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The Robin’s inequality (RI) is well known ([7,11]). This is related with 

many problems of the analytical number theory. And there are some 

statements equivalent to one ([8,10]). In this paper we would show a 

condition related with the RI. This condition is generalized rather than the 

Robin’s one.     

  

Recall that it is called the Robin’s inequality that for any  5041n ≥

                                               ( ) log logn e nγσ ≤ ⋅ ⋅ n

d

.                                   (1) 

where  is the sum of divisors function, ( )
|d n

nσ =∑ 0.577γ =  is Euler’s 

constant ([9,13]).    
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We have  

Theorem 1. The RI holds if and only if there exists a constant  such 

that for any number  we have   

0 1c ≥

2n ≥

                                           ( ) ( )0log logn e n c nγσ ≤ ⋅ ⋅ ⋅                                (2) 

 Proof. Suppose that the RI holds. Then for any  it holds that  5041n ≥

( ) log logn e nγσ ≤ ⋅ ⋅ n . 

Now we put  

                                    ( )
( )( )( )exp exp /e n n

H n
n

γ σ− ⋅
= .                            (3) 

Then for any  we have 5041n ≥ ( ) 1H n ≤ . Let . Then 

 and for any  we have (2).  

( )0 2 5040
max

n
c H

≤ ≤
= n

0 1c ≥ 2n ≥

Suppose that (2) holds, but the RI doesn’t hold. Then by the Robin’s 

theorem ([10,11]) there exist constants  and 00c > 1/ 2β< <  such that, for 

infinitely many numbers , we have   n

                              
( )

( )log loglog log
log

n ne n n c n
n

γ
β σ⋅

⋅ ⋅ + ⋅ ≤ .                         (4) 

 On the other hand, it is clear that  

                      

( ) ( )0 0

0 0

0

log log log log log

log loglog log 1 log log log 1
log log

loglog log .
log

c n n c

c cn n
n n

cn
n

⋅ = + =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + = + +⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠ ⎝⎝ ⎠

≤ +

≤⎟
⎠

             (5) 

From (4) and (5), for infinitely many numbers  we have   n

                         ( )
( )

0

log loglog log
log

loglog log
log

n ne n n c n
n

ce n n e n
n

γ
β

γ γ

σ⋅
⋅ ⋅ + ⋅ ≤ ≤

≤ ⋅ ⋅ + ⋅ ⋅

                             (6)   

 2  



and 

                                           
( )

0loglog log .
loglog

cnc e
nn

γ
β⋅ ≤ ⋅                                      (7) 

If  then (7) is impossible. If  then, since0 1c = 0 1c > ( )1/ 2 0β− > , we have   

                          
( )

(1
0

1 10 0
log log log log
c e n

c n n

γ

β

−

−

⋅
< ≤ ⋅ → → )∞ .                 (8) 

 This is a contradiction. �  

 

Note. There are some statements equivalemt to the RI.  

Theorem. The below statements are equivalent to each other.   

   a) The RI holds 

   b) For any  1n ≥

                                  ( ) ( ) ( )exp logn nn H H Hσ ≤ + ⋅ n ,                             (9)                  

        holds, where 1

1

n

n
i

H i−
=

= ∑  is -th harmonic sum. This is called  n

       Lagarias’ inequality ([10]). 

    c) For any real x   

                                         ( ) (
2

1 log
log

x

)x dt x x
t

π = +Ο ⋅∫                      (10) 

         holds, where ( )xπ  is the number of the prime numbers not  

         exceeding the given x  ([8,9]).  

By the prime number theorem ([8]), it holds that  

                                              ( ) ( )( )log 1x x E xπ = ⋅ + ,                            (11) 

where ( ) 2

1
log

E x
x

⎛
= Ο⎜

⎝ ⎠

⎞
⎟ . The best-known result until now is that there 

exists a constant  such that 0a > ( ) ( )( )exp logE x a x= Ο − ⋅  ([8]).   
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Further more, there are some, too. But here we will show it only with the 

sum of divisors function.  

Similarly, as in the theorem 1, we could obtain  

Theorem 2. The below statements are equivalent to each other.   

1) The RI holds 

   2) There exist constants ,  and  such that for any    0 1c ≥ 1 0c ≥ 2 0c ≥ 2n ≥

    ( ) ( )( )( )( )0 1 2log log exp log exp log log( 1)n e n c n c n c n αγσ ≤ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +  

         (12) 

       holds, where 0 1α< < .   

   3) There exists a constant  such that for any  0 1c ≥ 2n ≥

         ( ) ( ) ( )(( )
1

0 log log
log log exp log log 1

log
c n

n e n n n
n

α

)αγσ
⋅

≤ ⋅ ⋅ + ⋅ +       (13)    

       holds, where 10 , 0 1α α< < < .  

Proof. We will see only the proof of 2). It is easy to see that  

          

( )( )( )( )
( )( )( )

( )( )

( )( )

0 1 2

0 1 2

1 20

1 2
0

log log exp log exp log log( 1)

log log log log exp log log( 1)

log exp loglog( 1)loglog log 1
log log

exp log log( 1)loglog log log 1
log l

c n c n c n

n c c n c n

c n c ncn
n n

c c ncn
n

α

α

α

α

⋅ ⋅ ⋅ ⋅ ⋅ + =

= + + ⋅ ⋅ ⋅ + =

⎛ ⎞⎛ ⎞⋅ ⋅ ⋅ +⎜ ⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⋅ ⋅ +
= + + +

=

( )( )1 2
0

og

exp log log( 1)loglog log .
log log

n

c c ncn
n n

α

⎛ ⎞
⎜ ⎟ ≤⎜ ⎟⎜ ⎟
⎝ ⎠

⋅ ⋅ +
≤ + +

       (14) 

 On the other hand, if 0 1/ 2β< <  then we have   
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( )

( )( )
( )

(
1 2

0
1 1/ 2

exp log log( 1)log1 0
log log log log

c c nc n
n n n

α

β β− −

⎛ ⎞⋅ ⋅ +
⎜ ⎟⋅ + →⎜ ⎟⎜ ⎟
⎝ ⎠

)→∞ .   (15) 

This shows that 1) and 2) are equivalent to each other. � 

 

Of course, from (12) we can get (2). But (2) shows the clear relation with 

the RI. And we can say that (2) is the more generalized proposition rather 

than the RI. But, (13) is the most generalized rather than the RI.  

In the paper [11], Robin have proved that for any  2n ≥

                        ( ) 0.26log log
log log

n e n n
n

γσ ≤ ⋅ ⋅ +                      (16)     

holds unconditionally.  

In the paper [10], Lagalias had indicated that his inequality (9) holds for 

nearly all  without any condition. n

In the paper [7], they had shown that the RI holds under all odd numbers.  

   

To prove the RI, it is sufficient to show that   

                                        
( )( )( )

5041

exp exp /
1

n

e n n
Sup

n

γ σ−

≥

⋅
≤                         (17)                         

holds unconditionally.  

Similarly, to prove (2) it is sufficient to see that  

                               
( )( )( )

0
2

exp exp /

n

e n n
c Sup

n

γ σ−

≥

⋅
= < +∞ .                      (18) 

And to prove (12) it is sufficient to take such constants  and  as  1 0c ≥ 2 0c ≥

                      
( )( )( )
( )( )( )2

1 2

exp exp / /

exp log exp log log( 1n

e n n n
Sup

c n c n

γ

α

σ−

≥

⋅
< +∞

⋅ ⋅ ⋅ +
.           (19) 

Thus one can say that the best way to prove the RI is to prove (18) or (19).  
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In connection with the proof of (18) or (19), we recommend the paper 

[1,2,3,4,5,6]. In these papers we presented a new idea to prove (18) and (19).  

For the function  from (3), we would like to call it an ( )H n σ -index of the 

natural number n . And for the prime factorization N∈ 1 2
1 2

m
mn q q qλλ λ= ⋅  of 

 with n 1 2 1mλ λ λ≥ ≥ ≥ ≥ , we put ( ) ( )1 2, , ,mq n q q q=  

( ) ( )1 2, , mnλ λ λ λ=  and ( )n mω =  ([1]). Here for ( )q n , ( )nλ  and , 

we would like to call it the prime factor pattern, the exponential pattern, the 

exponential length, respectively. And for the optimum points 

( )nω

( 0 0 0
0 1 2, , , m )λ λ λ λ=  of the function ( )1 2, , mH λ λ λ ([2]), we would like to 

call 
00 0

1 2
0 1 2

m
mn p p pλλ λ= ⋅  a special Hardy-Ramanujan’s number. Then the 

plan [6] to prove (18) or (19) could be understood clearly. In other words, 

the scheme to understand the papers [1~6] and [*] is as follows, where [*] is 

the present paper;  

[ ] [ ][1] [2] [3] [4] 5 6 [*→ → → → → → ] , 

or  

[ ][5] 6 [*] [1] [2] [3] [4→ → → → → → ] .  
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