An Inequality for the Sum of Divisors Function

Choe Ryong Gil
November 21, 2011

In this paper we will consider one inequality on the sum of divisors function. This inequality is closely related with the Robin's inequality.

As in the theorem 1 of the paper [1], we suppose that $n=q_{1}^{\lambda_{1}} \cdot q_{2}^{\lambda_{2}} \cdots q_{m}^{\lambda_{m}}$ is the prime factorization of n, where $q_{1}, q_{2}, \cdots q_{m}$ are distinct primes and $\lambda_{1}, \lambda_{2}, \cdots \lambda_{m}$ are non-negative integers. We assume $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m} \geq 1$ here, too. Let $p_{1}=2, p_{2}=3, p_{3}=5, \cdots, p_{n}, \cdots$ be the consecutive primes. We will choose $p_{m} \geq 5$ arbitrarily and fix it. We put $r_{0}(n)=p_{1}^{\lambda_{1}} \cdot p_{2}^{\lambda_{2}} \cdots p_{m}^{\lambda_{m}}$. Then by the theorem 1 of the paper [2], there exist the optimum points $\bar{\lambda}_{0}=\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \cdots, \lambda_{m}^{0}\right) \in R^{m}$ in m-dimensional real space R^{m} of the function

$$
H(\bar{\lambda})=H\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)=\frac{\exp \left(\exp \left(e^{-\gamma} \cdot F(\bar{\lambda})\right)\right)}{p_{1}^{\lambda_{1}} \cdot p_{2}^{\lambda_{2}} \cdots p_{m}^{\lambda_{m}}},
$$

where

$$
F(\bar{\lambda})=F\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)=\prod_{i=1}^{m} \frac{1-p_{i}^{-\lambda_{i}-1}}{1-p_{i}^{-1}},
$$

and $\gamma=0.577 \cdots$ is Euler's constant $([4,5])$.

We have
Theorem. There exists a constant $1 \leq c_{0}<+\infty$ such that for any $n \geq 2$ we have

$$
\sigma(n) \leq e^{\gamma} \cdot n \cdot \log \log \left(c_{0} \cdot n \cdot \exp (\sqrt{\log n} \cdot \exp (\sqrt{\log \log (n+1)}))\right)
$$

Proof. We put

$$
G(n)=\frac{\left(\exp \left(\exp \left(e^{-\gamma} \cdot \sigma(n) / n\right)\right)\right) / n}{\exp (\sqrt{\log n} \cdot \exp (\sqrt{\log \log (n+1)}))}
$$

There are two steps for the proof of the theorem.
(1) The function $G(n)$ has the following properties.

First, For any $n \in S(\bar{\lambda}, m)([1])$ it holds that $G(n) \leq G\left(r_{0}(n)\right)$.
In fact, it is clear by the theorem 1 and the theorem 2 of the paper [1].
Second, for $n=p_{1}^{\lambda_{1}} \cdot p_{2}^{\lambda_{2}} \cdots p_{m}^{\lambda_{m}}$ we put $G(n)=G(\bar{\lambda})=G\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)$. Then there exist $\bar{\alpha}_{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \cdots \alpha_{m}^{0}\right) \in R^{m}$ such that for any $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right) \in R^{m}$ we have $G(\bar{\lambda}) \leq G\left(\bar{\alpha}_{0}\right)$. This is also clear by the theorem 1 of the paper [2]. And for the optimum points $\bar{\alpha}_{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \cdots \alpha_{m}^{0}\right) \in R^{m}$ of the function $G(\bar{\lambda})$, such the results as in the theorem 2 and the theorem 3 of the paper [2] hold.

Also for any $n \geq 2$ we have $G(n) \leq H(n)=\left(\exp \left(\exp \left(e^{-\gamma} \cdot \sigma(n) / n\right)\right)\right) / n$.
Finally, The every member $\alpha_{i}^{0}(i=1, m)$ of the optimum points $\left\{\alpha_{1}^{0}, \alpha_{2}^{0}, \cdots \alpha_{m}^{0}\right\}$ of the function $G(\bar{\lambda})$ is not larger than $\lambda_{i}^{0}(i=1, m)$ of one of the function $H(\bar{\lambda})$, namely, for any $i(1 \leq i \leq m)$ it holds that $\alpha_{i}^{0} \leq \lambda_{i}^{0}$. In fact, by the theorem 2 of [2], for the function $H(\bar{\lambda})$ it holds that

$$
\begin{aligned}
& p_{1}^{\lambda_{1}^{0}+1}=p_{2}^{\lambda_{2}^{0}+1}=\cdots=p_{k}^{\lambda_{k}^{0}+1}= \\
& \quad=\left(e^{-\gamma} F\left(\bar{\lambda}_{0}\right)\right) \cdot \exp \left(e^{-\gamma} F\left(\bar{\lambda}_{0}\right)\right)+1(1 \leq i \leq k) .
\end{aligned}
$$

Similarly, for the function $G(\bar{\lambda})$ it holds that

$$
\begin{aligned}
& p_{1}^{\alpha_{1}^{0}+1}=p_{2}^{\alpha_{2}^{0}+1}=\cdots=p_{k}^{\alpha_{k}^{0}+1}= \\
& \quad=\left(e^{-\gamma} F\left(\bar{\alpha}_{0}\right)\right) \cdot \exp \left(e^{-\gamma} F\left(\bar{\alpha}_{0}\right)\right) \cdot\left(\frac{1}{1+\Psi(n)}\right)+1(1 \leq i \leq k),
\end{aligned}
$$

where

$$
\begin{aligned}
& \Psi(n)=\frac{\exp (\sqrt{\log \log (n+1)})}{2 \cdot \sqrt{\log n}}+ \\
& +\frac{\exp (\sqrt{\log \log (n+1)})}{2 \cdot \sqrt{\log \log (n+1)}} \cdot \frac{\sqrt{\log n}}{\log (n+1)} \cdot\left(\frac{n}{n+1}\right) \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$

Hence for any $i(1 \leq i \leq m)$ we have $\alpha_{i}^{0} \leq \lambda_{i}^{0}$ and, in particular, we have

$$
F\left(\bar{\alpha}_{0}\right)=\prod_{i=1}^{m} \frac{1-p_{i}^{-\alpha_{i}^{0}-1}}{1-p_{i}^{-1}} \leq \prod_{i=1}^{m} \frac{1-p_{i}^{-\lambda_{i}^{0}-1}}{1-p_{i}^{-1}}=F\left(\bar{\lambda}_{0}\right) .
$$

(2) We put

$$
D_{m}=G\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \cdots, \alpha_{m}^{0}\right)
$$

and

$$
\left\{\begin{array}{l}
n_{0}=p_{1}^{\alpha_{1}^{0}} p_{2}^{\alpha_{2}^{0}} \cdots p_{k}^{\alpha_{k}^{0}} \cdot p_{k+1}^{1} \cdots p_{m}^{1}, \quad n_{0}^{\prime}=n_{0} \cdot p_{m}^{-1} \\
\bar{\alpha}_{0}^{\prime}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \cdots, \alpha_{m-1}^{0}\right) \in R^{m-1} \\
D_{m-1}^{\prime}=G\left(\bar{\alpha}_{0}^{\prime}\right)=G\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \cdots, \alpha_{m-1}^{0}\right)
\end{array}\right.
$$

In this connection, we put

$$
D_{m-1}=\max _{\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{m-1}\right) \in R^{m-1}} G\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{m-1}\right) .
$$

Then it is clear that $D_{m-1}^{\prime} \leq D_{m-1}$ and

$$
\begin{aligned}
& \log \frac{D_{m}}{D_{m-1}^{\prime}}=\left(\exp \left(e^{-\gamma} \cdot F\left(\bar{\alpha}_{0}\right)\right)-\exp \left(e^{-\gamma} \cdot F\left(\bar{\alpha}_{0}^{\prime}\right)\right)\right)- \\
& \quad-\left(\log n_{0}+\sqrt{\log n_{0}} \cdot \exp \left(\sqrt{\log \log \left(n_{0}+1\right)}\right)\right)+ \\
& \quad+\left(\log n_{0}^{\prime}+\sqrt{\log n_{0}^{\prime}} \cdot \exp \left(\sqrt{\log \log \left(n_{0}^{\prime}+1\right)}\right)\right)= \\
& \quad=\exp \left(e^{-\gamma} \cdot F\left(\bar{\alpha}_{0}^{\prime}\right)\right)\left(\exp \left(e^{-\gamma} \cdot F\left(\bar{\alpha}_{0}^{\prime}\right) \cdot \frac{1}{p_{m}}\right)-1\right)-\left(\log p_{m}\right)- \\
& - \\
& \left(\sqrt{\log n_{0}} \cdot \exp \left(\sqrt{\log \log \left(n_{0}+1\right)}\right)-\sqrt{\log n_{0}^{\prime}} \cdot \exp \left(\sqrt{\log \log \left(n_{0}^{\prime}+1\right)}\right)\right) .
\end{aligned}
$$

By the theorem 4 of the paper [3] we have

$$
\begin{aligned}
& \exp \left(e^{-\gamma} \cdot F\left(\bar{\alpha}_{0}^{\prime}\right)\right)\left(\exp \left(e^{-\gamma} \cdot F\left(\bar{\alpha}_{0}^{\prime}\right) \cdot \frac{1}{p_{m}}\right)-1\right) \leq \\
& \leq \exp \left(e^{-\gamma} \cdot F\left(\overline{\lambda_{0}^{\prime}}\right)\right)\left(\exp \left(e^{-\gamma} \cdot F\left(\overline{\lambda_{0}^{\prime}}\right) \cdot \frac{1}{p_{m}}\right)-1\right)= \\
& =\log p_{m}+\Theta_{1}\left(p_{m}\right)
\end{aligned}
$$

where $\Theta_{1}\left(p_{m}\right)=\mathrm{O}\left(\frac{\log ^{4} p_{m}}{\sqrt{p_{m}}}\right)$. So there is a constant a $a>0$ such that

$$
\Theta_{1}\left(p_{m}\right) \leq a \cdot \frac{\log ^{4} p_{m}}{\sqrt{p_{m}}}
$$

On the other hand, we have

$$
\begin{aligned}
& \log n_{0}=\log \left(p_{1}^{\alpha_{1}^{0}} p_{2}^{\alpha_{2}^{0}} \cdots p_{k}^{\alpha_{k}^{0}} \cdot p_{k+1}^{1} \cdots p_{m}^{1}\right)=\sum_{i=1}^{m} \alpha_{i}^{0} \cdot \log p_{i}= \\
& =\sum_{i=1}^{m} \log p_{i}+\sum_{i=1}^{k}\left(\alpha_{i}^{0}-1\right) \cdot \log p_{i}=\vartheta\left(p_{m}\right)+\vartheta\left(p_{k}\right)+R_{k}
\end{aligned}
$$

where $\vartheta\left(p_{m}\right)=\sum_{i=1}^{m} \log p_{i}$ is the Chebyshev's function ([6]) and $R_{k}=o\left(p_{k}\right)$.
Hence by the prime number theorem $([4,5,6])$, we have

$$
\frac{\log n_{0}}{p_{m}}=\frac{\vartheta\left(p_{m}\right)}{p_{m}}+\frac{\vartheta\left(p_{k}\right)}{p_{m}}+\frac{R_{k}}{p_{m}} \rightarrow 1\left(p_{m} \rightarrow \infty\right)
$$

From this we get

$$
\log n_{0}=p_{m} \cdot\left(1+\theta_{1}\left(p_{m}\right)\right),
$$

where $\theta_{1}\left(p_{m}\right)=\mathrm{O}\left(\frac{1}{\log p_{m}}\right)$. So we also obtain

$$
\log n_{0}^{\prime}=p_{m-1}\left(1+\theta_{2}\left(p_{m-1}\right)\right)
$$

where $\theta_{2}\left(p_{m-1}\right)=\mathrm{O}\left(\frac{1}{\log p_{m-1}}\right)$. And it is easy to see that

$$
\begin{aligned}
& \left(\sqrt{\log n_{0}} \cdot \exp \left(\sqrt{\log \log \left(n_{0}+1\right)}\right)-\sqrt{\log n_{0}^{\prime}} \cdot \exp \left(\sqrt{\log \log \left(n_{0}^{\prime}+1\right)}\right)\right)= \\
& =\left(\sqrt{\log n_{0}}-\sqrt{\log n_{0}^{\prime}}\right) \cdot \exp \left(\sqrt{\log \log \left(n_{0}+1\right)}\right)+ \\
& +\sqrt{\log n_{0}^{\prime}} \cdot\left(\exp \left(\sqrt{\log \log \left(n_{0}+1\right)}\right)-\exp \left(\sqrt{\log \log \left(n_{0}^{\prime}+1\right)}\right)\right)= \\
& =\exp \left(\sqrt{\log p_{m}}\right) \cdot\left(\frac{\log p_{m}}{2 \cdot \sqrt{p_{m}}}\right) \cdot\left(1+\Theta_{2}\left(p_{m}\right)\right)
\end{aligned}
$$

where $\Theta_{2}\left(p_{m}\right)=\mathrm{O}\left(\frac{1}{\log p_{m}}\right)$. Hence we have

$$
\begin{aligned}
& \log D_{m}-\log D_{m-1}^{\prime} \leq a \cdot \frac{\log ^{4} p_{m}}{\sqrt{p_{m}}}- \\
& \quad-\exp \left(\sqrt{\log p_{m}}\right) \cdot \frac{\log p_{m}}{2 \cdot \sqrt{p_{m}}}\left(1+\Theta_{2}\left(p_{m}\right)\right) .
\end{aligned}
$$

On the other hand，it is clear that

$$
\frac{\log ^{3} p_{m}}{\exp \left(\sqrt{\log p_{m}}\right)} \rightarrow 0\left(p_{m} \rightarrow \infty\right)
$$

This shows that there exists a number m_{0} such that for any $m \geq m_{0}$ we have

$$
D_{m}<D_{m-1}^{\prime} \leq D_{m-1} .
$$

From this we get

$$
0<c_{0}=\sup _{m} D_{m}<+\infty .
$$

This is the proof of the theorem．

Note．（1）We are sure that

$$
c_{0}=D_{1}=\frac{\exp \left(\exp \left(e^{-\gamma} \cdot 3 / 2\right)\right) / 2}{\exp (\sqrt{\log 2} \cdot \exp (\sqrt{\log \log 3}))}=1.6436 \cdots \leq 2
$$

（2）The process for the proof of the theorem by the papers［1，2，3］is graphically as follows．Here \Rightarrow shows the increasing direction of the values for the function $H(n)$ and $G(n)$ ．

$$
\begin{aligned}
& n=q_{1}^{\lambda_{1}} \cdot q_{2}^{\lambda_{2}} \cdot q_{3}^{\lambda_{3}} \cdots q_{m-1}^{\lambda_{m-1}} \cdot q_{m}^{\lambda_{m}} \\
& \rrbracket \text { paper [1] } \\
& r_{0}(n)=p_{1}^{\lambda_{1}} \cdot p_{2}^{\lambda_{2}} \cdot p_{3}^{\lambda_{3}} \cdots \cdot p_{m}^{\lambda_{m}} \\
& \text { 』 } \quad \leftarrow \text { paper [2] } \\
& n_{0}=p_{1}^{\lambda_{1}^{0}} \cdot p_{2}^{\lambda_{2}^{0}} \cdots p_{k}^{\lambda_{k}^{0}} \cdot p_{k+1}^{1} \cdots p_{m}^{1} \text {, } \\
& \text { 』 } \quad \leftarrow \text { paper [3] } \\
& n_{0}^{\prime}=p_{1}^{\lambda_{1}^{0}} \cdot p_{2}^{\lambda_{2}^{0}} \cdots p_{k}^{\lambda_{k}^{0}} \cdot p_{k+1}^{1} \cdots p_{m-1}^{1} \\
& \begin{array}{|l}
\text { 』 } \\
n=2 \\
\hline
\end{array}
\end{aligned}
$$

As it was indicated in the paper［1］，one can say that any natural number has the three－dimensional structure．For $\bar{q}=\left(q_{1}, q_{2}, \cdots q_{m}\right), \bar{\lambda}=\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{m}\right)$ and $\omega(n)=m$ of $n=q_{1}^{\lambda_{1}} \cdot q_{2}^{\lambda_{2}} \cdots q_{m}^{\lambda_{m}}$ we put $n=n(\bar{q}, \bar{\lambda}, m)$ ．Then to prove the theorem we have taken the process reducing the dimensional numbers of
$n=n(\bar{q}, \bar{\lambda}, m)$ in the function $G(n)$. The dimensional numbers of n in the function $G(n)$ were reduced by the paper [1], [2] and [4], respectively. That is so; $n=n(\bar{q}, \bar{\lambda}, m) \rightarrow n(\bar{\lambda}, m) \rightarrow n\left(\bar{\lambda}_{0}, m\right) \rightarrow n(m)$.
(3) The below table 1 shows the optimum points $\bar{\lambda}_{0}=\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \cdots, \lambda_{m}^{0}\right)$ of the function $H(\bar{\lambda})$ and the values of $H\left(n_{0}\right)$ and $G\left(n_{0}\right)$ to $\omega(n)=m$.

Table 1

$\begin{aligned} & \omega(n) \\ & =m \end{aligned}$	$\begin{gathered} \bar{\lambda}=\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \cdots, \lambda_{m}^{0}\right) \text { of } \\ n_{0}=2^{\lambda_{1}^{0}} \cdot 3^{\lambda_{2}^{0}} \cdot 5^{\lambda_{2}^{0}} \cdots p_{k}^{\lambda_{k}^{0}} \cdot p_{k+1}^{1} \cdots p_{m}^{1} \end{gathered}$	$\begin{gathered} H\left(n_{0}\right), \\ G\left(n_{0}\right) \end{gathered}$
1	$\lambda_{1}^{0}=1$	$\begin{aligned} & \hline 5.09518716186 \cdots, \\ & 1.643686767536 \cdots \end{aligned}$
2	$\lambda_{1}^{0}=1.65 \cdots, \lambda_{2}^{0}=1$	$\begin{aligned} & \hline 3.58945411446 \cdots, \\ & 0.8250082 \times 10^{-1} \cdots \end{aligned}$
3	$\lambda_{1}^{0}=2.70 \cdots, \lambda_{2}^{0}=1.33 \cdots, \lambda_{3}^{0}=1$	$\begin{aligned} & 1.91192398575 \cdots, \\ & 0.7148367 \times 10^{-5} \cdots \end{aligned}$
4	$\begin{aligned} & \lambda_{1}^{0}=3.36 \cdots, \lambda_{2}^{0}=1.75 \cdots, \\ & \lambda_{3}^{0}=1, \lambda_{4}^{0}=1 \end{aligned}$	$1.32309514626 \cdots$, $0.1065950 \times 10^{-6} \cdots$
5	$\begin{aligned} & \lambda_{1}^{0}=4.22 \cdots, \lambda_{2}^{0}=2.29 \cdots, \\ & \lambda_{3}^{0}=1.24 \cdots, \lambda_{4}^{0}=\lambda_{5}^{0}=1 \end{aligned}$	$\begin{aligned} & 0.57062058635 \cdots \\ & 0.3761569 \times 10^{-9} \cdots \end{aligned}$
6	$\begin{aligned} & \lambda_{1}^{0}=4.53 \cdots, \lambda_{2}^{0}=2.49 \cdots, \\ & \lambda_{3}^{0}=1.38 \cdots, \lambda_{4}^{0}=\lambda_{5}^{0}=\lambda_{6}^{0}=1 \end{aligned}$	$\begin{aligned} & 0.40977025702 \cdots, \\ & 0.767767 \times 10^{-10} \cdots \end{aligned}$
7	$\begin{aligned} & \lambda_{1}^{0}=5.02 \cdots, \lambda_{2}^{0}=2.80 \cdots, \\ & \lambda_{3}^{0}=1.59 \cdots, \lambda_{4}^{0}=1.14 \cdots, \\ & \lambda_{5}^{0}=\lambda_{6}^{0}=\lambda_{7}^{0}=1 \end{aligned}$	$\begin{aligned} & 0.22782964552 \cdots, \\ & 0.575576 \times 10^{-11} \cdots \end{aligned}$
8	$\begin{aligned} & \lambda_{1}^{0}=5.22 \cdots, \lambda_{2}^{0}=2.92 \cdots, \\ & \lambda_{3}^{0}=1.68 \cdots, \lambda_{4}^{0}=1.21 \cdots, \\ & \lambda_{5}^{0}=\lambda_{6}^{0}=\lambda_{7}^{0}=\lambda_{8}^{0}=1 \end{aligned}$	$\begin{aligned} & 0.20507350097 \cdots \\ & 0.164730 \times 10^{-12} \cdots \end{aligned}$
9	$\begin{aligned} & \lambda_{1}^{0}=5.57 \cdots, \lambda_{2}^{0}=3.14 \cdots, \\ & \lambda_{3}^{0}=1.83 \cdots, \lambda_{4}^{0}=1.34 \cdots, \\ & \lambda_{5}^{0}=\lambda_{6}^{0}=\lambda_{7}^{0}=\lambda_{8}^{0}=\lambda_{9}^{0}=1 \end{aligned}$	$\begin{aligned} & 0.16722089980 \cdots, \\ & 0.287587 \times 10^{-14} \cdots \end{aligned}$
...

(3) The below table 2 shows the Hardy-Ramanujan's numbers ([1]), which give maximum value of the function $G\left(n_{0}\right)$ to $\omega(n)=m$.

Table 2

$\omega(n)$ $=m$	$\tilde{n}_{0}=r_{0}\left(\tilde{n}_{0}\right)=p_{1}^{\lambda_{1}} \cdots p_{k}^{\lambda_{k}} \cdot p_{k+1}^{1} \cdots p_{m}^{1}$	$G\left(\tilde{n}_{0}\right)$
1	2	$1.643686767536 \cdots$
2	$2 \cdot 3$	$0.82500822 \times 10^{-1} \cdots$
3	$2^{2} \cdot 3 \cdot 5$	$0.71483676 \times 10^{-5} \cdots$
4	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	$0.10659507 \times 10^{-6} \cdots$
5	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$	$0.37615690 \times 10^{-9} \cdots$
6	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13$	$0.76776726 \times 10^{-10} \cdots$
7	$2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$	$0.575576185 \times 10^{-11} \cdots$
8	$2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$	$0.164730227 \times 10^{-12} \cdots$
9	$2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	$0.287587585 \times 10^{-14} \cdots$
\cdots	$\cdots \cdots \cdots$	\cdots

References

[1] R. G. Choe, The sum of divisors function and the Hardy-Ramanujan's number, November 12, 2011
[2] R. G. Choe, An exponential function and its optimization problem, November 15, 2011.
[3] R. G. Choe, An estimate for the error in a formula on prime numbers, November 19, 2011.
[4] J. Sandor, D. S. Mitrinovic, B. Crstici, "Handbook of Number theory 1", Springer, 2006.
[5] H. L. Montgomery, R. C. Vaugnan, "Multiplicative Number Theory", Cambridge, 2006.
[6] J. B. Rosser, L. Schoenfeld, " Approximate formulars for some functions of prime numbers", Illinois J. Math. 6, 64-94, 1962.

```
See for [1]:
http://commons.wikimedia.org/wiki/File:The sum of divisors function and the Hardy-
Ramanujan%27s number.pdf
See for [2]:
http://commons.wikimedia.org/wiki/File:An_Exponential_Function_and_itsOptimization_P
roblem.pdf
See for [3]:
http://commons.wikimedia.org/wiki/File:An_Estimate for the Error in_a Formula on Pr
ime_Numbers.pdf
```

Department of Mathematics, University of Sciences, Unjong District, Gwahak 1-dong, Pyongyang, D.P.R.Korea, Email: ryonggilchoe@163.com

