

• Regression testing: It is common to have a small test program built of a subset of tests, for
each integration of new, modified, or fixed software, in order to ensure that the latest
delivery has not ruined anything, and that the software product as a whole is still working
correctly.

• Test Closure: Once the test meets the exit criteria, the activities such as capturing the key
outputs, lessons learned, results, logs, documents related to the project are archived and used
as a reference for future projects.

152

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-219
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-218
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-217

Automated testing

Many programming groups are relying more and more on automated testing, especially groups that
use test-driven development. There are many frameworks to write tests in, and continuous
integration software will run tests automatically every time code is checked into a version control
system.

While automation cannot reproduce everything that a human can do (and all the ways they think of
doing it), it can be very useful for regression testing. However, it does require a well-developed test
suite of testing scripts in order to be truly useful.

Testing tools

Program testing and fault detection can be aided significantly by testing tools and debuggers.
Testing/debug tools include features such as:

• Program monitors, permitting full or partial monitoring of program code including:
• Instruction set simulator, permitting complete instruction level monitoring and trace

facilities
• Program animation, permitting step-by-step execution and conditional breakpoint at

source level or in machine code
• Code coverage reports

• Formatted dump or symbolic debugging, tools allowing inspection of program variables on
error or at chosen points

• Automated functional GUI testing tools are used to repeat system-level tests through the
GUI

• Benchmarks, allowing run-time performance comparisons to be made
• Performance analysis (or profiling tools) that can help to highlight hot spots and resource

usage

Some of these features may be incorporated into an Integrated Development Environment (IDE).

• A regression testing technique is to have a standard set of tests, which cover existing
functionality that result in persistent tabular data, and to compare pre-change data to post-
change data, where there should not be differences, using a tool like diffkit. Differences
detected indicate unexpected functionality changes or "regression".

Measurement in software testing

Usually, quality is constrained to such topics as correctness, completeness, security,[citation needed]

but can also include more technical requirements as described under the ISO standard ISO/IEC
9126, such as capability, reliability, efficiency, portability, maintainability, compatibility, and
usability.

There are a number of frequently-used software measures, often called metrics, which are used to
assist in determining the state of the software or the adequacy of the testing.

153

http://en.wikibooks.org/wiki/Wikibooks:OR

Testing artifacts

Software testing process can produce several artifacts.

Test plan
A test specification is called a test plan. The developers are well aware what test plans will be
executed and this information is made available to management and the developers. The idea
is to make them more cautious when developing their code or making additional changes.
Some companies have a higher-level document called a test strategy.

Traceability matrix
A traceability matrix is a table that correlates requirements or design documents to test
documents. It is used to change tests when the source documents are changed, or to verify that
the test results are correct.

Test case
A test case normally consists of a unique identifier, requirement references from a design
specification, preconditions, events, a series of steps (also known as actions) to follow, input,
output, expected result, and actual result. Clinically defined a test case is an input and an
expected result.[49] This can be as pragmatic as 'for condition x your derived result is y',
whereas other test cases described in more detail the input scenario and what results might be
expected. It can occasionally be a series of steps (but often steps are contained in a separate
test procedure that can be exercised against multiple test cases, as a matter of economy) but
with one expected result or expected outcome. The optional fields are a test case ID, test step,
or order of execution number, related requirement(s), depth, test category, author, and check
boxes for whether the test is automatable and has been automated. Larger test cases may also
contain prerequisite states or steps, and descriptions. A test case should also contain a place
for the actual result. These steps can be stored in a word processor document, spreadsheet,
database, or other common repository. In a database system, you may also be able to see past
test results, who generated the results, and what system configuration was used to generate
those results. These past results would usually be stored in a separate table.

Test script
The test script is the combination of a test case, test procedure, and test data. Initially the term
was derived from the product of work created by automated regression test tools. Today, test
scripts can be manual, automated, or a combination of both.

Test suite
The most common term for a collection of test cases is a test suite. The test suite often also
contains more detailed instructions or goals for each collection of test cases. It definitely
contains a section where the tester identifies the system configuration used during testing. A
group of test cases may also contain prerequisite states or steps, and descriptions of the
following tests.

Test data
In most cases, multiple sets of values or data are used to test the same functionality of a
particular feature. All the test values and changeable environmental components are collected
in separate files and stored as test data. It is also useful to provide this data to the client and
with the product or a project.

Test harness
The software, tools, samples of data input and output, and configurations are all referred to
collectively as a test harness.

154

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-220

Certifications

Several certification programs exist to support the professional aspirations of software testers and
quality assurance specialists. No certification currently offered actually requires the applicant to
demonstrate the ability to test software. No certification is based on a widely accepted body of
knowledge. This has led some to declare that the testing field is not ready for certification.[50]
Certification itself cannot measure an individual's productivity, their skill, or practical knowledge,
and cannot guarantee their competence, or professionalism as a tester.[51]

Software testing certification types
• Exam-based: Formalized exams, which need to be passed; can also be learned by self-

study [e.g., for ISTQB or QAI][52]
• Education-based: Instructor-led sessions, where each course has to be passed [e.g.,

International Institute for Software Testing (IIST)].

Testing certifications
• Certified Associate in Software Testing (CAST) offered by the Quality Assurance

Institute (QAI)[53]
• CATe offered by the International Institute for Software Testing[54]
• Certified Manager in Software Testing (CMST) offered by the Quality Assurance

Institute (QAI)[53]
• Certified Software Tester (CSTE) offered by the Quality Assurance Institute (QAI)

[53]
• Certified Software Test Professional (CSTP) offered by the International Institute for

Software Testing[54]
• CSTP (TM) (Australian Version) offered by K. J. Ross & Associates[55]
• ISEB offered by the Information Systems Examinations Board
• ISTQB Certified Tester, Foundation Level (CTFL) offered by the International

Software Testing Qualification Board [56] [57]
• ISTQB Certified Tester, Advanced Level (CTAL) offered by the International

Software Testing Qualification Board [56] [57]
• TMPF TMap Next Foundation offered by the Examination Institute for Information

Science[58]
• TMPA TMap Next Advanced offered by the Examination Institute for Information

Science[58]

Quality assurance certifications
• CMSQ offered by the Quality Assurance Institute (QAI).[53]
• CSQA offered by the Quality Assurance Institute (QAI)[53]
• CSQE offered by the American Society for Quality (ASQ)[59]
• CQIA offered by the American Society for Quality (ASQ)[59]

Controversy

Some of the major software testing controversies include:

What constitutes responsible software testing?

155

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-American_Society_for_Quality-230
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-American_Society_for_Quality-230
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Quality_Assurance_Institute-224
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Quality_Assurance_Institute-224
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-exin-exams.com-229
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-exin-exams.com-229
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-astqb-228
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-istqb-227
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-astqb-228
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-istqb-227
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-226
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-testinginstitute.com-225
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Quality_Assurance_Institute-224
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Quality_Assurance_Institute-224
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-testinginstitute.com-225
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Quality_Assurance_Institute-224
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-223
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-222
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-221

Members of the "context-driven" school of testing[60] believe that there are no "best
practices" of testing, but rather that testing is a set of skills that allow the tester to select or
invent testing practices to suit each unique situation.[61]

Agile vs. traditional
Should testers learn to work under conditions of uncertainty and constant change or should
they aim at process "maturity"? The agile testing movement has received growing popularity
since 2006 mainly in commercial circles,[62] [63] whereas government and military[64]
software providers use this methodology but also the traditional test-last models (e.g. in the
Waterfall model).[citation needed]

Exploratory test vs. scripted[65]
Should tests be designed at the same time as they are executed or should they be designed
beforehand?

Manual testing vs. automated
Some writers believe that test automation is so expensive relative to its value that it should be
used sparingly.[66] More in particular, test-driven development states that developers should
write unit-tests of the XUnit type before coding the functionality. The tests then can be
considered as a way to capture and implement the requirements.

Software design vs. software implementation
Should testing be carried out only at the end or throughout the whole process?

Who watches the watchmen?
The idea is that any form of observation is also an interaction—the act of testing can also
affect that which is being tested.[67]

References

1. ↑ "Code Conventions for the Java Programming Language : Why Have Code Conventions" .
Sun Microsystems, Inc.. 1999-04-20.
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html#16712.

2. ↑ Jeffries, Ron (2001-11-08). "What is Extreme Programming? : Design Improvement" . XP
Magazine. http://www.xprogramming.com/xpmag/whatisxp.htm#design.

3. ↑ Hoff, Todd (2007-01-09). "C++ Coding Standard : Naming Class Files" .
http://www.possibility.com/Cpp/CppCodingStandard.html#cflayout.

4. ↑ FIFE coding standards
5. ↑ van Rossum, Guido; Fred L. Drake, Jr., editor (2006-09-19). "Python Tutorial : First Steps

Towards Programming". Python Software Foundation.
http://docs.python.org/tut/node5.html#SECTION005200000000000000000.

6. ↑ Raymond, Eric (2000-05-01). "Why Python?". Linux Journal.
http://www.linuxjournal.com/article/3882.

7. ↑ Tcl Developer Xchange. "Summary of Tcl language syntax". ActiveState.
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm.

8. ↑ Staplin, George Peter (2006-07-16). "Why can I not start a new line before a brace group".
'the Tcler's Wiki'. http://wiki.tcl.tk/8344.

9. ↑ Sklar, David; Adam Trachtenberg (2003). PHP Cookbook. O'Reilly. , recipe 5.1
"Avoiding == Versus = Confusion", p118

156

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-phpcook_180-0
http://wiki.tcl.tk/8344
http://wiki.tcl.tk/8344
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-179
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-178
http://www.linuxjournal.com/article/3882
http://www.linuxjournal.com/article/3882
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-177
http://docs.python.org/tut/node5.html#SECTION005200000000000000000
http://docs.python.org/tut/node5.html#SECTION005200000000000000000
http://docs.python.org/tut/node5.html#SECTION005200000000000000000
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-176
http://wiki.fifengine.de/index.php?title=Coding_standards
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-175
http://www.possibility.com/Cpp/CppCodingStandard.html#cflayout
http://www.possibility.com/Cpp/CppCodingStandard.html#cflayout
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-174
http://www.xprogramming.com/xpmag/whatisxp.htm#design
http://www.xprogramming.com/xpmag/whatisxp.htm#design
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-173
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html#16712
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html#16712
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-172
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-238
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-237
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-236
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-235
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-234
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-233
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-232
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-231

10.↑ "C Programming FAQs: Frequently Asked Questions". Addison-Wesley, 1995. Nov.
2010. http://c-faq.com/style/revtest.html.

11.↑ Woelz, Carlos. "The KDE Documentation Primer". http://i18n.kde.org/docs/doc-
primer/index.html. Retrieved 15 June 2009.

12.↑ Microsoft. "Knowledge Base Articles for Driver Development".
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx. Retrieved 15 June 2009.

13.↑ Prekaski, Todd. "Building web and Adobe AIR applications from a shared Flex code
base". http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html. Retrieved 15
June 2009.

14.↑ Exploratory Testing , Cem Kaner, Florida Institute of Technology, Quality Assurance
Institute Worldwide Annual Software Testing Conference, Orlando, FL, November 2006

15.↑ Leitner, A., Ciupa, I., Oriol, M., Meyer, B., Fiva, A., "Contract Driven Development =
Test Driven Development - Writing Test Cases", Proceedings of ESEC/FSE'07: European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering 2007, (Dubrovnik, Croatia), September 2007

16.↑ Software errors cost U.S. economy $59.5 billion annually, NIST report
17.↑ a b Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. ISBN 0-

471-04328-1.
18.↑ Company, People's Computer (1987). "Dr. Dobb's journal of software tools for the

professional programmer". Dr. Dobb's journal of software tools for the professional
programmer (M&T Pub) 12 (1-6): 116. http://books.google.com/?id=7RoIAAAAIAAJ.

19.↑ Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN
0001-0782.

20.↑ until 1956 it was the debugging oriented period, when testing was often associated to
debugging: there was no clear difference between testing and debugging. Gelperin, D.; B.
Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

21.↑ From 1957–1978 there was the demonstration oriented period where debugging and
testing was distinguished now - in this period it was shown, that software satisfies the
requirements. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31
(6). ISSN 0001-0782.

22.↑ The time between 1979–1982 is announced as the destruction oriented period, where the
goal was to find errors. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing".
CACM 31 (6). ISSN 0001-0782.

23.↑ 1983–1987 is classified as the evaluation oriented period: intention here is that during the
software lifecycle a product evaluation is provided and measuring quality. Gelperin, D.; B.
Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

24.↑ From 1988 on it was seen as prevention oriented period where tests were to demonstrate
that software satisfies its specification, to detect faults and to prevent faults. Gelperin, D.; B.
Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

25.↑ a b c Kaner, Cem; Falk, Jack and Nguyen, Hung Quoc (1999). Testing Computer Software,
2nd Ed.. New York, et al: John Wiley and Sons, Inc.. pp. 480 pages. ISBN 0-471-35846-0.

26.↑ Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in
Software Management. Wiley-IEEE Computer Society Press. pp. 41–43. ISBN 0470042125.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

27.↑ Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in
Software Management. Wiley-IEEE Computer Society Press. p. 86. ISBN 0470042125.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

28.↑ a b Section 1.1.2, Certified Tester Foundation Level Syllabus, International Software
Testing Qualifications Board

157

http://www.istqb.org/downloads/syllabi/SyllabusFoundation.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ctfl_199-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ctfl_199-0
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/wiki/Special:BookSources/0470042125
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-198
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/wiki/Special:BookSources/0470042125
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kolawa_197-0
http://en.wikibooks.org/wiki/Special:BookSources/0-471-35846-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Cem_Kaner
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Kaner1_196-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Kaner1_196-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Kaner1_196-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Gelperin_1988_195-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-194
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-193
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-192
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-191
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-190
http://books.google.com/?id=7RoIAAAAIAAJ
http://books.google.com/?id=7RoIAAAAIAAJ
http://books.google.com/?id=7RoIAAAAIAAJ
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-189
http://en.wikibooks.org/wiki/Special:BookSources/0-471-04328-1
http://en.wikibooks.org/wiki/Special:BookSources/0-471-04328-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Myers_1979_188-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Myers_1979_188-0
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-187
http://se.inf.ethz.ch/people/leitner/publications/cdd_leitner_esec_fse_2007.pdf
http://se.inf.ethz.ch/people/leitner/publications/cdd_leitner_esec_fse_2007.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-186
http://www.kaner.com/pdfs/ETatQAI.pdf
http://www.kaner.com/pdfs/ETatQAI.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-185
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-bwaa_184-0
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kbad_183-0
http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kdp_182-0
http://c-faq.com/style/revtest.html
http://c-faq.com/style/revtest.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-181

29.↑ Kaner, Cem; James Bach, Bret Pettichord (2001). Lessons Learned in Software Testing: A
Context-Driven Approach. John Wiley & Sons. p. 4. ISBN 0-471-08112-4.

30.↑ McConnell, Steve (2004). Code Complete (2nd ed.). Microsoft Press. pp. 960. ISBN 0-
7356-1967-0.

31.↑ Principle 2, Section 1.3, Certified Tester Foundation Level Syllabus, International
Software Testing Qualifications Board

32.↑ Tran, Eushiuan (1999). " Verification / Validation /Certification" . in Koopman, P.. Topics in
Dependable Embedded Systems. USA: Carnegie Mellon University.
http://www.ece.cmu.edu/~koopman/des_s99/ verification /index.html . Retrieved 2008-01-13.

33.↑ see D. Gelperin and W.C. Hetzel
34.↑ Introduction, Code Coverage Analysis, Steve Cornett
35.↑ Laycock, G. T. (1993) (PostScript). The Theory and Practice of Specification Based

Software Testing. Dept of Computer Science, Sheffield University, UK.
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz. Retrieved 2008-02-13.

36.↑ Bach, James (June 1999). "Risk and Requirements-Based Testing" (PDF). Computer 32
(6): 113–114. http://www.satisfice.com/articles/requirements_based_testing.pdf. Retrieved
2008-08-19.

37.↑ Savenkov, Roman (2008). How to Become a Software Tester. Roman Savenkov
Consulting. p. 159. ISBN 978-0-615-23372-7.

38.↑ Binder, Robert V. (1999). Testing Object-Oriented Systems: Objects, Patterns, and Tools.
Addison-Wesley Professional. p. 45. ISBN 0-201-80938-9.

39.↑ Beizer, Boris (1990). Software Testing Techniques (Second ed.). New York: Van Nostrand
Reinhold. pp. 21,430. ISBN 0-442-20672-0.

40.↑ IEEE (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. New York: IEEE. ISBN 1559370793.

41.↑ van Veenendaal, Erik. "Standard glossary of terms used in Software Testing".
http://www.astqb.org/educational-resources/glossary.php#A. Retrieved 17 June 2010.

42.↑ Globalization Step-by-Step: The World-Ready Approach to Testing. Microsoft Developer
Network

43.↑ e)Testing Phase in Software Testing:-
44.↑ Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. pp. 145–

146. ISBN 0-471-04328-1.
45.↑ Dustin, Elfriede (2002). Effective Software Testing. Addison Wesley. p. 3. ISBN 0-20179-

429-2.
46.↑ Marchenko, Artem (November 16, 2007). "XP Practice: Continuous Integration".

http://agilesoftwaredevelopment.com/xp/practices/continuous-integration. Retrieved 2009-
11-16.

47.↑ Gurses, Levent (February 19, 2007). "Agile 101: What is Continuous Integration?". http://
www.jacoozi.com/blog/?p=18. Retrieved 2009-11-16.

48.↑ Pan, Jiantao (Spring 1999). "Software Testing (18-849b Dependable Embedded
Systems)". Topics in Dependable Embedded Systems. Electrical and Computer Engineering
Department, Carnegie Mellon University.
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/.

49.↑ IEEE (1998). IEEE standard for software test documentation. New York: IEEE. ISBN 0-
7381-1443-X.

50.↑ Kaner, Cem (2001). "NSF grant proposal to "lay a foundation for significant
improvements in the quality of academic and commercial courses in software testing"" (pdf).
http://www.testingeducation.org/general/nsf_grant.pdf.

51.↑ Kaner, Cem (2003). "Measuring the Effectiveness of Software Testers" (pdf).
http://www.testingeducation.org/a/mest.pdf.

158

http://www.testingeducation.org/a/mest.pdf
http://www.testingeducation.org/a/mest.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-222
http://www.testingeducation.org/general/nsf_grant.pdf
http://www.testingeducation.org/general/nsf_grant.pdf
http://www.testingeducation.org/general/nsf_grant.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-221
http://en.wikibooks.org/wiki/Special:BookSources/0-7381-1443-X
http://en.wikibooks.org/wiki/Special:BookSources/0-7381-1443-X
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-220
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-219
http://www.jacoozi.com/blog/?p=18
http://www.jacoozi.com/blog/?p=18
http://www.jacoozi.com/blog/?p=18
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-218
http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-217
http://en.wikibooks.org/wiki/Special:BookSources/0-20179-429-2
http://en.wikibooks.org/wiki/Special:BookSources/0-20179-429-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-216
http://en.wikibooks.org/wiki/Special:BookSources/0-471-04328-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-215
http://www.etestinghub.com/testing_lifecycles.php#2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-214
http://msdn.microsoft.com/en-us/goglobal/bb688148
http://msdn.microsoft.com/en-us/goglobal/bb688148
http://msdn.microsoft.com/en-us/goglobal/bb688148
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-213
http://www.astqb.org/educational-resources/glossary.php#A
http://www.astqb.org/educational-resources/glossary.php#A
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-212
http://en.wikibooks.org/wiki/Special:BookSources/1559370793
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ieee_211-0
http://en.wikibooks.org/wiki/Special:BookSources/0-442-20672-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-210
http://en.wikibooks.org/wiki/Special:BookSources/0-201-80938-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-209
http://en.wikibooks.org/wiki/Special:BookSources/978-0-615-23372-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-208
http://www.satisfice.com/articles/requirements_based_testing.pdf
http://www.satisfice.com/articles/requirements_based_testing.pdf
http://en.wikipedia.org/wiki/James_Bach
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-207
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-206
http://www.bullseye.com/coverage.html#intro
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-205
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-204
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-tran_203-0
http://www.bcs.org/upload/pdf/istqbsyll.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-202
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1967-0
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1967-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-201
http://en.wikibooks.org/wiki/Special:BookSources/0-471-08112-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Cem_Kaner
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-200

52.↑ Black, Rex (December 2008). Advanced Software Testing- Vol. 2: Guide to the ISTQB
Advanced Certification as an Advanced Test Manager. Santa Barbara: Rocky Nook
Publisher. ISBN 1933952369.

53.↑ a b c d e Quality Assurance Institute
54.↑ a b International Institute for Software Testing
55.↑ K. J. Ross & Associates
56.↑ a b "ISTQB". http://www.istqb.org/.
57.↑ a b "ISTQB in the U.S.". http://www.astqb.org/.
58.↑ a b EXIN: Examination Institute for Information Science
59.↑ a b American Society for Quality
60.↑ context-driven-testing.com
61.↑ Article on taking agile traits without the agile method.
62.↑ “We’re all part of the story” by David Strom, July 1, 2009
63.↑ IEEE article about differences in adoption of agile trends between experienced managers

vs. young students of the Project Management Institute. See also Agile adoption study from
2007

64.↑ Willison, John S. (April 2004). "Agile Software Development for an Agile Force".
CrossTalk (STSC) (April 2004). Archived from the original on unknown.
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0
404willison.html.

65.↑ IEEE article on Exploratory vs. Non Exploratory testing
66.↑ An example is Mark Fewster, Dorothy Graham: Software Test Automation. Addison

Wesley, 1999, ISBN 0-201-33140-3.
67.↑ Microsoft Development Network Discussion on exactly this topic

External links

• Software testing tools and products at the Open Directory Project
• "Software that makes Software better" Economist.com
• Automated software testing metrics including manual testing metrics

Unit Tests

In computer programming, unit testing is a method by which individual units of source code are
tested to determine if they are fit for use. A unit is the smallest testable part of an application. In
procedural programming a unit may be an individual function or procedure. Unit tests are created
by programmers or occasionally by white box testers.

Ideally, each test case is independent from the others: substitutes like method stubs, mock objects,
[1] fakes and test harnesses can be used to assist testing a module in isolation. Unit tests are
typically written and run by software developers to ensure that code meets its design and behaves as
intended. Its implementation can vary from being very manual (pencil and paper) to being
formalized as part of build automation.

159

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-mocksarentstubs-239
http://www.innovativedefense.com/img/UsefulAutomatedTestingMetrics.pdf
http://www.economist.com/science/tq/displaystory.cfm?story_id=10789417
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Programming/Software_Testing/Products_and_Tools/
http://channel9.msdn.com/forums/Coffeehouse/402611-Are-you-a-Test-Driven-Developer/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-238
http://en.wikibooks.org/wiki/Special:BookSources/0201331403
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-237
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-236
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.htm
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-235
http://www.ambysoft.com/downloads/surveys/AgileAdoption2007.ppt
http://www.ambysoft.com/downloads/surveys/AgileAdoption2007.ppt
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10705/33795/01609838.pdf?temp=x
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10705/33795/01609838.pdf?temp=x
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-234
http://stpcollaborative.com/knowledge/272-were-all-part-of-the-story
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-233
http://www.technicat.com/writing/process.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-232
http://www.context-driven-testing.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-231
http://www.asq.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-American_Society_for_Quality_230-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-American_Society_for_Quality_230-0
http://www.exin-exams.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-exin-exams.com_229-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-exin-exams.com_229-0
http://www.astqb.org/
http://www.astqb.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-astqb_228-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-astqb_228-0
http://www.istqb.org/
http://www.istqb.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-istqb_227-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-istqb_227-0
http://www.kjross.com.au/cstp/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-226
http://www.testinginstitute.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-testinginstitute.com_225-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-testinginstitute.com_225-0
http://www.qaiglobalinstitute.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Quality_Assurance_Institute_224-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Quality_Assurance_Institute_224-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Quality_Assurance_Institute_224-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Quality_Assurance_Institute_224-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Quality_Assurance_Institute_224-0
http://en.wikibooks.org/wiki/Special:BookSources/1933952369
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-223

Benefits

The goal of unit testing is to isolate each part of the program and show that the individual parts are
correct.[2] A unit test provides a strict, written contract that the piece of code must satisfy. As a
result, it affords several benefits. Unit tests find problems early in the development cycle.

Facilitates change

Unit testing allows the programmer to refactor code at a later date, and make sure the module still
works correctly (e.g., in regression testing). The procedure is to write test cases for all functions and
methods so that whenever a change causes a fault, it can be quickly identified and fixed.

Readily-available unit tests make it easy for the programmer to check whether a piece of code is
still working properly.

In continuous unit testing environments, through the inherent practice of sustained maintenance,
unit tests will continue to accurately reflect the intended use of the executable and code in the face
of any change. Depending upon established development practices and unit test coverage, up-to-the-
second accuracy can be maintained.

Simplifies integration

Unit testing may reduce uncertainty in the units themselves and can be used in a bottom-up testing
style approach. By testing the parts of a program first and then testing the sum of its parts,
integration testing becomes much easier.

An elaborate hierarchy of unit tests does not equal integration testing. Integration with peripheral
units should be included in integration tests, but not in unit tests.[citation needed] Integration testing
typically still relies heavily on humans testing manually; high-level or global-scope testing can be
difficult to automate, such that manual testing often appears faster and cheaper.[citation needed]

Documentation

Unit testing provides a sort of living documentation of the system. Developers looking to learn what
functionality is provided by a unit and how to use it can look at the unit tests to gain a basic
understanding of the unit's API.

Unit test cases embody characteristics that are critical to the success of the unit. These
characteristics can indicate appropriate/inappropriate use of a unit as well as negative behaviors that
are to be trapped by the unit. A unit test case, in and of itself, documents these critical
characteristics, although many software development environments do not rely solely upon code to
document the product in development.

By contrast, ordinary narrative documentation is more susceptible to drifting from the
implementation of the program and will thus become outdated (e.g., design changes, feature creep,
relaxed practices in keeping documents up-to-date).

160

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kolawa-240

Design

When software is developed using a test-driven approach, the unit test may take the place of formal
design. Each unit test can be seen as a design element specifying classes, methods, and observable
behaviour. The following Java example will help illustrate this point.

Here is a test class that specifies a number of elements of the implementation. First, that there must
be an interface called Adder, and an implementing class with a zero-argument constructor called
AdderImpl. It goes on to assert that the Adder interface should have a method called add, with two
integer parameters, which returns another integer. It also specifies the behaviour of this method for
a small range of values.

public class TestAdder {
 public void testSum() {
 Adder adder = new AdderImpl();
 assert(adder.add(1, 1) == 2);
 assert(adder.add(1, 2) == 3);
 assert(adder.add(2, 2) == 4);
 assert(adder.add(0, 0) == 0);
 assert(adder.add(-1, -2) == -3);
 assert(adder.add(-1, 1) == 0);
 assert(adder.add(1234, 988) == 2222);
 }
}

In this case the unit test, having been written first, acts as a design document specifying the form
and behaviour of a desired solution, but not the implementation details, which are left for the
programmer. Following the "do the simplest thing that could possibly work" practice, the easiest
solution that will make the test pass is shown below.

interface Adder {
 int add(int a, int b);
}
class AdderImpl implements Adder {
 int add(int a, int b) {
 return a + b;
 }
}

Unlike other diagram-based design methods, using a unit-test as a design has one significant
advantage. The design document (the unit-test itself) can be used to verify that the implementation
adheres to the design. With the unit-test design method, the tests will never pass if the developer
does not implement the solution according to the design.

It is true that unit testing lacks some of the accessibility of a diagram, but UML diagrams are now
easily generated for most modern languages by free tools (usually available as extensions to IDEs).
Free tools, like those based on the xUnit framework, outsource to another system the graphical
rendering of a view for human consumption.

Separation of interface from implementation

Because some classes may have references to other classes, testing a class can frequently spill over
into testing another class. A common example of this is classes that depend on a database: in order
to test the class, the tester often writes code that interacts with the database. This is a mistake,
because a unit test should usually not go outside of its own class boundary, and especially should

161

not cross such process/network boundaries because this can introduce unacceptable performance
problems to the unit test-suite. Crossing such unit boundaries turns unit tests into integration tests,
and when test cases fail, makes it less clear which component is causing the failure. See also Fakes,
mocks and integration tests

Instead, the software developer should create an abstract interface around the database queries, and
then implement that interface with their own mock object. By abstracting this necessary attachment
from the code (temporarily reducing the net effective coupling), the independent unit can be more
thoroughly tested than may have been previously achieved. This results in a higher quality unit that
is also more maintainable.

Unit testing limitations

Testing cannot be expected to catch every error in the program: it is impossible to evaluate every
execution path in all but the most trivial programs. The same is true for unit testing. Additionally,
unit testing by definition only tests the functionality of the units themselves. Therefore, it will not
catch integration errors or broader system-level errors (such as functions performed across multiple
units, or non-functional test areas such as performance). Unit testing should be done in conjunction
with other software testing activities. Like all forms of software testing, unit tests can only show the
presence of errors; they cannot show the absence of errors.

Software testing is a combinatorial problem. For example, every boolean decision statement
requires at least two tests: one with an outcome of "true" and one with an outcome of "false". As a
result, for every line of code written, programmers often need 3 to 5 lines of test code.[3] This
obviously takes time and its investment may not be worth the effort. There are also many problems
that cannot easily be tested at all – for example those that are nondeterministic or involve multiple
threads. In addition, writing code for a unit test is as likely to be at least as buggy as the code it is
testing. Fred Brooks in The Mythical Man-Month quotes: never take two chronometers to sea.
Always take one or three. Meaning, if two chronometers contradict, how do you know which one is
correct?

To obtain the intended benefits from unit testing, rigorous discipline is needed throughout the
software development process. It is essential to keep careful records not only of the tests that have
been performed, but also of all changes that have been made to the source code of this or any other
unit in the software. Use of a version control system is essential. If a later version of the unit fails a
particular test that it had previously passed, the version-control software can provide a list of the
source code changes (if any) that have been applied to the unit since that time.

It is also essential to implement a sustainable process for ensuring that test case failures are
reviewed daily and addressed immediately.[4] If such a process is not implemented and ingrained
into the team's workflow, the application will evolve out of sync with the unit test suite, increasing
false positives and reducing the effectiveness of the test suite.

162

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-242
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-241

Applications

Extreme Programming

Unit testing is the cornerstone of Extreme Programming, which relies on an automated unit testing
framework. This automated unit testing framework can be either third party, e.g., xUnit, or created
within the development group.

Extreme Programming uses the creation of unit tests for test-driven development. The developer
writes a unit test that exposes either a software requirement or a defect. This test will fail because
either the requirement isn't implemented yet, or because it intentionally exposes a defect in the
existing code. Then, the developer writes the simplest code to make the test, along with other tests,
pass.

Most code in a system is unit tested, but not necessarily all paths through the code. Extreme
Programming mandates a "test everything that can possibly break" strategy, over the traditional
"test every execution path" method. This leads developers to develop fewer tests than classical
methods, but this isn't really a problem, more a restatement of fact, as classical methods have rarely
ever been followed methodically enough for all execution paths to have been thoroughly tested.
[citation needed] Extreme Programming simply recognizes that testing is rarely exhaustive (because it
is often too expensive and time-consuming to be economically viable) and provides guidance on
how to effectively focus limited resources.

Crucially, the test code is considered a first class project artifact in that it is maintained at the same
quality as the implementation code, with all duplication removed. Developers release unit testing
code to the code repository in conjunction with the code it tests. Extreme Programming's thorough
unit testing allows the benefits mentioned above, such as simpler and more confident code
development and refactoring, simplified code integration, accurate documentation, and more
modular designs. These unit tests are also constantly run as a form of regression test.

Techniques

Unit testing is commonly automated, but may still be performed manually. The IEEE does not favor
one over the other.[5] A manual approach to unit testing may employ a step-by-step instructional
document. Nevertheless, the objective in unit testing is to isolate a unit and validate its correctness.
Automation is efficient for achieving this, and enables the many benefits listed in this article.
Conversely, if not planned carefully, a careless manual unit test case may execute as an integration
test case that involves many software components, and thus preclude the achievement of most if not
all of the goals established for unit testing.

To fully realize the effect of isolation while using an automated approach, the unit or code body
under test is executed within a framework outside of its natural environment. In other words, it is
executed outside of the product or calling context for which it was originally created. Testing in
such an isolated manner reveals unnecessary dependencies between the code being tested and other
units or data spaces in the product. These dependencies can then be eliminated.

163

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-243
http://en.wikibooks.org/wiki/Wikibooks:OR

Using an automation framework, the developer codes criteria into the test to verify the unit's
correctness. During test case execution, the framework logs tests that fail any criterion. Many
frameworks will also automatically flag these failed test cases and report them in a summary.
Depending upon the severity of a failure, the framework may halt subsequent testing.

As a consequence, unit testing is traditionally a motivator for programmers to create decoupled and
cohesive code bodies. This practice promotes healthy habits in software development. Design
patterns, unit testing, and refactoring often work together so that the best solution may emerge.

Unit testing frameworks

Unit testing frameworks are most often third-party products that are not distributed as part of the
compiler suite. They help simplify the process of unit testing, having been developed for a wide
variety of languages. Examples of testing frameworks include open source solutions such as the
various code-driven testing frameworks known collectively as xUnit, and proprietary/commercial
solutions such as TBrun, Testwell CTA++ and VectorCAST/C++.

It is generally possible to perform unit testing without the support of a specific framework by
writing client code that exercises the units under test and uses assertions, exception handling, or
other control flow mechanisms to signal failure. Unit testing without a framework is valuable in that
there is a barrier to entry for the adoption of unit testing; having scant unit tests is hardly better than
having none at all, whereas once a framework is in place, adding unit tests becomes relatively easy.
[6] In some frameworks many advanced unit test features are missing or must be hand-coded.

Language-level unit testing support

Some programming languages support unit testing directly (Eg. Java). Their grammar allows the
direct declaration of unit tests without importing a library (whether third party or standard).
Additionally, the boolean conditions of the unit tests can be expressed in the same syntax as
boolean expressions used in non-unit test code, such as what is used for if and while statements.

Languages that directly support unit testing include:

• Cobra
• D

Notes

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

164

http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-244

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• The evolution of Unit Testing Syntax and Semantics
• Unit Testing Guidelines from GeoSoft
• Test Driven Development (Ward Cunningham's Wiki)
• Unit Testing 101 for the Non-Programmer
• Step-by-Step Guide to JPA-Enabled Unit Testing (Java EE)

Profiling

In software engineering, program profiling, software profiling or simply profiling, a form of
dynamic program analysis (as opposed to static code analysis), is the investigation of a program's
behavior using information gathered as the program executes. The usual purpose of this analysis is
to determine which sections of a program to optimize - to increase its overall speed, decrease its
memory requirement or sometimes both.

• A (code) profiler is a performance analysis tool that, most commonly, measures only the
frequency and duration of function calls, but there are other specific types of profilers (e.g.
memory profilers) in addition to more comprehensive profilers, capable of gathering
extensive performance data.

• An instruction set simulator which is also — by necessity — a profiler, can measure the
totality of a program's behaviour from invocation to termination.

Gathering program events

Profilers use a wide variety of techniques to collect data, including hardware interrupts, code
instrumentation, instruction set simulation, operating system hooks, and performance counters. The
usage of profilers is 'called out' in the performance engineering process.

Use of profilers

Program analysis tools are extremely important for understanding program behavior. Computer
architects need such tools to evaluate how well programs will perform on new architectures.
Software writers need tools to analyze their programs and identify critical sections of code.
Compiler writers often use such tools to find out how well their instruction scheduling or branch
prediction algorithm is performing... (ATOM, PLDI, '94)

The output of a profiler may be:-

165

http://www.sizovpoint.com/2010/01/step-by-step-guide-to-jpa-enabled-unit.html
http://www.saravanansubramanian.com/Saravanan/Articles_On_Software/Entries/2010/1/19_Unit_Testing_101_For_Non-Programmers.html
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://geosoft.no/development/unittesting.html
http://weblogs.asp.net/rosherove/archive/2008/01/17/the-evolution-of-unit-testing-and-syntax.aspx
http://weblogs.asp.net/rosherove/archive/2008/01/17/the-evolution-of-unit-testing-and-syntax.aspx
http://weblogs.asp.net/rosherove/archive/2008/01/17/the-evolution-of-unit-testing-and-syntax.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116

• A statistical summary of the events observed (a profile)

Summary profile information is often shown annotated against the source code statements
where the events occur, so the size of measurement data is linear to the code size of the
program.

/* ------------ source------------------------- count */
0001 IF X = "A" 0055
0002 THEN DO
0003 ADD 1 to XCOUNT 0032
0004 ELSE
0005 IF X = "B" 0055

• A stream of recorded events (a trace)

For sequential programs, a summary profile is usually sufficient, but performance problems in
parallel programs (waiting for messages or synchronization issues) often depend on the time
relationship of events, thus requiring a full trace to get an understanding of what is happening.
The size of a (full) trace is linear to the program's instruction path length, making it somewhat
impractical. A trace may therefore be initiated at one point in a program and terminated at
another point to limit the output.

• An ongoing interaction with the hypervisor (continuous or periodic monitoring via on-screen
display for instance)

This provides the opportunity to switch a trace on or off at any desired point during execution
in addition to viewing on-going metrics about the (still executing) program. It also provides
the opportunity to suspend asynchronous processes at critical points to examine interactions
with other parallel processes in more detail.

History

Performance analysis tools existed on IBM/360 and IBM/370 platforms from the early 1970s,
usually based on timer interrupts which recorded the Program status word (PSW) at set timer
intervals to detect "hot spots" in executing code. This was an early example of sampling (see
below). In early 1974, Instruction Set Simulators permitted full trace and other performance
monitoring features.

Profiler-driven program analysis on Unix dates back to at least 1979, when Unix systems included a
basic tool "prof" that listed each function and how much of program execution time it used. In 1982,
gprof extended the concept to a complete call graph analysis [7]

In 1994, Amitabh Srivastava and Alan Eustace of Digital Equipment Corporation published a paper
describing ATOM.[8] ATOM is a platform for converting a program into its own profiler. That is,
at compile time, it inserts code into the program to be analyzed. That inserted code outputs analysis
data. This technique - modifying a program to analyze itself - is known as "instrumentation".

In 2004, both the gprof and ATOM papers appeared on the list of the 50 most influential PLDI
papers of all time.[9]

166

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-247
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-246
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-245

Profiler types based on output

Flat profiler

Flat profilers compute the average call times, from the calls, and do not break down the call times
based on the callee or the context.

Call-graph profiler

Call graph profilers show the call times, and frequencies of the functions, and also the call-chains
involved based on the callee. However context is not preserved.

Methods of data gathering

Event-based profilers

The programming languages listed here have event-based profilers:

• Java: the JVMTI (JVM Tools Interface) API, formerly JVMPI (JVM Profiling Interface),
provides hooks to profilers, for trapping events like calls, class-load, unload, thread enter
leave.

• .NET: Can attach a profiling agent as a COM server to the CLR. Like Java, the runtime then
provides various callbacks into the agent, for trapping events like method JIT / enter / leave,
object creation, etc. Particularly powerful in that the profiling agent can rewrite the target
application's bytecode in arbitrary ways.

• Python: Python profiling includes the profile module, hotshot (which is call-graph based),
and using the 'sys.setprofile' function to trap events like c_{call,return,exception},
python_{call,return,exception}.

• Ruby: Ruby also uses a similar interface like Python for profiling. Flat-profiler in profile.rb,
module, and ruby-prof a C-extension are present.

Statistical profilers

Some profilers operate by sampling. A sampling profiler probes the target program's program
counter at regular intervals using operating system interrupts. Sampling profiles are typically less
numerically accurate and specific, but allow the target program to run at near full speed.

The resulting data are not exact, but a statistical approximation. The actual amount of error is
usually more than one sampling period. In fact, if a value is n times the sampling period, the
expected error in it is the square-root of n sampling periods. [10]

In practice, sampling profilers can often provide a more accurate picture of the target program's
execution than other approaches, as they are not as intrusive to the target program, and thus don't
have as many side effects (such as on memory caches or instruction decoding pipelines). Also since

167

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-248

they don't affect the execution speed as much, they can detect issues that would otherwise be
hidden. They are also relatively immune to over-evaluating the cost of small, frequently called
routines or 'tight' loops. They can show the relative amount of time spent in user mode versus
interruptible kernel mode such as system call processing.

Still, kernel code to handle the interrupts entails a minor loss of CPU cycles, diverted cache usage,
and is unable to distinguish the various tasks occurring in uninterruptible kernel code (microsecond-
range activity).

Dedicated hardware can go beyond this: some recent MIPS processors JTAG interface have a
PCSAMPLE register, which samples the program counter in a truly undetectable manner.

Some of the most commonly used statistical profilers are AMD CodeAnalyst, Apple Inc. Shark,
gprof, Intel VTune and Parallel Amplifier (part of Intel Parallel Studio).

Instrumenting profilers

Some profilers instrument the target program with additional instructions to collect the required
information.

Instrumenting the program can cause changes in the performance of the program, potentially
causing inaccurate results and heisenbugs. Instrumenting will always have some impact on the
program execution, typically always slowing it. However, instrumentation can be very specific and
be carefully controlled to have a minimal impact. The impact on a particular program depends on
the placement of instrumentation points and the mechanism used to capture the trace. Hardware
support for trace capture means that on some targets, instrumentation can be on just one machine
instruction. The impact of instrumentation can often be deducted (i.e. eliminated by subtraction)
from the results.

gprof is an example of a profiler that uses both instrumentation and sampling. Instrumentation is
used to gather caller information and the actual timing values are obtained by statistical sampling.

Instrumentation

• Manual: Performed by the programmer, e.g. by adding instructions to explicitly calculate
runtimes, simply count events or calls to measurement APIs such as the Application
Response Measurement standard.

• Automatic source level: instrumentation added to the source code by an automatic tool
according to an instrumentation policy.

• Compiler assisted: Example: "gcc -pg ..." for gprof, "quantify g++ ..." for Quantify
• Binary translation: The tool adds instrumentation to a compiled binary. Example: ATOM
• Runtime instrumentation: Directly before execution the code is instrumented. The

program run is fully supervised and controlled by the tool. Examples: Pin, Valgrind
• Runtime injection: More lightweight than runtime instrumentation. Code is modified at

runtime to have jumps to helper functions. Example: DynInst

168

Interpreter instrumentation

• Interpreter debug options can enable the collection of performance metrics as the
interpreter encounters each target statement. A bytecode, control table or JIT interpreters are
three examples that usually have complete control over execution of the target code, thus
enabling extremely comprehensive data collection opportunities.

Hypervisor/Simulator

• Hypervisor: Data are collected by running the (usually) unmodified program under a
hypervisor. Example: SIMMON

• Simulator and Hypervisor: Data collected interactively and selectively by running the
unmodified program under an Instruction Set Simulator. Examples: SIMON (Batch
Interactive test/debug) and IBM OLIVER (CICS interactive test/debug).

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

• Dunlavey, “Performance tuning with instruction-level cost derived from call-stack
sampling”, ACM SIGPLAN Notices 42, 8 (August, 2007), pp. 4–8.

• Dunlavey, “Performance Tuning: Slugging It Out!”, Dr. Dobb's Journal, Vol 18, #12,
November 1993, pp 18–26.

External links

• Article "Need for speed — Eliminating performance bottlenecks" on doing execution time
analysis of Java applications using IBM Rational Application Developer.

• Profiling Runtime Generated and Interpreted Code using the VTune™ Performance
Analyzer

169

http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
http://www.ibm.com/developerworks/rational/library/05/1004_gupta/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Test-driven Development

Test-driven development (TDD) is a software development process that relies on the repetition of
a very short development cycle: first the developer writes a failing automated test case that defines a
desired improvement or new function, then produces code to pass that test and finally refactors the
new code to acceptable standards. Kent Beck, who is credited with having developed or
'rediscovered' the technique, stated in 2003 that TDD encourages simple designs and inspires
confidence.[11]

Test-driven development is related to the test-first programming concepts of extreme programming,
begun in 1999,[12] but more recently has created more general interest in its own right.[13]

Programmers also apply the concept to improving and debugging legacy code developed with older
techniques.[14]

Requirements

Test-driven development requires developers to create automated unit tests that define code
requirements (immediately) before writing the code itself. The tests contain assertions that are either
true or false. Passing the tests confirms correct behavior as developers evolve and refactor the code.
Developers often use testing frameworks, such as xUnit, to create and automatically run sets of test
cases.

Test-driven development cycle

The following sequence is based on the book Test-Driven Development by Example[11].

Add a test

In test-driven development, each new feature begins with writing a test. This test must inevitably
fail because it is written before the feature has been implemented. (If it does not fail, then either the
proposed “new” feature already exists or the test is defective.) To write a test, the developer must
clearly understand the feature's specification and requirements. The developer can accomplish this
through use cases and user stories that cover the requirements and exception conditions. This could
also imply a variant, or modification of an existing test. This is a differentiating feature of test-
driven development versus writing unit tests after the code is written: it makes the developer focus
on the requirements before writing the code, a subtle but important difference.

Run all tests and see if the new one fails

This validates that the test harness is working correctly and that the new test does not mistakenly
pass without requiring any new code. This step also tests the test itself, in the negative: it rules out
the possibility that the new test will always pass, and therefore be worthless. The new test should
also fail for the expected reason. This increases confidence (although it does not entirely guarantee)
that it is testing the right thing, and will pass only in intended cases.

170

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Beck-249
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Feathers-252
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Newkirk-251
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cworld92-250
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Beck-249

Write some code

The next step is to write some code that will cause the test to pass. The new code written at this
stage will not be perfect and may, for example, pass the test in an inelegant way. That is acceptable
because later steps will improve and hone it.

It is important that the code written is only designed to pass the test; no further (and therefore
untested) functionality should be predicted and 'allowed for' at any stage.

Run the automated tests and see them succeed

If all test cases now pass, the programmer can be confident that the code meets all the tested
requirements. This is a good point from which to begin the final step of the cycle.

Refactor code

Now the code can be cleaned up as necessary. By re-running the test cases, the developer can be
confident that code refactoring is not damaging any existing functionality. The concept of removing
duplication is an important aspect of any software design. In this case, however, it also applies to
removing any duplication between the test code and the production code — for example magic
numbers or strings that were repeated in both, in order to make the test pass in step 3.

Repeat

Starting with another new test, the cycle is then repeated to push forward the functionality. The size
of the steps should always be small, with as few as 1 to 10 edits between each test run. If new code
does not rapidly satisfy a new test, or other tests fail unexpectedly, the programmer should undo or
revert in preference to excessive debugging. Continuous Integration helps by providing revertible
checkpoints. When using external libraries it is important not to make increments that are so small
as to be effectively merely testing the library itself,[13] unless there is some reason to believe that
the library is buggy or is not sufficiently feature-complete to serve all the needs of the main
program being written.

Development style

There are various aspects to using test-driven development, for example the principles of "keep it
simple, stupid" (KISS) and "You ain't gonna need it" (YAGNI). By focusing on writing only the
code necessary to pass tests, designs can be cleaner and clearer than is often achieved by other
methods.[11] In Test-Driven Development by Example Kent Beck also suggests the principle "Fake
it till you make it".

To achieve some advanced design concept (such as a design pattern), tests are written that will
generate that design. The code may remain simpler than the target pattern, but still pass all required
tests. This can be unsettling at first but it allows the developer to focus only on what is important.

171

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Beck-249
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Newkirk-251

Write the tests first. The tests should be written before the functionality that is being tested. This
has been claimed to have two benefits. It helps ensure that the application is written for testability,
as the developers must consider how to test the application from the outset, rather than worrying
about it later. It also ensures that tests for every feature will be written. When writing feature-first
code, there is a tendency by developers and the development organisations to push the developer
onto the next feature, neglecting testing entirely.

First fail the test cases. The idea is to ensure that the test really works and can catch an error. Once
this is shown, the underlying functionality can be implemented. This has been coined the "test-
driven development mantra", known as red/green/refactor where red means fail and green is pass.

Test-driven development constantly repeats the steps of adding test cases that fail, passing them,
and refactoring. Receiving the expected test results at each stage reinforces the programmer's
mental model of the code, boosts confidence and increases productivity.

Advanced practices of test-driven development can lead to Acceptance Test-driven development
(ATDD) where the criteria specified by the customer are automated into acceptance tests, which
then drive the traditional unit test-driven development (UTDD) process.[15] This process ensures
the customer has an automated mechanism to decide whether the software meets their requirements.
With ATDD, the development team now has a specific target to satisfy, the acceptance tests, which
keeps them continuously focused on what the customer really wants from that user story.

Benefits

A 2005 study found that using TDD meant writing more tests and, in turn, programmers that wrote
more tests tended to be more productive.[16] Hypotheses relating to code quality and a more direct
correlation between TDD and productivity were inconclusive.[17]

Programmers using pure TDD on new ("greenfield") projects report they only rarely feel the need to
invoke a debugger. Used in conjunction with a version control system, when tests fail unexpectedly,
reverting the code to the last version that passed all tests may often be more productive than
debugging.[18]

Test-driven development offers more than just simple validation of correctness, but can also drive
the design of a program. By focusing on the test cases first, one must imagine how the functionality
will be used by clients (in the first case, the test cases). So, the programmer is concerned with the
interface before the implementation. This benefit is complementary to Design by Contract as it
approaches code through test cases rather than through mathematical assertions or preconceptions.

Test-driven development offers the ability to take small steps when required. It allows a
programmer to focus on the task at hand as the first goal is to make the test pass. Exceptional cases
and error handling are not considered initially, and tests to create these extraneous circumstances
are implemented separately. Test-driven development ensures in this way that all written code is
covered by at least one test. This gives the programming team, and subsequent users, a greater level
of confidence in the code.

While it is true that more code is required with TDD than without TDD because of the unit test
code, total code implementation time is typically shorter.[19] Large numbers of tests help to limit
the number of defects in the code. The early and frequent nature of the testing helps to catch defects

172

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-257
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-256
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-255
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-254
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Koskela-253

early in the development cycle, preventing them from becoming endemic and expensive problems.
Eliminating defects early in the process usually avoids lengthy and tedious debugging later in the
project.

TDD can lead to more modularized, flexible, and extensible code. This effect often comes about
because the methodology requires that the developers think of the software in terms of small units
that can be written and tested independently and integrated together later. This leads to smaller,
more focused classes, looser coupling, and cleaner interfaces. The use of the mock object design
pattern also contributes to the overall modularization of the code because this pattern requires that
the code be written so that modules can be switched easily between mock versions for unit testing
and "real" versions for deployment.

Because no more code is written than necessary to pass a failing test case, automated tests tend to
cover every code path. For example, in order for a TDD developer to add an else branch to an
existing if statement, the developer would first have to write a failing test case that motivates the
branch. As a result, the automated tests resulting from TDD tend to be very thorough: they will
detect any unexpected changes in the code's behaviour. This detects problems that can arise where a
change later in the development cycle unexpectedly alters other functionality.

Vulnerabilities

• Test-driven development is difficult to use in situations where full functional tests are
required to determine success or failure. Examples of these are user interfaces, programs that
work with databases, and some that depend on specific network configurations. TDD
encourages developers to put the minimum amount of code into such modules and to
maximise the logic that is in testable library code, using fakes and mocks to represent the
outside world.

• Management support is essential. Without the entire organization believing that test-driven
development is going to improve the product, management may feel that time spent writing
tests is wasted.[20]

• Unit tests created in a test-driven development environment are typically created by the
developer who will also write the code that is being tested. The tests may therefore share the
same blind spots with the code: If, for example, a developer does not realize that certain
input parameters must be checked, most likely neither the test nor the code will verify these
input parameters. If the developer misinterprets the requirements specification for the
module being developed, both the tests and the code will be wrong.

• The high number of passing unit tests may bring a false sense of security, resulting in fewer
additional software testing activities, such as integration testing and compliance testing.

• The tests themselves become part of the maintenance overhead of a project. Badly written
tests, for example ones that include hard-coded error strings or which are themselves prone
to failure, are expensive to maintain. There is a risk that tests that regularly generate false
failures will be ignored, so that when a real failure occurs it may not be detected. It is
possible to write tests for low and easy maintenance, for example by the reuse of error
strings, and this should be a goal during the code refactoring phase described above.

• The level of coverage and testing detail achieved during repeated TDD cycles cannot easily
be re-created at a later date. Therefore these original tests become increasingly precious as
time goes by. If a poor architecture, a poor design or a poor testing strategy leads to a late

173

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-258

change that makes dozens of existing tests fail, it is important that they are individually
fixed. Merely deleting, disabling or rashly altering them can lead to undetectable holes in the
test coverage.

Code Visibility

Test suite code clearly has to be able to access the code it is testing. On the other hand normal
design criteria such as information hiding, encapsulation and the separation of concerns should not
be compromised. Therefore unit test code for TDD is usually written within the same project or
module as the code being tested.

In object oriented design this still does not provide access to private data and methods.
Therefore, extra work may be necessary for unit tests. In Java and other languages, a developer can
use reflection to access fields that are marked private.[21] Alternatively, an inner class can be
used to hold the unit tests so they will have visibility of the enclosing class's members and
attributes. In the .NET Framework and some other programming languages, partial classes may be
used to expose private methods and data for the tests to access.

It is important that such testing hacks do not remain in the production code. In C and other
languages, compiler directives such as #if DEBUG ... #endif can be placed around such
additional classes and indeed all other test-related code to prevent them being compiled into the
released code. This then means that the released code is not exactly the same as that which is unit
tested. The regular running of fewer but more comprehensive, end-to-end, integration tests on the
final release build can then ensure (among other things) that no production code exists that subtly
relies on aspects of the test harness.

There is some debate among practitioners of TDD, documented in their blogs and other writings, as
to whether it is wise to test private and protected methods and data anyway. Some argue that it
should be sufficient to test any class through its public interface as the private members are a mere
implementation detail that may change, and should be allowed to do so without breaking numbers
of tests. Others say that crucial aspects of functionality may be implemented in private methods,
and that developing this while testing it indirectly via the public interface only obscures the issue:
unit testing is about testing the smallest unit of functionality possible.[22] [23]

Fakes, mocks and integration tests

Unit tests are so named because they each test one unit of code. A complex module may have a
thousand unit tests and a simple one only ten. The tests used for TDD should never cross process
boundaries in a program, let alone network connections. Doing so introduces delays that make tests
run slowly and discourage developers from running the whole suite. Introducing dependencies on
external modules or data also turns unit tests into integration tests. If one module misbehaves in a
chain of interrelated modules, it is not so immediately clear where to look for the cause of the
failure.

When code under development relies on a database, a web service, or any other external process or
service, enforcing a unit-testable separation is also an opportunity and a driving force to design
more modular, more testable and more reusable code.[24] Two steps are necessary:

174

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-262
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-261
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-260
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-259

1. Whenever external access is going to be needed in the final design, an interface should be
defined that describes the access that will be available. See the dependency inversion
principle for a discussion of the benefits of doing this regardless of TDD.

2. The interface should be implemented in two ways, one of which really accesses the external
process, and the other of which is a fake or mock. Fake objects need do little more than add
a message such as “Person object saved” to a trace log, against which a test assertion can be
run to verify correct behaviour. Mock objects differ in that they themselves contain test
assertions that can make the test fail, for example, if the person's name and other data are not
as expected. Fake and mock object methods that return data, ostensibly from a data store or
user, can help the test process by always returning the same, realistic data that tests can rely
upon. They can also be set into predefined fault modes so that error-handling routines can be
developed and reliably tested. Fake services other than data stores may also be useful in
TDD: Fake encryption services may not, in fact, encrypt the data passed; fake random
number services may always return 1. Fake or mock implementations are examples of
dependency injection.

A corollary of such dependency injection is that the actual database or other external-access code is
never tested by the TDD process itself. To avoid errors that may arise from this, other tests are
needed that instantiate the test-driven code with the “real” implementations of the interfaces
discussed above. These tests are quite separate from the TDD unit tests, and are really integration
tests. There will be fewer of them, and they need to be run less often than the unit tests. They can
nonetheless be implemented using the same testing framework, such as xUnit.

Integration tests that alter any persistent store or database should always be designed carefully with
consideration of the initial and final state of the files or database, even if any test fails. This is often
achieved using some combination of the following techniques:

• The TearDown method, which is integral to many test frameworks.
• try...catch...finally exception handling structures where available.
• Database transactions where a transaction atomically includes perhaps a write, a read and a

matching delete operation.
• Taking a “snapshot” of the database before running any tests and rolling back to the

snapshot after each test run. This may be automated using a framework such as Ant or NAnt
or a continuous integration system such as CruiseControl.

• Initialising the database to a clean state before tests, rather than cleaning up after them. This
may be relevant where cleaning up may make it difficult to diagnose test failures by deleting
the final state of the database before detailed diagnosis can be performed.

Frameworks such as Moq, jMock, NMock, EasyMock, Typemock, jMockit, Unitils, Mockito,
Mockachino, PowerMock or Rhino Mocks exist to make the process of creating and using complex
mock objects easier.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

175

http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• [10] on WikiWikiWeb
• Test or spec? Test and spec? Test from spec! , by Bertrand Meyer (September 2004)
• Microsoft Visual Studio Team Test from a TDD approach
• Write Maintainable Unit Tests That Will Save You Time And Tears
• Improving Application Quality Using Test-Driven Development (TDD)

Refactoring

Code refactoring is "a disciplined way to restructure code",[25] undertaken in order to improve
some of the nonfunctional attributes of the software. Typically, this is done by applying series of
"refactorings", each of which is a (usually) tiny change in a computer program's source code that
does not modify its functional requirements. Advantages include improved code readability and
reduced complexity to improve the maintainability of the source code, as well as a more expressive
internal architecture or object model to improve extensibility.

“ By continuously improving the design of code, we make it easier and easier to work with. This is
in sharp contrast to what typically happens: little refactoring and a great deal of attention paid
to expediently adding new features. If you get into the hygienic habit of refactoring continuously,
you'll find that it is easier to extend and maintain code. ”

—- Joshua Kerievsky, Refactoring to Patterns [26]

Refactoring does not take place in a vacuum, but typically the refactoring process takes place in a
context of adding features to software:

• "... refactoring and adding new functionality are two different but complementary tasks" --
Scott Ambler

176

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kerievsky-264
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-263
http://www.methodsandtools.com/archive/archive.php?id=20
http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://msdn.microsoft.com/en-us/library/ms379625(VS.80).aspx
http://www.eiffel.com/general/monthly_column/2004/september.html
http://c2.com/cgi/wiki?TestDrivenDevelopment%7CTestDrivenDevelopment
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115

Overview

Refactoring is usually motivated by noticing a code smell.[27] For example the method at hand may
be very long, or it may be a near duplicate of another nearby method. Once recognized, such
problems can be addressed by refactoring the source code, or transforming it into a new form that
behaves the same as before but that no longer "smells". For a long routine, extract one or more
smaller subroutines. Or for duplicate routines, remove the duplication and utilize one shared
function in their place. Failure to perform refactoring can result in accumulating technical debt.

There are two general categories of benefits to the activity of refactoring.

1. Maintainability. It is easier to fix bugs because the source code is easy to read and the intent
of its author is easy to grasp.[28] This might be achieved by reducing large monolithic
routines into a set of individually concise, well-named, single-purpose methods. It might be
achieved by moving a method to a more appropriate class, or by removing misleading
comments.

2. Extensibility. It is easier to extend the capabilities of the application if it uses recognizable
design patterns, and it provides some flexibility where none before may have existed.[26]

Before refactoring a section of code, a solid set of automatic unit tests is needed. The tests should
demonstrate in a few seconds [citation needed] that the behavior of the module is correct. The process
is then an iterative cycle of making a small program transformation, testing it to ensure correctness,
and making another small transformation. If at any point a test fails, you undo your last small
change and try again in a different way. Through many small steps the program moves from where
it was to where you want it to be. Proponents of extreme programming and other agile
methodologies describe this activity as an integral part of the software development cycle.

List of refactoring techniques

Here are some examples of code refactorings; some of these may only apply to certain languages or
language types. A longer list can be found in Fowler's Refactoring book[27] and on Fowler's
Refactoring Website.[29]

• Techniques that allow for more abstraction
• Encapsulate Field – force code to access the field with getter and setter methods
• Generalize Type – create more general types to allow for more code sharing
• Replace type-checking code with State/Strategy[30]
• Replace conditional with polymorphism[31]

• Techniques for breaking code apart into more logical pieces
• Extract Method, to turn part of a larger method into a new method. By breaking

down code in smaller pieces, it is more easily understandable. This is also applicable
to functions.

• Extract Class moves part of the code from an existing class into a new class.
• Techniques for improving names and location of code

• Move Method or Move Field – move to a more appropriate Class or source file
• Rename Method or Rename Field – changing the name into a new one that better

reveals its purpose

177

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-269
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-268
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-267
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-fowler-265
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kerievsky-264
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-martin-266
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-fowler-265

• Pull Up – in OOP, move to a superclass
• Push Down – in OOP, move to a subclass

Hardware refactoring

While the term refactoring originally referred exclusively to refactoring of software code, in recent
years code written in hardware description languages (HDLs) has also been refactored. The term
hardware refactoring is used as a shorthand term for refactoring of code in hardware description
languages. Since HDLs are not considered to be programming languages by most hardware
engineers,[32] hardware refactoring is to be considered a separate field from traditional code
refactoring.

Automated refactoring of analog hardware descriptions (in VHDL-AMS) has been proposed by
Zeng and Huss.[33] In their approach, refactoring preserves the simulated behavior of a hardware
design. The non-functional measurement that improves is that refactored code can be processed by
standard synthesis tools, while the original code cannot. Refactoring of digital HDLs, albeit manual
refactoring, has also been investigated by Synopsys fellow Mike Keating.[34] [35] His target is to
make complex systems easier to understand, which increases the designers' productivity.

In the summer of 2008, there was an intense discussion about refactoring of VHDL code on the
news://comp.lang.vhdl newsgroup.[36] The discussion revolved around a specific manual
refactoring performed by one engineer, and the question to whether or not automated tools for such
refactoring exist.

As of late 2009, Sigasi is offering automated tool support for VHDL refactoring.[37]

History

In the past refactoring was avoided in development processes. One example of this is that CVS
(created in 1984) does not version the moving or renaming of files and directories.

Although refactoring code has been done informally for years, William Opdyke's 1992 Ph.D.
dissertation[38] is the first known paper to specifically examine refactoring,[39] although all the
theory and machinery have long been available as program transformation systems. All of these
resources provide a catalog of common methods for refactoring; a refactoring method has a
description of how to apply the method and indicators for when you should (or should not) apply
the method.

Martin Fowler's book Refactoring: Improving the Design of Existing Code[27] is the canonical
reference.

The first known use of the term "refactoring" in the published literature was in a September, 1990
article by William F. Opdyke and Ralph E. Johnson.[40] Opdyke's Ph.D. thesis,[38] published in
1992, also used this term.[39]

178

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-etymology-277
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-opdyke-thesis-276
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-opdyke90-278
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-fowler-265
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-etymology-277
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-opdyke-thesis-276
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-275
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-274
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-273
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-272
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-271
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-270

The term "factoring" has been used in the Forth community since at least the early
1980s[citation needed]. Chapter Six of Leo Brodie's book Thinking Forth (1984) is dedicated to the
subject.

In extreme programming, the Extract Method refactoring technique has essentially the same
meaning as factoring in Forth; to break down a "word" (or function) into smaller, more easily
maintained functions.

Automated code refactoring

Many software editors and IDEs have automated refactoring support. Here is a list of a few of these
editors, or so-called refactoring browsers.

• IntelliJ IDEA (for Java)
• Eclipse's Java Development Toolkit (JDT)
• NetBeans (for Java)

• and RefactoringNG, a Netbeans module for refactoring where you can write
transformations rules of the program's abstract syntax tree.

• Embarcadero Delphi
• Visual Studio (for .NET)
• JustCode (addon for Visual Studio)
• ReSharper (addon for Visual Studio)
• Coderush (addon for Visual Studio)
• Visual Assist (addon for Visual Studio with refactoring support for VB, VB.NET. C# and

C++)
• DMS Software Reengineering Toolkit (Implements large-scale refactoring for C, C++, C#,

COBOL, Java, PHP and other languages)
• Photran a Fortran plugin for the Eclipse IDE
• SharpSort addin for Visual Studio 2008
• Sigasi HDT (for VHDL)
• XCode
• Smalltalk Refactoring Browser (for Smalltalk)
• Simplifide (for Verilog, VHDL and SystemVerilog)
• Tidier (for Erlang)

References

1. ↑ Fowler, Martin (2007-01-02). "Mocks aren't Stubs".
http://martinfowler.com/articles/mocksArentStubs.html. Retrieved 2008-04-01.

2. ↑ Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in
Software Management. Wiley-IEEE Computer Society Press. p. 75. ISBN 0470042125.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

3. ↑ Cramblitt, Bob (2007-09-20). "Alberto Savoia sings the praises of software testing". http://
searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html.
Retrieved 2007-11-29.

179

http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-241
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/wiki/Special:BookSources/0470042125
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kolawa_240-0
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-mocksarentstubs_239-0
http://kenai.com/projects/refactoringng/
http://en.wikibooks.org/wiki/Wikibooks:OR

4. ↑ daVeiga, Nada (2008-02-06). "Change Code Without Fear: Utilize a regression safety net" .
http://www.ddj.com/development-tools/206105233. Retrieved 2008-02-08.

5. ↑ IEEE Standards Board, "IEEE Standard for Software Unit Testing: An American National
Standard, ANSI/IEEE Std 1008-1987" in IEEE Standards: Software Engineering, Volume
Two: Process Standards; 1999 Edition; published by The Institute of Electrical and
Electronics Engineers, Inc. Software Engineering Technical Committee of the IEEE
Computer Society.

6. ↑ Bullseye Testing Technology (2006–2008). "Intermediate Coverage Goals".
http://www.bullseye.com/coverage.html#intermediate. Retrieved 24 March 2009.

7. ↑ gprof: a Call Graph Execution Profiler
8. ↑ Atom: A system for building customized program analysis tools, Amitabh Srivastava and

Alan Eustace, 1994 (download)
9. ↑ 20 Years of PLDI (1979 - 1999): A Selection, Kathryn S. McKinley, Editor
10.↑ Statistical Inaccuracy of gprof Output
11.↑ a b c Beck, K. Test-Driven Development by Example, Addison Wesley, 2003
12.↑ Lee Copeland (December 2001). "Extreme Programming". Computerworld.

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.ht
ml. Retrieved January 11, 2011.

13.↑ a b Newkirk, JW and Vorontsov, AA. Test-Driven Development in Microsoft .NET,
Microsoft Press, 2004.

14.↑ Feathers, M. Working Effectively with Legacy Code, Prentice Hall, 2004
15.↑ Koskela, L. "Test Driven: TDD and Acceptance TDD for Java Developers", Manning

Publications, 2007
16.↑ Erdogmus, Hakan; Morisio, Torchiano. "On the Effectiveness of Test-first Approach to

Programming". Proceedings of the IEEE Transactions on Software Engineering, 31(1).
January 2005. (NRC 47445). http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html.
Retrieved 2008-01-14. "We found that test-first students on average wrote more tests and, in
turn, students who wrote more tests tended to be more productive."

17.↑ Proffitt, Jacob. "TDD Proven Effective! Or is it?".
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx.
Retrieved 2008-02-21. "So TDD's relationship to quality is problematic at best. Its
relationship to productivity is more interesting. I hope there's a follow-up study because the
productivity numbers simply don't add up very well to me. There is an undeniable
correlation between productivity and the number of tests, but that correlation is actually
stronger in the non-TDD group (which had a single outlier compared to roughly half of the
TDD group being outside the 95% band)."

18.↑ Llopis, Noel (20 February 2005). "Stepping Through the Looking Glass: Test-Driven
Game Development (Part 1)". Games from Within.
http://www.gamesfromwithin.com/articles/0502/000073.html. Retrieved 2007-11-01.
"Comparing [TDD] to the non-test-driven development approach, you're replacing all the
mental checking and debugger stepping with code that verifies that your program does
exactly what you intended it to do."

19.↑ Müller, Matthias M.; Padberg, Frank. "About the Return on Investment of Test-Driven
Development" (PDF). Universität Karlsruhe, Germany. pp. 6.
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf. Retrieved 2007-11-
01.

20.↑ Loughran, Steve (November 6th, 2006). "Testing" (PDF). HP Laboratories.
http://people.apache.org/~stevel/slides/testing.pdf. Retrieved 2009-08-12.

180

http://people.apache.org/~stevel/slides/testing.pdf
http://people.apache.org/~stevel/slides/testing.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-258
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-257
http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.gamesfromwithin.com/articles/0502/000073.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-256
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-255
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-254
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Koskela_253-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Feathers_252-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Newkirk_251-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Newkirk_251-0
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cworld92_250-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Beck_249-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Beck_249-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Beck_249-0
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-248
http://www.cs.utexas.edu/users/mckinley/20-years.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-247
http://www.ece.cmu.edu/~ece548/tools/atom/man/wrl_94_2.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-246
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-245
http://www.bullseye.com/coverage.html#intermediate
http://www.bullseye.com/coverage.html#intermediate
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-244
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-243
http://www.ddj.com/development-tools/206105233
http://www.ddj.com/development-tools/206105233
http://www.ddj.com/development-tools/206105233
http://www.ddj.com/development-tools/206105233
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-242

21.↑ Burton, Ross (11/12/2003). "Subverting Java Access Protection for Unit Testing".
O'Reilly Media, Inc.. http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html.
Retrieved 2009-08-12.

22.↑ Newkirk, James (7 June 2004). "Testing Private Methods/Member Variables - Should you
or shouldn't you". Microsoft Corporation.
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx. Retrieved 2009-08-
12.

23.↑ Stall, Tim (1 Mar 2005). "How to Test Private and Protected methods in .NET".
CodeProject. http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx. Retrieved
2009-08-12.

24.↑ Fowler, Martin (1999). Refactoring - Improving the design of existing code. Boston:
Addison Wesley Longman, Inc.. ISBN 0-201-48567-2.

25.↑ Scott Ambler
26.↑ a b Kerievsky, Joshua (2004). Refactoring to Patterns. Addison Wesley.
27.↑ a b c Fowler, Martin (1999). Refactoring: Improving the design of existing code. Addison

Wesley.
28.↑ Martin, Robert (2009). Clean Code. Prentice Hall.
29.↑ Refactoring techniques in Fowler's refactoring Website
30.↑ Replace type-checking code with State/Strategy
31.↑ Replace conditional with polymorphism
32.↑ Hardware description languages and programming languages
33.↑ Kaiping Zeng, Sorin A. Huss, "Architecture refinements by code refactoring of behavioral

VHDL-AMS models". ISCAS 2006
34.↑ M. Keating :"Complexity, Abstraction, and the Challenges of Designing Complex

Systems", in DAC'08 tutorial [4]"Bridging a Verification Gap: C++ to RTL for Practical
Design"

35.↑ M. Keating, P. Bricaud: Reuse Methodology Manual for System-on-a-Chip Designs,
Kluwer Academic Publishers, 1999.

36.↑ http://newsgroups.derkeiler.com/Archive/Comp/comp.lang.vhdl/2008-06/msg00173.html
37.↑ www.eetimes.com/news/latest/showArticle.jhtml?articleID=222001855
38.↑ a b Opdyke, William F (June 1992) (compressed Postscript). Refactoring Object-Oriented

Frameworks. Ph.D. thesis. University of Illinois at Urbana-Champaign.
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z. Retrieved 2008-02-12.

39.↑ a b Martin Fowler, "MF Bliki: EtymologyOfRefactoring"
40.↑ Opdyke, William F.; Johnson, Ralph E. (September 1990). "Refactoring: An Aid in

Designing Application Frameworks and Evolving Object-Oriented Systems". Proceedings
of the Symposium on Object Oriented Programming Emphasizing Practical Applications
(SOOPPA). ACM.

Further reading

• Fowler, Martin (1999). Refactoring. Improving the Design of Existing Code. Addison-
Wesley. ISBN 0-201-48567-2.

• Wake, William C. (2003). Refactoring Workbook. Addison-Wesley. ISBN 0-321-10929-5.
• Mens, Tom and Tourwé, Tom (2004) A Survey of Software Refactoring, IEEE Transactions

on Software Engineering, February 2004 (vol. 30 no. 2), pp. 126-139
• Feathers, Michael C (2004). Working Effectively with Legacy Code. Prentice Hall. ISBN 0-

13-117705-2.

181

http://en.wikibooks.org/wiki/Special:BookSources/0-13-117705-2
http://en.wikibooks.org/wiki/Special:BookSources/0-13-117705-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://doi.ieeecomputersociety.org/10.1109/TSE.2004.1265817
http://en.wikibooks.org/wiki/Special:BookSources/0-321-10929-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-201-48567-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikipedia.org/wiki/William_Opdyke
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-opdyke90_278-0
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-etymology_277-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-etymology_277-0
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
http://en.wikipedia.org/wiki/William_Opdyke
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-opdyke-thesis_276-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-opdyke-thesis_276-0
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222001855
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-275
http://newsgroups.derkeiler.com/Archive/Comp/comp.lang.vhdl/2008-06/msg00173.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-274
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-273
http://www.dac.com/events/eventdetails.aspx?id=77-130
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-272
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-271
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-270
http://www.refactoring.com/catalog/replaceConditionalWithPolymorphism.html
http://www.refactoring.com/catalog/replaceConditionalWithPolymorphism.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-269
http://www.refactoring.com/catalog/replaceTypeCodeWithStateStrategy.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-268
http://www.refactoring.com/catalog/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-267
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-martin_266-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-fowler_265-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-fowler_265-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-fowler_265-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kerievsky_264-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kerievsky_264-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-263
http://en.wikibooks.org/wiki/Special:BookSources/0-201-48567-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-262
http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-261
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-260
http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html
http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-259

• Kerievsky, Joshua (2004). Refactoring To Patterns. Addison-Wesley. ISBN 0-321-21335-1.
• Arsenovski, Danijel (2008). Professional Refactoring in Visual Basic. Wrox. ISBN 0-47-

017979-1.
• Arsenovski, Danijel (2009). Professional Refactoring in C# and ASP.NET. Wrox.

ISBN 978-0470434529.
• Ritchie, Peter (2010). Refactoring with Visual Studio 2010. Packt. ISBN 978-1849680103.

External links

• What Is Refactoring? (c2.com article)
• Martin Fowler's homepage about refactoring
• Aspect-Oriented Refactoring by Ramnivas Laddad
• A Survey of Software Refactoring by Tom Mens and Tom Tourwé
• Refactoring at the Open Directory Project
• Refactoring Java Code
• Refactoring To Patterns Catalog
• Extract Boolean Variable from Conditional (a refactoring pattern not listed in the above

catalog)
• Test-Driven Development With Refactoring
• Revisiting Fowler’s Video Store: Refactoring Code, Refining Abstractions

182

http://blog.symprise.net/2009/04/revisiting-fowlers-video-store-refactoring-code-reengineering-abstractions/
http://www.testingtv.com/2009/09/24/test-driven-development-with-refactoring/
http://www.industriallogic.com/papers/extractboolean.html
http://industriallogic.com/xp/refactoring/catalog.html
http://www.methodsandtools.com/archive/archive.php?id=4
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Programming/Methodologies/Refactoring/
http://csdl.computer.org/comp/trans/ts/2004/02/e2toc.htm
http://www.theserverside.com/articles/article.tss?l=AspectOrientedRefactoringPart1
http://www.refactoring.com/
http://c2.com/cgi/wiki?WhatIsRefactoring
http://en.wikibooks.org/wiki/Special:BookSources/978-1849680103
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/978-0470434529
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-47-017979-1
http://en.wikibooks.org/wiki/Special:BookSources/0-47-017979-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-321-21335-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number

Software Quality

Introduction

In the context of software engineering, software quality measures how well software is designed
(quality of design), and how well the software conforms to that design (quality of conformance),[1]
although there are several different definitions. It is often described as the 'fitness for purpose' of a
piece of software.

Whereas quality of conformance is concerned with implementation (see Software Quality
Assurance), quality of design measures how valid the design and requirements are in creating a
worthwhile product.[2]

Definition

One of the challenges of software quality is that "everyone feels they understand it".[3]

Software quality may be defined as conformance to explicitly stated functional and performance
requirements, explicitly documented development standards and implicit characteristics that are
expected of all professionally developed software.

The three key points in this definition:

1. Software requirements are the foundations from which quality is measured.

Lack of conformance to requirement is lack of quality.

2. Specified standards define a set of development criteria that guide the manager is software
engineering.

If criteria are not followed lack of quality will usually result.

3. A set of implicit requirements often goes unmentioned, for example ease of use,
maintainability etc.

If software confirms to its explicit requirement but fails to meet implicit
requirements, software quality is suspected.

A definition in Steve McConnell's Code Complete divides software into two pieces: internal and
external quality characteristics. External quality characteristics are those parts of a product that
face its users, where internal quality characteristics are those that do not.[4]

Another definition by Dr. Tom DeMarco says "a product's quality is a function of how much it
changes the world for the better."[5] This can be interpreted as meaning that user satisfaction is
more important than anything in determining software quality.[1]

183

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Press746-279
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-283
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-282
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-281
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-280
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Press746-279

Another definition, coined by Gerald Weinberg in Quality Software Management: Systems
Thinking, is "Quality is value to some person." This definition stresses that quality is inherently
subjective - different people will experience the quality of the same software very differently. One
strength of this definition is the questions it invites software teams to consider, such as "Who are
the people we want to value our software?" and "What will be valuable to them?"

History

Software product quality

• Product quality
• conformance to requirements or program specification; related to Reliability

• Scalability
• Correctness
• Completeness
• Absence of bugs
• Fault-tolerance

• Extensibility
• Maintainability

• Documentation

The Consortium for IT Software Quality (CISQ) was launched in 2009 to standardize the
measurement of software product quality. The Consortium's goal is to bring together industry
executives from Global 2000 IT organizations, system integrators, outsourcers, and package
vendors to jointly address the challenge of standardizing the measurement of IT software quality
and to promote a market-based ecosystem to support its deployment.

Source code quality

A computer has no concept of "well-written" source code. However, from a human point of view
source code can be written in a way that has an effect on the effort needed to comprehend its
behavior. Many source code programming style guides, which often stress readability and usually
language-specific conventions are aimed at reducing the cost of source code maintenance. Some of
the issues that affect code quality include:

• Readability
• Ease of maintenance, testing, debugging, fixing, modification and portability
• Low complexity
• Low resource consumption: memory, CPU
• Number of compilation or lint warnings
• Robust input validation and error handling, established by software fault injection

Methods to improve the quality:

• Refactoring

184

• Code Inspection or software review
• Documenting code

Software reliability

Software reliability is an important facet of software quality. It is defined as "the probability of
failure-free operation of a computer program in a specified environment for a specified time".[6]

One of reliability's distinguishing characteristics is that it is objective, measurable, and can be
estimated, whereas much of software quality is subjective criteria.[7] This distinction is especially
important in the discipline of Software Quality Assurance. These measured criteria are typically
called software metrics.

History

With software embedded into many devices today, software failure has caused more than
inconvenience. Software errors have even caused human fatalities. The causes have ranged from
poorly designed user interfaces to direct programming errors. An example of a programming error
that lead to multiple deaths is discussed in Dr. Leveson's paper [11] (PDF). This has resulted in
requirements for development of some types software. In the United States, both the Food and Drug
Administration (FDA) and Federal Aviation Administration (FAA) have requirements for software
development.

Goal of reliability

The need for a means to objectively determine software reliability comes from the desire to apply
the techniques of contemporary engineering fields to the development of software. That desire is a
result of the common observation, by both lay-persons and specialists, that computer software does
not work the way it ought to. In other words, software is seen to exhibit undesirable behaviour, up
to and including outright failure, with consequences for the data which is processed, the machinery
on which the software runs, and by extension the people and materials which those machines might
negatively affect. The more critical the application of the software to economic and production
processes, or to life-sustaining systems, the more important is the need to assess the software's
reliability.

Regardless of the criticality of any single software application, it is also more and more frequently
observed that software has penetrated deeply into most every aspect of modern life through the
technology we use. It is only expected that this infiltration will continue, along with an
accompanying dependency on the software by the systems which maintain our society. As software
becomes more and more crucial to the operation of the systems on which we depend, the argument
goes, it only follows that the software should offer a concomitant level of dependability. In other
words, the software should behave in the way it is intended, or even better, in the way it should.

185

http://sunnyday.mit.edu/papers/therac.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-285
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-284

Challenge of reliability

The circular logic of the preceding sentence is not accidental—it is meant to illustrate a
fundamental problem in the issue of measuring software reliability, which is the difficulty of
determining, in advance, exactly how the software is intended to operate. The problem seems to
stem from a common conceptual error in the consideration of software, which is that software in
some sense takes on a role which would otherwise be filled by a human being. This is a problem on
two levels. Firstly, most modern software performs work which a human could never perform,
especially at the high level of reliability that is often expected from software in comparison to
humans. Secondly, software is fundamentally incapable of most of the mental capabilities of
humans which separate them from mere mechanisms: qualities such as adaptability, general-
purpose knowledge, a sense of conceptual and functional context, and common sense.

Nevertheless, most software programs could safely be considered to have a particular, even singular
purpose. If the possibility can be allowed that said purpose can be well or even completely defined,
it should present a means for at least considering objectively whether the software is, in fact,
reliable, by comparing the expected outcome to the actual outcome of running the software in a
given environment, with given data. Unfortunately, it is still not known whether it is possible to
exhaustively determine either the expected outcome or the actual outcome of the entire set of
possible environment and input data to a given program, without which it is probably impossible to
determine the program's reliability with any certainty.

However, various attempts are in the works to attempt to rein in the vastness of the space of
software's environmental and input variables, both for actual programs and theoretical descriptions
of programs. Such attempts to improve software reliability can be applied at different stages of a
program's development, in the case of real software. These stages principally include: requirements,
design, programming, testing, and runtime evaluation. The study of theoretical software reliability
is predominantly concerned with the concept of correctness, a mathematical field of computer
science which is an outgrowth of language and automata theory.

Reliability in program development

Requirements

A program cannot be expected to work as desired if the developers of the program do not, in fact,
know the program's desired behaviour in advance, or if they cannot at least determine its desired
behaviour in parallel with development, in sufficient detail. What level of detail is considered
sufficient is hotly debated. The idea of perfect detail is attractive, but may be impractical, if not
actually impossible. This is because the desired behaviour tends to change as the possible range of
the behaviour is determined through actual attempts, or more accurately, failed attempts, to achieve
it.

Whether a program's desired behaviour can be successfully specified in advance is a moot point if
the behaviour cannot be specified at all, and this is the focus of attempts to formalize the process of
creating requirements for new software projects. In situ with the formalization effort is an attempt to
help inform non-specialists, particularly non-programmers, who commission software projects

186

without sufficient knowledge of what computer software is in fact capable. Communicating this
knowledge is made more difficult by the fact that, as hinted above, even programmers cannot
always know in advance what is actually possible for software in advance of trying.

Design

While requirements are meant to specify what a program should do, design is meant, at least at a
high level, to specify how the program should do it. The usefulness of design is also questioned by
some, but those who look to formalize the process of ensuring reliability often offer good software
design processes as the most significant means to accomplish it. Software design usually involves
the use of more abstract and general means of specifying the parts of the software and what they do.
As such, it can be seen as a way to break a large program down into many smaller programs, such
that those smaller pieces together do the work of the whole program.

The purposes of high-level design are as follows. It separates what are considered to be problems of
architecture, or overall program concept and structure, from problems of actual coding, which solve
problems of actual data processing. It applies additional constraints to the development process by
narrowing the scope of the smaller software components, and thereby—it is hoped—removing
variables which could increase the likelihood of programming errors. It provides a program
template, including the specification of interfaces, which can be shared by different teams of
developers working on disparate parts, such that they can know in advance how each of their
contributions will interface with those of the other teams. Finally, and perhaps most controversially,
it specifies the program independently of the implementation language or languages, thereby
removing language-specific biases and limitations which would otherwise creep into the design,
perhaps unwittingly on the part of programmer-designers.

Programming

The history of computer programming language development can often be best understood in the
light of attempts to master the complexity of computer programs, which otherwise becomes more
difficult to understand in proportion (perhaps exponentially) to the size of the programs. (Another
way of looking at the evolution of programming languages is simply as a way of getting the
computer to do more and more of the work, but this may be a different way of saying the same
thing). Lack of understanding of a program's overall structure and functionality is a sure way to fail
to detect errors in the program, and thus the use of better languages should, conversely, reduce the
number of errors by enabling a better understanding.

Improvements in languages tend to provide incrementally what software design has attempted to do
in one fell swoop: consider the software at ever greater levels of abstraction. Such inventions as
statement, sub-routine, file, class, template, library, component and more have allowed the
arrangement of a program's parts to be specified using abstractions such as layers, hierarchies and
modules, which provide structure at different granularities, so that from any point of view the
program's code can be imagined to be orderly and comprehensible.

In addition, improvements in languages have enabled more exact control over the shape and use of
data elements, culminating in the abstract data type. These data types can be specified to a very fine
degree, including how and when they are accessed, and even the state of the data before and after it
is accessed..

187

Software Build and Deployment

Many programming languages such as C and Java require the program "source code" to be
translated in to a form that can be executed by a computer. This translation is done by a program
called a compiler. Additional operations may be involved to associate, bind, link or package files
together in order to create a usable runtime configuration of the software application. The totality of
the compiling and assembly process is generically called "building" the software.

The software build is critical to software quality because if any of the generated files are incorrect
the software build is likely to fail. And, if the incorrect version of a program is inadvertently used,
then testing can lead to false results.

Software builds are typically done in work area unrelated to the runtime area, such as the
application server. For this reason, a deployment step is needed to physically transfer the software
build products to the runtime area. The deployment procedure may also involve technical
parameters, which, if set incorrectly, can also prevent software testing from beginning. For
example, a Java application server may have options for parent-first or parent-last class loading.
Using the incorrect parameter can cause the application to fail to execute on the application server.

The technical activities supporting software quality including build, deployment, change control
and reporting are collectively known as Software configuration management. A number of software
tools have arisen to help meet the challenges of configuration management including file control
tools and build control tools.

Testing

Software testing, when done correctly, can increase overall software quality of conformance by
testing that the product conforms to its requirements. Testing includes, but is not limited to:

1. Unit Testing
2. Functional Testing
3. Regression Testing
4. Performance Testing
5. Failover Testing
6. Usability Testing

A number of agile methodologies use testing early in the development cycle to ensure quality in
their products. For example, the test-driven development practice, where tests are written before the
code they will test, is used in Extreme Programming to ensure quality.

Runtime

runtime reliability determinations are similar to tests, but go beyond simple confirmation of
behaviour to the evaluation of qualities such as performance and interoperability with other code or
particular hardware configurations.

188

Software quality factors

A software quality factor is a non-functional requirement for a software program which is not called
up by the customer's contract, but nevertheless is a desirable requirement which enhances the
quality of the software program. Note that none of these factors are binary; that is, they are not
“either you have it or you don’t” traits. Rather, they are characteristics that one seeks to maximize
in one’s software to optimize its quality. So rather than asking whether a software product “has”
factor x, ask instead the degree to which it does (or does not).

Some software quality factors are listed here:

Understandability
Clarity of purpose. This goes further than just a statement of purpose; all of the design and
user documentation must be clearly written so that it is easily understandable. This is
obviously subjective in that the user context must be taken into account: for instance, if the
software product is to be used by software engineers it is not required to be understandable to
the layman.

Completeness
Presence of all constituent parts, with each part fully developed. This means that if the code
calls a subroutine from an external library, the software package must provide reference to
that library and all required parameters must be passed. All required input data must also be
available.

Conciseness
Minimization of excessive or redundant information or processing. This is important where
memory capacity is limited, and it is generally considered good practice to keep lines of code
to a minimum. It can be improved by replacing repeated functionality by one subroutine or
function which achieves that functionality. It also applies to documents.

Portability
Ability to be run well and easily on multiple computer configurations. Portability can mean
both between different hardware—such as running on a PC as well as a smartphone—and
between different operating systems—such as running on both Mac OS X and GNU/Linux.

Consistency
Uniformity in notation, symbology, appearance, and terminology within itself.

Maintainability
Propensity to facilitate updates to satisfy new requirements. Thus the software product that is
maintainable should be well-documented, should not be complex, and should have spare
capacity for memory, storage and processor utilization and other resources.

Testability
Disposition to support acceptance criteria and evaluation of performance. Such a
characteristic must be built-in during the design phase if the product is to be easily testable; a
complex design leads to poor testability.

Usability

189

Convenience and practicality of use. This is affected by such things as the human-computer
interface. The component of the software that has most impact on this is the user interface
(UI), which for best usability is usually graphical (i.e. a GUI).

Reliability
Ability to be expected to perform its intended functions satisfactorily. This implies a time
factor in that a reliable product is expected to perform correctly over a period of time. It also
encompasses environmental considerations in that the product is required to perform correctly
in whatever conditions it finds itself (sometimes termed robustness).

Efficiency
Fulfillment of purpose without waste of resources, such as memory, space and processor
utilization, network bandwidth, time, etc.

Security
Ability to protect data against unauthorized access and to withstand malicious or inadvertent
interference with its operations. Besides the presence of appropriate security mechanisms
such as authentication, access control and encryption, security also implies resilience in the
face of malicious, intelligent and adaptive attackers.

Measurement of software quality factors

There are varied perspectives within the field on measurement. There are a great many measures
that are valued by some professionals—or in some contexts, that are decried as harmful by others.
Some believe that quantitative measures of software quality are essential. Others believe that
contexts where quantitative measures are useful are quite rare, and so prefer qualitative measures.
Several leaders in the field of software testing have written about the difficulty of measuring what
we truly want to measure well.[8] [9]

One example of a popular metric is the number of faults encountered in the software. Software that
contains few faults is considered by some to have higher quality than software that contains many
faults. Questions that can help determine the usefulness of this metric in a particular context
include:

1. What constitutes “many faults?” Does this differ depending upon the purpose of the
software (e.g., blogging software vs. navigational software)? Does this take into account the
size and complexity of the software?

2. Does this account for the importance of the bugs (and the importance to the stakeholders of
the people those bugs bug)? Does one try to weight this metric by the severity of the fault, or
the incidence of users it affects? If so, how? And if not, how does one know that 100 faults
discovered is better than 1000?

3. If the count of faults being discovered is shrinking, how do I know what that means? For
example, does that mean that the product is now higher quality than it was before? Or that
this is a smaller/less ambitious change than before? Or that fewer tester-hours have gone into
the project than before? Or that this project was tested by less skilled testers than before? Or
that the team has discovered that fewer faults reported is in their interest?

190

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-287
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Kaner-286

This last question points to an especially difficult one to manage. All software quality metrics are in
some sense measures of human behavior, since humans create software.[8] If a team discovers that
they will benefit from a drop in the number of reported bugs, there is a strong tendency for the team
to start reporting fewer defects. That may mean that email begins to circumvent the bug tracking
system, or that four or five bugs get lumped into one bug report, or that testers learn not to report
minor annoyances. The difficulty is measuring what we mean to measure, without creating
incentives for software programmers and testers to consciously or unconsciously “game” the
measurements.

Software quality factors cannot be measured because of their vague definitions. It is necessary to
find measurements, or metrics, which can be used to quantify them as non-functional requirements.
For example, reliability is a software quality factor, but cannot be evaluated in its own right.
However, there are related attributes to reliability, which can indeed be measured. Some such
attributes are mean time to failure, rate of failure occurrence, and availability of the system.
Similarly, an attribute of portability is the number of target-dependent statements in a program.

A scheme that could be used for evaluating software quality factors is given below. For every
characteristic, there are a set of questions which are relevant to that characteristic. Some type of
scoring formula could be developed based on the answers to these questions, from which a
measurement of the characteristic can be obtained.

Understandability

Are variable names descriptive of the physical or functional property represented? Do uniquely
recognisable functions contain adequate comments so that their purpose is clear? Are deviations
from forward logical flow adequately commented? Are all elements of an array functionally
related?...

Completeness

Are all necessary components available? Does any process fail for lack of resources or
programming? Are all potential pathways through the code accounted for, including proper error
handling?

Conciseness

Is all code reachable? Is any code redundant? How many statements within loops could be placed
outside the loop, thus reducing computation time? Are branch decisions too complex?

Portability

Does the program depend upon system or library routines unique to a particular installation? Have
machine-dependent statements been flagged and commented? Has dependency on internal bit
representation of alphanumeric or special characters been avoided? How much effort would be
required to transfer the program from one hardware/software system or environment to another?

191

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Kaner-286

Consistency

Is one variable name used to represent different logical or physical entities in the program? Does the
program contain only one representation for any given physical or mathematical constant? Are
functionally similar arithmetic expressions similarly constructed? Is a consistent scheme used for
indentation, nomenclature, the color palette, fonts and other visual elements?

Maintainability

Has some memory capacity been reserved for future expansion? Is the design cohesive—i.e., does
each module have distinct, recognizable functionality? Does the software allow for a change in data
structures (object-oriented designs are more likely to allow for this)? If the code is procedure-based
(rather than object-oriented), is a change likely to require restructuring the main program, or just a
module?

Testability

Are complex structures employed in the code? Does the detailed design contain clear pseudo-code?
Is the pseudo-code at a higher level of abstraction than the code? If tasking is used in concurrent
designs, are schemes available for providing adequate test cases?

Usability

Is a GUI used? Is there adequate on-line help? Is a user manual provided? Are meaningful error
messages provided?

Reliability

Are loop indexes range-tested? Is input data checked for range errors? Is divide-by-zero avoided? Is
exception handling provided? It is the probability that the software performs its intended functions
correctly in a specified period of time under stated operation conditions, but there could also be a
problem with the requirement document...

Efficiency

Have functions been optimized for speed? Have repeatedly used blocks of code been formed into
subroutines? Has the program been checked for memory leaks or overflow errors?

Security

Does the software protect itself and its data against unauthorized access and use? Does it allow its
operator to enforce security policies? Are security mechanisms appropriate, adequate and correctly
implemented? Can the software withstand attacks that can be anticipated in its intended
environment?

192

User's perspective

In addition to the technical qualities of software, the end user's experience also determines the
quality of software. This aspect of software quality is called usability. It is hard to quantify the
usability of a given software product. Some important questions to be asked are:

• Is the user interface intuitive (self-explanatory/self-documenting)?
• Is it easy to perform simple operations?
• Is it feasible to perform complex operations?
• Does the software give sensible error messages?
• Do widgets behave as expected?
• Is the software well documented?
• Is the user interface responsive or too slow?

Also, the availability of (free or paid) support may factor into the usability of the software.

References

Notes

1. ↑ a b Pressman 2005, p. 746
2. ↑ Pressman 2005, p. 388
3. ↑ Crosby, P., Quality is Free, McGraw-Hill, 1979
4. ↑ McConnell 1993, p. 558
5. ↑ DeMarco, T., Management Can Make Quality (Im)possible, Cutter IT Summit, Boston,

April 1999
6. ↑ J.D. Musa, A. Iannino, and K. Okumoto, Engineering and Managing Software with

Reliability Measures, McGraw-Hill, 1987
7. ↑ Pressman 2005, p. 762
8. ↑ a b Cem Kaner http://www.kaner.com/pdfs/metrics2004.pdf
9. ↑ Douglass Hoffman http://www.softwarequalitymethods.com/Papers/DarkMets

%20Paper.pdf

Bibliography

• McConnell, Steve (1993), Code Complete (First ed.), Microsoft Press
• Pressman, Scott (2005), Software Engineering: A Practitioner's Approach (Sixth,

International ed.), McGraw-Hill Education

Further reading

• International Organization for Standardization. Software Engineering—Product Quality—
Part 1: Quality Model. ISO, Geneva, Switzerland, 2001. ISO/IEC 9126-1:2001(E).

• Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison Wesley, Boston,
MA, 2006.

193

http://www.spinellis.gr/codequality
http://www.softwarequalitymethods.com/Papers/DarkMets%20Paper.pdf
http://www.softwarequalitymethods.com/Papers/DarkMets%20Paper.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-287
http://www.kaner.com/pdfs/metrics2004.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Kaner_286-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Kaner_286-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#CITEREFPressman2005
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-285
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-284
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-283
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#CITEREFMcConnell1993
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-282
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-281
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#CITEREFPressman2005
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-280
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#CITEREFPressman2005
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Press746_279-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Press746_279-0

• Ho-Won Jung, Seung-Gweon Kim, and Chang-Sin Chung. Measuring software product
quality: A survey of ISO/IEC 9126. IEEE Software, 21(5):10–13, September/October 2004.

• Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley,
Boston, MA, second edition, 2002.

• Robert L. Glass. Building Quality Software. Prentice Hall, Upper Saddle River, NJ, 1992.
• Roland Petrasch, "The Definition of‚ Software Quality’: A Practical Approach", ISSRE,

1999

External links

• Linux: Fewer Bugs Than Rivals Wired Magazine, 2004

Static Analysis

Static program analysis is the analysis of computer software that is performed without actually
executing programs built from that software (analysis performed on executing programs is known
as dynamic analysis). In most cases the analysis is performed on some version of the source code
and in the other cases some form of the object code. The term is usually applied to the analysis
performed by an automated tool, with human analysis being called program understanding, program
comprehension or code review.

The sophistication of the analysis performed by tools varies from those that only consider the
behavior of individual statements and declarations, to those that include the complete source code
of a program in their analysis. Uses of the information obtained from the analysis vary from
highlighting possible coding errors (e.g., the lint tool) to formal methods that mathematically prove
properties about a given program (e.g., its behavior matches that of its specification).

It can be argued that software metrics and reverse engineering are forms of static analysis.

A growing commercial use of static analysis is in the verification of properties of software used in
safety-critical computer systems and locating potentially vulnerable code. For example, medical
software is increasing in sophistication and complexity, and the U.S. Food and Drug Administration
(FDA) has identified the use of static code analysis as a means of improving the quality of
software[1].

Formal methods

Formal methods is the term applied to the analysis of software (and hardware) whose results are
obtained purely through the use of rigorous mathematical methods. The mathematical techniques
used include denotational semantics, axiomatic semantics, operational semantics, and abstract
interpretation.

It has been proven that, barring some hypothesis that the state space of programs is finite, finding
all possible run-time errors, or more generally any kind of violation of a specification on the final
result of a program, is undecidable: there is no mechanical method that can always answer truthfully

194

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-288
http://www.wired.com/software/coolapps/news/2004/12/66022
http://www.chillarege.com/fastabstracts/issre99/99124.pdf
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309

whether a given program may or may not exhibit runtime errors. This result dates from the works of
Church, Kurt Gödel and Turing in the 1930s (see the halting problem and Rice's theorem). As with
most[citation needed] undecidable questions, one can still attempt to give useful approximate solutions.

Some of the implementation techniques of formal static analysis include:

• Model checking considers systems that have finite state or may be reduced to finite state by
abstraction;

• Data-flow analysis is a lattice-based technique for gathering information about the possible
set of values;

• Abstract interpretation models the effect that every statement has on the state of an abstract
machine (i.e., it 'executes' the software based on the mathematical properties of each
statement and declaration). This abstract machine over-approximates the behaviours of the
system: the abstract system is thus made simpler to analyze, at the expense of
incompleteness (not every property true of the original system is true of the abstract system).
If properly done, though, abstract interpretation is sound (every property true of the abstract
system can be mapped to a true property of the original system)[2]. The Frama-c framework
and Polyspace heavily rely on abstract interpretation.

• Use of assertions in program code as first suggested by Hoare logic. There is tool support for
some programming languages (e.g., the SPARK programming language (a subset of Ada)
and the Java Modeling Language — JML — using ESC/Java and ESC/Java2, ANSI/ISO C
Specification Language for the C language).

References

1. ↑ FDA (2010-09-08). "Infusion Pump Software Safety Research at FDA". Food and Drug
Administration.
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevice
sandSupplies/InfusionPumps/ucm202511.htm. Retrieved 2010-09-09.

2. ↑ Jones, Paul (2010-02-09). "A Formal Methods-based verification approach to medical
device software analysis". Embedded Systems Design.
http://embeddeddsp.embedded.com/design/ opensource /222700533 . Retrieved 2010-09-09.

Bibliography

• Syllabus and readings for Alex Aiken’s Stanford CS295 course.
• Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, William Pugh,

“Using Static Analysis to Find Bugs,” IEEE Software, vol. 25, no. 5, pp. 22-29, Sep./Oct.
2008, doi:10.1109/MS.2008.130

• Brian Chess, Jacob West (Fortify Software) (2007). Secure Programming with Static
Analysis. Addison-Wesley. ISBN 978-0321424778.

• Adam Kolawa (Parasoft), Static Analysis Best Practices white paper
• Improving Software Security with Precise Static and Runtime Analysis , Benjamin Livshits,

section 7.3 “Static Techniques for Security,” Stanford doctoral thesis, 2006.
• Flemming Nielson, Hanne R. Nielson, Chris Hankin (1999, corrected 2004). Principles of

Program Analysis. Springer. ISBN 978-3540654100.

195

http://en.wikibooks.org/wiki/Special:BookSources/978-3540654100
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
http://www.parasoft.com/jsp/redirector.jsp/WWH_CodeAnalysis_W
http://en.wikibooks.org/wiki/Special:BookSources/978-0321424778
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www2.computer.org/portal/web/csdl/doi/10.1109/MS.2008.130
http://theory.stanford.edu/~aiken/
http://www.stanford.edu/class/cs295/
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-289
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-288
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-289
http://en.wikibooks.org/wiki/Wikibooks:OR

• “Abstract interpretation and static analysis,” International Winter School on Semantics and
Applications 2003, by David A. Schmidt

External links

• The SAMATE Project , a resource for Automated Static Analysis tools
• Integrate static analysis into a software development process
• Code Quality Improvement - Coding standards conformance checking (DDJ)
• Episode 59: Static Code Analysis Interview (Podcast) at Software Engineering Radio
• Implementing Automated Governance for Coding Standards Explains why and how to

integrate static code analysis into the build process

Metrics

A software metric is a measure of some property of a piece of software or its specifications. Since
quantitative measurements are essential in all sciences, there is a continuous effort by computer
science practitioners and theoreticians to bring similar approaches to software development. The
goal is obtaining objective, reproducible and quantifiable measurements, which may have numerous
valuable applications in schedule and budget planning, cost estimation, quality assurance testing,
software debugging, software performance optimization, and optimal personnel task assignments.

Common software measurements

Common software measurements include:

• Balanced scorecard
• Bugs per line of code
• COCOMO
• Code coverage
• Cohesion
• Comment density[1]
• Connascent software components
• Coupling
• Cyclomatic complexity
• Function point analysis
• Halstead Complexity
• Instruction path length
• Number of classes and interfaces
• Number of lines of code
• Number of lines of customer requirements
• Program execution time
• Program load time
• Binary file|Program size (binary)
• Robert Cecil Martin’s software package metrics

196

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-290
http://www.infoq.com/articles/governance-coding-standards
http://www.se-radio.net/index.php?post_id=220531
http://www.ddj.com/dept/debug/189401916
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://samate.nist.gov/
http://people.cis.ksu.edu/~schmidt/
http://santos.cis.ksu.edu/schmidt/Escuela03/home.html

• Weighted Micro Function Points

Limitations

As software development is a complex process, with high variance on both methodologies and
objectives, it is difficult to define or measure software qualities and quantities and to determine a
valid and concurrent measurement metric, especially when making such a prediction prior to the
detail design. Another source of difficulty and debate is in determining which metrics matter, and
what they mean.[2] [3] The practical utility of software measurements has thus been limited to
narrow domains where they include:

• Schedule
• Size/Complexity
• Cost
• Quality

Common goal of measurement may target one or more of the above aspects, or the balance between
them as indicator of team’s motivation or project performance.

Acceptance and Public Opinion

Some software development practitioners point out that simplistic measurements can cause more
harm than good.[4] Others have noted that metrics have become an integral part of the software
development process.[2] Impact of measurement on programmers psychology have raised concerns
for harmful effects to performance due to stress, performance anxiety, and attempts to cheat the
metrics, while others find it to have positive impact on developers value towards their own work,
and prevent them being undervalued.[5] Some argue that the definition of many measurement
methodologies are imprecise, and consequently it is often unclear how tools for computing them
arrive at a particular result,[6] while others argue that imperfect quantification is better than none
(“You can’t control what you can't measure.”)[7]. Evidence shows that software metrics are being
widely used by government agencies, the US military, NASA[8], IT consultants, academic
institutions[9], and commercial and academic development estimation software.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

197

http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-298
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-297
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-296
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-295
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-294
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-integration_watch-291
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-293
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-when_why_how-292
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-integration_watch-291

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• "Minimal Essential Software Quality Metrics" by Vijayan Reddy. Covers a minimal set of
essential metrics for a successful product delivery.

• Definitions of software metrics in .NET
• International Function Point Users Group
• What is FPA at Nesma website
• Estimating With Use Case Points by Mike Cohn. Describes the process to measure the size

of an application modeled with UML, using use cases.
• OO & Agile Metrics Resources - includes workshop material on gaming metrics to improve

their design
• Further defines the term Software Metrics with examples.
• Software Engineering Metrics: What do they measure and how do we know - An

intellectually rigorous treatment of software engineering metrics

Software Package Metrics

This article describes various software package metrics. They have been mentioned by Robert
Cecil Martin in his Agile Software Development: Principles, Patterns, and Practices book (2002).

The term software package, as it is used here, refers to a group of related classes (in the field of
object-oriented programming).

• Number of Classes and Interfaces: The number of concrete and abstract classes (and
interfaces) in the package is an indicator of the extensibility of the package.

• Afferent Couplings (Ca): The number of other packages that depend upon classes within
the package is an indicator of the package's responsibility.

• Efferent Couplings (Ce): The number of other packages that the classes in the package
depend upon is an indicator of the package's independence.

• Abstractness (A): The ratio of the number of abstract classes (and interfaces) in the
analyzed package to the total number of classes in the analyzed package. The range for this
metric is 0 to 1, with A=0 indicating a completely concrete package and A=1 indicating a
completely abstract package.

• Instability (I): The ratio of efferent coupling (Ce) to total coupling (Ce + Ca) such that I =
Ce / (Ce + Ca). This metric is an indicator of the package's resilience to change. The range
for this metric is 0 to 1, with I=0 indicating a completely stable package and I=1 indicating a
completely instable package.

• Distance from the Main Sequence (D): The perpendicular distance of a package from the
idealized line A + I = 1. This metric is an indicator of the package's balance between
abstractness and stability. A package squarely on the main sequence is optimally balanced
with respect to its abstractness and stability. Ideal packages are either completely abstract

198

http://www.kaner.com/pdfs/metrics2004.pdf
http://www.sqa.net/softwarequalitymetrics.html
http://www.parlezuml.com/metrics/index.htm
http://www.methodsandtools.com/archive/archive.php?id=25
http://www.nesma.org/section/fpa/
http://www.ifpug.org/
http://www.ndepend.com/Metrics.aspx
http://qualinfra.blogspot.com/2010/02/metrics-measurements.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0

and stable (x=0, y=1) or completely concrete and instable (x=1, y=0). The range for this
metric is 0 to 1, with D=0 indicating a package that is coincident with the main sequence and
D=1 indicating a package that is as far from the main sequence as possible.

• Package Dependency Cycles: Package dependency cycles are reported along with the
hierarchical paths of packages participating in package dependency cycles.

References

• Robert Cecil Martin (2002). Agile Software Development: Principles, Patterns and
Practices. Pearson Education. ISBN 0-13-597444-5.

External links

• OO Metrics tutorial explains package metrics with examples
• JHawk - Java Metrics tool, All the most important code metrics. Eclipse, stand alone and

command line versions
• Lattix - Architecture tool that supports a variety of architecture metrics including package

dependency metrics.
• NDepend - .NET application that supports the package dependency metrics.
• CppDepend - C++ Metrics tool that supports all the most important code metrics.
• JDepend - Java application that supports the package dependency metrics.
• STAN - Structure Analysis for Java. Eclipse integrated and standalone visual dependency

analysis, quality metrics and reporting.
• SourceMonitor - Something for C++, C, C#, VB.NET, Java, Delphi, Visual Basic (VB6)
• PHP Depend - PHP version of JDepend that supports the package dependency metrics.

Visualization

Software visualization[10] is the static or animated 2-D or 3-D[11] visual representation of
information about software systems based on their structure,[12] size,[13] history,[14] or behavior.
[15]

Typically, the information used for visualization is software metric data from measurement
activities or from reverse engineering. Visualization is inherently not a method for software quality
assurance but can be used to manually discover anomalies similar to the process of visual data
mining.[16]

The objectives of software visualizations are to support the understanding of software systems (i.e.,
its structure) and algorithms (e.g., by animating the behavior of sorting algorithms) as well as the
analysis of software systems and their anomalies (e.g., by showing classes with high coupling).

199

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-305
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-304
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-303
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-302
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-301
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-300
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-299
http://pdepend.org/
http://www.campwoodsw.com/sourcemonitor.html
http://www.stan4j.com/
http://clarkware.com/software/JDepend.html
http://www.cppdepend.com/
http://www.ndepend.com/
http://www.lattix.com/products
http://www.virtualmachinery.com/jhawkprod.htm
http://www.parlezuml.com/metrics/OO%20Design%20Principles%20&%20Metrics.pdf
http://en.wikibooks.org/wiki/Special:BookSources/0-13-597444-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number

Types

NDepend Graph and Dependency Matrix interaction

Single component

Tool for software visualization might be used to visualize source code and quality defects during
software development and maintenance activities. Their target is the automatic discovery and
visualization of quality defects in object-oriented software systems and services. Designed as a
plugin for an IDE (e.g., Visual Studio, Eclipse) they visualized the direct relationship of a class and
its methods with other classes in the software system and mark potential quality defects to warn the
developer. A further benefit is the support for visual navigation through the software system.

Whole (sub-)systems

Other more powerful tools are used to visualize a whole system or subsystem to explore the
architecture or to apply visual data mining or visual analytics techniques for defect discovery.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

200

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/wiki/File:NDependPic1.png
http://en.wikibooks.org/wiki/File:NDependPic1.png

Further reading

• Diehl, S. (2002). Software Visualization. International Seminar. Revised Papers (LNCS Vol.
2269), Dagstuhl Castle, Germany, 20-25 May 2001 (Dagstuhl Seminar Proceedings).

• Diehl, S. (2007). Software Visualization — Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, 2007, ISBN 978-3-540-46504-1

• Gîrba, T., Kuhn, A., Seeberger, M., and Ducasse, S., “How Developers Drive Software
Evolution,” Proceedings of International Workshop on Principles of Software Evolution
(IWPSE 2005), IEEE Computer Society Press, 2005, pp. 113–122. PDF

• Keim, D. A. (2002). Information visualization and visual data mining. IEEE Transactions on
Visualization and Computer Graphics, USA * vol 8 (Jan. March 2002), no 1, p 1 8, 67 refs.

• Knight, C. (2002). System and Software Visualization. In Handbook of software engineering
& knowledge engineering. Vol. 2, Emerging technologies (Vol. 2): World Scientific
Publishing Company.

• Kuhn, A., and Greevy, O., “Exploiting the Analogy Between Traces and Signal Processing,”
Proceedings IEEE International Conference on Software Maintenance (ICSM 2006), IEEE
Computer Society Press, Los Alamitos CA, September 2006. PDF

• Lanza, M. (2004). CodeCrawler — polymetric views in action. Proceedings. 19th
International Conference on Automated Software Engineering, Linz, Austria, 20 24 Sept.
2004 * Los Alamitos, CA, USA: IEEE Comput. Soc, 2004, p 394 5.

• Lopez, F. L., Robles, G., & Gonzalez, B. J. M. (2004). Applying social network analysis to
the information in CVS repositories. "International Workshop on Mining Software
Repositories (MSR 2004)" W17S Workshop 26th International Conference on Software
Engineering, Edinburgh, Scotland, UK, 25 May 2004 * Stevenage, UK: IEE, 2004, p 101 5.

• Marcus, A., Feng, L., & Maletic, J. I. (2003). 3D representations for software visualization.
Paper presented at the Proceedings of the 2003 ACM symposium on Software visualization,
San Diego, California.

• Soukup, T. (2002). Visual data mining : techniques and tools for data visualization and
mining. New York: Chichester.

• Staples, M. L., & Bieman, J. M. (1999). 3-D Visualization of Software Structure. In
Advances in Computers (Vol. 49, pp. 96–143): Academic Press, London.

• Stasko, J. T., Brown, M. H., & Price, B. A. (1997). Software Visualization: MIT Press.
• Van Rysselberghe, F. (2004). Studying Software Evolution Information By Visualizing the

Change History. Proceedings. 20th International Conference On Software Maintenance. pp
328–337, IEEE Computer Society Press, 2004

• Wettel, R., and Lanza, M., Visualizing Software Systems as Cities. In Proceedings of
VISSOFT 2007 (4th IEEE International Workshop on Visualizing Software For
Understanding and Analysis), pp. 92 – 99, IEEE Computer Society Press, 2007.

External links

• EPDV Eclipse Project Dependencies Viewer
• SoftVis is the second meeting in a planned series of biennial conferences.
• The Program Visualization Workshops aim to bring together researchers who design and

construct program, algorithm, or data structure visualizations or animations as well as
educators who use or evaluate visualization or animations in their teaching.

• CppDepend - useful C++ tool to visualize dependencies.

201

http://www.cppdepend.com/
http://www.algoanim.net/pvw2006/
http://www.softvis.org/
http://code.google.com/p/epdv/
http://www.iam.unibe.ch/~scg/Archive/Papers/Kuhn06cTraceSignalICSM2006.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Girb05cOwnershipMap.pdf
http://en.wikibooks.org/wiki/Special:BookSources/9783540465041

Code Review

Code review is systematic examination (often as peer review) of computer source code. It is
intended to find and fix mistakes overlooked in the initial development phase, improving both the
overall quality of software and the developers' skills. Reviews are done in various forms such as
pair programming, informal walkthroughs, and formal inspections.[17]

Introduction

Code reviews can often find and remove common vulnerabilities such as format string exploits, race
conditions, memory leaks and buffer overflows, thereby improving software security. Online
software repositories based on Subversion (with Redmine or Trac), Mercurial, Git or others allow
groups of individuals to collaboratively review code. Additionally, specific tools for collaborative
code review can facilitate the code review process.

Automated code reviewing software lessens the task of reviewing large chunks of code on the
developer by systematically checking source code for known vulnerabilities.

Capers Jones' ongoing analysis of over 12,000 software development projects showed that the latent
defect discovery rate of formal inspection is in the 60-65% range. For informal inspection, the
figure is less than 50%. [citation needed] The latent defect discovery rate for most forms of testing is
about 30%. [18]

Typical code review rates are about 150 lines of code per hour. Inspecting and reviewing more than
a few hundred lines of code per hour for critical software (such as safety critical embedded
software) may be too fast to find errors. [19] Industry data indicate that code review can accomplish
at most an 85% defect removal rate with an average rate of about 65%. [20]

Types

Code review practices fall into three main categories: pair programming, formal code review and
lightweight code review.[17]

Formal code review, such as a Fagan inspection, involves a careful and detailed process with
multiple participants and multiple phases. Formal code reviews are the traditional method of
review, in which software developers attend a series of meetings and review code line by line,
usually using printed copies of the material. Formal inspections are extremely thorough and have
been proven effective at finding defects in the code under review.

Lightweight code review typically requires less overhead than formal code inspections, though it
can be equally effective when done properly.[citation needed] Lightweight reviews are often conducted
as part of the normal development process:

• Over-the-shoulder – One developer looks over the author's shoulder as the latter walks
through the code.

202

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-best_practices-306
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-309
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-308
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-307
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-best_practices-306

• Email pass-around – Source code management system emails code to reviewers
automatically after checkin is made.

• Pair Programming – Two authors develop code together at the same workstation, such is
common in Extreme Programming.

• Tool-assisted code review – Authors and reviewers use specialized tools designed for peer
code review.

Some of these may also be labeled a "Walkthrough" (informal) or "Critique" (fast and informal).

Many teams that eschew traditional, formal code review use one of the above forms of lightweight
review as part of their normal development process. A code review case study published in the book
Best Kept Secrets of Peer Code Review found that lightweight reviews uncovered as many bugs as
formal reviews, but were faster and more cost-effective.

Criticism

Historically, formal code reviews have required a considerable investment in preparation for the
review event and execution time.

Some believe that skillful, disciplined use of a number of other development practices can result in
similarly high latent defect discovery/avoidance rates. Further, XP proponents might argue, layering
additional XP practices, such as refactoring and test-driven development will result in latent defect
levels rivaling those achievable with more traditional approaches, without the investment.
[citation needed]

Use of code analysis tools can support this activity. Especially tools that work in the IDE as they
provide direct feedback to developers of coding standard compliance.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

• Jason Cohen (2006). Best Kept Secrets of Peer Code Review (Modern Approach. Practical
Advice.). Smartbearsoftware.com. ISBN 1599160676.

203

http://en.wikibooks.org/wiki/Special:BookSources/1599160676
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/wiki/Wikibooks:OR

External links

• Security Code Review FAQs
• Security code review guidelines
• Lightweight Tool Support for Effective Code Reviews white paper
• Code Review Best Practices white paper by Adam Kolawa
• Best Practices for Peer Code Review white paper
• Code review case study
• "A Guide to Code Inspections" (Jack G. Ganssle)
• Article Four Ways to a Practical Code Review

Code Inspection

Inspection in software engineering, refers to peer review of any work product by trained
individuals who look for defects using a well defined process. An inspection might also be referred
to as a Fagan inspection after Michael Fagan, the creator of a very popular software inspection
process.

Introduction

An inspection is one of the most common sorts of review practices found in software projects. The
goal of the inspection is for all of the inspectors to reach consensus on a work product and approve
it for use in the project. Commonly inspected work products include software requirements
specifications and test plans. In an inspection, a work product is selected for review and a team is
gathered for an inspection meeting to review the work product. A moderator is chosen to moderate
the meeting. Each inspector prepares for the meeting by reading the work product and noting each
defect. The goal of the inspection is to identify defects. In an inspection, a defect is any part of the
work product that will keep an inspector from approving it. For example, if the team is inspecting a
software requirements specification, each defect will be text in the document which an inspector
disagrees with.

The process

The inspection process was developed by Michael Fagan in the mid-1970s and it has later been
extended and modified.

The process should have entry criteria that determine if the inspection process is ready to begin.
This prevents unfinished work products from entering the inspection process. The entry criteria
might be a checklist including items such as "The document has been spell-checked".

The stages in the inspections process are: Planning, Overview meeting, Preparation, Inspection
meeting, Rework and Follow-up. The Preparation, Inspection meeting and Rework stages might be
iterated.

• Planning: The inspection is planned by the moderator.

204

http://www.methodsandtools.com/archive/archive.php?id=66
http://www.ganssle.com/inspections.pdf
http://smartbearsoftware.com/docs/book/code-review-cisco-case-study.pdf
http://smartbear.com/docs/BestPracticesForPeerCodeReview.pdf
http://www.parasoft.com/jsp/printables/When_Why_How_Code_Review.pdf?path=/jsp/products/article.jsp
http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf
http://www.homeport.org/~adam/review.html
http://www.ouncelabs.com/resources/code-review-faq.asp

• Overview meeting: The author describes the background of the work product.
• Preparation: Each inspector examines the work product to identify possible defects.
• Inspection meeting: During this meeting the reader reads through the work product, part by

part and the inspectors point out the defects for every part.
• Rework: The author makes changes to the work product according to the action plans from

the inspection meeting.
• Follow-up: The changes by the author are checked to make sure everything is correct.

The process is ended by the moderator when it satisfies some predefined exit criteria.

Inspection roles

During an inspection the following roles are used.

• Author: The person who created the work product being inspected.
• Moderator: This is the leader of the inspection. The moderator plans the inspection and

coordinates it.
• Reader: The person reading through the documents, one item at a time. The other inspectors

then point out defects.
• Recorder/Scribe: The person that documents the defects that are found during the

inspection.
• Inspector: The person that examines the work product to identify possible defects.

Related inspection types

Code review

A code review can be done as a special kind of inspection in which the team examines a sample of
code and fixes any defects in it. In a code review, a defect is a block of code which does not
properly implement its requirements, which does not function as the programmer intended, or
which is not incorrect but could be improved (for example, it could be made more readable or its
performance could be improved). In addition to helping teams find and fix bugs, code reviews are
useful for both cross-training programmers on the code being reviewed and for helping junior
developers learn new programming techniques.

Peer Reviews

Peer Reviews are considered an industry best-practice for detecting software defects early and
learning about software artifacts. Peer Reviews are composed of software walkthroughs and
software inspections and are integral to software product engineering activities. A collection of
coordinated knowledge, skills, and behaviors facilitates the best possible practice of Peer Reviews.
The elements of Peer Reviews include the structured review process, standard of excellence product
checklists, defined roles of participants, and the forms and reports.

205

Software inspections are the most rigorous form of Peer Reviews and fully utilize these elements in
detecting defects. Software walkthroughs draw selectively upon the elements in assisting the
producer to obtain the deepest understanding of an artifact and reaching a consensus among
participants. Measured results reveal that Peer Reviews produce an attractive return on investment
obtained through accelerated learning and early defect detection. For best results, Peer Reviews are
rolled out within an organization through a defined program of preparing a policy and procedure,
training practitioners and managers, defining measurements and populating a database structure,
and sustaining the roll out infrastructure.

External links

• Review and inspection practices
• Article Software Inspections by Ron Radice
• Comparison of different inspection and review techniques

206

http://www.the-software-experts.de/e_dta-sw-test-inspection.htm
http://www.the-software-experts.de/e_dta-sw-test-inspection.htm
http://www.the-software-experts.de/e_dta-sw-test-inspection.htm
http://www.methodsandtools.com/archive/archive.php?id=29
http://www.stellman-greene.com/reviews
http://www.stellman-greene.com/reviews
http://www.stellman-greene.com/reviews

Deployment & Maintenance

Introduction

Software deployment is all of the activities that make a software system available for use.

The general deployment process consists of several interrelated activities with possible transitions
between them. These activities can occur at the producer site or at the consumer site or both.
Because every software system is unique, the precise processes or procedures within each activity
can hardly be defined. Therefore, "deployment" should be interpreted as a general process that has
to be customized according to specific requirements or characteristics. A brief description of each
activity will be presented later.

Deployment activities

Release
The release activity follows from the completed development process. It includes all the
operations to prepare a system for assembly and transfer to the customer site. Therefore, it
must determine the resources required to operate at the customer site and collect information
for carrying out subsequent activities of deployment process.

Install and activate
Activation is the activity of starting up the executable component of software. For simple
system, it involves establishing some form of command for execution. For complex systems,
it should make all the supporting systems ready to use.
In larger software deployments, the working copy of the software might be installed on a
production server in a production environment. Other versions of the deployed software may
be installed in a test environment, development environment and disaster recovery
environment.

Deactivate
Deactivation is the inverse of activation, and refers to shutting down any executing
components of a system. Deactivation is often required to perform other deployment
activities, e.g., a software system may need to be deactivated before an update can be
performed. The practice of removing infrequently used or obsolete systems from service is
often referred to as application retirement or application decommissioning.

Adapt
The adaptation activity is also a process to modify a software system that has been previously
installed. It differs from updating in that adaptations are initiated by local events such as
changing the environment of customer site, while updating is mostly started from remote
software producer.

Update
The update process replaces an earlier version of all or part of a software system with a newer
release.

Built-In
Mechanisms for installing updates are built into some software systems. Automation of these
update processes ranges from fully automatic to user initiated and controlled. Norton Internet

207

Security is an example of a system with a semi-automatic method for retrieving and installing
updates to both the antivirus definitions and other components of the system. Other software
products provide query mechanisms for determining when updates are available.

Version tracking
Version tracking systems help the user find and install updates to software systems installed
on PCs and local networks.

• Web based version tracking systems notify the user when updates are available for
software systems installed on a local system. For example: VersionTracker Pro checks
software versions on a user's computer and then queries its database to see if any
updates are available.

• Local version tracking system notifies the user when updates are available for software
systems installed on a local system. For example: Software Catalog stores version and
other information for each software package installed on a local system. One click of a
button launches a browser window to the upgrade web page for the application,
including auto-filling of the user name and password for sites that require a login.

• Browser based version tracking systems notify the user when updates are available for
software packages installed on a local system. For example: wfx-Versions is a Firefox
extension which helps the user find the current version number of any program listed
on the web.

Uninstall
Uninstallation is the inverse of installation. It is the removal of a system that is no longer
required. It also involves some reconfiguration of other software systems in order to remove
the uninstalled system’s files and dependencies.

Retire
Ultimately, a software system is marked as obsolete and support by the producers is
withdrawn. It is the end of the life cycle of a software product.

Deployment roles

The complexity and variability of software products has necessitated the creation of specialized
roles for coordinating and engineering the deployment process. For desktop systems, an end user is
frequently also the "software deployer" when they install the software package on their machine.
For enterprise software, there are many more roles involved. Additionally, the roles involved
typically change as the application progresses from test (pre-production) to production
environments. The typical roles involved in software deployments for enterprise applications are:

• Pre-production environments
• Application developers: see Software development process
• Build and release engineers: see Release engineering
• Release managers: see Release management
• Deployment coordinators: see DevOps

• Production environments
• System administrator
• Database administrator
• Release coordinators: see DevOps
• Operations project managers: see Information Technology Infrastructure Library

208

Examples

• FAI OpenSource Software Linux
• M23 OpenSource Software Linux
• Open PC Server Integration (opsi) OpenSource Software Windows
• RPM with YUM OpenSource Software Linux
• MS SCCM Microsoft Windows
• HP OpenView (Hewlett-Packard)
• Tivoli Provisioning Manager and IBM Tivoli Intelligent Orchestrator
• DX-Union (Materna)
• Novell ZENworks (Novell) Zero Effort Networks
• Garibaldi (Software) (INOSOFT AG)
• Client Management Suite (Baramundi Software AG, Augsburg)
• Blackberry MDS Suite Research In Motion (RIM)
• Intellisync Mobile Suite Nokia
• Mobile Device Manager 2008 Microsoft
• ubi-Suite ubitexx
• Java Web Start

References

External links

• Standardization efforts
• Solution Installation Schema Submission request to W3C
• OASIS Solution Deployment Descriptor TC
• OMG Specification for Deployment and Configuration of Component-based

Distributed Applications (OMG D&C)
• JSR 88: Java EE Application Deployment

• Articles
• The Future of Software Delivery - free developerWorks whitepaper
• Carzaniga A., Fuggetta A., Hall R. S., Van Der Hoek A., Heimbigner D., Wolf A. L.

— A Characterization Framework for Software Deployment Technologies —
Technical Report CU-CS-857-98, Dept. of Computer Science, University of
Colorado, April 1998. http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-
98.pdf

• Resources
• Microsoft's resource page on Client Deployment

Maintenance

Software maintenance in software engineering is the modification of a software product after
delivery to correct faults, to improve performance or other attributes.[21]

209

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-iso14764-310
http://technet.microsoft.com/en-us/windows/default.aspx
http://technet.microsoft.com/en-us/windows/default.aspx
http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf
http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-tfosd&S_TACT=105AGY59&S_CMP=WIKIWP&ca=dtl-2108wp5
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://www.omg.org/docs/mars/03-05-08.pdf
http://www.omg.org/docs/mars/03-05-08.pdf
http://www.omg.org/docs/mars/03-05-08.pdf
http://www.omg.org/docs/mars/03-05-08.pdf
http://www.omg.org/docs/mars/03-05-08.pdf
http://www.omg.org/docs/mars/03-05-08.pdf
http://www.oasis-open.org/committees/sdd/charter.php
http://www.oasis-open.org/committees/sdd/charter.php
http://www.oasis-open.org/committees/sdd/charter.php
http://www.w3.org/Submission/2004/04/
http://www.w3.org/Submission/2004/04/
http://www.w3.org/Submission/2004/04/

A common perception of maintenance is that it is merely fixing bugs. However, studies and surveys
over the years have indicated that the majority, over 80%, of the maintenance effort is used for non-
corrective actions (Pigosky 1997). This perception is perpetuated by users submitting problem
reports that in reality are functionality enhancements to the system.

Software maintenance and evolution of systems was first addressed by Meir M. Lehman in 1969.
Over a period of twenty years, his research led to the formulation of eight Laws of Evolution
(Lehman 1997). Key findings of his research include that maintenance is really evolutionary
developments and that maintenance decisions are aided by understanding what happens to systems
(and software) over time. Lehman demonstrated that systems continue to evolve over time. As they
evolve, they grow more complex unless some action such as code refactoring is taken to reduce the
complexity.

The key software maintenance issues are both managerial and technical. Key management issues
are: alignment with customer priorities, staffing, which organization does maintenance, estimating
costs. Key technical issues are: limited understanding, impact analysis, testing, maintainability
measurement.

Software maintenance processes

This section describes the six software maintenance processes as:

1. The implementation processes contains software preparation and transition activities, such
as the conception and creation of the maintenance plan, the preparation for handling
problems identified during development, and the follow-up on product configuration
management.

2. The problem and modification analysis process, which is executed once the application has
become the responsibility of the maintenance group. The maintenance programmer must
analyze each request, confirm it (by reproducing the situation) and check its validity,
investigate it and propose a solution, document the request and the solution proposal, and,
finally, obtain all the required authorizations to apply the modifications.

3. The process considering the implementation of the modification itself.
4. The process acceptance of the modification, by confirming the modified work with the

individual who submitted the request in order to make sure the modification provided a
solution.

5. The migration process (platform migration, for example) is exceptional, and is not part of
daily maintenance tasks. If the software must be ported to another platform without any
change in functionality, this process will be used and a maintenance project team is likely to
be assigned to this task.

6. Finally, the last maintenance process, also an event which does not occur on a daily basis, is
the retirement of a piece of software.

There are a number of processes, activities and practices that are unique to maintainers, for
example:

• Transition: a controlled and coordinated sequence of activities during which a system is
transferred progressively from the developer to the maintainer;

• Service Level Agreements (SLAs) and specialized (domain-specific) maintenance contracts
negotiated by maintainers;

210

• Modification Request and Problem Report Help Desk: a problem-handling process used by
maintainers to prioritize, documents and route the requests they receive;

• Modification Request acceptance/rejection: modification request work over a certain
size/effort/complexity may be rejected by maintainers and rerouted to a developer.

Categories of maintenance in ISO/IEC 14764

E.B. Swanson initially identified three categories of maintenance: corrective, adaptive, and
perfective [22]. These have since been updated and ISO/IEC 14764 presents:

• Corrective maintenance: Reactive modification of a software product performed after
delivery to correct discovered problems.

• Adaptive maintenance: Modification of a software product performed after delivery to keep
a software product usable in a changed or changing environment.

• Perfective maintenance: Modification of a software product after delivery to improve
performance or maintainability.

• Preventive maintenance: Modification of a software product after delivery to detect and
correct latent faults in the software product before they become effective faults.

There is also a notion of pre-delivery/pre-release maintenance which is all the good things you do to
lower the total cost of ownership of the software. Things like compliance with coding standards that
includes software maintainability goals. The management of coupling and cohesion of the software.
The attainment of software supportability goals (SAE JA1004, JA1005 and JA1006 for example).
Note also that some academic institutions are carrying out research to quantify the cost to ongoing
software maintenance due to the lack of resources such as design documents and system/software
comprehension training and resources (multiply costs by approx. 1.5-2.0 where there is no design
data available.).

References

1. ↑ "Descriptive Information (DI) Metric Thresholds". Land Software Engineering Centre.
http://www.lsec.dnd.ca/qsd_current_version/eng_support/di/metrics.htm. Retrieved 19
October 2010.

2. ↑ a b Binstock, Andrew. "Integration Watch: Using metrics effectively". SD Times. BZ
Media. http://www.sdtimes.com/link/34157. Retrieved 19 October 2010.

3. ↑ Kolawa, Adam. "When, Why, and How: Code Analysis". The Code Project.
http://www.codeproject.com/KB/interviews/Code_Review.aspx. Retrieved 19 October
2010.

4. ↑ Kaner, Dr. Cem, Software Engineer Metrics: What do they measure and how do we
know?, http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.1.2542&rep=rep1&type=pdf

5. ↑ ProjectCodeMeter (2010) "ProjectCodeMeter Users Manual" page 65 [5]
6. ↑ Lincke, Rüdiger; Lundberg, Jonas; Löwe, Welf (2008), "Comparing software metrics

tools", International Symposium on Software Testing and Analysis 2008: pp. 131–142,
http://www.arisa.se/files/LLL-08.pdf

7. ↑ DeMarco, Tom. Controlling Software Projects: Management, Measurement and
Estimation. ISBN 0-13-171711-1.

211

http://en.wikibooks.org/wiki/Special:BookSources/0-13-171711-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Tom_DeMarco
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-296
http://www.arisa.se/files/LLL-08.pdf
http://www.arisa.se/files/LLL-08.pdf
http://www.arisa.se/files/LLL-08.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-295
http://www.projectcodemeter.com/cost_estimation/images/files/PCMProManual.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-294
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2542&rep=rep1&type=pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-293
http://www.codeproject.com/KB/interviews/Code_Review.aspx
http://www.codeproject.com/KB/interviews/Code_Review.aspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-when_why_how_292-0
http://www.sdtimes.com/link/34157
http://www.sdtimes.com/link/34157
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-integration_watch_291-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-integration_watch_291-0
http://www.lsec.dnd.ca/qsd_current_version/eng_support/di/metrics.htm
http://www.lsec.dnd.ca/qsd_current_version/eng_support/di/metrics.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-290
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-311
http://www.anderson.ucla.edu/x1960.xml

8. ↑ NASA Metrics Planning and Reporting Working Group (MPARWG) [6]
9. ↑ USC Center for Systems and Software Engineering [7]
10.↑ (Diehl, 2002; Diehl, 2007; Knight, 2002)
11.↑ (Marcus et al., 2003; Wettel et al., 2007)
12.↑ (Staples & Bieman, 1999)
13.↑ (Lanza, 2004)
14.↑ (Girba et al., 2005, Lopez et al., 2004; Van Rysselberghe et al., 2004)
15.↑ (Kuhn et al., 2006, Stasko et al., 1997)
16.↑ (Keim, 2002; Soukup, 2002).
17.↑ a b Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best

Practices in Software Management. Wiley-IEEE Computer Society Press. p. 260.
ISBN 0470042125. http://www.wiley.com/WileyCDA/WileyTitle/productCd-
0470042125.html.

18.↑ Jones, Capers; Christof, Ebert (April 2009). "Embedded Software: Facts, Figures, and
Future". IEEE Computer Society. http://doi.ieeecomputersociety.org/10.1109/MC.2009.118.
Retrieved 2010-10-05.

19.↑ Ganssle, Jack (February 2010). "A Guide to Code Inspections". The Ganssle Group. http://
www.ganssle.com/inspections.pdf. Retrieved 2010-10-05.

20.↑ Jones, Capers (June 2008). "Measuring Defect Potentials and Defect Removal Efficiency".
Crosstalk, The Journal of Defense Software Engineering.
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html. Retrieved 2010-10-05.

21.↑ ISO/IEC 14764:2006 Software Engineering — Software Life Cycle Processes —
Maintenance

22.↑ E. Burt Swanson, The dimensions of maintenance. Proceedings of the 2nd international
conference on Software engineering, San Francisco, 1976, pp 492 — 497

Further reading

• April, Alain; Abran, Alain (2008). Software Maintenance Management. New York: Wiley-
IEEE. ISBN 978-0470-14707-8.

• Gopalaswamy Ramesh; Ramesh Bhattiprolu (2006). Software maintenance : effective
practices for geographically distributed environments. New Delhi: Tata McGraw-Hill.
ISBN 9780070483453.

• Grubb, Penny; Takang, Armstrong (2003). Software Maintenance. New Jersey: World
Scientific Publishing. ISBN 9789812384256.

• Lehman, M.M.; Belady, L.A. (1985). Program evolution : processes of software change.
London: Academic Press Inc. ISBN 0-12-442441-4.

• Page-Jones, Meilir (1980). The Practical Guide to Structured Systems Design. New York:
Yourdon Press. ISBN 0-917072-17-0.

External links

• [12] Software Continuity : a rating methodology for software sustainability.
• Journal of Software Maintenance
• Software Maintenance Maturity Model

212

http://www.s3m.ca/
http://www3.interscience.wiley.com/cgi-bin/jhome/5391/
http://www.software-continuity.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-917072-17-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/0-12-442441-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/9789812384256
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/9780070483453
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/wiki/Special:BookSources/978-0470-14707-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://portal.acm.org/citation.cfm?id=359522
http://portal.acm.org/citation.cfm?id=359522
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-311
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-iso14764_310-0
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-309
http://www.ganssle.com/inspections.pdf
http://www.ganssle.com/inspections.pdf
http://www.ganssle.com/inspections.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-308
http://doi.ieeecomputersociety.org/10.1109/MC.2009.118
http://doi.ieeecomputersociety.org/10.1109/MC.2009.118
http://doi.ieeecomputersociety.org/10.1109/MC.2009.118
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-307
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/wiki/Special:BookSources/0470042125
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-best_practices_306-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-best_practices_306-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-305
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-304
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-303
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-302
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-301
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-300
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-299
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-298
https://esdswg.eosdis.nasa.gov/wg/mpar/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-297

Evolution

Software evolution is the term used in software engineering (specifically software maintenance) to
refer to the process of developing software initially, then repeatedly updating it for various reasons.

General introduction

Fred Brooks, in his key book The Mythical Man-Month,[1] states that over 90% of the costs of a
typical system arise in the maintenance phase, and that any successful piece of software will
inevitably be maintained.

In fact, Agile methods stem from maintenance like activities in and around web based technologies,
where the bulk of the capability comes from frameworks and standards.[citation needed]

Software maintenance address bug fixes and minor enhancements and software evolution focus on
adaptation and migration.

Types of software maintenance

E.B. Swanson initially identified three categories of maintenance: corrective, adaptive, and
perfective. Four categories of software were then catalogued by Lientz and Swanson (1980) [2].
These have since been updated and normalized internationally in the ISO/IEC 14764:2006:[3]

• Corrective maintenance: Reactive modification of a software product performed after
delivery to correct discovered problems;

• Adaptive maintenance: Modification of a software product performed after delivery to keep
a software product usable in a changed or changing environment;

• Perfective maintenance: Modification of a software product after delivery to improve
performance or maintainability;

• Preventive maintenance: Modification of a software product after delivery to detect and
correct latent faults in the software product before they become effective faults.

All of the preceding take place when there is a known requirement for change.

Although these categories were supplemented by many authors like Warren et al. (1999)
[citation needed] and Chapin (2001)[citation needed], the ISO/IEC 14764:2006 international standard has
kept the basic four categories.

More recently the description of software maintenance and evolution has been done using
ontologies (Kitchemham et al. (1999),[citation needed] Derider (2002),[citation needed] Vizcaíno 2003,
[citation needed] Dias (2003),[citation needed] and Ruiz (2004)),[citation needed] which enrich the
description of the many evolution activities.

213

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-314
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-313
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-312

Lehman's Laws of Software Evolution

Prof. Meir M. Lehman, who worked at Imperial College London from 1972 to 2002, and his
colleagues have identified a set of behaviours in the evolution of proprietary software. These
behaviours (or observations) are known as Lehman's Laws, and there are eight of them:

1. Continuing Change
2. Increasing Complexity
3. Large Program Evolution
4. Invariant Work-Rate
5. Conservation of Familiarity
6. Continuing Growth
7. Declining Quality
8. Feedback System

It is worth mentioning that the laws are believed to apply mainly to monolithic, proprietary
software. For example, some empirical observations coming from the study of open source software
development appear to challenge some of the laws [citation needed].

The laws predict that change is inevitable and not a consequence of bad programming and that there
are limits to what a software evolution team can achieve in terms of safely implementing changes
and new functionality.

Maturity Models specific to software evolution have been developed to help improve processes to
ensure continuous rejuvenation of the software evolves iteratively.

The "global process" that is made by the many stakeholders (e.g. developers, users, their managers)
has many feedback loops. The evolution speed is a function of the feedback loop structure and other
characteristics of the global system. Process simulation techniques, such as system dynamics can be
useful in understanding and managing such global process.

Software evolution is not likely to be Darwinian, Lamarckian or Baldwinian, but an important
phenomenon on its own. Giving the increasing dependence on software at all levels of society and
economy, the successful evolution of software is becoming increasingly critical. This is an
important topic of research that hasn't received much attention.

The evolution of software, because of its rapid path in comparison to other man-made entities, was
seen by Lehman as the "fruit fly" of the study of the evolution of artificial systems.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-

214

http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/wiki/Wikibooks:OR

7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

215

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7

Project Management

Introduction

Software project management is the art and science of planning and leading software projects[4].
It is a sub-discipline of project management in which software projects are planned, monitored and
controlled.

History

The history of software project management is closely related to the history of software. Software
was developed for dedicated purposes for dedicated machines until the concept of object-oriented
programming began to become popular in the 1960's, making repeatable solutions possible for the
software industry. Dedicated systems could be adapted to other uses thanks to component-based
software engineering. Companies quickly understood the relative ease of use that software
programming had over hardware circuitry, and the software industry grew very quickly in the
1970's and 1980's. To manage new development efforts, companies applied proven project
management methods, but project schedules slipped during test runs, especially when confusion
occurred in the gray zone between the user specifications and the delivered software. To be able to
avoid these problems, software project management methods focused on matching user
requirements to delivered products, in a method known now as the waterfall model. Since then,
analysis of software project management failures has shown that the following are the most
common causes:[5]

1. Unrealistic or unarticulated project goals
2. Inaccurate estimates of needed resources
3. Badly defined system requirements
4. Poor reporting of the project's status
5. Unmanaged risks
6. Poor communication among customers, developers, and users
7. Use of immature technology
8. Inability to handle the project's complexity
9. Sloppy development practices
10.Poor project management
11.Stakeholder politics
12.Commercial pressures

The first three items in the list above show the difficulties articulating the needs of the client in such
a way that proper resources can deliver the proper project goals. Specific software project
management tools are useful and often necessary, but the true art in software project management is
applying the correct method and then using tools to support the method. Without a method, tools are
worthless. Since the 1960's, several proprietary software project management methods have been
developed by software manufacturers for their own use, while computer consulting firms have also

216

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-316
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Stellman05-315

developed similar methods for their clients. Today software project management methods are still
evolving, but the current trend leads away from the waterfall model to a more cyclic project
delivery model that imitates a Software release life cycle.

Software development process

A software development process is concerned primarily with the production aspect of software
development, as opposed to the technical aspect, such as software tools. These processes exist
primarily for supporting the management of software development, and are generally skewed
toward addressing business concerns. Many software development processes can be run in a similar
way to general project management processes. Examples are:

• Risk management is the process of measuring or assessing risk and then developing
strategies to manage the risk. In general, the strategies employed include transferring the risk
to another party, avoiding the risk, reducing the negative effect of the risk, and accepting
some or all of the consequences of a particular risk. Risk management in software project
management begins with the business case for starting the project, which includes a cost-
benefit analysis as well as a list of fallback options for project failure, called a contingency
plan.

• A subset of risk management that is gaining more and more attention is "Opportunity
Management", which means the same thing, except that the potential risk outcome
will have a positive, rather than a negative impact. Though theoretically handled in
the same way, using the term "opportunity" rather than the somewhat negative term
"risk" helps to keep a team focussed on possible positive outcomes of any given risk
register in their projects, such as spin-off projects, windfalls, and free extra resources.

• Requirements management is the process of identifying, eliciting, documenting, analyzing,
tracing, prioritizing and agreeing on requirements and then controlling change and
communicating to relevant stakeholders. New or altered computer system[4] Requirements
management, which includes Requirements analysis, is an important part of the software
engineering process; whereby business analysts or software developers identify the needs or
requirements of a client; having identified these requirements they are then in a position to
design a solution.

• Change management is the process of identifying, documenting, analyzing, prioritizing and
agreeing on changes to scope (project management) and then controlling changes and
communicating to relevant stakeholders. Change impact analysis of new or altered scope,
which includes Requirements analysis at the change level, is an important part of the
software engineering process; whereby business analysts or software developers identify the
altered needs or requirements of a client; having identified these requirements they are then
in a position to re-design or modify a solution. Theoretically, each change can impact the
timeline and budget of a software project, and therefore by definition must include risk-
benefit analysis before approval.

• Software configuration management is the process of identifying, and documenting the
scope itself, which is the software product underway, including all sub-products and changes
and enabling communication of these to relevant stakeholders. In general, the processes
employed include version control, naming convention (programming), and software archival
agreements.

217

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Stellman05-315

• Release management is the process of identifying, documenting, prioritizing and agreeing on
releases of software and then controlling the release schedule and communicating to relevant
stakeholders. Most software projects have access to three software environments to which
software can be released; Development, Test, and Production. In very large projects, where
distributed teams need to integrate their work before release to users, there will often be
more environments for testing, called unit testing, system testing, or integration testing,
before release to User acceptance testing (UAT).

• A subset of release management that is gaining more and more attention is Data
Management, as obviously the users can only test based on data that they know, and
"real" data is only in the software environment called "production". In order to test
their work, programmers must therefore also often create "dummy data" or "data
stubs". Traditionally, older versions of a production system were once used for this
purpose, but as companies rely more and more on outside contributors for software
development, company data may not be released to development teams. In complex
environments, datasets may be created that are then migrated across test
environments according to a test release schedule, much like the overall software
release schedule.

Project planning, monitoring and control

The purpose of project planning is to identify the scope of the project, estimate the work involved,
and create a project schedule. Project planning begins with requirements that define the software to
be developed. The project plan is then developed to describe the tasks that will lead to completion.

The purpose of project monitoring and control is to keep the team and management up to date on
the project's progress. If the project deviates from the plan, then the project manager can take action
to correct the problem. Project monitoring and control involves status meetings to gather status
from the team. When changes need to be made, change control is used to keep the products up to
date.

Issue

In computing, the term issue is a unit of work to accomplish an improvement in a system. An issue
could be a bug, a requested feature, task, missing documentation, and so forth. The word "issue" is
popularly misused in lieu of "problem." This usage is probably related. [citation needed]

For example, OpenOffice.org used to call their modified version of BugZilla IssueZilla. As of
September 2010, they call their system Issue Tracker.

Problems occur from time to time and fixing them in a timely fashion is essential to achieve
correctness of a system and avoid delayed deliveries of products.

Severity levels

Issues are often categorized in terms of severity levels. Different companies have different
definitions of severities, but some of the most common ones are:

218

http://en.wikibooks.org/wiki/Wikibooks:OR

• Critical
• High - The bug or issue affects a crucial part of a system, and must be fixed in order for it to

resume normal operation.
• Medium - The bug or issue affects a minor part of a system, but has some impact on its

operation. This severity level is assigned when a non-central requirement of a system is
affected.

• Low - The bug or issue affects a minor part of a system, and has very little impact on its
operation. This severity level is assigned when a non-central requirement of a system (and
with lower importance) is affected.

• Cosmetic - The system works correctly, but the appearance does not match the expected one.
For example: wrong colors, too much or too little spacing between contents, incorrect font
sizes, typos, etc. This is the lowest priority issue.

In many software companies, issues are often investigated by Quality Assurance Analysts when
they verify a system for correctness, and then assigned to the developer(s) that are responsible for
resolving them. They can also be assigned by system users during the User Acceptance Testing
(UAT) phase.

Issues are commonly communicated using Issue or Defect Tracking Systems. In some other cases,
emails or instant messengers are used.

Philosophy

As a subdiscipline of project management, some regard the management of software development
akin to the management of manufacturing, which can be performed by someone with management
skills, but no programming skills. John C. Reynolds rebuts this view, and argues that software
development is entirely design work, and compares a manager who cannot program to the
managing editor of a newspaper who cannot write.[6]

External links

• Resources on Software Project Management from Steve McConnell:
http://www.construx.com/Page.aspx?nid=22

• Resources on Software Project Management from Dan Galorath:
http://www.galorath.com/wp/category/project-management

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-

219

http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://www.galorath.com/wp/category/project-management
http://www.construx.com/Page.aspx?nid=22
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-317

7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

• Jalote, Pankaj (2002). Software project management in practice. Addison-Wesley.
ISBN 0201737213.

Software Estimation

Software development efforts estimation is the process of predicting the most realistic use of
effort required to develop or maintain software based on incomplete, uncertain and/or noisy input.
Effort estimates may be used as input to project plans, iteration plans, budgets, investment analyses,
pricing processes and bidding rounds.

State-of-practice

Published surveys on estimation practice suggest that expert estimation is the dominant strategy
when estimating software development effort[7].

Typically, effort estimates are over-optimistic and there is a strong over-confidence in their
accuracy. The mean effort overrun seems to be about 30% and not decreasing over time. For a
review of effort estimation error surveys, see [8]. However, the measurement of estimation error is
not unproblematic, see Assessing and interpreting the accuracy of effort estimates. The strong over-
confidence in the accuracy of the effort estimates is illustrated by the finding that, on average, if a
software professional is 90% confident or “almost sure” to include the actual effort in a minimum-
maximum interval, the observed frequency of including the actual effort is only 60-70% [9].

Currently the term “effort estimate” is used to denote as different concepts as most likely use of
effort (modal value), the effort that corresponds to a probability of 50% of not exceeding (median),
the planned effort, the budgeted effort or the effort used to propose a bid or price to the client. This
is believed to be unfortunate, because communication problems may occur and because the
concepts serve different goals [10] [11].

History

Software researchers and practitioners have been addressing the problems of effort estimation for
software development projects since at least the 1960s; see, e.g., work by Farr [12] and Nelson [13].

Most of the research has focused on the construction of formal software effort estimation models.
The early models were typically based on regression analysis or mathematically derived from
theories from other domains. Since then a high number of model building approaches have been
evaluated, such as approaches founded on case-based reasoning, classification and regression trees,

220

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-324
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-323
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-322
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-321
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-320
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-319
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-318
http://en.wikibooks.org/wiki/Special:BookSources/0201737213
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7

simulation, neural networks, Bayesian statistics, lexical analysis of requirement specifications,
genetic programming, linear programming, economic production models, soft computing, fuzzy
logic modeling, statistical bootstrapping, and combinations of two or more of these models. The
perhaps most common estimation products today, e.g., the formal estimation models COCOMO and
SLIM have their basis in estimation research conducted in the 1970s and 1980s. The estimation
approaches based on functionality-based size measures, e.g., function points, is also based on
research conducted in the 1970s and 1980s, but are re-appearing with modified size measures under
different labels, such as “use case points” [14] in the 1990s and COSMIC in the 2000s.

Estimation approaches

There are many ways of categorizing estimation approaches, see for example [15] [16] . The top
level categories are the following:

• Expert estimation: The quantification step, i.e., the step where the estimate is produced
based on judgmental processes.

• Formal estimation model: The quantification step is based on mechanical processes, e.g., the
use of a formula derived from historical data.

• Combination-based estimation: The quantification step is based on a judgmental or
mechanical combination of estimates from different sources.

Below are examples of estimation approaches within each category.

Estimation approach Category
Examples of support of implementation of estimation
approach

Analogy-based
estimation

Formal estimation
model

ANGEL, Weighted Micro Function Points

WBS-based (bottom
up) estimation

Expert estimation
Project management software, company specific activity
templates

Parametric models
Formal estimation
model

COCOMO, SLIM, SEER-SEM

Size-based estimation
models[17]

Formal estimation
model

Function Point Analysis[18], Use Case Analysis, Story
points-based estimation in Agile software development

Group estimation Expert estimation Planning poker, Wideband Delphi

Mechanical
combination

Combination-based
estimation

Average of an analogy-based and a Work breakdown
structure-based effort estimate

Judgmental
combination

Combination-based
estimation

Expert judgment based on estimates from a parametric
model and group estimation

221

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-329
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-328
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-327
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-326
http://www.cosmicon.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-325

Selection of estimation approach

The evidence on differences in estimation accuracy of different estimation approaches and models
suggest that there is no “best approach” and that the relative accuracy of one approach or model in
comparison to another depends strongly on the context [19]. This implies that different
organizations benefit from different estimation approaches. Findings, summarized in [20], that may
support the selection of estimation approach based on the expected accuracy of an approach
include:

• Expert estimation is on average at least as accurate as model-based effort estimation. In
particular, situations with unstable relationships and information of high importance not
included in the model may suggest use of expert estimation. This assumes, of course, that
experts with relevant experience are available.

• Formal estimation models not tailored to a particular organization’s own context, may be
very inaccurate. Use of own historical data is consequently crucial if one cannot be sure that
the estimation model’s core relationships (e.g., formula parameters) are based on similar
project contexts.

• Formal estimation models may be particularly useful in situations where the model is
tailored to the organization’s context (either through use of own historical data or that the
model is derived from similar projects and contexts), and/or it is likely that the experts’
estimates will be subject to a strong degree of wishful thinking.

The most robust finding, in many forecasting domains, is that combination of estimates from
independent sources, preferable applying different approaches, will on average improve the
estimation accuracy [21] [22] [23].

In addition, other factors such as ease of understanding and communicating the results of an
approach, ease of use of an approach, cost of introduction of an approach should be considered in a
selection process.

Uncertainty assessment approaches

The uncertainty of an effort estimate can be described through a prediction interval (PI). An effort
PI is based on a stated certainty level and contains a minimum and a maximum effort value. For
example, a project leader may estimate that the most likely effort of a project is 1000 work-hours
and that it is 90% certain that the actual effort will be between 500 and 2000 work-hours. Then, the
interval [500, 2000] work-hours is the 90% PI of the effort estimate of 1000 work-hours.
Frequently, other terms are used instead of PI, e.g., prediction bounds, prediction limits, interval
prediction, prediction region and, unfortunately, confidence interval. An important difference
between confidence interval and PI is that PI refers to the uncertainty of an estimate, while
confidence interval usually refers to the uncertainty associated with the parameters of an estimation
model or distribution, e.g., the uncertainty of the mean value of a distribution of effort values. The
confidence level of a PI refers to the expected (or subjective) probability that the real value is within
the predicted interval[24].

There are several possible approaches to calculate effort PIs, e.g., formal approaches based on
regression or bootstrapping [25], formal or judgmental approaches based on the distribution of
previous estimation error [26], and pure expert judgment of minimum-maximum effort for a given

222

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-337
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-336
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-335
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-334
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-333
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-332
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-331
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-330

level of confidence. Expert judgments based on the distribution of previous estimation error has
been found to systematically lead to more realistic uncertainty assessment than the traditional
minimum-maximum effort intervals in several studies, see for example [27].

Assessing and interpreting the accuracy of effort estimates

The most common measures of the average estimation accuracy is the MMRE (Mean Magnitude of
Relative Error), where MRE is defined as:

MRE = |actual effort − estimated effort| / |actual effort|

This measure has been criticized [28] [29] [30] and there are several alternative measures, such as
more symmetric measures [31] , Weighted Mean of Quartiles of relative errors (WMQ) [32] and
Mean Variation from Estimate (MVFE) [33].

A high estimation error cannot automatically be interpreted as an indicator of low estimation ability.
Alternative, competing or complementing, reasons include low cost control of project, high
complexity of development work, and more delivered functionality than originally estimated. A
framework for improved use and interpretation of estimation error measurement is included in [34].

Psychological issues related to effort estimation

There are many psychological factors potentially explaining the strong tendency towards over-
optimistic effort estimates that need to be dealt with to increase accuracy of effort estimates. These
factors are essential even when using formal estimation models, because much of the input to these
models is judgment-based. Factors that have been demonstrated to be important are: Wishful
thinking, anchoring, planning fallacy and cognitive dissonance. A discussion on these and other
factors can be found in work by Jørgensen and Grimstad [35].

• It's easy to estimate what you know.
• It's hard to estimate what you know you don't know.
• It's very hard to estimate things that you don't know you don't know.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

223

http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-346
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-345
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-344
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-343
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-342
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-341
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-340
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-339
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-338

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• Industry Productivity data for Input into Software Development Estimates and guidance and
tools for Estimation - International Software Benchmarking Standards Group:
http://www.isbsg.org

• Free first-order benchmarking utility from Software Benchmarking Organization:
http://www.sw- benchmarking .org/report.php

• Special Interest Group on Software Effort Estimation:
http://www.forecastingprinciples.com/Software_Estimation/index.html

• General forecasting principles: http://www.forecastingprinciples.com
• Project estimation tools:

http://www.projectmanagementguides.com/TOOLS/project_estimation_tools.html
• Downloadable research papers on effort estimation:

http://simula.no/research/engineering/projects/best
• Mike Cohn's Estimating With Use Case Points from article from Methods & Tools:

http://www.methodsandtools.com/archive/archive.php?id=25
• Resources on Software Estimation from Steve McConnell:

http://www.construx.com/Page.aspx?nid=297
• Resources on Software Estimation from Dan Galorath: http://www.galorath.com/wp/

Cost Estimation

The ability to accurately estimate the time and/or cost taken for a project to come in to its successful
conclusion is a serious problem for software engineers. The use of a repeatable, clearly defined and
well understood software development process has, in recent years, shown itself to be the most
effective method of gaining useful historical data that can be used for statistical estimation. In
particular, the act of sampling more frequently, coupled with the loosening of constraints between
parts of a project, has allowed more accurate estimation and more rapid development times.

Methods

Popular methods for estimation in software engineering include:

• Analysis Effort method
• COCOMO
• COSYSMO
• Evidence-based Scheduling Refinement of typical agile estimating techniques using minimal

measurement and total time accounting.
• Function Point Analysis
• Parametric Estimating
• PRICE Systems Founders of Commercial Parametric models that estimates the scope, cost,

effort and schedule for software projects.

224

http://www.galorath.com/wp/
http://www.construx.com/Page.aspx?nid=297
http://www.methodsandtools.com/archive/archive.php?id=25
http://simula.no/research/engineering/projects/best
http://www.projectmanagementguides.com/TOOLS/project_estimation_tools.html
http://www.forecastingprinciples.com/
http://www.forecastingprinciples.com/Software_Estimation/index.html
http://www.sw-benchmarking.org/report.php
http://www.sw-benchmarking.org/report.php
http://www.sw-benchmarking.org/report.php
http://www.isbsg.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0

• Proxy-based estimating (PROBE) (from the Personal Software Process)
• Program Evaluation and Review Technique (PERT)
• SEER-SEM Parametric Estimation of Effort, Schedule, Cost, Risk. Mimimum time and

staffing concepts based on Brooks's law
• SLIM
• The Planning Game (from Extreme Programming)
• Weighted Micro Function Points (WMFP)
• Wideband Delphi

External links

• Software Estimation chapter from Applied Software Project Management (O'Reilly)
• Article Estimating With Use Case Points from Methods & Tools
• The Dynamics of Software Projects Estimation
• Resources on Software Estimation from Steve McConnell
• Links on tools and techniques of software estimation
• Article Estimating techniques throughout the SDLC

Development Speed

Introduction to Software Engineering/Project Management/Development Speed

225

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Project_Management/Development_Speed&action=edit&redlink=1
http://www.gem-up.com/PDF/SK903V1_WP_Estimating.pdf
http://www.uduko.com/topic_detail/details/47
http://www.construx.com/Page.aspx?nid=297
http://softwaresurvival.blogspot.com/2006/11/dynamics-of-effort-estimation-in-most.html
http://www.methodsandtools.com/
http://www.methodsandtools.com/archive/archive.php?id=25
http://www.stellman-greene.com/
http://www.stellman-greene.com/ch03

Tools

Introduction

Basically, for every step in the development process there are tools available.

• Modelling and Case Tools: StarUML, objectiF, Visio, ArgoUML

• Writing Code: IDEs like Eclipse, Netbeans, Visual Studio; Compilers and Debuggers;
SourceControl like CVS, Subversion, Git, Mercurial, SourceSafe, Perforce

• Testing Code: Testing frameworks like JUnit, FIT, TestNG, HTMLUnit; Coverage with
Clover, NCover; Profiling tools like EclipseProfile, Netbean’s Profiler, JProf, JProbe

• Automation: Build tools: make, Ant, Maven,

• Documentation: JavaDoc, Doxygen, NDoc; Wikis

• Project Management, Bug Tracking,Continuous Integration: Trac, Bugzilla, Mantis;
CruiseControl, Hudson

• Re-engineering: Decompiler: JAD; Obfuscators

Some of these tools we have talked about before, but some we still need to learn about.

Modelling and Case Tools

Example of a CASE tool.

226

http://en.wikibooks.org/wiki/File:Umbrelo_1.png
http://en.wikibooks.org/wiki/File:Umbrelo_1.png

Computer-aided software engineering (CASE) is the scientific application of a set of tools and
methods to a software system which is meant to result in high-quality, defect-free, and maintainable
software products.[36] It also refers to methods for the development of information systems
together with automated tools that can be used in the software development process.[37]

Overview

The term "computer-aided software engineering" (CASE) can refer to the software used for the
automated development of systems software, i.e., computer code. The CASE functions include
analysis, design, and programming. CASE tools automate methods for designing, documenting, and
producing structured computer code in the desired programming language.

CASE software supports the software process activities such as requirement engineering, design,
program development and testing. Therefore, CASE tools include design editors, data dictionaries,
compilers, debuggers, system building tools, etc.

CASE also refers to the methods dedicated to an engineering discipline for the development of
information system using automated tools.

CASE is mainly used for the development of quality software which will perform effectively.

History

The ISDOS project at the University of Michigan initiated a great deal of interest in the whole
concept of using computer systems to help analysts in the very difficult process of analysing
requirements and developing systems. Several papers by Daniel Teichroew fired a whole generation
of enthusiasts with the potential of automated systems development. His PSL/PSA tool was a CASE
tool although it predated the term. His insights into the power of meta-meta-models was inspiring,
particularly to a former student, Dr. Hasan Sayani, currently Professor, Program Director at
University of Maryland University College.

Another major thread emerged as a logical extension to the DBMS directory. By extending the
range of meta-data held, the attributes of an application could be held within a dictionary and used
at runtime. This "active dictionary" became the precursor to the more modern "model driven
execution" (MDE) capability. However, the active dictionary did not provide a graphical
representation of any of the meta-data. It was the linking of the concept of a dictionary holding
analysts' meta-data, as derived from the use of an integrated set of techniques, together with the
graphical representation of such data that gave rise to the earlier versions of I-CASE.

The term CASE was originally coined by software company Nastec Corporation of Southfield,
Michigan in 1982 with their original integrated graphics and text editor GraphiText, which also was
the first microcomputer-based system to use hyperlinks to cross-reference text strings in documents
—an early forerunner of today's web page link. GraphiText's successor product, DesignAid, was the
first microprocessor-based tool to logically and semantically evaluate software and system design
diagrams and build a data dictionary.

227

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-348
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-347

Under the direction of Albert F. Case, Jr. vice president for product management and consulting,
and Vaughn Frick, director of product management, the DesignAid product suite was expanded to
support analysis of a wide range of structured analysis and design methodologies, notably Ed
Yourdon and Tom DeMarco, Chris Gane & Trish Sarson, Ward-Mellor (real-time) SA/SD and
Warnier-Orr (data driven).

The next entrant into the market was Excelerator from Index Technology in Cambridge, Mass.
While DesignAid ran on Convergent Technologies and later Burroughs Ngen networked
microcomputers, Index launched Excelerator on the IBM PC/AT platform. While, at the time of
launch, and for several years, the IBM platform did not support networking or a centralized
database as did the Convergent Technologies or Burroughs machines, the allure of IBM was strong,
and Excelerator came to prominence. Hot on the heels of Excelerator were a rash of offerings from
companies such as Knowledgeware (James Martin, Fran Tarkenton and Don Addington), Texas
Instrument's IEF and Accenture's FOUNDATION toolset (METHOD/1, DESIGN/1, INSTALL/1,
FCP).

CASE tools were at their peak in the early 1990s. At the time IBM had proposed AD/Cycle, which
was an alliance of software vendors centered around IBM's Software repository using IBM DB2 in
mainframe and OS/2:

The application development tools can be from several sources: from IBM, from vendors, and
from the customers themselves. IBM has entered into relationships with Bachman
Information Systems, Index Technology Corporation, and Knowledgeware, Inc. wherein
selected products from these vendors will be marketed through an IBM complementary
marketing program to provide offerings that will help to achieve complete life-cycle coverage.
[38]

With the decline of the mainframe, AD/Cycle and the Big CASE tools died off, opening the market
for the mainstream CASE tools of today. Nearly all of the leaders of the CASE market of the early
1990s ended up being purchased by Computer Associates, including IEW, IEF, ADW, Cayenne,
and Learmonth & Burchett Management Systems (LBMS).

Supporting software

Alfonso Fuggetta classified CASE into 3 categories:[39]

1. Tasks support only specific tasks in the software process.
2. Workbenches support only one or a few activities.
3. Environments support (a large part of) the software process.

Workbenches and environments are generally built as collections of tools. Tools can therefore be
either stand alone products or components of workbenches and environments.

Tools

CASE tools are a class of software that automate many of the activities involved in various life
cycle phases. For example, when establishing the functional requirements of a proposed application,
prototyping tools can be used to develop graphic models of application screens to assist end users to

228

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ADC_SAaA-349

visualize how an application will look after development. Subsequently, system designers can use
automated design tools to transform the prototyped functional requirements into detailed design
documents. Programmers can then use automated code generators to convert the design documents
into code. Automated tools can be used collectively, as mentioned, or individually. For example,
prototyping tools could be used to define application requirements that get passed to design
technicians who convert the requirements into detailed designs in a traditional manner using
flowcharts and narrative documents, without the assistance of automated design software.[40]

Existing CASE tools can be classified along 4 different dimensions:

1. Life-cycle support
2. Integration dimension
3. Construction dimension
4. Knowledge-based CASE dimension[41]

Let us take the meaning of these dimensions along with their examples one by one:

Life-Cycle Based CASE Tools

This dimension classifies CASE Tools on the basis of the activities they support in the information
systems life cycle. They can be classified as Upper or Lower CASE tools.

• Upper CASE Tools support strategic planning and construction of concept-level products
and ignore the design aspect. They support traditional diagrammatic languages such as ER
diagrams, Data flow diagram, Structure charts, Decision Trees, Decision tables, etc.

• Lower CASE Tools concentrate on the back end activities of the software life cycle, such as
physical design, debugging, construction, testing, component integration, maintenance,
reengineering and reverse engineering.

Integration dimension

Three main CASE Integration dimensions have been proposed:[42]

1. CASE Framework
2. ICASE Tools
3. Integrated Project Support Environment(IPSE)

Workbenches

Workbenches integrate several CASE tools into one application to support specific software-
process activities. Hence they achieve:

• a homogeneous and consistent interface (presentation integration).
• easy invocation of tools and tool chains (control integration).
• access to a common data set managed in a centralized way (data integration).

CASE workbenches can be further classified into following 8 classes:[39]

229

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-353
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-352
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-FFIEC08-351

1. Business planning and modeling
2. Analysis and design
3. User-interface development
4. Programming
5. Verification and validation
6. Maintenance and reverse engineering
7. Configuration management
8. Project management

Environments

An environment is a collection of CASE tools and workbenches that supports the software process.
CASE environments are classified based on the focus/basis of integration[39]

1. Toolkits
2. Language-centered
3. Integrated
4. Fourth generation
5. Process-centered

Toolkits

Toolkits are loosely integrated collections of products easily extended by aggregating different tools
and workbenches. Typically, the support provided by a toolkit is limited to programming,
configuration management and project management. And the toolkit itself is environments extended
from basic sets of operating system tools, for example, the Unix Programmer's Work Bench and the
VMS VAX Set. In addition, toolkits' loose integration requires user to activate tools by explicit
invocation or simple control mechanisms. The resulting files are unstructured and could be in
different format, therefore the access of file from different tools may require explicit file format
conversion. However, since the only constraint for adding a new component is the formats of the
files, toolkits can be easily and incrementally extended.[39]

Language-centered

The environment itself is written in the programming language for which it was developed, thus
enabling users to reuse, customize and extend the environment. Integration of code in different
languages is a major issue for language-centered environments. Lack of process and data integration
is also a problem. The strengths of these environments include good level of presentation and
control integration. Interlisp, Smalltalk, Rational, and KEE are examples of language-centered
environments.[39]

Integrated

These environments achieve presentation integration by providing uniform, consistent, and coherent
tool and workbench interfaces. Data integration is achieved through the repository concept: they
have a specialized database managing all information produced and accessed in the environment.
Examples of integrated environment are IBM AD/Cycle and DEC Cohesion.[39]

Fourth-generation

230

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350

Fourth-generation environments were the first integrated environments. They are sets of tools and
workbenches supporting the development of a specific class of program: electronic data processing
and business-oriented applications. In general, they include programming tools, simple
configuration management tools, document handling facilities and, sometimes, a code generator to
produce code in lower level languages. Informix 4GL, and Focus fall into this category.[39]

Process-centered

Environments in this category focus on process integration with other integration dimensions as
starting points. A process-centered environment operates by interpreting a process model created by
specialized tools. They usually consist of tools handling two functions:

• Process-model execution
• Process-model production

Examples are East, Enterprise II, Process Wise, Process Weaver, and Arcadia.[39]

Applications

All aspects of the software development life cycle can be supported by software tools, and so the
use of tools from across the spectrum can, arguably, be described as CASE; from project
management software through tools for business and functional analysis, system design, code
storage, compilers, translation tools, test software, and so on.

However, tools that are concerned with analysis and design, and with using design information to
create parts (or all) of the software product, are most frequently thought of as CASE tools. CASE
applied, for instance, to a database software product, might normally involve:

• Modeling business / real-world processes and data flow
• Development of data models in the form of entity-relationship diagrams
• Development of process and function descriptions

Risks and associated controls

Common CASE risks and associated controls include:

• Inadequate standardization: Linking CASE tools from different vendors (design tool from
Company X, programming tool from Company Y) may be difficult if the products do not
use standardized code structures and data classifications. File formats can be converted, but
usually not economically. Controls include using tools from the same vendor, or using tools
based on standard protocols and insisting on demonstrated compatibility. Additionally, if
organizations obtain tools for only a portion of the development process, they should
consider acquiring them from a vendor that has a full line of products to ensure future
compatibility if they add more tools.[40]

231

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-FFIEC08-351
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-AF_93-350

• Unrealistic expectations: Organizations often implement CASE technologies to reduce
development costs. Implementing CASE strategies usually involves high start-up costs.
Generally, management must be willing to accept a long-term payback period. Controls
include requiring senior managers to define their purpose and strategies for implementing
CASE technologies.[40]

• Slow implementation: Implementing CASE technologies can involve a significant change
from traditional development environments. Typically, organizations should not use CASE
tools the first time on critical projects or projects with short deadlines because of the lengthy
training process. Additionally, organizations should consider using the tools on smaller, less
complex projects and gradually implementing the tools to allow more training time.[40]

• Weak repository controls: Failure to adequately control access to CASE repositories may
result in security breaches or damage to the work documents, system designs, or code
modules stored in the repository. Controls include protecting the repositories with
appropriate access, version, and backup controls.[40]

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• CASE Tools A CASE tools' community with comments, tags, forums, articles, reviews, etc.
• CASE tool index - A comprehensive list of CASE tools
• UML CASE tools - A comprehensive list of UML CASE tools. Mainly have resources to

choose a UML CASE tool and some related to MDA CASE Tools.

232

http://www.objectsbydesign.com/tools/umltools_byProduct.html
http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html
http://case-tools.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-FFIEC08-351
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-FFIEC08-351
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-FFIEC08-351

Compiler

A diagram of the operation of a typical multi-language, multi-target compiler.

A compiler is a computer program (or set of programs) that transforms source code written in a
programming language (the source language) into another computer language (the target language,
often having a binary form known as object code). The most common reason for wanting to
transform source code is to create an executable program.

The name "compiler" is primarily used for programs that translate source code from a high-level
programming language to a lower level language (e.g., assembly language or machine code). If the
compiled program can run on a computer whose CPU or operating system is different from the one
on which the compiler runs, the compiler is known as a cross-compiler. A program that translates
from a low level language to a higher level one is a decompiler. A program that translates between
high-level languages is usually called a language translator, source to source translator, or
language converter. A language rewriter is usually a program that translates the form of
expressions without a change of language.

A compiler is likely to perform many or all of the following operations: lexical analysis,
preprocessing, parsing, semantic analysis (Syntax-directed translation), code generation, and code
optimization.

Program faults caused by incorrect compiler behavior can be very difficult to track down and work
around; therefore, compiler implementors invest a lot of time ensuring the correctness of their
software.

The term compiler-compiler is sometimes used to refer to a parser generator, a tool often used to
help create the lexer and parser.

233

http://en.wikibooks.org/wiki/File:Compiler.svg
http://en.wikibooks.org/wiki/File:Compiler.svg

History

Software for early computers was primarily written in assembly language for many years. Higher
level programming languages were not invented until the benefits of being able to reuse software on
different kinds of CPUs started to become significantly greater than the cost of writing a compiler.
The very limited memory capacity of early computers also created many technical problems when
implementing a compiler.

Towards the end of the 1950s, machine-independent programming languages were first proposed.
Subsequently, several experimental compilers were developed. The first compiler was written by
Grace Hopper, in 1952, for the A-0 programming language. The FORTRAN team led by John
Backus at IBM is generally credited as having introduced the first complete compiler in 1957.
COBOL was an early language to be compiled on multiple architectures, in 1960.[43]

In many application domains the idea of using a higher level language quickly caught on. Because
of the expanding functionality supported by newer programming languages and the increasing
complexity of computer architectures, compilers have become more and more complex.

Early compilers were written in assembly language. The first self-hosting compiler — capable of
compiling its own source code in a high-level language — was created for Lisp by Tim Hart and
Mike Levin at MIT in 1962.[44] Since the 1970s it has become common practice to implement a
compiler in the language it compiles, although both Pascal and C have been popular choices for
implementation language. Building a self-hosting compiler is a bootstrapping problem—the first
such compiler for a language must be compiled either by a compiler written in a different language,
or (as in Hart and Levin's Lisp compiler) compiled by running the compiler in an interpreter.

Compilers in education

Compiler construction and compiler optimization are taught at universities and schools as part of
the computer science curriculum. Such courses are usually supplemented with the implementation
of a compiler for an educational programming language. A well-documented example is Niklaus
Wirth's PL/0 compiler, which Wirth used to teach compiler construction in the 1970s.[45] In spite
of its simplicity, the PL/0 compiler introduced several influential concepts to the field:

1. Program development by stepwise refinement (also the title of a 1971 paper by Wirth)[46]
2. The use of a recursive descent parser
3. The use of EBNF to specify the syntax of a language
4. A code generator producing portable P-code
5. The use of T-diagrams[47] in the formal description of the bootstrapping problem

Compilation

Compilers enabled the development of programs that are machine-independent. Before the
development of FORTRAN (FORmula TRANslator), the first higher-level language, in the 1950s,
machine-dependent assembly language was widely used. While assembly language produces more
reusable and relocatable programs than machine code on the same architecture, it has to be modified
or rewritten if the program is to be executed on different hardware architecture.

234

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-358
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-357
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-356
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-355
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-354

With the advance of high-level programming languages soon followed after FORTRAN, such as
COBOL, C, BASIC, programmers can write machine-independent source programs. A compiler
translates the high-level source programs into target programs in machine languages for the specific
hardwares. Once the target program is generated, the user can execute the program.

The structure of a compiler

Compilers bridge source programs in high-level languages with the underlying hardware. A
compiler requires 1) determining the correctness of the syntax of programs, 2) generating correct
and efficient object code, 3) run-time organization, and 4) formatting output according to assembler
and/or linker conventions. A compiler consists of three main parts: the frontend, the middle-end,
and the backend.

The frontend checks whether the program is correctly written in terms of the programming
language syntax and semantics. Here legal and illegal programs are recognized. Errors are reported,
if any, in a useful way. Type checking is also performed by collecting type information. The
frontend then generates an intermediate representation or IR of the source code for processing by
the middle-end.

The middle-end is where optimization takes place. Typical transformations for optimization are
removal of useless or unreachable code, discovery and propagation of constant values, relocation of
computation to a less frequently executed place (e.g., out of a loop), or specialization of
computation based on the context. The middle-end generates another IR for the following backend.
Most optimization efforts are focused on this part.

The backend is responsible for translating the IR from the middle-end into assembly code. The
target instruction(s) are chosen for each IR instruction. Variables are also selected for the registers.
Backend utilizes the hardware by figuring out how to keep parallel FUs busy, filling delay slots, and
so on. Although most algorithms for optimization are in NP, heuristic techniques are well-
developed.

Compiler output

One classification of compilers is by the platform on which their generated code executes. This is
known as the target platform.

A native or hosted compiler is one which output is intended to directly run on the same type of
computer and operating system that the compiler itself runs on. The output of a cross compiler is
designed to run on a different platform. Cross compilers are often used when developing software
for embedded systems that are not intended to support a software development environment.

The output of a compiler that produces code for a virtual machine (VM) may or may not be
executed on the same platform as the compiler that produced it. For this reason such compilers are
not usually classified as native or cross compilers.

235

Compiled versus interpreted languages

Higher-level programming languages are generally divided for convenience into compiled
languages and interpreted languages. However, in practice there is rarely anything about a language
that requires it to be exclusively compiled or exclusively interpreted, although it is possible to
design languages that rely on re-interpretation at run time. The categorization usually reflects the
most popular or widespread implementations of a language — for instance, BASIC is sometimes
called an interpreted language, and C a compiled one, despite the existence of BASIC compilers
and C interpreters.

Modern trends toward just-in-time compilation and bytecode interpretation at times blur the
traditional categorizations of compilers and interpreters.

Some language specifications spell out that implementations must include a compilation facility; for
example, Common Lisp. However, there is nothing inherent in the definition of Common Lisp that
stops it from being interpreted. Other languages have features that are very easy to implement in an
interpreter, but make writing a compiler much harder; for example, APL, SNOBOL4, and many
scripting languages allow programs to construct arbitrary source code at runtime with regular string
operations, and then execute that code by passing it to a special evaluation function. To implement
these features in a compiled language, programs must usually be shipped with a runtime library that
includes a version of the compiler itself.

Hardware compilation

The output of some compilers may target hardware at a very low level, for example a Field
Programmable Gate Array (FPGA) or structured Application-specific integrated circuit (ASIC).
Such compilers are said to be hardware compilers or synthesis tools because the source code they
compile effectively control the final configuration of the hardware and how it operates; the output
of the compilation are not instructions that are executed in sequence - only an interconnection of
transistors or lookup tables. For example, XST is the Xilinx Synthesis Tool used for configuring
FPGAs. Similar tools are available from Altera, Synplicity, Synopsys and other vendors.

Compiler construction

In the early days, the approach taken to compiler design used to be directly affected by the
complexity of the processing, the experience of the person(s) designing it, and the resources
available.

A compiler for a relatively simple language written by one person might be a single, monolithic
piece of software. When the source language is large and complex, and high quality output is
required, the design may be split into a number of relatively independent phases. Having separate
phases means development can be parceled up into small parts and given to different people. It also
becomes much easier to replace a single phase by an improved one, or to insert new phases later
(e.g., additional optimizations).

236

The division of the compilation processes into phases was championed by the Production Quality
Compiler-Compiler Project (PQCC) at Carnegie Mellon University. This project introduced the
terms front end, middle end, and back end.

All but the smallest of compilers have more than two phases. However, these phases are usually
regarded as being part of the front end or the back end. The point at which these two ends meet is
open to debate. The front end is generally considered to be where syntactic and semantic processing
takes place, along with translation to a lower level of representation (than source code).

The middle end is usually designed to perform optimizations on a form other than the source code
or machine code. This source code/machine code independence is intended to enable generic
optimizations to be shared between versions of the compiler supporting different languages and
target processors.

The back end takes the output from the middle. It may perform more analysis, transformations and
optimizations that are for a particular computer. Then, it generates code for a particular processor
and OS.

This front-end/middle/back-end approach makes it possible to combine front ends for different
languages with back ends for different CPUs. Practical examples of this approach are the GNU
Compiler Collection, LLVM, and the Amsterdam Compiler Kit, which have multiple front-ends,
shared analysis and multiple back-ends.

One-pass versus multi-pass compilers

Classifying compilers by number of passes has its background in the hardware resource limitations
of computers. Compiling involves performing lots of work and early computers did not have
enough memory to contain one program that did all of this work. So compilers were split up into
smaller programs which each made a pass over the source (or some representation of it) performing
some of the required analysis and translations.

The ability to compile in a single pass has classically been seen as a benefit because it simplifies the
job of writing a compiler and one pass compilers generally compile faster than multi-pass
compilers. Thus, partly driven by the resource limitations of early systems, many early languages
were specifically designed so that they could be compiled in a single pass (e.g., Pascal).

In some cases the design of a language feature may require a compiler to perform more than one
pass over the source. For instance, consider a declaration appearing on line 20 of the source which
affects the translation of a statement appearing on line 10. In this case, the first pass needs to gather
information about declarations appearing after statements that they affect, with the actual translation
happening during a subsequent pass.

The disadvantage of compiling in a single pass is that it is not possible to perform many of the
sophisticated optimizations needed to generate high quality code. It can be difficult to count exactly
how many passes an optimizing compiler makes. For instance, different phases of optimization may
analyse one expression many times but only analyse another expression once.

237

Splitting a compiler up into small programs is a technique used by researchers interested in
producing provably correct compilers. Proving the correctness of a set of small programs often
requires less effort than proving the correctness of a larger, single, equivalent program.

While the typical multi-pass compiler outputs machine code from its final pass, there are several
other types:

• A "source-to-source compiler" is a type of compiler that takes a high level language as its
input and outputs a high level language. For example, an automatic parallelizing compiler
will frequently take in a high level language program as an input and then transform the
code and annotate it with parallel code annotations (e.g. OpenMP) or language constructs
(e.g. Fortran's DOALL statements).

• Stage compiler that compiles to assembly language of a theoretical machine, like some
Prolog implementations

• This Prolog machine is also known as the Warren Abstract Machine (or WAM).
• Bytecode compilers for Java, Python, and many more are also a subtype of this.

• Just-in-time compiler, used by Smalltalk and Java systems, and also by Microsoft .NET's
Common Intermediate Language (CIL)

• Applications are delivered in bytecode, which is compiled to native machine code
just prior to execution.

Front end

The front end analyzes the source code to build an internal representation of the program, called the
intermediate representation or IR. It also manages the symbol table, a data structure mapping each
symbol in the source code to associated information such as location, type and scope. This is done
over several phases, which includes some of the following:

1. Line reconstruction. Languages which strop their keywords or allow arbitrary spaces
within identifiers require a phase before parsing, which converts the input character
sequence to a canonical form ready for the parser. The top-down, recursive-descent, table-
driven parsers used in the 1960s typically read the source one character at a time and did not
require a separate tokenizing phase. Atlas Autocode, and Imp (and some implementations of
ALGOL and Coral 66) are examples of stropped languages which compilers would have a
Line Reconstruction phase.

2. Lexical analysis breaks the source code text into small pieces called tokens. Each token is a
single atomic unit of the language, for instance a keyword, identifier or symbol name. The
token syntax is typically a regular language, so a finite state automaton constructed from a
regular expression can be used to recognize it. This phase is also called lexing or scanning,
and the software doing lexical analysis is called a lexical analyzer or scanner.

3. Preprocessing. Some languages, e.g., C, require a preprocessing phase which supports macro
substitution and conditional compilation. Typically the preprocessing phase occurs before
syntactic or semantic analysis; e.g. in the case of C, the preprocessor manipulates lexical
tokens rather than syntactic forms. However, some languages such as Scheme support macro
substitutions based on syntactic forms.

238

4. Syntax analysis involves parsing the token sequence to identify the syntactic structure of the
program. This phase typically builds a parse tree, which replaces the linear sequence of
tokens with a tree structure built according to the rules of a formal grammar which define
the language's syntax. The parse tree is often analyzed, augmented, and transformed by later
phases in the compiler.

5. Semantic analysis is the phase in which the compiler adds semantic information to the parse
tree and builds the symbol table. This phase performs semantic checks such as type checking
(checking for type errors), or object binding (associating variable and function references
with their definitions), or definite assignment (requiring all local variables to be initialized
before use), rejecting incorrect programs or issuing warnings. Semantic analysis usually
requires a complete parse tree, meaning that this phase logically follows the parsing phase,
and logically precedes the code generation phase, though it is often possible to fold multiple
phases into one pass over the code in a compiler implementation.

Back end

The term back end is sometimes confused with code generator because of the overlapped
functionality of generating assembly code. Some literature uses middle end to distinguish the
generic analysis and optimization phases in the back end from the machine-dependent code
generators.

The main phases of the back end include the following:

1. Analysis: This is the gathering of program information from the intermediate representation
derived from the input. Typical analyses are data flow analysis to build use-define chains,
dependence analysis, alias analysis, pointer analysis, escape analysis etc. Accurate analysis
is the basis for any compiler optimization. The call graph and control flow graph are usually
also built during the analysis phase.

2. Optimization: the intermediate language representation is transformed into functionally
equivalent but faster (or smaller) forms. Popular optimizations are inline expansion, dead
code elimination, constant propagation, loop transformation, register allocation and even
automatic parallelization.

3. Code generation: the transformed intermediate language is translated into the output
language, usually the native machine language of the system. This involves resource and
storage decisions, such as deciding which variables to fit into registers and memory and the
selection and scheduling of appropriate machine instructions along with their associated
addressing modes (see also Sethi-Ullman algorithm).

Compiler analysis is the prerequisite for any compiler optimization, and they tightly work together.
For example, dependence analysis is crucial for loop transformation.

In addition, the scope of compiler analysis and optimizations vary greatly, from as small as a basic
block to the procedure/function level, or even over the whole program (interprocedural
optimization). Obviously, a compiler can potentially do a better job using a broader view. But that
broad view is not free: large scope analysis and optimizations are very costly in terms of
compilation time and memory space; this is especially true for interprocedural analysis and
optimizations.

239

Interprocedural analysis and optimizations are common in modern commercial compilers from HP,
IBM, SGI, Intel, Microsoft, and Sun Microsystems. The open source GCC was criticized for a long
time for lacking powerful interprocedural optimizations, but it is changing in this respect. Another
open source compiler with full analysis and optimization infrastructure is Open64, which is used by
many organizations for research and commercial purposes.

Due to the extra time and space needed for compiler analysis and optimizations, some compilers
skip them by default. Users have to use compilation options to explicitly tell the compiler which
optimizations should be enabled.

Compiler correctness

Compiler correctness is the branch of software engineering that deals with trying to show that a
compiler behaves according to its language specification.[citation needed] Techniques include
developing the compiler using formal methods and using rigorous testing (often called compiler
validation) on an existing compiler.

Related techniques

Assembly language is a type of low-level language and a program that compiles it is more
commonly known as an assembler, with the inverse program known as a disassembler.

A program that translates from a low level language to a higher level one is a decompiler.

A program that translates between high-level languages is usually called a language translator,
source to source translator, language converter, or language rewriter. The last term is usually
applied to translations that do not involve a change of language.

International conferences and organizations

Every year, the European Joint Conferences on Theory and Practice of Software (ETAPS)
sponsors the International Conference on Compiler Construction (CC), with papers from both
the academic and industrial sectors.[48]

Notes

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

240

http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-359
http://en.wikibooks.org/wiki/Wikibooks:OR

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

References

• Compiler textbook references A collection of references to mainstream Compiler
Construction Textbooks

• Aho, Alfred V.; Sethi, Ravi; and Ullman, Jeffrey D., Compilers: Principles, Techniques and
Tools (ISBN 0-201-10088-6) link to publisher. Also known as “The Dragon Book.”

• Allen, Frances E., "A History of Language Processor Technology in IBM", IBM Journal of
Research and Development, v.25, no.5, September 1981.

• Allen, Randy; and Kennedy, Ken, Optimizing Compilers for Modern Architectures, Morgan
Kaufmann Publishers, 2001. ISBN 1-55860-286-0

• Appel, Andrew Wilson
• Modern Compiler Implementation in Java, 2nd edition. Cambridge University Press,

2002. ISBN 0-521-82060-X
• Modern Compiler Implementation in ML , Cambridge University Press, 1998. ISBN

0-521-58274-1
• Bornat, Richard, Understanding and Writing Compilers: A Do It Yourself Guide, Macmillan

Publishing, 1979. ISBN 0-333-21732-2
• Cooper, Keith D., and Torczon, Linda, Engineering a Compiler, Morgan Kaufmann, 2004,

ISBN 1-55860-699-8.
• Leverett; Cattel; Hobbs; Newcomer; Reiner; Schatz; Wulf, An Overview of the Production

Quality Compiler-Compiler Project, in Computer 13(8):38-49 (August 1980)
• McKeeman, William Marshall; Horning, James J.; Wortman, David B., A Compiler

Generator, Englewood Cliffs, N.J. : Prentice-Hall, 1970. ISBN 0-13-155077-2
• Muchnick, Steven, Advanced Compiler Design and Implementation , Morgan Kaufmann

Publishers, 1997. ISBN 1-55860-320-4
• Scott, Michael Lee, Programming Language Pragmatics, Morgan Kaufmann, 2005, 2nd

edition, 912 pages. ISBN 0-12-633951-1 (The author's site on this book).
• Srikant, Y. N.; Shankar, Priti, The Compiler Design Handbook: Optimizations and Machine

Code Generation, CRC Press, 2003. ISBN 0-8493-1240-X
• Terry, Patrick D., Compilers and Compiler Generators: An Introduction with C++ ,

International Thomson Computer Press, 1997. ISBN 1-85032-298-8,
• Wirth, Niklaus, Compiler Construction (ISBN 0-201-40353-6), Addison-Wesley, 1996, 176

pages. Revised November 2005.

External links

Look up compiler in Wiktionary, the free dictionary.

Also see the Compiler Construction book.

241

http://en.wikibooks.org/wiki/Compiler_Construction
http://en.wikibooks.org/wiki/Compiler_Construction
http://en.wiktionary.org/wiki/
http://en.wiktionary.org/wiki/compiler
http://en.wikibooks.org/wiki/Special:BookSources/0201403536
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3774&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3774&rep=rep1&type=pdf
http://en.wikibooks.org/wiki/Special:BookSources/1850322988
http://scifac.ru.ac.za/compilers/conts.htm
http://scifac.ru.ac.za/compilers/conts.htm
http://scifac.ru.ac.za/compilers/conts.htm
http://en.wikibooks.org/wiki/Special:BookSources/084931240X
http://books.google.com/books?id=0K_jIsgyNpoC&printsec=frontcover
http://books.google.com/books?id=0K_jIsgyNpoC&printsec=frontcover
http://books.google.com/books?id=0K_jIsgyNpoC&printsec=frontcover
http://books.google.com/books?id=0K_jIsgyNpoC&printsec=frontcover
http://www.cs.rochester.edu/~scott/pragmatics/
http://en.wikibooks.org/wiki/Special:BookSources/0126339511
http://books.google.com/books?id=4LMtA2wOsPcC&printsec=frontcover&dq=Programming+Language+Pragmatics
http://en.wikibooks.org/wiki/Special:BookSources/1558603204
http://books.google.com/books?id=Pq7pHwG1_OkC&printsec=frontcover&source=gbs_summary_r&cad=0
http://books.google.com/books?id=Pq7pHwG1_OkC&printsec=frontcover&source=gbs_summary_r&cad=0
http://books.google.com/books?id=Pq7pHwG1_OkC&printsec=frontcover&source=gbs_summary_r&cad=0
http://en.wikibooks.org/wiki/Special:BookSources/0131550772
http://www.cs.toronto.edu/XPL/
http://www.cs.toronto.edu/XPL/
http://www.cs.toronto.edu/XPL/
http://www.cs.toronto.edu/XPL/
http://en.wikibooks.org/wiki/Special:BookSources/1558606998
http://en.wikibooks.org/wiki/Special:BookSources/0333217322
http://www.cs.mdx.ac.uk/staffpages/r_bornat/books/compiling.pdf
http://en.wikibooks.org/wiki/Special:BookSources/0521582741
http://en.wikibooks.org/wiki/Special:BookSources/0521582741
http://books.google.com/books?id=8APOYafUt-oC&printsec=frontcover
http://books.google.com/books?id=8APOYafUt-oC&printsec=frontcover
http://books.google.com/books?id=8APOYafUt-oC&printsec=frontcover
http://en.wikibooks.org/wiki/Special:BookSources/052182060X
http://en.wikibooks.org/wiki/Special:BookSources/1558602860
http://www.research.ibm.com/journal/rd/255/ibmrd2505Q.pdf
http://www.aw.com/catalog/academic/product/0,4096,0201100886,00.html
http://en.wikibooks.org/wiki/Special:BookSources/0201100886
http://www.informatik.uni-trier.de/~ley/db/books/compiler/index.html
http://www.informatik.uni-trier.de/~ley/db/books/compiler/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116

• The comp.compilers newsgroup and RSS feed
• Hardware compilation mailing list
• Practical introduction to compiler construction using flex and yacc
• Book "Basics of Compiler Design " by Torben Ægidius Mogensen

A debugger or debugging tool is a computer program that is used to test and debug other programs
(the "target" program). The code to be examined might alternatively be running on an instruction
set simulator (ISS), a technique that allows great power in its ability to halt when specific
conditions are encountered but which will typically be somewhat slower than executing the code
directly on the appropriate (or the same) processor. Some debuggers offer two modes of operation -
full or partial simulation, to limit this impact.

A "crash" happens when the program cannot normally continue because of a programming bug. For
example, the program might have tried to use an instruction not available on the current version of
the CPU or attempted to access unavailable or protected memory. When the program "crashes" or
reaches a preset condition, the debugger typically shows the position in the original code if it is a
source-level debugger or symbolic debugger, commonly now seen in integrated development
environments. If it is a low-level debugger or a machine-language debugger it shows the line in
the disassembly (unless it also has online access to the original source code and can display the
appropriate section of code from the assembly or compilation).

Typically, debuggers also offer more sophisticated functions such as running a program step by step
(single-stepping or program animation), stopping (breaking) (pausing the program to examine the
current state) at some event or specified instruction by means of a breakpoint, and tracking the
values of some variables. Some debuggers have the ability to modify the state of the program while
it is running, rather than merely to observe it. It may also be possible to continue execution at a
different location in the program to bypass a crash or logical error.

The importance of a good debugger cannot be overstated. Indeed, the existence and quality of such
a tool for a given language and platform can often be the deciding factor in its use, even if another
language/platform is better-suited to the task.[citation needed]. The absence of a debugger, having once
been accustomed to using one, has been said to "make you feel like a blind man in a dark room
looking for a black cat that isn’t there".[49] However, software can (and often does) behave
differently running under a debugger than normally, due to the inevitable changes the presence of a
debugger will make to a software program's internal timing. As a result, even with a good
debugging tool, it is often very difficult to track down runtime problems in complex multi-threaded
or distributed systems.

The same functionality which makes a debugger useful for eliminating bugs allows it to be used as
a software cracking tool to evade copy protection, digital rights management, and other software
protection features. It often also makes it useful as a general testing verification tool test coverage
and performance analyzer, especially if instruction path lengths are shown.

Most current mainstream debugging engines, such as gdb and dbx provide console-based command
line interfaces. Debugger front-ends are popular extensions to debugger engines that provide IDE
integration, program animation, and visualization features. Some early mainframe debuggers such

242

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-360
http://en.wikibooks.org/wiki/Wikibooks:OR
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/
http://www.onyxbits.de/content/blog/patrick/introduction-compiler-construction-using-flex-and-yacc
http://www.onyxbits.de/content/blog/patrick/introduction-compiler-construction-using-flex-and-yacc
http://www.onyxbits.de/content/blog/patrick/introduction-compiler-construction-using-flex-and-yacc
http://www.jiscmail.ac.uk/lists/hwcomp.html
http://www.jiscmail.ac.uk/lists/hwcomp.html
http://www.jiscmail.ac.uk/lists/hwcomp.html
http://compilers.iecc.com/

as IBM OLIVER (CICS interactive test/debug) and SIMON (Batch Interactive test/debug) provided
this same functionality for the IBM System/360 and later operating systems, as long ago as the
1970s.

Language dependency

Some debuggers operate on a single specific language while others can handle multiple languages
transparently. For example if the main target program is written in COBOL but CALLs Assembler
subroutines and also PL/1 subroutines, the debugger may dynamically switch modes to
accommodate the changes in language as they occur.

Memory protection

Some debuggers also incorporate memory protection to avoid storage violations such as buffer
overflow. This may be extremely important in transaction processing environments where memory
is dynamically allocated from memory 'pools' on a task by task basis.

Hardware support for debugging

Most modern microprocessors have at least one of these features in their CPU design to make
debugging easier:

• hardware support for single-stepping a program, such as the trap flag.
• An instruction set that meets the Popek and Goldberg virtualization requirements makes it

easier to write debugger software that runs on the same CPU as the software being
debugged; such a CPU can execute the inner loops of the program under test at full speed,
and still remain under the control of the debugger.

• In-System Programming allows an external hardware debugger to re-program a system
under test (for example, adding or removing instruction breakpoints). Many systems with
such ISP support also have other hardware debug support.

• Hardware support for code and data breakpoints, such as address comparators and data value
comparators or, with considerably more work involved, page fault hardware.

• JTAG access to hardware debug interfaces such as those on ARM architecture processors or
using the Nexus command set. Processors used in embedded systems typically have
extensive JTAG debug support.

• Microcontrollers with as few as six pins need to use low pin-count substitutes for JTAG,
such as BDM, Spy-Bi-Wire, or DebugWire on the Atmel AVR. DebugWire, for example,
uses bidirectional signaling on the RESET pin.

243

List of debuggers

Winpdb debugging itself.

• AppPuncher Debugger — for debugging Rich Internet Applications
• AQtime
• CA/EZTEST — was a CICS interactive test/debug software package
• CharmDebug — a Debugger for Charm++
• CodeView
• DBG — a PHP Debugger and Profiler
• dbx
• DDD (Data Display Debugger)
• Distributed Debugging Tool (Allinea DDT)
• DDTLite — Allinea DDTLite for Visual Studio 2008
• DEBUG — the built-in debugger of DOS and Microsoft Windows
• Debugger for MySQL
• Opera Dragonfly
• Dynamic debugging technique (DDT), and its octal counterpart Octal Debugging Technique
• Eclipse
• Embedded System Debug Plug-in for Eclipse
• FusionDebug
• gDEBugger OpenGL, OpenGL ES and OpenCL Debugger and Profiler. For Windows,

Linux, Mac OS X and iPhone
• GNU Debugger (GDB), GNU Binutils
• Intel Debugger (IDB)
• Insight
• Parasoft Insure++
• iSYSTEM — In circuit debugger for Embedded Systems
• Interactive Disassembler (IDA Pro)
• Java Platform Debugger Architecture
• Jinx — a whole-system debugger for heisenbugs. It works transparently as a device driver.
• JSwat — open-source Java debugger
• LLDB
• MacsBug
• Nemiver — graphical C/C++ Debugger for the GNOME desktop environment
• OLIVER (CICS interactive test/debug) - a GUI equipped instruction set simulator (ISS)
• OllyDbg

244

http://www.gremedy.com/gDEBuggerCL.php
http://www.mydebugger.com/
http://www.mydebugger.com/
http://charm.cs.uiuc.edu/research/parallel_debug/
http://en.wikibooks.org/wiki/File:Winpdb-1.3.6.png
http://en.wikibooks.org/wiki/File:Winpdb-1.3.6.png

• FlexTracer - shareware debugger for SQL statements
• Omniscient Debugger — Forward and backward debugger for Java
• pydbg
• IBM Rational Purify
• RealView Debugger — Commercial debugger produced for and designed by ARM
• sdb
• SIMMON (Simulation Monitor)
• SIMON (Batch Interactive test/debug) — a GUI equipped Instruction Set Simulator for

batch
• SoftICE
• TimeMachine — Forward and backward debugger designed by Green Hills Software
• TotalView
• TRACE32 — In circuit debugger for Embedded Systems
• Turbo Debugger
• Ups — C, Fortran source level debugger
• Valgrind
• VB Watch Debugger — debugger for Visual Basic 6.0
• Microsoft Visual Studio Debugger
• WinDbg
• Xdebug — PHP debugger and profiler

Debugger front-ends

Some of the most capable and popular debuggers only implement a simple command line interface
(CLI) — often to maximize portability and minimize resource consumption. Debugging via a
graphical user interface (GUI) can be considered easier and more productive though. This is the
reason for GUI debugger front-ends, that allow users to monitor and control subservient CLI-only
debuggers via graphical user interface. Some GUI debugger front-ends are designed to be
compatible with a variety of CLI-only debuggers, while others are targeted at one specific
debugger.

List of debugger front-ends

• Many Integrated development environments come with integrated debuggers (or front-ends
to standard debuggers).

• Many Eclipse perspectives, e.g. the Java Development Tools (JDT) [13], provide a
debugger front-end.

• DDD is the standard front-end from the GNU Project. It is a complex tool that works with
most common debuggers (GDB, jdb, Python debugger, Perl debugger, Tcl, and others)
natively or with some external programs (for PHP).

• GDB (the GNU debugger) GUI
• Emacs — Emacs editor with built in support for the GNU Debugger acts as the

frontend.
• KDbg — Part of the KDE development tools.

245

http://www.eclipse.org/jdt/index.php

• Nemiver — A GDB frontend that integrates well in the GNOME desktop
environment.

• xxgdb — X-window frontend for GDB and dbx debugger.
• Qt Creator — multi-platform frontend for GDB (debugging example).
• cgdb — ncurses terminal program that mimics vim key mapping.
• ccdebug — A graphical GDB frontend using the Qt toolkit.
• Padb — has a parallel front-end to GDB allowing it to target parallel applications.
• Allinea Distributed Debugging Tool — a parallel and distributed front-end to a

modified version of GDB.
• Xcode — contains a GDB front-end as well.
• SlickEdit — contains a GDB front-end as well.
• Eclipse C/C++ Development Tools (CDT) [14] — includes visual debugging tools

based on GDB.

References

• Jonathan B. Rosenberg, How Debuggers Work: Algorithms, Data Structures, and
Architecture, John Wiley & Sons, ISBN 0-471-14966-7

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

Look up debugger in Wiktionary, the free dictionary.

• Debugging tools at the Open Directory Project
• Debugging Tools for Windows
• OpenRCE: Various Debugger Resources and Plug-ins
• Parallel computing development and debugging tools at the Open Directory Project

246

http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org//Computers/Parallel_Computing/Programming/Tools//
http://www.dmoz.org//Computers/Parallel_Computing/Programming/Tools//
http://www.dmoz.org//Computers/Parallel_Computing/Programming/Tools//
http://www.openrce.org/
http://www.openrce.org/
http://www.openrce.org/
http://www.microsoft.com/whdc/devtools/debugging/
http://www.microsoft.com/whdc/devtools/debugging/
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org//Computers/Programming/Development_Tools/Debugging/
http://www.dmoz.org//Computers/Programming/Development_Tools/Debugging/
http://en.wiktionary.org/wiki/
http://en.wiktionary.org/wiki/debugger
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/wiki/Special:BookSources/0471149667
http://www.eclipse.org/cdt/
http://ccdebug.sourceforge.net/
http://cgdb.sourceforge.net/
http://doc.qt.nokia.com/qtcreator-2.0/creator-debugging-example.html
http://doc.qt.nokia.com/qtcreator-2.0/creator-debugging-example.html

IDE

Anjuta, a C and C++ IDE for the GNOME environment

An integrated development environment (IDE) (also known as integrated design environment
or integrated debugging environment) is a software application that provides comprehensive
facilities to computer programmers for software development. An IDE normally consists of:

• a source code editor
• a compiler and/or an interpreter
• build automation tools
• a debugger

Sometimes a version control system and various tools are integrated to simplify the construction of
a GUI. Many modern IDEs also have a class browser, an object inspector, and a class hierarchy
diagram, for use with object-oriented software development.[50]

Overview

IDEs are designed to maximize programmer productivity by providing tightly-knit components with
similar user interfaces. This should mean that the programmer has to do less mode switching versus
using discrete development programs. However, because an IDE is a complicated piece of software
by its very nature, this higher productivity only occurs after a lengthy learning process.

Typically an IDE is dedicated to a specific programming language, allowing a feature set that most
closely matches the programming paradigms of the language. However, there are some multiple-
language IDEs, such as Eclipse, ActiveState Komodo, recent versions of NetBeans, Microsoft
Visual Studio, WinDev, and Xcode.

IDEs typically present a single program in which all development is done. This program typically
provides many features for authoring, modifying, compiling, deploying and debugging software.
The aim is to abstract the configuration necessary to piece together command line utilities in a
cohesive unit, which theoretically reduces the time to learn a language, and increases developer
productivity. It is also thought that the tight integration of development tasks can further increase
productivity. For example, code can be compiled while being written, providing instant feedback on
syntax errors. While most modern IDEs are graphical, IDEs in use before the advent of windowing

247

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-361
http://en.wikibooks.org/wiki/File:Anjuta-2.0.0-2.png
http://en.wikibooks.org/wiki/File:Anjuta-2.0.0-2.png

systems (such as Microsoft Windows or X11) were text-based, using function keys or hotkeys to
perform various tasks (Turbo Pascal is a common example). This contrasts with software
development using unrelated tools, such as vi, GCC or make.

History

GNU Emacs, an extensible editor that is commonly used as an IDE on Unix-like systems

IDEs initially became possible when developing via a console or terminal. Early systems could not
support one, since programs were prepared using flowcharts, entering programs with punched cards
(or paper tape, etc.) before submitting them to a compiler. Dartmouth BASIC was the first language
to be created with an IDE (and was also the first to be designed for use while sitting in front of a
console or terminal). Its IDE (part of the Dartmouth Time Sharing System) was command-based,
and therefore did not look much like the menu-driven, graphical IDEs prevalent today. However it
integrated editing, file management, compilation, debugging and execution in a manner consistent
with a modern IDE.

Keyboard Maestro [51]

Maestro I is a product from Softlab Munich and was the world's first integrated development
environment[52] 1975 for software. Maestro I was installed for 22,000 programmers worldwide.
Until 1989, 6,000 installations existed in the Federal Republic of Germany. Maestro I was arguably
the world leader in this field during the 1970s and 1980s. Today one of the last Maestro I can be
found in the Museum of Information Technology at Arlington.

One of the first IDEs with a plug-in concept was Softbench. In 1995 Computerwoche commented
that the use of an IDE was not well received by developers since it would fence in their creativity.

248

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-363
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-362
http://en.wikibooks.org/wiki/File:Emacs-screenshot.png
http://en.wikibooks.org/wiki/File:Emacs-screenshot.png
http://en.wikibooks.org/wiki/File:Maestro-Keyboard.jpg
http://en.wikibooks.org/wiki/File:Maestro-Keyboard.jpg

Topics

Visual programming

Visual programming is a usage scenario in which an IDE is generally required. Visual IDEs allow
users to create new applications by moving programming building blocks or code nodes to create
flowcharts or structure diagrams that are then compiled or interpreted. These flowcharts often are
based on the Unified Modeling Language.

This interface has been popularized with the Lego Mindstorms system, and is being actively
pursued by a number of companies wishing to capitalize on the power of custom browsers like
those found at Mozilla. KTechlab supports flowcode and is a popular opensource IDE and
Simulator for developing software for microcontrollers. Visual programming is also responsible for
the power of distributed programming (cf. LabVIEW and EICASLAB software). An early visual
programming system, Max, was modelled after analog synthesizer design and has been used to
develop real-time music performance software since the 1980s. Another early example was
Prograph, a dataflow-based system originally developed for the Macintosh. The graphical
programming environment "Grape" is used to program qfix robot kits.

This approach is also used in specialist software such as Openlab, where the end users want the
flexibility of a full programming language, without the traditional learning curve associated with
one.

An open source visual programming system is Mindscript, which has extended functionality for
cryptology, database interfacing,

Language support

Some IDEs support multiple languages, such as Eclipse or NetBeans, both based on Java, or
MonoDevelop, based on C#.

Support for alternative languages is often provided by plugins, allowing them to be installed on the
same IDE at the same time. For example, Eclipse and Netbeans have plugins for C/C++, Ada, Perl,
Python, Ruby, and PHP, among other languages.

Attitudes across different computing platforms

Many Unix programmers argue that traditional command-line POSIX tools constitute an
IDE,Template:Who though one with a different style of interface and under the Unix environment.
Many programmers still use makefiles and their derivatives. Also, many Unix programmers use
Emacs or Vim, which integrates support for many of the standard Unix build tools. Data Display
Debugger is intended to be an advanced graphical front-end for many text-based debugger standard
tools.

249

http://en.wikibooks.org/w/index.php?title=Template:Who&action=edit&redlink=1

On the various Microsoft Windows platforms, command-line tools for development are seldom
used. Accordingly, there are many commercial and non-commercial solutions, however each has a
different design commonly creating incompatibilities. Most major compiler vendors for Windows
still provide free copies of their command-line tools, including Microsoft (Visual C++, Platform
SDK, Microsoft .NET Framework SDK, nmake utility), Embarcadero Technologies (bcc32
compiler, make utility).

Additionally, the free software GNU tools (gcc, gdb, GNU make) are available on many platforms,
including Windows etc.

IDEs have always been popular on the Apple Macintosh's Mac OS, dating back to Macintosh
Programmer's Workshop, Turbo Pascal, THINK Pascal and THINK C environments in the mid-
1980s. Currently Mac OS X programmers can choose between limited IDEs, including native IDEs
like Xcode, older IDEs like CodeWarrior, and open-source tools, such as Eclipse and Netbeans.
ActiveState Komodo is a proprietary IDE supported on the Mac OS.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

GUI Builder

A graphical user interface builder (or GUI builder), also known as GUI designer, is a software
development tool that simplifies the creation of GUIs by allowing the designer to arrange widgets
using a drag-and-drop WYSIWYG editor. Without a GUI builder, a GUI must be built by manually
specifying each widget's parameters in code, with no visual feedback until the program is run.

User interfaces are commonly programmed using an event-driven architecture, so GUI builders also
simplify creating event-driven code. This supporting code connects widgets with the outgoing and
incoming events that trigger the functions providing the application logic.

250

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

List of GUI builders

Programs

• AutoIt
• Axure RP
• Cocoa/OpenStep

• Interface Builder
• Embedded Wizard a commercial development tool focussed on user interface applications

for embedded systems.
• Fast, Light Toolkit (FLTK)

• FLUID
• GNUstep

• Gorm
• GEM

• Resource construction set
• Interface by Shift Computer
• ORCS (Otto's RCS)
• K-Resource
• Resource Master
• Annabel Junior
• WERCS by HiSoft

• GTK+
• Glade Interface Designer
• Gazpacho
• Gideon Designer

• GUI Builder
• Intrinsics
• Justinmind Prototyper

• Motif
• Builder Xcessory
• Easymotif
• ixbuild
• UIMX
• X-Designer

• LucidChart
• Object Pascal

• fpGUI UI Designer (included with fpGUI Toolkit)
• OpenWindows

• guide (GUI builder)
• Pencil Project
• Qt

• Qt Designer
• Scaleform
• Tk (framework)

251

http://trolltech.com/products/qt/features/tools/designer
http://www.ics.com/products/motif/guibuilders/uimx/index.html
http://www.ics.com/products/motif/guibuilders/bxpro/index.html
http://gui-builder.com/

• GUI Builder
• ActiveState Komodo
• Visual Tcl (dead project)
• PureTkGUI

• Wavemaker open source, browser-based development platform for Ajax development based
on Dojo, Spring, Hibernate

• Windows Presentation Foundation
• Microsoft Expression Blend

• wxWidgets
• wxGlade
• wxFormBuilder
• wxDesigner

• XForms (toolkit)
• fdesign

• Crank Storyboard Suite
• Storyboard Designer

IDE Plugins

• NetBeans GUI design tool, formerly known as Matisse.
• Visual Editor - A free (Eclipse Public License) plugin for Eclipse on MS Windows and

Linux (GTK and Motif).
• Jigloo - A free for non-commercial use plugin for Eclipse on MS Windows, Linux (gtk) and

Mac OSX.
• WxSmith - A Code::Blocks plug-in for RAD editing of wxWidgets applications.
• Himalia Guilder (Only for Visual Studio 2005; no release since December '06.)

List of development environments

IDEs with GUI builders

• ActiveState Komodo
• Adobe Flash Builder
• Anjuta
• Ares
• CodeGear RAD Studio (former Borland Development Studio)
• Clarion
• Code::Blocks
• Gambas
• Just BASIC/Liberty BASIC
• KDevelop
• Lazarus
• Microsoft Visual Studio
• MonoDevelop

252

http://www.codeblocks.org/
http://www.himalia.net/
http://wiki.codeblocks.org/index.php?title=WxSmith_plugin
http://www.cloudgarden.com/jigloo/
http://www.eclipse.org/vep/
http://netbeans.org/features/java/swing.html
http://www.cranksoftware.com/products/crank_storyboard_designer.php
http://www.cranksoftware.com/products/crank_storyboard_designer.php
http://www.wxdesigner-software.de/
http://wiki.wxformbuilder.org/
http://puretkgui.sourceforge.net/
http://vtcl.sourceforge.net/
http://spectcl.sourceforge.net/ko3-guib-docs/komodo-doc-guibuilder.html

• MSEide+MSEgui
• NetBeans
• Qt Creator
• REALbasic
• SharpDevelop
• Softwell Maker
• WinDev
• wxDev-C++

Source Control

Example history tree of a revision-controlled project.

Revision control, also known as version control or source control (and an aspect of software
configuration management or SCM), is the management of changes to documents, programs, and
other information stored as computer files. It is most commonly used in software development,
where a team of people may change the same files. Changes are usually identified by a number or
letter code, termed the "revision number", "revision level", or simply "revision". For example, an

253

http://sourceforge.net/projects/mseide-msegui/
http://en.wikibooks.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg
http://en.wikibooks.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg

initial set of files is "revision 1". When the first change is made, the resulting set is "revision 2", and
so on. Each revision is associated with a timestamp and the person making the change. Revisions
can be compared, restored, and with some types of files, merged.

Version control systems (VCSs – singular VCS) most commonly run as stand-alone applications,
but revision control is also embedded in various types of software such as word processors (e.g.,
Microsoft Word, OpenOffice.org Writer, KWord, Pages, etc.), spreadsheets (e.g., Microsoft Excel,
OpenOffice.org Calc, KSpread, Numbers, etc.), and in various content management systems (e.g.,
Drupal, Joomla, WordPress). Integrated revision control is a key feature of wiki software packages
such as MediaWiki, DokuWiki, TWiki etc. In wikis, revision control allows for the ability to revert
a page to a previous revision, which is critical for allowing editors to track each other's edits, correct
mistakes, and defend public wikis against vandalism and spam.

Software tools for revision control are essential for the organization of multi-developer projects.[53]

Overview

Revision control developed from formalized processes based on tracking revisions of early
blueprints or bluelines. This system of control implicitly allowed returning to any earlier state of the
design, for cases in which an engineering dead-end was reached in the development of the design.
Likewise, in computer software engineering, revision control is any practice that tracks and
provides control over changes to source code. Software developers sometimes use revision control
software to maintain documentation and configuration files as well as source code. Also, version
control is widespread in business and law. Indeed, "contract redline" and "legal blackline" are some
of the earliest forms of revision control,[citation needed] and are still employed with varying degrees
of sophistication. An entire industry has emerged to service the document revision control needs of
business and other users, and some of the revision control technology employed in these circles is
subtle, powerful, and innovative. The most sophisticated techniques are beginning to be used for the
electronic tracking of changes to CAD files (see product data management), supplanting the
"manual" electronic implementation of traditional revision control.

As teams design, develop and deploy software, it is common for multiple versions of the same
software to be deployed in different sites and for the software's developers to be working
simultaneously on updates. Bugs or features of the software are often only present in certain
versions (because of the fixing of some problems and the introduction of others as the program
develops). Therefore, for the purposes of locating and fixing bugs, it is vitally important to be able
to retrieve and run different versions of the software to determine in which version(s) the problem
occurs. It may also be necessary to develop two versions of the software concurrently (for instance,
where one version has bugs fixed, but no new features (branch), while the other version is where
new features are worked on (trunk).

At the simplest level, developers could simply retain multiple copies of the different versions of the
program, and label them appropriately. This simple approach has been used on many large software
projects. While this method can work, it is inefficient as many near-identical copies of the program
have to be maintained. This requires a lot of self-discipline on the part of developers, and often
leads to mistakes. Consequently, systems to automate some or all of the revision control process
have been developed.

254

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-364

Moreover, in software development, legal and business practice and other environments, it has
become increasingly common for a single document or snippet of code to be edited by a team, the
members of which may be geographically dispersed and may pursue different and even contrary
interests. Sophisticated revision control that tracks and accounts for ownership of changes to
documents and code may be extremely helpful or even necessary in such situations.

Revision control may also track changes to configuration files, such as those typically stored in
/etc or /usr/local/etc on Unix systems. This gives system administrators another way to
easily track changes made and a way to roll back to earlier versions should the need arise.

Source-management models

Traditional revision control systems use a centralized model where all the revision control functions
take place on a shared server. If two developers try to change the same file at the same time,
without some method of managing access the developers may end up overwriting each other's work.
Centralized revision control systems solve this problem in one of two different "source management
models": file locking and version merging.

Atomic operations

Computer scientists speak of atomic operations if the system is left in a consistent state even if the
operation is interrupted. The commit operation is usually the most critical in this sense. Commits are
operations which tell the revision control system you want to make a group of changes you have
been making final and available to all users. Not all revision control systems have atomic commits;
notably, the widely-used CVS lacks this feature.

File locking

The simplest method of preventing "concurrent access" problems involves locking files so that only
one developer at a time has write access to the central "repository" copies of those files. Once one
developer "checks out" a file, others can read that file, but no one else may change that file until that
developer "checks in" the updated version (or cancels the checkout).

File locking has both merits and drawbacks. It can provide some protection against difficult merge
conflicts when a user is making radical changes to many sections of a large file (or group of files).
However, if the files are left exclusively locked for too long, other developers may be tempted to
bypass the revision control software and change the files locally, leading to more serious problems.

Version merging

Most version control systems allow multiple developers to edit the same file at the same time. The
first developer to "check in" changes to the central repository always succeeds. The system may
provide facilities to merge further changes into the central repository, and preserve the changes
from the first developer when other developers check in.

255

Merging two files can be a very delicate operation, and usually possible only if the data structure is
simple, as in text files. The result of a merge of two image files might not result in an image file at
all. The second developer checking in code will need to take care with the merge, to make sure that
the changes are compatible and that the merge operation does not introduce its own logic errors
within the files. These problems limit the availability of automatic or semi-automatic merge
operations mainly to simple text based documents, unless a specific merge plugin is available for
the file types.

The concept of a reserved edit can provide an optional means to explicitly lock a file for exclusive
write access, even when a merging capability exists.

Baselines, labels and tags

Most revision control tools will use only one of these similar terms (baseline, label, tag) to refer to
the action of identifying a snapshot ("label the project") or the record of the snapshot ("try it with
baseline X"). Typically only one of the terms baseline, label, or tag is used in documentation or
discussion[citation needed]; they can be considered synonyms.

In most projects some snapshots are more significant than others, such as those used to indicate
published releases, branches, or milestones.

When both the term baseline and either of label or tag are used together in the same context, label
and tag usually refer to the mechanism within the tool of identifying or making the record of the
snapshot, and baseline indicates the increased significance of any given label or tag.

Most formal discussion of configuration management uses the term baseline.

Distributed revision control

Distributed revision control (DRCS) takes a peer-to-peer approach, as opposed to the client-server
approach of centralized systems. Rather than a single, central repository on which clients
synchronize, each peer's working copy of the codebase is a bona-fide repository.[54] Distributed
revision control conducts synchronization by exchanging patches (change-sets) from peer to peer.
This results in some important differences from a centralized system:

• No canonical, reference copy of the codebase exists by default; only working copies.
• Common operations (such as commits, viewing history, and reverting changes) are fast,

because there is no need to communicate with a central server.[55]

Rather, communication is only necessary when pushing or pulling changes to or from other peers.

• Each working copy effectively functions as a remote backup of the codebase and of its
change-history, providing natural protection against data loss.[55]

256

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-OSullivan-366
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-OSullivan-366
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-365
http://en.wikibooks.org/wiki/Wikibooks:OR

Integration

Some of the more advanced revision-control tools offer many other facilities, allowing deeper
integration with other tools and software-engineering processes. Plugins are often available for
IDEs such as Oracle JDeveloper, IntelliJ IDEA, Eclipse and Visual Studio. NetBeans IDE and
Xcode come with integrated version control support.

Common vocabulary

Terminology can vary from system to system, but some terms in common usage include:[56] [57]

Baseline
An approved revision of a document or source file from which subsequent changes can be
made. See baselines, labels and tags.

Branch
A set of files under version control may be branched or forked at a point in time so that,
from that time forward, two copies of those files may develop at different speeds or in
different ways independently of each other.

Change
A change (or diff, or delta) represents a specific modification to a document under version
control. The granularity of the modification considered a change varies between version
control systems.

Change list
On many version control systems with atomic multi-change commits, a changelist, change
set, or patch identifies the set of changes made in a single commit. This can also represent a
sequential view of the source code, allowing the examination of source "as of" any particular
changelist ID.

Checkout
A check-out (or co) is the act of creating a local working copy from the repository. A user
may specify a specific revision or obtain the latest. The term 'checkout' can also used as a
noun to describe the working copy.

Commit
A commit (checkin, ci or, more rarely, install, submit or record) is the action of writing or
merging the changes made in the working copy back to the repository. The terms 'commit' and
'checkin' can also used in noun form to describe the new revision that is created as a result of
committing.

Conflict
A conflict occurs when different parties make changes to the same document, and the system
is unable to reconcile the changes. A user must resolve the conflict by combining the changes,
or by selecting one change in favour of the other.

Delta compression
Most revision control software uses delta compression, which retains only the differences
between successive versions of files. This allows for more efficient storage of many different
versions of files.

Dynamic stream
A stream in which some or all file versions are mirrors of the parent stream's versions.

Export
exporting is the act of obtaining the files from the repository. It is similar to checking-out

257

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-368
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-367

except that it creates a clean directory tree without the version-control metadata used in a
working copy. This is often used prior to publishing the contents, for example.

Head
Also sometime called tip, this refers to the most recent commit.

Import
importing is the act of copying a local directory tree (that is not currently a working copy)
into the repository for the first time.

Label
See tag.

Mainline
Similar to trunk, but there can be a mainline for each branch.

Merge
A merge or integration is an operation in which two sets of changes are applied to a file or
set of files. Some sample scenarios are as follows:

• A user, working on a set of files, updates or syncs their working copy with changes
made, and checked into the repository, by other users.[58]

• A user tries to check-in files that have been updated by others since the files were
checked out, and the revision control software automatically merges the files
(typically, after prompting the user if it should proceed with the automatic merge, and
in some cases only doing so if the merge can be clearly and reasonably resolved).

• A set of files is branched, a problem that existed before the branching is fixed in one
branch, and the fix is then merged into the other branch.

• A branch is created, the code in the files is independently edited, and the updated
branch is later incorporated into a single, unified trunk.

Promote
The act of copying file content from a less controlled location into a more controlled location.
For example, from a user's workspace into a repository, or from a stream to its parent.[59]

Repository
The repository is where files' current and historical data are stored, often on a server.
Sometimes also called a depot (for example, by SVK, AccuRev and Perforce).

Resolve
The act of user intervention to address a conflict between different changes to the same
document.

Reverse integration
The process of merging different team branches into the main trunk of the versioning system.

Revision
Also version: A version is any change in form. In SVK, a Revision is the state at a point in
time of the entire tree in the repository.

Ring
[citation needed] See tag.

Share
The act of making one file or folder available in multiple branches at the same time. When a
shared file is changed in one branch, it is changed in other branches.

Stream
A container for branched files that has a known relationship to other such containers. Streams
form a hierarchy; each stream can inherit various properties (like versions, namespace,
workflow rules, subscribers, etc.) from its parent stream.

Tag

258

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-370
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-svnbook-merge-369

A tag or label refers to an important snapshot in time, consistent across many files. These
files at that point may all be tagged with a user-friendly, meaningful name or revision number.
See baselines, labels and tags.

Trunk
The unique line of development that is not a branch (sometimes also called Baseline or
Mainline)

Update
An update (or sync) merges changes made in the repository (by other people, for example)
into the local working copy.[58]

Working copy
The working copy is the local copy of files from a repository, at a specific time or revision.
All work done to the files in a repository is initially done on a working copy, hence the name.
Conceptually, it is a sandbox.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• Eric Sink's Source Control HOWTO A primer on the basics of version control
• Visual Guide to Version Control
• Better SCM Initiative: Comparison A useful summary of different systems and their

features.

Build Tools

Build automation is the act of scripting or automating a wide variety of tasks that software
developers do in their day-to-day activities including things like:

• compiling computer source code into binary code
• packaging binary code
• running tests
• deployment to production systems

259

http://better-scm.berlios.de/comparison/
http://betterexplained.com/articles/a-visual-guide-to-version-control/
http://www.ericsink.com/scm/source_control.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-svnbook-merge-369

• creating documentation and/or release notes

History

Historically, developers used build automation to call compilers and linkers from inside a build
script versus attempting to make the compiler calls from the command line. It is simple to use the
command line to pass a single source module to a compiler and then to a linker to create the final
deployable object. However, when attempting to compile and link many source code modules, in a
particular order, using the command line process is not a reasonable solution. The make scripting
language offered a better alternative. It allowed a build script to be written to call in a series, the
needed compile and link steps to build a software application. GNU Make [60] also offered
additional features such as "makedepend" which allowed some source code dependency
management as well as incremental build processing. This was the beginning of Build Automation.
Its primary focus was on automating the calls to the compilers and linkers. As the build process
grew more complex, developers began adding pre and post actions around the calls to the compilers
such as a check-out from version control to the copying of deployable objects to a test location. The
term "build automation" now includes managing the pre and post compile and link activities as well
as the compile and link activities.

New breed of solutions

In recent years, build management solutions have provided even more relief when it comes to
automating the build process. Both commercial and open source solutions are available to perform
more automated build and workflow processing. Some solutions focus on automating the pre and
post steps around the calling of the build scripts, while others go beyond the pre and post build
script processing and drive down into streamlining the actual compile and linker calls without much
manual scripting. These tools are particularly useful for continuous integration builds where
frequent calls to the compile process are required and incremental build processing is needed.

Advanced build automation

Advanced build automation offers remote agent processing for distributed builds and/or distributed
processing. The term "distributed builds" means that the actual calls to the compiler and linkers can
be served out to multiple locations for improving the speed of the build. This term is often confused
with "distributed processing". Distributed processing means that each step in a process or workflow
can be sent to a different machine for execution. For example, a post step to the build may require
the execution of multiple test scripts on multiple machines. Distributed processing can send the
different test scripts to different machines. Distributed processing is not distributed builds.
Distributed processing cannot take a make, ant or maven script, break it up and send it to different
machines for compiling and linking. The distributed build process must have the machine
intelligence to understand the source code dependencies in order to send the different compile and
link steps to different machines. A build automation solution must be able to manage these
dependencies in order to perform distributed builds. Some build tools can discover these
relationships programmatically (Rational ClearMake distributed[61], Electric Cloud
ElectricAccelerator[62]), while others depend on user-configured dependencies (Platform LSF
lsmake[63]) Build automation that can sort out source code dependency relationships can also be

260

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-374
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-373
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-372
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-371

configured to run the compile and link activities in a parallelized mode. This means that the
compiler and linkers can be called in multi-threaded mode using a machine that is configured with
more than one core.

Not all build automation tools can perform distributed builds. Most only provide distributed
processing support. In addition, most solutions that do support distributed builds can only handle C
or C++. Build automation solutions that support distributed processing are often make based and
many do not support Maven or Ant.

An example of a distributed build solution is Xoreax's IncrediBuild[64] for the Microsoft Visual
Studio platform or the open-source CMake[65]. These may require particular configurations of a
product environment so that it can run successfully on a distributed platform—library locations,
environment variables, and so forth.

Advantages

• Improve product quality
• Accelerate the compile and link processing
• Eliminate redundant tasks
• Minimize "bad builds"
• Eliminate dependencies on key personnel
• Have history of builds and releases in order to investigate issues
• Save time and money - because of the reasons listed above.[66]

Types

• On-Demand automation such as a user running a script at the command line
• Scheduled automation such as a continuous integration server running a nightly build
• Triggered automation such as a continuous integration server running a build on every

commit to a version control system.

Makefile

One specific form of build automation is the automatic generation of Makefiles. This is
accomplished by tools like

• GNU Automake
• CMake
• imake
• qmake
• nmake
• wmake
• Apache Ant
• Apache Maven

261

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-377
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-376
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-375

• OpenMake Meister

Requirements of a build system

Basic requirements:

1. Frequent or overnight builds to catch problems early.[67] [68] [69]
2. Support for Source Code Dependency Management
3. Incremental build processing
4. Reporting that traces source to binary matching
5. Build acceleration
6. Extraction and reporting on build compile and link usage

Optional requirements:[70]

1. Generate release notes and other documentation such as help pages
2. Build status reporting
3. Test pass or fail reporting
4. Summary of the features added/modified/deleted with each new build

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

Notes

• Mike Clark: Pragmatic Project Automation, The Pragmatic Programmers ISBN 0-9745140-
3-9

Software Documentation

Software documentation or source code documentation is written text that accompanies
computer software. It either explains how it operates or how to use it, and may mean different
things to people in different roles.

262

http://en.wikibooks.org/wiki/Special:BookSources/0974514039
http://en.wikibooks.org/wiki/Special:BookSources/0974514039
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-381
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-380
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-379
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-378

Involvement of people in software life

Documentation is an important part of software engineering. Types of documentation include:

1. Requirements - Statements that identify attributes, capabilities, characteristics, or qualities of
a system. This is the foundation for what shall be or has been implemented.

2. Architecture/Design - Overview of softwares. Includes relations to an environment and
construction principles to be used in design of software components.

3. Technical - Documentation of code, algorithms, interfaces, and APIs.
4. End User - Manuals for the end-user, system administrators and support staff.
5. Marketing - How to market the product and analysis of the market demand.

Requirements documentation

Requirements documentation is the description of what a particular software does or shall do. It is
used throughout development to communicate what the software does or shall do. It is also used as
an agreement or as the foundation for agreement on what the software shall do. Requirements are
produced and consumed by everyone involved in the production of software: end users, customers,
product managers, project managers, sales, marketing, software architects, usability engineers,
interaction designers, developers, and testers, to name a few. Thus, requirements documentation has
many different purposes.

Requirements come in a variety of styles, notations and formality. Requirements can be goal-like
(e.g., distributed work environment), close to design (e.g., builds can be started by right-clicking a
configuration file and select the 'build' function), and anything in between. They can be specified as
statements in natural language, as drawn figures, as detailed mathematical formulas, and as a
combination of them all.

The variation and complexity of requirements documentation makes it a proven challenge.
Requirements may be implicit and hard to uncover. It is difficult to know exactly how much and
what kind of documentation is needed and how much can be left to the architecture and design
documentation, and it is difficult to know how to document requirements considering the variety of
people that shall read and use the documentation. Thus, requirements documentation is often
incomplete (or non-existent). Without proper requirements documentation, software changes
become more difficult—and therefore more error prone (decreased software quality) and time-
consuming (expensive).

The need for requirements documentation is typically related to the complexity of the product, the
impact of the product, and the life expectancy of the software. If the software is very complex or
developed by many people (e.g., mobile phone software), requirements can help to better
communicate what to achieve. If the software is safety-critical and can have negative impact on
human life (e.g., nuclear power systems, medical equipment), more formal requirements
documentation is often required. If the software is expected to live for only a month or two (e.g.,
very small mobile phone applications developed specifically for a certain campaign) very little
requirements documentation may be needed. If the software is a first release that is later built upon,
requirements documentation is very helpful when managing the change of the software and
verifying that nothing has been broken in the software when it is modified.

263

Traditionally, requirements are specified in requirements documents (e.g. using word processing
applications and spreadsheet applications). To manage the increased complexity and changing
nature of requirements documentation (and software documentation in general), database-centric
systems and special-purpose requirements management tools are advocated.

Architecture/Design documentation

Architecture documentation is a special breed of design document. In a way, architecture
documents are third derivative from the code (design document being second derivative, and code
documents being first). Very little in the architecture documents is specific to the code itself. These
documents do not describe how to program a particular routine, or even why that particular routine
exists in the form that it does, but instead merely lays out the general requirements that would
motivate the existence of such a routine. A good architecture document is short on details but thick
on explanation. It may suggest approaches for lower level design, but leave the actual exploration
trade studies to other documents.

Another breed of design docs is the comparison document, or trade study. This would often take the
form of a whitepaper. It focuses on one specific aspect of the system and suggests alternate
approaches. It could be at the user interface, code, design, or even architectural level. It will outline
what the situation is, describe one or more alternatives, and enumerate the pros and cons of each. A
good trade study document is heavy on research, expresses its idea clearly (without relying heavily
on obtuse jargon to dazzle the reader), and most importantly is impartial. It should honestly and
clearly explain the costs of whatever solution it offers as best. The objective of a trade study is to
devise the best solution, rather than to push a particular point of view. It is perfectly acceptable to
state no conclusion, or to conclude that none of the alternatives are sufficiently better than the
baseline to warrant a change. It should be approached as a scientific endeavor, not as a marketing
technique.

A very important part of the design document in enterprise software development is the Database
Design Document (DDD). It contains Conceptual, Logical, and Physical Design Elements. The
DDD includes the formal information that the people who interact with the database need. The
purpose of preparing it is to create a common source to be used by all players within the scene. The
potential users are:

• Database Designer
• Database Developer
• Database Administrator
• Application Designer
• Application Developer

When talking about Relational Database Systems, the document should include following parts:

• Entity - Relationship Schema, including following information and their clear definitions:
• Entity Sets and their attributes
• Relationships and their attributes
• Candidate keys for each entity set
• Attribute and Tuple based constraints

• Relational Schema, including following information:

264

• Tables, Attributes, and their properties
• Views
• Constraints such as primary keys, foreign keys,
• Cardinality of referential constraints
• Cascading Policy for referential constraints
• Primary keys

It is very important to include all information that is to be used by all actors in the scene. It is also
very important to update the documents as any change occurs in the database as well.

Technical documentation

This is what most programmers mean when using the term software documentation. When creating
software, code alone is insufficient. There must be some text along with it to describe various
aspects of its intended operation. It is important for the code documents to be thorough, but not so
verbose that it becomes difficult to maintain them. Several How-to and overview documentation are
found specific to the software application or software product being documented by API Writers.
This documentation may be used by developers, testers and also the end customers or clients using
this software application. Today, we see lot of high end applications in the field of power, energy,
transportation, networks, aerospace, safety, security, industry automation and a variety of other
domains. Technical documentation has become important within such organizations as the basic
and advanced level of information may change over a period of time with architecture changes.
Hence, technical documentation has gained lot of importance in recent times, especially in the
software field.

Often, tools such as Doxygen, NDoc, javadoc, EiffelStudio, Sandcastle, ROBODoc, POD,
TwinText, or Universal Report can be used to auto-generate the code documents—that is, they
extract the comments and software contracts, where available, from the source code and create
reference manuals in such forms as text or HTML files. Code documents are often organized into a
reference guide style, allowing a programmer to quickly look up an arbitrary function or class.

The idea of auto-generating documentation is attractive to programmers for various reasons. For
example, because it is extracted from the source code itself (for example, through comments), the
programmer can write it while referring to the code, and use the same tools used to create the source
code to make the documentation. This makes it much easier to keep the documentation up-to-date.

Of course, a downside is that only programmers can edit this kind of documentation, and it depends
on them to refresh the output (for example, by running a cron job to update the documents nightly).
Some would characterize this as a pro rather than a con.

Donald Knuth has insisted on the fact that documentation can be a very difficult afterthought
process and has advocated literate programming, writing at the same time and location as the source
code and extracted by automatic means.

Elucidative Programming is the result of practical applications of Literate Programming in real
programming contexts. The Elucidative paradigm proposes that source code and documentation be
stored separately. This paradigm was inspired by the same experimental findings that produced
Kelp. Often, software developers need to be able to create and access information that is not going

265

http://kelp.sf.net/

to be part of the source file itself. Such annotations are usually part of several software development
activities, such as code walks and porting, where third party source code is analysed in a functional
way. Annotations can therefore help the developer during any stage of software development where
a formal documentation system would hinder progress. Kelp stores annotations in separate files,
linking the information to the source code dynamically.

User documentation

Unlike code documents, user documents are usually far more diverse with respect to the source
code of the program, and instead simply describe how it is used.

In the case of a software library, the code documents and user documents could be effectively
equivalent and are worth conjoining, but for a general application this is not often true.

Typically, the user documentation describes each feature of the program, and assists the user in
realizing these features. A good user document can also go so far as to provide thorough
troubleshooting assistance. It is very important for user documents to not be confusing, and for
them to be up to date. User documents need not be organized in any particular way, but it is very
important for them to have a thorough index. Consistency and simplicity are also very valuable.
User documentation is considered to constitute a contract specifying what the software will do. API
Writers are very well accomplished towards writing good user documents as they would be well
aware of the software architecture and programming techniques used. See also Technical Writing.

There are three broad ways in which user documentation can be organized.

1. Tutorial: A tutorial approach is considered the most useful for a new user, in which they are
guided through each step of accomplishing particular tasks [71].

2. Thematic: A thematic approach, where chapters or sections concentrate on one particular
area of interest, is of more general use to an intermediate user. Some authors prefer to
convey their ideas through a knowledge based article to facilitating the user needs. This
approach is usually practiced by a dynamic industry, such as Information technology, where
the user population is largely correlated with the troubleshooting demands [72], [73].

3. List or Reference: The final type of organizing principle is one in which commands or
tasks are simply listed alphabetically or logically grouped, often via cross-referenced
indexes. This latter approach is of greater use to advanced users who know exactly what sort
of information they are looking for.

A common complaint among users regarding software documentation is that only one of these three
approaches was taken to the near-exclusion of the other two. It is common to limit provided
software documentation for personal computers to online help that give only reference information
on commands or menu items. The job of tutoring new users or helping more experienced users get
the most out of a program is left to private publishers, who are often given significant assistance by
the software developer.

266

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-bwaa-384
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kbad-383
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-kdp-382
http://kelp.sf.net/

Marketing documentation

For many applications it is necessary to have some promotional materials to encourage casual
observers to spend more time learning about the product. This form of documentation has three
purposes:-

1. To excite the potential user about the product and instill in them a desire for becoming more
involved with it.

2. To inform them about what exactly the product does, so that their expectations are in line
with what they will be receiving.

3. To explain the position of this product with respect to other alternatives.

One good marketing technique is to provide clear and memorable catch phrases that exemplify the
point we wish to convey, and also emphasize the interoperability of the program with anything else
provided by the manufacturer.

Notes

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• kelp - a source code annotation framework for architectural, design and technical
documentation.

• ISO documentation standards committee - International Organization for Standardization
committee which develops user documentation standards.

Static Code Analysis

This is a list of tools for static code analysis.

267

http://www.hci.com.au/iso
http://kelp.sf.net/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Historical products

• Lint — The original static code analyzer of C code.

Open-source or Non-commercial products

Multi-language

• PMD Copy/Paste Detector (CPD) — PMDs duplicate code detection for (e.g.) Java, JSP, C,
C++ and PHP code.

• Sonar — A continuous inspection engine to manage the technical debt (unit tests,
complexity, duplication, design, comments, coding standards and potential problems).
Supported languages are Java, Flex, PHP, PL/SQL, Cobol and Visual Basic 6.

• Yasca — Yet Another Source Code Analyzer, a plugin-based framework for scanning
arbitrary file types, with plugins for scanning C/C++, Java, JavaScript, ASP, PHP,
HTML/CSS, ColdFusion, COBOL, and other file types. It integrates with other scanners,
including FindBugs, JLint, PMD, and Pixy.

.NET (C#, VB.NET and all .NET compatible languages)

• FxCop — Free static analysis for Microsoft .NET programs that compile to CIL. Standalone
and integrated in some Microsoft Visual Studio editions. From Microsoft.

• Gendarme — Open-source (MIT License) equivalent to FxCop created by the Mono project.
Extensible rule-based tool to find problems in .NET applications and libraries, particularly
those that contain code in ECMA CIL format.

• StyleCop — Analyzes C# source code to enforce a set of style and consistency rules. It can
be run from inside of Microsoft Visual Studio or integrated into an MSBuild project. Free
download from Microsoft.

ActionScript

• Apparat — A language manipulation and optimization framework consisting of intermediate
representations for ActionScript.

C

• BLAST (Berkeley Lazy Abstraction Software verification Tool) — A software model
checker for C programs based on lazy abstraction.

• Clang — A compiler that includes a static analyzer.
• Frama-C — A static analysis framework for C.
• Lint — The original static code analyzer for C.
• Sparse — A tool designed to find faults in the Linux kernel.
• Splint — An open source evolved version of Lint (for C).

268

C++

• cppcheck — Open-source tool that checks for several types of errors, including the use of
STL.

Java

• Checkstyle — Besides some static code analysis, it can be used to show violations of a
configured coding standard.

• FindBugs — An open-source static bytecode analyzer for Java (based on Jakarta BCEL)
from the University of Maryland.

• Hammurapi — (Free for non-commercial use only) versatile code review solution.
• PMD — A static ruleset based Java source code analyzer that identifies potential problems.
• Soot — A language manipulation and optimization framework consisting of intermediate

languages for Java.
• Squale — A platform to manage software quality (also available for other languages, using

commercial analysis tools though).

JavaScript

• Closure Compiler — JavaScript optimizer that rewrites JavaScript code to make it faster and
more compact. It also checks your usage of native javascript functions.

• JSLint — JavaScript syntax checker and validator.

Objective-C

• Clang — The free Clang project includes a static analyzer. As of version 3.2, this analyzer is
included in Xcode.[74]

Commercial products

Multi-language

• Axivion Bauhaus Suite — A tool for C, C++, C#, Java and Ada code that comprises various
analyses such as architecture checking, interface analyses, and clone detection.

• Black Duck Suite — Analyze the composition of software source code and binary files,
search for reusable code, manage open source and third-party code approval, honor the legal
obligations associated with mixed-origin code, and monitor related security vulnerabilities.

• CAST Application Intelligence Platform — Detailed, audience-specific dashboards to
measure quality and productivity. 30+ languages, SAP, Oracle, PeopleSoft, Siebel, .NET,
Java, C/C++, Struts, Spring, Hibernate and all major databases.

269

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-385

• Coverity Static Analysis (formerly Coverity Prevent) — Identifies security vulnerabilities
and code defects in C, C++, C# and Java code. Complements Coverity Dynamic Code
Analysis and Architecture Analysis.

• DMS Software Reengineering Toolkit — Supports custom analysis of C, C++, C#, Java,
COBOL, PHP, VisualBasic and many other languages. Also COTS tools for clone analysis,
dead code analysis, and style checking.

• Compuware DevEnterprise — Analysis of COBOL, PL/I, JCL, CICS, DB2, IMS and others.
• Fortify — Helps developers identify software security vulnerabilities in C/C++, .NET, Java,

JSP, ASP.NET, ColdFusion, "Classic" ASP, PHP, VB6, VBScript, JavaScript, PL/SQL, T-
SQL, python and COBOL as well as configuration files.

• GrammaTech CodeSonar — Analyzes C,C++.
• Imagix 4D — Identifies problems in variable usage, task interaction and concurrency,

particularly in embedded applications, as part of an overall solution for understanding,
improving and documenting C, C++ and Java software.

• Intel - Intel Parallel Studio XE: Contains Static Security Analysis (SSA) feature supports
C/C++ and Fortran

• JustCode — Code analysis and refactoring productivity tool for JavaScript, C#, Visual
Basic.NET, and ASP.NET

• Klocwork Insight — Provides security vulnerability and defect detection as well as
architectural and build-over-build trend analysis for C, C++, C# and Java.

• Lattix, Inc. LDM — Architecture and dependency analysis tool for Ada, C/C++, Java, .NET
software systems.

• LDRA Testbed — A software analysis and testing tool suite for C, C++, Ada83, Ada95 and
Assembler (Intel, Freescale, Texas Instruments).

• Micro Focus (formerly Relativity Technologies) Modernization Workbench — Parsers
included for COBOL (multiple variants including IBM, Unisys, MF, ICL, Tandem), PL/I,
Natural (inc. ADABAS), Java, Visual Basic, RPG, C & C++ and other legacy languages;
Extensible SDK to support 3rd party parsers. Supports automated Metrics (including
Function Points), Business Rule Mining, Componentisation and SOA Analysis. Rich ad hoc
diagramming, AST search & reporting)

• Ounce Labs (from 2010 IBM Rational Appscan Source) — Automated source code analysis
that enables organizations to identify and eliminate software security vulnerabilities in
languages including Java, JSP, C/C++, C#, ASP.NET and VB.Net.

• Parasoft — Analyzes Java (Jtest), JSP, C, C++ (C++test), .NET (C#, ASP.NET, VB.NET,
etc.) using .TEST, WSDL, XML, HTML, CSS, JavaScript, VBScript/ASP, and
configuration files for security[75], compliance[76], and defect prevention.

• Polyspace — Uses abstract interpretation to detect and prove the absence of certain run-time
errors in source code for C, C++, and Ada

• Rational Software Analyzer — Supports Java, C/C++ (and others available through
extensions)

• SofCheck Inspector — Provides static detection of logic errors, race conditions, and
redundant code for Java and Ada. Provides automated extraction of pre/postconditions from
code itself.

• Sotoarc/Sotograph — Architecture and quality in-depth analysis and monitoring for Java,
C#, C and C++

• Syhunt Sandcat — Detects security flaws in PHP, Classic ASP and ASP.NET web
applications.

• Understand — Analyzes C,C++, Java, Ada, Fortran, Jovial, Delphi, VHDL, HTML, CSS,
PHP, and JavaScript — reverse engineering of source, code navigation, and metrics tool.

270

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-387
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-386

• Veracode — Finds security flaws in application binaries and bytecode without requiring
source. Supported languages include C, C++, .NET (C#, C++/CLI, VB.NET, ASP.NET),
Java, JSP, ColdFusion, and PHP.

• Visual Studio Team System — Analyzes C++,C# source codes. only available in team suite
and development edition.

.NET

Products covering multiple .NET languages.

• CodeIt.Right — Combines Static Code Analysis and automatic Refactoring to best practices
which allows automatically correct code errors and violations. Supports both C# and
VB.NET.

• CodeRush — A plugin for Visual Studio, it addresses a multitude of short comings with the
popular IDE. Including alerting users to violations of best practices by using static code
analysis.

• JustCode — Add-on for Visual Studio 2005/2008/2010 for real-time, solution-wide code
analysis for C#, VB.NET, ASP.NET, XAML, JavaScript, HTML and multi-language
solutions.

• NDepend — Simplifies managing a complex .NET code base by analyzing and visualizing
code dependencies, by defining design rules, by doing impact analysis, and by comparing
different versions of the code. Integrates into Visual Studio.

• ReSharper — Add-on for Visual Studio 2003/2005/2008/2010 from the creators of IntelliJ
IDEA, which also provides static code analysis for C#.

• Kalistick — Mixing from the Cloud: static code analysis with best practice tips and
collaborative tools for Agile teams

Ada

• Ada-ASSURED — A tool that offers coding style checks, standards enforcement and pretty
printing features.

• AdaCore CodePeer — Automated code review and bug finder for Ada programs that uses
control-flow, data-flow, and other advanced static analysis techniques.

• LDRA Testbed — A software analysis and testing tool suite for Ada83/95.
• SofCheck Inspector — Provides static detection of logic errors, race conditions, and

redundant code for Ada. Provides automated extraction of pre/postconditions from code
itself.

C / C++

• FlexeLint — A multiplatform version of PC-Lint.
• Green Hills Software DoubleCheck — A software analysis tool for C/C++.
• Intel - Intel Parallel Studio XE: Contains Static Security Analysis (SSA) feature
• LDRA Testbed — A software analysis and testing tool suite for C/C++.
• Monoidics INFER — A sound tool for C/C++ based on Separation Logic.

271

• PC-Lint — A software analysis tool for C/C++.
• PVS-Studio — A software analysis tool for C/C++/C++0x.
• QA-C (and QA-C++) — Deep static analysis of C/C++ for quality assurance and guideline

enforcement.
• Red Lizard's Goanna — Static analysis for C/C++ in Eclipse and Visual Studio.

Java

• Jtest — Testing and static code analysis product by Parasoft.
• LDRA Testbed — A software analysis and testing tool suite for Java.
• SemmleCode — Object oriented code queries for static program analysis.
• SonarJ — Monitors conformance of code to intended architecture, also computes a wide

range of software metrics.
• Kalistick — A Cloud-based platform to manage and optimize code quality for Agile teams

with DevOps spirit

Formal methods tools

Tools that use a formal methods approach to static analysis (e.g., using static program assertions):

• ESC/Java and ESC/Java2 — Based on Java Modeling Language, an enriched version of
Java.

• Polyspace — Uses abstract interpretation (a formal methods based technique[77]) to detect
and prove the absence of certain run-time errors in source code for C, C++, and Ada

• SofCheck Inspector — Statically determines and documents pre- and postconditions for Java
methods; statically checks preconditions at all call sites; also supports Ada.

• SPARK Toolset including the SPARK Examiner — Based on the SPARK programming
language, a subset of Ada.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

272

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-388

External links

• Java Static Checkers at the Open Directory Project
• List of Java static code analysis plugins for Eclipse
• List of static source code analysis tools for C
• List of Static Source Code Analysis Tools at CERT
• SAMATE-Source Code Security Analyzers
• SATE - Static Analysis Tool Exposition
• “A Comparison of Bug Finding Tools for Java” , by Nick Rutar, Christian Almazan, and Jeff

Foster, University of Maryland. Compares Bandera, ESC/Java 2, FindBugs, JLint, and
PMD.

• “Mini-review of Java Bug Finders” , by Rick Jelliffe, O'Reilly Media.
• Parallel Lint , by Andrey Karpov
• Integrate static analysis into a software development process Explains how one goes about

integrating static analysis into a software development process

Profiling

In software engineering, program profiling, software profiling or simply profiling, a form of
dynamic program analysis (as opposed to static code analysis), is the investigation of a program's
behavior using information gathered as the program executes. The usual purpose of this analysis is
to determine which sections of a program to optimize - to increase its overall speed, decrease its
memory requirement or sometimes both.

• A (code) profiler is a performance analysis tool that, most commonly, measures only the
frequency and duration of function calls, but there are other specific types of profilers (e.g.
memory profilers) in addition to more comprehensive profilers, capable of gathering
extensive performance data.

• An instruction set simulator which is also — by necessity — a profiler, can measure the
totality of a program's behaviour from invocation to termination.

Gathering program events

Profilers use a wide variety of techniques to collect data, including hardware interrupts, code
instrumentation, instruction set simulation, operating system hooks, and performance counters. The
usage of profilers is 'called out' in the performance engineering process.

Use of profilers

Program analysis tools are extremely important for understanding program behavior. Computer
architects need such tools to evaluate how well programs will perform on new architectures.
Software writers need tools to analyze their programs and identify critical sections of code.
Compiler writers often use such tools to find out how well their instruction scheduling or branch
prediction algorithm is performing... (ATOM, PLDI, '94)

273

http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.ddj.com/218000153
http://www.oreillynet.com/digitalmedia/blog/2004/03/minireview_of_java_bug_finders.html
http://www.cs.umd.edu/~jfoster/papers/issre04.pdf
http://samate.nist.gov/SATE.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://www.cert.org/secure-coding/tools.html
http://www.spinroot.com/static/
http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-14-orderby-rating.html
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Static_Checkers/

The output of a profiler may be:-

• A statistical summary of the events observed (a profile)

Summary profile information is often shown annotated against the source code statements
where the events occur, so the size of measurement data is linear to the code size of the
program.

/* ------------ source------------------------- count */
0001 IF X = "A" 0055
0002 THEN DO
0003 ADD 1 to XCOUNT 0032
0004 ELSE
0005 IF X = "B" 0055

• A stream of recorded events (a trace)

For sequential programs, a summary profile is usually sufficient, but performance problems in
parallel programs (waiting for messages or synchronization issues) often depend on the time
relationship of events, thus requiring a full trace to get an understanding of what is happening.
The size of a (full) trace is linear to the program's instruction path length, making it somewhat
impractical. A trace may therefore be initiated at one point in a program and terminated at
another point to limit the output.

• An ongoing interaction with the hypervisor (continuous or periodic monitoring via on-screen
display for instance)

This provides the opportunity to switch a trace on or off at any desired point during execution
in addition to viewing on-going metrics about the (still executing) program. It also provides
the opportunity to suspend asynchronous processes at critical points to examine interactions
with other parallel processes in more detail.

History

Performance analysis tools existed on IBM/360 and IBM/370 platforms from the early 1970s,
usually based on timer interrupts which recorded the Program status word (PSW) at set timer
intervals to detect "hot spots" in executing code. This was an early example of sampling (see
below). In early 1974, Instruction Set Simulators permitted full trace and other performance
monitoring features.

Profiler-driven program analysis on Unix dates back to at least 1979, when Unix systems included a
basic tool "prof" that listed each function and how much of program execution time it used. In 1982,
gprof extended the concept to a complete call graph analysis [78]

In 1994, Amitabh Srivastava and Alan Eustace of Digital Equipment Corporation published a paper
describing ATOM.[79] ATOM is a platform for converting a program into its own profiler. That is,
at compile time, it inserts code into the program to be analyzed. That inserted code outputs analysis
data. This technique - modifying a program to analyze itself - is known as "instrumentation".

274

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-390
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-389

In 2004, both the gprof and ATOM papers appeared on the list of the 50 most influential PLDI
papers of all time.[80]

Profiler types based on output

Flat profiler

Flat profilers compute the average call times, from the calls, and do not break down the call times
based on the callee or the context.

Call-graph profiler

Call graph profilers show the call times, and frequencies of the functions, and also the call-chains
involved based on the callee. However context is not preserved.

Methods of data gathering

Event-based profilers

The programming languages listed here have event-based profilers:

• Java: the JVMTI (JVM Tools Interface) API, formerly JVMPI (JVM Profiling Interface),
provides hooks to profilers, for trapping events like calls, class-load, unload, thread enter
leave.

• .NET: Can attach a profiling agent as a COM server to the CLR. Like Java, the runtime then
provides various callbacks into the agent, for trapping events like method JIT / enter / leave,
object creation, etc. Particularly powerful in that the profiling agent can rewrite the target
application's bytecode in arbitrary ways.

• Python: Python profiling includes the profile module, hotshot (which is call-graph based),
and using the 'sys.setprofile' function to trap events like c_{call,return,exception},
python_{call,return,exception}.

• Ruby: Ruby also uses a similar interface like Python for profiling. Flat-profiler in profile.rb,
module, and ruby-prof a C-extension are present.

Statistical profilers

Some profilers operate by sampling. A sampling profiler probes the target program's program
counter at regular intervals using operating system interrupts. Sampling profiles are typically less
numerically accurate and specific, but allow the target program to run at near full speed.

The resulting data are not exact, but a statistical approximation. The actual amount of error is
usually more than one sampling period. In fact, if a value is n times the sampling period, the
expected error in it is the square-root of n sampling periods. [81]

275

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-392
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-391

In practice, sampling profilers can often provide a more accurate picture of the target program's
execution than other approaches, as they are not as intrusive to the target program, and thus don't
have as many side effects (such as on memory caches or instruction decoding pipelines). Also since
they don't affect the execution speed as much, they can detect issues that would otherwise be
hidden. They are also relatively immune to over-evaluating the cost of small, frequently called
routines or 'tight' loops. They can show the relative amount of time spent in user mode versus
interruptible kernel mode such as system call processing.

Still, kernel code to handle the interrupts entails a minor loss of CPU cycles, diverted cache usage,
and is unable to distinguish the various tasks occurring in uninterruptible kernel code (microsecond-
range activity).

Dedicated hardware can go beyond this: some recent MIPS processors JTAG interface have a
PCSAMPLE register, which samples the program counter in a truly undetectable manner.

Some of the most commonly used statistical profilers are AMD CodeAnalyst, Apple Inc. Shark,
gprof, Intel VTune and Parallel Amplifier (part of Intel Parallel Studio).

Instrumenting profilers

Some profilers instrument the target program with additional instructions to collect the required
information.

Instrumenting the program can cause changes in the performance of the program, potentially
causing inaccurate results and heisenbugs. Instrumenting will always have some impact on the
program execution, typically always slowing it. However, instrumentation can be very specific and
be carefully controlled to have a minimal impact. The impact on a particular program depends on
the placement of instrumentation points and the mechanism used to capture the trace. Hardware
support for trace capture means that on some targets, instrumentation can be on just one machine
instruction. The impact of instrumentation can often be deducted (i.e. eliminated by subtraction)
from the results.

gprof is an example of a profiler that uses both instrumentation and sampling. Instrumentation is
used to gather caller information and the actual timing values are obtained by statistical sampling.

Instrumentation

• Manual: Performed by the programmer, e.g. by adding instructions to explicitly calculate
runtimes, simply count events or calls to measurement APIs such as the Application
Response Measurement standard.

• Automatic source level: instrumentation added to the source code by an automatic tool
according to an instrumentation policy.

• Compiler assisted: Example: "gcc -pg ..." for gprof, "quantify g++ ..." for Quantify
• Binary translation: The tool adds instrumentation to a compiled binary. Example: ATOM
• Runtime instrumentation: Directly before execution the code is instrumented. The

program run is fully supervised and controlled by the tool. Examples: Pin, Valgrind

276

• Runtime injection: More lightweight than runtime instrumentation. Code is modified at
runtime to have jumps to helper functions. Example: DynInst

Interpreter instrumentation

• Interpreter debug options can enable the collection of performance metrics as the
interpreter encounters each target statement. A bytecode, control table or JIT interpreters are
three examples that usually have complete control over execution of the target code, thus
enabling extremely comprehensive data collection opportunities.

Hypervisor/Simulator

• Hypervisor: Data are collected by running the (usually) unmodified program under a
hypervisor. Example: SIMMON

• Simulator and Hypervisor: Data collected interactively and selectively by running the
unmodified program under an Instruction Set Simulator. Examples: SIMON (Batch
Interactive test/debug) and IBM OLIVER (CICS interactive test/debug).

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

• Dunlavey, “Performance tuning with instruction-level cost derived from call-stack
sampling”, ACM SIGPLAN Notices 42, 8 (August, 2007), pp. 4–8.

• Dunlavey, “Performance Tuning: Slugging It Out!”, Dr. Dobb's Journal, Vol 18, #12,
November 1993, pp 18–26.

External links

• Article "Need for speed — Eliminating performance bottlenecks" on doing execution time
analysis of Java applications using IBM Rational Application Developer.

• Profiling Runtime Generated and Interpreted Code using the VTune™ Performance
Analyzer

277

http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
http://software.intel.com/sites/products/documentation/hpc/vtune/windows/jit_profiling.pdf
http://www.ibm.com/developerworks/rational/library/05/1004_gupta/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Code Coverage

Code coverage is a measure used in software testing. It describes the degree to which the source
code of a program has been tested. It is a form of testing that inspects the code directly and is
therefore a form of white box testing.[82] In time, the use of code coverage has been extended to
the field of digital hardware, the contemporary design methodology of which relies on hardware
description languages (HDLs).

Code coverage was among the first methods invented for systematic software testing. The first
published reference was by Miller and Maloney in Communications of the ACM in 1963.

Code coverage is one consideration in the safety certification of avionics equipment. The standard
by which avionics gear is certified by the Federal Aviation Administration (FAA) is documented in
DO-178B.[83]

Coverage criteria

To measure how well the program is exercised by a test suite, one or more coverage criteria are
used.

Basic coverage criteria

There are a number of coverage criteria, the main ones being:[84]

• Function coverage - Has each function (or subroutine) in the program been called?
• Statement coverage - Has each node in the program been executed?
• Decision coverage (not the same as branch coverage - see Position Paper CAST10.[85]) -

Has every edge in the program been executed? For instance, have the requirements of each
branch of each control structure (such as in IF and CASE statements) been met as well as
not met?

• Condition coverage (or predicate coverage) - Has each boolean sub-expression evaluated
both to true and false? This does not necessarily imply decision coverage.

• Condition/decision coverage - Both decision and condition coverage should be satisfied.

For example, consider the following C++ function:

int foo(int x, int y)
{
 int z = 0;
 if ((x>0) && (y>0)) {
 z = x;
 }
 return z;
}

Assume this function is a part of some bigger program and this program was run with some test
suite.

278

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Position_Paper_CAST10-396
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-395
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-394
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-393

• If during this execution function 'foo' was called at least once, then function coverage for
this function is satisfied.

• Statement coverage for this function will be satisfied if it was called e.g. as foo(1,1), as
in this case, every line in the function is executed including z = x;.

• Tests calling foo(1,1) and foo(1,0) will satisfy decision coverage, as in the first case
the if condition is satisfied and z = x; is executed, and in the second it is not.

• Condition coverage can be satisfied with tests that call foo(1,1), foo(1,0) and
foo(0,0). These are necessary as in the first two cases (x>0) evaluates to true while
in the third it evaluates false. At the same time, the first case makes (y>0) true while
the second and third make it false.

In languages, like Pascal, where standard boolean operations are not short circuited, condition
coverage does not necessarily imply decision coverage. For example, consider the following
fragment of code:

if a and b then

Condition coverage can be satisfied by two tests:

• a=true, b=false
• a=false, b=true

However, this set of tests does not satisfy decision coverage as in neither case will the if condition
be met.

Fault injection may be necessary to ensure that all conditions and branches of exception handling
code have adequate coverage during testing.

Modified condition/decision coverage

For safety-critical applications (e.g. for avionics software) it is often required that modified
condition/decision coverage (MC/DC) is satisifed. This criteria extends condition/decision criteria
with requirements that each condition should affect the decision outcome independently. For
example, consider the following code:

if (a or b) and c then

The condition/decision criteria will be satisfied by the following set of tests:

• a=true, b=true, c=true
• a=false, b=false, c=false

However, the above tests set will not satisfy modified condition/decision coverage, since in the first
test, the value of 'b' and in the second test the value of 'c' would not influence the output. So, the
following test set is needed to satisfy MC/DC:

• a=false, b=false, c=true
• a=true, b=false, c=true

279

• a=false, b=true, c=true
• a=true, b=true, c=false

The bold values influence the output, each variable must be present as an influencing value at least
once with false and once with true.

Multiple condition coverage

This criteria requires that all combinations of conditions inside each decision are tested. For
example, the code fragment from the previous section will require eight tests:

• a=false, b=false, c=false
• a=false, b=false, c=true
• a=false, b=true, c=false
• a=false, b=true, c=true
• a=true, b=false, c=false
• a=true, b=false, c=true
• a=true, b=true, c=false
• a=true, b=true, c=true

Other coverage criteria

There are further coverage criteria, which are used less often:

• Linear Code Sequence and Jump (LCSAJ) coverage - has every LCSAJ been executed?
• JJ-Path coverage - have all jump to jump paths [86] (aka LCSAJs) been executed?
• Path coverage - Has every possible route through a given part of the code been executed?
• Entry/exit coverage - Has every possible call and return of the function been executed?
• Loop coverage - Has every possible loop been executed zero times, once, and more than

once?

Safety-critical applications are often required to demonstrate that testing achieves 100% of some
form of code coverage.

Some of the coverage criteria above are connected. For instance, path coverage implies decision,
statement and entry/exit coverage. Decision coverage implies statement coverage, because every
statement is part of a branch.

Full path coverage, of the type described above, is usually impractical or impossible. Any module
with a succession of n decisions in it can have up to 2n paths within it; loop constructs can result in
an infinite number of paths. Many paths may also be infeasible, in that there is no input to the
program under test that can cause that particular path to be executed. However, a general-purpose
algorithm for identifying infeasible paths has been proven to be impossible (such an algorithm
could be used to solve the halting problem).[87] Methods for practical path coverage testing instead
attempt to identify classes of code paths that differ only in the number of loop executions, and to
achieve "basis path" coverage the tester must cover all the path classes.

280

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-398
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-On_the_relationship_between_two_control-flow_coverage_criteria:_all_JJ-paths_and_MCDC-397

In practice

The target software is built with special options or libraries and/or run under a special environment
such that every function that is exercised (executed) in the program(s) is mapped back to the
function points in the source code. This process allows developers and quality assurance personnel
to look for parts of a system that are rarely or never accessed under normal conditions (error
handling and the like) and helps reassure test engineers that the most important conditions (function
points) have been tested. The resulting output is then analyzed to see what areas of code have not
been exercised and the tests are updated to include these areas as necessary. Combined with other
code coverage methods, the aim is to develop a rigorous, yet manageable, set of regression tests.

In implementing code coverage policies within a software development environment one must
consider the following:

• What are coverage requirements for the end product certification and if so what level of
code coverage is required? The typical level of rigor progression is as follows: Statement,
Branch/Decision, Modified Condition/Decision Coverage(MC/DC), LCSAJ (Linear Code
Sequence and Jump)

• Will code coverage be measured against tests that verify requirements levied on the system
under test (DO-178B)?

• Is the object code generated directly traceable to source code statements? Certain
certifications, (ie. DO-178B Level A) require coverage at the assembly level if this is not the
case: "Then, additional verification should be performed on the object code to establish the
correctness of such generated code sequences" (DO-178B) para-6.4.4.2.[88]

Test engineers can look at code coverage test results to help them devise test cases and input or
configuration sets that will increase the code coverage over vital functions. Two common forms of
code coverage used by testers are statement (or line) coverage and path (or edge) coverage. Line
coverage reports on the execution footprint of testing in terms of which lines of code were executed
to complete the test. Edge coverage reports which branches or code decision points were executed
to complete the test. They both report a coverage metric, measured as a percentage. The meaning of
this depends on what form(s) of code coverage have been used, as 67% path coverage is more
comprehensive than 67% statement coverage.

Generally, code coverage tools and libraries exact a performance and/or memory or other resource
cost which is unacceptable to normal operations of the software. Thus, they are only used in the lab.
As one might expect, there are classes of software that cannot be feasibly subjected to these
coverage tests, though a degree of coverage mapping can be approximated through analysis rather
than direct testing.

There are also some sorts of defects which are affected by such tools. In particular, some race
conditions or similar real time sensitive operations can be masked when run under code coverage
environments; and conversely, some of these defects may become easier to find as a result of the
additional overhead of the testing code.

281

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-DO-178B-399

Software tools

Tools for C / C++

• Cantata++
• Insure++
• IBM Rational Pure Coverage
• Tessy
• Testwell CTC++
• Trucov
• CodeScroll

Tools for C# .NET

• NCover
• Testwell CTC++ (with Java and C# add on)

Tools for Java

• Clover
• Cobertura
• Structure 101
• EMMA
• Jtest
• Serenity
• Testwell CTC++ (with Java and C# add on)

Tools for PHP

• PHPUnit, also need Xdebug to make coverage reports

Hardware tools

• Aldec
• Atrenta
• Cadence Design Systems
• JEDA Technologies
• Mentor Graphics
• Nusym Technology
• Simucad Design Automation
• Synopsys

282

Notes

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• Branch Coverage for Arbitrary Languages Made Easy
• Code Coverage Analysis by Steve Cornett
• Code Coverage Introduction
• Comprehensive paper on Code Coverage & tools selection by Vijayan Reddy, Nithya

Jayachandran
• Development Tools (Java)/ Introduction to Software Engineering/Print version at the Open

Directory Project
• Development Tools (General)/ Introduction to Software Engineering/Print version at the

Open Directory Project
• Systematic mistake analysis of digital computer programs
• FAA CAST Position Papers [15]

Project Management

Project management software is a term covering many types of software, including estimation
and planning, scheduling, cost control and budget management, resource allocation, collaboration
software, communication, quality management and documentation or administration systems, which
are used to deal with the complexity of large projects.

Tasks or activities of project management software

Scheduling

One of the most common purposes is to schedule a series of events or tasks and the complexity of
the schedule can vary considerably depending on how the tool is used. Some common challenges
include:

283

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://doi.acm.org/10.1145/366246.366248
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org//Computers/Programming/Software_Testing/Products_and_Tools
http://en.wikipedia.org/wiki/Open_Directory_Project
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Code_Coverage
http://qualinfra.blogspot.com/2010/02/code-coverage.html
http://qualinfra.blogspot.com/2010/02/code-coverage.html
http://qualinfra.blogspot.com/2010/02/code-coverage.html
http://www.javaranch.com/newsletter/200401/IntroToCodeCoverage.html
http://www.javaranch.com/newsletter/200401/IntroToCodeCoverage.html
http://www.bullseye.com/coverage.html
http://www.bullseye.com/coverage.html
http://www.semdesigns.com/Company/Publications/TestCoverage.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

• Events which depend on one another in different ways or dependencies
• Scheduling people to work on, and resources required by, the various tasks, commonly

termed resource scheduling
• Dealing with uncertainties in the estimates of the duration of each task

Providing information

Project planning software can be expected to provide information to various people or stakeholders,
and can be used to measure and justify the level of effort required to complete the project(s).
Typical requirements might include:

• Tasks lists for people, and allocation schedules for resources
• Overview information on how long tasks will take to complete
• Early warning of any risks to the project
• Information on workload, for planning holidays
• Evidence
• Historical information on how projects have progressed, and in particular, how actual and

planned performance are related
• Optimum utilization of available resource

Approaches to project management software

Desktop

Project management software can be implemented as a program that runs on the desktop of each
user. This typically gives the most responsive and graphically-intense style of interface.

Desktop applications typically store their data in a file, although some have the ability to collaborate
with other users (see below), or to store their data in a central database. Even a file-based project
plan can be shared between users if it's on a networked drive and only one user accesses it at a time.

Desktop applications can be written to run in a heterogeneous environment of multiple operating
systems, although it's unusual.

Web-based

Project management software can be implemented as a Web application, accessed through an
intranet, or an extranet using a web browser.

This has all the usual advantages and disadvantages of web applications:

• Can be accessed from any type of computer without installing software on user's computer
• Ease of access-control
• Naturally multi-user

284

• Only one software version and installation to maintain
• Centralized data repository
• Typically slower to respond than desktop applications
• Project information not available when the user (or server) is offline
• Some solutions allow the user to go offline with a copy of the data

Personal

A personal project management application is one used at home, typically to manage lifestyle or
home projects. There is considerable overlap with single user systems, although personal project
management software typically involves simpler interfaces. See also non-specialised tools below.

Single user

A single-user system is programmed with the assumption that only one person will ever need to edit
the project plan at once. This may be used in small companies, or ones where only a few people are
involved in top-down project planning. Desktop applications generally fall into this category.

Collaborative

A collaborative system is designed to support multiple users modifying different sections of the
plan at once; for example, updating the areas they personally are responsible for such that those
estimates get integrated into the overall plan. Web-based tools, including extranets, generally fall
into this category, but have the limitation that they can only be used when the user has live Internet
access. To address this limitation, some software tools using client–server architecture provide a
rich client that runs on users' desktop computer and replicate project and task information to other
project team members through a central server when users connect periodically to the network.
Some tools allow team members to check out their schedules (and others' as read only) to work on
them while not on the network. When reconnecting to the database, all changes are synchronized
with the other schedules.

Integrated

An integrated system combines project management or project planning, with many other aspects of
company life. For example, projects can have bug tracking issues assigned to each project, the list
of project customers becomes a customer relationship management module, and each person on the
project plan has their own task lists, calendars, and messaging functionality associated with their
projects.

Similarly, specialised tools like SourceForge integrate project management software with source
control (CVS) software and bug-tracking software, so that each piece of information can be
integrated into the same system.

285

Non-specialised tools

While specialised software may be common, and heavily promoted by each vendor, there are a vast
range of other software (and non-software) tools used to plan and schedule projects.

• Calendaring software can often handle scheduling as easily as dedicated software
• Spreadsheets are very versatile, and can be used to calculate things not anticipated by the

designers.

Criticisms of project management software

The following may apply in general, or to specific products, or to some specific functions within
products.

• May not be derived from a sound project management method. For example, displaying the
Gantt chart view by default encourages users to focus on timed task scheduling too early,
rather than identifying objectives, deliverables and the imposed logical progress of events
(dig the trench first to put in the drain pipe).

• May be inconsistent with the type of project management method. For example, traditional
(e.g. Waterfall) vs. agile (e.g. Scrum).

• Focuses primarily on the planning phase and does not offer enough functionality for project
tracking, control and in particular plan-adjustment. There may be excessive dependency on
the first paper print-out of a project plan, which is simply a snapshot at one moment in time.
The plan is dynamic; as the project progresses the plan must change to accommodate tasks
that are completed early, late, re-sequenced, etc. Good management software should not
only facilitate this, but assist with impact assessment and communication of plan changes.

• Does not make a clear distinction between the planning phase and post planning phase,
leading to user confusion and frustration when the software does not behave as expected.
For example, shortening the duration of a task when an additional human resource is
assigned to it while the project is still being planned.

• Offer complicated features to meet the needs of project management or project scheduling
professionals, which must be understood in order to effectively use the product. Additional
features may be so complicated as to be of no use to anyone. Complex task prioritization and
resource leveling algorithms for example can produce results that make no intuitive sense,
and overallocation is often more simply resolved manually.

• Some people may achieve better results using simpler technique, (e.g. pen and paper), yet
feel pressured into using project management software by company policy (discussion).

• Similar to PowerPoint, project management software might shield the manager from
important interpersonal contact.

• New types of software are challenging the traditional definition of Project Management.
Frequently, users of project management software are not actually managing a discrete
project. For instance, managing the ongoing marketing for an already-released product is not
a "project" in the traditional sense of the term; it does not involve management of discrete
resources working on something with a discrete beginning/end. Groupware applications now
add "project management" features that directly support this type of workflow-oriented
project management. Classically-trained Project Managers may argue whether this is "sound
project management." However, the end-users of such tools will refer to it as such, and the
de-facto definition of the term Project Management may change.

286

http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00008c&topic_id=1&topic=

• When there are multiple larger projects, project management software can be very useful.
Nevertheless, one should probably not use management software if only a single small
project is involved, as management software incurs a larger time-overhead than is
worthwhile.

Books

• Eric Uyttewaal: Dynamic Scheduling With Microsoft(r) Project 2000: The Book By and For
Professionals, ISBN 0-9708276-0-1

• George Suhanic: Computer-Aided Project Management, ISBN 0-19-511591-0
• Richard E. Westney: Computerized Management of Multiple Small Projects, ISBN 0-8247-

8645-9

Continuous Integration

In software engineering, continuous integration (CI) implements continuous processes of applying
quality control — small pieces of effort, applied frequently. Continuous integration aims to improve
the quality of software, and to reduce the time taken to deliver it, by replacing the traditional
practice of applying quality control after completing all development.

Theory

When embarking on a change, a developer takes a copy of the current code base on which to work.
As other developers submit changed code to the code repository, this copy gradually ceases to
reflect the repository code. When developers submit code to the repository they must first update
their code to reflect the changes in the repository since they took their copy. The more changes the
repository contains, the more work developers must do before submitting their own changes.

Eventually, the repository may become so different from the developers' baselines that they enter
what is sometimes called "integration hell",[89] where the time it takes to integrate exceeds the time
it took to make their original changes. In a worst-case scenario, developers may have to discard
their changes and completely redo the work.

Continuous integration involves integrating early and often, so as to avoid the pitfalls of
"integration hell". The practice aims to reduce rework and thus reduce cost and time.

The rest of this article discusses best practice in how to achieve continuous integration, and how to
automate this practice. Automation is a best practice itself.[90] [91]

Recommended practices

Continuous integration - as the practice of frequently integrating one's new or changed code with
the existing code repository - should occur frequently enough that no intervening window remains
between commit and build, and such that no errors can arise without developers noticing them and

287

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Taylor.2C_Rails_Deployment_and_Automation_with_ShadowPuppet_and_Capistrano-402
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Brauneis.2C_.5BOSLC.5D_Possible_new_Working_Group_-_Automation-401
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Cunningham.2C_Integration_Hell-400
http://en.wikibooks.org/wiki/Special:BookSources/0824786459
http://en.wikibooks.org/wiki/Special:BookSources/0824786459
http://en.wikibooks.org/wiki/Special:BookSources/0195115910
http://en.wikibooks.org/wiki/Special:BookSources/0970827601

correcting them immediately.[92] Normal practice is to trigger these builds by every commit to a
repository, rather than a periodically scheduled build. The practicalities of doing this in a multi-
developer environment of rapid commits are such that it's usual to trigger a short timer after each
commit, then to start a build when either this timer expires, or after a rather longer interval since the
last build. Automated tools such as CruiseControl or Hudson offer this scheduling automatically.

Another factor is the need for a version control system that supports atomic commits, i.e. all of a
developer's changes may be seen as a single commit operation. There is no point in trying to build
from only half of the changed files.

Maintain a code repository

This practice advocates the use of a revision control system for the project's source code. All
artifacts required to build the project should be placed in the repository. In this practice and in the
revision control community, the convention is that the system should be buildable from a fresh
checkout and not require additional dependencies. Extreme Programming advocate Martin Fowler
also mentions that where branching is supported by tools, its use should be minimised
[citation needed]. Instead, it is preferred that changes are integrated rather than creating multiple
versions of the software that are maintained simultaneously. The mainline (or trunk) should be the
place for the working version of the software.

Automate the build

A single command should have the capability of building the system. Many build-tools, such as
make, have existed for many years. Other more recent tools like Ant, Maven, MSBuild or IBM
Rational Build Forge are frequently used in continuous integration environments. Automation of the
build should include automating the integration, which often includes deployment into a
production-like environment. In many cases, the build script not only compiles binaries, but also
generates documentation, website pages, statistics and distribution media (such as Windows MSI
files, RPM or DEB files).

Make the build self-testing

Once the code is built, all tests should run to confirm that it behaves as the developers expect it to
behave.

Everyone commits to the baseline every day

By committing regularly, every committer can reduce the number of conflicting changes. Checking
in a week's worth of work runs the risk of conflicting with other features and can be very difficult to
resolve. Early, small conflicts in an area of the system cause team members to communicate about
the change they are making.

Many programmers recommend committing all changes at least once a day (once per feature built),
and in addition performing a nightly build.

288

http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Fowler.2C_Continuous_Integration_practices-403

Every commit (to baseline) should be built

The system should build commits to the current working version in order to verify that they
integrate correctly. A common practice is to use Automated Continuous Integration, although this
may be done manually. For many, continuous integration is synonymous with using Automated
Continuous Integration where a continuous integration server or daemon monitors the version
control system for changes, then automatically runs the build process.

Keep the build fast

The build needs to complete rapidly, so that if there is a problem with integration, it is quickly
identified.

Test in a clone of the production environment

Having a test environment can lead to failures in tested systems when they deploy in the production
environment, because the production environment may differ from the test environment in a
significant way. However, building a replica of a production environment is cost prohibitive.
Instead, the pre-production environment should be built to be a scalable version of the actual
production environment to both alleviate costs while maintaining technology stack composition and
nuances.

Make it easy to get the latest deliverables

Making builds readily available to stakeholders and testers can reduce the amount of rework
necessary when rebuilding a feature that doesn't meet requirements. Additionally, early testing
reduces the chances that defects survive until deployment. Finding errors earlier also, in some cases,
reduces the amount of work necessary to resolve them.

Everyone can see the results of the latest build

It should be easy to find out where/whether the build breaks and who made the relevant change.

Automate deployment

Most CI systems allow the running of scripts after a build finishes. In most situations, it is possible
to write a script to deploy the application to a live test server that everyone can look at. A further
advance in this way of thinking is Continuous Deployment, which calls for the software to be
deployed directly into production, often with additional automation to prevent defects or
regressions[93].

289

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-404

History

Continuous Integration emerged in the Extreme Programming (XP) community, and XP advocates
Martin Fowler and Kent Beck first wrote about continuous integration circa 1999. Fowler's
paper[94] is a popular source of information on the subject. Beck's book Extreme Programming
Explained[95], the original reference for Extreme Programming, also describes the term.

Advantages and disadvantages

Advantages

Continuous integration has many advantages:

• when unit tests fail or a bug emerges, developers might revert the codebase back to a bug-
free state, without wasting time debugging

• developers detect and fix integration problems continuously - avoiding last-minute chaos at
release dates, (when everyone tries to check in their slightly incompatible versions).

• early warning of broken/incompatible code
• early warning of conflicting changes
• immediate unit testing of all changes
• constant availability of a "current" build for testing, demo, or release purposes
• immediate feedback to developers on the quality, functionality, or system-wide impact of

code they are writing
• frequent code check-in pushes developers to create modular, less complex

code[citation needed]
• metrics generated from automated testing and CI (such as metrics for code coverage, code

complexity, and features complete) focus developers on developing functional, quality code,
and help develop momentum in a team[citation needed]

Disadvantages

• initial setup time required
• well-developed test-suite required to achieve automated testing advantages
• large-scale refactoring can be troublesome due to continuously changing code base
• hardware costs for build machines can be significant

Many teams using CI report that the advantages of CI well outweigh the disadvantages.[96] The
effect of finding and fixing integration bugs early in the development process saves both time and
money over the lifespan of a project.

290

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-407
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Beck.2C_Extreme_Programming_Explained-406
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-Fowler.2C_Continuous_Integration-405

Software

To support continuous integration, software tools such as automated build software can be
employed.

Software tools for continuous integration include:

• AnthillPro — continuous integration server by Urbancode
• Apache Continuum — continuous integration server supporting Apache Maven and Apache

Ant. Supports CVS, Subversion, Ant, Maven, and shell scripts
• Apache Gump — continuous integration tool by Apache
• Automated Build Studio — proprietary automated build, continuous integration and release

management system by AutomatedQA
• Bamboo — proprietary continuous integration server by Atlassian Software Systems
• BuildBot — Python/Twisted-based continuous build system
• BuildMaster — proprietary application lifecycle management and continuous integration

tool by Inedo
• CABIE - Continuous Automated Build and Integration Environment — open source, written

in Perl; works with CVS, Subversion, AccuRev, Bazaar and Perforce
• Cascade — proprietary continuous integration tool; provides a checkpointing facility to

build and test changes before they are committed
• codeBeamer — proprietary collaboration software with built-in continuous integration

features
• CruiseControl — Java-based framework for a continuous build process
• CruiseControl.NET — .NET-based automated continuous integration server
• CruiseControl.rb - Lightweight, Ruby-based continuous integration server that can build any

codebase, not only Ruby, released under Apache Licence 2.0
• ElectricCommander — proprietary continuous integration and release management solution

from Electric Cloud
• FinalBuilder Server — proprietary automated build and continuous integration server by

VSoft Technologies
• Go — proprietary agile build and release management software by Thoughtworks
• Jenkins (formerly known as Hudson) — MIT-licensed, written in Java, runs in servlet

container, supports CVS, Subversion, Mercurial, Git, StarTeam, Clearcase, Ant, NAnt,
Maven, and shell scripts

• Software Configuration and Library Manager — software configuration management system
for z/OS by IBM Rational Software

• QuickBuild - proprietary continuous integration server with free community edition
featuring build life cycle management and pre-commit verification.

• TeamCity — proprietary continuous-integration server by JetBrains with free professional
edition

• Team Foundation Server — proprietary continuous integration server and source code
repository by Microsoft

• Tinderbox — Mozilla-based product written in Perl
• Rational Team Concert — proprietary software development collaboration platform with

built-in build engine by IBM including Rational Build Forge

See comparison of continuous integration software for a more in depth feature matrix.

291

Further reading

• Duvall, Paul M. (2007). Continuous Integration. Improving Software Quality and Reducing
Risk. Addison-Wesley. ISBN 0-321-33638-0.

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• Continuous integration by Martin Fowler (an introduction)
• Continuous Integration at the Portland Pattern Repository (a collegial discussion)
• Cross platform testing at the Portland Pattern Repository
• Continuous Integration Server Feature Matrix (a guide to tools)
• Continuous Integration: The Cornerstone of a Great Shop by Jared Richardson (an

introduction)
• A Recipe for Build Maintainability and Reusability by Jay Flowers
• Continuous Integration anti-patterns by Paul Duvall
• Extreme programming

Bug Tracking

A bug tracking system is a software application that is designed to help quality assurance and
programmers keep track of reported software bugs in their work. It may be regarded as a type of
issue tracking system.

Many bug-tracking systems, such as those used by most open source software projects, allow users
to enter bug reports directly. Other systems are used only internally in a company or organization
doing software development. Typically bug tracking systems are integrated with other software
project management applications.

292

http://www.extremeprogramming.org/rules/integrateoften.html
http://www.ibm.com/developerworks/java/library/j-ap11297/
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26
http://www.methodsandtools.com/archive/archive.php?id=42
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://c2.com/cgi/wiki?CrossPlatformTesting
http://c2.com/cgi/wiki?CrossPlatformTesting
http://www.c2.com/cgi/wiki?ContinuousIntegration
http://www.c2.com/cgi/wiki?ContinuousIntegration
http://www.martinfowler.com/articles/continuousIntegration.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/wiki/Special:BookSources/0-321-33638-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Paul_Duvall

Having a bug tracking system is extremely valuable in software development, and they are used
extensively by companies developing software products. Consistent use of a bug or issue tracking
system is considered one of the "hallmarks of a good software team".[97]

Components

A major component of a bug tracking system is a database that records facts about known bugs.
Facts may include the time a bug was reported, its severity, the erroneous program behavior, and
details on how to reproduce the bug; as well as the identity of the person who reported it and any
programmers who may be working on fixing it.[98]

Typical bug tracking systems support the concept of the life cycle for a bug which is tracked
through status assigned to the bug. A bug tracking system should allow administrators to configure
permissions based on status, move the bug to another status, or delete the bug. The system should
also allow administrators to configure the bug statuses and to what status a bug in a particular status
can be moved. Some systems will e-mail interested parties, such as the submitter and assigned
programmers, when new records are added or the status changes.

Usage

The main benefit of a bug-tracking system is to provide a clear centralized overview of
development requests (including both bugs and improvements, the boundary is often fuzzy), and
their state. The prioritized list of pending items (often called backlog) provides valuable input when
defining the product roadmap, or maybe just "the next release".

In a corporate environment, a bug-tracking system may be used to generate reports on the
productivity of programmers at fixing bugs. However, this may sometimes yield inaccurate results
because different bugs may have different levels of severity and complexity. The severity of a bug
may not be directly related to the complexity of fixing the bug. There may be different opinions
among the managers and architects.

A local bug tracker (LBT) is usually a computer program used by a team of application support
professionals (often a help desk) to keep track of issues communicated to software developers.
Using an LBT allows support professionals to track bugs in their "own language" and not the
"language of the developers." In addition, a LBT allows a team of support professionals to track
specific information about users who have called to complain — this information may not always
be needed in the actual development queue. Thus, there are two tracking systems when an LBT is in
place.

293

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-409
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-408

Bug tracking systems as a part of integrated project
management systems

Bug and issue tracking systems are often implemented as a part of integrated project management
systems. This approach allows including bug tracking and fixing in a general product development
process, fixing bugs in several product versions, automatic generation of a product knowledge base
and release notes.

Distributed bug tracking

Some bug trackers are designed to be used with distributed revision control software. These
distributed bug trackers allow bug reports to be conveniently read, added to the database or updated
while a developer is offline.[99] Distributed bug trackers include Bugs Everywhere, and Fossil.

Recently, commercial bug tracking systems have also begun to integrate with distributed version
control. FogBugz, for example, enables this functionality via the source-control tool, Kiln.[100]

Although wikis and bug tracking systems are conventionally viewed as distinct types of software,
ikiwiki can also be used as a distributed bug tracker. It can manage documents and code as well, in
an integrated distributed manner. However, its query functionality is not as advanced or as user-
friendly as some other, non-distributed bug trackers such as Bugzilla.[101] Similar statements can
be made about org-mode, although it is not wiki software as such.

Bug tracking and test management

While traditional test management tools such as HP Quality Center and Rational Software come
with their own bug tracking systems. Other tools integrate with popular bug tracking systems.
[citation needed]

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

294

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-ikiwiki-412
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-411
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-lwn-distributed-410

External links

• Bug Tracking Software at the Open Directory Project
• How to Report Bugs Effectively
• List of distributed bug tracking software

Decompiler

A decompiler is the name given to a computer program that performs the reverse operation to that
of a compiler. That is, it translates a file containing information at a relatively low level of
abstraction (usually designed to be computer readable rather than human readable) into a form
having a higher level of abstraction (usually designed to be human readable).

Introduction

The term decompiler is most commonly applied to a program which translates executable programs
(the output from a compiler) into source code in a (relatively) high level language which, when
compiled, will produce an executable whose behavior is the same as the original executable
program. By comparison, a disassembler translates an executable program into assembly language
(and an assembler could be used to assemble it back into an executable program).

Decompilation is the act of using a decompiler, although the term, when used as a noun, can also
refer to the output of a decompiler. It can be used for the recovery of lost source code, and is also
useful in some cases for computer security, interoperability and error correction.[102] The success
of decompilation depends on the amount of information present in the code being decompiled and
the sophistication of the analysis performed on it. The bytecode formats used by many virtual
machines (such as the Java Virtual Machine or the .NET Framework Common Language Runtime)
often include extensive metadata and high-level features that make decompilation quite feasible.
The presence of debug data can make it possible to reproduce the original variable and structure
names and even the line numbers. Machine language without such metadata or debug data is much
harder to decompile.[103]

Some compilers and post-compilation tools produce obfuscated code (that is, they attempt to
produce output that is very difficult to decompile). This is done to make it more difficult to reverse
engineer the executable.

Design

Decompilers can be thought of as composed of a series of phases each of which contributes specific
aspects of the overall decompilation process.

295

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-414
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-413
http://dist-bugs.kitenet.net/software/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking//

Loader

The first decompilation phase loads and parses the input machine code or intermediate language
program's binary file format. It should be able to discover basic facts about the input program, such
as the architecture (Pentium, PowerPC, etc), and the entry point. In many cases, it should be able to
find the equivalent of the main function of a C program, which is the start of the user written code.
This excludes the runtime initialization code, which should not be decompiled if possible. If
available the symbol tables and debug data are also loaded. The front end may be able to identify
the libraries used even if they are linked with the code, this will provide library interfaces. If it can
determine the compiler or compilers used it may provide useful information in identifying code
idioms.[104]

Disassembly

The next logical phase is the disassembly of machine code instructions into a machine independent
intermediate representation (IR). For example, the Pentium machine instruction

 mov eax, [ebx+0x04]

might be translated to the IR

 eax := m[ebx+4];

Idioms

Idiomatic machine code sequences are sequences of code whose combined semantics is not
immediately apparent from the instructions' individual semantics. Either as part of the disassembly
phase, or as part of later analyses, these idiomatic sequences need to be translated into known
equivalent IR. For example, the x86 assembly code:

 cdq eax ; edx is set to the sign-extension of eax
 xor eax, edx
 sub eax, edx

could be translated to

 eax := abs(eax);

Some idiomatic sequences are machine independent; some involve only one instruction. For
example, xor eax, eax clears the eax register (sets it to zero). This can be implemented with a
machine independent simplification rule, such as a xor a = 0.

In general, it is best to delay detection of idiomatic sequences if possible, to later stages that are less
affected by instruction ordering. For example, the instruction scheduling phase of a compiler may
insert other instructions into an idiomatic sequence, or change the ordering of instructions in the
sequence. A pattern matching process in the disassembly phase would probably not recognize the
altered pattern. Later phases group instruction expressions into more complex expressions, and
modify them into a canonical (standardized) form, making it more likely that even the altered idiom
will match a higher level pattern later in the decompilation.

296

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-415

It is particularly important to recognize the compiler idioms for subroutine calls, exception
handling, and switch statements. Some languages also have extensive support for strings or long
integers.

Program analysis

Various program analyses can be applied to the IR. In particular, expression propagation combines
the semantics of several instructions into more complex expressions. For example,

 mov eax,[ebx+0x04]
 add eax,[ebx+0x08]
 sub [ebx+0x0C],eax

could result in the following IR after expression propagation:

 m[ebx+12] := m[ebx+12] - (m[ebx+4] + m[ebx+8]);

The resulting expression is more like high level language, and has also eliminated the use of the
machine register eax . Later analyses may eliminate the ebx register.

Data flow analysis

The places where register contents are defined and used must be traced using data flow analysis.
The same analysis can be applied to locations that are used for temporaries and local data. A
different name can then be formed for each such connected set of value definitions and uses. It is
possible that the same local variable location was used for more than one variable in different parts
of the original program. Even worse it is possible for the data flow analysis to identify a path
whereby a value may flow between two such uses even though it would never actually happen or
matter in reality. This may in bad cases lead to needing to define a location as a union of types. The
decompiler may allow the user to explicitly break such unnatural dependencies which will lead to
clearer code. This of course means a variable is potentially used without being initialized and so
indicates a problem in the original program.

Type analysis

A good machine code decompiler will perform type analysis. Here, the way registers or memory
locations are used result in constraints on the possible type of the location. For example, an and
instruction implies that the operand is an integer; programs do not use such an operation on floating
point values (except in special library code) or on pointers. An add instruction results in three
constraints, since the operands may be both integer, or one integer and one pointer (with integer and
pointer results respectively; the third constraint comes from the ordering of the two operands when
the types are different).[105]

Various high level expressions can be recognized which trigger recognition of structures or arrays.
However, it is difficult to distinguish many of the possibilities, because of the freedom that machine
code or even some high level languages such as C allow with casts and pointer arithmetic.

The example from the previous section could result in the following high level code:

297

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-416

struct T1 *ebx;
 struct T1 {
 int v0004;
 int v0008;
 int v000C;
 };
 ebx->v000C -= ebx->v0004 + ebx->v0008;

Structuring

The penultimate decompilation phase involves structuring of the IR into higher level constructs
such as while loops and if/then/else conditional statements. For example, the machine code

 xor eax, eax
l0002:
 or ebx, ebx
 jge l0003
 add eax,[ebx]
 mov ebx,[ebx+0x4]
 jmp l0002
l0003:
 mov [0x10040000],eax

could be translated into:

 eax = 0;
 while (ebx < 0) {
 eax += ebx->v0000;
 ebx = ebx->v0004;
 }
 v10040000 = eax;

Unstructured code is more difficult to translate into structured code than already structured code.
Solutions include replicating some code, or adding boolean variables.[106]

Code generation

The final phase is the generation of the high level code in the back end of the decompiler. Just as a
compiler may have several back ends for generating machine code for different architectures, a
decompiler may have several back ends for generating high level code in different high level
languages.

Just before code generation, it may be desirable to allow an interactive editing of the IR, perhaps
using some form of graphical user interface. This would allow the user to enter comments, and non-
generic variable and function names. However, these are almost as easily entered in a post
decompilation edit. The user may want to change structural aspects, such as converting a while
loop to a for loop. These are less readily modified with a simple text editor, although source code
refactoring tools may assist with this process. The user may need to enter information that failed to
be identified during the type analysis phase, e.g. modifying a memory expression to an array or
structure expression. Finally, incorrect IR may need to be corrected, or changes made to cause the
output code to be more readable.

298

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-417

Legality

The majority of computer programs are covered by copyright laws. Although the precise scope of
what is covered by copyright differs from region to region, copyright law generally provides the
author (the programmer(s) or employer) with a collection of exclusive rights to the program.[107]
These rights include the right to make copies, including copies made into the computer's
RAM[citation needed]. Since the decompilation process involves making multiple such copies, it is
generally prohibited without the authorization of the copyright holder. However, because
decompilation is often a necessary step in achieving software interoperability, copyright laws in
both the United States and Europe permit decompilation to a limited extent.

In the United States, the copyright fair use defense has been successfully invoked in decompilation
cases. For example, in Sega v. Accolade, the court held that Accolade could lawfully engage in
decompilation in order to circumvent the software locking mechanism used by Sega's game
consoles.[108]

In Europe, the 1991 Software Directive explicitly provides for a right to decompile in order to
achieve interoperability. The result of a heated debate between, on the one side, software
protectionists, and, on the other, academics as well as independent software developers, Article 6
permits decompilation only if a number of conditions are met:

• First, a person or entity must have a license to use the program to be decompiled.
• Second, decompilation must be necessary to achieve interoperability with the target program

or other programs. Interoperability information should therefore not be readily available,
such as through manuals or API documentation. This is an important limitation. The
necessity must be proven by the decompiler. The purpose of this important limitation is
primarily to provide an incentive for developers to document and disclose their products'
interoperability information.[109]

• Third, the decompilation process must, if possible, be confined to the parts of the target
program relevant to interoperability. Since one of the purposes of decompilation is to gain
an understanding of the program structure, this third limitation may be difficult to meet.
Again, the burden of proof is on the decompiler.

In addition, Article 6 prescribes that the information obtained through decompilation may not be
used for other purposes and that it may not be given to others.

Overall, the decompilation right provided by Article 6 codifies what is claimed to be common
practice in the software industry. Few European lawsuits are known to have emerged from the
decompilation right. This could be interpreted as meaning either one of two things: 1) the
decompilation right is not used frequently and the decompilation right may therefore have been
unnecessary, or 2) the decompilation right functions well and provides sufficient legal certainty not
to give rise to legal disputes. In a recent report regarding implementation of the Software Directive
by the European member states, the European Commission seems to support the second
interpretation.

299

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52000DC0199:EN:HTML
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-420
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:HTML
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-419
http://digital-law-online.info/cases/24PQ2D1561.htm
http://en.wikibooks.org/wiki/Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-418

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• Decompilers and Disassemblers at the Open Directory Project
• Legality of Decompilation
• Simple Step by Step Java Decompilation Example
• Article on decompilation
• Reverse Engineering Resources
• A decompiler
• The commercial Hex-Rays decompiler for x86 binaries
• DJ Java Decompiler

Obfuscation

Obfuscated code is source or machine code that has been made difficult to understand for humans.
Programmers may deliberately obfuscate code to conceal its purpose (security through obscurity) or
its logic to prevent tampering, deter reverse engineering, or as a puzzle or recreational challenge for
someone reading the source code. Programs known as obfuscators transform readable code into
obfuscated code using various techniques. Code obfuscation is different in essence from hardware
obfuscation, where description and/or structure of a circuit is modified to hide its functionality.

Overview

Some languages may be more prone to obfuscation than others.[110] [111] C,[112] C++,[113] and
Perl[114] are some examples.

300

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-425
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-424
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-423
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-422
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-421
http://www.neshkov.com/dj.html
http://www.neshkov.com/dj.html
http://hex-rays.com/decompiler.shtml
http://hex-rays.com/decompiler.shtml
http://hex-rays.com/decompiler.shtml
http://revenge.berlios.de/
http://revenge.berlios.de/
http://www.backerstreet.com/decompiler/decompilers.htm
http://www.debugmode.com/dcompile
http://www.debugmode.com/dcompile
http://jameshamilton.eu/content/step-step-java-decompilation-example
http://jameshamilton.eu/content/step-step-java-decompilation-example
http://jameshamilton.eu/content/step-step-java-decompilation-example
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Programming/Disassemblers/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Recreational obfuscation

Writing and reading obfuscated source code can be a brain teaser for programmers. A number of
programming contests reward the most creatively obfuscated code: the International Obfuscated C
Code Contest, Obfuscated Perl Contest, and International Obfuscated Ruby Code Contest.

Types of obfuscations include simple keyword substitution, use or non-use of whitespace to create
artistic effects, and self-generating or heavily compressed programs.

Short obfuscated Perl programs may be used in signatures of Perl programmers. These are JAPHs
("Just another Perl hacker").[citation needed]

Examples

This is a winning entry from the International Obfuscated C Code Contest[115] written by Ian
Phillipps in 1988[116] and subsequently reverse engineered by Thomas Ball.[117]

/*
 LEAST LIKELY TO COMPILE SUCCESSFULLY:
 Ian Phillipps, Cambridge Consultants Ltd., Cambridge, England
*/

#include <stdio.h>
main(t,_,a)
char
*
a;
{
 return!

0<t?
t<3?

main(-79,-13,a+
main(-87,1-_,
main(-86, 0, a+1)

+a)):

1,
t<_?
main(t+1, _, a)
:3,

main (-94, -27+t, a)
&&t == 2 ?_
<13 ?

main (2, _+1, "%s %d %d\n")

:9:16:
t<0?
t<-72?
main(_, t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;\
#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!/+k#;\
q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){nl]!/n{n#'; \
r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;\
{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:
t<-50?

301

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-428
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-427
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-426
http://en.wikibooks.org/wiki/Wikibooks:OR
http://iorcc.blogspot.com/

_==*a ?
putchar(31[a]):

main(-65,_,a+1)
:
main((*a == '/') + t, _, a + 1)
:

0<t?

main (2, 2 , "%s")
:*a=='/'||

main(0,

main(-61,*a, "!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry")

,a+1);}

It is a C program that when compiled and run will generate the 12 verses of The 12 Days of
Christmas. It contains all the strings required for the poem in an encoded form within the code.

A non-winning entry from the same year, the next example illustrates creative use of whitespace; it
generates mazes of arbitrary length [118]:

char*M,A,Z,E=40,J[40],T[40];main(C){for(*J=A=scanf(M="%d",&C);
-- E; J[E] =T
[E]= E) printf("._"); for(;(A-=Z=!Z) || (printf("\n|"
) , A = 39 ,C --
) ; Z || printf (M))M[Z]=Z[A-(E =A[J-Z])&&!C
& A == T[A]
|6<<27<rand()||!C&!Z?J[T[E]=T[A]]=E,J[T[A]=A-Z]=A,"_.":" |"];}

Modern C compilers don't allow constant strings to be overwritten, which can be avoided by
changing "*M" to "M[3]" and omitting "M=".

An example of a JAPH:

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / lreP rehtona tsuJ";sub p{
@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=$f=!fork;map{$P=$P[$f^ord
($p{$_})&6];$p{$_}=/ ^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P.]/&&
close$_}%p;wait until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2)if/\S/;print

This slowly displays the text "Just another Perl / Unix hacker", multiple characters at a time, with
delays. An explanation can be found here.

Some Python examples can be found in the official Python programming FAQ.

Disadvantages of obfuscation

At best, obfuscation merely makes it time-consuming, but not impossible, to reverse engineer a
program. [119]

302

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-430
http://www.python.org/doc/faq/programming/#is-it-possible-to-write-obfuscated-one-liners-in-python
http://perl.plover.com/obfuscated/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-429

Obfuscating software

A variety of tools exists to perform or assist with code obfuscation. These include experimental
research tools created by academics, hobbyist tools, commercial products written by professionals,
and open-source software. There also exist deobfuscation tools that attempt to perform the reverse
transformation.

Although the majority of commercial obfuscation solutions work by transforming either program
source code[120] [121] , or platform-independent bytecode as used by Java[122] and .NET[123],
there are also some that work with C and C++[124] [125] - languages that are typically compiled to
native code.

Notes

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

References

• B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang. "On
the (Im)possibility of Obfuscating Programs". 21st Annual International Cryptology
Conference, Santa Barbara, California, USA. Springer Verlag LNCS Volume 2139, 2001.

• Mateas, Michael; Nick Montfort. "A Box, Darkly: Obfuscation , Weird Languages, and Code
Aesthetics". Proceedings of the 6th Digital Arts and Culture Conference, IT University of
Copenhagen, 1–3 December 2005. pp. 144–153. http://nickm.com/cis/a_box_darkly.pdf.

External links

• The International Obfuscated C Code Contest
• Protecting Java Code Via Code Obfuscation , ACM Crossroads, Spring 1998 issue
• Protect Your Java Code - Through Obfuscators And Beyond , April 2009
• Dotfuscator in Visual Studio on MSDN resource page — Visual Studio 2008 documentation

for built-in .NET obfuscation
• Obfuscation tools for .NET, on MSDN — Obfuscation resources for .NET, on the Microsoft

Developer Center.

303

http://msdn2.microsoft.com/en-us/vcsharp/aa336818.aspx#obfuscators
http://msdn2.microsoft.com/en-us/vcsharp/aa336818.aspx#obfuscators
http://msdn2.microsoft.com/en-us/library/ms227240.aspx
http://www.excelsior-usa.com/articles/java-obfuscators.html
http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.html
http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.html
http://www.ioccc.org/
http://nickm.com/cis/a_box_darkly.pdf
http://nickm.com/cis/a_box_darkly.pdf
http://nickm.com/cis/a_box_darkly.pdf
http://nickm.com/cis/a_box_darkly.pdf
http://nickm.com/cis/a_box_darkly.pdf
http://www.math.ias.edu/~boaz/Papers/obfuscate.ps
http://www.math.ias.edu/~boaz/Papers/obfuscate.ps
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-436
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-435
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-434
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-433
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-432
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-431

• Can we obfuscate programs?
• Yury Lifshits. Lecture Notes on Program Obfuscation (Spring'2005)
• Obfuscate member names in .NET code
• Java obfuscators at the Open Directory Project
• Analysis of the 12 days program
• Analysis of the obfuscated maze generating program
• Obfuscated Perl program with explanation
• Making C compiler generate obfuscated code
• Protect php code via code obfuscation

304

http://www.phpprotect.info/
http://www.phpprotect.info/
http://blogs.conus.info/node/58
http://blogs.conus.info/node/58
http://blogs.conus.info/node/58
http://perl.plover.com/obfuscated/
http://perl.plover.com/obfuscated/
http://www.cwi.nl/~tromp/maze.html
http://research.microsoft.com/~tball/papers/XmasGift/
http://en.wikipedia.org/wiki/Open_Directory_Project
http://www.dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/
http://www.rustemsoft.com/obfuscate_names.asp
http://www.rustemsoft.com/obfuscate_names.asp
http://yury.name/obfuscation.html
http://yury.name/obfuscation.html
http://yury.name/obfuscation.html
http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html
http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html
http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html

Re-engineering

Introduction

The reengineering of software was described by Chikofsky and Cross in their 1990 paper[126], as
"The examination and alteration of a system to reconstitute it in a new form". Less formally,
reengineering is the modification of a software system that takes place after it has been reverse
engineered, generally to add new functionality, or to correct errors.

This entire process is often erroneously referred to as reverse engineering; however, it is more
accurate to say that reverse engineering is the initial examination of the system, and reengineering is
the subsequent modification.

Re-engineering is mostly used in the context where a legacy system is involved[127]. Software
systems are evolving on high rate because there more research to make the better so therefore
software system in most cases, legacy software needs to operate on a new computing platform. 'Re-
engineering' is a set of activities that are carried out to re-structure a legacy system to a new system
with better functionalities and conform to the hardware and software quality constraint.

See also

• Code refactoring
• Rewrite (programming)
• Program transformation
• DMS Software Reengineering Toolkit

References

1. ↑ Fred Brooks, The Mythical Man-Month. Addison-Wesley, 1975 & 1995. ISBN 0-201-
00650-2 & ISBN 0-201-83595-9.

2. ↑ Lientz, B.P. and Swanson, E.B., Software Maintenance Management, A Study Of The
Maintenance Of Computer Application Software In 487 Data Processing Organizations.
Addison-Wesley, Reading MA, 1980. ISBN 0201042053

3. ↑ ISO/IEC 14764:2006, 2006.
4. ↑ a b Stellman, Andrew; Greene, Jennifer (2005). Applied Software Project Management.

O'Reilly Media. ISBN 978-0-596-00948-9. http://www.stellman-greene.com/aspm/.
5. ↑ IEEE magazine article "Why Software Fails"
6. ↑ John C. Reynolds, Some thoughts on teaching programming and programming languages,

SIGPLAN Notices, Volume 43, Issue 11, November 2008, p.108: "Some argue that one can
manage software production without the ability to program. This belief seems to arise from
the mistaken view that software production is a form of manufacturing. But manufacturing is
the repeated construction of identical objects, while software production is the construction

305

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-317
http://spectrum.ieee.org/computing/software/why-software-fails/5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-316
http://www.stellman-greene.com/aspm/
http://en.wikibooks.org/wiki/Special:BookSources/978-0-596-00948-9
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.stellman-greene.com/aspm/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Stellman05_315-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Stellman05_315-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-314
http://en.wikibooks.org/wiki/Special:BookSources/0201042053
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-313
http://en.wikibooks.org/wiki/Special:BookSources/0201835959
http://en.wikibooks.org/wiki/Special:BookSources/0201006502
http://en.wikibooks.org/wiki/Special:BookSources/0201006502
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-312
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-438
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-437

of unique objects, i.e., the entire process is a form of design. As such it is closer to the
production of a newspaper — so that a software manager who cannot program is akin to a
managing editor who cannot write."

7. ↑ Jørgensen, M.. "A Review of Studies on Expert Estimation of Software Development
Effort". http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c.

8. ↑ Molokken, K. Jorgensen, M.. "A review of software surveys on software effort
estimation". http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981.

9. ↑ Jørgensen, M. Teigen, K.H. Ribu, K.. "Better sure than safe? Over-confidence in
judgement based software development effort prediction intervals".
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-
5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598
&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb
63.

10.↑ Edwards, J.S. Moores, T.T. (1994), "A conflict between the use of estimating and planning
tools in the management of information systems.". European Journal of Information Systems
3(2): 139-147.

11.↑ Goodwin, P. (1998). Enhancing judgmental sales forecasting: The role of laboratory
research. Forecasting with judgment. G. Wright and P. Goodwin. New York, John Wiley &
Sons: 91-112.

12.↑ Farr, L. Nanus, B.. "Factors that affect the cost of computer programming".
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0603707.

13.↑ Nelson, E. A. (1966). Management Handbook for the Estimation of Computer
Programming Costs. AD-A648750, Systems Development Corp.

14.↑ Anda, B. Angelvik, E. Ribu, K.. "Improving Estimation Practices by Applying Use Case
Models". http://www.springerlink.com/content/7lpyel912m5cr654/.

15.↑ Briand, L. C. and I. Wieczorek (2002). Resource estimation in software engineering.
Encyclopedia of software engineering. J. J. Marcinak. New York, John Wiley & Sons: 1160-
1196.

16.↑ Jørgensen, M. Shepperd, M.. "A Systematic Review of Software Development Cost
Estimation Studies". http://simula.no/research/engineering/publications/Jorgensen.2007.1.

17.↑ Hill Peter (ISBSG) - Estimation Workbook 2 - published by International Software
Benchmarking Standards Group ISBSG - Estimation and Benchmarking Resource Centre

18.↑ Morris Pam - Overview of Function Point Analysis Total Metrics - Function Point
Resource Centre

19.↑ Shepperd, M. Kadoda, G.. "Comparing software prediction techniques using simulation".
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?
arnumber=965341.

20.↑ Jørgensen, M.. "Estimation of Software Development Work Effort:Evidence on Expert
Judgment and Formal Models".
http://simula.no/research/engineering/publications/Jorgensen.2007.2.

21.↑ Winkler, R.L.. "Combining forecasts: A philosophical basis and some current issues
Manager". http://www.sciencedirect.com/science/article/B6V92-45P4G7H-
2B/2/d05dc6c369ab173c5792a05ea1be21d9.

22.↑ Blattberg, R.C. Hoch, S.J.. "Database Models and Managerial Intuition: 50% Model +
50% Manager". http://www.jstor.org/pss/2632364.

23.↑ Jørgensen, M.. "Estimation of Software Development Work Effort:Evidence on Expert
Judgment and Formal Models".
http://simula.no/research/engineering/publications/Jorgensen.2007.2.

306

http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-334
http://www.jstor.org/pss/2632364
http://www.jstor.org/pss/2632364
http://www.jstor.org/pss/2632364
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-333
http://www.sciencedirect.com/science/article/B6V92-45P4G7H-2B/2/d05dc6c369ab173c5792a05ea1be21d9
http://www.sciencedirect.com/science/article/B6V92-45P4G7H-2B/2/d05dc6c369ab173c5792a05ea1be21d9
http://www.sciencedirect.com/science/article/B6V92-45P4G7H-2B/2/d05dc6c369ab173c5792a05ea1be21d9
http://www.sciencedirect.com/science/article/B6V92-45P4G7H-2B/2/d05dc6c369ab173c5792a05ea1be21d9
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-332
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://simula.no/research/engineering/publications/Jorgensen.2007.2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-331
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?arnumber=965341
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?arnumber=965341
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/32/20846/00965341.pdf?arnumber=965341
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-330
http://www.totalmetrics.com/function-point-resources/what-are-function-points
http://www.totalmetrics.com/function-point-resources/what-are-function-points
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-329
http://www.isbsg.org/ISBSGnew.nsf/WebPages/~GBL~Practical%20Project%20Estimation%202nd%20Edition
http://www.isbsg.org/ISBSGnew.nsf/WebPages/~GBL~Practical%20Project%20Estimation%202nd%20Edition
http://www.isbsg.org/ISBSGnew.nsf/WebPages/~GBL~Practical%20Project%20Estimation%202nd%20Edition
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-328
http://simula.no/research/engineering/publications/Jorgensen.2007.1
http://simula.no/research/engineering/publications/Jorgensen.2007.1
http://simula.no/research/engineering/publications/Jorgensen.2007.1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-327
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-326
http://www.springerlink.com/content/7lpyel912m5cr654/
http://www.springerlink.com/content/7lpyel912m5cr654/
http://www.springerlink.com/content/7lpyel912m5cr654/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-325
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-324
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0603707
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0603707
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-323
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-322
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-321
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-49N06GS-5&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=36c6383445cf481447d06cb30c1ccb63
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-320
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1237981
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-319
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.c
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-318

24.↑ Armstrong, J. S.. "Principles of forecasting: A handbook for researchers and
practitioners". http://www.forecastingprinciples.com.

25.↑ Angelis, L. Stamelos, I.. "A simulation tool for efficient analogy based cost estimation".
http://portal.acm.org/citation.cfm?id=594467&dl=ACM&coll=portal.

26.↑ Jørgensen, M. Sjøberg, D.I.K.. "An effort prediction interval approach based on the
empirical distribution of previous estimation accuracy".
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-
1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598
&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac42
4.

27.↑ Jørgensen, M.. "Realism in assessment of effort estimation uncertainty: It matters how you
ask". http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e.

28.↑ Shepperd, M. Cartwright, M. Kadoda, G.. "On Building Prediction Systems for Software
Engineers".
http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191.

29.↑ Kitchenham, B. Pickard, L.M. MacDonell, S.G. Shepperd,. "What accuracy statistics
really measure". http://scitation.aip.org/getabs/servlet/GetabsServlet?
prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes.

30.↑ Foss, T. Stensrud, E. Kitchenham, B. Myrtveit, I.. "A Simulation Study of the Model
Evaluation Criterion MMRE". IEEE. http://portal.acm.org/citation.cfm?id=951936.

31.↑ Miyazaki, Y. Terakado, M. Ozaki, K. Nozaki, H.. "Robust regression for developing
software estimation models". http://portal.acm.org/citation.cfm?id=198684.

32.↑ Lo, B. Gao, X.. "Assessing Software Cost Estimation Models: criteria for accuracy,
consistency and regression " . http://dl.acs.org.au/index.php/ajis/article/view/348.

33.↑ Hughes, R.T. Cunliffe, A. Young-Martos, F.. "Evaluating software development effort
model-building techniquesfor application in a real-time telecommunications environment".
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296.

34.↑ Grimstad, S. Jørgensen, M.. "A Framework for the Analysis of Software Cost Estimation
Accuracy".
http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file.

35.↑ Jørgensen, M. Grimstad, S.. "How to Avoid Impact from Irrelevant and Misleading
Information When Estimating Software Development Effort".
http://simula.no/research/engineering/publications/Simula.SE.112.

36.↑ Kuhn, D.L (1989). "Selecting and effectively using a computer aided software engineering
tool". Annual Westinghouse computer symposium; 6–7 Nov 1989; Pittsburgh, PA (U.S.);
DOE Project.

37.↑ P. Loucopoulos and V. Karakostas (1995). System Requirements Engineering. McGraw-
Hill.

38.↑ "AD/Cycle strategy and architecture", IBM Systems Journal, Vol 29, NO 2, 1990; p. 172.
39.↑ a b c d e f g h Alfonso Fuggetta (December 1993). "A classification of CASE technology".

Computer 26 (12): 25–38. doi:10.1109/2.247645.
http://www2.computer.org/portal/web/csdl/abs/mags/co/1993/12/rz025abs.htm. Retrieved
2009-03-14.

40.↑ a b c d e Software Development Techniques. In: FFIEC InfoBase. Retrieved 26 Oct 2008.
41.↑ Software Engineering: Tools, Principles and Techniques by Sangeeta Sabharwal, Umesh

Publications
42.↑ Evans R. Rock. Case Analyst Workbenches: A Detailed Product Evaluation. Volume 1,

pp. 229–242 by
43.↑ "IP: The World's First COBOL Compilers". interesting-people.org. 12 June 1997.

http://www.interesting-people.org/archives/interesting-people/199706/msg00011.html.

307

http://www.interesting-people.org/archives/interesting-people/199706/msg00011.html
http://www.interesting-people.org/archives/interesting-people/199706/msg00011.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-354
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-353
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-352
http://www.ffiec.gov/ffiecinfobase/booklets/d_a/10.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-FFIEC08_351-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-FFIEC08_351-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-FFIEC08_351-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-FFIEC08_351-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-FFIEC08_351-0
http://www2.computer.org/portal/web/csdl/abs/mags/co/1993/12/rz025abs.htm
http://dx.doi.org/10.1109%2F2.247645
http://en.wikipedia.org/wiki/Digital_object_identifier
http://www2.computer.org/portal/web/csdl/abs/mags/co/1993/12/rz025abs.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-AF_93_350-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ADC_SAaA_349-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-348
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-347
http://simula.no/research/engineering/publications/Simula.SE.112
http://simula.no/research/engineering/publications/Simula.SE.112
http://simula.no/research/engineering/publications/Simula.SE.112
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-346
http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file
http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file
http://simula.no/research/engineering/publications/Grimstad.2006.2/simula_pdf_file
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-345
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689296
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-344
http://dl.acs.org.au/index.php/ajis/article/view/348
http://dl.acs.org.au/index.php/ajis/article/view/348
http://dl.acs.org.au/index.php/ajis/article/view/348
http://dl.acs.org.au/index.php/ajis/article/view/348
http://dl.acs.org.au/index.php/ajis/article/view/348
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-343
http://portal.acm.org/citation.cfm?id=198684
http://portal.acm.org/citation.cfm?id=198684
http://portal.acm.org/citation.cfm?id=198684
http://portal.acm.org/citation.cfm?id=198684
http://portal.acm.org/citation.cfm?id=198684
http://portal.acm.org/citation.cfm?id=198684
http://portal.acm.org/citation.cfm?id=198684
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-342
http://portal.acm.org/citation.cfm?id=951936
http://portal.acm.org/citation.cfm?id=951936
http://portal.acm.org/citation.cfm?id=951936
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-341
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=IPSEFU000148000003000081000001&idtype=cvips&gifs=yes
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-340
http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191
http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191
http://www.ingentaconnect.com/content/klu/emse/2000/00000005/00000003/00278191
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-339
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e
http://simula.no/research/engineering/publications/SE.4.Joergensen.2004.e
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-338
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0B-47HC6S5-1&_user=674998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000036598&_version=1&_urlVersion=0&_userid=674998&md5=6cb917a379855c79eebe9f18ca9ac424
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-337
http://portal.acm.org/citation.cfm?id=594467&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=594467&dl=ACM&coll=portal
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-336
http://www.forecastingprinciples.com/
http://www.forecastingprinciples.com/
http://www.forecastingprinciples.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-335

44.↑ T. Hart and M. Levin. "The New Compiler , AIM-39 - CSAIL Digital Archive - Artificial
Intelligence Laboratory Series". publications.ai.mit.edu. ftp://publications.ai.mit.edu/ai-
publications/pdf/AIM-039.pdf.

45.↑ "The PL/0 compiler / interpreter " . http://www.246.dk/pl0.html.
46.↑ "The ACM Digital Library". http://www.acm.org/classics/dec95/.
47.↑ T diagrams were first introduced for describing bootstrapping and cross-compiling

compilers in McKeeman et al. A Compiler Generator (1971). Conway described the broader
concept before that with his UNCOL in 1958, to which Bratman added in 1961: H. Bratman,
“An alternate form of the ´UNCOL diagram´“, Comm. ACM 4 (March 1961) 3, p. 142.
Later on, others, including P.D. Terry, gave an explanation and usage of T-diagrams in their
textbooks on the topic of compiler construction. Cf. Terry, 1997, Chapter 3. T-diagrams are
also now used to describe client-server interconnectivity on the World Wide Web: cf.
Patrick Closhen, et al. 1997: T-Diagrams as Visual Language to Illustrate WWW
Technology, Darmstadt University of Technology, Darmstadt, Germany

48.↑ ETAPS - European Joint Conferences on Theory and Practice of Software. Cf. "CC"
(Compiler Construction) subsection.

49.↑ http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-
developer-express/

50.↑ Dana Nourie (2005-03-24). "Getting Started with an Integrated Development
Environment". Sun Microsystems, Inc..
http://java.sun.com/developer/technicalArticles/tools/intro.html. Retrieved 2008-09-09.

51.↑ Image credit: Museum of Information Technology at Arlington
52.↑ "Interaktives Programmieren als Systems-Schlager" from Computerwoche (German)
53.↑ "Rapid Subversion Adoption Validates Enterprise Readiness and Challenges Traditional

Software Configuration Management Leaders" . Collabnet. May 15, 2007.
http://www.open.collab.net/news/press/2007/svn_momentum.html. Retrieved October 27,
2010. "Version management is essential to software development and is considered the most
critical component of any development environment."

54.↑ Wheeler, David. "Comments on Open Source Software / Free Software (OSS/FS)
Software Configuration Management (SCM) Systems" .
http://www.dwheeler.com/essays/scm.html. Retrieved May 8, 2007.

55.↑ a b O'Sullivan, Bryan. "Distributed revision control with Mercurial". http://hgbook.red-
bean.com/hgbook.html. Retrieved July 13, 2007.

56.↑ Collins-Sussman, Ben; Fitzpatrick, B.W. and Pilato, C.M. (2004). Version Control with
Subversion. O'Reilly. ISBN 0-596-00448-6. http://svnbook.red-bean.com/.

57.↑ Wingerd, Laura (2005). Practical Perforce. O'Reilly. ISBN 0-596-10185-6.
http://safari.oreilly.com/0596101856.

58.↑ a b Collins-Sussman, Ben; Brian W. Fitpatrick, and C. Michael Pilato. "Version Control
with Subversion " . http://svnbook.red-
bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve. Retrieved 8 June 2010. "The G
stands for merGed, which means that the file had local changes to begin with, but the
changes coming from the repository didn't overlap with the local changes."

59.↑ Accurev Concepts Manual, Version 4.7. Accurev, Inc.. July, 2008.
60.↑ http://www.gnu.org/software/make/
61.↑ Dr. Dobb's Distributed Loadbuilds, http://www.ddj.com/ architect /184405385 , retrieved

2009-04-13
62.↑ Dr. Dobb's Take My Build, Please, http://www.ddj.com/ architect /184415472
63.↑ LSF User's Guide - Using lsmake, http://www.lle.rochester.edu/pub/support/lsf/10-

lsmake.html, retrieved 2009-04-13

308

http://www.lle.rochester.edu/pub/support/lsf/10-lsmake.html
http://www.lle.rochester.edu/pub/support/lsf/10-lsmake.html
http://www.lle.rochester.edu/pub/support/lsf/10-lsmake.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-374
http://www.ddj.com/architect/184415472
http://www.ddj.com/architect/184415472
http://www.ddj.com/architect/184415472
http://www.ddj.com/architect/184415472
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-373
http://www.ddj.com/architect/184405385
http://www.ddj.com/architect/184405385
http://www.ddj.com/architect/184405385
http://www.ddj.com/architect/184405385
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-372
http://www.gnu.org/software/make/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-371
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-370
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-svnbook-merge_369-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-svnbook-merge_369-0
http://safari.oreilly.com/0596101856
http://en.wikibooks.org/wiki/Special:BookSources/0-596-10185-6
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://safari.oreilly.com/0596101856
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-368
http://svnbook.red-bean.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-596-00448-6
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-367
http://hgbook.red-bean.com/hgbook.html
http://hgbook.red-bean.com/hgbook.html
http://hgbook.red-bean.com/hgbook.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-OSullivan_366-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-OSullivan_366-0
http://www.dwheeler.com/essays/scm.html
http://www.dwheeler.com/essays/scm.html
http://www.dwheeler.com/essays/scm.html
http://www.dwheeler.com/essays/scm.html
http://www.dwheeler.com/essays/scm.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-365
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-364
http://www.computerwoche.de/heftarchiv/1975/47/1205421/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-363
http://mit-a.com/fourphase.shtml
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-362
http://java.sun.com/developer/technicalArticles/tools/intro.html
http://java.sun.com/developer/technicalArticles/tools/intro.html
http://java.sun.com/developer/technicalArticles/tools/intro.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-361
http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-developer-express/
http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-developer-express/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-360
http://www.etaps.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-359
http://pu.rbg.informatik.tu-darmstadt.de/docs/HJH-19990217-etal-T-diagrams.doc
http://pu.rbg.informatik.tu-darmstadt.de/docs/HJH-19990217-etal-T-diagrams.doc
http://scifac.ru.ac.za/compilers/cha03g.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-358
http://www.acm.org/classics/dec95/
http://www.acm.org/classics/dec95/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-357
http://www.246.dk/pl0.html
http://www.246.dk/pl0.html
http://www.246.dk/pl0.html
http://www.246.dk/pl0.html
http://www.246.dk/pl0.html
http://www.246.dk/pl0.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-356
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-039.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-355

64.↑ Distributed Visual Studio Builds, http://www.xoreax.com/solutions_vs.htm, retrieved
2009-04-08

65.↑ CMake - Cross platform make, http://www.cmake.org/, retrieved 2010-03-27
66.↑ http://www.denverjug.org/meetings/files/200410_ automation .pdf
67.↑ http://freshmeat.net/articles/view/392/
68.↑ http://www.ibm.com/developerworks/java/library/j-junitmail/
69.↑ http://buildbot.net/trac
70.↑ http://www.cmcrossroads.com/content/view/12525/120/
71.↑ Woelz, Carlos. "The KDE Documentation Primer". http://i18n.kde.org/docs/doc-

primer/index.html. Retrieved 15 June 2009.
72.↑ Microsoft. "Knowledge Base Articles for Driver Development".

http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx. Retrieved 15 June 2009.
Template:Dead link

73.↑ Prekaski, Todd. "Building web and Adobe AIR applications from a shared Flex code
base". http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html. Retrieved 15
June 2009.

74.↑ "Static Analysis in Xcode". Apple.
http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html. Retrieved
2009-09-03.

75.↑ Parasoft Application Security Solution
76.↑ Parasoft Compliance Solution
77.↑ Cousot, Patrick (2007). "The Role of Abstract Interpretation in Formal Methods". IEEE

International Conference on Software Engineering and Formal Methods.
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org
%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber
%3D4343930&authDecision=-203. Retrieved 2010-11-08.

78.↑ gprof: a Call Graph Execution Profiler
79.↑ Atom: A system for building customized program analysis tools, Amitabh Srivastava and

Alan Eustace, 1994 (download)
80.↑ 20 Years of PLDI (1979 - 1999): A Selection, Kathryn S. McKinley, Editor
81.↑ Statistical Inaccuracy of gprof Output
82.↑ Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in

Software Management. Wiley-IEEE Computer Society Press. p. 254. ISBN 0470042125.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html.

83.↑ RTCA/DO-178(b), Software Considerations in Airborne Systems and Equipment
Certification, Radio Technical Commission for Aeronautics, December 1, 1992.

84.↑ Glenford J. Myers (2004). The Art of Software Testing, 2nd edition. Wiley. ISBN
0471469122.

85.↑ [8]
86.↑ M. R. Woodward, M. A. Hennell, "On the relationship between two control-flow coverage

criteria: all JJ-paths and MCDC", Information and Software Technology 48 (2006) pp. 433-
440

87.↑ Dorf, Richard C.: Computers, Software Engineering, and Digital Devices, Chapter 12, pg.
15. CRC Press, 2006. ISBN 0849373409, 9780849373404; via Google Book Search

88.↑ Software Considerations in Airborne System and Equipment Certification-RTCA/DO-
178B, RTCA Inc., Washington D.C., December 1992

89.↑ Cunningham, Ward (05 Aug 2009). "Integration Hell". WikiWikiWeb.
http://c2.com/cgi/wiki?IntegrationHell. Retrieved 19 Sept 2009.

309

http://c2.com/cgi/wiki?IntegrationHell
http://c2.com/cgi/wiki?IntegrationHell
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Cunningham.2C_Integration_Hell_400-0
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-DO-178B_399-0
http://books.google.com/books?id=jykvlTCoksMC&pg=PT386&lpg=PT386&dq=%22infeasible+path%22+%22halting+problem%22&source=web&ots=WUWz3qMPRv&sig=dSAjrLHBSZJcKWZfGa_IxYlfSNA&hl=en&sa=X&oi=book_result&resnum=1&ct=result
http://en.wikibooks.org/wiki/Special:BookSources/0849373409
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-398
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-On_the_relationship_between_two_control-flow_coverage_criteria:_all_JJ-paths_and_MCDC_397-0
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Position_Paper_CAST10_396-0
http://en.wikibooks.org/wiki/Special:BookSources/0471469122
http://en.wikibooks.org/wiki/Special:BookSources/0471469122
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-395
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-394
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/wiki/Special:BookSources/0470042125
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-393
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://lgl.epfl.ch/teaching/case_tools/doc/gprof/gprof_12.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-392
http://www.cs.utexas.edu/users/mckinley/20-years.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-391
http://www.ece.cmu.edu/~ece548/tools/atom/man/wrl_94_2.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.8540
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-390
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-389
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-388
http://www.parasoft.com/jsp/solutions/compliance.jsp?itemId=339
http://www.parasoft.com/jsp/solutions/compliance.jsp?itemId=339
http://www.parasoft.com/jsp/solutions/compliance.jsp?itemId=339
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-387
http://www.parasoft.com/jsp/solutions/application_security_solution.jsp?itemId=322
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-386
http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html
http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-385
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-bwaa_384-0
http://en.wikibooks.org/w/index.php?title=Template:Dead_link&action=edit&redlink=1
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://www.microsoft.com/whdc/driver/kernel/kb-drv.mspx
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kbad_383-0
http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-kdp_382-0
http://www.cmcrossroads.com/content/view/12525/120/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-381
http://buildbot.net/trac
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-380
http://www.ibm.com/developerworks/java/library/j-junitmail/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-379
http://freshmeat.net/articles/view/392/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-378
http://www.denverjug.org/meetings/files/200410_automation.pdf
http://www.denverjug.org/meetings/files/200410_automation.pdf
http://www.denverjug.org/meetings/files/200410_automation.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-377
http://www.cmake.org/
http://www.cmake.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-376
http://www.xoreax.com/solutions_vs.htm
http://www.xoreax.com/solutions_vs.htm
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-375

90.↑ Brauneis, David (01 January 2010). "[OSLC Possible new Working Group -
Automation"]. open-services.net Community mailing list. http://open-services.net/pipermail/
community_open-services.net/2010-January/000214.html. Retrieved 16 February 2010.

91.↑ Taylor, Bradley. "Rails Deployment and Automation with ShadowPuppet and
Capistrano". http://blog.railsmachine.com/articles/2009/02/10/rails- deployment -and-
automation -with-shadowpuppet-and-capistrano/ .

92.↑ Fowler, Martin. "Continuous Integration".
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegrati
on. Retrieved 2009-11-11.

93.↑ See http://radar.oreilly.com/2009/03/continuous- deployment -5-eas.html and
http://timothyfitz.wordpress.com/2009/02/10/continuous- deployment -at-imvu-doing-the-
impossible-fifty-times-a-day/

94.↑ Fowler, Martin. "Continuous Integration".
http://www.martinfowler.com/articles/continuousIntegration.html.

95.↑ Beck, Kent (1999). Extreme Programming Explained. ISBN 0-201-61641-6.
96.↑ Richardson, Jared (September 2008). "Agile Testing Strategies at No Fluff Just Stuff

Conference". Boston, Massachusetts. http://www.nofluffjuststuff.com.
97.↑ Joel Spolsky (November 08 2000). "Painless Bug Tracking".

http://www.joelonsoftware.com/articles/fog0000000029.html. Retrieved 29 October 2010.
98.↑ Multiple (wiki). "Bug report". Docforge. http://docforge.com/wiki/Bug_report. Retrieved

2010-03-09.
99.↑ Jonathan Corbet (May 14 2008). "Distributed bug tracking". LWN.net.

http://lwn.net/Articles/281849/. Retrieved 7 January 2009.
100.↑ "FogBugz Features". Fogbugz.com. http://www.fogcreek.com/FogBugz/learnmore.html.

Retrieved 2010-10-29.
101.↑ Joey Hess (6 April 2007). "Integrated issue tracking with Ikiwiki". LinuxWorld.com.

IDG. http://www.linuxworld.com/news/2007/040607-integrated-issue-tracking-ikiwiki.html.
Retrieved 7 January 2009.

102.↑ "Why Decompilation " . Program-transformation.org. 2005-04-11. http://www.program-
transformation.org/Transform/WhyDecompilation. Retrieved 2010-09-15.

103.↑ Miecznikowski, Jerome (2002). "Decompiling Java Bytecode: Problems, Traps and
Pitfalls". in R Nigel Horspool. Compiler Construction: 11th International Conference,
proceedings / CC 2002. Springer-Verlag. pp. 111–127. ISBN 3-540-43369-4.

104.↑ Cifuentes, Cristina; Gough, K. John (July 1995). " Decompilation of Binary Programs" .
Software Practice and Experience 25 (7): 811–829.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8073&rep=rep1&type=pdf.

105.↑ Mycroft, Alan (1999). "Type-Based Decompilation". in S. Doaitse Swierstra.
Programming languages and systems: 8th European Symposium on Programming
Languages and Systems. Springer-Verlag. pp. 208–223. ISBN 3-540-65699-5.

106.↑ C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland University of
Technology, 1994. (available as compressed postscript Chapter 6)

107.↑ Rowland, Diane (2005). Informtion technology law (3rd ed.). Cavendish. ISBN 1-85941-
756-6.

108.↑ "The Legality of Decompilation " . Program-transformation.org. 2004-12-03.
http://www.program-transformation.org/Transform/LegalityOfDecompilation. Retrieved
2010-09-15.

109.↑ B. Czarnota and R.J. Hart, Legal protection of computer programs in Europe: a guide to
the EC directive. 1991, London: Butterworths.

110.↑ Obfuscation : Cloaking your Code from Prying Eyes
111.↑ Jeff Atwood, May 15 2005

310

http://www.codinghorror.com/blog/archives/000291.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-422
http://www.devx.com/MicrosoftISV/Article/11351
http://www.devx.com/MicrosoftISV/Article/11351
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-421
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-420
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-419
http://en.wikibooks.org/wiki/Special:BookSources/1-85941-756-6
http://en.wikibooks.org/wiki/Special:BookSources/1-85941-756-6
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-418
http://www.itee.uq.edu.au/~cristina/dcc/decompilation_thesis.ps.gz
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-417
http://en.wikibooks.org/wiki/Special:BookSources/3-540-65699-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-416
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8073&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8073&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8073&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8073&rep=rep1&type=pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-415
http://en.wikibooks.org/wiki/Special:BookSources/3-540-43369-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-414
http://www.program-transformation.org/Transform/WhyDecompilation
http://www.program-transformation.org/Transform/WhyDecompilation
http://www.program-transformation.org/Transform/WhyDecompilation
http://www.program-transformation.org/Transform/WhyDecompilation
http://www.program-transformation.org/Transform/WhyDecompilation
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-413
http://www.linuxworld.com/news/2007/040607-integrated-issue-tracking-ikiwiki.html
http://www.linuxworld.com/news/2007/040607-integrated-issue-tracking-ikiwiki.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-ikiwiki_412-0
http://www.fogcreek.com/FogBugz/learnmore.html
http://www.fogcreek.com/FogBugz/learnmore.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-411
http://lwn.net/Articles/281849/
http://lwn.net/Articles/281849/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-lwn-distributed_410-0
http://docforge.com/wiki/Bug_report
http://docforge.com/wiki/Bug_report
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-409
http://www.joelonsoftware.com/articles/fog0000000029.html
http://www.joelonsoftware.com/articles/fog0000000029.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-408
http://www.nofluffjuststuff.com/
http://www.nofluffjuststuff.com/
http://www.nofluffjuststuff.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-407
http://en.wikibooks.org/wiki/Special:BookSources/0-201-61641-6
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Beck.2C_Extreme_Programming_Explained_406-0
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Fowler.2C_Continuous_Integration_405-0
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html
http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html
http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-404
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Fowler.2C_Continuous_Integration_practices_403-0
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://blog.railsmachine.com/articles/2009/02/10/rails-deployment-and-automation-with-shadowpuppet-and-capistrano/
http://en.wikipedia.org/wiki/Bradley_Taylor
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Taylor.2C_Rails_Deployment_and_Automation_with_ShadowPuppet_and_Capistrano_402-0
http://open-services.net/pipermail/community_open-services.net/2010-January/000214.html
http://open-services.net/pipermail/community_open-services.net/2010-January/000214.html
http://open-services.net/pipermail/community_open-services.net/2010-January/000214.html
http://en.wikipedia.org/wiki/David_Brauneis
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-Brauneis.2C_.5BOSLC.5D_Possible_new_Working_Group_-_Automation_401-0

112.↑ Obfuscation
113.↑ C++ Tutorials - Obfuscated Code - A Simple Introduction | DreamInCode.net
114.↑ Pe(a)rls in line noise
115.↑ [The International Obfuscated C Code Contest]
116.↑ "International Obfuscated C Code Winners 1988 - Least likely to compile successfully"
117.↑ "Reverse Engineering the Twelve Days of Christmas" by Thomas Ball
118.↑ Don Libes, Obfuscated C and Other Mysteries, John Wiley & Sons, 1993, pp 425. ISBN

0-471-57805-3
119.↑ "Can We Obfuscate Programs?" by Boaz Barak
120.↑ Open Directory - Computers: Programming: Languages: JavaScript: Tools: Obfuscators
121.↑ Open Directory - Computers: Programming: Languages: PHP: Development Tools:

Obfuscation and Encryption
122.↑ Open Directory - Computers: Programming: Languages: Java: Development Tools:

Obfuscators
123.↑ Open Directory - Computers: Programming: Component Frameworks: .NET: Tools:

Obfuscators
124.↑ Cloakware Application Security
125.↑ Morpher - Compiler Driven Obfuscation
126.↑ Chikofsky, E. and Cross, J., 1990. Reverse Engineering and Design Recovery: A

Taxonomy. IEEE Software, 7(1):13-18.
127.↑ Asit Kumar Gahalaut et. al. / International Journal of Engineering Science and

Technology Vol. 2(06), 2010, 2296-2303

• Robert S.Arnold: "Software reengineering", IEEE Computer Society Press, 1993
• Object Management Group, Knowledge Discovery Metamodel (KDM) 1.0 specification,

2007

External links

• The Program Transformation Wiki
• The Architecture-Driven Modernization website at OMG
• Re-Engineer SAP Implementation, with Developments, Configuration , Roles and DDIC

Reverse Engineering

Reverse engineering is the process of discovering the technological principles of a human made
device, object or system through analysis of its structure, function and operation. It often involves
taking something (e.g., a mechanical device, electronic component, or software program) apart and
analyzing its workings in detail to be used in maintenance, or to try to make a new device or
program that does the same thing without using or simply duplicating (without understanding) any
part of the original.

Reverse engineering has its origins in the analysis of hardware for commercial or military
advantage.[1] The purpose is to deduce design decisions from end products with little or no
additional knowledge about the procedures involved in the original production. The same

311

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-439
http://www.ne-pm.com/SAP-Re-Engineer-Configuration-Developments-Transports-Roles.php
http://www.ne-pm.com/SAP-Re-Engineer-Configuration-Developments-Transports-Roles.php
http://www.ne-pm.com/SAP-Re-Engineer-Configuration-Developments-Transports-Roles.php
http://adm.omg.org/
http://www.program-transformation.org/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-438
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-437
http://www.morpher.com/
http://www.morpher.com/
http://www.morpher.com/
http://www.morpher.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-436
http://www.irdeto.com/en/application-security.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-435
http://www.dmoz.org/Computers/Programming/Component_Frameworks/NET/Tools/Obfuscators/
http://www.dmoz.org/Computers/Programming/Component_Frameworks/NET/Tools/Obfuscators/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-434
http://www.dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/
http://www.dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-433
http://www.dmoz.org/Computers/Programming/Languages/PHP/Development_Tools/Obfuscation_and_Encryption/
http://www.dmoz.org/Computers/Programming/Languages/PHP/Development_Tools/Obfuscation_and_Encryption/
http://www.dmoz.org/Computers/Programming/Languages/PHP/Development_Tools/Obfuscation_and_Encryption/
http://www.dmoz.org/Computers/Programming/Languages/PHP/Development_Tools/Obfuscation_and_Encryption/
http://www.dmoz.org/Computers/Programming/Languages/PHP/Development_Tools/Obfuscation_and_Encryption/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-432
http://www.dmoz.org/Computers/Programming/Languages/JavaScript/Tools/Obfuscators/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-431
http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-430
http://en.wikibooks.org/wiki/Special:BookSources/0471578053
http://en.wikibooks.org/wiki/Special:BookSources/0471578053
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-429
http://research.microsoft.com/~tball/papers/XmasGift/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-428
http://www.ioccc.org/years.html#1988_phillipps
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-427
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-426
http://www.perlmonks.org/index.pl?node_id=291267
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-425
http://www.dreamincode.net/forums/index.php?showtopic=38102
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-424
http://www.kenter.demon.nl/obfuscate.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-423

techniques are subsequently being researched for application to legacy software systems, not for
industrial or defence ends, but rather to replace incorrect, incomplete, or otherwise unavailable
documentation.[2]

Motivation

Reasons for reverse engineering:

• Interoperability.
• Lost documentation: Reverse engineering often is done because the documentation of a

particular device has been lost (or was never written), and the person who built it is no
longer available. Integrated circuits often seem to have been designed on obsolete,
proprietary systems, which means that the only way to incorporate the functionality into new
technology is to reverse-engineer the existing chip and then re-design it.

• Product analysis. To examine how a product works, what components it consists of, estimate
costs, and identify potential patent infringement.

• Digital update/correction. To update the digital version (e.g. CAD model) of an object to
match an "as-built" condition.

• Security auditing.
• Acquiring sensitive data by disassembling and analysing the design of a system component.

[3]
• Military or commercial espionage. Learning about an enemy's or competitor's latest research

by stealing or capturing a prototype and dismantling it.
• Removal of copy protection, circumvention of access restrictions.
• Creation of unlicensed/unapproved duplicates.
• Materials harvesting, sorting, or scrapping.[4]
• Academic/learning purposes.
• Curiosity.
• Competitive technical intelligence (understand what your competitor is actually doing versus

what they say they are doing).
• Learning: learn from others' mistakes. Do not make the same mistakes that others have

already made and subsequently corrected.

Reverse engineering of machines

As computer-aided design (CAD) has become more popular, reverse engineering has become a
viable method to create a 3D virtual model of an existing physical part for use in 3D CAD, CAM,
CAE or other software.[5] The reverse-engineering process involves measuring an object and then
reconstructing it as a 3D model. The physical object can be measured using 3D scanning
technologies like CMMs, laser scanners, structured light digitizers or Industrial CT Scanning
(computed tomography). The measured data alone, usually represented as a point cloud, lacks
topological information and is therefore often processed and modeled into a more usable format
such as a triangular-faced mesh, a set of NURBS surfaces or a CAD model.

312

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-443
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-442
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-rfc2828-441
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-440

Reverse engineering is also used by businesses to bring existing physical geometry into digital
product development environments, to make a digital 3D record of their own products or to assess
competitors' products. It is used to analyse, for instance, how a product works, what it does, and
what components it consists of, estimate costs, and identify potential patent infringement, etc.

Value engineering is a related activity also used by businesses. It involves de-constructing and
analysing products, but the objective is to find opportunities for cost cutting.

Reverse engineering of software

The term reverse engineering as applied to software means different things to different people,
prompting Chikofsky and Cross to write a paper researching the various uses and defining a
taxonomy. From their paper, they state, "Reverse engineering is the process of analyzing a subject
system to create representations of the system at a higher level of abstraction."[6] It can also be seen
as "going backwards through the development cycle".[7] In this model, the output of the
implementation phase (in source code form) is reverse-engineered back to the analysis phase, in an
inversion of the traditional waterfall model. Reverse engineering is a process of examination only:
the software system under consideration is not modified (which would make it re-engineering).
Software anti-tamper technology is used to deter both reverse engineering and re-engineering of
proprietary software and software-powered systems. In practice, two main types of reverse
engineering emerge. In the first case, source code is already available for the software, but higher-
level aspects of the program, perhaps poorly documented or documented but no longer valid, are
discovered. In the second case, there is no source code available for the software, and any efforts
towards discovering one possible source code for the software are regarded as reverse engineering.
This second usage of the term is the one most people are familiar with. Reverse engineering of
software can make use of the clean room design technique to avoid copyright infringement.

On a related note, black box testing in software engineering has a lot in common with reverse
engineering. The tester usually has the API, but their goals are to find bugs and undocumented
features by bashing the product from outside.

Other purposes of reverse engineering include security auditing, removal of copy protection
("cracking"), circumvention of access restrictions often present in consumer electronics,
customization of embedded systems (such as engine management systems), in-house repairs or
retrofits, enabling of additional features on low-cost "crippled" hardware (such as some graphics
card chip-sets), or even mere satisfaction of curiosity.

The Certified Reverse Engineering Analyst (CREA) is a certification provided by the IACRB that
certifies candidates are proficient in reverse engineering software.

Binary software

This process is sometimes termed Reverse Code Engineering, or RCE.[8] As an example,
decompilation of binaries for the Java platform can be accomplished using Jad. One famous case of
reverse engineering was the first non-IBM implementation of the PC BIOS which launched the
historic IBM PC compatible industry that has been the overwhelmingly dominant computer
hardware platform for many years. An example of a group that reverse-engineers software for
enjoyment (and to distribute registration cracks) is CORE which stands for "Challenge Of Reverse

313

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-446
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-445
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-444

Engineering". Reverse engineering of software is protected in the U.S. by the fair use exception in
copyright law.[9] The Samba software, which allows systems that are not running Microsoft
Windows systems to share files with systems that are, is a classic example of software reverse
engineering,[10] since the Samba project had to reverse-engineer unpublished information about
how Windows file sharing worked, so that non-Windows computers could emulate it. The Wine
project does the same thing for the Windows API, and OpenOffice.org is one party doing this for
the Microsoft Office file formats. The ReactOS project is even more ambitious in its goals, as it
strives to provide binary (ABI and API) compatibility with the current Windows OSes of the NT
branch, allowing software and drivers written for Windows to run on a clean-room reverse-
engineered GPL free software or open-source counterpart.

Binary software techniques

Reverse engineering of software can be accomplished by various methods. The three main groups
of software reverse engineering are

1. Analysis through observation of information exchange, most prevalent in protocol reverse
engineering, which involves using bus analyzers and packet sniffers, for example, for
accessing a computer bus or computer network connection and revealing the traffic data
thereon. Bus or network behavior can then be analyzed to produce a stand-alone
implementation that mimics that behavior. This is especially useful for reverse engineering
device drivers. Sometimes, reverse engineering on embedded systems is greatly assisted by
tools deliberately introduced by the manufacturer, such as JTAG ports or other debugging
means. In Microsoft Windows, low-level debuggers such as SoftICE are popular.

2. Disassembly using a disassembler, meaning the raw machine language of the program is
read and understood in its own terms, only with the aid of machine-language mnemonics.
This works on any computer program but can take quite some time, especially for someone
not used to machine code. The Interactive Disassembler is a particularly popular tool.

3. Decompilation using a decompiler, a process that tries, with varying results, to recreate the
source code in some high-level language for a program only available in machine code or
bytecode.

Source code

A number of UML tools refer to the process of importing and analysing source code to generate
UML diagrams as "reverse engineering". See List of UML tools.

Reverse engineering of protocols

Protocols are sets of rules that describe message formats and how messages are exchanged (i.e., the
protocol state-machine). Accordingly, the problem of protocol reverse-engineering can be
partitioned into two subproblems; message format and state-machine reverse-engineering.

314

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-448
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-447

The message formats have traditionally been reverse-engineered through a tedious manual process,
which involved analysis of how protocol implementations process messages, but recent research
proposed a number of automatic solutions [11] [12] [13] . Typically, these automatic approaches
either group observed messages into clusters using various clustering analyses, or emulate the
protocol implementation tracing the message processing.

There has been less work on reverse-engineering of state-machines of protocols. In general, the
protocol state-machines can be learned either through a process of offline learning, which passively
observes communication and attempts to build the most general state-machine accepting all
observed sequnces of messages, and online learning, which allows interactive generation of probing
sequences of messages and listening to responses to those probing sequences. In general, offline
learning of small state-machines is known to be NP-complete [14], while online learning can be
done in polynomial time [15]. An automatic offline approach has been demonstrated by Comparetti
at al.[13]. and an online approach very recently by Cho et al.[16].

Other components of typical protocols, like encryption and hash functions, can be reverse-
engineered automatically as well. Typically, the automatic approaches trace the execution of
protocol implementations and try to detect buffers in memory holding unencrpyted packets [17].

Reverse engineering of integrated circuits/smart cards

Reverse engineering is an invasive and destructive form of analyzing a smart card. The attacker
grinds away layer by layer of the smart card and takes pictures with an electron microscope. With
this technique, it is possible to reveal the complete hardware and software part of the smart card.
The major problem for the attacker is to bring everything into the right order to find out how
everything works. Engineers try to hide keys and operations by mixing up memory positions, for
example, busscrambling.[18] [19] In some cases, it is even possible to attach a probe to measure
voltages while the smart card is still operational. Engineers employ sensors to detect and prevent
this attack.[20] This attack is not very common because it requires a large investment in effort and
special equipment that is generally only available to large chip manufacturers. Furthermore, the
payoff from this attack is low since other security techniques are often employed such as shadow
accounts.

Reverse engineering for military applications

Reverse engineering is often used by militaries in order to copy other nations' technologies, devices
or information that have been obtained by regular troops in the fields or by intelligence operations.
It was often used during the Second World War and the Cold War. Well-known examples from
WWII and later include

• Jerry can: British and American forces noticed that the Germans had gasoline cans with an
excellent design. They reverse-engineered copies of those cans. The cans were popularly
known as "Jerry cans".

• Tupolev Tu-4: Three American B-29 bombers on missions over Japan were forced to land in
the USSR. The Soviets, who did not have a similar strategic bomber, decided to copy the B-
29. Within a few years, they had developed the Tu-4, a near-perfect copy.

315

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-458
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-457
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-456
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-455
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-454
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-M._Comparetti.2C_G._Wondracek_pages_110-125-451
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-453
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-452
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-M._Comparetti.2C_G._Wondracek_pages_110-125-451
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-450
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-449

• V2 Rocket: Technical documents for the V2 and related technologies were captured by the
Western Allies at the end of the war. Soviet and captured German engineers had to
reproduce technical documents and plans, working from captured hardware, in order to
make their clone of the rocket, the R-1, which began the postwar Soviet rocket program that
led to the R-7 and the beginning of the space race.

• Vympel K-13/R-3S missile (NATO reporting name AA-2 Atoll), a Soviet reverse-
engineered copy of the AIM-9 Sidewinder, made possible after a Taiwanese AIM-9B hit a
Chinese MiG-17 without exploding; amazingly, the missile became lodged within the
airframe, the pilot returning to base with what Russian scientists would describe as a
university course in missile development.

• BGM-71 TOW Missile: In May 1975, negotiations between Iran and Hughes Missile
Systems on co-production of the TOW and Maverick missiles stalled over disagreements in
the pricing structure, the subsequent 1979 revolution ending all plans for such co-
production. Iran was later successful in reverse-engineering the missile and are currently
producing their own copy: the Toophan.

• China has reversed engineered many examples of Western and Russian hardware, from
fighter aircraft to missiles and HMMWV cars.

Legality

In the United States even if an artifact or process is protected by trade secrets, reverse-engineering
the artifact or process is often lawful as long as it is obtained legitimately.[21] Patents, on the other
hand, need a public disclosure of an invention, and therefore, patented items do not necessarily have
to be reverse-engineered to be studied. (However, an item produced under one or more patents
could also include other technology that is not patented and not disclosed.) One common motivation
of reverse engineers is to determine whether a competitor's product contains patent infringements or
copyright infringements.

The reverse engineering of software in the US is generally illegal because most EULA prohibit it,
and courts have found such contractual prohibitions to override the copyright law; see Bowers v.
Baystate Technologies.[22] [23] Article 6 of the 1991 EU Computer Programs Directive allows
reverse engineering for the purposes of interoperability, but prohibits it for the purposes of creating
a competing product, and also prohibits the public release of information obtained through reverse
engineering of software.[24] [25] [26]

See also

• Antikythera mechanism
• Benchmarking
• Bus analyzer
• Chonda
• Clean room design
• Code morphing
• Connectix Virtual Game Station
• Decompiler
• Digital Millennium Copyright Act (DMCA)

316

http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-464
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-463
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-462
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-461
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-460
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_note-459

• Forensic engineering
• Interactive Disassembler
• Knowledge Discovery Metamodel
• List of production topics
• Logic analyzer
• Paycheck (film)
• Value engineering
• Cryptanalysis
• Software archaeology

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

Further reading

• Eilam, Eldad (2005). Reversing: Secrets of Reverse Engineering. Wiley Publishing. pp. 595.
ISBN 0764574817.

• James, Dick (January 19, 2006). "Reverse Engineering Delivers Product Knowledge; Aids
Technology Spread". Electronic Design. Penton Media, Inc.
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=11966. Retrieved 2009-
02-03.

• Raja, Vinesh; Fernandes, Kiran J. (2008). Reverse Engineering - An Industrial Perspective.
Springer. pp. 242. ISBN 978-1-84628-855-5.

• Thumm, Mike (2007). "Talking Tactics". IEEE 2007 Custom Integrated Circuits
Conference (CICC). IEEE, Inc.
http://ewh.ieee.org/r5/denver/sscs/References/2007_09_Torrance.pdf. Retrieved 2009-02-
03.

• Cipresso, Teodoro (2009). "Software Reverse Engineering Education". SJSU Master's
Thesis. ProQuest UML. http://www.reversingproject.info. Retrieved 2009-08-22.

External links

• What Is Reverse Engineering define more nicely here

317

http://www.npd-solutions.com/reoverview.html
http://www.reversingproject.info/
http://www.reversingproject.info/
http://ewh.ieee.org/r5/denver/sscs/References/2007_09_Torrance.pdf
http://ewh.ieee.org/r5/denver/sscs/References/2007_09_Torrance.pdf
http://en.wikibooks.org/wiki/Special:BookSources/978-1-84628-855-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=11966
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=11966
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=11966
http://en.wikibooks.org/wiki/Special:BookSources/0764574817
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

• Java Call Trace to UML Sequence Diagram A reverse engineering tool for Java. This tool
helps you to reverse engineer UML Sequence Diagram for your java program at runtime. It
works well with both complex java programs (that have multiple threads) and J2EE
applications deployed on Application Servers.

• CASE Tools for Reverse Code Engineering
• The Reverse Code Engineering Community

Round-trip Engineering

Round-trip engineering (RTE) is a functionality of software development tools that synchronizes
two or more related software artifacts, such as, source code, models, configuration files, and other
documents. The need for round-trip engineering arises when the same information is present in
multiple artifacts and therefore an inconsistency may occur if not all artifacts are consistently
updated to reflect a given change. For example, some piece of information was added to/changed in
only one artifact and, as a result, it became missing in/inconsistent with the other artifacts.

Round-trip engineering is closely related to traditional software engineering disciplines: forward
engineering (creating software from specifications), reverse engineering (creating specifications
from existing software), and reengieering (understanding existing software and modifying it).
Round-trip engineering is often wrongly defined as simply supporting both forward and reverse
engineering. In fact, the key characteristic of round-trip engineering that distinguishes it from
forward and reverse engineering is the ability to synchronize existing artifacts that evolved
concurrently by incrementally updating each artifact to reflect changes made to the other artifacts.
Furthermore, forward engineering can be seen as a special instance of RTE in which only the
specification is present and reverse engineering can be seen as a special instance of RTE in which
only the software is present. Many reengineering activities can also be understood as RTE when the
software is updated to reflect changes made to the previously reverse engineered specification.

Another characteristic of round-trip engineering is automatic update of the artifacts in response to
automatically detected inconsistencies. In that sense, it is different from forward- and reverse
engineering which can be both manual (traditionally) and automatic (via automatic generation or
analysis of the artifacts). The automatic update can be either instantaneous or on-demand. In
instantaneous RTE, all related artifacts are immediately updated after each change made to one of
them. In on-demand RTE, authors of the artifacts may concurrently evolve the artifacts (even in a
distributed setting) and at some point choose to execute matching to identify inconsistencies and
choose to propagate some of them and reconcile potential conflicts.

Examples of round-trip engineering

Perhaps the most common form of round-trip engineering is synchronization between UML
(Unified Modeling Language) models and the corresponding source code. Many commercial tools
and research prototypes (e.g., FUJABA) support this form of RTE. Usually, UML class diagrams
are supported to some degree; however, certain UML concepts, such as associations and
containment do not have straightforward representations in many programming languages which
limits the usability of the created code and accuracy of code analysis (e.g., containment is hard to
recognize in the code). Behavioral parts of UML impose even more challenges for RTE.

318

http://community.reverse-engineering.net/
http://case-tools.org/reverse_engineering.html
https://sourceforge.net/projects/javacalltracer/

A more tractable form of round-trip engineering is implemented in the context of framework
application programming interfaces (APIs), whereby a model describing the usage of a framework
API by an application is synchronized with that application's code. In this setting, the API
prescribes all correct ways the framework can be used in applications, which allows precise and
complete detection of API usages in the code as well as creation of useful code implementing
correct API usages. Two prominent RTE implementations in this category are framework-specific
modeling languages and Spring Roo.

Round-trip engineering is critical for maintaining consistency among multiple models and between
the models and the code in Object Management Group's (OMG) Model-driven architecture. OMG
proposed the QVT (query/view/transformation) standard to handle model transformations required
for MDA. To date, a few implementations of the standard have been created. (Need to present
practical experiences with MDA in relation to RTE).

References

1. ↑ a b c d e f g h Systems Engineering Fundamentals. Defense Acquisition University Press,
2001

2. ↑ Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis,
ed (March 2005). "Chapter 2: Software Requirements". Guide to the software engineering
body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press. ISBN 0-
7695-2330-7. http://www.computer.org/portal/web/swebok/html/ch2. Retrieved 2007-02-08.
"It is widely acknowledged within the software industry that software engineering projects
are critically vulnerable when these activities are performed poorly."

3. ↑ Wiegers, Karl E. (2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft
Press. ISBN 0-7356-1879-8. http://www.processimpact.com.

4. ↑ Phillip A. Laplante (2007) What Every Engineer Should Know about Software
Engineering. Page 44.

External links

• UML Round-trip Engineering with Altova

319

http://www.altova.com/umodel/uml-round-trip.html
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-PAL07_117-0
http://www.processimpact.com/
http://en.wikibooks.org/wiki/Special:BookSources/0-7356-1879-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.processimpact.com/
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-116
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikibooks.org/wiki/Special:BookSources/0-7695-2330-7
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.swebok.org/
http://www.swebok.org/
http://www.computer.org/portal/web/swebok/html/ch2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-115
http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-7
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-6
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-5
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-4
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-3
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-2
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-1
http://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering/Print_version&action=purge&printable=yes#cite_ref-SEF01_114-0

Authors
This book is a major collaboration effort. It is based on Wikipedia articles that have been authored
over the years by many individuals. We have been trying to keep the editing histories (which was
not always possible), and from those we have generated the lists below. Please note, that IP
addresses have been removed. If you feel that your name is missing in the list, please add it, using
the 'Edit' button.

Primary Authors (more than 50 edits)

Adrignola; Andreas Kaufmann; Derek farn; Frecklefoot; Kuru; Mdd; Michig; MikeDunlavey;
MrOllie; Nigelj; Ptrb; Rplano; SimonTrew; SmackBot; Walter Görlitz;

Major Authors (between 10 and 49 edits)

.digamma; Aagtbdfoua; AliveFreeHappy; Allan McInnes; AllanBz; Andy Dingley; AntiVandalBot;
Antonielly; Architectchao; Ash; Beetstra; Beland; Bluebot; Cander0000; Chobot; ClueBot; ClueBot
NG; Conan; Cybercobra; Dalvizu; Daniel.Cardenas; Derek Ross; Dmcq; DRogers; DSParillo;
Dwchin; Ed Poor; Edward; Edward Z. Yang; Erkan Yilmaz; Everything counts; Favonian;
FlashSheridan; Fnegroni; Forgotten gentleman; Fredrik; Furrykef; Gandalfgeek; GopiTaylor;
Greenrd; Gwern; Haakon; Hariharan wiki; Hervegirod; Hu12; Iterator12n; Jamelan; JAnDbot;
JDBravo; Jfire; JillFine; JLaTondre; Jmabel; Jpbowen; Kayau; Kdakin; Khalid hassani; Kku;
Kubanczyk; Lakeworks; Liao; Ligulem; Littlesal; Lprichar; Luckas-bot; M4gnum0n; Malleus
Fatuorum; Mark Renier; Marudubshinki; Michael Hardy; MickeyWiki; Mike Van Emmerik;
Milkfish; Mkoval; Mmeijeri; Moa3333; Neilc; Normxxx; Oicumayberight; Ojw; On5deu; Pcap;
Pinecar; PJTraill; Pm master; PradeepArya1109; Raul654; Renesis; Rich Farmbrough; Ripe;
Rjwilmsi; Robbot; Ronz; Ruud Koot; Rwwww; S.K.; Stemcd; SteveLoughran; Stumps; Swtechwr;
TakuyaMurata; Technobadger; Tedickey; The Anome; Thumperward; Thv; Tobias Bergemann;
Tracyragan; Tromp; Van der Hoorn; Vedatcoskun; VolkovBot; Wei.cs; Wernher; Wikid77;
William Pietri; XLinkBot; Yobot; YurikBot;

Minor Authors (less than 10 edits)

100110100; (; 16@r; 16x9; 1exec1; 1ForTheMoney; 1sraghavan; 2004-12-29T22:45Z; 2fort5r;
4johnny; 4twenty42o; 5 albert square; 6birc; 777sms; 9Nak; A plague of rainbows; A. B.; A.R.;
A5b; Aacool; Aalvarez; Aaron Schulz; Aaronbrick; Aasch; Abdull; Abednigo; Abridge;
AbsolutDan; Abtris; Acagney; Ace Coder; AceCalihan; Achalmeena; Achorny; Acockrum;
Acroterion; ActiveState; Ad88110; Adair2324; Adam messinger; Adamdaley; Adamleggett;
Adashiel; Addere; Addshore; Adityasinghhh; Adler.fa; Adri Timp; Adriatikus; Aeonx;
Aesculaepius; Afbcasejr; Agasta; Age Happens; Agencius; Agentbla; Ahc; Ahoerstemeier; Ahy1;
Aidinnz; Aij; Aislingdonnelly; Aitias; Aivosto; Ajcheng; Akamad; AKGhetto; Akhristov;
Akumiszcza; Alai; Alaibot; Alainr345; Alan ffm; Alan McBeth; Alan Peakall; Alanmossman;
AlannY; Alanpc1; Alansohn; ALargeElk; AlarmTripper; Alastaird; Alberto.scarpa; AlephGamma;
Alerante; Alex; Alex K. Angelopoulos; Alex Nadtoka; Alexbot; Alexf; AlexMorozov; AlexR;
Alextelea; Alfio; Algomaster; Alksentrs; Alksub; Alla tedesca; AlleborgoBot; Allen Moore;
AllenDowney; Almabot; ALMGuru; AlnoktaBOT; Alopez6; Alpha0; Altenmann; Alternamke;

320

Altonbr; Aludstartups; AMackenzie; Amakuha; Amire80; Amirobot; Amitch; Amp wpg; AmphBot;
Anaxial; Ancheta Wis; Anchor Link Bot; Anclation; Andareed; Anderbubble; Anders.Warga;
AndersBot; Anderswiki; Andika; Andmatt; Andre Engels; Andrea105; Andreas Toth; Andrei Stroe;
Andresmlinar; Andrewpmk; AndrewStellman; AndrewWPhillips; AndriuZ; Andrpere; AndyDent;
AndyGavin; Andyops; Andypandy.UK; Andysimple; Anetode; AngelaMartin2008;
AngeloCoppola; Angusgr; AnhadSingh; AnomieBOT; Anorthup; Anrie Nord; Antaeus Feldspar;
Antandrus; Anthony Appleyard; Anthony Fok; AnthonySteele; AntiSpamBot; Antonmind;
Anujgoyal; Anwar saadat; Apanait; Apolitano; Aponar Kestrel; Appljax123; Arauzo; ArchDC;
ArchonMagnus; Ardonik; Ariadnadionisos; Ariconte; Armadillo-eleven; ArmadilloFromHell;
Arminius; ArmixZ; Arnadí; Arneeiri; Arny; Aron.gombas; ArroLu; Art Carlson; Arthena;
ArthurBot; Artw; Artyom; Arvin Schnell; Arxantech; AS; Asavoia; Ascánder; Asgeirn; Ashe the
Cyborg; Ashishlohorung; Ashwinstudying; Asmitford; Aspects; Astaines; Astronouth7303;
Aternity; AThing; Athought; Atreys; Atroche; Attilios; Atul1612; Auntof6; Auric; AussieScribe;
Austinm; Autarch; Auteurs; AutumnSnow; AVand; Avochelm; AWendt; AxelBusch; Aymatth2;
Ayudante; Babynus; Bakersg13; Bapim; Barcelova; Bardiax; Barkeep; Barneca; BarretBonden;
Barticus88; Batsonjay; BBB; Bc510862; Bcwhite; Bdijkstra; Beao; Bebero22; Beccus; Beefman;
BeL1EveR; Belma06; BenAveling; BenBaker; BenediktG; Benfellows; BenFrantzDale;
Benjaminevans82; BenjaminTsai; BenLiyanage; Beno1000; Benoit.dechateauvieux; Benzbpolo;
BenzolBot; Berland; Bernard François; Bernd in Japan; Bernopedia; Berrinam; Bertport; Bet Bass;
Betacommand; Bevo; Bfalese; Bgarcia1; Bheron; BigBen212; Bigbluefish; BigMikeW; BigNate37;
BillGosset; BillyColl; Billyoneal; Bingbangbong; BioPupil; BIS Ondrej; Bit; Bjorn Elenfors; Bkil;
Black-Velvet; Blacklily; BlackMamba; Blaisorblade; Blanchardb; Blathnaid; Blaxthos; Blowdart;
Bluemoose; BlueNovember; Bnmike; Bobatwiki; Bobblehead; Bobianite; Bobo192; BoBrandt;
BoD; BodhisattvaBot; Bokaal; Boly38; Bonadea; Bonatto; Bones000sw; Bookofjude;
Booyabazooka; Borgx; Bota47; BOTarate; BotMultichill; Bovlb; Boxplot; Bpp198;
Bradkittenbrink; BrainyBabe; Brandon; Breandandalton; Brent Gulanowski; Brentwills; Brettright;
Brian Geppert; Brian R Hunter; Brian.edmond; Brick Thrower; BritishWatcher; Brockert;
Brownout; Bruce89; Brucevdk; Bruno Unna; Brunoton; Brusselsshrek; Bryan Derksen;
Bryan.dollery; Bryankennedy; Bryanws; Bsadowski1; Bsonderg; Btyner; Bubba73; Bugaware;
BullRangifer; Bunyk; BurntSky; BuSchu; Buttonius; Bwefler; C xong; Caerwine;
CaliforniaAliBaba; Callidior; Calor; Calréfa Wéná; Calton; Calum MacÙisdean;
CambridgeBayWeather; Cameltrader; Camw; Can't sleep, clown will eat me; Canderra;
CanisRufus; Canterbury Tail; Caporaletti; Capricorn42; Captone; Caputt; Carlesso; Carlkoppel;
CarlManaster; Carlo.milanesi; Carmencr; Cassbeth; Cerrol; CesarB; Cetinsert; Cferrero;
CFMWiki1; Cgs; Chandresa; ChangChienFu; Chaos5023; Charan.thinkahead; Charivari; Charles
Merriam; Charles T. Betz; CharlesC; Charon.sk; Chatfecter; Chealer; Checkshirt; CheeseSucker;
Chelseafan528; ChenzwBot; Cherry blossom tree; Chiefwhite; Chininazu12; ChipX86;
ChopMonkey; Chowbok; Chris G; Chris Howard; Chris Pickett; Chris Q; Chris Roy; Chris the
speller; Chrislk02; ChrisLoosley; Chrispfister; ChrisRuvolo; ChrisSteinbach;
ChristianEdwardGruber; Christoofar; Chronodm; ChuckEsterbrook; Chwu; Chymb; Ciaran H;
CiaranG; Citation bot; Citation bot 1; CJLL Wright; CLAES; ClamDip; Clappingsimon; Clausen;
Clayoquot; Closeapple; Closedmouth; Cma; CmdrObot; CodeCaster; Coder Dan; Coffee and TV;
Coffeehood; Colin Marquardt; Collect; Collinjc; Colonel Warden; Colonies Chris; CometGuru;
Cometstyles; Commander Keane bot; ComputerGeezer; Connelly; Conortodd; Conskeptical;
Contact2gohar; Conti; Contributor124; Conversion script; Convex hull; CortezK; Corvi; Cotttho;
CouchTurnip; CounterVandalismBot; Coveragemeter; Craig Schneiderwent; Craig Stuntz; Craig t
moore; Craigwb; Crawdad1960; Creacon; Creando; CRGreathouse; CrinklyCrunk; Crowdes;
Crowfeather; Cryptic; Csabo; Csanjay; Ctkeene; Ctrager; Cubslvr; Curtlee2002; CUTKD;
Cvanhasselt; Cverlinden; CWenger; Cwolfsheep; CWY2190; Cyberdiablo; CYD; Cyde; Cydebot;
CynicalMe; Czambra; D-Rock; D'oh!; D'ohBot; D1ma5ad; D6; Da monster under your bed;

321

DagErlingSmørgrav; Daio; Dally Horton; Daltenty; Damian Yerrick; Damien Cassou; Damiens.rf;
Damir Zakiev; Danarmak; DancingHacker; Danh; Danielanderson; Danielhegglin; DanielVale;
Danlev; DanMS; Danny beaudoin; Darkfight; Darklama; Darklilac; DarkseidX; Darrel francis;
DARTH SIDIOUS 2; DASHBotAV; DatabACE; Dav4is; Dave31870; Davetron5000; David-Sarah
Hopwood; David.alex.lamb; David.Monniaux; DavidBiesack; DavidCary; Davidfstr;
DavidLevinson; Davidlow; Dawnseeker2000; Dawynn; Daydreamer302000; Dbelhumeur02;
Dbmsview9; DC; Dcfleck; Dcoetzee; Dcouzin; Ddenise; Debresser; Deccico; Deckiller; Dedalus;
Deemery; Deepankgupta; Dekart; Dekimasu; Dekisugi; Delenburg; Delirium; Demiane; Denderick;
Denis.dallaire; Dennis714; DennisDaniels; Deon Steyn; Depython; Derbeth; Descender; Deuxpi;
Deville; Devourer09; Dguglielmi; Dhapp; Dharmabum420; Dharris; Dhdblues; DHGarrette; DHN-
bot; Dhollm; Di Stroppo; Diametriks Consulting; Diberri; Diddyzelda; Didimos; Diego Moya;
Digantorama; Digsav; Dillard421; Dinamik-bot; Diomidis Spinellis; Discospinster; Dishayloo; DJ
Clayworth; Dj stone; Djgandy; DLoom; Długosz; DMacks; Dmharvey; DmitTrix; Dmulter;
Dmyersturnbull; Dnas; Docdrum; Docu; Dodji.seketeli; Dodoïste; Dogslovesalsa; DOI bot;
Dominus; Donarreiskoffer; Donsez; DonWells; DorganBot; Dotxp; Doug Bell; Doug.hoffman;
Douga; Dougluce; DougsTech; Download; Downsize43; Dr ecksk; Dr.Pigosky; Dragon 280;
DragonBot; DrDorkus; Dreadstar; Dreftymac; DrFO.Tn.Bot; Drhipp; DrilBot; Dritzer; Drm mills;
Drmies; Dsavalia; DSP-user; Dtmilano; DugDownDeep; DuLithgow; DumZiBoT; Duplicity;
Dvansant; Dvavasour; Dwayne; Dwheeler; Dwi Secundus; Dyfrgi; Dylanfromthenorth; Dysprosia;
E946; EagleFan; Eags; Earlypsychosis; Earthengine; Eastlaw; Ebde; Ebelular; Ebrambot; Echecero;
Echoray; Econrad; Ed Brey; Edaelon; EdC; Edcolins; Eddiehu; Edgewalker81; EdHubertson;
EdiTor; Edudobay; Eelvex; Eestolano; Eewild; Efitu; Egbsystem; Egil; Ehajiyev; Ehheh; Ejrrjs; El
bot de la dieta; El C; El T; Electrobins; Elena1234; Elendal; Elifarley; Elilo; ElinneaG; Eliyak;
Elizaveta Revyakina; Elkman; Ellengott; Ellissound; Elonka; Eloquence; Elpecek; Elvis untot;
Elwikipedista; EmausBot; Emperorbma; Empiric; Emurphy42; Enchanter; Ency; EngineerScotty;
Engology; Enigmasoldier; Eññe; Enochlau; EoGuy; Epbr123; EpicSystems; Epim; EPM Enthusiast;
Equilibrioception; Erechtheus; Eric B. and Rakim; Erik9; Erik9bot; Ermey; Erncrts; Esap; Escarbot;
Esfdsfvfbfd; Eskimbot; ESkog; Estirabot; Etoastw; Etrigan; Ettrig; Eubulides; Euchiasmus;
Euphoria; Eurleif; Euzuncaova; EverLearning; Everyking; Evil saltine; Evildictaitor; Evo rob;
Ewlyahoocom; Excirial; Extransit; Fabrictramp; Fabrikant; Fæ; Fafner; FairuseBot; Fake0Name;
Falcon8765; Faltenin; Fan-1967; Fanghong; Fasten; Fastily; FatalError; Fatespeaks; Faught;
Faulknerck2; Faulty; Fauxpoefoes; Fbahr; Fbax; Fbeppler; Fderepas; Fdp; Feezo; Feigling;
Feinoha; Felagund; Felyduw; Fenevad; Ferengi; Fernandopabon; FF2010; Ffangs; FightBoard;
FilippoGioachin; Filnik; Finlay McWalter; Firebrandck; Firetrap9254; Firien; Firsfron; Fisherjs;
Fishpi; Fishtron; FlaBot; Flamurai; Flcelloguy; Fleminra; Fleshgrinder; FlinkBaum; Flowanda;
FlowRate; Fluffykryptonite; FlyHigh; Foobar; Footwarrior; Fpradier; Fragglet; Frankie1969;
Franklin90210; FrankTobia; Frap; Frau K; Freakofnurture; Fred Bradstadt; FredCassidy;
Freddy.mallet; Free Software Knight; Freeformer; Freejason; FreplySpang; FrescoBot;
Fresheneesz; Friday; Friendlydata; FritzSolms; Fsmoura; Ft1; Fubar Obfusco; Full-date unlinking
bot; Func; FunnyMan3595; Future Perfect at Sunrise; Futureobservatory; Futurix; Fuzheado;
Fx21av; G0rn; G7shihao; Gadfium; Gahrons; GainLine; Gaius Cornelius; Gakrivas; Galorath;
Galoubet; Gameboyguy13; Ganesan Janarthanam; Ganjuror; Gargaj; Garrett Albright; Gary King;
Gaudol; GB fan; Gbleem; Gbolton; Gdavidp; Gecko06; Geehbee; Gef05; GembaKaizen;
GenezypKapen; Geni; Gennaro Prota; Geofflane; Geometry.steve; George Schmidt; GerardM;
Gerdemb; Geschichte; GESICC; Getsw; Ggeldenhuys; Ghettoblaster; Gholson; Gibber blot;
Giftlite; Gigi fire; Gigs; Gingerbits; Ginkgo100; GiorgioMoroder; Gioto; Gishu Pillai; Glapu;
Glenn4pr; Glennsc; Glloq; Gmarinp; Gmcrews; Gmt767; Gnowor; Gnusbiz; Gnyus; Goa103;
GoBuck76; Goffrie; Gogo Dodo; Gökhan; Goobergunch; Goodrone; Gorgan almighty;
GorillaWarfare; Gorona; Gorpik; Goswamivijay; Gracefool; GraemeL; Grafen; GRAHAMUK;
Grammarbot; Grandmasterkush; Granite07; Graue; Grawity; GreatWhiteNortherner;

322

Greenknight04; GreenReaper; Greensburger; Greg Tyler; Gregbard; Greghc; GregJackP; GregorB;
Greyskinnedboy; Gritchka; Gronky; GrouchoBot; Ground Zero; Grstain; Gruber76; Grue; Gsaup;
GTBacchus; Guanabot; Guille.hoardings; Gumpu; Guoguo12; Guppie; Gutworth; Guy Harris; Guy
M; Guybrush1979; Guyjohnston; Gwernol; GwynnBD; GyroMagician; H; H3llBot; Hadal; HaeB;
Haeleth; Hagai Cibulski; Hairy Dude; Ham Pastrami; HamburgerRadio; Hanacy; Hankwang; Hans
Adler; Hao2lian; Happysailor; Harburg; Hari Surendran; Harold f; HarrivBOT; Harrym; Hasenstr;
Hashar; Hawaiian717; Hayne; HCJK; Hede2000; Heirpixel; HelloAnnyong; Henk Langeveld;
Hennessey, Patrick; Henon; Heron; Hertzsprung; Hetar; Hexie; Hfastedge; Hga; Hgfernan;
Hilgerdenaar; Hirzel; Hmains; Hob Gadling; HobbesLeviathan; HolgerK; Holizz; Homerjay;
Hongguo; Hongooi; HonoluluMan; Hooperbloob; Hooverbag; Hornsofthebull; Hqb; Hritcu;
Hsingh77; HumboldtKritiker; Hut 8.5; Huygensvector; Hyad; Hydrargyrum; Hypersonic12;
Hzhbcl; Ianb1469; IanOsgood; Ibbn; Icairns; Ice Ardor; Ickettpe; Idioma-bot; Ienumerable; Ignacio
Icke; Ikchennai; Ike-bana; Ikiwpedia; Ilikeverin; Ilja Preuß; Illusionx; Ilya; ImageRemovalBot;
Imeshev; ImperatorExercitus; Improv; Imroy; IMSoP; InaTonchevaToncheva; Inc ru; Incnis Mrsi;
Influent1; Informup; Infovoria; Inquam; Int19h; Intangir; Interversal; Intgr; InTheCastle; Intray;
Introvert; Inwind; IO Device; Ipsign; Iri.nobody; Iridescent; Irishguy; Isaacdealey; Ishu76; Isilanes;
Iskander s; Israelof; ItsProgrammable; Ivan Pozdeev; Ivanko 98; IvanLanin; Ivpen; Iwat; Ixfd64;
J.delanoy; J04n; Jaapvstr; Jabraham mw; Jacek Kendysz; Jack Merridew; Jackie; Jacktruman; Jacob
Robertson; Jacob1207; Jacobolus; JacobProffitt; Jaeger48917; James pic; JamesAM;
JamesBWatson; Jamesnoe; Jamesontai; Jan Hoeve; Jan Winnicki; Jan1nad; Janbenes; Janiejones56;
Janna Isabot; Jasonfrye; Jasonm23; JASpencer; JavaTenor; Jaxl; Jay; Jayaram10g; Jbellwiki;
Jbernal37; Jblum; Jbolden1517; JBsupreme; Jcarroll; Jchyip; JCLately; JCRansom; Jcronen1;
Jdm64; Jdpipe; Jebus989; Jedimike; Jeepday; Jeff.foster; Jeff.fry; Jeff3000; Jeffhudsonbush;
Jehnavi; Jehoshua22; Jeltz; Jengelh; Jensgb; Jeremyharmon; JeremyMcCracken; Jerroleth;
Jerryobject; JerryTed; Jéské Couriano; Jesselong; Jezmck; Jfernandez-ramil; Jfmole; JForget;
Jglynn43; Jgrahamc; Jgrahn; Jhaniotis; JHFTC; JHP; JHunterJ; Jim.parshall; Jin.etics; Jisunjang;
Jittat; Jjamison; Jjdawson7; JJMax; Jjsladek; Jkeen; Jkl; JL-Bot; Jleedev; Jlin; Jm34harvey;
Jmath666; Jmlk17; Jncraton; Jni; JnRouvignac; JNW; Jo9100; Joanjoc; Jodurazo; Joeblakesley;
JoeBot; Joeggi; JoelSherrill; Joerg.Rech; Jogloran; Johan Natt och Dag; Johannes Simon; Johayek;
John; John Vandenberg; John5K35; JohnCD; Johnmc; JohnMcCrory; JohnMcDonnell; JohnOwens;
Johnshue; Jon-ecm; Jon513; Jóna Þórunn; Jonadab; Jonas AGX; Jonasmike; JonathonReinhart;
Jonb ee; Jondel; Jonel; Jonelo; Jonhanson; JonHarder; Jonik; Jonkpa; Jonon; JordanSamuels;
Jorend; Jorgon; JorisvS; Jorunn; José María Sola; Josepant; Josh Parris; JoshDuffMan; JotaEme73;
Joy; Joyous!; Jp361; Jpalm 98; JPats; Jpo; Jpvinall; JRose22033; Jrsopka; Jrvz; Jschwa1; Jsub;
Jtheires; Jtigger; Juanco; Judgeking; Jujutacular; Julesd; JulesH; JulianMummery; Julias.shaw;
Jumbuck; Jumper32; Jusdafax; JustinH; Jutiphan; Jvale; Jverlaan; Jvhertum; Jwalling; Jwarnier;
Jwbecher; Jwfearn; Jwoodger; Jyankus; JzG; K.Nevelsteen; K7.india; Kaihsu; KaiserbBot;
Kaizendenki; Kal-El-Bot; Kameronmf; KamikazeBot; Kamots; Kampuger; Kaniabi; Kappa;
KaragouniS; Karam.Anthony.K; Karamba10; Karl Dickman; Karnesky; Kaster; Kat; Kate;
Kazvorpal; Kbdank71; Kbdankbot; Kbh3rd; Kchampcal; Keilana; Kekedada; Kellen`;
KellyCoinGuy; Kelvinclayne; KenBoyer; KenFehling; Kenjioba; Kent Beck; Kerrsys;
KerryBuckley; Ketansevekari; Ketiltrout; Kevin Rector; Kevin.lee; Kevinalewis;
Kevinmtrowbridge; Kewlchops; Kewlito; KeyStroke; KGasso; Kha0sK1d; Khargett dk; Khatchad;
KHLehmann; KidOblivious; Kikos; Kim Dent-Brown; KimBecker; Kimchi.sg; Kimleonard; King
of Hearts; Kirian; Kispa; KitchM; Kizor; KJRehberg; Kkailas; KKong; Klenod; KMWCHI; Knippı;
KnowledgeOfSelf; Knutux; Kocio; Kokoala; Kompas; Konman72; Konstable; Korpo; Korruski;
Kostmo; Krallja; Krischik; Krishami; Kristjan Wager; Kristof vt; Krubin; Krzyk2; Krzysfr; Ks0stm;
Kskyj; Kslotte; Ktpenrose; Kumud hi; Kuppuz; Kurokaze204; Kurt Jansson; Kurykh; Kuteni;
Kuzaar; Kvdveer; Kwhittingham; Kyellan; Kyle the bot; Kylemew; Kyokpae; Kyz; L Kensington;
L.W.C. Nirosh; La goutte de pluie; LaaknorBot; Lalamax; Lance.black; Lanjack11; Larry2342;

323

Lars112; Lars12; LarsHolmberg; Larsw; Laserpointer1; Laterality; Latiligence;
LaurensvanLieshout; Lauri.pirttiaho; Lcarscad; Lcgrowth; LDRA; Leafcat; Leandrod;
LeaveSleaves; Lectonar; LedgendGamer; Lee Carre; Lee Daniel Crocker; LeeG; LeeHunter;
Legobot; Legolost; Leibniz; Lemmie; Lenin1991; Lenoxus; Leonard G.; LeonardoRob0t;
Lerdsuwa; LesmanaZimmer; Leuko; Levin; Lewis; Lews Therin; Lexspoon; LFaraone; Liahocho;
Libragopi; Libsoc; Lichen0426; LiDaobing; Lightbot; Lightmouse; Ligulembot; LilHelpa; LinDrug;
LinguistAtLarge; Linka Pralitz; LinkFA-Bot; Linkspamremover; Linuxbeak; Linuxboygenius;
LirazSiri; Little Mountain 5; Littlealien182; LittleDan; Liuti; Livewireo; LizardJr8; Lliberto;
Lmerwin; Lo2u; Localh77; Locke Cole; Locobot; Logan; Logicalgregory; Logixoul; LOL;
Lomacar; Longhorn72; Looxix; Louislong; LouScheffer; Lowellian; Lpod100; Lt-wiki-bot;
Lucian.voinea; Luis Dantas; Luiscolorado; Luk; Lumberjake; Luna Santin; Lupo; Luzian; LVC;
Lwoodyiii; Lycurgus; Lzur; M ajith; M-le-mot-dit; M0llusk; Ma1colm; Mac; Maccoy; Macronyx;
MadDreamChant; Madduck; Madir; Madjidi; Magioladitis; Magnus Manske; MainFrame;
Majorclanger; Mal4mac; Mal7798; Malcohol; Malcolma; Man It's So Loud In Here; Mandarax;
MandyOwens; Manop; Manta7; MAntkiewicz; Manzee; Marasmusine; Marcinjeske; Margosbot;
Maria C Mosak; Marianocecowski; Marijn; Mark Foskey; MarkDilley; Markhurd; MarkMLl;
Markusaachen; MarkyGoldstein; Martarius; Martial75; Martijn Hoekstra; Martin Blazek; Martin
Majlis; MartinBot; Martinig; Martyb33333; Marx Gomes; Mashkells; Masonb986; Massysett;
Master of Puppets; MastiBot; Maszanchi; Matchups; Materialscientist; Math1337; Mathew
Roberson; MathijsM; Mathmo; Mati22081979; Matithyahu; Mato; Matsumuraseito; Matt Crypto;
Matt Schwartz; MattGiuca; MattiasAndersson; MattOConnor; Matusz; MauritsBot; Maurreen;
Maxamegalon2000; MaxHund; Maximaximax; Maximkr; MaxSem; Mbell; Mberteig; MBisanz;
Mboverload; MBPetersen; Mbvlist; Mcamposrocha; MCB; McGeddon; Mckoss; McM.bot;
Mcorazao; Mcpatnaik; Mcsee; Medinoc; Meirdart; Membury; MementoVivere; Memset;
Mentifisto; Mephistophelian; MER-C; Merbabu; Merenta; MerlLinkBot; MessedRobot;
Methossant; MeUser42; Meznaric; Mfdavies; Mhaitham.shammaa; Mhartl; Mheusser; Mhodder;
Mhsrinivasan; Michael Daly; Michael Drüing; MichaelBillington; Michaelbusch; Michedav;
Michiel Helvensteijn; Michigangold; Microtony; Middayexpress; Mikachu42; Mikatron; Mike
Field; Mike.nicholaides; Mike1234; Mikeblas; MikeDogma; MikeLynch; Mikeo;
Miker@sundialservices.com; Mild Bill Hiccup; Millerlyte87; Minesweeper; Minghong; Minimac;
Mintleaf; Mipadi; Miracleworker5263; Mircea.Vutcovici; Mirror Vax; Misteraznkid;
Mistercupcake; MIT Trekkie; Mitch Ames; MithrandirMage; Miyako; Mj1000; Mjchonoles;
Mkarlesky; Mkksingha; Mkmcconn; ML02; MLetterle; MLRoach; Mmcdougall; Mmenal;
Mmernex; Mmpubs; Mnorbury; Modbear; Mogigoma; Mondalaci; MONGO; Monkey Bounce;
Montana; Moondyne; Morgajel; Morlach01; Morphex; Morrillonline; Mortense; Mosheler;
Mosquitopsu; Mpandrews; Mpeisenbr; Mpeylo; Mpntod; Mr. Disguise; Mr.Muffet; Mr.Z-man;
Mr2001; Mratzloff; Mreftel; Mrhericus; MrJones; Mrlongleg; Mrs; MrTree; Mrwojo; Msabramo;
Mschlindwein; Mshonle; Mskeel; Msteffen@interneer.com; Mstucke1; Msulis; Mtomczak; Muijz;
Mulad; Muro Bot; Muro de Aguas; Mushroom; MuthuKutty; Mutilin; Mwanner; Myasuda;
Mydogategodshat; Mysdaao; MystBot; MywikiaccountSA; N8mills; NAHID; Nainil; Nakednous;
Nakon; Nallimbot; Nancy; NantucketNoon; NapoliRoma; Nastajus; Nat hillary; Nate Silva;
NateEag; Naterice; Natkeeran; NattyBumppo; Nav102; Navalg; NawlinWiki; Nbarth; Nbryant;
Nczempin; Neelix; Neerajsangal; Neetij; NeoChaosX; Neognomic; NerdyScienceDude; Nesmojtar;
Netkinetic; Netsnipe; Neurogeek; NeutralPoint; Neverquick; Nevware; New England; NewSkool;
Nibblus; Nicholas Drayer; Nicholas Lativy; Nick; Nick UA; Nickmalik; Nicoguaro; Nicolapedia;
NigelR; Nightreaver; Nigosh; Nikdo; Nimowy; Ninja247; Ninly; Niteowlneils; Nitromaster101;
Nitzanms; Nixdorf; Nixeagle; NjardarBot; Nlfiedler; Nneonneo; No1lakersfan; Noctibus; Nohat;
NonDucor; Nonky; Nono64; Nopetro; Norm mit; Northox; Northsimi; Nosbig; Notinasnaid;
Notnoisy; Nposs; Nsaa; NSK Nikolaos S. Karastathis; Ntalamai; NTBot; NuclearWarfare;
Nuggetboy; Numbo3-bot; Nuno Tavares; Nwalya; Nzd; Nzeemin; O.sharov; O18; Oashi;

324

Obersachsebot; Obina; Occono; Oege; Ohnoitsjamie; Ohthelameness; Ojcit; OKBot; Okivekas;
Olathe; Oleg Alexandrov; OlEnglish; Olexandr Kravchuk; Oli Filth; Oligomous; Olilo; Olinga;
Oliver; Oliver55; Omegatron; Omicronpersei8; OMouse; OmriSegal; Onceler; Oneilius; Oneiros;
Oni king; Open-collar; OpenToppedBus; Optikos; OrangUtanUK; Orborde; Orderud; OrgasGirl;
Orie0505; Orimosenzon; Oriondown; Orphan Wiki; OrphanBot; Ortolan88; Osmodiar; OsoLeon;
Ossias; Ottawa4ever; Outback the koala; Owain.davies; Owain.wilson; OwenBlacker; Oxinabox;
P.taylor@dotcomsoftwaresolutions.co.uk; P.Y.Python; P3net; Pablasso; Paddy3118; Paddyslacker;
Pafcu; Pak21; Pako; Paladinwannabe2; Paling Alchemist; Pam.morris; Panoramix; Pantosys; Panzi;
Papercutbiology; Paperfork; Paquitotrek; Parasoft-pl; Parklandspanaway; Patrick; Patrickdepinguin;
Paul A; Paul August; Paul Bassin; Paul W; Paul.klinger; Paulgiron; Paulocheque; Pavel Vozenilek;
Pbb; Pcb21; Pdemb; Pdmitry; Pearle; Peashy; Pejman47; Pellicci; Pelock; Pengo; Penumbra2000;
Perfecto; Peripitus; Personjerry; Personne1212; Peteforsyth; Peterdjones; Peterl; PeterNuernberg;
Pexib; Pezra; Pgan002; Pgr94; PGSONIC; PGWG; Pharaoh of the Wizards; Phase Theory;
Phatom87; Phelfe; Philip Trueman; PhilipO; PhilipR; PhilKnight; Philwiki; Phlip2005; Phoenix80;
Pi is 3.14159; Piano non troppo; Picaroon; Pickerill; Piet Delport; Pietrodn; Pik0; Pindakaas;
Pinguin.tk; Pinkadelica; Piotrus; PipepBot; PixelBot; PJY; Plasticup; Platonides; Plouin; Plugwash;
Plustgarten; Pm expert; Pmarshal; Pmatu; Pmauriciocosta; Pmcollins; Pmerson; Pmtoolbox; Pne;
Pnm; Poeloq; Pol098; Polonyman; Polyparadigm; Pomoxis; Poor Yorick; Postdlf; Prabin60;
Prestonmag; Primetime; PrimroseGuy; Professional; Programming Research; Project2501a;
Promoa1; Pronob; PS2pcGAMER; Pseudopanax; PSmacchia; Psmcguin; Psychonaut; Ptbotgourou;
Pth81; PTSE; Purfection; Pvlasov; Pweemeeuw; PWhittle; Q Chris; Qaiassist; Quadell; Quadra23;
Quantum7; QuantumEngineer; QuantumG; QueenCake; Quiddity; Quietust; Quinntaylor; Quintote;
Quux; Quuxplusone; Qwertyus; R r245; R. S. Shaw; R'n'B; R3dux; R3m0t; Raanoo; RabbleRouser;
Rabit gti; Radagast3; Radagast83; Radak; Radiobeam; RadoDobb; Raevel; Rafiko77;
Raghunathan.george; Rahulchic; RainbowCrane; RainbowOfLight; Raise exception; Rajesh1981;
Rajeshd; Rajnikant it; Ram.nivas; Ramsyam; Randomalious; RandyKolb; RanjithVenkatesh;
Rannpháirtí anaithnid; Raoulduke47; Ratemonth; Rau J; Ravialluru; Ravinag; Ravinder.kadiyan;
Ravindrag82; Ravindrat; RayGates; Raymondwinn; Rbalacha; Rbsjrx; Rbt0; Rdh0930; Rdleon;
Rebroad; RedBot; Rediahs; Redrocket; RedWolf; RedWordSmith; Reedy; ReformatMe; Régis
Décamps; Regregex; Rei-bot; Reinderien; Reintjan1234; Reisio; Remember the dot; Remi; Remy
B; Renato Primavera; ReneS; RenniePet; Renox; Retinoblastoma; Retired username; RexNL;
ReyBrujo; Rfortner; RHaworth; Rholton; RibotBOT; Richard Katz; Richard R White;
Richard@lbrc.org; Richard2Me; Richardelainechambers; Richardgush; Richardkmiller;
RichardVeryard; RichMorin; Richwales; RickBeton; RickClements; Rickyp; Ringlen; Rintrah;
Rizome; RJBurkhart3; RJFJR; RJL Hartmans; RjwilmsiBot; Rmallins; Rmeier; Rmp; Rnickel; Ro-
baczek; Roadbiker53; Roadrunner; Robbak; RobCheng; Robert Horning; Robert Merkel; Robina
Fox; Robinshine; Roblu; Robofish; RobotE; RobotG; Roboto de Ajvol; Rocastelo; Rocketrye12;
Rodasmith; Rodrigob; Rodrigobartels; Rogerb67; Rogerborg; Ron Richard; Roneny1; Ronjouch;
Rookkey; Rootbeer; Rory096; Ross banter; Rossinglish; Rossj81; RossPatterson; Rotem.E;
Roy.clarke; RoyOsherove; RoySmith; Rozek19; Rp; Rpm; Rrburke; Rrobason; Rror; Rs rams;
RSaunders; Rschakraborty; Rscottfree; Rtc; RU.Siriuz; Rubinbot; RuggeroB; Rugops; Ruijoel;
Rulesdoc; Runderwo; Rupl; Rursus; RussBot; RuudAlthuizen; Rwgreen1173; Ryandaum;
RyanGerbil10; Ryans.ryu; Ryguasu; RzR; S0crates9; S3000; S7solutions; Sabine Kreidl; Sabri76;
SAE1962; Saif always; Sakurambo; Salamurai; Salix alba; Sam Hocevar; Sam1064; Samansouri;
Samaritan; Samiroy; Samrolken; Samw; Samwashburn3; San chako; Sanchom; Sandrarossi;
Santryl; Sarah; Sarah.cartwright; Sardanaphalus; Sashakir; SashatoBot; SassoBot; Saturnine42;
Sbosklop; ScastlePM; SchfiftyThree; Schmloof; Schol-R-LEA; Schultkl; SchuminWeb; Schwallex;
Schzmo; Scientus; Scjnsn; Scmdn; Scope creep; Scottb1978; ScottDavis; Scottmackay; Seajay;
Sean William; Seanblanton; SeanLegassick; Seb at oceg; Seba5618; Sebastian Schmied;
Sebastian.Dietrich; SebastianHelm; Secdio; Sega381; Segv11; SEI Publications; Semicolons;

325

SensuiShinobu1234; Seren-dipper; Serge Stinckwich; Servel333; SethTisue; SexHex; Sfdan;
Sgasson; Shambhaviroy; Shandris; Shane Lawrence; Shanes; Shangrula; Shannock9; Shant.d;
SharpeSoft; SharShar; Shawn wiki; ShelfSkewed; Shenme; Shepard; Shiggity; Shimei; Shimky;
Shnout; Shyam 48; SieBot; Sigma 7; Sigmundpetersen; Signalhead; Silicon plains; Silly rabbit;
Silverhelm; SilvonenBot; Simeon; Simetrical; SimonKagstrom; SimonP; Simontrumpet;
Sinisterstuf; SiobhanHansa; Sjakkalle; Sjc; Sketch051; SkipMcCormick; Skittleys; Skorpion87;
SkpVwls; Skwa; SkyWalker; Slady; Slakr; Slashme; SlaterDeterminant; Slayman; Sleepyhead81;
Sligocki; SlipperyHippo; Sliwers; Smack; Smalljim; Smartassembly; Smartbear; Smharr4;
Smithveg; Smjg; Smountcastle; Snarius; Snigbrook; Snowolf; Snoyes; So God created Manchester;
SocioPhobic; Sodium; Sofmlb; SoftComplete; Softtest123; SoftwareDeveloper; Softy; Solde; Some
Color Mage; Someonesdad363616; Somercet; Somewherepurple; Soumyasch; South Bay; SoxBot
III; Sozin; Sp; SpaceFlight89; Spatarel; SpBot; Specious; Speedplane; SpikeTorontoRCP; Splash;
Spokeninsanskrit; Spoon!; Spragc; SpuriousQ; Square87; Squirepants101; SreejithInfo; Srice13;
Srikant.sharma; Srinaveen; Srinicenthala; Srittau; Srleffler; Srogers74; SRyll; Ssaymssik; Ssd;
Sspiro; St.General; ST47; Staceyeschneider; Stan Shebs; Staniuk; Stansult; STarry;
Starrymessenger; Starwiz; Stassats; StaticCast; StaticGull; STBot; STBotD; Ste4k;
StefanVanDerWalt; SteinbDJ; Steleki; Stemonitis; Stephan Leclercq; Stephan Leeds; Stephanakib;
Stephen; Stephen e nelson; Stephen Gilbert; Stephenb; Stephenbooth uk; Stevage; Steve Grant;
Steveluo; SteveMerrick; Steven Zhang; Stevertigo; Stevietheman; Stewartadcock; Stherrmann; Stijn
Vermeeren; Stillnotelf; Stimpy; Stormie; Stratadrake; Sttaft; StuffOfInterest; Subgurim; Sujayg;
Sullivan.t; Sunil1234b; SunSw0rd; SurfAndSwim; Surfinrhino; Suruena; Susurrus; SuurMyy;
Svante1; Sverdrup; SvGeloven; Svick; Swasden; Swasical; Sweetmoose6; Sybersnake;
Sylverspyder; SymlynX; Synthebot; Szquirrel; Szwejkc; Taarkshya; TaBOT-zerem; Tachyon01;
Taejo; Taeshadow; Tagishsimon; Tagus; Taka; Takdavid; Talkaboutquality; Tamas Szabo; Tannin;
Tarinth; Tarquin; Tarret; TastyPoutine; Taw; Tawker; Tawkerbot2; Tcncv; Tdelchiaro;
Teapotgeorge; Techdoode; Technoparkcorp; Techtonik; Ted Longstaffe; TedBaker88; Tedernst;
Tedwardo2; Teemu Maki; Tekavec; Tekkaman; Tekkenfreak3; Teleomatic; Teles; Tengai;
TennysonXII; Teohaik; Teryx; Tesi1700; Test-tools; Testcocoon; TeunSpaans; Tevirselrahc;
Texture; TFriesen; Tgruwell; ThaddeusB; Thanassis avg; That Guy, From That Show!; The Evil IP
address; The Thing That Should Not Be; The Wild Falcon; Thebeginning; Thecerealpoet; TheFlow;
Theinfo; Theleftorium; Themacboy; Themfromspace; Themillofkeytone; Themshow; THEN WHO
WAS PHONE?; Thenickdude; Theo10011; Theonlysf; TheParanoidOne; THF; Thijs!bot; Thingg;
Thomas Brandstetter; Thomas.uhl; Thowa; Thr3ddy; ThurnerRupert; Thushara tk; Tiagofassoni;
Tide rolls; TigerShark; Tigrisek; Tijuana Brass; Tikiwont; Timbatron; Timichal; Timo Honkasalo;
Timrollpickering; Timshah; Timwi; Tinucherian; Tinus74; Tivedshambo; Tjarrett; TJRC; Tlaresch;
Tlogmer; Tlroche; Tmaufer; Tnxman307; ToastieIL; TobeBot; Tobias Hoevekamp; TobiasPersson;
Tobych; Toddst1; Tom harrison; Tom-; Tomb; Tomjenkins52; Tommens; Tommy2010; Tomrbj;
Tomtheeditor; Tony Morris; Tony Sidaway; Tonyshan; Tooto; Topaz; Topping; Torc2;
TorLillqvist; Torneco; ToSter; TotoBaggins; Totty3478; Tqbf; Tracyragan10; Tranzid;
TraumaPony; Travis32; Travis99; Tree Biting Conspiracy; Tregoweth; Tribaal; TrisDG; Troddel;
Trout001; Trum123; Trusilver; Truthbro; Trylks; Tsca.bot; Tsilb; Tudor.girba; TUF-KAT;
TutterMouse; TuukkaH; Tvarnoe; TWFred; Twsx; TXiKiBoT; Txomin; Tyler Oderkirk;
U2perkunas; Ujamba; Ukexpat; Ukkuru; Ultimus; Umar420e; Uncle G; Underpants;
Unforgettableid; Unfree; Uni-qdocs; Unittester123; Unixguy; Unomi; Untill; Uriyan; Urs.Waefler;
User77764; Utcursch; Uucp; Uzume; V6Zi34; Valafar; Valbaca; Van helsing; Vary; Vaucouleur;
Vaughan Pratt; Vbgamer45; Vbose; VegaDark; Veghead; Veralift; Verloren; VernoWhitney;
Versageek; Versus22; VFrick; Victorwss; Vihangvk; Vijairaj; Vikerbandt; Viking67; Villeez; Vina;
Vina-iwbot; Vincehk; ViniGodoy; Virek; Virgiltrasca; Viridae; Virtuald; Vishnava; Visor; Vivio
Testarossa; Vkuncak; Vladimirkondratyev; VMS Mosaic; VoABot II; Vonkje; Vortexrealm; Vp;
Vparaschiv; Vreddy498; Vrenator; VVVBot; W1k1th1nk; W3bbo; Wafulz; Wageslave; WalterGR;

326

Wangi; Wapcaplet; Waratah; Warren; Watcher; Watsonqai; Watts52; Waveclaw; Wavelength;
WaysToEscape; Wdyoung; Webmaestro; Webreloaded; WeggeBot; Weidenrinde; Welsh; Werdna;
Weregerbil; Wesley; WETaylor; Wettel; Wgdominic; Wgiezeman; Wgoetsch; Whilding87;
Whiner01; Whiteknox; Whpq; Whytehorse1413; Whywhenwhohow; Wickity; Wik; WikHead;
Wiki alf; Wiki contribs; Wikibot; Wikidrone; Wikijens; Wikilolo; WiKiMan3L; Wikimike2007;
WikiSolved; WikitanvirBot; Wikitect; Wikke41; Willem-Paul; William Avery; William M.
Connolley; Williamborg; Williampfeifer; Willking1979; WimdeValk; Wimt; Win32Coder; Wing
gundam; Winhunter; Winterst; Wissons; Witchinghour; Witten rules; Wizard191; Wjhonson;
Wknight8111; Wlievens; WLU; Wmahan; Wmwmurray; WolfgangFahl; Woohookitty;
WookieInHeat; Worldtraveller; Woz2; Wrathchild; Wrelwser43; WRK; Wulvengar;
WWHenderson; Wx8; Wyatt Riot; X.; X746e; Xagronaut; Xcasejet; Xedaf; Xezbeth; Xfeldman;
Xiong Chiamiov; Xompanthy; Xqbot; XqRG; Xredor; Xyb; XZeroBot; Yadyn; Yaegor; Yamla;
Yan Kuligin; Yangon; Yaninass2; Yaris678; Yath; Ymalik; Ynhockey; Yonkie; YordanGeorgiev;
Yoshm; Yottzumm; Yrithinnd; YUL89YYZ; Yurez; Yuuki Mayuki; Yworo; Yym; ZacBowling;
Zachlipton; Zain Ebrahim111; ZamorakO o; ZanderZ; ZappyGun; Zazpot; Zed toocool; Zedlik;
Zer0431; ZéroBot; Zeroindent; Zerokitsune; ZeroOne; Zetawoof; Zink Dawg; Ziroby; Zoicon5;
Zombiespokebadgers; Zondor; Zorgon7; Zorrobot; Zsinj; Zumbo; Zundark; Zwobot; Олександр
Кравчук; ערן;

327

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

328

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other

329

conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

330

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same

331

cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

332

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does not
specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

Retrieved from
"http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version"

333

http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Print_version
http://www.gnu.org/copyleft/

334

Alphabetical Index

A
Administration..............43, 185, 194p., 278, 283
Alexander....................................106, 114p., 129
Antipattern...117
Architect...100, 105, 308
Architectural.....4, 19, 81, 86, 98pp., 105p., 108,
138, 141, 148, 264, 267, 270
Assembler......................235, 240, 243, 270, 295
Association..............................16p., 23, 102, 145
Automating...................................38, 259p., 288
Automation. 4, 8, 14, 35, 59, 131, 139, 145, 153,
156, 159, 163p., 207, 226, 247, 259pp., 265,
282, 287pp., 309p.
B
Baseline....40, 61, 91, 131, 138, 256p., 259, 264,
288p.
Benchmarking................................224, 306, 316
Bootstrapping..............................221p., 234, 308
Breakpoint......................................133, 153, 242
C
Client–server..100, 285
Code coverage.146p., 153, 158, 196, 278, 280p.,
283, 290
Collaboration.......2, 23, 32, 44pp., 72, 107, 113,
283, 291, 320
Compilation. . .8, 73, 128, 158, 184, 234, 236pp.,
242, 248, 295, 310, 332
Compiler....8, 14, 35, 124, 131, 164p., 168, 174,
188, 233pp., 247p., 250, 260p., 268p., 273, 276,
295pp., 304, 308, 310p.
Compiling. . .131, 188, 234, 237, 247, 259p., 308
Completeness......13, 39, 89, 125, 146, 153, 184,
189, 191
Compliance......89, 173, 203, 211, 270, 309, 333
Concurrency.....................................99, 111, 270
Concurrent. .19, 37, 53, 106, 112, 115, 192, 197,
255
Configuration 35, 38, 94, 98, 120, 123, 137, 151,
154, 188, 209p., 217, 230p., 236, 247, 253pp.,
263, 270, 281, 291, 308, 311, 318
Consisting...............32, 48, 113, 149, 268p., 332
Continuum...47, 50, 291
Creational...108
Criticality..50p., 87, 185
CruiseControl.........................175, 226, 288, 291
Customer....13, 26, 42, 45, 47, 56, 66, 68, 71pp.,
81, 86, 92, 142, 145, 149, 151, 172, 189, 196,

207, 210, 285
D
Debugger..8, 14, 35, 133, 145, 172, 180, 242pp.,
249
Debugging..8, 35, 76, 95, 122, 126pp., 143, 153,
157, 170pp., 184, 196, 229, 242pp., 290, 314
Decompilation.............295p., 298pp., 310, 313p.
Decompile..295, 299
Decompiler...9, 226, 233, 240, 295, 297pp., 314,
316
Deploying.......................................106, 116, 247
Deployment.......7, 20, 25p., 57, 60, 86, 90, 99p.,
152, 173, 184, 188, 207pp., 259, 288p., 310
Developing27, 45, 51, 60, 66, 97, 135, 154, 174,
213, 217, 227, 235, 240, 248p., 290, 293, 307
Disassembler..................240, 244, 295, 314, 317
Documenting....20, 26, 35, 83, 85, 89p., 97, 101,
112p., 185, 193, 217p., 227, 270
E
Encapsulate.................................110p., 119, 177
Encryption..............................175, 190, 311, 315
Enhancement..26, 38
Evolution.........7, 77, 165, 187, 201, 210, 212pp.
Explanation............102, 138, 264, 302, 304, 308
Exploratory...........................67, 147, 156p., 159
F
Facilitator...34, 83
Flowchart...22, 36, 104
G
Globalization...17p., 158
I
Incremental. .29p., 44p., 51, 53, 56p., 67, 69, 74,
79, 260, 262
Infrastructure......................15, 56, 206, 208, 240
Inheritance.......................................23, 108, 119
Injection......146, 149p., 168, 175, 184, 277, 279
Inspection..............6, 153, 185, 202, 204pp., 268
Inspector.................................204p., 247, 270pp.
Installation............................57, 191, 208p., 285
Instrumentation..........165p., 168p., 273p., 276p.
Instrumenting...168, 276
Integrity......................................48, 62, 103, 135
Interpreter35, 110, 131, 169, 234, 236, 247, 277,
308
Inversion..118, 175, 313
Iteration.........................31, 46p., 59, 66, 75, 220
L

335

Libraries. .37, 120, 125, 128, 135, 171, 268, 281,
296
Lifecycle..................................64, 113, 157, 291
Localization..150p.
M
Maintainability.....97, 103p., 120, 125, 130, 144,
153, 176p., 183p., 189, 192, 210p., 213, 292
Maintaining........................26, 60, 122, 289, 319
Manifesto.....................15, 32, 44p., 51p., 54, 78
Metamodel.................................20, 39, 311, 317
Migration...210, 213
Milestone...61
Modelling.....................2, 7, 21, 33, 36, 104, 226
Modularity......................................14, 69, 103p.
O
Obfuscate.......................................300, 304, 311
Obfuscation.............................9p., 300pp., 310p.
Observer..109p.
Opensource....................................195, 209, 249
Outsourcing..18, 50, 125
P
Polymorphism................................108, 177, 181
Precondition...112
Preprocessing...233, 238
Profiler.....5, 9, 165pp., 180, 226, 244p., 273pp.,
309
Profiling. .5, 9, 14, 153, 165, 167, 169, 226, 273,
275, 277
Protocol...314p.
Prototype..........30, 32, 59, 85, 92, 105, 108, 312
Prototypical...95, 107p.
Prototyping........29pp., 56p., 62pp., 82, 84p., 88,
228p.
Pseudocode..................................41, 57, 59, 133
R

Reengineering........179, 229, 270, 305, 311, 318
Refinement...............................23, 103, 224, 234
Regression..59, 149, 152pp., 160, 163, 180, 188,
220, 222, 281, 307
Relational.......................................104, 138, 264
Repository.....106, 116, 148, 154, 163, 228, 230,
232, 255pp., 285, 287p., 291p., 308
Reusability.................................62, 74, 104, 292
S
Scalability...........................77, 143pp., 150, 184
Stereotype..20
Storyboard..252
Subclasses......................................108, 111, 119
Subversion.............................202, 226, 291, 308
Synchronization.............106, 166, 256, 274, 318
Synchronize..................................56p., 256, 318
T
Testability..............................144, 172, 189, 192
Traceability.............................3, 89pp., 113, 154
U
Usability.77, 97, 104, 107, 125, 137, 144p., 150,
153, 188pp., 192p., 263, 318
V
Validation....2, 29, 41, 56, 58, 82, 119, 145, 150,
158, 172, 184, 230, 240
Verification 2, 40, 94, 143, 145, 158, 181, 194p.,
230, 242, 268, 281, 291
Verifying..137, 142, 263
Visualizing...201, 271
W
Walkthrough..203
Waterfall 29p., 32, 39, 45, 51, 56p., 59, 62, 65p.,
71, 77, 95, 118, 151p., 156, 216p., 286, 313
Workbench...230, 270

336

	Introduction to Software Engineering
	Introduction
	Preface
	Introduction
	Developers Work in Teams
	New Language
	Measurement
	New Tools

	History
	References
	Software Engineer
	Overview
	A state of the art

	Education
	Other degrees

	Profession
	Employment
	Certification
	Impact of globalization

	Debates within software engineering
	Controversies over the term Engineer

	References

	UML
	Introduction
	Overview
	Modeling
	Diagrams overview
	Structure diagrams
	Behaviour diagrams
	Interaction diagrams

	UML Modelling Tools
	References
	Examples
	Example: Bill at the Restaurant
	Use Case Diagram
	Game Time

	Activity Diagram
	Game Time

	Sequence Diagram
	Game Time

	Collaboration Diagram
	Game Time

	Class Diagram
	Game Time

	Process & Methodology
	Introduction
	Software Development Activities
	Planning
	Implementation, Testing and Documenting
	Deployment and Maintenance

	References
	External links
	Methodology
	History
	As a noun
	As a verb

	Verb approaches
	Waterfall development
	Prototyping
	Incremental development
	Spiral development
	Rapid application development
	Other practices

	Subtopics
	View model
	Business process and data modelling
	Computer-aided software engineering
	Integrated development environment
	Modeling language
	Programming paradigm
	Software framework
	Software development process

	See also
	References
	External links
	V-Model
	Verification Phases
	Requirements analysis
	System Design
	Architecture Design
	Module Design

	Validation Phases
	Unit Testing
	Integration Testing
	System Testing
	Reasons for system test

	User Acceptance Testing
	Procedures

	References
	Further reading
	External links
	Agile Model
	History
	Predecessors
	Agile Manifesto

	Characteristics
	Comparison with other methods
	Agile methods
	Method tailoring

	Measuring agility
	Experience and reception
	Suitability
	Experience reports

	References
	Further reading
	External links
	Standards
	Capability Maturity Model Integration
	ISO 9000
	ISO 15504

	External Links
	Life Cycle
	Overview
	History
	Systems development phases
	System analysis
	Design
	Implementation
	Testing
	Operations and maintenance

	Systems Analysis and Design
	Systems development life cycle topics
	Management and control
	Work breakdown structured organization
	Baselines in the SDLC
	Complementary to SDLC

	Strengths and weaknesses
	References
	Further reading
	External links
	Rapid Application Development
	Overview
	History
	Relative effectiveness
	Criticism
	Practical implications
	References
	Further reading
	Extreme Programming
	History
	Origins
	Current state

	Concept
	Goals
	Activities
	Coding
	Testing
	Listening
	Designing

	Values
	Communication
	Simplicity
	Feedback
	Courage
	Respect

	Rules
	Principles
	Feedback
	Assuming simplicity
	Embracing change

	Practices
	Fine scale feedback
	Continuous process
	Shared understanding
	Programmer welfare
	Coding
	Testing

	Controversial aspects
	Scalability
	Severability and responses

	Criticism
	References
	Further reading
	External links

	Planning
	Requirements
	Overview
	Requirements engineering
	Requirements analysis topics
	Stakeholder identification
	Stakeholder interviews
	Joint Requirements Development (JRD) Sessions
	Contract-style requirement lists
	Strengths
	Weaknesses
	Alternative to requirement lists

	Measurable goals
	Prototypes
	Use cases
	Software requirements specification

	Types of Requirements
	Requirements analysis issues
	Stakeholder issues
	Engineer/developer issues
	Attempted solutions

	References
	Further reading
	External links
	Requirements Management
	Overview
	Traceability
	Requirements activities
	Investigation
	Feasibility
	Design
	Construction and test
	Release

	Tools
	Modeling Languages
	On-demand requirements management platforms

	References
	Further reading
	External links
	Specification
	Overview
	Functional specification topics
	Purpose
	Process

	Types of software development specifications
	References
	External links

	Architecture & Design
	Introduction
	Overview
	History
	Software architecture topics
	Architecture description languages
	Views
	Architecture frameworks
	The distinction from functional design

	Examples of architectural styles and patterns
	References
	Further reading
	External links
	Design
	Overview
	Software Design Topics
	Design concepts
	Design considerations
	Modeling language
	Design patterns
	Usage

	Design Patterns
	History
	Practice
	Structure
	Domain-specific patterns

	Classification and list
	Documentation
	References
	Further reading
	External links
	Anti-Patterns
	Known anti-patterns
	Organizational anti-patterns
	Project management anti-patterns
	Analysis anti-patterns
	Software design anti-patterns
	Object-oriented design anti-patterns

	Programming anti-patterns
	Methodological anti-patterns
	Configuration management anti-patterns

	References
	Further reading
	External links

	Implementation
	Introduction
	Definition
	Overview
	History
	Modern programming
	Quality requirements
	Algorithmic complexity
	Methodologies
	Measuring language usage
	Debugging

	Programming languages
	Programmers
	References
	Further reading
	External links
	Code Convention
	Software maintenance
	Quality
	Refactoring

	Task automation
	Language factors
	Common conventions
	Examples
	Only one statement should occur per line
	Boolean values in decision structures
	Left-hand comparisons
	Looping and control structures
	Lists

	References
	External links
	Coding conventions for languages
	Coding conventions for projects

	Good Coding
	Documentation
	Involvement of people in software life
	Requirements documentation
	Architecture/Design documentation
	Technical documentation
	User documentation
	Marketing documentation

	Notes
	External links

	Testing
	Introduction
	Overview
	History
	Software testing topics
	Scope
	Functional vs non-functional testing
	Defects and failures
	Finding faults early
	Compatibility
	Input combinations and preconditions
	Static vs. dynamic testing
	Software verification and validation
	The software testing team
	Software quality assurance (SQA)

	Testing methods
	The box approach
	White box testing
	Black box testing
	Grey box testing

	Testing levels
	Unit testing
	Integration testing
	System testing
	System integration testing
	Regression testing
	Acceptance testing
	Alpha testing
	Beta testing

	Non-functional testing
	Software performance testing and load testing
	Stability testing
	Usability testing
	Security testing
	Internationalization and localization
	Destructive testing

	The testing process
	Traditional CMMI or waterfall development model
	Agile or Extreme development model
	A sample testing cycle

	Automated testing
	Testing tools
	Measurement in software testing

	Testing artifacts
	Certifications
	Controversy
	References
	External links
	Unit Tests
	Benefits
	Facilitates change
	Simplifies integration
	Documentation
	Design

	Separation of interface from implementation
	Unit testing limitations
	Applications
	Extreme Programming
	Techniques
	Unit testing frameworks
	Language-level unit testing support

	Notes
	External links
	Profiling
	Gathering program events
	Use of profilers
	History
	Profiler types based on output
	Flat profiler
	Call-graph profiler

	Methods of data gathering
	Event-based profilers
	Statistical profilers
	Instrumenting profilers
	Instrumentation
	Interpreter instrumentation
	Hypervisor/Simulator

	References
	External links
	Test-driven Development
	Requirements
	Test-driven development cycle
	Add a test
	Run all tests and see if the new one fails
	Write some code
	Run the automated tests and see them succeed
	Refactor code
	Repeat

	Development style
	Benefits
	Vulnerabilities
	Code Visibility
	Fakes, mocks and integration tests
	References
	External links
	Refactoring
	Overview
	List of refactoring techniques
	Hardware refactoring
	History
	Automated code refactoring
	References
	Further reading
	External links

	Software Quality
	Introduction
	Definition
	History
	Software product quality
	Source code quality

	Software reliability
	History
	Goal of reliability
	Challenge of reliability
	Reliability in program development
	Requirements
	Design
	Programming
	Software Build and Deployment
	Testing
	Runtime

	Software quality factors
	Measurement of software quality factors
	Understandability
	Completeness
	Conciseness
	Portability
	Consistency
	Maintainability
	Testability
	Usability
	Reliability
	Efficiency
	Security

	User's perspective
	References
	Further reading
	External links
	Static Analysis
	Formal methods
	References
	Bibliography
	External links
	Metrics
	Common software measurements
	Limitations
	Acceptance and Public Opinion
	References
	External links
	Software Package Metrics
	References
	External links
	Visualization
	Types
	Single component
	Whole (sub-)systems

	References
	Further reading
	External links
	Code Review
	Introduction
	Types
	Criticism
	References
	External links
	Code Inspection
	Introduction
	The process
	Inspection roles
	Related inspection types
	Code review
	Peer Reviews

	External links

	Deployment & Maintenance
	Introduction
	Deployment activities
	Deployment roles
	Examples
	References
	External links
	Maintenance
	Software maintenance processes
	Categories of maintenance in ISO/IEC 14764
	References
	Further reading
	External links
	Evolution
	General introduction
	Types of software maintenance
	Lehman's Laws of Software Evolution
	References

	Project Management
	Introduction
	History
	Software development process
	Project planning, monitoring and control
	Issue
	Severity levels

	Philosophy
	External links
	References
	Software Estimation
	State-of-practice
	History
	Estimation approaches
	Selection of estimation approach
	Uncertainty assessment approaches
	Assessing and interpreting the accuracy of effort estimates
	Psychological issues related to effort estimation
	References
	External links
	Cost Estimation
	Methods
	External links
	Development Speed

	Tools
	Introduction
	Modelling and Case Tools
	Overview
	History
	Supporting software
	Tools
	Workbenches
	Environments

	Applications
	Risks and associated controls
	References
	External links
	Compiler
	History
	Compilers in education

	Compilation
	The structure of a compiler

	Compiler output
	Compiled versus interpreted languages
	Hardware compilation

	Compiler construction
	One-pass versus multi-pass compilers
	Front end
	Back end

	Compiler correctness
	Related techniques
	International conferences and organizations
	Notes
	References
	External links
	Language dependency
	Memory protection
	Hardware support for debugging
	List of debuggers
	Debugger front-ends
	List of debugger front-ends
	References
	External links
	IDE
	Overview
	History
	Topics
	Visual programming
	Language support
	Attitudes across different computing platforms

	References
	GUI Builder
	List of GUI builders
	Programs
	IDE Plugins

	List of development environments
	IDEs with GUI builders

	Source Control
	Overview
	Source-management models
	Atomic operations
	File locking
	Version merging
	Baselines, labels and tags

	Distributed revision control
	Integration
	Common vocabulary
	References
	External links
	Build Tools
	History
	New breed of solutions
	Advanced build automation
	Advantages
	Types
	Makefile
	Requirements of a build system
	References
	Software Documentation
	Involvement of people in software life
	Requirements documentation
	Architecture/Design documentation
	Technical documentation
	User documentation
	Marketing documentation

	Notes
	External links
	Static Code Analysis
	Historical products
	Open-source or Non-commercial products
	Multi-language
	.NET (C#, VB.NET and all .NET compatible languages)
	ActionScript
	C
	C++
	Java
	JavaScript
	Objective-C

	Commercial products
	Multi-language
	.NET
	Ada
	C / C++
	Java

	Formal methods tools
	References
	External links
	Profiling
	Gathering program events
	Use of profilers
	History
	Profiler types based on output
	Flat profiler
	Call-graph profiler

	Methods of data gathering
	Event-based profilers
	Statistical profilers
	Instrumenting profilers
	Instrumentation
	Interpreter instrumentation
	Hypervisor/Simulator

	References
	External links
	Code Coverage
	Coverage criteria
	Basic coverage criteria
	Modified condition/decision coverage
	Multiple condition coverage
	Other coverage criteria

	In practice
	Software tools
	Tools for C / C++
	Tools for C# .NET
	Tools for Java
	Tools for PHP

	Hardware tools

	Notes
	External links
	Project Management
	Tasks or activities of project management software
	Scheduling
	Providing information

	Approaches to project management software
	Desktop
	Web-based
	Personal
	Single user
	Collaborative
	Integrated
	Non-specialised tools

	Criticisms of project management software
	Books
	Continuous Integration
	Theory
	Recommended practices
	Maintain a code repository
	Automate the build
	Make the build self-testing
	Everyone commits to the baseline every day
	Every commit (to baseline) should be built
	Keep the build fast
	Test in a clone of the production environment
	Make it easy to get the latest deliverables
	Everyone can see the results of the latest build
	Automate deployment

	History
	Advantages and disadvantages
	Advantages
	Disadvantages

	Software
	Further reading
	References
	External links
	Bug Tracking
	Components
	Usage
	Bug tracking systems as a part of integrated project management systems
	Distributed bug tracking
	Bug tracking and test management
	References
	External links
	Decompiler
	Introduction
	Design
	Loader
	Disassembly
	Idioms
	Program analysis
	Data flow analysis
	Type analysis
	Structuring
	Code generation

	Legality
	References
	External links
	Obfuscation
	Overview
	Recreational obfuscation
	Examples

	Disadvantages of obfuscation
	Obfuscating software
	Notes
	References
	External links

	Re-engineering
	Introduction
	See also
	References
	External links
	Reverse Engineering
	Motivation
	Reverse engineering of machines
	Reverse engineering of software
	Binary software
	Binary software techniques

	Source code
	Reverse engineering of protocols
	Reverse engineering of integrated circuits/smart cards
	Reverse engineering for military applications
	Legality
	See also
	References
	Further reading
	External links
	Round-trip Engineering
	Examples of round-trip engineering
	References
	External links

	Authors
	Primary Authors (more than 50 edits)
	Major Authors (between 10 and 49 edits)
	Minor Authors (less than 10 edits)

	GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE

