

Secure Development

Tech Days 2012

Review of the Last 6 months
(vulnerabilities by OWASP class)

Last 6 months (by
mw:Security_for_developers)

Summary

● We are doing great on SQL Injection
● We are missing some XSS
● We are having problems with leaking

deleted/suppressed data

Since we're having problems with xss, let's review
the basics....

XSS

● An attacker is able to inject client-side scripting
into a web page viewed by other users

● Results in:
● Attacker controls everything you do and see in your

browser

● Types
● Reflected
● Stored (2nd order)
● DOM (3rd order)

Last 6 months by XSS type

XSS Types

● Reflected
● Attacker-controlled data sent by the server in the DOM

● Often from pre-filling form elements, or setting a style based on user input

● Stored
● Developers often trust that the data in a database or a cookie does not

contain html. This assumption should always be verified.

● Dom-Based
● Attacker-controlled elements of the page are set or manipulated to cause

the existing Javascript on a page to create a scripting object.

● Often triggered when Javascript creates objects based on names or
values of existing elements on the page

Examples

Best Practices

● Validate Input, Escape Output

● Trust No Input (including cookies, database, stuff you wrote in the dom)

● Use MediaWiki's HTML/XML objects; however, know which functions escape
and which don't

● Use MediaWiki's HTMLForm class

● Escape as close to the output as possible

● In Javascript use: document.createElement(), element.setAttribute(),
element.appendChild(); avoid element.html(), element.innerhtml(),
document.href; avoid creating jQuery objects with $('untrusted-data'):

● Know which characters to escape for the context where user data is inserted:
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet#X
SS_Prevention_Safe_Contexts

A note on XSSI

● Cross site, and often involving Javascript, but
different from xss.

● When a script or css is included from another
domian, the Same Origin Policy (SOP) is the
including domain

● E.g., Javascript on a page of evil.com will have
access to the variables and objects of a script
included from en.wikipedia.org

XSSI Prevention

● Be careful (ask for help!) if you include private
data / tokens in your output

● Use json objects

Cross Site Request Forgery (CSRF)
● An attacker is able to cause your browser to make calls to a

remote website

● These calls are authenticated as you, since your browser
includes cookies for the website

CSRF Prevention

● If you parse a form, you should be using $user-
>matchEditToken() in your code

● Extend the api (api.php)
● Use 'private' group for ResourceLoader, if it

includes private data
● There is misinformation about CSRF tokens:

● Cookies are not csrf protection
● Requiring POST is not csrf protection

Register Globals

● Register Globals are deprecated as of php 5.3,
and removed in 5.4

SQL Injection

● $qry = "SELECT * FROM users WHERE name
= '$userName' ";

SQLi Prevention

● Use builders, but make sure you understand
the functions!

● Use key => value pairs instead of
concatenating variables into the query

● Example of SQL Injection:

A few more things...

Confidential Data

● When you show data from the DB, make sure
you know if it's deleted/suppressed, and check
permissions

● There is a lack of good documentation about
what data can be deleted/suppressed, and the
methods used

DOM-based XSS

● Javascript is just as vulnerable as php to xss!
● don't concatenate variables into strings that

manipulate the DOM
● be careful of html/innerHtml decoding, and the

differences in document.location.X escaping

UI Redressing

● Browsers have fixed many issues (cross-
domain drag and drop)

● iframed token used as a “Captcha” is still
common

● MediaWiki prevents iframing of tokens, so use
basic clickjacking prevention:
● don't include tokens in action=view
● Don't call allowClickjacking() on pages with tokens

Content-Type Abusing

● Almost anything can be interpreted as css
● Lots of things can be interpreted as javascript
● Some of things can be interpreted as a .jar, .swf,

or .xap. Their SOP is their originating domain!

● MediaWiki goes to great lengths to correctly set
content types for user contributed content, and
serves ucc from a separate domain
(upload.wikimedia.org). Don't circumvent it!

And even more misc things...

● Be careful about shell commands. Both the
calling string, and the security of that
application
● wfEscapeShellArg()
● AppArmor

● Avoid letting private data be cached

Conclusion

● We are doing well, but need to keep improving
● Please add me as a reviewer, or ask for help when

in doubt
● Please report issues you encounter

● This does not address operational security
issues, or security of the organization.

● Security Architecture Stuff: SSL, OAuth, CSP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

