Construction Proof for $\sin (\alpha+\beta)=\ldots$ and

 $\cos (\alpha+\beta)=\ldots$Prove by construction that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$ and $\cos \alpha+\beta=\cos \alpha \cos \beta-\sin \alpha \sin \beta$, if α and β are positive acute angles.

Although this proof is for the case when $0^{\circ}<\angle \alpha+\angle \beta$ and $\angle \alpha$ and $\angle \beta$ are both positive, it can be extended to any $\angle \alpha$ and $\angle \beta$.

Angle α is in the standard position. Angle β is added to angle α. The proof is divided into two cases.
Case 1: $0^{\circ}<\angle \alpha+\angle \beta \leq 90^{\circ}$

Figure 1: $0^{\circ}<\angle \alpha+\angle \beta \leq 90^{\circ}$

Let P be any point on the terminal side of $\angle \alpha+\angle \beta$. Draw $P A$ perpendicular to $O X$. Draw $P B$ perpendicular to the terminal side of $\angle \alpha ; B C$ perpendicular to $O X$; and $B D$ perpendicular to $P A$. Line $O B$ intersects line $P A$ at point E.

We now have to prove that $\angle \alpha=\angle A P B$.
By vertical angles, $\angle A E O=\angle P E B$. By construction, $\angle P A O$ and $\angle P B O$ are both right angles. Since the angles of a triangle sum to $180^{\circ}, \angle A O E$ in $\triangle A O E$ is equal to $\angle E P B$ in $\triangle E P B$; therefore $\angle \alpha=\angle A P B$.

The rest of the proof consists of basic definitions and algebra:

$$
\begin{aligned}
\sin (\alpha+\beta)= & \frac{A P}{O P}=\frac{A D+D P}{O P}=\frac{C B+D P}{O P}=\frac{C B}{O P}+\frac{D P}{O P} \\
& =\left[\frac{C B}{O B} \times \frac{O B}{O P}\right]+\left[\frac{D P}{B P} \times \frac{B P}{O P}\right]
\end{aligned}
$$

By relating the constructed figure to the last expression in the above equality, we can see that:

$$
\begin{array}{ll}
\text { - } \frac{C B}{O B}=\sin \alpha & \text { • } \frac{O B}{O P}=\cos \beta \\
\text { - } \frac{D P}{B P}=\cos \alpha & \text { - } \frac{B P}{O P}=\sin \beta
\end{array}
$$

Therefore $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.
For the cosine formula:

$$
\begin{aligned}
\cos (\alpha+\beta)= & \frac{O A}{O P}=\frac{O C-A C}{O P}=\frac{O C-D B}{O P}=\frac{O C}{O P}-\frac{D B}{O P} \\
& =\left[\frac{O C}{O B} \times \frac{O B}{O P}\right]-\left[\frac{D B}{B P} \times \frac{B P}{O P}\right]
\end{aligned}
$$

Then:

$$
\text { - } \frac{O C}{O B}=\cos \alpha \quad \text { - } \frac{O B}{O P}=\cos \beta
$$

$$
\text { - } \frac{D B}{B P}=\sin \alpha \quad \text { - } \frac{B P}{O P}=\sin \beta
$$

and so $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$.

Case 2: $90^{\circ}<\angle \alpha+\angle \beta<180^{\circ}$

Figure 2: $90^{\circ}<\angle \alpha+\angle \beta<180^{\circ}$

The figure for Case 2 looks different from the figure for Case 1 but is contstructed in essentially the same way. Note that line $O B$ no longer intersects line $P A$ and that point E now lies on line $O X$.

In this case we have to prove that $\angle \alpha=\angle A P E$. We start by showing that $\triangle C O B \sim \triangle C B E \sim \triangle A P E$.

$$
\begin{array}{ll}
\angle O B C+\angle C B E=90^{\circ} & \text { By construction. } \\
\angle C E B+\angle C B E=90^{\circ} & \text { Sum of acute angles in } \triangle E C B .
\end{array}
$$

$$
\angle O B C=\angle C E B
$$

$\triangle \mathrm{s} C O B$ and $C B E$ have two angles equal and are therefore similar. It is obvious from Figure 2 that $\triangle C B E \sim \triangle A P E$. Then it follows that $\angle \alpha=\angle C B E=\angle A P E$.

The algebra for proving the two formula is then similar to that of Case 1.

Reference

Frank Ayres Jr. Schaum's Outline of Theory and Problem of Trigonometry. The McGraw-Hill Companies, Inc., New York, 3rd edition, 1999. See p. 102.

