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1 Foreword

1.1 About This Book

This Wikibook deals with the production of pictures of Julia and Mandelbrot sets. Julia sets and
Mandelbrot sets are very well-defined concepts. The most natural way of colouring is by using
the potential function, though it is not actually the method most usually used. The book explains
how to make pictures that are completely faultless in this regard. All the necessary theory is
explained, all the formulas are stated and some words are said about how to put the things into
a computer program.

The subject is primary pictures of Julia and Mandelbrot sets in their "pure" form, that is, without
artificial intervention in the formula or in the colouring. Exceptions to this rule are techniques
such as field lines, landscapes and critical systems for non-complex functions, that appeal to
artistic utilization.

The book should not contain theory that has nothing to do with the pictures. Nor should it
contain mathematical proofs. For our purposes faultless pictures are enough evidence of correct
formulas, because the slightest error in a formula generally leads to serious errors in the picture.

If you find that something in this book ought to be explained in more details, you can either
develop it further yourselves or advertise for that on the discussion page.

If you add a new picture or replace an illustration by a new one, it should be of best possible
quality and have a size of about 800 pixels. Draw it twice or four times as large and diminish it.

1.2 Julia and Mandelbrot sets

1.2.1 Julia sets depend on a Rational Function

If a complex rational function is entered in the computer program and submitted to a certain
iterative procedure, you get a colouring of the plane called a Julia set (although it is the domain
outside the Julia set that is coloured). However, in order to get a picture that has aesthetic value
the function must have a certain nature. It must either be constructed in a specific way to ensure
that the picture is interesting, or it must contain a parameter, a complex number, that can vary.
Being able to vary a parameter increases our chances of finding an interesting Julia sets for some
value of the parameter.

What do we mean by ’interesting’? Essentially that the iterative procedure behaves in a some-
what chaotic way. If the iterative procedure’s behaviour at each point is easily predicted for a
particular function by behaviour of nearby points, then the Julia set for that function is not very
crinkly, and rather uninteresting.
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Foreword

1.2.2 A Mandelbrot set is an Atlas to the Related Julia sets

If we vary the parameter in our rational function we can produce a kind of ’map’ of values that
lead to interesting Julia sets. Values of the complex parameter correspond to points in the plane.
The set of points that lead to interesting Julia sets gives us some information about the structure
of the Julia sets for the parameter value at each point. Such a set is called a Mandelbrot set. The
Mandelbrot set can be regarded as an atlas of the Julia sets.

The difference between the Mandelbrot set for the family and "its" Julia sets, is that the structure
of the Mandelbrot set varies from locality to locality, while a Julia set is self-similar: the different
localities are transformations of each other.

Sometimes you will prefer the more complex picture of the varying structure of the Mandelbrot
set. Sometimes you will prefer the pure structure of the Julia set. Sometimes you will draw the
Julia set because the drawing of the Mandelbrot set is slow for certain functions.
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2 The Julia set and the Fatou domains

Let f (z) be a differentiable mapping from the complex plane C into itself. We assume first that
f (z) is differentiable as a complex function, that is, that f (z) is a holomorphic function and
therefore differentiable as many times as we like. Moreover we assume that f (z) is rational, that
is, f (z) = p(z)/q(z), where both p(z) and q(z) are complex polynomials. If the degrees of p(z)
and q(z) are m and n, respectively, we call d = m - n the degree of f (z).

The theory of the Julia sets starts with this question: what can happen when we iterate a point
z, that is, what happens when we form the sequence zk ( k = 0, 1, 2, ...) where zk+1 = f (zk ) and
z0 = z.

2.0.3 The three possibilities

Each sequence of iteration falls within one of these three classes:

1: The sequence converges towards a finite cycle of points, and all the points within a suffi-
ciently small neighbourhood of z converge towards the same cycle.

2: The sequence goes into a finite cycle of (finite) polygon shaped or (infinite) annular
shaped revolving movements, and all the points within a sufficiently small neighbourhood
of z go into similar but concentrically lying movements.

3: The sequence goes into a finite cycle, but z is isolated having this property, or: for all the
points w within a sufficiently small neighbourhood of z, the distance between the iterations
of z and w is larger than the distance between z and w.

In the first case the cycle is attracting, in the second it is neutral (in this case there is a finite cycle
which is centre for the movements) and in the third case the sequence of iteration is repelling.
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The Julia set and the Fatou domains

Figure 1: Five Fatou domains
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Julia and Mandelbrot sets

Figure 2: One Fatou domain

The set of points z, whose sequences of iteration converge to the same attracting cycle or go into
the same neutral cycle, is an open set called a Fatou domain of f (z). The complement to the
union of these domains (the points satisfying condition 3) is a closed set called the Julia set of
f (z).

The Julia set is always non-empty and uncountable, and it is infinitely thin (without interior
points). It is left invariant by f (z), and here the sequences of iteration behave chaotically (apart
from a countable number of points whose sequence is finite). The Julia set can be a simple curve,
but it is usually a fractal.

The mean theorem on iteration of a complex rational function is:

Each of the Fatou domains has the same boundary

The common boundary is consequently the Julia set. This means that each point of the Julia set
is a point of accumulation for each of the Fatou domains.

If there are more than two Fatou domains, we can infer that the Julia set must be a fractal, be-
cause each point of the Julia set has points of more than two different open sets infinitely close,
but this is "impossible" since the plane is only two-dimensional.

Therefore, if we construct f (z) in a particular way, we can know for certain that the Julia set is
a fractal. This is the case for Newton iteration for solving an equation g (z) = 0. Here f (z) =
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The Julia set and the Fatou domains

z−g (z)/g ′(z) and the solutions (that can be found by iteration) belong to different Fatou domains
(consisting of the points iterating to that solution). The first picture shows the Julia set for the
Newton iteration for g (z) = z5 − 1. But a Julia set can be a fractal for other reasons, the next
picture shows a Julia set for an iteration of the form 1000(1− z)/(8−4z +2z2 − z3)+ c, and here
there is only one Fatou domain.

2.0.4 The critical points

To begin with, we must find all the Fatou domains. As a Fatou domain is determined if we know
a single point in it, we must find a set of points such that each Fatou domain contains at least
one of these. This is easily done, because:

Each of the Fatou domains contains at least one critical point of f (z)

A critical point of f (z) is a (finite) point z satisfying f ′(z) = 0, or z = , if the degree d of f (z) is at
least two, or if f (z) = 1/g (z)+c for some c and a rational function g (z) satisfying this condition.

As we have presupposed that f(z) is rational, this means that there is only a finite number of
Fatou domains.

We can find the solutions to f ′(z) = 0 by Newton iteration: if z* is a solution, a point near z* is
iterated towards z* by z� z − f ′(z)/ f ′′(z). We can apply Newton iteration on a large number of
regularly situated points in the plane, and register the different critical points (if the start point
belongs to the Julia set of the iteration, it doesn’t necessarily lead to a solution, likewise, we can-
not be completely sure that we will catch all critical points, but for our task we should not care
about this).

Here we will only deal with the attracting Fatou domains: a neutral domain cannot be coloured
in a natural way, and unless f (z) is particularly chosen, it is improbable in practice that the Fatou
domain is neutral.

We can find the different attracting Fatou domains in the following way: We iterate each of the
critical points a large number of times (or stop if the iterated point is numerically larger than a
given large number), so that the iterated point z* is very near its terminus, which is possibly a
cycle containing , and we continue the iteration until the point is very near z* again. The number
r(z*) of iterations needed for this is the order of the cycle. Hereafter we register the different
cycles by removing the points z* belonging to a formerly registered cycle. This set of points
corresponds to the set of Fatou domains.

A Fatou domain can contain several critical points, and from the number of the critical points
in the Fatou domains we can say something about the connectedness of the Julia set: the fewer
critical points in the Fatou domains, the more connected the Julia set.

2.0.5 The attraction of the cycle

In order to colour a Fatou domain in a natural and smooth way, besides the order of the cycle we
must know its attraction α - a real number > 1:

For iteration towards an attracting cycle of order r, we have that if z* is a point of the cy-
cle, then f ( f (... f (z∗))) = z∗ (the r-fold composition), and the attraction is the number α =
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Julia and Mandelbrot sets

1/|(d( f ( f (... f (z))))/d z)z=z∗|. Note that (d( f ( f (... f (z))))/d z)z=z∗ = the product of f ′(zi ) for the
r points of the cycle. If w is a point very near z* and wr is w iterated r times, we have that
α=limw�z*|w − z ∗|/|wr − z ∗|.
However, this number α can be , namely if the cycle contains a critical point (meaning that
the critical point is iterated into itself after r iterations), and in this case the Fatou domain
(and the cycle) is called super-attracting. We now set α =limw�z*l og |wr − z ∗ |/log |w − z ∗ |
or α=limw�l og |wr |/log |w | if z* = .

In the last case, that is, being a critical point and belonging to the cycle, we have |d| > 1 and
α = |d |r . In this case we assume that is a fixed point ( r = 1), so that d 2 and α = d (we thus
ignore a function such as 1/(z − c)2 + c, for which the attracting cycle is { c, }).

In a case using Newton iteration to solve an equation g (z) = 0 (so that f (z) = z − g (z)/g ′(z)), the
Fatou domains (containing a solution) are super-attracting, and α = 2 (if the solution is not a
multiple root).

2.0.6 Colouring the Fatou domains

Our method of colouring is based on the real iteration number, which is connected with the
potential functionφ(z) of the Fatou domain. In the three cases the potential function is given by:

φ(z) =
limk�

1/(|zkr − z ∗|αk )

(non-super-attraction)

φ(z) =
limk�

log (1/|zkr − z ∗|)/αk

(super-attraction)

φ(z) =
limk�

l og |zk |/d k

( d 2 and z* = )

The real iteration number depends on the choice of a very small number ε (for iteration towards
a finite cycle) and a very large number N (e.g. 10100, for iteration towards ), and the sequence
generated by z is set to stop when either |zk − z ∗| < ε for one of the points z* (corresponding to
the Fatou domains) or |zk | > N , or when a chosen maximum number M of iterations is reached
(which means that we have hit the Julia set, although this is not very probable).

If the cycle is not a fixed point, we must divide the iteration number k by the order r of the cycle,
and take the integral part of this number.
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The Julia set and the Fatou domains

Figure 3: Nice play of colours

If we calculate φ(z) for the k that stops the iteration, and replace |zk − z ∗ | or |zk | by ε or N, re-
spectively, we must replace the iteration number k by a real number, and this is the real iteration
number. It is found by subtracting from k a number in the interval [0, 1[, and in the three cases
this is given by:

l og (ε/|zk − z ∗|)/log (α)

(non-super-attraction)

l og (log |zk − z ∗|/l og (ε))/log (α)

(super-attraction)

log (log |zk |/log (N ))/log (d)

( d 2 and z* = )
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Julia and Mandelbrot sets

In order to do the colouring, we must have a selection of cyclic colour scales: either pictures or
scales constructed mathematically or manually by choosing some colours and connecting them
in a continuous way. If the scales contain H colours (e.g. 600), we number the colours from 0
to H-1. Then we multiply the real iteration number by a number determining the density of
the colours in the picture, and take the integral part of this product modulo H. The density is in
reality the most important factor in the colouring and if it is chosen carefully, we can get a nice
play of colours. However, some fractal motives seem to be impossible to colour satisfactorily and
in these cases we have to leave the picture in black-and-white or in a moderate grey tone.

2.0.7 Colouring the Julia set

Figure 4: Julia set drawn from distance estimation

In order to get a nice picture, we must also colour the Julia set, since otherwise the Julia set is only
visible through the colouring of the Fatou domains, and this colouring changes vigorously near
the Julia set, giving a muddy look (it is possible to avoid this by choosing the colour scale and the
density carefully). A point z belongs to the Julia set if the iteration does not stop, that is, if we
have reached the chosen maximum number of iterations, M. But as the Julia set is infinitely thin,
and as we only perform calculations for regularly situated points, in practice we cannot colour
the Julia set in this way. But happily there exists a formula that (up to a constant factor) estimates
the distance from the points z outside the Julia set to the Julia set. This formula is associated to
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The Julia set and the Fatou domains

a Fatou domain, and the number given by the formula is the more correct the closer we come to
the Julia set, so that the deviation is without significance.

The distance function is the function δ(z) = φ(z)/|φ′(z)| (see the section Julia and Mandelbrot
sets for non-complex functions), whose equipotential lines must lie approximately regularly. In
the formula appears the derivative z ′

k of zk with respect to z. But as zk = f ( f (... f (z))) (the k-fold
composition), z ′

k is the product of the numbers f ′(zi ) ( i = 0, 1, ..., k-1), and this sequence can be
calculated recursively by z ′

k+1 = f ′(zk )z ′
k and z ′

0 = 1 ( before the calculation of the next iteration
zk+1 = f (zk )). In the three cases we have:

δ(z) =
limk�

|zkr − z ∗|/|z ′
kr |

(non-super-attraction)

δ(z) =
limk�

log |zkr − z ∗||zkr − z ∗|/|z ′
kr |

(super-attraction)

δ(z) =
limk�

log |zk ||zk |/|z ′
k |

( d 2 and z* = )

If this number (calculated for the last iteration number kr - to be divided by r) is smaller that a
given small number, we colour the point z dark-blue, for instance.
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Julia and Mandelbrot sets

2.0.8 Lighting-effect

Figure 5: Lighting-effect with the potential function
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The Julia set and the Fatou domains

Figure 6: Lighting-effect with the distance function

We can make the colouring more attractive for some motives by using lighting-effect. We imag-
ine that we plot the potential function or the distance function over the plane with the fractal
and that we enlight the generated hilly landscape from a given direction (determined by two an-
gles) and look at it vertically downwards. For each point we perform the calculations of the real
iteration number for two points more, very close to this, one in the x-direction and the other in
the y-direction. The three values of the real iteration number form a little triangle in the space,
and we form the scalar product of the normal (unit) vector to the triangle by the unit vector in the
direction of the light. After multiplying the scalar product by a number determining the effect of
the light, we add this number to the real iteration number (multiplied by the density number).

Instead of the real iteration number, we can also use the corresponding real number constructed
from the distance function. The real iteration number usually gives the best result. Using the
distance function is equivalent to forming a fractal landscape and looking at it vertically down-
wards.

The effect is usually best when f (z) is a polynomial and when the cycle is super-attracting, be-
cause singularities of the potential function or the distance function give bulges, which can spoil
the colouring.
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Julia and Mandelbrot sets

2.0.9 The field lines

Figure 7: Field lines
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The Julia set and the Fatou domains

Figure 8: Field lines

In a Fatou domain (that is not neutral) there is a system of lines orthogonal to the system of
equipotential lines, and a line of this system is called a field line. If we colour the Fatou domain
according to the iteration number (and not the real iteration number), the bands of iteration
show the course of the equipotential lines, and so also the course of the field lines. If the itera-
tion is towards , we can easily show the course of the field lines, namely by altering the colour
according to whether the last point in the sequence is above or below the x-axis, but in this case
(more precisely: when the Fatou domain is super-attracting) we cannot draw the field lines co-
herently (because we use the argument of the product of f ′(zi ) for the points of the cycle). For an
attracting cycle C, the field lines issue from the points of the cycle and from the (infinite number
of) points that iterate into a point of the cycle. And the field lines end on the Julia set in points
that are non-chaotic (that is, generating a finite cycle).

Let r be the order of the cycle C and let z* be a point in C. We have f ( f (... f (z∗))) = z∗ (the
r-fold composition), and we define the complex number α by

α= (d( f ( f (... f (z))))/d z)z=z∗

.

If the points of C are zi (i = 1,2, ...,r, z1 = z∗), α is the product of the r numbers f ′(zi ). The real
number 1/|α| is the attraction of the cycle, and our assumption that the cycle is neither neutral
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Julia and Mandelbrot sets

nor super-attracting, means that 1 < 1/|α| < . The point z* is a fixed point for f ( f (... f (z))), and
near this point the map f ( f (... f (z))) has (in connection with field lines) character of a rotation
with the argument β of α (so that α= |α|eβi ).

In order to colour the Fatou domain, we have chosen a small number ε and set the sequences of
iteration zk (k = 0,1,2, ..., z0 = z) to stop when |zk − z ∗| < ε, and we colour the point z according
to the number k (or the real iteration number, if we prefer a smooth colouring). If we choose a
direction from z* given by an angle θ, the field line issuing from z* in this direction consists of
the points z such that the argument ψ of the number zk − z∗ satisfies the condition

ψ−kβ= θ(mod2π)

.

For if we pass an iteration band in the direction of the field lines (and away from the cycle), the
iteration number k is increased by 1 and the number ψ is increased by β, therefore the number
ψ−kβ(mod2π) is constant along the field line.

A colouring of the field lines of the Fatou domain means that we colour the spaces between pairs
of field lines: we choose a number of regularly situated directions issuing from z*, and in each of
these directions we choose two directions around this direction. As it can happen, that the two
bounding field lines do not end in the same point of the Julia set, our coloured field lines can
ramify (endlessly) in their way towards the Julia set. We can colour on the basis of the distance
to the centre line of the field line, and we can mix this colouring with the usual colouring.

Let n be the number of field lines and let t be their relative thickness (a number in the interval
[0, 1]). For the point z, we have calculated the number ψ−kβ(mod2π), and z belongs to a field
line if the number v = (ψ−kβ(mod2π))/(2π) (in the interval [0, 1]) satisfies |v - i/n| < t/(2n) for
one of the integers i = 0, 1, ..., n, and we can use the number |v - i/n|/(t/(2n)) (in the interval [0,
1] - the relative distance to the centre of the field line) to the colouring.

In the first picture, the function is of the form z/2+1/(z − z3/6)+ c and we have only coloured a
single Fatou domain. The second picture shows that field lines can be made very decorative (the
function is of the form z/(1+ z3)+ c).
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The Julia set and the Fatou domains

Figure 9: Pictures inlaid in Field lines

A (coloured) field line is divided up by the iteration bands, and such a part can be put into a
ono-to-one correspondence with the unit square: the one coordinate is the relative distance to
one of the bounding field lines, this number is (v - i/n)/(t/(2n)) + 1/2, the other is the relative
distance to the inner iteration band, this number is the non-integral part of the real iteration
number. Therefore we can put pictures into the field lines. As many as we desire, if we index
them according to the iteration number and the number of the field line. However, it seems to
be difficult to find fractal motives suitable for placing of pictures - if the intention is a picture
of some artistic value. But we can restrict the drawing to the field lines (and possibly introduce
transparency in the inlaid pictures), and let the domain outside the field lines be another fractal
motif (third picture).
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Julia and Mandelbrot sets

2.0.10 Filled-in Julia sets

Figure 10: Filled-in Julia set for z3 + c

The complement to a Fatou domain is called a filled-in Julia set. It is the union of the Julia set
and the other Fatou domains. The outer Fatou domain is usually that containing , and the filled-
in Julia set is usually coloured black, like the Mandelbrot set. The program is easier to write,
but it runs more slowly, because the maximum iteration number is reached for the black points.
As the fine Julia sets frequently only have a single Fatou domain, you can as well make such an
easier program that only colours a single Fatou domain. You choose a point in the outer Fatou
domain and iterate this a large number of times in order to find the attracting cycle, and then the
filled-in Julia set consists of the points that are not iterated towards this cycle. If the degree of the
rational function is at least two, the filled-in Julia set for the Fatou domain containing consists
of the point whose sequence of iteration remains bounded.
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3 The Mandelbrot set

Figure 11: Interesting Julia set
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The Mandelbrot set

Figure 12: Ugly Julia set

In appearance a Julia set can go from one extreme to the other. And if we have a family of func-
tions containing a complex parameter c, we will observe that by far the majority of c-values the
Julia set is completely without interest. In fact, the attractive Julia sets are extremely rare.

And these Julia sets are just found by considering a family of iterations and from this construct-
ing a set in the plane that can serve as an atlas of the Julia sets, in the sense that if we find an
interesting locality in this set, we can be certain that some part of the pattern at this place will be
reflected in the (self-similar) structure of the Julia sets associated to the points here. Such a set is
called a Mandelbrot set.

Therefore, if we have a function f (z), we introduce a complex parameter c in it, usually by addi-
tion: f (z)+ c.

3.0.11 Construction of the Mandelbrot set

The construction of the Mandelbrot set is based on the choice of two critical points zc1 and zc2

for the function f (z): The Mandelbrot set (associated to the family f (z)+c and the critical points
zc1 and zc2) consists of the complex numbers c, such that the sequences of iteration (by f (z)+c)
starting in zc1 and zc2, respectively, do not have the same terminus. This set is usually coloured
black.
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Julia and Mandelbrot sets

3.0.12 Colouring the domain outside the Mandelbrot set

That a point c is lying outside the Mandelbrot set, means that the second critical point zc2 is
lying in the same Fatou domain (for the iteration f (z)+ c) as the first critical point zc1, and we
can give c the colour of the point zc2 in this Fatou domain.

In order to draw the Mandelbrot set and colour the domain outside it, we must have chosen a
maximum iteration number M, a very small number ε (for iteration towards a finite cycle) and a
very large number N (for iteration towards ).

If zc1 = (and d 2, so that is a critical point and a (super-attracting) fixed point) we need of course
not iterate zc1: we iterate zc2 (by f (z)+ c) and if |zk | > N for some iteration number k < M, then
c is lying outside the Mandelbrot set, and we colour c in the same way as we have coloured a z
in a Fatou domain containing . If we have reached the maximum iteration number M, we regard
c as belonging to the Mandelbrot set.

If zc1 is a finite critical point and if the iteration of zc1 (by f (z)+ c) is running to the maximum
number of iterations M is reached, the terminus is most probably a finite attracting cycle that
is not super-attracting (if not, there can be a fault in the colour of the pixel, but this is without
significance in practice). If the last point of this iteration is z*, z* belongs to the cycle, but we
must know the order and the attraction of the cycle. Therefore we continue the iteration: starting
in z* and running until |zk − z ∗ | < ε, then the number of iterations needed for this is the order
r of the cycle, and we calculate the attraction α in the same way as before: 1/α is the product of
the numbers | f ′(zi )| for the r points of the cycle. We hereafter iterate zc2 (by f (z)+ c), and stop
when |zk − z ∗ | < ε. If this iteration runs until the maximum number of iterations M is reached,
we regard c as belonging to the Mandelbrot set. If |zk −z ∗| < ε for k < M, we colour c according
to k, or rather, the corresponding real iteration number, which is found in the same way as for a
Fatou domain, by dividing k by r (and taking the integral part) and from this number subtract
log (ε/|zk − z ∗|)/l og (α).

If the cycle contains , that is, if the iteration of zc1 is stopped by |zk | > N for k < M, we let be
the chosen point of the cycle, and we continue the iteration until we again have |zk | > N, then
the number of iterations needed to do this is the order of the cycle. We then iterate zc2 (by
f (z)+ c), and stop when |zk | > N. If this iteration runs until the maximum number of iterations
M is reached, we regard c as belonging to the Mandelbrot set. If |zk | > N for k < M, we colour c
according to k, or rather, the corresponding real iteration number, which is found in the same
way as for a Fatou domain, by dividing k by r (and taking the integral part) and from this number
subtract l og (l og |zk |/l og (N ))/log (|d |r ).

3.0.13 Colouring the boundary of the Mandelbrot set

That a point c is lying outside the Mandelbrot set, means that the second critical point zc2 is
lying in the same Fatou domain (for the iteration f (z)+ c) as the first critical point zc1, and the
estimation of the distance from zc2 to the Julia set, in this Fatou domain, is an estimation of the
distance from c to the boundary of the Mandelbrot set. So, the boundary of the Mandelbrot set
can be coloured in the same way as a Julia set, but now the derivative of zk is not with respect to
z, but with respect to c.
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If we set g (z) = f (z)+ c, we have zk = g (g (...g (z))) (the k-fold composition)(the start value z is
first zc1 and then zc2), and we find the derivative z ′

k of zk with respect to c by recursion: we
have z ′

k+1 = f ′(zk )z ′
k + 1, and we find z ′

k successively by performing this calculation for each
iteration, starting with z ′

0 = 0, together with (and before) the calculation of the next iteration
value zk+1 = f (zk )+ c, starting with z = zc1 and zc2, respectively.

As well as finding the point z* in the cycle by iterating zc1 M times, we now also calculate the
derivative z*’ of z* with respect to c, and when iterating zc2 towards the cycle, we now also
calculate the derivative z ′

k of zk with respect to c. The formulas for δ(z) are for the two cases:

δ(z) =
limk�

|zkr − z ∗|/|z ′
kr − z ∗′ |

(non-super-attraction)

δ(z) =
limk�

log |zk ||zk |/|z ′
k |

( d 2 and z* = )

When the value of this number for the last iteration number is smaller than a given small number,
we colour the point c dark-blue, for instance.

3.0.14 Why the Mandelbrot set serves as an atlas of the Julia sets

If we choose a point c near the boundary of the Mandelbrot set, then the Julia set for f (z)+ c
will have a (self-similar) structure that has some features in common with the Mandelbrot set at
that locality. In the simple case f (z) = z2+c (the usual Mandelbrot set), the structure of the Julia
set for c is exactly the same as the local structure of the Mandelbrot at c, but this is usually not
the case for general rational functions, only that the structure of the Julia set reflects the local
structure of the Mandelbrot set.

Why is this? When c is inside the Mandelbrot set, the sequence generated by zc2 does not con-
verge to the terminus of the sequence generated by zc1, and this means that the two Fatou do-
mains containing zc1 and zc2, respectively, are different. But when we let c pass over the bound-
ary of the Mandelbrot set, the two sequences now have the same terminus, so that the two Fatou
domains become identical. Because one of the Fatou domains has now disappeared, we can
infer that the Julia set for f (z)+ c must change in a significant way (it becomes less connected).

It is only when c is near the boundary of the Mandelbrot set that we can predict something about
the Julia set, but as there usually are several critical points, we can choose another pair and draw
a new Mandelbrot set. Note that if we use two finite critical points and if we invert these, then the
black is unaltered, but the colouring and the boundary can alter: the colour is determined by the
value in zc2 of the potential function of the Fatou domain for c containing zc1. In order to get the
most aesthetic colouring, we must use the value of the potential function in one and the same
point (the second critical point) as c varies. When c passes the boundary of the Mandelbrot set,
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a Fatou domain disappears, but it is only when the second critical point leaves the Fatou domain,
that we get the natural colouring and the boundary.

3.0.15 The usual Mandelbrot set

For the family f (z) = z2 + c, there are two critical points, 0 and , and therefore only one Man-
delbrot set. This set consists of the points c such that the sequence generated by 0 (by z2 + c)
remains bounded. For c outside the Mandelbrot set the sequence converges to , and we can
colour according to the number of iterations needed to bring the points outside a large circle
with centre in origo. If we only colour according to the iteration number and if we do not draw
the boundary, this circle needs only to have radius 2.

For this family, the Julia set for c has two Fatou domains when c is inside the Mandelbrot set, and
one when c is outside. When c is inside the Mandelbrot set, the Julia set is connected, and when
c is outside, the Julia set is disconnected (and more than that: totally disconnected - a dust cloud
- because of the self-similarity). For c belonging to the boundary, the Julia set is connected, but
it does not enclose an interior Fatou domain (this can be regarded as degenerated): the Julia set
is just a fractal line with a "nose" and a "tail" and a "spine" connecting these two points.

The usual Mandelbrot set consists of an infinite system of cardioids and circles, all lying outside
each other and some touching. When we zoom in, we find a swarm of mini-mandelbrots. Such
mini-mandelbrots (possibly deformed) appear in the Mandelbrot set for every complex (differ-
entiable) function, even for transcendental functions (see the picture in the section ../JULIA AND

MANDELBROT SETS FOR TRANSCENDENTAL FUNCTIONS/1).

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FJULIA%20AND%20MANDELBROT%20SETS%20FOR%
20TRANSCENDENTAL%20FUNCTIONS%2F
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3.0.16 The different types of Mandelbrot and Julia sets

Figure 13: (z2 + z4/2)/(2− z2/20)+ c
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Figure 14: (1+3z4)/(4z3)+ c
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Figure 15: (1− z2)/(z −0.01z2 +0.004z3)+ c

Of all Mandelbrot sets the usual is the one that possesses most localities of beauty. All other
Mandelbrot sets are more or less ugly in their entirety, especially when the function is not a
polynomial. In return, it is in such Mandelbrot sets that we can be lucky enough to find the most
interesting and original shapes.

When we draw the Mandelbrot set for different rational functions, of course some types of shape
will recur, and it should be possible to classify these shapes. We cannot refer the any work in this
direction, we can only state the most elementary differentiation:

1. d > 1 (m > n + 1). Then is a critical point and a super-attracting fixed point, and we usually use
this as the first of the two critical points. For f (z) = (z2 + z4/2)/(2− z2/20)+ c (and critical point
0), we can find this motif in the Mandelbrot set (first picture):

2. d = 1 (m = n + 1). In this case f (z) is usually constructed from the Newton procedure for
solving an equation g (z) = 0: f (z) = z − g (z)/g ′(z). The critical points are just the solutions to
g (z) = 0, and we choose two having the largest distance from each other. For g (z) = z4 −1 and
thus f (z) = (1+3z4)/(4z3), we can find this motif in the Mandelbrot set (second picture):

3. d < 1 (m < n + 1). In this case we usually use two finite critical points, and as the critical points
are lying symmetrically around the x-axis (if f (z) has real coefficients), we let the pair consist
of conjugate numbers (of largest distance). We let the family be f (z) = (1 − z2)/(z − 0.01z2 +
0.004z3)+ c, and we zoom in at the place where the most interesting things seem to be (third
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picture). We choose three points on the boundary and draw their Julia sets. First a point on the
thin tangent line passing through the sea horse valley. Then a point in one of the holes inside
the upper black. The last point presupposes that we invert the critical points, so that we can see
a part of the boundary that is not visible on this picture of the Mandelbrot set. This boundary
forms a continuation downwards of the indicated vertical line in the centre.

Figure 16: One Fatou
domain

Figure 17: Two Fatou
domains

Figure 18: One Fatou
domain

3.0.17 The parameter c

In order to get a family of iterations from the rational function f(z), we have here simply added
the parameter c to f(z), so that the family is z → f(z) + c. This way is the simplest, and as we
can get every Julia set in this way and as a Mandelbrot set locally is like a Julia set and as the type
of the Mandelbrot sets constructed from families of the form z → f(z) + c is satisfying in every
way, there is no strong reason for letting c enter in a more sophisticated way. But we can find
interesting Mandelbrot sets by letting c enter in a specific way. We can transform the Mandelbrot
set by replacing the family by z → h1(c) f (z)+h2(c), for some functions h1(z) and h2(z), and we
can construct Mandelbrot sets whose form in their entirety differ from those of the usual type by
letting c appear in the coefficients of the rational function f(z).

Now the family is of the form z → g(z, c), and we assume that g(z, c) is rational in both z and
c. The critical points can now depend on c (we denote the two chosen zc1(c) and zc2(c)), and
in order to draw the boundary we must (besides g ′(z,c) = ∂g (z,c)/∂z) calculate the derivative
of g(z, c) with respect to c: (d/dc)g(z, c) (= ∂g (z,c)/∂c - see the section ../TERMINOLOGY/2).
And we must also calculate the derivative with respect to c of the critical points zc1(c) and
zc2(c): d zc1(c)/dc. The iteration is given by zk+1 = g (zk ,c) (starting in zc1(c) and zc2(c)), and
the derivative z ′

k (with respect to c) is calculated by

z ′
k+1 = z ′

k g ′(zk ,c)+ (d/dc)g (zk ,c)

starting with z ′
0 = d zc1(c)/dc and d zc2(c)/dc.

We let f(z), h1(z) and h2(z) be respectively z5, -iz and 1, and z2, i(z - 1/z)/2 and i(z + 1/z)/2 (first
and second picture below). In the last case the four parts meet in the points ±(2 ± i2)/2 which
correspond to the points ± i belonging to the usual Mandelbrot set.

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FTERMINOLOGY%2F
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Let us now assume that g(z, c) is the rational function given by Newton iteration for the polyno-
mial f (z) = (z−1)(z2−c), that is, g (z,c) = z− f (z)/ f ′(z) = (2z3−z2−c)/(3z2−2z−c). The critical
points are the solutions to the equation g’(z, c) = 0, and as g ′(z,c) = f (z) f (2)(z)/ f ′(z)2, the critical
points are the roots of f(z) = 0 (in our case 1 and ±c) and the roots of f (2)(z) = 0 (in our case 1/3).
As a critical point which is a root of f(z) = 0 is a fixed point for g(z, c), the second of the critical
points used in the construction of the Mandelbrot set (that is, zc2(c)) must be one of the roots
of f (2)(z). In our concrete case we construct the Mandelbrot set from only one critical point:
zc1(c) = zc2(c) = 1/3, so that only the boundary of the Mandelbrot set is drawn (third picture).

We have mentioned above that if the terminus of zc1 is not ∞, then it is most likely a finite
attracting cycle that is not super-attracting, and if not, there can be a fault in the colour of the
pixel, but this is without significance in practice. However, in our just mentioned case where g(z,
c) comes from Newton iteration, all the iterations (or rather, all the Fatou domains) outside the
Mandelbrot set are super-attracting, therefore we must correct the formulas for the real iteration
number and for the distance function by introducing log in the formulas.

Figure 19: The Mandelbrot
set for −i cz5 +1

Figure 20: The Mandelbrot
set for (i(c - 1/c)/2)z2 + (i(c
+ 1/c)/2)

Figure 21: The Mandelbrot
set for Newton iteration for
(z −1)(z2 − c)

3.0.18 The drawing Mandelbrot and Julia sets in practice

A Julia set for a rational complex function is so well-defined and natural that, like with some other
mathematical concepts, we are inclined to say that it belongs to nature: if they have computers
in another world, they will also definitely have Julia sets. Also the definition of a Mandelbrot set
is simple and obvious, and the drawing procedure must necessarily be in this way: we enter the
coefficients of the two polynomials in some way, and then either some pairs of critical points
are found automatically or a pair is chosen graphically by clicking in a picture where all the crit-
ical points are shown. Hereafter the Mandelbrot set appears, and we can zoom in and alter the
colouring. We go to the Julia sets by pressing a key so that the point in the centre of the window
can be moved by the arrows, and when we have chosen a point (usually on the boundary of the
Mandelbrot set), the procedure for the Julia set is exactly the same as that for the Mandelbrot set.

When you draw a large picture, you ought to draw it at least twice as large as intended, and then
reduce it so that the boundary is no longer only one colour. This will lessen the often sharp
character of the boundary and it will remove dots arising from impossible calculations.
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4 Julia and Mandelbrot sets for transcendental
functions

For a transcendental complex function, such as si n(z),cos(z),exp(z), ..., which must be assigned
degree and which has as an attracting fixed point, the potential function for the Fatou domain
containing does not exist, and therefore the colouring cannot be made smooth in the usual way.
Besides this, it is possible that the status of as an attracting fixed point is ambiguous.

Figure 22: Julia set for si n(z)+ c
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Figure 23: In the Sea Horse Valley of a mini-mandelbrot of the Mandelbrot set for si n(z)+ c

This is the case for si n(z) and cos(z). Si n(z) can be defined by si n(x + i y) = si n(x)cosh(y)+
i cos(x)si nh(y), and we see from this formula, that if we go towards along a vertical line, the
value grows (exponentially) to , but if we go towards along a horizontal line, the value remains
bounded. As an iteration of z by si n(z)+ c can be small when z has an arbitrarily high y-value
(namely if cos(x) is near 0), the inner Fatou domains extend towards in the vertical direction,
and also in the horizontal direction, because of the periodicity. The same applies therefore for
the Julia set. The Fatou domain containing must here be defined as the Fatou domain containing
points having arbitrarily large y-values, but this Fatou domain is not an open set: it has no
interior points. In the colouring it is therefore inseparable from the Julia set, which consists of
infinitely dense lying threads. So, if there are no inner Fatou domains, the Julia set is lying densely
in the plane, implying that the whole plane should be coloured as the boundary. Nevertheless,
the computer gives us a non-trivial picture (top picture).

The reason is that we are forced to use a relatively small radius of the large circle determining the
stopping of the iteration, owing to the exponential growth of si n(z) in the y-direction. There-
fore the sequences of iteration stop after only few iterations, and we colour on the basis of the
number of iterations. As the colour of a point c outside the Mandelbrot set is the colour of the
(second) critical point of the Fatou domain for c containing , the domain outside the Mandelbrot
set is, like the outer Fatou domain, without interior points: it is interwoven with infinitely lying
threads. This wire mesh makes up a continuation of the usual boundary, which is unaffected
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by the phenomenon, as the distance function is unaffected by the nature of the function. For a
rational function, the boundary consists of the points such that the associated Julia set contains
the (second) critical point. However, for a transcendental function this set can be larger than the
boundary constructed from the distance function, and in our case it lies densely in the domain
outside the interior of the Mandelbrot set. Nevertheless we get a colouring, because the itera-
tions stop early. We are here in the Sea Horse Valley of a mini-mandelbrot of the Mandelbrot set
for si n(z)+ c (middle picture).

For iteration towards finite cycles, the Julia sets look like those for rational functions. But it can
happen that there are small circles in the picture of only one colour, because it is impossible
here, at a specific step in the iteration, to calculate the next value of the transcendental function
in the formula.

The Mandelbrot set for (1− z2)/(z − z2cos(z))+ c has a look that is typical for the rational func-
tions where the iterations are towards finite cycles (first picture below). This Mandelbrot set is
constructed from two conjugate critical points, and if we let z1 and z2 be the images of these by
(1−z2)/(z−z2cos(z)), we have that if c is real and numerical large and belonging to the Mandel-
brot set, then z1 + c and z2 + c belong to different Fatou domains for (1− z2)/(z − z2cos(z))+ c,
therefore 1/cos(z1+c)+c and 1/cos(z2+c)+c belong to different Fatou domains, and if we add
a multiple of 2π to c (so that the result still is numerically large), then these two numbers will
belong to different Fatou domains. Therefore we can say: it is possible that the Mandelbrot set
extends towards infinity in the horizontal direction. It seems really to be the case, as we can see
if we draw the Mandelbrot set and zoom out.

The two following pictures show sections of the Julia set for c = -1. The point z = -1 is a fixed point
for this iteration, and as the derivative of the function in this point is numerically larger than 1, z
= -1 is repelling and belongs therefore to the Julia set. If x is real and numerically very large, the
iteration of x is near 1/cos(x)−1. Therefore, if x* is a real point of the Julia set such that x* - (-1)
> 1, we can find a real point of large numerical value that iterates into this point of the Julia set,
and this indicates that the Julia set extends towards infinity in the horizontal direction. And as
cos(z) grows exponentially in the vertical direction, the iteration of a point z of large numerical
y-value is very near -1, therefore we can find points of arbitrary large y-values that iterate into -1,
so that the Julia set extends towards infinity in the vertical direction.

As cos(z) has power series expansion 1−z2/2!+z4/4!−z6/6!+z8/8!−... (where n! = 1×2×...×n), we
can get rational approximations to the Mandelbrot set and the Julia sets by restricting this series.

Figure 24: The Mandelbrot
set for
(1− z2)/(z − z2cos(z))+ c

Figure 25: The Julia set for
(1− z2)/(z − z2cos(z))−1

Figure 26: The Julia set for
(1− z2)/(z − z2cos(z))−1
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5 Julia and Mandelbrot sets for non-complex
functions

Figure 27: The distorted Sea Horse Valley

That our mapping f (z) from the plane into itself is differentiable as a complex function, means
that it is differentiable as a real function - that is, that its two components fx (x, y) and fy (x, y) are
differentiable - and that these two components satisfy the Cauchy-Riemann differential equa-
tions:

∂

∂x
fx = ∂

∂y
fy

and
∂

∂y
fx =− ∂

∂x
fy
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if so, these two numbers are the real and imaginary part of f ′(z), respectively.

It is this condition that causes the characteristic features of the Mandelbrot and Julia sets for
complex iteration. The usual family of iterations z2 +c can (in coordinate form) be written (x, y)
� (x2 − y2,2x y)+ (u, v) (if c = u + iv), and if we here replace the y-coordinate of the function,
that is 2xy, by 1.95×xy, the shapes in the Sea Horse Valley become distorted.

This thread-like and tattered look is typical for the real - or non-complex - fractals. For a function
which is not, as in this case, the result of a mild interference in a complex function, the picture
is often very chaotic, and the colouring can be impossible at most places, because our method
of colouring presupposes that the sequences of iteration converge to a finite cycle, and for a
non-complex iteration the terminus need not be a finite set. The terminal set is now called an
attractor, and attractors can have very surprising shapes. Because of this, such an attractor is
known as a strange attractor.

The fact that the two coordinate functions are not presupposed to be connected (by the Cauchy-
Riemann equations) implies partly that a point of a Julia set is no longer necessarily a point
of accumulation for each of the Fatou domains, and partly that a Julia set can have different
character of connectedness along two directions orthogonal to one another. For instance the
Julia set can consist of a system of threads lying infinitely close. If so, it is connected when one
goes along the threads, and disconnected when one goes across this direction. Within each of the
Fatou domains the sequences of iteration will converge to - be attracted by - one and the same
attractor. The interesting attractors are relatively rare and most attractors are - as in the complex
case - only finite cycles, or they consist merely of a number of separated pieces of curves, or they
are quite the opposite and completely confused, filling up almost all the Fatou domain.

5.0.19 The Mandelbrot set

In order to find interesting Julia sets and attractors, we must construct a Mandelbrot set. We
assume here that our function f (x, y) is composed of two real second-degree polynomials p(x, y)
and q(x, y): f (x, y) = p(x, y)+i q(x, y). We have first to choose two critical points. In the complex
case, these are the solutions to the equation f ′(z) = 0 (or z = ), and if our mapping (being
composed of second-degree polynomials) were complex differentiable, there would only have
been a single (finite) critical point, which could be calculated automatically. But if the function
is not complex differentiable, there can be an infinity of points satisfying the condition of being
a critical point.

For a general differentiable mapping g (x, y) from the plane into itself, the derivative g ′(x, y) is a
2x2 matrix (see the section Terminology), namely composed of these four numbers:

∂

∂x
gx (x, y)

∂

∂y
gx (x, y)

∂

∂x
g y (x, y)

36



Julia and Mandelbrot sets

∂

∂y
g y (x, y)

That the Cauchy-Riemann equations are satisfied, means that this matrix corresponds to mul-
tiplication by a complex number, namely g ′(z). That g ′(x, y) is regarded as degenerated, means
that its determinant |g ′(x, y)| vanishes:

(∂gx (x, y)/∂x)(∂g y (x, y)/∂y)− (∂gx (x, y)/∂y)(∂g y (x, y)/∂x) = 0.

For our function f (x, y), composed of two second-degree polynomials, |g ′(x, y)| is a second-
degree polynomial, and therefore its zeros form a conic section: an ellipse, a parabola or a hy-
perbola. Besides this curve of critical points, the point also satisfies the condition of being a
critical point. We choose as the first of the critical points, and a point (zcx , zcy ) on the conic
section as the other.

Figure 28: Non-complex Mandelbrot set

The Mandelbrot set for the family of iterations (x, y) � f(x, y) + (u, v) is the set of points (u,
v) such that if we iterate (zcx , zcy ), the sequence does not grow towards . The domain outside
the Mandelbrot set can be coloured in the same way as before. In this simple case, where the
iterations are towards a fixed point (namely ), we can (by means of matrix calculations) colour
smoothly and draw the boundary. Let us set p(x, y) = x y and q(x, y) = y − x2, then the determi-
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nant of the derivative is y +2x2, so that the critical system is the parabola y =−2x2. If we choose
(zcx , zcy ) = (0,0), the Mandelbrot set looks like this:

5.0.20 The Julia sets

Figure 29: Julia set with attractor
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Figure 30: Intersection with the parabola
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Figure 31: Still connected in the one direction
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Figure 32: A strange strange attractor

In our simple case, where is a critical point, the colouring of the Fatou domain containing is, like
the colouring outside the Mandelbrot set, without problems, and we can also draw the boundary
of this Fatou domain. But besides this Fatou domain, there can now be an infinity of Fatou
domains and these are not necessarily open sets. A Fatou domain is a set of points having the
same attractor, and each Fatou domain contains a critical point. If we therefore iterate all the
points of the conic section, we get all the attractors.

If the attractor of a Fatou domain is not a finite cycle, we cannot colour the domain in a natural
way, we colour it black and draw its attractor. This is done by iterating each point of the Fatou
domain: first a large number of times without drawing, and then a large number of times where
the pixel is coloured white, for instance. As the attractors for the different points in the same
Fatou domain are the same, we can stop this drawing after the attractors for few points are drawn.

If in the above Mandelbrot set we choose a point in the upper part a good distance from the
centre line and a little bit inside the Mandelbrot set, we get this Julia set (first picture).

The Julia set is the complement to the union of the Fatou domains. In the complex case we have
that if there are only few critical points in the Fatou domains, this indicates that the Julia set is
"most possible" connected. This rule is also valid for a non-complex iteration: the character of
the intersection of the Julia set with the critical system indicates the character of the connected-
ness of the Julia set. Therefore, when the Julia set and the Fatou domains run as threads, we have
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that the nearer the angle of intersection with the Julia set is to a right angle, the more regular is
the course of the Fatou domains at that locality.

If in the above Mandelbrot set we choose a point near the centre line and just outside the Man-
delbrot set, the Julia set becomes disconnected, but as it intersects the critical system in angles
that are near the right angle, it does not become a cloud of dust, as in the complex case, but it
becomes only disconnected in the one direction, in the other it runs as connected threads (sec-
ond picture). Even the most disconnected Julia sets consist of threads in this simple case (third
picture).

When we have found a usable locality in the Mandelbrot set, it is still rather difficult to find a
point whose inner Fatou domain has a fine attractor. The point must not lie too near the bound-
ary, for then the attractor is too chaotic and difficult to draw, and when the point is too far inside
the black, the attractor will be more or less trivial. It is only at few places and at a certain distance
from the boundary that you can find attractive attractors, and their forms vary swiftly when the
point is moved.

If we choose trivial functions, for instance p(x, y) = x2 and q(x, y) = y2, we can find trivial Julia
sets and extraordinary (strange?) attractors (fourth picture).

5.0.21 Rational functions

If the components of our function are rational (real) functions and if is not a super-attracting
fixed point, there can be serious "faults" in the colouring outside the Mandelbrot set, and we
can be forced to abstain from colouring the Fatou domains and thus only draw the attractors.
But on the other hand, we can find very nice attractors. In the first picture below is the function
of the form (p(x, y)+ i q(x, y))/r (x2, y2), with p(x, y) = (x4 − y4)/10, q(x, y) = x − y and r (x, y) =
1− (x − y)/5+ ((x + y)/10))2.

At a locality where the colouring of the Mandelbrot set is tolerable, we can try and draw the Julia
set, and instead of drawing the attractor, we can draw the critical system. For such functions the
critical system can be as simple or complicated as it pleases us, and in the cases where the Fatou
domain can be coloured fairly faultlessly, and where the Julia set intersects the critical system
under nearly right angles, we can by sketching the critical system create decorative patterns. In
the second and third picture below are the functions of the above form with respectively p(x, y) =
1−x y3, q(x, y) = x2 y2 + y4, r (x, y) = 1+x2 +x y + y2 and p(x, y) = x3 − y3 +x2 y2, q(x, y) = x − y +
x2 y2, r (x, y) = 1+x2 + y2.

Figure 33: Attractor for a
rational function

Figure 34: Julia set and
critical system for a
rational function

Figure 35: Julia set and
critical system for a
rational function
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5.0.22 The formula for the distance function

We can only colour a Fatou domain faultless, when it is associated to a finite attracting cycle, and
when this is the case, the procedure is the same as for complex iteration.

Also the formula for the distance estimation used to draw the boundary, presupposes that the
iterations are towards finite cycles. However, we ought to have the procedure in the program - at
least for iterations towards infinity.

We have defined the distance function by δ(z) = φ(z)/|φ′(z)| (where φ(z) is the potential func-
tion), and asφ(z) is a real function defined on the Fatou domain, its derivativeφ′(z) (or gradient)
is a vector function, namely

(
∂φ(z)/∂x

,
∂φ(z)/∂y

)

(see the section Terminology). If the iteration function f (z) is complex (differentiable), an ele-
ment of the sequence zk is complex differentiable as function of z, and therefore z ′

k is a complex
number. But this is not the case for a non-complex iteration function, for then f ′(z) must be
replaced by the 2x2-matrix D f (z) =

[
∂ fx /∂x ∂ fx /∂y
∂ fy /∂x ∂ fy /∂y

]

And z ′
k is a 2x2-matrix, namely:

[
∂xk /∂x ∂xk /∂y
∂yk /∂x ∂yk /∂y

]
which we denote by

[
xxk x yk

y xk y yk

]

It is calculated successively by z ′
k+1 = D f (zk )z ′

k , with start in the unit-matrix: z ′
0 = I .

The formulas for the vector function φ′(z) in the three cases are:

φ′(z) =
limk�{

x ∗−xkr , y ∗−ykr

}
z ′

kr /(|zkr − z ∗|3αk )

(non-super-attraction)
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φ′(z) =
limk�{

x ∗−xkr , y ∗−ykr

}
z ′

kr /(|zkr − z ∗|2αk )

(super-attraction)

φ′(z) =
limk�{

xk , yk

}
z ′

k /(|zk |2d k )

( d 2 and z* = )

The matrix product {xk , yk }z ′
k (for instance) is the row-matrix (vector) {xk xxk + yk y xk , xk x yk +

yk y yk }. In the derivation we have used that the derivative (gradient) of the real function | z| is the
vector function { x/|z|, y/|z|}.

To find the formula for δ(z) = φ(z)/|φ′(z)|, we shall divide the expression for φ(z) by the norm
of the corresponding expression for φ′(z), and we see, that we in the former expressions for δ(z)
only have to replace |z ′

k | by p|det(z’k)|.

For the Julia sets, we need only calculate the determinant of D f (z), because det (z ′
k+1) =

det (D f (zk ))det (z ′
k ). Therefore we calculate the sequence of real numbers det (z ′

k ), starting in
det (z ′

0) = 1.

For the Mandelbrot set, where the derivative is with respect to c, the number 1 in the recursion
formula must be replaced by the unit-matrix I : z ′

k+1 = D f (zk )z ′
k + I , starting in the zero-matrix:

z ′
0 = 0.

5.0.23 Precise calculation of the critical point

We choose a point on the critical system in the same way as in the complex case: we draw the
curve(s) and choose a point with the mouse or the arrows. And then we use Newton iteration to
find the nearest point on the curve. For a real function f (z) on the plane (which in our case is
det(g’(x, y))), this Newton iteration is given by z� z − f (z)D f (z)∗/|D f (z)|2, where D f (z) is the
gradient of f (z), that is, the vector function

{
∂ f (z)/∂x,∂ f (z)/∂y

}

and where the corresponding column-matrix D f (z)∗ is identified with the complex number
formed by these two real numbers.

In our case of the polynomial function, where f (z) = det (g ′(x, y)) = 2x2 + y , we have that the
Newton iteration is given by:
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(x + iy)�
(x + i y)− (2x2 + y)(4x + i )/(16x2 +1)
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6 Landscapes

If, in a three-dimensional coordinate system, we imagine the plane with the Mandelbrot or the
Julia set as the x,y-plane and plot the distance function in the z-direction, we have a surface
looking like a landscape, and we can see it from the side. Such a picture has to be drawn from
the top and downwards (on the screen), and from the far distance towards the near (in the land-
scape), so that something will grow and hide what was previously drawn.

The distance function can have singularities, which means that the surface has points in which
it grows towards infinity. As these vigorous rises are unaesthetic if they are numerous and dom-
inant, we must modify the distance function (third picture). We can also modify it in order to
create a more interesting landscape (second picture).

We can let the light be "natural", like the light from the sun. Then we imagine the rays are parallel
(and given by two angles), and we let the colour of a point on the surface be determined by the
angle between this direction and the slope of the surface at the point. The intensity (on the
earth) is independent of the distance, but the light grows whiter because of the atmosphere, and
sometimes the ground looks as if it is enveloped in a veil of mist (second picture). We can also let
the light be "artificial", as if it issues from a lantern held by the observer. In this case the colour
must grow darker with the distance (third picture).

We look at the landscape in a direction inclining downward from the eye, and the drawing win-
dow has this line as normal in its centre. A vertical line (of pixels) in the drawing window cor-
responds to a line in the base plane with the fractal. And for each of these lines, we start in the
point farthest back and go towards the observer colouring pixels in the corresponding vertical
line of the window in the following way: If p is a point on the line in the base plane, we calculate
the value of the distance function in p. If the line from this point on the surface to the eye inter-
sects the window, we shall colour this pixel. We calculate the slope of the surface in the point,
by calculating the distance function in two points very near p in the x- and y-direction. The little
triangle spanned by the three values lies on the surface. We take the scalar product of the normal
(unit) vector of the triangle and the direction (unit) vector of the light - in case of artificial light
this is the direction vector from the eye to the point.

This number (multiplied by the density) can be combined with other factors determining the
colour: the height over the ground or the distance to the observer, for instance.

From the scalar product of the normal (unit) vector of the surface and the direction vector to the
observer, we can approximately calculate the distance we must go towards the observer in order
to colour the adjacent pixel above or below the just coloured pixel (for rise or fall of the landscape
in the direction towards the observer, respectively). As this calculation cannot be exact, the steps
must possibly be diminished by a factor. We stop the drawing for this line, when we are so near
the observer that the bottom pixel of this vertical line of the window is coloured - possibly we do
continue the drawing, if something grows up nearer the observer and we want this to be seen.
Instead of finishing a vertical line before we go to the next, we can make the drawing looking
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more fascinating by going to the next vertical line for each step towards the observer, so that the
drawing looks like a wave motion from the top and downwards.

The surface is primary constructed from a function proportional to the distance function, but
the program should be made so that this function can be worked up. In the first turn the singu-
larities should be made finite by choosing a relative maximum height hm0. This number times
the width of the section is the maximum height hm in the landscape, and we can replace the
height h by hm * arctan(h/hm), for instance. The (constant) number hm should however be
made varying, by dividing it by a number proportional to the exponential function of the real
iteration number, in order to lower the maximum height near the boundary. Instead of making
the singularities finite, we can simply cut them down by replacing h by hm when h > hm. We
can also regulate h by dividing it by 1+(h/hm)2, for instance, or we can convert the singularities
to craters by replacing h by hm2/h when h > hm.

Furthermore, the surface can be smoothed out by multiplying h by (for instance) the number 1−
ar ct an(a∗sb)/(π/2), where s is the slope of the surface and a and b are parameters determining
the effect.

For natural light, we can get the colour growing whiter (mist) or darker with the distance and
the height, by mixing the colour with grey or black, respectively, according to this number (in
the interval [0, 1]): ar ct an(a ∗ (di st/maxdi st )b + c/(1+d ∗h))/(π/2), where a, b, c and d are
parameters determining the effect.

For artificial light, we can get the colour growing darker with the distance, by mixing with black
according to the number ar ct an(l ∗ s ∗ (wi d th/di st )e )/(π/2), where s is the scalar product
of the direction vector from the eye and the slope (unit) vector, and l and e are parameters
determining the effect.

Figure 36: In the Sea Horse
Valley of the usual
Mandelbrot set with
natural light

Figure 37: Julia set for
z2/2+1/z + c with natural
light and mist

Figure 38: Section of the
Mandelbrot set for
z2/2+0.95z4/4+ c with
artificial light

6.0.24 The Drawing in More Details

We must start by choice of a scale which we apply for both the window and the landscape, namely
by assigning a distance gg to the width ww (in pixels) of the window (or the picture). Then the
width of a pixel is hh = gg/ww, and in the coordinate system in the window having the centre as
origo, the line i pixels from the left border has abscissa xs = -gg/2 + i×hh.
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The landscape is seen from a point on the z-axis having z-coordinate z0, along a line lc in the
direction of the (positive) y-axis which intersects this in a point having ordinate yc. The fractal
motif is displaced such that this point (0, yc) in the base plane becomes the centre of the fractal
motif: if the real centre of the fractal motif is ( x1, y1), we add ( x1, y1) to the coordinate set in
the x-y-system when we calculate the height and the slope.

The line (in the y-z-plane) from z0 orthogonal to lc, intersects the y-axis in a point having y-
coordinate - yv ( yv positive), this point is the vanishing point (seeming infinitely far away from
the observer). We let d (= yc+yv) be the distance from the vanishing point to the base point yc.
If m is the distance lc (from the observer to the base point) divided by the distance from the
observer to the window, the vertical line in the window having abscissa xs, corresponds to the
line in the base plane going through the vanishing point (0, - yv) and the point ( m×xs, yc). And
the point on this line having ordinate y, has abscissa m×xs×(d + y - yc)/d.

Now we choose a vertical line in the window (lying i pixels from the left and thus having abscissa
xs = -gg/2 + i×hh), and we will colour this line by going along the corresponding line in the base
plane from the distant towards the near. Assume that we on this line have reached the point
having ordinate y. This point has abscissa m×xs×(d + y - yc)/d, and we shall calculate the height
z and the slope s of the surface at the point having abscissa x1 + m×xs×(d + y - yc)/d and ordinate
y1 + y - yc. In the y-z-plane we have the line segment lz from the observer (0, z0) to ( y, z). The
pixel in the window to be coloured (lying i pixels from the left), lies j pixels from the top, where
j is the integral part of the number wh/2 - wj×tan(acz), here wh is the height of the window (in
pixels), wj is the distance from the observer to the window also measured in pixels, and acz is
the angle from lc to lz.

After this pixel have been coloured, we must estimate the ordinate dy of step we shall go forward
(in the direction of the negative y-axis) in order to colour the next (adjacent) pixel (above or
below). In the y-z-plane we have the line segment ly from the observer (0, z0) to ( y, 0). We let
ay be the angle from the (negative) z-axis to ly and let ayz be the angle from ly to lz. If we set

p = (1+ t an(ay z)/t an(ay))cos(ay)/l y +abs(si n(ay))(s − z(y − s(z0− z))/l z2)/(cos(ay z)l z)

,

dy is given by

d y = cos(acz)2/(whp)

,

that is, the new y is y - dy.

As this is only an estimation (found by differential calculus), we must arrange the program so
that we can multiply the steps dy by a factor r < 1.

The drawing of the vertical line in the window is finished when the last pixel is drawn (number
wh from the top) and when the new y is smaller than a certain y value depending on the sit-
uation of the lower border of the window, on the visual angle and on whether the landscape is
turned upwards or downwards (when the surface is below the base plane and the visual angle is
small, this y value can lie rather far behind the lower border of the window).
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6.0.25 Gaps Between the Iteration Bands

There is a circumstance which can make it necessary to move forward in smaller steps, namely
the tendency for gaps to develop between iteration bands, especially if a largish power appears
in the formula. At the moving towards the boundary, the value of the distance function becomes
smaller and smaller, but at the curves where the iteration number is increased by 1, there is a
tendency towards that the calculated distance is a little smaller than it should be. The reason is,
that the iteration number used in the calculation of the distance estimation must be very large,
and this presupposes that the bail out radius is very small (- or very large for iteration towards
infinity), but if the bail out radius is as small as it ought to be, the colouring between the iteration
bands becomes unclean, because the calculation of the slope is uncertain - in the same way as a
fractal picture always becomes unclean when we zoom in sufficiently many times: the precision
of the computer is no more enough.

6.0.26 Interpolation

We can solve the problem with gaps between the iteration bands by applying interpolation: if
(in the downward drawing, that is, the drawing of the visual side of the surface) the next pixel
drawn is not the pixel next below, we can fill the gap by applying interpolation of the colour
values. With this technique we can always produce a picture which is without perceptible faults.
Furthermore, the technique means that if we let the reducing factor r be larger than 1, we can
draw a picture which is good enough for choice of motif and colouring very fast (faster than usual
fractal pictures, because the fine fractal pattern is lesser discernible).

6.0.27 Drawing Pixel for Pixel

The above drawing method is rather effective because we estimate beforehand the situation of
the next pixel to be drawn. However, every time something grows up and hide the previous
drawn, pixels are drawn again. Furthermore, the irregular way of drawing means that a well
working program can be rather complicated (interpolation and calculation of the place in the
landscape where to start at the top and stop at the bottom). It is possible to make a simpler
program where the picture is drawn regularly from pixel to pixel, implying that each pixel is
coloured only one time, but then several calculations are necessary for each pixel. For a given
pixel on the screen we go in steps along the line from the observer through this pixel, and we stop
when the calculations show that we are below the surface. In principle we could let the steps have
one and the same size, but then this size had to be very small and the number of calculations
would consequently be very large. Fortunately we have a tool by which we can adjust the steps
so that they at first are rather large and then become smaller in the right rate, namely the distance
estimation by which the landscape is constructed. But this method presupposes (or rather, works
best) when the landscape is turned downwards, that is, formed below instead of above the base
plane, because we then can start the stepwise approximation at the point where the line from
the observer intersects the base plane and because we can let (the horizontal extent of) all the
steps be ruled by the distance estimation.

From the point where the line from the observer intersects the base plane, we go successively
forward in steps whose projection on the base plane is half of the estimated distance, for in-
stance. At each step we calculate the height of the step point (on the line) and the height of the
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surface (below or above this point), and continue as long as the first is smaller than the later.
When this is no more the case, we are below the surface, and then we must go backwards and
possibly again forwards. Also these steps must be ruled by the distance estimation, because they
must be smaller near the boundary. We can let step be e×d×dist, where dist is the distance esti-
mation and e = ±1 for the step point above/below the surface, and where d is a factor which is
at first fixed to a given small number (e.g. 0.5) and which is divided by 2 every time e alters sign.
We perform the stepwise approximation until the difference between the two heights is smaller
than a given smal number, or until the maximum iteration number or the boundary is reached,
or the number of performed operations is larger than a given large number in order to ensure
that the procedure stops. If the found point on the surface corresponds to the complex number
z (in the base plane), we calculate the height of the surface at two points very near z in the x-
and y-direction, in order to find the slope of the surface.

6.0.28 Shade effect

We can (as the pictures below show) get the landscape to look more realistic by drawing shades
(in the case of natural light or light not coming from the observer): a point on the surface is
in shade, and thus made darker, if the line from the point in the direction of the light source
has a point below the surface. The method is most profitable in the case of a turned downwards
landscape, but even in this case it can be necessary to perform calculations for points outside the
visible part of the landscape (unless the light source is above the visible part of the landscape):

Figure 39: Turned
downwards landscape for
z2

Figure 40: The Julia set for
Newton iteration for
solvation of z5 = 1 with
shade effect
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7 Quaternions

7.1 Using More Dimensions

Julia and Mandelbrot sets can, of course, be constructed in spaces of higher dimension than
two, but there is not very much gained with this, if we let the picture be a two-dimensional cut
coloured in the usual way. We ought to let the cut be three-dimensional and let the set be seen
as a body or a surface coloured in the same way as we have coloured a fractal landscape. We will
here let the figure be white and let the light be artificial (with parallel rays), so that the picture
becomes in grey-tone the nuance growing darker with the distance.

As to the function, we could let it be a mapping from the space into itself, but if it does not
satisfy something corresponding to the Cauchy-Riemann differential-equations, the structure
will be as in the non-complex case. These equations cannot be generalized to the three-
dimensional space, but they can be generalized to the four-dimensional space, because in the
four-dimensional space (in contrast to the three-dimensional space) we can introduce opera-
tions of calculation that are a natural extension of the operations of the complex numbers.

7.2 Properties of Quaternions

The extension of complex numbers to four dimensions was discovered in 1843 by the Irish math-
ematician W.R. Hamilton (1805-65). Hamilton called his new numbers QUATERNIONS1. The
quaternions are the numbers of the form x + yi + uj + vk, where x, y, u and v are real numbers
and where the two new symbols j and k, like i, satisfy j 2 = k2 = -1, and where the three symbols
are connected by ij = k.

Of these relations it follows that jk = i and ki = j, but also that ji = -k, that is, ji = -ij. This
means that the multiplication for the quaternions is not commutative. But apart from this, the
quaternions, like the real numbers and the complex number, make up a field: you can operate
with them exactly as you operate with real and complex numbers. The skew-field of quaternions
is an extension of the field of complex numbers, and the quaternions have the same nice and
simple properties as the complex numbers. For instance: for a polynomial p(z) of degree n, the
equation p(z) = 0 has exactly n roots (some possibly multiple), and if a quaternion function f(z)
is differentiable at every point of an open domain (in the quaternions), then it is differentiable
any number of times.

Therefore we can without problems generalize the theory of the Julia and Mandelbrot sets to the
quaternions: all we have said (critical points, cycles, potential and distance function, ...) is valid
almost without modifications - only the field lines need a comment.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUATERNIONS
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7.3 Choices in Rendering Quaternion Fractals

Figure 41: Quaternion Mandelbrot set
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Figure 42: Quaternion Julia set

We need a startegy to get from 4 dimensional patterns to 2 dimensions. We assume that our
function f (z) ( z quaternion) is a polynomial with real coefficients, and that it only contains
powers of even degree (e.g. f (z) = pz2 +qz4), for then the three-dimensional subspace spanned
by 1, i and j is left invariant by the iterations, and therefore we can restrict ourselves to this space.
The critical points are complex numbers lying symmetrically around the x-axis, and we construct
the Mandelbrot set from a finite critical point and . A Julia set is a fractal surface, and we ought to
have two ways of drawing: the filled-in Julia set, which is the complement to the Fatou domain
containing , and a Julia set with field lines in the inner Fatou domains (partly because there
is nothing to see in an inner Fatou domain, and that the field lines are very decorative, partly
because the picture is drawn faster when the domain is filled with field lines, because these lines
stop the drawing procedure).

In the space we imagine a plane parallel with the x,y-plane with which we intersect the fractal
and look at the part of it lying back (or "below") the plane. The intensity of the light is determined
by the distance "down" to the fractal. The intersection plane parallel with the base plane (the
x,y-plane) is given by a height h. For the Mandelbrot set the height must be positive, as we are
not interested in the part lying under the x,y-plane (because the Mandelbrot set is symmetric
around the base plane and abates on the opposite side). The nuance of the colour is calculated by
consecutive estimations of the distance to the boundary and, on the basis of these estimations,
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approximations in steps becoming smaller and smaller. If the boundary is too thin, the sequence
of approximation may jump past the fractal (giving a black dot).

7.3.1 Technical Detail of Calculation

We can let the next step down be half of the estimated distance, but we must arrange the program
so that we can make the steps smaller if there are faults in the picture. We must choose a little
number stepmin, so that if the calculated step u is smaller than this number, we set u = stepmin.
For each step, we add the calculated step to a number starting with 0, and when we have reached
the boundary (or the interior of the Mandelbrot set or a filled-in Julia set or a field line), we
divide the distance by the highest allowable distance, which in case of a Mandelbrot set is the
height h of the plane, and in case of a Julia set is h + the maximum distance we can go below
the base plane (e.g. 2). The result is a number in the interval [0, 1], and we construct a grey-
tone scale indexed by the numbers t in this interval, such that 0 corresponds to white and 1 to
black. We can, for instance, let the colour have (equal) RGB-values that are the integral part
of the number 255/(1+ tur ndown + t an(tπ/2)/i ntensi t y)exponent , with three parameters to
adjust the nuance.

For the Mandelbrot set the iteration stops when the maximum number of iterations is reached or
when the iterated point is outside a sphere of a very large radius. In the latter case we calculate
the distance to the boundary, and let this number determine the next step down. The same
applies to a filled-in Julia set. For an inner Fatou domain, the iteration stops when a point in the
sequence is within a given little distance from a (given) point in the cycle. As we do not calculate
the real iteration number, we need not calculate the attraction of the cycle, but we must know
the order of the cycle and (on account of the field lines) the unit-quaternion corresponding to
the angle of rotation in the complex case.

7.4 Relation between Quaternion and Complex Fractals

The intersection of the Mandelbrot set with the complex plane (that is, the base plane) is the
corresponding complex Mandelbrot set, and this lies symmetrically around the x-axis (because
the coefficients in our formula are real). The quaternion-Mandelbrot set (in the 3-dimensional
space) is obtained by rotating the complex Mandelbrot set around the x-axis. The boundary of
the Mandelbrot set is thus a rotary symmetric fractal surface with the x-axis as generator, and it
consists consequently of circles around the x-axis. The Julia set associated to a point in the com-
plex plane (that is, of height 0) also consists of circles around the x-axis. But for a point outside
the complex plane the Julia set consists of closed curves or segments of curves lying askew in
relation to the x-axis. In these fractal surfaces the structure is only fractal in one direction: in the
direction orthogonal to this it will have the true character of a curve - a phenomenon we have
seen in the non-complex fractals.
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7.5 The Field Lines

Figure 43: Field lines
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Figure 44: Field lines

The norm of the quaternion z = x + yi + uj + vk is the real number | z| =
√

x2 + y2 +u2 + v2, and
z can be written as the product of the norm and a unit-quaternion (quaternion of norm 1), this
unit-quaternion is the argument of z.

In our case where the fourth coordinate is 0, the argument is a point on the unit-sphere. And the
little circle around one of the points in the cycle, which in the complex case stops the iteration,
must now be replaced by a little sphere, and the field lines are constructed on the basis of reg-
ularly situated domains on this sphere. As such, we can choose the domains that result from a
regularly decomposition of the equator circle and from the projection onto this.

7.5.1 Technical Detail of Calculation

The technique used to draw the field lines is, however, a little complicated. Drawing is done by
working our way down in as large steps as possible, but now it must be examined if a field line
is hit. As the steps initially are large, we risk jumping past the field line, therefore we must (by a
trial iteration) examine if a field line is in our way, and if so, alter the further procedure. If a field
line is in our way, we must go forward in smaller steps, and when it is hit, we must go backwards
and forwards in smaller and smaller steps, in order to find the precise point of intersection with
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the field line. The steps we go down are usually (that is, when we disregard field lines) half of the
estimated distance, and we may now have to reduce the steps.

If we set g (z) = f (z)+ c, and if the order of the attracting cycle is r and if z* is a point in the
cycle, then z* is a fixed point for g (g (...g (z))) (the r-fold composition), and near z* this map has
(in connection with field lines) character of a rotation with the argument β of the quaternion
(d( f ( f (... f (z))))/d z)z∗ = the product of the quaternions f ′(zi ), for the r points in the cycle.

A given direction θ (= quaternion of norm 1) outgoing from z* determines a field line, and this
consists of the points z such that if the argument of zk − z∗ is ψ (zk = the last point in the itera-
tion), thenψβ−k = θ. Therefore we must know the k’th power of a unit-quaternion, and this can
be calculated by this formula:

(x, y,u, v)k = (cos(kκ), t y, tu, t v)

where κ is an angle such that x = cos(κ) and where t is calculated recursively by the following
operation performed k times and starting with t = 0 and i = 0:

t = cos(iκ)+ t x

and
i = i +1

.

Let n be the number of field lines and let t be their relative thickness (a number in the inter-
val [0, 1]). For the point z, we have calculated ψβ−k , which is a unit-quaternion and therefore
corresponds to a point on the unit sphere. As the domains of this determining the field lines are
chosen such that they result from a regular decomposition of the equator circle, the condition
depends only on the argument of the projection of this quaternion on the complex plane. If v is
this angle (chosen in the interval [0, 2π[) divided by 2π, then z belongs to a field line if |v - i/n| <
t/(2n), for one of the integers i = 0, 1, ..., n.

However, as we want to know if a field line is in our way, we do first perform a pre-calculation
which calculates the distance to the boundary and determines the field line in question, and this
is the one having the number i such that |v - i/n| < 1/(2n). We calculate the number d = 2n|v
- i/n| - t. If d is negative, the point z actually belongs to the field line, and the point is coloured
white. Otherwise, we regard d as a measure for the distance to the field line, and we multiply the
calculated step by d, so that the steps become smaller when we are near a field line.

We must find the precise point in our way down where the field line is hit. Therefore we go
backwards and forwards in smaller and smaller steps. We call the actual height h1 and the old
height h2. When we for the first time are inside a field line, we set h3 = h1 and h1 = (h1 + h2)/2,
and calculate again if we are inside the field line. If no, we set h2 = h1 and h1 = (h1 + h3)/2, if yes
we set h3 = h1 and h1 = (h1 + h2)/2. We do this until h2 - h1 < stepmin. The distance to the field
line is then h - h1 ( h is the height of the plane).
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8 History

8.1 Newton

Already in the antiquity it was known, that if the fraction x0 is near pa, then the fraction x1 =
(x0+a/x0)/2 is a better approximation to pa. For if x0 is an approximation to pa that is smaller
than pa, then a/x0 is an approximation to pa that is larger than pa, and conversely, therefore
x1 = (x0 + a/x0)/2 is a better approximation to pa than both x0 and a/x0. We can, of course,
repeat the procedure, and it is very effective: you get an approximation to pa with ten correct
digits, if you start with x0 = 1.5 and apply the procedure three times.

To find the square root of a, is to solve the equation x2 −a = 0, and we have solved this equation
by the iteration x� (x +a/x)/2. And it is this method we must apply for solving an equation, if
we do not have a formula, or if this - after the invention of the computer - seems too laborious to
use.

Figure 45: Newton iteration
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It was Newton who described the general procedure: if f (x) is a (continuous) differentiable
function which intersects the x-axis near x = x0, and we apply the iteration x� x − f (x)/ f ′(x) a
number of times starting in x0, then we get a good approximation to a solution x* of the equation
f (x) = 0 (because we have assumed that f (x) intersects the x-axis, f ′(x) <> 0 near the point x*
where f (x∗) = 0).

The method can be generalized, so that it works for f ′(x∗) = 0, but if f ′(x) converges to for x
converging to x*, as it is the case for f (x) = x1/3 and x* = 0, then the procedure leads away from
the solution.

There are situations where a solution cannot be found by this method, and there can be points
whose sequence of iteration either converges towards a cycle of points (containing more than
one point) or does not converge. This question ought to be studied more closely, advertised the
English mathematician Arthur Cayley in 1879 in a paper of only one page. He was aware, that
the Newton procedure could as well be applied for solving a complex equation f (z) = 0, and
he proposed that we "look away from the realities" and examine what can happen when the
iteration does not lead to a solution. But this proposal was his only contribution to the theory.

8.2 Julia and Fatou

Thirty years passed before anyone took up this question. But then the two french mathemati-
cians Gaston Julia (1893-1978) and Pierre Fatou (1878-1929) published papers where they exam-
ined iteration of general complex rational functions, and they proved all the facts about "Julia"
sets and "Fatou" domains we have used here. Julia and Fatou were of course not able to produce
detailed pictures showing the Julia set for Newton iteration for solving the equation z3 = 1, for in-
stance, but they knew that the Julia set in this case is not a curve. Cayley certainly imagined that
the plane would be divided up by geometrical curves, and if he did so, it was not unforgivable,
for this is namely the case for the so-called weak Newton procedure: this leads more slowly but
more safe to a solution.

We have intimated, that our mean results regarding Julia sets, were known to Julia and Fatou.
This is not quite true, for the fact that the sequences of iteration in the neutral case can go into
annular shaped revolving movements, was first discovered in 1942 by the German mathemati-
cian C.L. Siegel. We have said that these revolving movements can be either polygon or annular
shaped, that they are lying concentrically and that there is a finite cycle which is centre for the
movements. And possibly the reader has wondered: this centre cycle, does it belongs to the
Fatou domain or to the Julia set? We will now answer this question. In the section about field
lines we have defined a complex numberαwhich in the attracting case has norm smaller than 1,
but which in the neutral case has norm 1 and therefore corresponds to an angle (its argument).
When this angle is rational (with respect to 2π), the terminal movements are finite (polygonal,
the parabolic case), and the centre cycle belongs to the Julia set, when the angle is irrational, the
terminal movements are infinite (annular, the Siegel-disc case), and the centre cycle belongs to
the Fatou domain.
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8.3 Mandelbrot

Figure 46: The Mandelbrot set for λz(1− z)
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Figure 47: Section of the above Mandelbrot set

But apart for such few results, not very much happened in this theory before Benoit B. Mandel-
brot (1924-2010) in the late 1970s began his serious study of Julia sets by using computer. It is
Mandelbrot who has coined the word fractal geometry. He had had Julia as teacher (at École
Polytechnique), and around 1964 he began his "varied forays into unfashionable and lonely cor-
ners of the Unknown". But the fractal patterns he first studied were self-similar in the strict sense
of this word, namely invariant under linear transformation. It was first in 1978-79 he began his
study of Julia sets for rational complex functions. He made some print-outs and he studied fam-
ilies of rational complex functions, formed by multiplying the function by a complex parameter
λ. His intention was to let the computer draw a set M of parametersλ for which the Julia set is not
(totally) disconnected (a "fractal dust"). Such a program could be made very simple: he found
two critical points for the function, and plotted the points λ for which the two critical points did
not iterate towards the same cycle. For then there would be at least two Fatou domains, and
therefore the Julia set would not be a dust cloud. He chose functions for which he knew a real
parameter value λ such that the iteration behaved chaotically on some real interval, for then this
λ might belong to his set M.

He began (in 1979) with the family λ(1+ z2)2/(z(z2 − 1)) (having four real and two imaginary
critical points). For λ = 1/4 it behaves chaotically on an interval, and he "felt that in order to
achieve a set having a rich structure, it was best to pick a complicated map (every beginner I
have since then watched operate has taken the same tack)". The picture where λ varied over the
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complex plane, showed a highly structured but very fuzzy "shadow" of the set. A very blotchy
version, but "it sufficed to show that the topic was worth pursuing, but had better be persued in
an easier context".

Then (in 1980) he studied the family λz(1− z) (having critical points 1/2 and ), which for λ = -2
and 4 behaves chaotically on the interval [-2, 2]. He saw two discs of radius 1 and centres in 0 and
2: "Two lines of algebra confirmed that these discs were to be expected here, and that the method
was working. We also saw, on the real line to the right and left of the above discs, the crude
outlines of round blobs which I call "atoms" today. They appeared to be bisected by intervals
known in the Myrberg theory, which encoraged us to go on to increasing bold computations. For
a while, every investment in computation yielded increasing sharply focussed pictures. Helped
by imagination, I saw the atoms fall into a hierarchy, each carrying smaller atoms attached to it".

"After that, however, our luck seemed to break; our pictures, instead of becoming increasingly
sharp, seemed to become increasingly messy. Was this the fault of the faltering Textronix [cath-
ode ray tube ("worn out and very faint")]?". Mandelbrot ran the program on another computer:
"The mess had failed the vanish! In fact, as you can check, it showed signs of being systematic.
We promptly took a much closer look. Many specks of dirt duly vanished after we zoomed in. But
some specks failed to vanish; in fact, they proved to solve into complex structures endowed with
"sprouts" very similar to those of the whole set M. Peter Moldave and I could not contain our
excitement. Some reasons made us redo the whole computation using the equivalent map z�
z2−c, and here the main continent of the set M proved to be shaped like each of the islands! Next,
we focussed on the sprouts corresponding to different orders of bifurcation, and we compared
the corresponding off-shore islands. They proved to lie on the intersection of stellate patterns of
logarithmic spirals! (...) We continued to flip in this fashion between the set M and selected Julia
sets J, and made an exciting discovery. I saw that the set M goes beyond being a numerical record
of numbers of points in limit cycles. It also has uncanny "hieroglyphical" character: including
within itself a whole deformed collection of reduced-size versions of all the Julia sets".

References

Mandelbrot, B.B.: Fractals and the Rebirth of Iteration Theory. In: Peitgen & Richter: The Beauty
of Fractals (1986), pp 151-160 (in this article you can see Mandelbrots first two print-outs of the
last picture).

Mandelbrot, B.B.: Fractal aspects of the iteration of z � λz(1 − z) for complex λ and z. In:
Nonlinear Dynamics, Annals New York Acad. Sciences 357 (1980), pp 249-259.
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9 Postscript

9.1 Julia and Mandlebrot sets broke new ground in 1980s

The Julia and Mandelbrot sets were the first fractals that really amazed the world when they ap-
peared in the 1980s. These pictures displayed patterns that differed entirely from anything pre-
viously known and beyond anyone’s imagination. They could furthermore possess real beauty.
The hitherto known fractal patterns were sets that had more or less interesting mathematical
properties, and when they could be visualized, they could exhibit thought-provoking shapes,
but they were not as impressive as the new types.

9.2 Popularity of Fractal Art

Because of the Julia and Mandelbrot sets - not least the simplicity of the software for drawing
them - the concept of fractal became very popular. This concept has since become extremely
widespread leading on to many varieties of fractal art. This development has revealed an ex-
treme variation in possible patterns. Pictures and animations have been made of great artistic
value or displaying an elaborate piece of mathematical work. However, all the serious work has
been on other things than improving the basic presentation of the Julia and Mandelbrot sets.
Pictures of fractal sets in their "pure" form, without artistic elaboration, do not seem to appeal
to people as much today as they did in the 1980’s and work on improving the basics has slid into
the background.

9.3 Lack of Awareness of flaws in ’standard’ Renderings

Until early 2000 there was little or no progress as regards the basic drawing technique. Until 2003
not a single picture had been made where the boundary was drawn, apart from some pictures of
the usual Mandelbrot set and its Julia sets1. Also the colouring based on the real iteration number
only really works when the cycle is a fixed point, and even there leads to avoidable ’banding’
effects, yet this colouring is in almost universal use, even when the cycle is not a fixed point.
Furthermore, until early 2000, not a single Mandelbrot set had been constructed from two finite
and different critical points.

1 Boundary set renderings, JULIASETS.DK ˆ{HTTP://WWW.JULIASETS.DK/FRACTALS.HTM} (started 2003
and completed 2009)
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Figure 48: Mandelbrot set
constructed from one point
that is not a critical point;
rendered without
boundary and with jumps
in the colouring

Figure 49: Mandelbrot set
constructed using two
different critical points;
shows boundary in the
upper half part and
continuous colouring

The two images above show the opportunity for a more mathematically correct and more aes-
thetically pleasing way to render fractals than the method commonly used. The right hand image
shows the boundary correctly and it does not exhibit the banding effects. Can this opportunity
for improvement really be true? Can it be true, that twenty years after the Julia and Mandelbrot
sets first saw the light of day, only now are technically perfect pictures beginning to turn up?

9.3.1 A possible explanation

The most influential book about Mandelbrot and Julia sets is probably Peitgen & Richter: The
Beauty of Fractals from 1986. In this book you can see the first real pictures of the Mandelbrot
set, because they were drawn by distance estimation and in black-and-white. Mandelbrot saw
exciting patterns when he zoomed down into his set - stellate patterns of logarithmic spirals and
uncanny and "hieroglyphical" reduced-size versions of the Julia sets - but he only see all this, be-
cause his maximum iteration number was low. The right hand picture below, with boundary and
maximum iteration number 10,000 shows how the Mandlebrot set should look. The left picture
is less mathematically precise, using 1,000 iterations, and is not calculating the boundary. If the
left picture were drawn with the same maximum iteration number of 10,000, but still without the
boundary calculation, we would only have seen the mini-mandelbrot visible in the centre of the
right image. The other detail would be ’too fine’ to see.

Figure 50: Without
boundary calculation and
with max iteration number
1,000

Figure 51: With boundary
calculation and with max
iteration number 10,000
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9.3.2 Misconceptions from a Flawed Example Program

The Beauty of Fractals gives an almost correct computer program for the distance estimation
shown in the right image. A possible reason that that method did not gain ground is that the
procedure in this program is seriously flawed: The calculation of zk is performed (and com-
pleted) before the calculation of z ′

k , and not after as it ought to be (z ′
k+1 uses zk , not zk+1). For

the successive calculation of z ′
k , we must know f ′(zk ) (which in this case is 2zk ). In order to

avoid the calculation of zk ( k = 0, 1, 2, ...) again, this sequence is saved in an array. Using this
array, z ′

k+1 = 2zk z ′
k +1 is calculated up to the last iteration number, and it is stated that overflow

can occur. If overflow occurs the point is regarded as belonging to the boundary (the bail-out
condition). If overflow does not occur, the calculation of the distance can be performed. Apart
from it being untrue that overflow can occur, the method makes use of an unnecessary storing
and repetition of the iteration, making it unnecessarily slower and less attractive. The following
remark in the book is nor inviting either: "It turns out that the images depend very sensitively
on the various choices" (bail-out radius, maximum iteration number, overflow, thickness of the
boundary and blow-up factor). Is it this nonsense that has got people to lose all desire for using
and generalizing the method?

9.4 References
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10 References

Almost all the theorems and formulas in this Wikibook can be found in:

• Peitgen & Richter: The Beauty of Fractals, Springer-Verlag 1986 (ISBN 0-387-15851-0).

See also these Wikipedia articles:

• JULIA SET1

• MANDELBROT SET2

• ATTRACTOR3

For the statement in the Postscript, see this article:

• THE SAD FATE OF THE FRACTALS4

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/JULIA%20SET
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/MANDELBROT%20SET
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/ATTRACTOR
4 HTTP://WWW.JULIASETS.DK/FRACTALSANDART.HTM
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11 Terminology

All the definitions are for points, functions, subsets, ... of the plane. We identify the points of the
plane with the complex numbers and with vectors.

accumulation point (or cluster, or limit point) for a set: a point z such that each neighbourhood
of z contains points of the set

boundary of a set: the set of points that are point of accumulation for the set as well as for the
complement of the set

Cauchy-Riemann equations for a differentiable function f (x, y) = fx (x, y)+i fy (x, y) of the plane
into itself: the two equations

∂

∂x
fx = ∂

∂y
fy

and
∂

∂y
fx =− ∂

∂x
fy

,

if they are satisfied, the function is differentiable as a complex function

cardioid: a heart-shaped curve (generated by a fixed point on a circle as it rolls round another
circle of equal radius)

closed set: a set whose complement is an open set

complex number: a "two-dimensional" number, a number of the form (x, y), where x and y are
real numbers, such a pair is usually written x+iy, where x and y are separated by the imaginary
unit i, satisfying i 2 =−1

convergence: a sequence zi ( i = 0, 1, 2, ...) converges to the point z*, if for each neighbourhood
U of z*, there exists a number N such that zi belongs to U for i > N. The sequence converges
to the finite cycle C of order r, if for each point z* of the cycle the sequence zn+i r (for some n)
converges to z*

countabel set: a set that can be put into a ono-to-one correspondance with the natural numbers,
the rational numbers is a countabel set

critical point of a complex differentiable function f(z): a zero for the derivative f’(z)

cycle: a finite set of points in the plane, it can contain the point infinity, its number of elements
is called its order

derivative (or differential quotient) of the complex function f(z) in the point z*: the number
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f ′(z∗) = (d f (z)/d z)z=z∗ = lim
h→0

( f (z ∗+h)− f (z∗))/h

(h complex) if it exists

determinant of the 2x2 matrix {ai j }: the real number |{ai j }| = a11a22 −a12a21

holomorphic (or analytic) function: a complex function defined on an open set of the plane,
that is complex differentiable in every point of the open set, such a function possesses derivatives
of all orders

interior point of a set: a point z such that a neighbourhood of z is contained in the set

iteration: repeated operation with the same function f(z): z1 = f (z0), z2 = f (z1), z3 = f (z2), ...

lim: if the sequence an ( n = 0, 1, 2, ...) converges to the number a, we write limn →∞ an = a, if
the value of the function f(z) converges to a for z converging to z*, we write limn →∞ f(z) = a

matrix: a rectangular array of numbers {ai j } ( i = 1, ..., m, j = 1, ..., n)

neighbourhood of a point z: a set containing a (small) circle with centre z

Newton iteration for an equation g(z) = 0: the iteration function f (z) = z − g (z)/g ′(z), if the
sequence of iteration generated by a point converges to a fixed point, then this point is a solution
to the equation g(z) = 0

norm of a complex number z = x+iy: the real number |z| = p(x2 + y2) 0

open set a set all points of which are interior points

partial derivative with respect to x of the function f(z) in the point z: the number

∂ f (z)/∂x = l i mh→0( f (z +h)− f (z))/h

where h is real (if it exists)

partial derivative with respect to y of the function f(z) in the point z: the number

∂ f (z)/∂y = l i mh→0( f (z + i h)− f (z))/h

where h is real (if it exists)

polynomial of degree n: a function of the form a0 +a1z +a2z2 + ...+an zn

rational function: a function of the form p(z)/q(z), where p(z) and q(z) are polynomials

scalar product of the two vectors v1 = {x1, y1} and v2 = {x2, y2}: the real number v1 ∗v2 = x1x2 +
y1 y2 = |v1||v2|cos(θ), where θ is the angle between v1 and v2

transcendental function: a function that cannot be constructed in a finite number of steps
from elementary functions and their inverses, e.g. si n(z) = z − z3/3!+ z5/5!− z7/7!+ ..., where n!
= 1x2x3x...xn

uncountabel set: a set that is not countable, such a set (belonging to the plane) can be put into
a one-to-one correspondance with the real numbers
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Rules for operation with complex numbers

i2 = -1

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = (x1x2 - y1y2) + i(x1y2 + x2y1)

(x1 + iy1)/(x2 + iy2) = ((x1x2 + y1y2) + i(-x1y2 + x2y1))/ (x2
2 + y2

2)

The conjugate number to z = x + i y is z− = x − i y , that is, the reflection of z in the x-axis. The
norm of z is the real number |z| = p(x2 + y2). We have |z|2 = zz−. From this, we can derive the
rule for division: z/w = zw−/(w w−) = zw−/|w |2.

A complex number z = x + iy can be written

z = r (si n(θ)+ i cos(θ))

where r is the norm of z:

r = |z| = p(x2 + y2)

and where the angle θ is the argument arg(z) of z:

θ

= arctan(y/x) for x > 0

θ

= arctan(y/x) + π for x < 0

arg(z) is multivalued: arg(z) = θ+n2πi , for every integer n.

The point si n(θ)+ i cos(θ) (lying on the unit circle) is also denoted e iθ, and we define the expo-
nential function exp(z) by

exp(z) = ez = ex+i y = ex e i y

The sinus and cosinus relations can be written

cos(θ1 +θ2)+ i si n(θ1 +θ2) = (cosθ1 + i si nθ1)(cosθ2 + i si nθ2)

and from this we see that ez has the exponential property for z imaginary:

e i (θ1+θ2) = e iθ1 e iθ2

The logarithm function log(z) is defined as the inverse function to exp(z): log(z) = w if exp(w)
= z. We have log(z) = log|z| + i arg(z). log(z) is multivalued: log (z) = w +n2πi , for every integer
n.
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For a positive real number a and a complex number z, we define az = e log (a)z . For a complex
number z, the power zn is only defined when the exponent n is an integer.

Differentiable complex function

A complex function defined on an open domain of the plane is called holomorphic (or analytic),
if it is differentiable in every point of this domain. If that is so, the derived function f’(z) is also
differentiable in every point (this theorem is not true for real functions). We have the usual rules
for differentation:

d( f (z)+ g (z))/d z = d f (z)/d z +d g (z)/d z

d( f (z)g (z))/d z = (d f (z)/d z)g (z)+ f (z)(d g (z)/d z)

(d( f (g (z))/d z)z∗ = (d f (z)/d z)g (z∗)(d g (z)/d z)z∗

d zn/d z = nzn−1 ( n integer)

d az /d z = log (a)az ( a positive real number)

d(exp(z))/d z = exp(z)

d(log (z))/d z = 1/z

From these rules, we can derive all we need, for instance:

d( f (z)−1)/d z =− f ′(z)/ f (z)2

d(log ( f (z)))/d z = f ′(z)/ f (z)

For the computer it is easy to find f ’(z): f ’(z) = (f(z+h) - f(z))/h for h = 10−9, for instance.

The derivative of a function into the real numbers

The real function f(z) on a domain of the plane, is differentiable in the point z, if

limt → 0 (f(z + th) - f(z))/t

(t real) exists for every complex number h, and if the hereby defined function D f (z)(h) from the
complex numbers (h) into the real numbers satisfies D f (z)(h1+h2) = D f (z)(h1)+D f (z)(h2). As
we also have D f (z)(th) = tD f (z)(h), for t real, this mapping is linear. It is called the derivative
of f(z) in the point z.

The linearity means that D f (z) is determined by the two real numbers D f (z)(1) and D f (z)(i ).
These are denoted by ∂f(z)/∂x and ∂f(z)/∂y, respectively, and are called the partial derivatives
with respect x and y. We have for h = hx + i hy :

Df(z)(hx + ihy) = (∂f(z)/∂x)hx + (∂f(z)/∂y)hy

This number is the scalar product of the vectors (∂f(z)/∂x, ∂f(z)/∂y) and (hx ,hy ), so, if we regard
Df(z) and h as vectors, we can write:

Df(z)(h) = Df(z)*h.

The vector Df(z) is called the gradient of f(z) in the point z: the direction of Df(z) is the direction
of the most rapid growth and the length of Df(z) is the growth of f(z) in this direction.

If ∂f(z)/∂x and ∂f(z)/∂y exist in a neighbourhood of z* and are continuous in z*, then f(z) is
differentiable in z*.
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The derivative of a mapping into the plane

If f(z) is a mapping from a domain of the plane into the plane, we can write f (z) = fx (z)+ i fy (z),
where fx (z) and fy (z) are real functions. f(z) is called differentiable in the point z (as real
function), if both fx (z) and fy (z) are differentiable in z. If that is so, we have a linear mapping
Df(z) from the complex plane into itself given by D f (z)(h) = D fx (z)(h)+ i D fy (z)(h). This linear
mapping is called the derivative of f(z) in the point z.

The linearity means that Df(z) is determined by the two complex numbers Df(z)(1) (= ∂fx/∂x +
i∂fy/∂x) and Df(z)(i) (= ∂fx/∂y + i∂fy/∂y), and we have:

Df(hx + ihy) = ((∂fx/∂x)hx + (∂fx/∂y)hy) + i((∂fy/∂x)hx + (∂fy/∂y)hy)

In matrix notation, this means that Df(z) is the linear mapping from the plane into itself given
by

[
∂ fx /∂x ∂ fx /∂y
∂ fy /∂x ∂ fy /∂y

]
×

[
hx

hy

]

That f(z) is differentiable as a complex function, means that this multiplication corresponds to
multiplication by the complex number f ’(z), and this is the case precisely when the Cauchy-
Riemann equations

∂

∂x
fx = ∂

∂y
fy

and
∂

∂y
fx =− ∂

∂x
fy

are satisfied - these two number are the real and the imaginary part of f ’(z).

Matrix calculus

A matrix is a rectangular array of real numbers. We will only need matrices of side 1 or 2. That
is, either a 2x2-matrix (quadratic matrix):

[
a b
c d

]

or a 1x2-matrix (a row-matrix): { a, b}, or a 2x1-matrix (a column-matrix):

[
a
b

]

or a 1x1-matrix: { a}, identified with the number a.

The transpose of a matrix, is the matrix formed by reflection in the diagonal. This operation is
denoted by *, and it means that we can denote a column-matrix by { a, b}* - the transpose of the
row-matrix { a, b}.
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Two matrices A and B of the same type can be added by adding the number on the correspond-
ing places. We multiply a matrix by a real number by multiplying each of its elements by this
number.

Two matrices A og B, where the width of A is equal to the height of B can be multiplied: the
result is a matrix AB whose height is the height of A and whose width is the width of B:

[
a b
c d

]
×

[
α β

γ δ

]
=

[
aα+bγ aβ+bδ
cα+dγ cβ+dδ

]
[

a b
c d

]
×

[
α

β

]
=

[
aα+bβ
cα+dβ

]
The product { a, b}{α,β}* is the number aα+ bβ (the scalar product of the vectors { a, b} and
{α,β}) and the product { a, b}*{α,β} is the 2x2-matrix

[
aα aβ
bα bβ

]
The determinant of the quadratic matrix A =

[
a b
c d

]
is the real number det(A) = |A| = ad - bc. The unit-matrix I is

[
1 0
0 1

]

The inverse matrix to the 2x2-matrix A, is the 2x2-matrix A−1 satisfying A A−1 = A−1 A = I . It is
given by:

[
d −b
−c a

]
divided by | A| - it does therefore only exist for | A| <> 0.

The points of the plane can be identified with the column matrices { x, y}*. Therefore, a 2x2-
matrix A determines a linear mapping of the plane into itself: { x, y}*� A{ x, y}*. It is injective
(and then also bijective) if | A| <> 0. If that is so, the number | A| is the area of the image of the
unit-square (if | A| is negative, the mapping changes orientation). Likewise, the vectors of the
plane can be identified with the row-matrices { a, b}. A row-matrix { a, b} determines a linear
mapping of the plane into the real numbers: { x, y}*� { a, b}{ x, y}* = ax + by (the scalar product
of the vectors { a, b} and { x, y}). The complex number z = x + iy can be identified with the
column-matrix { x, y}* and with the 2x2-matrix

[
x −y
y x

]
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The mapping of the plane into itself given by this matrix, is the multiplication by the complex
number z.
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12 Computer programs

We will show two ways of making a program that can draw a Mandelbrot set where the iterations
are towards : a program where all is done from the ground, but which does nothing more than
drawing a single picture, and a program where you can do all you desire (zoom, alter colouring
and render as file), but where these facilities are handed over to another program, namely Ultra
Fractal.

12.1 A single picture

Figure 52: Section of the Mandelbrot set for z2 +0.009/z + c

Let us make a program that is as simple as possible: it draws a single picture, and does nothing
more (when it has done its work it closes). It was originally written in assembly language, but
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here we write it in pseudo-code. It consists of two parts: the drawing procedure and the colour
scale.

We draw a section of the Mandelbrot set for the family f (z) = z2 + p
z + c , for p = 0.009. We let the

size of the window be 800x600 pixels, and we imagine that the section has its lower left corner in
the point with coordinates (ax, ay) and that is has width h. We have f ′(z) = 2z − p

z2 , so that the
finite critical point we need, is solution to the equation z3 = p/2. We choose the real solution cri
= (p/2)1/3.

The drawing procedure

p = 0.009

cri =
(p/2)1/3

r = 1.0E200 (square of the bail-out radius)

u = log(log(r))

v = 1/log(2) (2 is the degree of the rational function)

ax = -0.7028233689263 (x-coordinate of lower left corner)

ay = 0.1142331238418 (y-coordinate of lower left corner)

h = 0.0092906805859 (width of the section)

g = h / 800

m = 850 (maximum iteration number)

thick = h * 0.0005 (thickness of the boundary)

dens = 24.9 (density of the colours)

disp = 432.0 (displacement of the colour scale)

for i = 0 to 799 do

begin

cx = ax + i * g (x-coordinate of pixel (i, j))

for j = 0 to 599 do

begin

cy = ay + j * g (y-coordinate of pixel (i, j))

x = cri

y = 0

xd = 0

yd = 0

f = 0

n = 0
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while (n < m) and (f < r) do

begin

n = n + 1

x1 = x * x - y * y

y1 = 2 * x * y

f = x * x + y * y

x2 = 2 * x - p * x1 / (f * f)

y2 = 2 * y + p * y1 / (f * f)

temp = xd

xd = x2 * xd - y2 * yd + 1

yd = x2 * yd + y2 * temp

fd = xd * xd + yd * yd

x = x1 + p * x / f + cx

y = y1 - p * y / f + cy

f = x * x + y * y

end

if (n = m) or (log(f) * sqrt(f) < thick * sqrt(fd)) then

setpixel(i, 599 - j, 0)

else

begin

s = n - v * (log(log(f)) - u)

n = round(dens * s + disp) mod 720

col = paletteRGB(col1[n], col2[n], col3[n])

setpixel(i, 599 - j, col)

end

end

end

Explanation

We have set c = cx + i c y , z = x + i y , z ′ = xd + i yd and x1+ i y1 = (x + i y)2, and we have used that
1/z = z−/|z|2.

The successive calculation of the derivative z’ is xd + i yd = (x2+ i y2)∗ (xd + i yd)+ 1, where
x2+ i y2 = 2∗ (x + i y)−p ∗ (x1− i y1)/( f ∗ f ) and f = x2 + y2. The next point in the iteration is
x + i y = (x1+ i y1)+p ∗ (x − i y)/ f + (cx + i c y). The distance function is
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log(pf )*pf/pfd (= log(f)*pf/(2*pfd))

for the last z-value, here f = x2 + y2 and f d = xd 2 + yd 2. The number in the interval [0,
1[ to be subtracted from the iteration number (in order to get the real iteration number), is
log (log (|z|)/l og (r ))/log (2) = v ∗ (l og (l og ( f ))−u), for the last z, here v = 1/log (2) and u =
log (log (r )).

paletteRGB(r, g, b) is the integer indexing the colour with RGB-values (r, g, b), 0 gives black. col,
col2 and col3 are the arrays from 0 to 719 of integers from 0 to 255 constructed in the next section.

The colour scale

A colour is immediately (in the computer) given by its composition of the three primary colours
red, green and blue, and their shares are measured in whole numbers between 0 and 255. This
triple of numbers is the set of RGB values of the colour. The colours correspond accordingly to
the entire points in a cube with side length 256, and we construct our cyclic colour scala by going
regularly along an ellipse in this cube. An ellipse in the space is determined by:

a centre with coordinates (a, b, c)

a major axe rmaj and a minor axe rmin

two angles angle g and h determining the direction of the plane of the ellipse

an angle q determining the direction of the ellipse in this plane

u = cos(g * pi / 180) * cos(h * pi / 180) {(u,v,w) is a unit vector orthogonal to the plane}

v = cos(g * pi / 180) * sin(h * pi / 180)

w = sin(g * pi / 180)

x = -a {(x,y,z) is a vector in the plane}

y = -b

z = a * u / w + b * v / w

e = sqrt(sqr(x) + sqr(y) + sqr(z))

x1 = x / e {the unit vector corresponding to (x,y,z)}

y1 = y / e

z1 = z / e

x2 = v * z1 - w * y1 {the unit vector in the plane orthogonal to (x1,y1,z1)}

y2 = w * x1 - u * z1

z2 = u * y1 - v * x1

e = cos(q * pi / 180)

f = sin(q * pi / 180)

x1 = e * x1 + f * x2 {the unit vector in the plane in the direction of the angle q}

y1 = e * y1 + f * y2

z1 = e * z1 + f * z2
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x2 = v * z1 - w * y1 {the unit vector in the plane orthogonal to this direction}

y2 = w * x1 - u * z1

z2 = u * y1 - v * x1

for i = 0 to 719 do

begin

e = rmaj * cos(i * pi / 360)

f = rmin * sin(i * pi / 360)

col1[i] = round(a + e * x1 + f * x2) {the three coordinates of the point on the ellipse}

col2[i] = round(b + e * y1 + f * y2)

col3[i] = round(c + e * z1 + f * z2)

end

In the picture we have: (a, b, c) = (176, 176, 176), rmaj = rmin = 88, g = 146, h = -32, q = 0.

12.2 Ultra Fractal

Ultra Fractal is a program for drawing fractals where the user to a great extent can write his own
formula programs and where the main program performs all that is common for all the fractal
procedures, that is, the procedure of going from pixel to pixel, zooming, colouring, production
of a large picture as a file. Your effort is reduced to a minimum, and apart from pictures that
cannot be drawn regularly from pixel to pixel - attractors and landscapes, for instance - you can
do all you desire: non-complex functions, quaternions, ... You can operate directly with complex
numbers.

First you should download a free trial-version of the program and learn how it works. Then you
should see the article MAKE ATTRACTIVE PICTURES OF MANDELBROT AND JULIA SETS WITH ULTRA

FRACTAL1, and download the (free) programs from this site to be run with Ultra Fractal.

For the drawing two programs have to be combined: a formula program and a colouring pro-
gram. In the formula program is a section called loop, and when this loop has done its work, the
number of iterations and the last value of the complex number z are transferred to the colouring
program, which calculates the colour from these two numbers. However, Ultra fractal is designed
to "all" types of fractals, and unfortunately the Julia and Mandelbrot sets do not quite fit into this
form: for iterations towards cycles, the iteration has to be continued in order to find the order
and the attraction of the cycle, and it is not the last value of z in the sequence we do use for
the colour. Therefore we replace this loop by a fictive loop (which only runs one time) and per-
form all the operations in the section init. This implies that we cannot use the default colouring
program of Ultra Fractal, we must write a new colouring program.

Another thing you must be aware of, is that in Ultra Fractal the norm |z| of the complex number
z is the square of its length: |z| = x2 + y2.

1 HTTP://WWW.JULIASETS.DK/UFP.HTM
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Figure 53: Section of the Mandelbrot set for z2/2+0.26∗ z4 + c

We will show a program that draws the Mandelbrot set for the family f (z) + c, where f (z) is
a polynomial whose first two terms are zero, so that it begins with z2 or a larger power of z,
because we then can take 0 as the finite critical point.

The two programs can be copied and inserted in an empty formula and colouring document,
respectively. We have inserted the polynomial z2/2+ p ∗ z4 + c of degree 4, where p is a real
parameter. The picture shows a section of the Mandelbrot set for p = 0.26.

The formula program

Mandelbrot {

global:

float p = 0.26 ;parameter

float deg = 4 ;degree of the polynomial

float v = 1 / log(deg)

float g = 10 * log(10)

float r = exp(g) ;square of the radius of the bail-out circle

u = log(g)
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float tb = sqr(@thick / (1000 * #magn)) ;for the thickness of the boundary

float h = 1 / (1500 * #magn * @width) ;a very small real number

init:

complex z = 0 ;critical point

complex zd = 0 ;the sequence of the derivatives

complex z1 = 0

float w = 0

int n = 0

while n < #maxit && |z| < r

n = n + 1

z1 = zˆ2/2 + p*zˆ4

zd = ((z+h)ˆ2/2 + p*(z+h)ˆ4 - z1) * zd / h + 1

z = z1 + #pixel

endwhile

if n == #maxit || sqr(log(|z|)) * |z| < tb * |zd|

w = -1

else

w = n - v * (log(log(|z|)) - u)

endif

;begin fictive loop

z = 0

n = 0

loop:

n = n + 1

z = z + #pixel

if n == 1

z = w

endif

bailout:

n < 1

;end fictive loop

default:
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title = "Mandelbrot"

maxiter = 100

param thick

caption = "boundary"

default = 1.0

endparam

param width

caption = "width"

default = 640

endparam

}

Explanation

We have set the square of the radius r of the bail-out circle to 1010, and set the thickness of the
boundary to "thick/(1000 * #magn)", so that it becomes thinner when we zoom in.

We have calculated the derivative f (z) by ( f (z +h)− f (z))/h for a small number h, namely "h =
1/(1500*#magn*width)", where "width" is the width of the picture. The default value is the width
of the window in pixels (here set to 640), but if you draw a large picture, you should enter the
width of this.

The successive calculation of the derivative z ′
k+1 = f ′(zk )z ′

k +1 is "zd = (f(z+h) - f(z)) * zd / h +
1". The next iteration zk+1 = f (zk )+c is "z = f(z) + #pixel". The square of the distance estimation
log |zk | ∗ |zk |/|z ′

k | is "sqr(log(|z|)) * |z| / |zd|". The number to be subtracted from the iteration
number log (log (|zk |)/l og (r ))/log (deg ) is "v * (log(log(|z|)) - u)", where "v = 1/log(deg)" and "u
= log(log(r))".

The final complex number z (to be transferred to the colouring program), which here actually
is real, is set to -1, when the point belongs to the Mandelbrot set or to the boundary, otherwise
it is set to the real iteration number. It is transferred to the colouring program, which we have
called Gradient, as #z, and is here set equal to the real number s. When s is negative the colour
is set to "#solid", otherwise we multiply s by a number "dens" determining the density, and add
to this number a number "disp" determining the displacement of the scale, and as we want this
displacement to be a per cent, we divide the result by 100: "u = (dens * s + disp) / 100". In Ultra
Fractal the colours of the cyclic colour scales are indexed by the real numbers in the interval [0,
1[, and we let this number, "#index", be the non-integral part of the number u: "#index = u -
trunc(u)".

The colouring program

Gradient {

final:

float s = real(#z)

float u = 0
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if s < 0

#solid = true

else

u = (@dens * s + @disp) / 100

#index = u - trunc(u)

endif

default:

title = "Gradient"

param disp

caption = "displace"

default = 0

endparam

param dens

caption = "density"

default = 1.0

endparam

}
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13 Favourite formulas

If you insert a random complex rational function in a fractal program, it is very unlikely that you
will find an interesting locality in the Mandelbrot set. But sometimes you will witness a startling
spectacle when you zoom in. And this is usually where two domains of different structures meet
each other.

If you come across an interesting formula, then let the rest of us see it. You can here write the
formula and the coordinates of the locality, and show a picture. You should also state the critical
points, however you can neglect this, if you use and a real point of smallest numerical value, or
if you (in case of iterations towards finite cycles) use two conjugate complex numbers of largest
distance.

You should fell free to remove formulas that clearly have been surpassed by others.

z2/2+ z4/4+ c

c = (0.7, 1.3)

1− z2 + z5/(2+4z)+ c

c = (-0.163, 0.085)

Figure 54: The Mandelbrot
set for z2/2+ z4/4+ c

Figure 55: The Mandelbrot
set for 1−z2+z5/(2+4z)+c
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