

<image><image><image><text><text><text><text><text><text>

Commercialized cantilever array sensors (May 2			
Country	Company	Products	
		On the market	Year
Basel, Switzerland	Concentris	Micromechanical silicon cantilever arrays	2003
Lyngby, Denmark	cantion www.cantion.com	Canti Chip 4 Canti Lab 4 Canti Spot	2004 2004
			2004 2003 2003
			2003
Mannheim, Germany	Weeco www.veeco.com	Scentris cantilever sensor	-
Rockville, USA	PROTIVERIS www.protiveris.com	VeriScan 3000 System	2004 2001 2000
San Francisco, LISA	Kaliney Inc	BioCOM	

Recording and playing sound

- CDs were first introduced in the early 1980s for the main purpose of storing and distributing music in a digital format; prior to that it was analog...
- The first device for recording and playing back sounds was invented by Thomas Edison
- **Phonograph** is a remarkably simple device for to dealing with analog sound waves mechanically

Counting in 2s is just like in 10s
$\begin{array}{c} 0 = & 0 \\ 1 = & 1 \\ 2 = & 10 \\ 3 = & 11 \\ 4 = & 100 \\ 5 = & 101 \\ 6 = & 110 \\ 7 = & 111 \\ 8 = & 1000 \\ 9 = & 1001 \\ 10 = & 1010 \end{array}$ $\begin{array}{c} In \ computers \ bits \ are \ bundled \ into \ 8 \ bits \ collections, called \ BYTEs \\ With \ 8 \ bits \ in \ a \ byte, \ we \ can \ represent \ 256 \ values \ ranging \ from \ 0 \ to \ 255 \\ or \ record \ a \ CD - 2 \ bytes \ (16 \ bits) \ per \ sample \\ \hline 0 = & 00000000 \\ 1 = & 00000000 \\ 1 = & 000000000 \\ 1 = & 0000000000000000 \\ 1 = & 000000000000000 \\ 1 = & 00000000000000 \\ 1 = & 00000000000000 \\ 1 = & 00000000000000 \\ 1 = & 00000000000000 \\ 1 = & 000000000000 \\ 1 = & 00000000000 \\ 1 = & 00000000000 \\ 1 = & 0000000000 \\ 1 = & 00000000000 \\ 1 = & 00000000000000 \\ 1 = & 00000000000 \\ 1 = & 000000000000 \\ 1 = & 000000000000 \\ 1 = & 00000000000000 \\ 1 = & 000000000000 \\ 0 = & 00000000000 \\ 1 = & 000000000000000 \\ 0 = & 00000000000$

