Reasonable Basic Algebra

Reasonable Basic Algebra
(Verbose Edition)

FreeMathTexts.org

Version $3.3-\quad$ Saturday $5^{\text {th }}$ March, 2011

Copyright ©2008, 2009, 2010 A. Schremmer. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Section ${ }^{1}$, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

[^0]To Françoise, Bruno and Serge.

Contents

Preface xi
I Elements of Arithmetic 1
Chapter 1 Counting Number-Phrases 3
1.1. What Arithmetic and Algebra are About 3
1.2. Specialized Languages 4
1.3. Real-World 5
1.4. Number-Phrases 5
1.5. Representing Large Collections 7
1.6. Graphic Illustrations 12
1.7. Combinations 14
1.8. About Number-Phrases 15
1.9. Decimal Number-Phrases 17
Chapter 2 Equalities and Inequalities 19
2.1. Counting From A Counting Number-Phrase To Another 19
2.2. Comparing Collections 21
2.3. Language For Comparisons 26
2.4. Procedures For Comparing Number-Phrases 29
2.5. Truth Versus Falsehood 30
2.6. Duality Versus Symmetry 31
Chapter 3 Addition 33
3.1. Attaching A Collection To Another 33
3.2. Language For Addition 34
3.3. Procedure For Adding A Number-Phrase 36
Chapter 4 Subtraction 39
4.1. Detaching A Collection From Another 39
4.2. Language For Subtraction 40
4.3. Procedure For Subtracting A Number-Phrase 42
4.4. Subtraction As Correction 43
Chapter 5 Signed Number-Phrases 45
5.1. Actions and States 46
5.2. Signed Number-Phrases 47
5.3. Size And Sign 49
5.4. Graphic Illustrations 50
5.5. Comparing Signed Number-Phrases 51
5.6. Adding a Signed Number-Phrase 54
5.7. Subtracting a Signed Number-Phrase 57
5.8. Effect Of An Action On A State 59
5.9. From Plain To Positive 62
Chapter 6 Co-Multiplication and Values 65
6.1. Co-Multiplication 65
6.2. Signed-Co-multiplication 68
II Inequations \& Equations Problems 71
Chapter 7 Basic Problems 1 Counting Numerators 73
7.1. Forms, Data Sets And Solution Subsets 73
7.2. Collections Meeting A Requirement 75
7.3. Basic Formulas 78
7.4. Basic Problems 83
Chapter 8 Basic Problems 2 (Decimal Numerators) 89
8.1. Basic Equation Problems 90
8.2. Basic Inequation Problems 91
8.3. The Four Basic Inequation Problems 94
Chapter 9 Translation \& Dilation Problems 101
9.1. Translation Problems 102
9.2. Solving Translation Problems 104
9.3. Dilation Problems 108
9.4. Solving Dilation Problems 112
Chapter 10 Affine Problems 115
10.1. Introduction 115
10.2. Solving Affine Problems 116
Chapter 11 Double Basic Problems 119
11.1. Double Basic Equation Problems 119
11.2. Problems of Type BETWEEN 121
11.3. Problems of Type BEYOND 130
11.4. Other Double Basic Problems 139
Chapter 12 Double Affine Problems 145
III Laurent Polynomial Algebra 149
Chapter 13 Repeated Multiplications and Divisions 151
13.1. A Problem With English 151
13.2. Templates 152
13.3. The Order of Operations 156
13.4. The Way to Powers 159
13.5. Power Language 162
Chapter 14 Laurent Monomials 165
14.1. Multiplying Monomial Specifying-Phrases 165
14.2. Dividing Monomial Specifying-Phrases 168
14.3. Terms 172
14.4. Monomials 174
Chapter 15 Polynomials 1: Addition, Subtraction 181
15.1. Monomials and Addition 181
15.2. Laurent Polynomials 183
15.3. Plain Polynomials 187
15.4. Addition 188
15.5. Subtraction 190
Chapter 16 Polynomials 2: Multiplication 191
16.1. Multiplication in Arithmetic 191
16.2. Multiplication of Polynomials 193
Chapter 17 Polynomials 3: Powers of $x_{0}+h$ 197
17.1. The Second Power: $\left(x_{0}+h\right)^{2}$ 198
17.2. The Third Power: $\left(x_{0}+h\right)^{3}$ 202
17.3. Higher Powers: $\left(x_{0}+h\right)^{n}$ when $n>3$ 205
17.4. Approximations 208
Chapter 18 Polynomials 4: Division 209
18.1. Division In Arithmetic 209
18.2. Elementary School Procedure 211
18.3. Efficient Division Procedure 212
18.4. Division of Polynomials 221
18.5. Default Rules for Division 225
18.6. Division in Ascending Powers 229
GNU Free Documentation License 231

1. Applicability And Definitions 231
2. Verbatim Copying 233
3. Copying In Quantity 233
4. Modificatons 234
5. Combining Documents 236
6. Collections Of Documents 236
7. Aggregation With Independent Works 236
8. Translation 237
9. Termination 237
10. Future Revisions Of This License 237
ADDENDUM: How to use this License for your documents 237

Preface

The prospect facing students still in need of Basic Algebra as they enter two-year colleges ${ }^{2}$ is a discouraging one inasmuch as it usually takes at the very least two semesters before they can arrive at the course(s) that they are interested in - or required to take, not to dwell on the fact that their chances of overall success tend to be extremely low ${ }^{3}$.

Reasonable Basic Algebra (RBA) is a standalone version of part of From Arithmetic To Differential Calculus (A2DC), a course of study developed to allow a significantly higher percentage of students to complete Differential Calculus in three semesters. As it is intended for a one-semester course, though, RBA may serve in a similar manner students with different goals.

The general intention is to get the students to change from being "answer oriented", the inevitable result of "show and tell, drill and test", to being "question oriented ${ }^{4}$ " and thus, rather than try to "remember" things, be able to "reconstruct" them as needed. The specific means by which RBA hopes to accomplish this goal are presented at some length below but, briefly, they include:

- An expositional approach, based on what is known in mathematics as MODEL THEORY, which carefully distinguishes "real-world" situations from their "paper-world" representations ${ }^{5}$. A bit more precisely, we start with processes involving "real-world" collections that yield either a relationship between these collections or some new collection and the students then have to develop a paper procedure that will yield the sentence representing the relationship or the number-phrase representing the new collection.

[^1]EXAMPLE 1. Given that, in the real-world, when we attach to a collection of three apples to a collection of two apples we get a collection of five apples, the question for the students is to develop a paper procedure that, from 3 Apples and 2 Apples, the number-phrases representing on paper these real-world collections, will yield the number-phrase 5 Apples.
In other words, the students are meant to abstract the necessary concepts from a familiar "real-world" since, indeed, "We are usually more easily convinced by reasons we have found ourselves than by those which have occurred to others." (Blaise Pascal).

- A very carefully structured contents architecture-in total contrast to the usual more or less haphazard string of "topics"-to create systematic reinforcement and foster an exponential learning curve based on a Coherent View of Mathematics and thus help students acquire a Profound Understanding of Fundamental Mathematics ${ }^{6}$.
- A systematic attention to linguistic issues that often prevent students from being able to focus on the mathematical concepts themselves.
- An insistence on convincing the students that the reason things mathematical are the way they are is not because "experts say so" but because common sense says they cannot be otherwise.

$$
\therefore
$$

The contents architecture was designed in terms of three major requirements.

1. From the students' viewpoint, each and every mathematical issue should:

- flow "naturally" from what just precedes it,
- be developed only as far as needed for what will follow "naturally",
- be dealt with in sufficient "natural" generality to support further developments without having first to be recast.
EXAMPLE 2. After counting dollars sitting on a counter, it is "natural" to count dollars changing hands over the counter and thus to develop signed numbers. In contrast, multiplication, division or fractions all involve a complete change of venue.

2. Only a very few very simple but very powerful ideas should be used to underpin all the presentations and discussions even if this may be at the cost of some additional length. After they have familiarized themselves with such an idea, in its simplest possible embodiment, later, in more complicated situations, the students can then focus on the technical aspects of getting the idea to work in the situation at hand. In this manner, the students eventually get to feel that they can cope with "anything".
[^2]EXAMPLE 3. The concept of combination-phrase is introduced with 3 Quarters + 7 Dimes in which Quarters and Dimes are denominators and where + does not denote addition as it does in 3 Quarters +7 Quarters but stands for "and". (In fact, for a while, we write 3 Quarters \& 7 Dimes.) The concept then comes up again and again: with 3 HUNDREDS +7 TENS, with $\frac{3}{4}+\frac{7}{10}$, with $3 x^{2}+7 x^{5}$, with $3 x+7 y$, etc, culminating, if much later, with $3 \vec{i}+7 \vec{j}$.
EXAMPLE 4. If we can change, say, 1 Quarter for 5 Nickels and 1 Dime for 2 Nickels, we can then change the combination-phrase 3 Quarters +7 Dimes for 3 Quarters \times $\frac{5 \text { Nickels }}{\text { Quarter }}+7$ Dimes $\times \frac{2 \text { Nickels }}{\text { Dime }}$ that is for the specifying-phrase 15 Nickels +14 Nickels which we identify as 29 Nickels. (Note by the way that here \times is a very particular type of multiplication, as also found in 3 Doltars $\times \frac{7 \text { Cents }}{\text { Dethar }}=21$ Cents.) Later, when having to "add" $\frac{3}{4}+\frac{7}{10}$, the students will then need only to concentrate on the technical issue of developing a procedure to find the denominators that Fourth and Tenth can both be changed for, e.g. Twentieths, Hundredths, etc.
3. The issue of "undoing" whatever has been done should always be, if not always resolved, at least always discussed.
EXAMPLE 5. Counting backward is introduced by the need to undo counting forward and both subtracting and signed numbers are introduced by the need to undo adding, that is by the need to solve the equation $a+x=b$.
\therefore
As a result of these requirements, the contents had to be stripped of the various "kitchen sinks" to be found in current BASIC ALGEBRA courses and the two essential themes RBA focuses on are affine inequations \& equations and Laurent polynomials. This focus empowers the students in that, once they have mastered these subjects, they will be able both: i. to investigate the Calculus of Functions as in A2DC and ii. to acquire in a similar manner whatever other algebraic tools they may need for other purposes.

However, a problem arose in that the background necessary for a treatment that would make solid sense to the students was not likely to have been acquired in any course the students might have taken previously while, for lack of time, a full treatment of ARITHMETIC, such as can be found in A2DC, was out of the question here.

Following is the "three PaRTS compromise" that was eventually reached. PART I consists of a treatment of ARITHMETIC, taken from A2DC but minimal in two respects: i. It is limited to what is strictly necessary to make sense of inequations \& equations in Part II and Laurent polynomials in Part III, that is to the ways in which number-phrases are compared and operated with. ii. It is developed only in the case of counting number-phrases with the extension to decimal number-phrases to be taken for granted even though the latter are really of primary importance - and fully dealt with in A2DC.

- Chapter 1 introduces and discusses the general model theoretic concepts that are at the very core of RBA: real-world collections versus paper-world number-phrases, combinations, graphic representations.
- Chapter 2 discusses comparisons, with real-world collections compared cardinally, that is by way of one-to-one matching, while paper-world number-phrases are compared ordinally, that is by way of counting. The six verbs,$<,>, \leqq, \geqq,=, \neq$, together with their interrelationships, are carefully discussed in the context of sentences, namely inequalities and equalities that can be TRUE or FALSE.
- Chapter 3 discusses the effect of an action on a state and introduces addition as a unary operator representing the real-world action of attaching a collection to a collection.
- Chapter 4 introduces subtraction as a unary operator meant to "undo" addition, that is as representing the real-world action of detaching a collection from a collection.
- Chapter 5 considers collections of "two-way" items which we represent by signed number-phrases.
EXAMPLE 6. Collections of steps forward versus collections of steps backward, Collections of steps up versus collections of steps down, Collections of dollars gained versus collections of dollars lost, etc
In order to deal with signed number-phrases, the verbs, $<,>$, etc, are extended to \otimes, \ominus, etc and the operators + and - to \oplus and \ominus.
- Chapter 6 introduces co-multiplication between number-phrases and unitvalue number-phrases as a way to find the value that represents the worth of a collection.
EXAMPLE 7. 3 Apples $\times 2 \frac{\text { Cents }}{\text { Apple }}=6$ Cents as well as 3 Dollars $\times 7 \frac{\text { Cents }}{\text { Dollar }}=21$ Cents We continue to distinguish between plain number-phrases and signed number-phrases with \times and \otimes.
PART II then deals with number-phrases specified as solution of problems.
- Chapter 7 introduces the idea of real-world collections selected from a set of selectable collections by a requirement and, in the paper-world, of nouns specified from a data set by a form. Letting the data set then consist of counting numerators, we discuss locating and representing the solution subset (of the data set) specified by a basic formula, i.e. of type $x=x_{0}, x<x_{0}$, etc where x_{0} is a given gauge.
- Chapter 8 extends the previous ideas to the case of decimal numerators by introducing a general procedure, to be systematically used henceforth, in which we locate separately the boundary and the interior of the solution subset. Particular attention is given to the representation of the solution subset, both by graph and by name.
- Chapter 9 begins the focus on the computations necessary to locate the boundary in the particular case of "special affine" problems, namely translation problems and dilation problems, which are solved by reducing them to basic problems.
- Chapter 10 then solves affine problems by reducing them to dilation problems and hence to basic problems. It concludes with the consideration of some affine-reducible problems.
- Chapter 11 discusses the connectors AND, AND/OR, EITHER/OR, in the context of double basic problems, that is problems involving two basic inequations/equations (in the same unknown). Here again, particular attention is given to the representation of the solution subset, both by graph and by name.
- Chapter 12 wraps up the discussion of how to select collections with the investigation of double affine problems, that is problems involving two affine inequations/equations (in the same unknown).
Part III investigates plain polynomials as a particular case of Laurent polynomials.
- Chapter 13 discusses what is involved in repeated multiplications and repeated divisions of a number-phrase by a numerator and introduces the notion of signed power.
- Chapter 14 extends this notion to Laurent monomials, namely signed powers of x. Multiplication and division or Laurent monomials are carefully discussed.
- Chapter 15 extends the fact that decimal numerators are combinations of signed powers of TEN to the introduction of Laurent polynomials as combinations of signed powers of x. Addition and subtraction of polynomials are then defined in the obvious manner.
- Chapter 16 continues the investigation of Laurent polynomials with the investigation of multiplication.
- Chapter 17 discusses a particular case of multiplication, namely the successive powers of $x_{0}+u$.
- Chapter 18 closes the book with a discussion of the division of polynomials both in descending and ascending powers

$$
\therefore
$$

This is probably the place where it should be disclosed that, as the development of this text was coming to an end, the author came across a 1905 text 7 that gave him the impression that, in his many deviations from the

[^3]current praxis, he had often reinvented the wheel. While rather reassuring, this was also, if perhaps surprisingly, somewhat disheartening.
$$
\therefore
$$

Some of the linguistic issues affecting the students's progress are very specific and are directly addressed as such. The concept of duality, for instance, is a very powerful one and occurs in very many guises.

- When it occurs as "passive voice", duality is almost invariably confused with symmetry, a more familiar concept ${ }^{8}$. But, in particular, while duality preserves truth, symmetry may or may not.
EXAMPLE 8. "Jack is a child of Sue" is the dual of "Sue is a parent of Jack" and, since both refer to the same real-world relationship, they are either both TRUE or both FALSE.
On the other hand, "Jack is a child of Sue" is the symmetrical of "Sue is a child of Jack" and, here, the truth of one forces the falsehood of the other. But compare with what would happen with "brother" or "sibling" instead of "child".
- When it occurs as indirect definition, duality is quite foreign to most students but absolutely indispensable in certain situations.
EXAMPLE 9. While Dollar can be defined directly in terms of Quarters by saying that 1 Dollar is equal to 4 Quarters, the definition of Quarter in terms of Dollar is an indirect one in that we must say that a Quarter is that kind of coin of which we need 4 to change for 1 Dollar and students first need to be reconciled with this syntactic form. The same stumbling block occurs in dealing with roots since $\sqrt{9}$ is to be understood as "that number the square of which is 9 " 9 .
Other linguistic issues, even though more diffuse, are nevertheless systematically taken into account. For instance:
- While mathematicians are used to all sorts of things "going without saying", students feel more comfortable when everything is made explicit as, for instance, when $\&$ is distinguished from + . Hence, in particular, the explicit use in this text of default rules.
- The meaning of mathematical symbols usually depends on the context while students generally feel more comfortable with context-free terminology, that is in the case of a one-to-one correspondence between terms and concepts.

2005.

${ }^{8}$ The inability to use the "passive voice" is a most important linguistic stumbling block for students and one that Educologists have yet to acknowledge.
${ }^{9}$ Educologists will surely agree that, for instance, these particular "reverse" problems would in fact be better dealt with in an algebraic context, i.e. as the investigation of $4 x=1$ and $x^{2}=9$. Incidentally, this is the point of view adopted in A2DC where arithmetic and algebra are systematically "integrated".

- Even small linguistic variations in parallel cases disturb the students who take these variations as having to be significant and therefore as implying in fact an unsaid but actual lack of parallelism.
In general, being aware of what needs to be said versus what can go without saying is part of what makes one a mathematician and, as such, requires learning and getting used to. Thus, although being pedantic is not the goal here, RBA tries very hard to be as pedestrian as possible and, if only for the purpose of "discussing matters", to make sure that everything is named and that every term is "explained" even if usually not formally defined.

$$
\therefore
$$

The standard way of establishing truth in mathematics is by way of proof but the capacity of being convinced by a proof is another part of what makes one a mathematician. And indeed, since the students for whom RBA was written are used only to drill based on "template examples", they tend to behave as in the joke about Socrates' slave who, when led through the proof of the Pythagorean Theorem, answers "Yes" when asked if he agrees with the current step and "No" when asked at the end if he agrees with the truth of the Theorem. So, to try to be convincing, we use a mode of arguing somewhat like that used by lawyers in front of a court ${ }^{10}$.

Another reason for using a mode of reasoning more akin to everyday argumentation is that even people unlikely to become prospective mathematicians ought to realize the similarities between having to establish the truth in mathematics and having to establish the truth in real-life. Yet, as Philip Ross wrote recently, "American psychologist Edward Thorndike first noted this lack of transference over a century ago, when he showed that [...] geometric proofs do not teach the use of logic in daily life." ${ }^{11}$.

Finally, it is perhaps worth mentioning that this text came out of the author's conviction that it is not good for a society to have a huge majority of its citizens saying they were "never good in math". To quote Colin McGinn at some length:
"Democratic States are constitutively committed to ensuring and furthering the intellectual health of the citizens who compose them: indeed, they are only possible at all if people reach a certain cognitive level [...]. Democracy

[^4]and education (in the widest sense) are thus as conceptually inseparable as individual rational action and knowledge of the world. [...] Plainly, [education] involves the transmission of knowledge from teacher to taught. But [knowledge] is true justified belief that has been arrived at by rational means. [...] Thus the norms governing political action incorporate or embed norms appropriate to rational belief formation. [...]"
"A basic requirement is to cultivate in the populace a respect for intellectual values, an intolerance of intellectual vices or shortcomings. [...] The forces of cretinisation are, and have always been, the biggest threat to the success of democracy as a way of allocating political power: this is the fundamental conceptual truth, as well as a lamentable fact of history."
"[However] people do not really like the truth; they feel coerced by reason, bullied by fact. In a certain sense, this is not irrational, since a commitment to believe only what is true implies a willingness to detach your beliefs from your desires. [...] Truth limits your freedom, in a way, because it reduces your belief-options; it is quite capable of forcing your mind to go against its natural inclination. [...] One of the central aims of education, as a preparation for political democracy, should be to enable people to get on better terms with reason - to learn to live with the truth." ${ }^{12}$

[^5]
Part I

Elements of Arithmetic

What is important is the real world, that is physics, but it can be explained only in mathematical terms.
procedure
process

Dennis Serre ${ }^{1}$

Chapter 1

Counting Number-Phrases

What Arithmetic and Algebra are About, 3 - Specialized Languages, 4 -Real-World, 5 - Number-Phrases, 5 - Representing Large Collections, 7 Graphic Illustrations, 12 - Combinations, 14 - About Number-Phrases, 15 - Decimal Number-Phrases, 17.

This chapter takes a brief look back at ARITHMETIC to present it in a way that will be a better basis for looking at ALGEbra because we will then be able to look at algebra as just a continuation of Arithmetic.

1.1 What Arithmetic and Algebra are About

To put it as briefly as possible, Arithmetic and Algebra are both about developing procedures to figure out on paper the result of real-world processes without having to go through the real-world processes themselves. To make this a bit clearer, here are two examples from Arithmetic the Algebra counterpart of which we will deal with in Part III of this book.
EXAMPLE 1. In the real world, we may want to hand-out six one-dollar bills to each of four people. To find out ahead of time how many one-dollar bills this would amount to, we would put on the table six one-dollar bills for the first person, then six one-dollar bills for the second person, etc. The result of this real-world process is that this amounts to twenty-four one-dollar bills.

But with, say, hundreds of one-dollar bills to each of thousands of people, this process would be impractical and what we do instead is to represent on paper both the one-dollar bills and the people and then develop the procedure called multiplication,

[^6]mathematical language
that is a procedure for figuring-out on paper how many one-dollar bills we will need as a result of the real-world process.
EXAMPLE 2. In the real world, we may want to split fourteen one-dollar bills among three people. To find out ahead of time how many one-dollar each person should get, we would put on the table one one-dollar bill for the first person, one one-dollar bill for the second person, one one-dollar bill for the third person, and then, in a second round, another one-dollar bill for the first person, another one-dollar bill for the second person, and so on until we cannot do a full round. The result of this real-world process is that each person would get four one-dollar bills with two one-dollar bills remaining un-split.

But with thousands of one-dollar bills to be split among hundreds of people, this process would be impractical and what we do instead is to represent on paper both the one-dollar bills and the people and then develop the procedure called division, that is a procedure for figuring-out on paper how many one-dollar bills to give to each person and how many one-dollar bills will remain un-split as a result of the real-world process.

The difference between these two examples illustrate is not obvious but, as we shall see, it is a significant one which, in fact, is at the root of the distinction between Arithmetic and Algebra.

1.2 Specialized Languages

People working in any trade need to use words with a special meaning. Sometimes, these are special words but often they are common words used with a meaning special to the trade. For instance, what electricians call a "pancake" is a junction box that is just the thickness of drywall.

In the same manner, in order to develop and discuss the procedures of Arithmetic and Algebra, we will have to use a mathematical language, that is words that will sometimes be special words but will most of the time be just common words with a meaning special to Mathematics.
EXAMPLE 3. While the words "process" and "procedure" usually mean more or less the same thing, in this book we shall reserve the word "process" for when we talk about what we do in the real world and we shall reserve the word "procedure" for when we talk about what we do on paper.

In this book, we will encounter a great many such words with special meaning, likely more than usual. The idea, though, is certainly not that the students should memorize the special meaning of all these words. These words are used as focusing devices to help the students see exactly what they are intended to see whenever we discuss an issue. Thus, quite often, these words with special meaning will not reappear once the discussion has been completed as they will have served their purpose.

However, in order to help students find where the special meaning of these words is explained, these words with special meaning will always be:

- boldfaced the first time they appear-which is where they are explained,
- printed in the margin of the page where they first appear and are explained,
- listed in the index at the end of the book with the number of the page where they first appear and are explained.

1.3 Real-World

While in the real-world it is often possible to exhibit the items that are to be dealt with this is not possible in a book. So, to start with, we need a way to make it clear when we are talking about real-world items as opposed to when we are talking about what we will use to represent these items on paper.

In this book, when we will want to talk about real-world items, we will use pictures of these items.
EXAMPLE 4. When we will be talking about real-world one-dollar bills, we will use the following picture

1.4 Number-Phrases

Our first task in Arithmetic is to find a way to represent real-world items on paper. The underlying idea is quite simple.

1. Given real-world items, in order to represent them on paper, we need to convey two pieces of information:

- We must write a denominator to say what kind of items we are dealing with. Of course, for this to be possible, all the items will have to be of the same kind and this will not work when the items are of different kinds as, for instance, when we are dealing with ten-dollar bills together with one-dollar bills. So, for the time being, we will deal only with items that are all of the same kind and in this case we will say that we can collect the items into a collection.
EXAMPLE 5. Given the following real-world items,

since they are all of the same kind (they make up a collection) we can use as a denominator the name of the President whose picture is on them, that is
numerator
string
slash
/
number-phrase nature (of a collection) size (of a collection) number

Washington

- We must write a numerator to say how many of these items there are in the collection we are dealing with.
The first approach that comes to mind is just to write a string of slashes, that is to write a slash / for each and every item in the realworld collection.
EXAMPLE 6. Given the following real-world items,

since they are all of the same kind they make up a collection and to get a numerator we can just write a / for each and every item in the collection that is
///

It is usual first to write the numerator and then to write the denominator and the result then makes up what we shall call a number-phrase.
EXAMPLE 7. Given the following real-world items,

since they are all of the same kind they make up a collection which we can represent by the number-phrase

/// Washingtons

2. Conversely, given a number-phrase, to get the collection that it represents,
i. The denominator tells us the nature of the collection, that is what kind of items are in the collection,
ii. The numerator tells us the size of the collection, that is the number of items that are in the collection.
EXAMPLE 8. Given the number-phrase /// Washingtons, to get the collection of real-world items that it represents:
i. The denominator Washingtons tells us that the items in the collection are like 1. (O)
ii. The numerator /// then tells us that there must be a
 in the collection for each slash in the numerator.
iii. Altogether, the slash number-phrase
/// Washingtons
represents the collection of real-world items

3. In other words, compared to a photograph of the collection, a numberphrase causes no loss of information as all we did was just to separate quantity - represented by the numerator - from quality - represented by the denominator ${ }^{2}$. (Keep in mind, though, that this only works for collections.)

As a matter of fact, this is most likely how, several thousands of years ago, Arithmetic, got started when, one may imagine, Sumerian merchants, faced with the problem of accounting for more goods in the warehouse and/or money in the safe than they could handle directly, decided to have both the goods and the money represented by various scratches on clay tablets so that they could see from these scratches the situation their business was in without the inconvenience of having to go to the warehouse and/or to open the safe.

1.5 Representing Large Collections

With large collections, a problem arises in that it becomes difficult to see, at a glance, how many items a long string of slashes represents.

EXAMPLE 9. Given the number-phrase

//////////////////////////////// Washngtons

it is not immediately clear how many items are in the collection that the number-phrase represents.

What we will do is to count the collection and we will write what we shall therefore call a counting number-phrase. There are three stages to developing the procedure.

1. We must begin by memorizing the following digits as shorthands for the first nine strings of slashes:

[^7]basic succession
basic collection
basic counting number-phrase
basic counting
count
end-digit

string	digit
$/$	1
$/ /$	2
$/ / /$	3
$/ / / /$	4
$/ / / / /$	5
$/ / / / / /$	6
$/ / / / / /$	7
$/ / / / / / /$	8
$/ / / / / / / /$	9

Moreover, the various procedures that we shall use will also require that we have already memorized the basic succession, that is the digits in the order:

1,	2,	3,	4,	5,	6,	7,	8,

"one, two, three, four, five, six, seven, eight, nine"
NOTE. There is nothing sacred about TEN: it is simply because of how many fingers we have on our two hands-"digit" is just a fancy word for "finger"-and we could have used just about any number of digits instead of TEN.

In fact, deep down, computers use only Two digits, 0 and 1 , because any electronic device is either off or on. At intermediate levels, computers may use EIGHT $(0,1,2,3,4,5,6,7)$ or SIXTEEN digits $(0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f)$.

The Babylonians used SIXTY digits, a historical remnant of which can be seen in the fact that there are SIXTY seconds to a minute and SIXTY minutes to an hour.

The point is that all that we do with TEN digits could easily be done with any number of digits ${ }^{3}$.
2. We can then represent a basic collection, that is a collection with no more items than we have digits, that is no more than NINE items, by a basic counting number-phrase.
a. Given a basic collection, to get the numerator of the counting number phrase the procedure, called basic counting, is:
i. We count the collection, that is we point successively at each and every item in the collection while saying the digits in the basic succession that we memorized.
ii. The numerator is the end-digit, that is the last digit we say.

EXAMPLE 10. Given the collection

[^8]
pick
to get the basic counting number-phrase that represents it:
i. We can use for the denominator the name of the President whose picture is on them, that is Washington.
ii. We count the collection to get the numerator, that is

We point at each and everyone of:

while we say:
\qquad
and the end-digit gives us 3 for the numerator.
iii. Altogether, the collection

is represented by the basic counting number-phrase

3 Washingtons

b. Conversely, given a basic counting number-phrase, to get the basic collection that it represents:
i. We pick one item - of the kind specified by the denominator - each and every time we say a digit in the basic succession
ii. We stop after we have picked the item for the numeral in the numerator

EXAMPLE 11. Given the basic counting number-phrase

5 Washingtons

to get the basic collection that it represents:
i. The denominator Washingtons tells us that the items to be picked must be of the
same kind as

ii. The numerator 5 tell us to pick an item each and every time we say a digit in the succession; we stop after we have picked the item for the end-digit:

We say: We pick each and every one of:
$\xrightarrow{1,2,3,4,5}$

iii. Altogether, the basic counting number-phrase

5 Washingtons
represents the basic collection
extended counting extended collections extended succession numerals
endless

3. For extended counting, that is for counting extended collections, that is for collections with more items than we have digits, we can continue to proceed essentially as above: we must begin by memorizing the extended succession, that is the numerals that follow the basic succession $\xrightarrow{1,2,3,4,5,6,7,8,9}$, namely
$\xrightarrow{10,}$
that is:

numerals	we say	meaning	to make us think of:
10	ten		NHNHLL
11	eleve - n	ten - one	THNHNLI
12	elve-tw	ten - two	THNHNLI
13	thir - teen	ten - three	NHNHHLIII
\cdots	nine - teen	\cdots	
19	nine - teen	ten - nine	THNHHNL 1/111111
20	twen - ty	two - tens	THHNHKL THHNHLK
21	twen - ty - one	two - tens \& one	THNHKLTHNHLI

NOTE. The words we say for the numerals are far from being as systematic as the numerals themselves. This is due in part to the fact that these words slowly evolved over a very long time.

However, and this is possibly the single most important fact about ArithMETIC, while there are only so many digits in the basic succession-NINE in our case, the extended succession is endless.
a. Given an extended collection, to get the numerator of the counting number-phrase that represents it:
i. We begin by pointing successively at each and every item in the collection while saying the digits in the basic succession that we memorized,
ii. We continue by pointing successively at each and every item in the collection while saying the numerals in the extended succession that we memorized.
iii. The numerator is the end-numeral, that is the last numeral we say.

EXAMPLE 12. Given the extended collection,

to get the counting number-phrase:
i. We start with a basic count, that is:
we point at each and everyone of:
while we say:

$\xrightarrow{1,2,3,4,5,6,7,8,9}$
ii. We continue with an extended count, that is: we point at each and everyone of:
while we say:

iii. Altogether, the extended collection

is represented by the counting number-phrase

32 Washingtons

b. Given an extended counting number-phrase, to get the collection:
i. We begin by picking one item each and every time we say a digit in the basic succession
ii. We continue by picking one item each and every time we say a digit in the extended succession
iii. We stop after we have picked the item for the end-numeral.

EXAMPLE 13. Given the extended counting number-phrase,

$$
32 \text { Washingtons }
$$

to get the collection that it represents:
illustrate graph graph (to) ruler arrowhead tick-marks label graph
i. The denominator Washingtons tells us that the items to be picked must be of the
same kind as

ii. The numerator 32 tells us to pick an item each and every time we say a digit in the basic succession and then one each and every time we say a numeral in the extended succession; we stop after we have picked the item for the numerator.
iii. Altogether, the extended counting number-phrase

32 Washingtons
represents the extended collection

NOTE. The sticklers among us will have rightfully observed that, strictly speaking, counting is neither a paper procedure since it involves the real-world items nor a real world process since it involves the digits we write on paper. Indeed, counting is a bridge from the real-world to the paper-world.

1.6 Graphic Illustrations

As pointed-out at the beginning of this book, it is usually easier to work with representations of collections on paper than with the real-world collections themselves. But, once we have represented collections with number-phrases, we will often also want to illustrate the number-phrase with a graph. For short, we shall often say that we graph the number-phrase.

For that purpose, we will use rulers that are straight lines with:

- an arrowhead to indicate the way the succession goes
- tick-marks to be labeled with the numerators
- a label for the denominator.

EXAMPLE 14. To graph collections represented by basic counting number-phrases whose denominator is Washingtons, we use rulers such as

However, graphing collections represented by number-phrases can raise issues of its own.

1. In the case of basic counting number-phrases, there is no problem and, in fact, as soon as we label the tick-marks with numerators, the arrowhead ceases to be necessary. (But then, there is no point in erasing it either.)

EXAMPLE 15. To graph collections represented by basic counting number-phrases whose denominator is Washingtons, we use the ruler

Then, given a basic counting number-phrase, one usually places a dot on the corresponding tick-mark.
EXAMPLE 16. The graph that represents the collection represented by the counting number-phrase 3 Washingtons is

2. In the case of extended counting number-phrases, one problem is that we may not be able to draw a long enough ruler.
EXAMPLE 17. We can barely graph 15 Washingtons (by extending the ruler into the margin):

but we cannot extend the ruler enough to represent 37 Washingtons
A work-around could be to draw the tick-marks closer together. But then we may not be able to label all the tick-marks.
EXAMPLE 18. On the following ruler
$\xrightarrow{0123456789}$ Washingtons
we don't have enough room to write two-digit numerators.
One workaround to that is to label the tick-marks only every so often. However it is usually better to do so regularly, that is every so many. To make it easier to read the ruler, it is usual in this case to make the tickmarks that are labeled longer and, if these are far apart, to make the middle tick-marks a bit longer too.
EXAMPLE 19. In the following ruler, only every eighth tick-mark, that is $8,16,24$, 32 , etc, is labeled:

and the middle tick-marks, $4,12,20$, etc, are made easier to see by being made a bit larger.
EXAMPLE 20. The graphic that represents the collection represented by the extended counting number-phrase 37 Washingtons is

3. But, to graph collections represented by really large counting numberphrases, we will not even be able to draw all the tick-marks - and even so
sort
set
combination-phrase \&
we will often have to write the labels at an degree angle for them to fit.
EXAMPLE 21. In the following ruler, only every thousandth tick-mark, that is 1000 , 2000, 3000, etc, is drawn and labeled.

And another workaround may be not to start at 0 .
EXAMPLE 22. Suppose we are not involved with any numerator less than 4000 and more than 13000 . Then we would use rulers such as

1.7 Combinations

When there is more than one kind of items, they do not make up a collection and we cannot represent them by number-phrases.
EXAMPLE 23. Given the following real-world items,

since they are not all of the same kind (they do not make up a collection) there is no one President whose name we can use as a denominator.
We then proceed as follows:

1. We sort the items by kind into collections so that we now have a set of collections.
EXAMPLE 24. In the above example, we can sort the real-world items into a set of collections:

2. We represent the set of collections by a combination-phrase by writing the number-phrases that represent each one of the collections separated by the symbol \& to be read as "and".
EXAMPLE 25. In the above example, we can represent the set of collections by the combination-phrase:

4 Washington \& 2 Hamiltons \& 1 Franklin
3. The graphic representation of a combination-phrase requires as many rulers as there are kinds of collections in the set of collections that the combination-phrase represents.
EXAMPLE 26. In the above example, since there are three kinds of bills, we need three rulers:

1.8 About Number-Phrases

We end this chapter with a few remarks about why we are using the term number-phrases as opposed to just the term numbers as is usual in most current Arithmetic textbooks ${ }^{4}$.

1. A numerator by itself, that is without a denominator, represents a number which is not something in the real-world that we can see and touch. EXAMPLE 27. When asked "Can you show what 3 represents?", we usually respond
by showing three real world items, for instance
 but this is what the number-phrase 3 Washingtons represents and not what 3 by itself represents. In fact, there is no way we can show what 3 by itself represents.
In contrast, number-phrases represent collections which are things in the real-world that we can see and touch. This is exactly the reason why we use number-phrases even if they make things more cumbersome.
2. Aside from anything else, we should realize that when textbooks use the word number they are talking-usually without saying it-about the concepts represented by the numerators that are actually printed.
EXAMPLE 28. When a textbook says " 3 is the number of one-dollar bills on the desk", what is meant is " 3 is the numerator that represents the number of one-dollar bills
on the desk". Indeed, 3 is only a mark on paper that tells us how many

[^9]there are in the real-world collection that is on the desk.
So, when textbooks use the term number instead of the term numerator, they are not just using one term instead of another, they are, at best, blurring the distinction between the real-world and the paper-world we use to discuss the real-world ${ }^{5}$.
3. Number phrases allow us to be very precise as to what we are dealing with. In particular, the use of number phrases allows us to distinguish:

- matters of quality, that is questions about the kind of the items under consideration
from
- matters of quantity, that is questions about the number of the items under consideration.

EXAMPLE 29. Given the collection

sitting on a desk, we can ask three very different questions:

- "What is on the desk?" which we answer in Arithmetic by writing the counting-number-phrase

5 Washingtons

- "What kind of items are on the desk?" which we answer in Arithmetic by writing the denominator

Washingtons

- "How many items are on the desk?" which we answer in Arithmetic by writing the numerator

5

4. The distinction we make in Arithmetic between denominators and number-phrases with the numerator 1 is very similar to the informal distinction we make in English between "a" and "one".
Example 30. In Arithmetic, we distinguish the denominator Washington from the number-phrase 1 Washington the same way as in English we distinguish between

- "This looks like a five-dollar bill"
which, just like "This looks like a ten-dollar bill" or "This looks like a twenty-dollar bill" is a qualitative statement because they all are statements about what kind of bills they look like.
- "This looks like one five-dollar bill"
which, just like "This looks like two five-dollar bills" or "This looks like three five-dollar bills", is a quantitative statement because they all are statements about how many bills it looks there are.

[^10]Quite often, though and as we will see in many different situations, the numerator 1 "goes without saying".
EXAMPLE 31.

$$
3 \text { Washingtons + Washingtons }
$$

is understood to mean

$$
3 \text { Washingtons + } 1 \text { Washington }
$$

and, to take an example from things to come, in the same manner

$$
3 x+x
$$

is understood to mean

$$
3 x+1 x
$$

So, even though we shall avoid letting the numerator 1 "go without saying", just in case and to be on the safe side, we set the
DEFAULT RULE \# 1. When there is no numerator in front of a denominator and it is otherwise clear that we are dealing with a counting number-phrase, it then goes without saying that the numerator is understood to be 1 .
Note. Unfortunately, this default rule is often abbreviated as "when there is no numerator, the numerator is 1 " which is dangerous because when we say that there is no numerator it is tempting to think that the numerator is 0 !

1.9 Decimal Number-Phrases

We will work not only with collections of items but also with amount s of stuff and, just as we use counting number-phrases to represent collections of items, in order to represent amounts of stuff we will use decimal numberphrases that consist of a decimal numerator and a denominator:

Collection of Items Counting Number-phrase	Amount of Stuff Decimal Number-phrase
Kind of items Denominator	Kind of stuff Denominator
Number of items Counting Numerator	Quantity of stuff Decimal Numerator

EXAMPLE 32. We can represent twenty-four apples by the counting number-phrase
but in order to represent an amount of gold, we need a decimal number-phrase such as

31.72 Grams of gold

Unfortunately, this being a text on Basic Algebra, there was space only for the smallest possible investigation of Arithmetic, that is one limited to the introduction, illustration and discussion of the concepts strictly necessary to the understanding of Basic Algebra. So, for lack of space, this was done using only counting number-phrases even though, as just noted above, many real-world situations require decimal number-phrases instead.

More precisely, even though the investigation of decimal number-phrases is intimately related to the representation of large collections, in the above section and for lack of space we had to take a short cut, namely use extended counting rather than only basic counting together with combinations. Had we had the space to develop the latter approach for representing large collections, it would then have immediately and effortlessly led to decimal number-phrases.

So, here we will have to rely on the reader's own knowledge of decimal numbers. However, the interested reader will find a full investigation in Self-Contained Arithmetic as well as in From Arithmetic To Differential Calculus.

Chapter 2

Comparisons:
 Equalities and Inequalities

Counting From A Counting Number-Phrase To Another, 19 - Comparing Collections, 21 - Language For Comparisons, 26 - Procedures For Comparing Number-Phrases, 29 - Truth Versus Falsehood, 30 - Duality Versus Symmetry, 31.

We investigate the first of the three fundamental processes involving two collections. We will introduce the procedure in the case of basic collections using basic counting number-phrases.

2.1 Counting From A Counting Number-Phrase To Another

Before we can develop the procedures for these three fundamental processes, we must make the concept of counting more flexible by allowing a count

- to start with any digit which we will call the start-digit. (So, the start-digit doesn't have anymore to be 1 as it always did in Chapter 1.)
- to end with any digit which we will call the end-digit. (So, the end-digit may be "before" the start digit as well as "after" the start digit.)
Specifically, when we count from the start-digit to the end-digit:
i. We start (just) after the start-digit
ii. We stop (just) after the end-digit.

However, given a start-digit and a end-digit, we may have to count in either one of two possible directions:
count-up count-down precession

- We may have to count-up, that is we may have to use the succession

$$
\xrightarrow{1,2,3,4,5,6,7,8,9}
$$

which we read along the arrow, that is from left to right.
EXAMPLE 1. To count from the start-digit 3 to the end-digit 7:
i. We must count up, that is we must use the succession

$$
\xrightarrow{1,2,3,4,5,6,7,8,9}
$$

ii. We start counting up in the succession after the start-digit 3 , so that 4 is the first digit we say,

$$
\xrightarrow{4, \ldots}
$$

iii. We stop counting up in the succession after the end-digit 7 so that 7 is the last digit we say
\qquad
Altogether, the count from the start-digit 3 to the end-digit 7 is

$$
\xrightarrow{4,5,6,7}
$$

- We may have to count-down, that is we may have to use the precession

$$
\stackrel{1,2,3,4,5,6,7,8,9}{\rightleftarrows}
$$

which we read along the arrow, that is from right to left. NOTE. If we prefer to read from left to right, we may also write the precession as

$$
\xrightarrow{9,8,7,6,5,4,3,2,1}
$$

which we read along the arrow, that is from left to right.
EXAMPLE 2. To count from the start-digit 6 to the end-digit 2 :
i. We must count down, that is we must use the precession

$$
\xrightarrow{9,8,7,6,5,4,3,2,1}
$$

ii. We start counting down in the precession after the start-digit 6 so that 5 is the first digit we say

$$
\xrightarrow{5, \ldots}
$$

iii. We stop counting down in the precession after the end-digit 2 so that 2 is the last digit we say.

$$
\xrightarrow{\ldots \quad 2}
$$

Altogether, the count from the start-digit 6 to the end-digit 2 is

$$
\xrightarrow{5,4,3,2}
$$

NOTE. Memorizing the precession $\xrightarrow{9,8,7,6,5,4,3,2,1}$ just like we memorized the succession $\xrightarrow{1,2,3,4,5,6,7,8,9}$ makes life a lot easier.

Finally, the length of a count from a start-digit to an end-digit is how many digits we say regardless of the direction, that is whether up in the succession or down in the precession.
length (of a count)
compare
match one-to-one
leftover relationship
hold (to)

EXAMPLE 3. When we count from the start-digit 3 to the end-digit 7, the length of the count is 4 .
EXAMPLE 4. When we count from the start-digit 6 to the end-digit 2, the length of the count is 4 .

What that does, as in Chapter 1, is again to separate quality-represented by the direction of the count, up or down, from quantity - represented by the length of the count, how many digits we count.

NOTE. As already mentioned, we will only use basic counting, whether up or down, but extended counting would work essentially the same way.

2.2 Comparing Collections

Given two collections, the first thing we usually want to do is to compare the first collection to the second collection but an immediate issue is whether the kinds of items in the two collections are the same or different.

- When the two given collections involve different kinds of items, they don't they cannot be compared.

EXAMPLE 5. If Jane's collection is
 and Nell's collection is E (3) , we don't really want to co
that we are really looking at the items as
 that is that we would be ignoring some of the details in the pictures.

- When the two given collections involve the same kind of items, the realworld process we will use to compare the two collections will be to match one-to-one each item of the first collection with an item of the second collection and to look in which of the two collections the leftover items are in.
When the two given collections involve the same kind of items, there are six several different relationships that can hold from the first collection to the
simple
is-the-same-in-size-as is-different-in-size-from
second collection.

1. Up front, we have two very simple relationships:

- When there are no leftover objects, we will say that the first collection is-the-same-in-size-as the second collection.

EXAMPLE 6. To compare in the real-world Jack's
 with Jill's $\sqrt{10,0}$, we match Jack's collection one-to-one with Jill's collection:

Since there is no leftover item in either collection, the relationship between Jack's collection and Jill's collection is that:

Jack's collection is-the-same-in-size-as Jill's collection

- When there are leftover objects, regardless of where they are, we will say that the first collection is-different-in-size-from the second collection.

EXAMPLE 7. To compare Jack's

with Jill's
 in the real-world, we match Jack's collection one-to-one with Jill's collection:

Since there are leftover items in one of the two collections, the relationship between Jack's collection and Jill's collection is that:

Jack's collection is-different-in-size-from Jill's collection

EXAMPLE 8. To compare in the real-world Jack's
 with Jill's
we match Jack's collection one-to-one with Jill's collection:

Since there are leftover items in one of the two collections, the relationship between Jack's collection and Jill's collection is that:

> Jack's collection is-different-in-size-from Jill's collection
2. When two collections are different-in-size, then there are two possible strict relationships depending on which of the two collections the leftover item, if any, are in:

- When the leftover items are in the second collection, we will say that the first collection is-smaller-in-size-than the second collection.

EXAMPLE 9. To compare Jack's

with Jill's
 in the real-world, we match Jack's collection one-to-one with Jill's collection:

Since the leftover items are in Jill's collection, the relationship between Jack's collection and Jill's collection is that:

Jack's collection is-smaller-in-size-than Jill's collection

- When the leftover objects are in the first collection, we will say that the first collection is-larger-in-size-than the second collection.

EXAMPLE 10. To compare in the real-world Jack's

strict
is-smaller-in-size-than is-larger-in-size-than mutually exclusive
, we match Jack's collection one-to-one with Jill's collection:

Since the leftover items are in Jack's collection, the relationship between Jack's collection and Jill's collection is that:

Jack's collection is-larger-in-size-than Jill's collection
The relationship is the same as and the two strict relationships, is-smallerthan and is-larger-than, are mutually exclusive in the sense that as soon as we know that one of them holds, we know that neither one of the other two can hold.
is-no-larger-than is-no-smaller
3. Quite often, though, instead of the above three relationships, we will need to use another two relationships that we shall call lenient.
a. Instead of wanting to make sure that a first collection is-smallerthan a second collection, we may just want to make sure that the first collection is-no-larger-than the second collection, that is we may include collections that are-the-same-as.
What this mean is that instead of requiring that, after the one-to-one matching, the leftover items be in the second collection, we only require that the leftover items not be in the first collection and this is of course the case when the leftover items are in the second collection as before ... but also when there are no leftover items in either collection and therefore certainly no leftover in the first collection.

EXAMPLE 11. If Jack's collection is
 and Jill's collection is
 then we have that:

Jack's collection is no-larger-in-size-than Jill's collection since, after one-to-one matching,

there is no leftover item in Jack's collection.

EXAMPLE 12. If Mike's collection is
 and Jill's collection is
 it is also the case that:

Mike's collection is no-larger-in-size-than Jill's collection since, after one-to-one matching,

there is no leftover item in either collection and therefore certainly no leftover item in Mike's collection.
b. Similarly, instead of wanting to make sure that a first collection is-larger-than a second collection, we may just want to make sure that the first collection is-no-smaller than the second collection, that is we include collections that are-the-same.
What this mean in the real-world is that instead of requiring that, after the
one-to-one matching, the leftover items be in the first collection, we only require that the leftover items not be in the second collection and this is of course the case when the leftover items are in the first collection as before ... but also when there are no leftover items in either collection and therefore certainly no leftover in the second collection.

EXAMPLE 13. If Dick's collection is
 then we have that:

Dick's collection is no-smaller-in-size-than Jane's collection
since, after one-to-one matching,

there is no leftover item in Jane's collection.

EXAMPLE 14. If Mary's collection is
 and Jane's collection is
 it is also the case that:

Mary's collection is no-smaller-in-size-than Jane's collection
since, after one-to-one matching,

there is no leftover item in either collection and therefore certainly no leftover item in Jane's collection.

The two lenient relationships are not mutually exclusive in the sense that, given two collections, even if we know that one lenient relationship is holding from the first collection to the second collection, we cannot be sure that the other lenient relationship does not hold from the first collection to the second collection because the first collection could be holding because the first collection is-the-same-as the second collection in which case the other lenient relationship would be holding too.

On the other hand, if both lenient relationships hold from a first collection to a second collection, then we know for sure that the first collection is-the-same-as the second collection.
verb
$=$
is-equal-to
\neq
is-not-equal-to
$<$
is-less-than
$>$
is-more-than
\leqq
is less-than-or-equal-to
\geqq
is more-than-or-equal-to strict
lenient verbs
sentence (comparison)

2.3 Language For Comparisons

In order to represent on paper relationships between two collections, we first need to expand our mathematical language beyond number-phrases.

1. Given a relationship between two collections, we need a verb to represents this relationship. In keeping with our distinguishing between what we do in the real-world and what we write on paper to represent it, as between a real-world process and the paper procedure that represents it, we use different words for a real-world relationships and for the verbs we write on paper to represent it:

- To represent on paper the real-world simple relationships:
- is-the-same-in-size-as, we will use the verb $=$ which we will read as is-equal-to,
- is-different-in-size-from, we will use the verb \neq which we will read as is-not-equal-to,
- To represent on paper the real-world strict relationships:
- is-smaller-in-size-than, we will use the verb $<$, which we will read as is-less-than.
- is-larger-in-size-than, we will use the verb $>$ which we will read as is-more-than,
- To represent on paper the real-world lenient relationships
- is-no-larger-in-size-than, we will use the verb \leqq, which we will read as is less-than-or-equal-to.
- is-no-smaller-in-size-than, we will use the verb \geqq, which we will read as is more-than-or-equal-to.
We will say that
- The verbs $>$ and $<$ are strict verbs because they represent the strict relationships is-smaller-in-size-than and is-larger-in-size-than.
- The verbs \geqq and \leqq are lenient verbs because they represent the lenient relationships is-no-larger-in-size-than and is-no-smaller-in-size-than.

2. Then, to indicate that a relationship holds from one collection to another, we write a comparison-sentence that consists of the numberphrases that represent the two collections with the verb that represents the relationship in-between the two number-phrases.
EXAMPLE 15. Given Jack's a the relationship

Jack's collection is the same as Jill's collection
by writing the comparison-sentence

$$
3 \text { Dollars }=3 \text { Dollars }
$$

which we read as
THREE dollars is-equal-to THREE dollars.

EXAMPLE 16. Given Jack's

and Jill's

we repre-

Jack's collection is different from Jill's collection
by writing the comparison-sentence

$$
3 \text { Dollars } \neq 7 \text { Dollars }
$$

which we read as
THREE dollars is-not-equal-to SEVEN dollars.

EXAMPLE 17. Given Jack's
 sent the relationship

Jack's collection is different from Jill's collection
by writing the comparison-sentence
5 Dollars $\neq 3$ Dollars
which we read as
FIVE dollars is-not-equal-to THREE dollars.

EXAMPLE 18. Given Jack's

and Jill's
 sent the relationship

Jack's collection is smaller than Jill's collection
by writing the comparison-sentence
3 Dollars <7 Dollars
which we read as
THREE dollars is less than SEVEN dollars.

EXAMPLE 19. Given Jack's

and Jill's
 sent the relationship

Jack's collection is larger than Jill's collection
by writing the comparison-sentence
5 Dollars >3 Dollars
which we read as
FIVE dollars is more than THREE dollars.
equality
inequality (plain)

EXAMPLE 20. Given Jack's

and Jill's
 sent the relationship

Jack's collection is no-larger than Jill's collection
by writing the comparison-sentence
3 Dollars $\leqq 5$ Dollars,
which we read as
THREE dollars is less-than-or-equal-to FIVE dollars.

EXAMPLE 21. Given Mike's
 and Jill's
 resent the relationship

Mike's collection is no-larger than Jill's collection by writing the comparison-sentence

5 Dollars $\leqq 5$ Dollars,
which we read as
FIVE dollars is less-than-or-equal-to FIVE dollars.

EXAMPLE 22. Given Dick's

sent the relationship
Dick's collection is no-smaller than Jane's collection
by writing the comparison-sentence
5 Dollars $\geqq 2$ Dollars,
which we read as
THREE dollars is more-than-or-equal-to FIVE dollars.

Example 23. Given Mary's
 , we represent the relationship

Mary's collection is no-smaller than Jane's collection
which we represent by writing the comparison-sentence
2 Dollars $\geqq 2$ Dollars,
which we read as
THREE dollars is more-than-or-equal-to FIVE dollars.
3. Finally, comparison-sentences are named according to the verb that they involve

- Comparison-sentences involving the verb $=$ are called equalities.

EXAMPLE 24.
3 Dollars $=3$ Dollars \quad is an equality

- Comparison-sentences involving the verb \neq are called plain inequalities.

EXAMPLE 25.

3 Dollars $\neq 5$ Dollars is a plain inequality
inequality (strict)
inequality (lenient)

- Comparison-sentences involving the verbs $>$ or $<$ are called strict inequalities

EXAMPLE 26.

3 Dollars <7 Dollars and 8 Dollars >2 Dollars are strict inequalities

- Comparison-sentences involving the verbs \leqq and \geqq are called lenient inequalities.

EXAMPLE 27.

3 Dollars $\leqq 7$ Dollars and 8 Dollars $\geqq 2$ Dollars are lenient inequalities

2.4 Procedures For Comparing Number-Phrases

Given two number-phrases, the procedure for writing the comparison-sentences that are true will depend on whether the number-phrases are basic counting number-phrases or decimal number-phrases.

Given two basic counting number-phrases, we must see whether we must count-up or count-down from the first numerator to the second numerator ${ }^{1}$.

There are three possibilities depending on the direction we have to count when we count from the numerator of the first number-phrase to the numerator of the second number-phrase:

- We may have to count $u p$, in which case the comparison-sentence is:
first counting number-phrase $<$ second counting number-phrase
(with < read as "is-less-than")
EXAMPLE 28. To compare the given basic counting number-phrases 3 Washingtons and 7 Washingtons
i. We must count from 3 to 7 :

$$
\xrightarrow{4,5,6,7}
$$

that is we must count up.
ii. So, we write the strict inequality:

3 Washingtons <7 Washingtons

- We may have to count down, in which case the comparison-sentence is:
first counting number-phrase $>$ second counting number-phrase
(with > read as "is-more-than")

EXAMPLE 29. To compare the given basic counting number-phrases 8 Washingtons and 2 Washingtons

[^11]true false
i. We must count from 8 to 2 :
$$
\xrightarrow{7,6,5,4,3,2}
$$
that is, we must count down.
ii. So, we write the strict inequality:

8 Washingtons >2 Washingtons

- We may have neither to count up nor to count down, in which case the comparison-sentence is:
first counting number-phrase $=$ second counting number-phrase
(with $=$ read as "is-equal-to")
EXAMPLE 30. To compare the given basic sentences 3 Washingtons and 3 Washingtons.
i. We must count from 3 to 3 , that is we must count neither up nor down.
ii. So, we write the equality:

3 Washingtons $=3$ Washingtons

2.5 Truth Versus Falsehood

Inasmuch as the comparison-sentences that we wrote until now represented relationships between real-world collections, they were true.

However, there is nothing to prevent us from writing comparison-sentences regardless of the real-world. In fact, there is nothing to prevent us from writing comparison-sentences that are false in the sense that there is no way that anyone could come up with real-world collections for which one-to-one matching would result in the relationship represented by these comparisonsentences.
EXAMPLE 31. The sentence

$$
5 \text { Dollars }<3 \text { Dollars }
$$

is false because there is no way that anyone could come up with real-world collections for which one-to-one matching would result in there being leftover items in the second collection.
EXAMPLE 32. The sentence

$$
5 \text { Dollars }=3 \text { Dollars, }
$$

is false because there is no way that anyone could come up with real-world collections for which one-to-one matching would result in there being no leftover item.
EXAMPLE 33. The sentence
3 Dollars $\leqq 3$ Dollars,
is true because we can come up with real-world collections for which one-to-one matching would result in there being no leftover item.
EXAMPLE 34. The sentence

$$
5 \text { Dollars } \leqq 3 \text { Dollars, }
$$

negation

NOT
slash
duality (linguistic)
symmetry (linguistic)
is false because there is no way that anyone could come up with real-world collections for which one-to-one matching would result in there being leftover items in the second collection or no leftover item.

However, while occasionally useful, it is usually not very convenient to write sentences that are false because then we must not forget to write that they are false when we write them and we may miss that it says somewhere that they are false when we read them. So, inasmuch as possible, we shall write only sentences that are true and we will use

DEFAULT RULE \# 2. When no indication of truth or falsehood is given, mathematical sentences will be understood to be true and this will go without saying.

When a sentence is false, rather than writing it and say that it is false, what we shall usually do is to write its negation-which is true and therefore "goes without saying". We can do this either in either one of two manners:

- We can place the false sentence within the symbol NOT[],
- We can just slash the verb which is what we shall usually do.

EXAMPLE 35. Instead of writing that

$$
\text { the sentence } 5 \text { Dollars }=3 \text { Dollars is false }
$$

we can either write the sentence

$$
\text { NOT[5 Dollars }=3 \text { Dollars] }
$$

or the sentence

$$
5 \text { Dollars } \neq 3 \text { Dollars }
$$

2.6 Duality Versus Symmetry

The linguistic duality that exists between $<$ and $>$ must not be confused with linguistic symmetry, a concept which we tend to be more familiar with ${ }^{2}$.

[^12]opposite dual

1. Linguistic symmetry involves pairs of sentences-which may be true or false- that represent opposite relationships between the two people/collections because, even though the verbs are the same, the two people/collections are mentioned in opposite order.

ExAMPLE 36.

- Jack is a child of Jill versus Jill is a child of Jack
- Jill beats Jack at poker versus Jack beats Jill at poker
- Jack loves Jill versus Jill loves Jack
- 9 Dimes >2 Dimes \quad versus 2 Dimes >9 Dimes

Observe that just because one of the two sentences is true (or false) does not, by itself, automatically force the other to be either true or false and that whether or not it does depends on the nature of the relationship.
2. Linguistic duality involves pairs of sentences-which may be true or false-that represent the same relationship between the two people/collections because, even though the people/collections are mentioned in opposite order, the two verbs are dual of each other which "undoes" the effect of the order so that only the emphasis is different.
EXAMPLE 37.

- Jack is a child of Jill versus Jill is a parent of Jack
- Jill beats Jack at poker versus Jack is beaten by Jill at poker
- Jack loves Jill versus Jill is loved by Jack
- 9 Dimes > 2 Dimes versus $\quad 2$ Dimes <9 Dimes

Observe that here, as a result, if one of the two sentences is true(or false) this automatically forces the other to be true (or false) and this regardless of the nature of the relationship.
3. When the verbs are the same and the order does not matter for these verbs, the sentences are at the same time (linguistically) symmetric and (linguistically) dual.
EXAMPLE 38.

- Jack is a sibling of Jill versus Jill is a sibling of Jack
- 2 Nickels $=1$ Dime versus 1 Dime $=2$ Nickels

Observe that, here again, as soon as one sentence is true (or false), by itself this automatically forces the other to be true (or false) and that it does not depend on the nature of the relationship.

Chapter 3

Addition

Attaching A Collection To Another, 33 - Language For Addition, 34 Procedure For Adding A Number-Phrase, 36.

We investigate the second of the three fundamental processes involving two collections. We will introduce the procedure in the case of basic collections using basic counting number-phrases and we will then extend the procedure to extended collections using decimal-number phrases.

3.1 Attaching A Collection To Another

Given two collection, the second fundamental issue is the first instance of what is called an operation - as opposed to a relationship: it is to attach the second collection to the first collection.

To get the collection that is the result of the real-world process:
i. We set the second collection alongside the first collection
ii. We move the second collection along the first collection
iii. The resulting collection is made of all the items in the first collection as well as the moved items. .

EXAMPLE 1. To attach Jill's
i. We set Jill's collection to the right of Jack's collection:

operator
$+$
specifying-phrase bar
ii. We move Jill's collection along Jack's collection

iii. The items in the first collection together with the moved items make up the resulting collection.

3.2 Language For Addition

In order to represent on paper the result of an operation, such as attaching a second collection to a first collection, we need to expand again our mathematical language.

1. The first thing we need is a symbol, called operator, to represent the operation. In the case of attaching a second collection to a first collection, we will of course use the operator + , read as "plus". NOTE. It should be stated right away, though, that this use of the symbol + is only one among very many different uses of the symbol + and that this will create in turn many difficulties. We shall deal with these difficulties one at a time, as we encounter each new use of the symbol + .
2. Given two collections represented by number-phrases, we will represent f attaching the second collection to the first by a specifying-phrase that we write as follows:
i. We write the first number phrase:
first number phrase
ii. We write the symbol for adding:

$$
\text { first number phrase }+
$$

iii. We write the second number-phrase over the bar:
first number phrase + second number phrase
Altogether then, the specifying-phrase that corresponds to attaching to a first collection a second collection is:
first number phrase + second number phrase
EXAMPLE 2. In order to say that we want to add to the first number-phrase 5 Washingtons the second number-phrase 3 Washingtons we write the specifying phrase:

5 Washingtons +3 Washingtons
3. This language gives us a lot of flexibility:

- Before we count the result of attaching a second collection to a first collection, we can already represent the result by using a specifyingphrase.
- After we have found the result of attaching a second collection to a first collection, we can represent the result by a number-phrase.
- Altogether, to summarize the whole process, we can identify the specifying phrase with an identification-sentence which we write as follows
i. We write the specifying phrase
ii. We lengthen the bar with an arrowhead
iii. We write the number-phrase that represents the result.

Example 3.

i. Before we attach to Jack's

identify
identification-sentence arrowhead represent the result by the specifying-phrase

6 Washingtons +3 Washingtons
ii. After we have found that the result of attaching to Jack's

Jill's

iii. Altogether, to summarize the whole process with an identification-sentence we lengthen the bar with an arrowhead and we write the number-phrase that represents the result of the attachment.

6 Washingtons $\xrightarrow{+3 \text { Washingtons }} 9$ Washingtons
4. Usually, though, we will not write things this way and we only did it above to show how the mathematical language represented the reality. As usual, some of it "goes without saying":

- In the specifying phrase, the bar goes without saying
- In the identification sentence, the arrowhead is replaced by the symbol $=$

EXAMPLE 4. Instead of writing the specifying phrase
6 Washingtons +3 Washingtons
we shall write
6 Washingtons +3 Washingtons
and instead of writing the identification sentence
6 Washingtons $\xrightarrow{+3 \text { Washingtons }} 9$ Washingtons
we shall write

$$
6 \text { Washingtons }+3 \text { Washingtons }=9 \text { Washingtons }
$$

3.3 Procedure For Adding A Number-Phrase

Given two collections, the paper procedure that gives (the numerator of) the number-phrase that represents the result of attaching the second collection to the first collection is called addition and depends on whether the two numberphrases are basic counting number-phrases or decimal number-phrases.

In order to add a second basic collection to a first basic collection, we count up from the numerator of the first collection by a length equal to the numerator of the second collection.

There are then two cases depending on whether, when we count up from the numerator of the first number-phrase by a length equal to the second numerator, we need to end up past 9 or not.

- If we do not need to end up past 9 , the result of the addition is just the end-digit.
EXAMPLE 5. To add Jill's 5 Washingtons to Jack's 3 Washingtons, that is, to identify the specifying-phrase

3 Washingtons +5 Washingtons
i. Starting from 3, we count up by a length equal to 5:
$\xrightarrow{4,5,6,7,8}$
ii. The end-digit is 8 .
iii. We write the identification-sentence:

$$
3 \text { Washingtons }+5 \text { Washingtons }=8 \text { Washingtons }
$$

- If we need to end up past 9 , then we must bundle and change TEN of the items.

EXAMPLE 6. To add Jill's 8 Washingtons to Jack's 5 Washingtons, that is to identify the specifying-phrase

5 Washingtons +8 Washingtons
i. Starting from 5 , we count up by a length equal to 8 but stop after TEN:

$$
\xrightarrow{4,5,6,7,8,9, \text { TEN }}
$$

ii. We bundle ten Washingtons and change for a 1 DekaWashingtons and count the rest
iii. We write the identification-sentence:

5 Washingtons +8 Washingtons $=1$ DEKAWashingtons \& 3 Washingtons
which of course we could also write
5 Washingtons +8 Washingtons $=1.3$ DEKAWashingtons
or

$$
5 \text { Washingtons }+8 \text { Washingtons }=13 \text {. Washingtons }
$$

or ..
Actually, we usually do the latter a bit differently, that is, instead of basic counting up just past 9 , interrupt ourselves to bundle and change, and then start basic counting again, it is easier to use some extended counting and count all the way and then bundle and change what we must and count the rest.

EXAMPLE 7. To add Jill's 8 Washingtons to Jack's 5 Washingtons, that is to identify the specifying-phrase

$$
5 \text { Washingtons }+8 \text { Washingtons }
$$

i. We count up from 5 by a length equal to 8 using extended-counting:

$$
\xrightarrow{4,5,6,7,8,9, \text { TEN, ELEVEN, TWELVE, THIRTEEN }}
$$

ii. Then we say that we can't write thirteen Washingtons since we only have digits up to 9 so that we should bundle ten Washingtons and change for a 1 DekaWashingtons with 3 Washingtons left
iii. We write the identification-sentence:

5 Washingtons +8 Washingtons $=1$ DEKAWashingtons \& 3 Washingtons
that is, using a decimal number-phrase,

$$
5 \text { Washingtons }+8 \text { Washingtons }=1.3 \text { DEKAWashingtons }
$$

or, if we prefer,

$$
5 \text { Washingtons }+8 \text { Washingtons }=13 . \text { Washingtons }
$$

The difference is of course not a great one. It is only that we said that we would deal with extended collections using only basic counting and indeed, in the second example, we fudged a bit when, after having counted to thirteen, we said that after bundling and changing we had 3 left: officially, we cannot do so since we have not yet introduced subtraction.

However, if the first example illustrates the fact that, when needed, we can indeed do things "cleanly", the second example illustrates the fact that, while we are usually not willing to count very far, a bit of (extended) counting beyond 9 makes life easier.

Chapter 4

Subtraction

Detaching A Collection From Another, 39 - Language For Subtraction, 40 Procedure For Subtracting A Number-Phrase, 42 - Subtraction As Correction, 43.

We investigate the third of the three fundamental processes involving two collections. We will introduce the procedure in the case of basic collections using basic counting number-phrases and we will then extend the procedure to extended collections using decimal-number phrases.

4.1 Detaching A Collection From Another

Given two collections, the third fundamental issue is to detach the second collection from the first collection. This is the second instance of an operation.

The real-world process is to mark off the items of the first collection that are also in the second collection and to look at all the unmarked items as making up a single collection that we shall also call the resulting collection.

EXAMPLE 1. To detach Jill's

i. We set Jill's collection to the right of Jack's collection

ii. We mark off the items in Jack's collection that are also in Jill's collection

iii. The unmarked items in the first collection make up the resulting collection

4.2 Language For Subtraction

In order to represent on paper the result of an operation, such as detaching a second collection from a first collection, we need to expand again our mathematical language but we will proceed in essentially the same manner as we did with the language for addition.

1. The first thing we need is a symbol, called operator, to represent the operation. In the case of detaching a second collection from a first collection, we will of course use the operator -, read as "minus".
To represent on paper the result of detaching a second collection from a first collection, we will of course use the operator - read minus.
Here again, just as with the symbol + , this use of the symbol - is only one among very many different uses of the symbol - and that this will create in turn many difficulties. We shall deal with these difficulties one at a time, as we encounter each new use of the symbol -.
NOTE. It should be stated right away, though, that this use of the symbol - is only one among very many different uses of the symbol - and that this will create in turn many difficulties. We shall deal with these difficulties one at a time, as we encounter each new use of the symbol -.
2. Given two collections represented by number-phrases, we will represent detaching the second collection from the first by a specifying-phrase that we write as follows:
i. We write the first number phrase:
first number phrase
ii. We write the symbol for subtracting:
first number phrase
iii. We write the second number-phrase over the bar:

$$
\text { first number phrase }- \text { second number phrase }
$$

Altogether then, the specifying phrase that corresponds to detaching from a first collection a second collection is:
first number phrase - second number phrase
EXAMPLE 2. In order to say that we want to subtract from the first number-phrase 5 Washingtons the second number-phrase 3 Washingtons we write the specifying phrase:
identify
identification-sentence arrowhead

$$
5 \text { Washingtons }-3 \text { Washingtons }
$$

3. This language gives us a lot of flexibility:

- Before we count the result of attaching a second collection to a first collection, we can already represent the result by using a specifyingphrase.
- After we have found the result of attaching a second collection to a first collection, we can represent the result by a number-phrase.
- Altogether, to summarize the whole process, we can identify the specifying phrase with an identification-sentence which we write as follows
i. We write the specifying phrase
ii. We lengthen the bar with an arrowhead
iii. We write the number-phrase that represents the result.

Example 3.
i. Before we detach from Jack's
 already represent the result by the specifying-phrase

6 Washingtons -4 Washingtons
ii. After we have found that the result of detaching from Jack's

Jill's
 we can represent the result by 4 Washingtons
iii. Altogether, to summarize the whole process with an identification-sentence we lengthen the bar with an arrowhead and we write the number-phrase that represents the result of the detachment.

6 Washingtons $\xrightarrow{-2 \text { Washingtons }} 4$ Washingtons
4. Usually, though, we will not write things this way and we only did it above to show how the mathematical language represented the reality. As usual, some of it "goes without saying":

- In the specifying phrase, the bar goes without saying
- In the identification sentence, the arrowhead is replaced by the symbol $=$

EXAMPLE 4. Instead of writing the specifying phrase
subtraction
6 Washingtons -2 Washingtons
we shall write
6 Washingtons - 2 Washingtons
and instead of writing the identification sentence
6 Washingtons $\xrightarrow{-2 \text { Washingtons }} 4$ Washingtons
we shall write

$$
6 \text { Washingtons }-2 \text { Washingtons }=4 \text { Washingtons }
$$

4.3 Procedure For Subtracting A Number-Phrase

Given two collections, the paper procedure that gives (the numerator of) the number-phrase that represents the result of detaching the second collection from the first collection is called subtraction and depends on whether the two number-phrases are basic counting number-phrases or decimal numberphrases.

In order to subtract a second basic collection from a first basic collection, we count down from the numerator of the first collection by a length equal to the numerator of the second collection.

There are then two cases depending on whether, when we count down from the numerator of the first number-phrase by a length equal to the second numerator, we can complete the count or not.

- If we can complete the count, then the result of the subtraction is just the end-digit.
EXAMPLE 5. To subtract Jill's 3 Washingtons from Jack's 7 Washingtons, that is to identify the specifying-phrase

7 Washingtons - 3 Washingtons
i. Starting from 7, we count down by a length equal to 3:

$$
\xrightarrow{6,5,4}
$$

ii. We can complete the count and the end-digit is 4
iii. We write the identification-sentence:

7 Washingtons -3 Washingtons $=4$ Washingtons

- In particular, the end-digit can be 0 .

EXAMPLE 6. To subtract Jill's 5 Washingtons from Jack's 5 Washingtons, that is to identify the specifying-phrase

$$
5 \text { Washingtons }-5 \text { Washingtons }
$$

i. Starting from 5 , we count down by a length equal to 5 :

$$
\xrightarrow{4,3,2,1,0}
$$

ii. We can complete the count and the end-digit is 0
iii. We write the identification-sentence:

5 Washingtons -5 Washingtons $=0$ Washingtons

- If we cannot complete the count, then the subtraction just cannot be done. (At least in this type of situation. We shall see in the next Chapter other situations in which we can end down past 0.)
EXAMPLE 7. To subtract Jill's 5 Washingtons from Jack's 3 Washingtons, that is to identify the specifying-phrase

3 Washingtons -5 Washingtons

But, to identify the specifying-phrase, we would have to start from 3 and count down by a length of 5 but, by the time we got to 0 , we would have counted only by a length of 3 and so we cannot complete the count which is as it should be.

4.4 Subtraction As Correction

Subtraction often comes up after we have done a long string of additions and realized that there is an outcast, that is a number-phrase that we shouldn't have added (for whatever reason), so that, as a consequence, the total is incorrect.
EXAMPLE 8. Suppose we had an ice-cream stand and that we had added sales as the day went which gave us the following specifying-phrase:
6 Washingtons +3 Washingtons +7 Washingtons +9 Washingtons
and that at the end of day we identified the specifying-phrase which gave us

25 Washingtons

but that we then realized that 3 Washingtons was an outcast (it was not a sale but money given for some other purpose) with the consequence that 25 Washingtons is incorrect in that it is not the sum total of the sales for the day.

To get the correct total, we have the following two choices for the procedure:

- Procedure A would be to strike out the outcast and redo the entire addition:
EXAMPLE 9. In the above example, we strike out the outcast 3 Washingtons
6 Washingtons $+\beta / 3 /$ MAsshingttons +7 Washingtons +9 Washingtons
which gives us

22 Washingtons

Of course, since Procedure A is going to involve a lot of unnecessary work redoing all that had been done correctly, it is very inefficient.
cancel out adjustment

- Procedure B would be to cancel out the effect of the outcast in the incorrect total by subtracting the outcast from the incorrect total. (Accountants call this "entering an adjustment".)
EXAMPLE 10. In the above example, we subtract 3 Washingtons (the outcast) from 25 Washingtons (the incorrect total):
25 Washingtons - 3 Washingtons
which gives us:

22 Washingtons

We now want to see that the two procedures must give us the same result either way. For that, we place the specifying-phrases in the two procedures side by side and we see that that the remaining number-phrases are the same either way.
EXAMPLE 11. In the above example, we have:


```
and
6 Washingtons + 3 Washingtons}+7\mathrm{ Washingtons + 9 Washingtons - 3 Washingtons
We see that, either way, the remaining number-phrases are:
6 Washingtons +7 Washingtons +9 Washingtons
```


Chapter 5

Signed Number-Phrases

Actions and States, 46 - Signed Number-Phrases, 47 - Size And Sign, 49 Graphic Illustrations, 50 - Comparing Signed Number-Phrases, 51 Adding a Signed Number-Phrase, 54 - Subtracting a Signed Number-Phrase, 57 - Effect Of An Action On A State, 59 - From Plain To Positive, 62.

We have seen in Chapter 1 that we can use plain number-phrases, that is either counting number-phrases or decimal number-phrases, only in situations where the items are all of the same one kind. We shall now introduce and discuss a new type of number-phrase that we shall use in a type of situations that occurs frequently in which the items are all of either one of two kinds.

Just as we did for plain number-phrases in Chapters 2, 3, and 4, we will have to define for this new type of number-phrase what we mean by:
i. To "compare" two number-phrases,
ii. To "add" a second number-phrase to a first number-phrase,
iii. To "subtract" a second number-phrase from a first number-phrase. and in particular to develop the corresponding procedures.

What will complicate matters a little bit, though, is that the procedures for the new type of number-phrases will involve the procedure that we developed for plain number-phrases. So, until we feel completely comfortable with the distinction, we shall use new symbols for "comparison", "addition" and "subtraction" for the new kind of number-phrases ${ }^{1}$.

[^13]cancel
two-way collections
action
step
state
degree
benchmark

5.1 Actions and States

Quite often we don't deal with items that are all of the same kind but with items of two different kinds and a special case of this is when two items of different kinds cannot be together as they somehow cancel each other. As a result, we will now consider what we shall call two-way collections, that is collections of items that are all of one kind or all of another kind with items of different kinds canceling each other.

1. In the real-world, two-way collections come up very frequently and in many different types of situations but they generally fall in either one of two types:

- In one type of two-way collections, called actions, the items are steps in either this-direction or that-direction.
EXAMPLE 1. In fact, we already encountered in the previous chapter this kind of items: counting up and counting down. Of course, the situation there was not symmetrical: we could always count steps up but we could not always count steps down. But there would have been no point counting at the same time three steps up and five steps down since steps up would cancel out steps down and this would have just amounted to counting two steps down.

EXAMPLE 2.

- Actions that a businesswoman may take on a bank account are to deposit three thousand dollars, withdraw two thousand dollars, etc
- Actions that a gambler may take are to win fifty-eight dollars, lose sixty-two dollars, etc
- Actions that a mark may take on a horizontal line include moving two feet leftward, five feet rightward, etc.
- Actions that a mark may take on a vertical line include moving five inches upward, five inches downward, etc.
- In the other type of two-way collections, called states, the items are degrees of one kind or another but they have to be either on this-side or that-side of some benchmark.

EXAMPLE 3.

- States that a business may be in include being three thousand dollars in the red, being seven thousand dollars in the black, etc.
- States that a gambler may be in include being sixty-two dollars ahead of the game, being thirty-seven dollars in the hole, etc.
- States that a mark may be in on a horizontal line with some benchmark include being two feet to the left of the benchmark, being nine feet to the right of the benchmark, etc.
- States that a mark may be in on a vertical line with some benchmark include being five inches above the benchmark, being three inches below the benchmark, etc.

2. Since all the items in a given two-way collection are of the same kind, a two-way collection is essentially a collection with a twist. So, just as we said that, in the real world,

- the nature of a collection is the kind of items in the collection,
- the extent of a collection is the number of items in the collection, we shall now say that:
- the nature of an action is the kind of steps in the action and the nature of a state is the kind of degrees in which the state can be
- the extent of an action is the number of steps in the action and the size of a state is the number of degrees of the state.
- the direction of an action is the direction of the steps in the action and the side of a state is the side of the degrees in the state.
EXAMPLE 4. When a person climbs up and down a ladder, an action may be climbing up seven rungs. Then,
- the nature of the action is climbing rungs
- the size of the action is seven
- the direction is up

5.2 Signed Number-Phrases

Plain number-phrases are not sufficient to represent on paper either actions or states because they do not indicate the direction of the action or the side of the state.
EXAMPLE 5.

- 3000 Dollars does not say if the businesswoman made a deposit or a withdrawal or if the business is in the red or in the black.
- 62 Dollars does not say if the gambler is ahead of the game or in the hole.
- 2 Feet does not say if the mark is to the left or to the right of the benchmark.
- 5 Inches does not say if the mark is moving up or down.

1. Since a two-way collection is just a collection with a direction or a side, we will represent on paper a two-way collection by a signed number-phrase that will consist of:

- a denominator to represent on paper the nature of the action (that is the kind of the steps in the action) or of the state (that is the kind of the degrees in the state).
- a numerator to represent on paper the extent of the action (that is the number of steps in the action) or the extent of the state (that is the number of degrees in the state),
- a sign to represent on paper the direction of the action (that is the direction of the steps in the action) or the side of the state (that is the
nature (of an action) nature (of a state) extent (of an action) size (of a state)
direction (of an action)
side (of a state)
signed number-phrase
record standard direction opposite direction standard side
opposite side
sign
$+$
positive
negative
context
signed-numerator
positive numerators negative numerators
side of the benchmark that the degrees of the state are on.)

2. However, in order to say what direction the action or what side the state, we must always begin by recording for future reference:

- which direction is to be the standard direction and which direction is therefore to be the opposite direction,
- which side of the benchmark is going to be the standard side and which side is therefore to be the opposite side,
NOTE. Historically, it has long gone without saying that standard was what was "good" and opposite what was "bad".

EXAMPLE 6.

- To deposit money is usually considered to be "good" as it goes with saving while to withdraw money is usually considered to be "bad" as it goes with spending.
- To win is usually considered to be "good" while to lose is considered to be "bad".
- To go up is usually considered to be "good" while to go down is usually considered to be "bad".

3. Once we have recorded what is standard and therefore what is opposite, we can use a sign to represent on paper the direction of the action (that is the direction of the steps in the action) or the side of the state (that is the side of the benchmark that the degrees of the state are on):

- we will use the sign + , read here as positive, to represent on paper whatever is standard, whether an action or a state.
- we will use the sign -, read here as negative, to represent on paper whatever is opposite, whether an action or a state.

NOTE. This use of the symbols + and - is entirely different from their use in Chapter 1 where they denoted addition and subtraction. This complicates reading the symbol as we need to rely on the context, that is the text that is around the symbol, to decide what the symbol stands for.
4. However, because this will make developing and using procedures a lot easier, we will lump the sign together with the numerator and call the result a signed-numerator. Signed-numerator with $a+$ are said to be positive numerators and signed-numerators with a - are said to be negative numerators. NOTE. Historically, just as with standard and opposite and perhaps as a result, positive has been identified with "good" and negative with "bad".

So, altogether, a signed number-phrase will consist of:

- a signed-numerator
- a denominator

EXAMPLE 7. Say that we have put on record that the standard direction is to win money so that to lose money is the opposite direction. Then,

When a real-world gambler:

- wins forty-seven dollars
- loses sixty-two dollars

We write on paper:
+47 Dollars -62 Dollars
sign, of the numerator size

EXAMPLE 8. Say we have put on record that the standard side is in-the-black so that in-the-red is the opposite side. Then,

When a real-world business is:

- three thousand dollars in-the-black
- seven hundred dollars in-the-red

> We write on paper:
> $\quad+3000$ Dollars
> -700 Dollars
5. We are using the same symbol, 0 , both for

- the counting numerator that is left of the succession of counting numerators $1,2,3,4, \ldots$
- the signed numerator which is inbetween the succession of positive numerators $+1,+2,+3,+4, \ldots$ and the recession of negative numerators $-1,-2,-3,-4, \ldots$
In this case, we shall have to live with the ambiguiity and decide each time, according to the context, which one the numerator 0 really is.

5.3 Size And Sign

On the other hand, given a signed numerator, we shall say that:

- the sign of the numerator is the sign which was put in front of the plain numerator to make the signed numerator
- the size of the numerator is the plain numerator from which the signed numerator was made.

EXAMPLE 9.

In other words, -5 is a signed-numerator whose size is 5 and whose sign is - .
EXAMPLE 10.

signed ruler minus infinity $-\infty$ plus infinity $+\infty$

In other words, +3 is a signed-numerator whose size is 3 and whose sign is + .
Indeed, signed number-phrases can contain more information than is necessary for a particular purpose and then all we need is either the sign or the size of the signed number-phrase.

1. In many circumstances, what matters is only the size of the signed number-phrases and not the sign.
EXAMPLE 11. Say we are told that

- Jill's balance is $+70,000,000$ Dollars
- Jack's balance is $-70,000,000$ Dollars.

We can safely conclude that neither Jack nor Jill belongs to "the rest of us".
EXAMPLE 12. If we are stopped on the turnpike doing $+100 \frac{\text { Miles }}{\text { Hour }}$, that is while driving from Philadelphia to New York, or doing -100 Miles that is while driving back from New York to Philadelphia, it does not matter which way we were going: regardless of the direction, we are going to get into big trouble.
So, in such cases, it is the size of the given signed numerator that matters.
EXAMPLE 13. The size of Jill's $+70,000,000$ Dollars is $70,000.000$ and the size of Jack's $-70,000,000$ Dollars is also $70,000,000$ Dollars.
So, what makes Jack and Jill different from "the rest of us" is the size of their balance and not its sign.
EXAMPLE 14. The size of our speed when we are going $+100 \frac{\text { Miles }}{\text { Hour }}$ (that is from Philadelphia to New York) is $100 \frac{\text { Miles }}{\text { Hour }}$ and the size of our speed when we are going $-100 \frac{\text { Miles }}{\text { Hour }}$ (that is from New York to Philadelphia) is also $100 \frac{\text { Miles }}{\text { Hour }}$.
So, what gets us into trouble is the size of our speed.
2. In many other circumstances, what matters is only the sign of the signed number-phrase and not the numerator.
EXAMPLE 15. Usually, banks do not accept negative balances, regardless of their size. In other words, all bank care about is the sign of the balance.
EXAMPLE 16. If we are stopped going the wrong way on a one way street, it won't matter if we were well under the speed limit. In other words, what gets us into trouble is the sign of our speed and not its size.

5.4 Graphic Illustrations

To graph a two-way collection represented on paper by a signed numberphrase, we proceed essentially just as with counting number-phrases and/or decimal number-phrases. The only differences are that on a signed ruler: - we shall have the symbol for minus infinity, $-\infty$, and the symbol for plus infinity, $+\infty$, at the corresponding ends of the ruler
$\xrightarrow[-\infty]{\longrightarrow}$ Dollars

- the tick-marks, if any, are labeled with signed number-phrases.

As with all rulers and depending on the circumstances, 0 may or may not appear.

EXAMPLE 17.

EXAMPLE 18.

EXAMPLE 19.

EXAMPLE 20.

EXAMPLE 21.

5.5 Comparing Signed Number-Phrases

We investigate the first fundamental process involving actions and states: Given two actions or two states we would like to be able to compare the signed number-phrases that represent them.

However, there are actually two viewpoints from which to compare signed number-phrases.

1. From what we shall call the algebraic viewpoint, the comparison depends both on the sign and the size of the two signed number-phrases. In the real-world, the comparison corresponds to the relationship is-smallerthan understood as is-poorer-than extended to the case when being in debt is allowed.
It is traditional to use the same verbs as with counting number-phrases and decimal number-phrases, that is: $<,>,=$, and \leqq, \geqq.
algebra-compare algebra-more-than algebra-less-than is-left-of is-right-of
a. There are two cases depending on the signs of the two signed number-phrases:

- When the signs of the two signed number-phrases are the same
- any two positive number-phrases algebra-compare the same way as their sizes compare

EXAMPLE 22.

+365.75 Dollars $>+219.28$ Dollars
because $365.75>219.28$.

- any two negative number-phrases algebra-compare the way opposite to the way their sizes compare
EXAMPLE 23.

$$
\text { -432.69 Dollars }<-184.41 \text { Dollars }
$$

because $432.69>184.41$.

- When the sign of the two signed number-phrases are opposite, we can say either that
- any positive number-phrase is algebra-more-than any negative number-phrase
or, dually, that
- any negative number-phrase is algebra-less-than any positive number-phrase
EXAMPLE 24.

$$
-2386.77 \text { Dollars }<+17.871 \text { Dollars }
$$

because any negative number-phrase is less-than any positive number-phrase.
b. In other words, when we picture on a ruler the signed numberphrases involved in an algebraic comparison, an algebraic comparison is about the relative positions of the two signed number-phrases relative to each other:

- is-algebra-less-than is pictured as is-left-of
- is-algebra-more-than is pictured as is-right-of

EXAMPLE 25.

- The algebra-comparison sentence
-4 Dollars $<+2$ Dollars
corresponds to the fact that in the graphic

the mark that represents -4 is-left-of the mark that represents +2
- The algebra-comparison sentence
-1 Dollars >-4 Dollars
corresponds to the fact that in the graphics

the mark that represents -1 is-right-of the mark that represents -4
This illustrates the reason that we can reuse the same verbs with signed number-phrases as we did with counting number-phrases and decimal numberphrases.

2. From what we shall call the size viewpoint, the comparison depends only on the size of the two signed number-phrases and not on the sign.
a. It is quite usual in the real-world to say that a hundred dollar debt is larger than a fifty dollar debt even though someone owing a hundred dollars is-poorer-than a person owing fifty dollars.
So, we will say that:

- A first signed number-phrase is-larger-in-size-than a second signed number-phrase when the size of the first signed number-phrase is larger than the size of the second signed number-phrase.
or, dually, we can say
- A first signed number-phrase is-smaller-in-size-than a second signed number-phrase when the size of the first signed number-phrase is smaller than the size of the second signed number-phrase.
We shall not use symbols and we shall just write the words.
EXAMPLE 26. We have of course that
+365.75 Dollars is-larger-in-size-than +219.28 Dollars
which corresponds to the fact that 365.75 , the size of the first signed number-phrase, is larger than 219.28, the size of the second signed number-phrase.
We also have that
-365.75 Dollars is-larger-in-size-than - 219.28 Dollars
which corresponds to the fact that 365.75 , the size of the first signed number-phrase, is larger than 219.28, the size of the second signed number-phrase.
And we also have that
-365.75 Dollars is-larger-in-size-than +219.28 Dollars
which corresponds to the fact that 365.75 , the size of the first signed number-phrase, is larger than 219.28, the size of the second signed number-phrase.

None of this has anything to do with the fact that, from the algebra viewpoint,

$$
\begin{aligned}
& \text { +365.75 Dollars }>+219.28 \text { Dollars } \\
& \text {-365.75 Dollars }<-219.28 \text { Dollars } \\
& \text {-365.75 Dollars }<+219.28 \text { Dollars }
\end{aligned}
$$

b. In other words, when we illustrate on a ruler the signed numberphrases involved in a size comparison, the comparison is about which numerator is-farther-away-from-the-center.
EXAMPLE 27.
follow up merge

- The size-comparison sentence
-4 Dollars is-larger-in-size-than +1 Dollars
corresponds to the fact that in the graphic

the mark that represents -4 Dollars is farther-away-from-the-center-than the mark that represents +1 Dollars.
- The size-comparison sentence
-4 Dollars is-larger-in-size-than -3 Dollars
corresponds to the fact that in the graphic

the mark that represents -4 farther-away-from-the-center-than the mark that represents -3

5.6 Adding a Signed Number-Phrase

We investigate the second fundamental process involving actions and states.

1. Just as in in the case of collections we could attach a second collection to a first collection, here we can

- follow up a first action with a second action.

EXAMPLE 28.

- a gambler may win forty-five dollars and then follow up with winning sixty-two dollars.
- a gambler may win thirty-one dollars and then follow up with losing forty-four dollars.
- a gambler may lose twenty-one dollars and then follow up with winning fiftyseven dollars.
- a gambler may lose seventy-eight dollars and then follow up with losing thirtyfour dollars.
- merge a first state with a second state

EXAMPLE 29.

- a business that is three thousand dollars in the black may merge with a business that is six hundred dollars in the black.
- a business that is three hundred dollars in the black may merge with a business that is five hundred dollars in the red.
- a business that is two thousand dollars in the red may merge with a business that is seven hundred dollars in the black.
- a business that is seven hundred dollars in the red may merge with a business that is two hundred dollars in the red.
NOTE. English forces us to use a different word order here: while we attached a second collection to a first collection, here we must say that we follow up a first action with a
second action. In order to be consistent, and although it is not necessary, we will also adding say that we merge a first state with a second state.

2. Then, just like adding a counting-number-phrases was the paper procedure to get the result of attaching a collection, adding a signed number-phrase will be the paper procedure to get the result of following up an action and/or merging a state.

In order to distinguish adding signed number-phrases from adding counting number-phrases as we develop the procedure, we shall use for a while the symbol \oplus. Later, we will just use + and learn to rely on the context.
3. Just like, in Chapter 1, we introduced counting number-phrases with slashes, /, to discuss addition of signed number-phrases, we will use temporarily arrows of two kinds, \leftarrow and \rightarrow.

EXAMPLE 30. We will use temporarily

$$
\rightarrow \rightarrow \rightarrow \rightarrow \text { Dollars instead of }+5 \text { Dollars }
$$

and
$\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$ Dollars instead of -5 Dollars.
When adding a signed number-phrase, we must distinguish two cases.
a. The second signed number-phrase has the same sign as the first signed number-phrase. Then, all the items are of the same kind and so following up is the same as attaching. So, in that case, to get the size of the result, we add the sizes of the two signed number-phrases.

EXAMPLE 31.

or
EXAMPLE 32.
In the real-world, when we
withdraw five dollars
and then
withdraw three dollars,
altogether
this
is the same as
when
we
withdraw eight dollars

$$
\begin{gathered}
\text { We write on paper: } \\
\leftarrow \leftarrow \leftarrow \leftarrow \text { Dollars } \\
\leftarrow \oplus \\
\leftarrow \leftarrow \leftarrow \text { Dollars } \\
== \\
\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow] \text { Dollars } \\
\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \text { Dollars } \\
\leftarrow \leftarrow= \\
-8 \text { Dollars }
\end{gathered}
$$

b. The second signed number-phrase has the opposite sign from the first signed number-phrase. Then, the items are of the same kind and so following up is the same as attaching. So, in that case, to get the size of the result, we add the sizes of the two signed number-phrases.
EXAMPLE 33.

In the real-world, when we deposit three dollars and then
withdraw five dollars, altogether
this
is
the same
as
when
we just
withdraw two dollars

$$
\begin{aligned}
& \text { We write on paper: } \\
& \rightarrow \rightarrow \rightarrow \text { Dollars } \\
& \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \text { Dollars } \\
& = \\
& \text { [} \rightarrow \rightarrow \rightarrow \oplus \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \text {] Dollars } \\
& {[\rightarrow \rightarrow \rightarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \text {] Dollars }} \\
& {[\rightarrow \rightarrow \mathrm{HH} \mathrm{HH} \leftarrow \leftarrow \leftarrow \leftarrow \text {] Dollars }} \\
& {[\rightarrow \mathrm{HH} \quad \mathrm{HH} \leftarrow \leftarrow \leftarrow \text {] Dollars }} \\
& \text { [HH HH } \leftarrow \leftarrow \text {] Dollars } \\
& \leftarrow \leftarrow \text { Dollars } \\
& \text {-2 Dollars }
\end{aligned}
$$

EXAMPLE 34.

THEOREM 1. To add signed-numerators:

- When the two signed number-phrases have the same sign,
- We get the sign of the result by taking the common sign
- We get the size of the result by adding the two sizes.
- When the two signed number-phrase have opposite signs, we must first compare the sizes of the two signed number-phrases and then
- We get the sign of the result by taking the sign of the signed numberphrase whose size is larger,
- We get the size of the result by subtracting the smaller size from the larger size.

EXAMPLE 35. To identify the specifying-phrase $(+3) \oplus(+5)$ and since $(+3)$ and $(+5)$ have the same sign, we proceed as follows:

- We get the sign of the result by taking the common sign which gives us +
- We get the size of the result by adding the sizes 3 and 8 which gives us 8 In symbols,

$$
\begin{aligned}
(+3) \oplus(+5) & =(+[3+5]) \\
& =(+8)
\end{aligned}
$$

EXAMPLE 36. To identify the specifying-phrase $(+3) \oplus(-5)$ and since $(+3)$ and (-5) have opposite signs, we must compare the sizes. Since $3<5$,

- We get the sign of the result by taking the sign of the number-phrase with the larger size which gives us -
- We get the size of the result by subtracting the smaller size, 3, from the larger size, 5 which gives us 2
In symbols,

$$
\begin{aligned}
(+3) \oplus(-5) & =(-[5-3]) \\
& =(-2)
\end{aligned}
$$

5.7 Subtracting a Signed Number-Phrase

We investigate the third fundamental process involving actions and states.
While, in the case of collections, detaching a collection made immediate sense as "un-attaching", in the case of actions "un-following up" and in the case of states "un-merging" do not make immediate sense. So, instead, we shall look at subtraction from the point of view of correction after we have done a long string of signed-additions and realized that there is an incorrect
add the opposite
entry, that is a signed number-phrase that we shouldn't have added (for whatever reason), so that the total is incorrect.

1. Up front, things would seem to work out exactly as in the case of un-signed number-phrases.
EXAMPLE 37. Suppose that we work in a bank and that we had added transactions as the day went which gave us the following specifying phrase
-2 Dollars $\oplus-7$ Dollars $\oplus+5$ Dollars $\oplus \ldots \oplus+3$ Dollars and that at the end of day we identified the specifying-phrase which gave us
-132 Dollars
but that we then realized that -7 Dollars was an outcast (it was not for a transaction but for money involved in some other matter) with the consequence that -132 Dollars is incorrect in that it is not the sum total of the transaction for the day.
2. To get the correct total, we have the following two choices for the procedure:

- Procedure A would be to strike out the incorrect signed number-phrase and redo the entire addition:
EXAMPLE 38. In the above example, we would strike out the incorrect entry -7 Dollars
-2 Dollars \oplus HT/D/DMAlys $\oplus+5$ Dollars $\oplus \ldots \oplus+3$ Dollars
Of course, since Procedure A is going to involve a lot of unnecessary work redoing all that had been done correctly, it is very inefficient.
- Procedure B would be to cancel out the effect of the incorrect entry on the incorrect total by subtracting the incorrect entry from the incorrect total.
EXAMPLE 39. In the above example, we would subtract the incorrect entry -7 Dollars from the incorrect total - 132 Dollars
-132 Dollars $\quad \ominus \quad-7$ Dollars
except that, at this point, we have no procedure for \ominus ! Indeed, at this point, the only procedure we have for subtracting is for subtracting unsigned number-phrases.
On the other hand, the obvious way to cancel out the effect of the incorrect entry on the incorrect total and that it is by adding the opposite of the incorrect entry to the incorrect total. (Accountants call this "entering an adjustment".)
EXAMPLE 40. In the above example, we would add the opposite of the incorrect entry -7 Dollars, that is we would add -7 Dollars to the incorrect total -132 Dollars -132 Dollars $\quad \oplus \quad+7$ Dollars

3. We now want to see that the two procedures must give us the same result either way. For that, we place the specifying-phrases in the two procedures side by side and we see that that the remaining number-phrases
are the same either way.
subtract
EXAMPLE 41. In the above example, we place the specifying-phrases in the two procedures side by side:

- The specifying-phrase in Procedure A is:
-2 Dollars $\oplus H / / / D / \phi 1$ aly $\$ \oplus+5$ Dollars $\oplus \ldots \oplus+3$ Dollars
- The specifying-phrase in Procedure \mathbf{B} is:
-2 Dollars $\oplus=7$ Dotlars $\oplus+5$ Dollars $\oplus \ldots \oplus+3$ Dollars $\oplus \pm 7$ Dothars
We see that, either way, the remaining number-phrases are:
-2 Dollars $\oplus+5$ Dollars $\oplus \ldots \oplus+3$ Dollars

4. Altogether then:

- Adding the opposite of the incorrect entry (Procedure B):

$$
-132 \text { Dollars } \quad \oplus \quad+7 \text { Dollars }
$$

necessarily amounts to exactly the same as

- Striking out the incorrect entry (Procedure A):
-132 Dollars $\quad \ominus \quad-7$ Dollars
Since Procedure B is much faster than Procedure A, we say that the procedure for subtracting a signed number-phrase will be to add its opposite.

EXAMPLE 42. In order to identify the specifying-phrase $(+3) \ominus(+5)$,
i. we identify instead the specifying-phrase $(+3) \oplus(-5)$
ii. we do the addition which gives us -2

EXAMPLE 43. In order to identify the specifying-phrase $(-3) \ominus(-5)$,
i. we identify instead the specifying-phrase $(-3) \oplus(+5)$
ii. we do the addition which gives us +2

EXAMPLE 44. In order to identify the specifying-phrase $(-3) \ominus(+5)$,
i. we identify instead the specifying-phrase $(-3) \oplus(-5)$
ii. we do the addition which gives us -8

EXAMPLE 45. In order to identify the specifying-phrase $(+3) \ominus(-5)$,
i. we identify instead the specifying-phrase $(+3) \oplus(+5)$
ii. we do the addition which gives us +8

5.8 Effect Of An Action On A State

We now look at the connection between states and actions.
initial state
final state change
gain
loss

1. A state does not exist in isolation but is always one of many.

EXAMPLE 46. The state of an account is usually different on different days.
Given two states, we shall refer to the first one as the initial state and to the second one as the final state. The change from the initial state to the final state can be up in which case we shall call the change a gain or can be down in which case we shall call the change a loss.
On paper, we shall use + for a gain and we shall use - for a loss.

EXAMPLE 47.

- At the beginning of a month, Jill's account was two dollars in-the-red
- At the end of the month, Jill's account was three dollars in-the-black

So, during that month Jill's account went up by five dollars and we shall write the gain as +5 Dollars.

EXAMPLE 48.

- At the beginning of a month, Jack's account was two dollars in-the-black
- At the end of the month, Jack's account was five dollars in-the-red

So, during that month Jack's account went down by seven dollars and we shall write the loss as -7 Dollars.

THEOREM 2. Regardless of what the sign of the initial state and the sign of the final state are, we have that

$$
\text { change }=\text { final state } \ominus \text { initial state }
$$

EXAMPLE 49.

- At the beginning of a month, Jill's account was two dollars in-the-red
- At the end of the month, Jill's account was three dollars in-the-black

$$
\begin{aligned}
\text { change } & =+3 \text { Dollars } \ominus-2 \text { Dollars } \\
& =+3 \text { Dollars } \oplus+2 \text { Dollars } \\
& =+5 \text { Dollars }
\end{aligned}
$$

EXAMPLE 50.

- At the beginning of a month, Jack's account was two dollars in-the-black
- At the end of the month, Jack's account was five dollars in-the-red

$$
\begin{aligned}
\text { change } & =-5 \text { Dollars } \ominus+2 \text { Dollars } \\
& =-5 \text { Dollars } \oplus-2 \text { Dollars } \\
& =-7 \text { Dollars }
\end{aligned}
$$

2. A change always happens as the result of an action.

EXAMPLE 51. On an account,

- A deposit results in a gain,
- A withdrawal results in a loss.

In fact, we have exactly

$$
\text { action }=\text { change }
$$

so that, as a consequence of the previous THEOREM, actions and states are related as follows:

THEOREM 3 (Conservation Theorem).

$$
\text { action }=\text { final state } \ominus \text { initial state }
$$

EXAMPLE 52.

- On Monday, Jill's account was five dollars in-the-red,
- On Tuesday, Jill deposits seven dollars.

So, we have:
i.

$$
\text { Action }=+7 \text { Dollars }
$$

ii.

So, on Wednesday, Jill's account is two dollars in-the-black
iii. Then we compute the change:

$$
\begin{aligned}
\text { Change } & =\text { Final State } \ominus \text { Initial State } \\
& =+2 \text { Dollars } \ominus-5 \text { Dollars } \\
& =+2 \text { Dollars } \oplus+5 \text { Dollars } \\
& =+7 \text { Dollars }
\end{aligned}
$$

And we have indeed that

$$
\text { action }=\text { final state }- \text { initial state }
$$

What happened is that each state is the result of all prior actions. So, by subtracting the initial state from the final state, we eliminate the effect of all the actions that resulted in the initial state, that is the effect of all the actions except the effect of the last one, namely the seven dollars deposit.

5.9 From Plain To Positive

We now have two kinds of number-phrases: plain number-phrases and signed number-phrases. The two, though, overlap and we want to analyze the connections between the two and what is gained when we go from using plain number-phrases to using signed number-phrases.

1. We developed

- plain number-phrases in order to deal with collections of items that are all of one kind,
- signed number-phrases in order to deal with collections of items that are all of one kind or all of another kind-with items of different kinds canceling each other.
But then, given collections of items that are all of one kind, it often happens that we can eventually think of another kind of items that cancel the first kind of items.

EXAMPLE 53. We may start counting steps to find out how much we walked. But eventually, we may want to know how far we progressed, being that there are steps backward as well as step forward and, if it doesn't matter what kind of steps they are when it comes to how much we walked, it does matter very much when it comes to how far we progressed and so we need to keep track of the direction of the steps.
2. But then, we can represent the original collection of items in two ways:

- With a plain number-phrase
- With a positive number-phrase

EXAMPLE 54. Given a collection of seven steps (necessarily all in the same direction since all items in a collection have to be the same), we can represent the collection by:

- the plain number-phrase

7 Steps

- or we can adopt that direction as standard direction and then represent the collection by the positive number-phrase
+7 Steps

3. We now check that, when we do an addition, we can go either one of two routes:

- We can first replace the two plain number-phrases by positive numberphrases and then oplus the two positive number-phrases,
- We can add the two plain number-phrases and then replace the result of the addition by a positive number-phrase.
Both routes get us to the same result.

EXAMPLE 55.

This works also with subtraction.
EXAMPLE 56.

NOTE. The reader should check on her/his own that if, instead of replacing plain number-phrases by positive number-phrases, we were to replace plain number-phrases by negative number-phrases, then things would not always work in the sense that the two routes would not always result with the same number-phrase.

Chapter 6

Co-Multiplication and Values

Co-Multiplication, 65 - Signed-Co-multiplication, 68.

We seldom deal with a collection without wanting to know what the (money?) worth of the collection is, that is how much money the collection could be exchanged for.

6.1 Co-Multiplication

Since all the items in a collection are the same, to find the worth of that collection, we need only know the unit-worth of the items, that is the amount of money that any one of these items can be exchanged for.
EXAMPLE 1. Given a collection of five apples, and given that the unit-worth of apples is seven cents, the real-world process for finding the worth of the collection is to exchange each apple for seven cents. Altogether, we end up exchanging the whole collection for thirty-five cents which is therefore the worth of the collection.

We now want to develop a paper procedure to get the number-phrase that represents the worth of the given collection, which we will call value, in terms of the number-phrase that represents the unit-worth of the items in the collection, which we will call unit-value.

1. We know how to write the number-phrase that represents the given collection and how to write its value, that is the number-phrase that represents its worth, but what is not obvious is how we should write the unit-value that is the number-phrase that represents the unit-worth.
EXAMPLE 2. In EXAMPLE 1, we represent the collection of five apples by writing the
co-denominator co-multiplication
number-phrase 5 Apples and we represent its worth by writing its value, that is the number-phrase 35 Cents.
What is not obvious is how to write the unit-value of the Apples, that is the numberphrase that represents the unit-worth of the apples, that is the fact that "each apple is worth seven cents".
More specifically, we know what the numerator of the unit-value should be but what we don't know is how to write the denominator of the unit-value which we will call co-denominator.
Looking at the real-world shows that the procedure for finding the value must involve multiplication so that the specifying-phrase must look like:
Number-phrase for collection \times Unit-value $=$ Number-phrase for money
EXAMPLE 3. In EXAMPLE 2, the number-phrase that represents the collection is 5 Apples and the numerator of the unit-phrase that represents the unit-value of the items is 7 so the specifying-phrase must look like

$$
5 \text { Apples } \times 7 \text { ??? }
$$

where ??? stands for the co-denominator.
2. The co-denominator should be such that the procedure for going from the specifying phrase to the result should prevent the denominator of the number-phrase for the collection from appearing in the result and, at the same time, be such as to force the denominator of the number-phrase for the value to appear in the result.
EXAMPLE 4. In EXAMPLE 3, since we must have

$$
5 \text { Apples } \times 7 ? ? ?=35 \text { Cents }
$$

the procedure to go from the specifying phrase on the left, that is 5 Apples $\times 7$???, to the result on the right, that is 35 Cents, must

- prevent Apples from appearing on the right
- but force Cents to appear on the right.

3. What we will do is to write the co-denominator just like a fraction with:

- the denominator of the value above the bar
- the denominator of the items below the bar.

EXAMPLE 5. In EXAMPLE 4, we write $\frac{\text { Cents }}{\text { Apple }}$ in place of ??? so that the specifyingphrase becomes

$$
5 \text { Apples } \times 7 \frac{\text { Cents }}{\text { Apple }}
$$

That way, the procedure for identifying such a specifying phrase, called co-multiplication, is quite simply stated:
i. multiply the numerators
ii. multiply the denominators with cancellation.

EXAMPLE 6. When we carry out the procedure on the specifying phrase in EXAMPLE

5, we get

$$
\begin{aligned}
5 \text { Apples } \times 7 \frac{\text { Cents }}{\text { Apple }} & =(5 \times 7)\left(\text { Apptes } \times \frac{\text { Cents }}{\text { Appte }}\right) \\
& =35 \text { Cents }
\end{aligned}
$$

co-number-phrase evaluate percentage
which is what we needed to represent the real-world situation in EXAMPLE 1.
4. From now on, in order to remind ourselves that the reason why unitvalues are written this way is to make it easy to co-multiply, we shall call them co-number-phrases ${ }^{1}$.
Also, just as we often say "To count a collection" as a short for "To find the numerator of the number-phrase that represents a collection", we shall say "To evaluate a collection" as a short for "To find the numerator of the number-phrase that represents the value of a collection".
NOTE. Co-multiplication is at the heart of a part of mathematics called Dimensional Analysis that is much used in sciences such as Physics, Mechanics, Chemistry and Engineering where people have to "cancel" denominators all the time.
EXAMPLE 7.

$$
5 \text { Hours } \times 7 \frac{\text { Miles }}{\text { Hour }}=(5 \times 7) \quad\left(\text { Hours } \times \frac{\text { Miles }}{\text { Hour }}\right)=35 \text { Miles }
$$

EXAMPLE 8.

Co-multiplication is also central to a part of mathematics called Linear Algebra that is in turn of major importance both in many other parts of mathematics and for all sort of applications in sciences such as Economics.
Example 9.

$$
5 \text { Hours } \times 7 \frac{\text { Dollars }}{\text { Hour }}=(5 \times 7)\left(\text { Hours } \times \frac{\text { Dollar }}{\text { Hour }}\right)=35 \text { Dollars }
$$

More modestly, co-multiplication also arises in percentage problems:
Example 10.

$$
5 \text { Dollars } \times 7 \frac{\text { Cents }}{\text { Dollar }}=(5 \times 7)\left(\text { DoHlars } \times \frac{\text { Cents }}{\text { Dotlar }}\right)=35 \text { Cents }
$$

[^14]extend
signed co-number-phrase

6.2 Effect of Transactions on States: Signed Co-Multiplication

We now want to extend the concept of co-multiplication to signed-numberphrases in order to deal with actions and states.

1. We begin by looking at the real-world. As before, we want to investigate the change in a given state, gain or loss, that results from a given transaction, "in" or "out" as before but with two-way collections of "good" items or "bad" items.
EXAMPLE 11. Consider a store where, for whatever reason best left to the reader's imagination, collections of apples can either get in or out of the store. Moreover, the collections are really two-way collections in that the apples can be either good-inasmuch as they will generate a sales profit-or bad-inasmuch as they will have to be disposed of at a cost.
2. We now look at the way we will represent things on paper.
a. To represent collections that can get in or out, we use signed numberphrases and we use $\mathrm{a}+$ sign for collections that get in and a - sign for collections that get out.
So, we will represent

- collections getting "in" by positive number-phrases,
- collections getting "out" by negative number-phrases,

EXAMPLE 12. In the above example, we would represent

- a collection of three apples getting in the store by the number-phrase +3 Apples
- a collection of three apples getting out of the store by the number-phrase -3 Apples
b. To represent unit-values that can be gains or losses, we use signed
co-number-phrase and we use $\mathrm{a}+$ sign to represent gains and a - sign to represent losses.
So, we will represent
- the unit-value of "good" items by positive co-number-phrases,
- the unit-value of "bad" items by negative co-number-phrases,

EXAMPLE 13. In the above example, we would represent

- the unit-value of apples that will generate a sales profit of seven cents per apples by the co-number-phrase $+7 \frac{\mathrm{Cents}}{\text { Apple }}$
- the unit-value of apples that will generate a disposal cost of seven cents per apple by the co-number-phrase $-7 \frac{\text { Cents }}{\text { Apple }}$

3. Looking at the effect that transactions (of two-way collections) can have on (money) states, that is at the fact that:

- A two-way collection of "good" items getting "in" makes for a "good" change.
- A two-way collection of "good" items getting "out" makes for a "bad" signed co-multiplication change.
- A two-way collection of "bad" items getting "in" makes for a "bad" change.
- A two-way collection of "bad" items getting "out" makes for a "good" change.
we can now write the procedure for signed co-multiplication for which we will use the symbol \otimes :
i. multiply the denominators (with cancellation).
ii. multiply the numerators according to the way gains and losses occur:
- $(+) \otimes(+)$ gives $(+)$

EXAMPLE 14.

Three apples get in the store. +3 Apples
The apples have a unit-value of seven cents-per-apple gain.
The specifying phrase is
We co-multiply
We get a twenty-one cent gain.

- $(+) \otimes(-)$ gives $(+)$

EXAMPLE 15.
Three apples get in the store.
The apples have a unit-value of seven cents-per-apple loss.
The specifying phrase is
We co-multiply
We get a twenty-one cent loss.

- $(-) \otimes(+)$ gives $(+)$

EXAMPLE 16.
Three apples get out of the store.
-3 Apples

The apples have a unit-value of seven cents-per-apple gain.
The specifying phrase is
We co-multiply
We get a twenty-one cent loss.

- $(-) \otimes(-)$ gives $(+)$

EXAMPLE 17.

Three apples get out of the store.
The apples have a unit-value of seven cents-per-apple loss.
The specifying phrase is
We co-multiply
We get a twenty-one cent gain.
-3 Apples

$$
-7 \frac{\text { Cents }}{\text { Apple }}
$$

$$
[-3 \text { Apples }] \otimes\left[-7 \frac{\text { Cents }}{\text { Apple }}\right]
$$

$$
[(-3) \otimes(-7)]\left[\text { Apples } \times \frac{\text { Cents }}{\text { Apple }}\right]
$$

$$
=+21 \text { Cents }
$$

NOTE. The choice of symbols, + to represent good and - to represent bad, was not an arbitrary choice because of the way they interact with the symbols for in and out. We leave it as an exercise for the reader to investigate what happens when other choices are made.
4. Just as with addition and subtraction, in the case of co-multiplication too, we can replace plain number-phrases by positive number-phrases.

EXAMPLE 18.

Part II

Inequations \& Equations Problems

Chapter 7

Basic Problems 1: (Counting Numerators)

Forms, Data Sets And Solution Subsets, 73 - Collections Meeting A Requirement, 75 - Basic Formulas, 78 - Basic Problems, 83.

In the real world, we often select collections on the basis of requirements that these collections must meet. After introducing some more mathematical language and discussing real-word situations, we will develop a paper world approach and introduce what will be our general procedure when dealing with such problems.

7.1 Forms, Data Sets And Solution Subsets

We begin by looking at the way we deal in English with the selection of collections in the real world.

1. Essentially, what we use are "incomplete sentences" like those we encounter on certain exams or when we have to enter a noun in the blanks of a form.
EXAMPLE 1. The following
\qquad is a past President of the United States. is a form in which the box is the blank in which we are supposed to enter a noun.
2. The instruction to enter some given noun in the blank of a form may result in:

- nonsense, that is words that say nothing about the real world.
sentence
TRUE
FALSE
data set
curly brackets
$\}$
problem

EXAMPLE 2. The instruction to enter the data,

Mathematics

in the blank of the form

results in

which is nonsense.

- a sentence, that is words that say something about the real world but that, like something we may write on a exam, can be true or false.
EXAMPLE 3. Given the form

- The instruction to enter the noun,

> Jennifer Lopez
in the blank of the form results in
Jennifer Lopez is a past President of the United States.
which is a sentence that (unfortunately) happens to be FALSE.

- The instruction to enter the noun

Bill Clinton
in the blank of the form results in
Bill Clinton is a past President of the United States.
which is a sentence that happens to be TRUE.
3. In order to avoid having to deal with nonsense, that is in order to make sure that when we enter a noun we always get a sentence, regardless of whether that sentence turns out to be TRUE or FALSE, we will always have a data set from which to take the nouns.
We shall write the data set by writing the data within a pair of curly brackets \{ \}
EXAMPLE 4. Given the form

the following could be a data set
\{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford\} but the following could not be a data set
\{Bill Clinton, Ronald Reagan, Jennifer Lopez, Mathematics, Henry Ford\}
4. A problem will consist of a form together with a data set.

EXAMPLE 5. The form
 is a past President of the United States.
and the data set
\{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford\} make up a problem.
a. Given a problem, that is given a data set and a form,

- a solution (of the given problem) is a noun such that, when we enter this noun into the blank of the form, the result in a sentence that is TRUE
- a non-solution (of the given problem) is a noun such that, when we enter this noun into the blank of the form, the result in a sentence that is FALSE
EXAMPLE 6. Given the problem consisting of
the form

and the data set
\{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford\}
- The solutions of the problem are

Bill Clinton, Ronald Reagan, John Kennedy

- The non-solutions of the problem are

Jennifer Lopez, Henry Ford
b. Given a problem, that is given a data set and a form, the solution subset for the problem consists of all the solutions.
We write a solution subset the same way as we write s data set, that is we write the solutions between brackets $\{\quad\}$.
EXAMPLE 7. Given the problem consisting of the form

$$
\square \text { is a past President of the United States. }
$$

and the data set
\{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford\} the solution subset of that problem is
\{Bill Clinton, Ronald Reagan, John Kennedy \}

7.2 Collections Meeting A Requirement

The simplest way to select collections from a given set of selectable collections is to require them to compare in a given way to a given gauge collection which we do by matching the collections one-to-one with the
solution
non-solution
solution subset
select
set of selectable collections require
gauge collection
gauge collection. (See Chapter 2.) The result is what we will call the select subset.

EXAMPLE 8. Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

If the starting bid (gauge collection) for a particular object is three dollars (a selectable collection), the bids that Jack could make (select subset) would then be:

1. The gauge collection may or may not be a selectable collection.

EXAMPLE 9. Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

- If the starting bid for a particular object is three dollars (a selectable collection), then the bids that he could make (select subset) would be:

- If the starting bid for a particular object is three dollars and forty cents (not a selectable collection), then the bids that he could make (select subset) would be:

2. The way the selectable collections are required to compare with the gauge collection can be to be:

- larger-in-size than the gauge collection,
or
- smaller-in-size than the gauge collection,
or
- same-in-size as the gauge collection.
or
- different-in-size from the gauge collection,
or
empty
full
- no-larger-in-size than the gauge collection,
or
- no-smaller-in-size than the gauge collection,

EXAMPLE 10. Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction correspond to the collections of one-dollar bills that he can use (set of selectable collections):

- If it is the starting bid for a particular object that is three dollars, then the bids that Jack could make (select subset) would be:

- If it is the current bid for a particular object that is three dollars, then the bids that Jack could make would be:

3. Occasionally, the subset of selected collections can be empty meaning that none of the selectable collections meets the given requirement.
EXAMPLE 11. Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

If the starting bid (gauge collection) for a particular object is seven dollars, then Jack cannot make any bid so that the select subset is empty.
4. Occasionally, the subset of selected collections can be full meaning that all of the selectable collections meet the given requirement.
EXAMPLE 12. Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

If the starting bid (gauge collection) for a particular object is one dollars, then the select subset is full.
unspecified-numerator x
specifying-formula formula
equation

There is of course nothing difficult with the one-to-one matching process involved in checking whether selectable collections compare or do not compare in a given way with a given gauge collection, but, as with mostreal-world processes, all this one-to-one matching of items is certainly going to get very quickly very tedious.

7.3 Basic Formulas

In order to represent on paper real-world the various situations involving the selection on the basis of a requirement of a subset of selected collection from among a set of selectable collections we will use:

- Number-phrases to represent the collections,
- The six verbs that were introduced in Chapter 2 to compare collections

$$
>,<,=, \neq, \leqq, \geqq
$$

- A special kind of form to represent the requirement.

1. The main difficulty with forms as we discussed them in Section 7.1 above is with the blanks. So we begin by introducing a kind of form that will be appropriate for "computations".
a. Instead of blanks, we will use an unspecified-numerator such as, for instance, the letter x.
EXAMPLE 13. Instead of writing

we will write

$$
x<5
$$

b. A specifying-formula - we will often say formula for short-is a kind of forms in which:

- the verb can be any one of:

$$
>,<,=, \neq, \leqq, \geqq
$$

- the nouns are numerators
- the common denominator is factored out.

EXAMPLE 14. The following are specifying-formulas

$$
\begin{gathered}
x \leqq 8 \\
x+3 \geqq 8 \\
3 \times x<12 \\
+3 \otimes x \oplus-7=-12
\end{gathered}
$$

We will distinguish between:

- Equations, that is specifying-formulas that involve the verb
- Inequations ${ }^{1}$, that is specifying-formulas that involve any one of the other five verbs:

$$
>,<, \neq, \leqq, \geqq
$$

c. Then, instead of giving the instruction
enter the given numerator in the blank.
inequation instruction replace code vertical bar we will give the instruction
replace the unspecified numerator x by the given numerator.
EXAMPLE 15. Instead of giving the instruction
Enter 7 in the blank of the form:
\square
we will give the instruction

$$
\begin{aligned}
& \text { Replace } x \text { by } 7 \text { in the formula: } \\
& \qquad x<5
\end{aligned}
$$

d. While a formula is not a sentence because it does not say anything about the real world (how could it since all that x stands for is a blank!), once we have replaced in a formula the unspecified numerator x by a given numerator, we have of course a sentence. (That this sentence is going to be either TRUE or FALSE depending on the given numerator is beside the point here.)
EXAMPLE 16. The specifying-formula

$$
x<5
$$

is not a sentence because it does not sat anything about the real world since x does not stand for a given numerator.
The instruction to replace x by 7 in the specifying-formula

$$
x<5
$$

results in

$$
7<5
$$

which is a sentence. (That it happens to be FALSE is beside the point here.)
e. What will complicate matters a bit is that we will often code the instruction to replace the unspecified numerator x by some given numerator into the specifying-formula itself. For that, we will
i. draw, to the right of the specifying formula a vertical bar extending a bit below the line, which we read as "where"
ii. write to the bottom right of the vertical bar:

- the unspecified numerator x

[^15]followed by

- the symbol :=, to be read as "is to be replaced by", followed by
- the given numerator

EXAMPLE 17. Instead of using the instruction
Replace x by 7 in the specifying-formula:

$$
x<5
$$

we shall write the instruction right into the specifying formula as follows:

$$
x<\left.5\right|_{x:=7}
$$

and the result is to be read as:

$$
x<5 \text { where } x \text { is to be replaced by } 7 \text {. }
$$

The reason this complicates matters is that while

$$
x<5
$$

is a specifying-formula,

$$
x<5 \text { where } x \text { is to be replaced by } 7 \text {. }
$$

is a sentence since it is the same as the sentence

$$
7<5
$$

f. In particular, we have that:

- replacing the unspecified numerator by a given numerator in an inequation results in an inequality.
EXAMPLE 18.
Using a form, we would write: Using a formula, we will write:

"Before":	> 3.14	$x>3.14$
Inequation	(neither TRUE nor false)	(neither TRUE nor false)
	7.82	
"Action":	> 3.14	$x>3.14$
	Enter 7.82 in the blank	Replace x by 7.82
fter".	$7.82>3.14$	$7.82>3.14$
Inequality	is true	is true

- replacing the unspecified numerator by a given numerator in an equation results in an equality.

EXAMPLE 19.

Using a form, we would write:

"Before":	$=+5$	$x=+5$
Equation	(neither TRUE nor FALSE)	(neither TRUE nor FALSE)
	$=-3$	

formula, associated associated equation associated strict inequation
2. Given a formula, the associated formulas for that formula are the formulas that differ from the given formula only by the verb.
Crucial for the general procedure that we will develop in the next chapter and given an inequation regardless of whether this given inequation is strict or lenient, are:

- The associated equation, that is the equation we obtain by replacing the verb in the given inequation by the verb $=$.
EXAMPLE 20. The equation associated with the lenient inequation

$$
-3 \otimes x \geqq+90.43
$$

is the equation

$$
-3 \otimes x=+90.43
$$

EXAMPLE 21. The equation associated with the strict inequation

$$
x \oplus-14.08<+53.71
$$

is the equation

$$
x \oplus-14.08=+53.71
$$

- The associated strict inequation, that is the inequation we obtain by replacing the verb in the given inequation by the corresponding strict verb.
EXAMPLE 22. Given the lenient inequation

$$
x+6.08 \geqq 17.82
$$

the associated strict inequation is
$x+6.08>17.82$
So, the strict inequation associated to a strict inequation is the strict inequation itself.
EXAMPLE 23. Given the strict inequation

$$
x \ominus-6.08<-44.78
$$

the associated strict inequation is

$$
x \ominus-6.08<-44.78
$$

While certainly surprising, this will help us developing a general procedure in the next chapter.
basic formulas unspecified numerator gauge numerator x_{0}
equation, basic inequation, basic simple

In particular, we can say that a lenient inequation gives the choice between the associated strict inequation and the associated equation.
EXAMPLE 24. The lenient inequation

$$
x \leqq+53.71
$$

gives the choice between the associated strict inequation:

$$
x<+53.71
$$

and the associated equation

$$
x=+53.71
$$

For instance,
-61.05 is a solution of $x \leqq+53.71$ because -61.05 is a solution of $x<+53.71$
and
+53.71 is a solution of $x \leqq+53.71$ because +53.71 is a solution of $x=+53.71$
3. The simplest kind of specifying formula, which we will call basic formulas, are formulas involving two nouns related by a verb in the following manner:
i. The first noun is the unspecified numerator x,
ii. The verb is any of the verbs introduced in Chapter 2 to compare collections:
iii. The second noun is a given gauge numerator

EXAMPLE 25. The following specifying-phrases are basic formulas:

$$
\begin{gathered}
x<5 \\
x \geqq-3 \\
x \neq-52.19
\end{gathered}
$$

but the following specifying phrases are not basic formulas:

$$
\begin{gathered}
x+3 \geqq 8 \\
3 \times x<12 \\
3 \otimes x \oplus-7=-12
\end{gathered}
$$

In order to talk in general about basic formulas, we will use the symbol x_{0} to stand for the gauge numerator.
4. We will sort basic formulas according to the kind of verb that is involved and we will distinguish four types of basic formula corresponding to the four types of comparison sentences that we encountered in Chapter 2.

- Basic equations are basic formulas of the type:

$$
x=x_{0}
$$

EXAMPLE 26. The formula

$$
x=31.19
$$

is a basic equation

- Basic simple inequations are basic formulas of type:

$$
x \neq x_{0}
$$

EXAMPLE 27. The formula

$$
x \neq 742.05
$$

is a basic simple inequation

- Basic strict inequations are basic formulas of type:

$$
x>x_{0} \quad \text { or } \quad x<x_{0}
$$

inequation, basic strict inequation, basic lenient basic problem

EXAMPLE 28. The formulas

$$
x>132.17
$$

and

$$
x<-283.41
$$

are both basic strict inequations

- Basic lenient inequations are basic formulas of type:

$$
x \leqq x_{0} \quad \text { or } \quad x \geqq x_{0}
$$

EXAMPLE 29. The formulas

$$
x \geqq 132.17
$$

and

$$
x \leqq+283.41
$$

are both basic lenient inequations
5. A basic problem with thus be a problem in which

- the data set consists of number-phrases
- the formula is a basic formula
- the common denominator has been factored out and declared up-front.

EXAMPLE 30. Given the basic problem in Dollars where

- The data set is:

$$
\{2,3,4,5,6,7,8\}
$$

- The formula is:

$$
x>5
$$

(where x is an unspecified numerator and 5 is the gauge numerator) the solution subset is

$$
\{6,7,8\}
$$

7.4 Basic Problems

Given a basic problem involving counting number-phrases,
i. We determine the solution subset by replacing the unspecified numerator successively by each and every numerator in the data set. We then have comparison sentences that are TRUE or FALSE depending on

- which one of the six verbs is the verb in the formula.
- which way, up or down or not at all, we have to count from the numerator replacing the unspecified numerator to the given gauge numerator (See Chapter 2.)
ii. We represent the solution subset:
graph
dot, solid dot, hollow
name
- To graph the solution subset, we will use:
- a solid dot to represent a solution:
- a hollow dot to represent a non-solution:
- To name the solution subset, we will use, just as for data sets, two curly brackets, $\{\quad\}$, and write the solutions in-between the curly brackets.

1. Usually, a problem has both non-solutions and solutions.

EXAMPLE 31.

I. In the real world, Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

If the starting bid for a particular object is three dollars (a selectable collection), then the bids that he could make (select subset) would be:

II. On paper, we represent this by the following problem:

- We represent the set of selectable collections by the data set:

$$
\{1,2,3,4,5\} \text { Dollars }
$$

- We represent the requirement that the bid must be no less than three dollars by the formula

$$
x \geqq 3
$$

III. To determine the solution subset we check each and every numerator in the data set. The verb \geqq requires that, from the numerator that replaces the unspecified numerator to the gauge numerator, we must count down or must not count.

$$
\begin{aligned}
& x \geqq\left. 3\right|_{x:=1} \text { is FALSE because, from } 1 \text { to } 3 \text {, we must count up } \\
& x \geqq\left. 3\right|_{x:=2} \text { is FALSE because, from } 2 \text { to } 3 \text {, we must count up } \\
& x \geqq\left. 3\right|_{x:=3} \text { is TRUE because, from } 3 \text { to } 3 \text {, we must not count } \\
& x \geqq\left. 3\right|_{x:=4} \text { is TRUE because, from } 4 \text { to } 3 \text {, we must count down } \\
& x \geqq\left. 3\right|_{x:=5} \text { is TRUE because, from } 5 \text { to } 3 \text {, we must count down }
\end{aligned}
$$

So:

> 1 is a non-solution
> 2 is a non-solution
> 3 is a solution
> 4 is a solution
> 5 is a solution
IV. We represent the solution subset

- The graph of the solution subset is:
empty

- The name of the solution subset is:

$$
\{3,4,5\} \text { Dollars }
$$

2. Occasionally, it can happen that there is no solution in which case we say that the solution subset is empty.

EXAMPLE 32.

I. In the real world, Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

If the starting bid for a particular object is seven dollars (a selectable collection), then he would not be able to make any bid (the select subset is empty):
II. On paper, we represent this by the following problem:

- We represent the set of selectable collections by the data set:
$\{1,2,3,4,5\}$ Dollars
- We represent the requirement that the bid must be no less than three dollars by the formula

$$
x \geqq 7
$$

III. To determine the solution subset we check each and every numerator in the data set. The verb \geqq requires that, from the numerator that replaces the unspecified numerator to the gauge numerator, we must count down or must not count.
$x \geqq\left. 7\right|_{x:=1}$ is FALSE because, from 1 to 7 , we must count up
$x \geqq\left. 7\right|_{x:=2}$ is FALSE because, from 2 to 7 , we must count up
$x \geqq\left. 7\right|_{x:=3}$ is FALSE because, from 3 to 7 , we must count up
$x \geqq\left. 7\right|_{x:=4}$ is FALSE because, from 4 to 7 , we must count up
$x \geqq\left. 7\right|_{x:=5}$ is FALSE because, from 5 to 7 , we must count up
So:
1 is a non-solution
2 is a non-solution
3 is a non-solution
4 is a non-solution
5 is a non-solution
IV. We represent the solution subset

- The graph of the solution subset is:

- The name of the solution subset is:

\} Dollars

3. Occasionally, it can happen that there is no non-solution in which case we say that the solution subset is full.

EXAMPLE 33.

I. In the real world, Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections) are:

If the starting bid for a particular object is one dollars (a selectable collection), then he can any bid any selectable collection (the select subset is full):
II. On paper, we represent this by the following problem:

- We represent the set of selectable collections by the data set:

$$
\{1,2,3,4,5\} \text { Dollars }
$$

- We represent the requirement that the bid must be no less than three dollars by the formula

$$
x \geqq 1
$$

III. To determine the solution subset we check each and every numerator in the data set. The verb \geqq requires that, from the numerator that replaces the unspecified numerator to the gauge numerator, we must count down or must not count.

$$
\begin{aligned}
& x \geqq\left. 1\right|_{x:=1} \text { is TRUE because, from } 1 \text { to } 1 \text {, we must not count } \\
& x \geqq\left. 1\right|_{x:=2} \text { is TRUE because, from } 2 \text { to } 1 \text {, we must count down } \\
& x \geqq\left. 1\right|_{x:=3} \text { is TRUE because, from } 3 \text { to } 1 \text {, we must count down } \\
& x \geqq\left. 1\right|_{x:=4} \text { is TRUE because, from } 4 \text { to } 1 \text {, we must count down } \\
& x \geqq\left. 1\right|_{x:=5} \text { is TRUE because, from } 5 \text { to } 1 \text {, we must count down }
\end{aligned}
$$

So:

> 1 is a solution
> 2 is a solution
> 3 is a solution
> 4 is a solution
> 5 is a solution
IV. We represent the solution subset

- The graph of the solution subset is:

- The name of the solution subset is:

$$
\{1,2,3,4,5\} \text { Dollars }
$$

4. When the data set is infinite, we cannot check every numerator in infinite the data set and we must make the case that beyond a certain numerator, \cdots the numerators are all solutions or all non-solutions.

EXAMPLE 34.

I. On paper, we represent such a situation by the following problem:

- We represent the set of selectable collections by the data set:

$$
\{1,2,3,4,5, \ldots\} \text { Dollars }
$$

where \ldots is read "and so on".

- We represent the requirement that the bid must be no less than three dollars by the formula

$$
x \geqq 3
$$

II. To determine the solution subset we are supposed to check each and every numerator in the data set. The verb \geqq requires that, from the numerator that replaces the unspecified numerator to the gauge numerator, we must count down or must not count.
i. We start by checking each and every numerator in the data set until we pass the gauge numerator 3:

$$
\begin{aligned}
& x \geqq\left. 3\right|_{x:=1} \text { is FALSE because, from } 1 \text { to } 3 \text {, we must count up } \\
& x \geqq\left. 3\right|_{x:=2} \text { is FALSE because, from } 2 \text { to } 3 \text {, we must count up } \\
& x \geqq\left. 3\right|_{x:=3} \text { is TRUE because, from } 3 \text { to } 3 \text {, we must not count } \\
& x \geqq\left. 3\right|_{x:=4} \text { is TRUE because, from } 4 \text { to } 3 \text {, we must count down }
\end{aligned}
$$

So:

> 1 is a non-solution
> 2 is a non-solution
> 3 is a solution
> 4 is a solution
ii. We now make the case that any numerator beyond 4 , that is $5,6,7, \ldots$, is a solution:

- Since, from any numerator beyond 4 , that is $5,6,7, \ldots$, to 4 , we must count down,
- And since, from 4 to the gauge 3 , we must count down,
- It follows that from any numerator beyond 4 , that is $5,6,7, \ldots$, to the gauge 3 , we must count down.
So, any numerator beyond 4 , that is $5,6,7, \ldots$ is also going to be a solution.
III. We represent the solution subset
- The graph of the solution subset is:

where we actually write "and so on" because ... would run the risk of not being seen.
- The name of the solution subset is:

$$
\{1,2,3,4,5, \ldots\} \text { Dollars }
$$

where we use . . . to mean "and so on".
5. When the data set involves signed numerators, we proceed essentially in the same manner as with plain numerators.

EXAMPLE 35.

I. On paper, we represent such a situation by the following problem:

- We represent the set of selectable collections by the data set:

$$
\{-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5, \ldots\} \text { Dollars }
$$

where ... is read "and so on".

- We represent the requirement that the balance must be more than a three dollar debt by the formula

$$
x>-3
$$

II. i. We start by checking each and every numerator in the data set until we pass the gauge numerator 3 :
$x \geqq-\left.3\right|_{x:=-5}$ is FALSE because, from -5 to -3 , we must count up
$x \geqq-\left.3\right|_{x:=-4}$ is FALSE because, from -4 to -3 , we must count up
$x \geqq-\left.3\right|_{x:=-3}$ is TRUE because, from -3 to -3 , we must not count
$x \geqq-\left.3\right|_{x:=-2}$ is TRUE because, from -2 to -3 , we must count down
So:

$$
\begin{aligned}
& -5 \text { is a non-solution } \\
& -4 \text { is a non-solution } \\
& -3 \text { is a solution } \\
& -2 \text { is a solution }
\end{aligned}
$$

ii. We now make the case that any numerator beyond -2 , that is $-1,0,+1,+2, \ldots$ is a solution:

- Since, from any numerator beyond -2 , that is $-1,0,+1,+2, \ldots$, to -2 , we must count down,
- And since, from -2 to the gauge -3 , we must count down,
- It follows that from any numerator beyond -2 , that is $-1,0,+1,+2, \ldots$ to the gauge -3 , we must count down.
So, any numerator beyond -2 , that is $-1,0,+1,+2, \ldots$, is also going to be a solution.
III. We represent the solution subset
- The graph of the solution subset is:

where we actually write "and so on" because ... would run the risk of not being seen.
- The name of the solution subset is:

$$
\{-3,-2,-1,0,+1,+2,+3, \ldots\} \text { Dollars }
$$

where we use ...to mean "and so on".

Chapter 8

Basic Problems 2: Decimal Numerators

Basic Equation Problems, 90 - Basic Inequation Problems, 91 - The Four Basic Inequation Problems, 94.

We continue our investigation of Basic Problems in the case when the numerators are decimal numerators rather than counting numerators as was the case in the previous chapter.

The reason we are investigating the case of decimal numerators separately is that we cannot compare decimal numerators just by counting up or counting down as we did in the previous chapter where the numerators were counting numerators. While there is of course a procedure for comparing decimal numerators, we will not use it here for two reasons:

- We have not discussed in this book the comparison procedures for decimal numerators since, for reasons of space and time, we have had to take decimal numerators for granted,
- As it happens, we will not need to use any comparison procedure because we will introduce a general procedure that is extremely powerful in that it will allow us to investigate not only Basic Problems in the case when the numerators are decimal but also many other types of problems.
So, this chapter is turned towards the chapters to follow for which it is in fact a direct preparation as well as a foundation.

Finally, we shall use
DEFAULT RULE \# 3. When no data set is declared, it will go without saying that the data set consists of all signed decimal numerators.

But, of course, in order to make sense in terms of the real world, we will still have to declare the denominator.

Also, to graph solution subsets, we will use rulers that have no tick-mark other than the ones directly relevant to the problem at hand but will have the symbol for minus infinity, $-\infty$, and the symbol for plus infinity, $+\infty$, at the corresponding ends of the ruler:

8.1 Basic Equation Problems

When a problem involves an equation with decimal number-phrases, things remain pretty much the same as with counting number-phrases because equations usually do not have many solutions.

In the present case of a basic equation,
i. We determine the solution subset from the fact that the one and only one solution is the gauge numerator.
ii. We represent the solution subset just as in the case of counting numerators, namely:

- To graph the solution subset, we will use:
- a solid dot to represent a solution:
- Since, here, there is no reason to consider any numerator aside from the gauge, there is no non-solution and so no need for hollow dots.
- To name the solution subset, just as for data sets, we will use two curly brackets, $\{\quad\}$, and write the solution in-between the curly brackets.
EXAMPLE 1. Given the problem in Dollars in which
- the data set consists of all signed decimal numerators
- the formula is the basic equation

$$
x=-13.72
$$

we proceed as follows:

- The only solution is -13.72
- The graph of the solution subset is

- The name of the solution subset is

$$
\{-13.72\} \text { Dollars }
$$

8.2 Basic Inequation Problems

boundary
interior
In the case of an inequation, though, things are very different with deci- boundary point mal numerators from what they were with counting numerators because inequations can have too many solutions for us to handle them individually and we will develop and use a general procedure which we will call PASCH Procedure.

1. Roughly, to determine the solution subset of a given inequation problem with decimal numerators, we will proceed in two stages:
I. We will locate the boundary of its solution subset, that is the solution subset of the associated equation problem.
II. We will locate the interior of its solution subset, that is the solution subset of the associated strict inequation problem.
EXAMPLE 2. Given the problem in Dollars in which

- the data set consists of all signed decimal numerators
- the formula is the lenient inequation

$$
x \geqq-13.72
$$

we will locate separately:
i. the boundary of the solution subset, that is the solution subset of the associated equation

$$
x=-13.72
$$

ii. the interior of the solution subset, that is the solution subset of the associated strict inequation

$$
x>-13.72
$$

As already noted in the previous chapter, when the problem involves a strict inequation in the first place, this would appear rather senseless but, in fact, it is precisely by distinguishing the boundary from the interior that we will be able us to develop a general procedure.
Example 3. Given the problem in Dollars in which

- the data set consists of all signed decimal numerators
- the formula is the basic inequation

$$
x<-55.06
$$

we will locate separately:
i. the boundary of the solution subset, that is the solution subset of the associated equation

$$
x=-55.06
$$

ii. the interior of the solution subset, that is the solution subset of the associated strict inequation

$$
x<-55.06
$$

2. More precisely, in the case of a given basic inequation problem,
I. We locate the boundary as follows:
i. There is only one boundary point namely the gauge.
section half-line ray, solid
ii. The boundary point, though, may be a solution or a non-solution of the given inequation problem and we must check which it is:

- If the basic inequation is strict, then the boundary point is a non-solution and is therefore non-included in the solution set.
- If the basic inequation is lenient, then the boundary point is a solution and is therefore included in the solution set.
II. We locate the interior as follows:
i. The boundary point separates the data set in two sections, Section A and Section B.
ii. We pick a test numerator in each of Section A and Section B and we check if the test point is a solution or a non-solution of the given inequation.
iii. We conclude with the help of

THEOREM 4 (PASCH THEOREM).

- If the test numerator in a section is a solution, then all numerators in that same section are included in the solution subset.
- If the test numerator in a section is a non-solution, then all numerators in that same section are non-included in the solution subset.
Note. Why the PASCH THEOREM should be the case requires of course an explanation as, up front, there is no obvious reason why this should be so. However, while the explanation is certainly not difficult and in fact rather interesting, it has been relegated to the supplementary text for the sake of saving time.

3. The solution subset of a basic inequation problem with decimal numerators is called a half-line. In order to represent a half-line,
i. We graph the half-line as follows:
i. We graph the boundary of the half-line exactly the same way as we graphed counting number-phrases that is we use

- a solid dot to graph a boundary point that is a solution (is included in the half-line):
- a hollow dot to graph a boundary point that is a non-solution (is non-included in the half-line):
ii. - We graph the sections of the data set that make up interior of the half-line with a solid ray
because this is what we would get if we were to draw a whole lot of solid dots right next to each other to graph all the decimal numerators that are solutions:
- We graph the sections of the data set that are not in the interior of the half-line with a hollow ray
\qquad
ray, hollow square bracket round parenthesis infinity
because this is what we would get if we were to draw a whole lot of hollow dots right next to each other to graph all the decimal numerators that are non-solutions:

00000000000000000000000000000

NOTE. Once done investigating a problem, though, it is customary only to indicate the solution subset. In other words, it is customary to use the following
DEFAULT RULE \# 4. It goes without saying that those parts of the data set that are not marked as being included in the solution subset are in fact non-included in the solution subset.
ii. To name the half-line
i. We name the boundary by writing on the side of the boundary point:

- a square bracket when the inequation is lenient (when the verb does involve the symbol $=$, that is when the verb is either \leqq or \geqq).
- a round parenthesis when the inequation is strict (when the verb does not involve the symbol $=$, that is when the verb is either $<$ or $>$). and by writing a round parenthesis on the other side.
ii. We name the interior by separating the boundary point x_{0} by a comma from a symbol for infinity depending on the verb:
- $x_{0},+\infty$ when the inequation is $x>x_{0}$ or $x \geqq x_{0}$
- $-\infty, x_{0}$ when the inequation is $x<x_{0}$ or $x \leqq x_{0}$
iii. Altogether then, the name of a half-line will be one of the following:
- When the inequation is strict:

$$
\left(x_{0},+\infty\right) \quad \text { or } \quad\left(-\infty, x_{0}\right)
$$

- When the inequation is lenient:

$$
\left[x_{0},+\infty\right) \quad \text { or } \quad\left(-\infty, x_{0}\right]
$$

NOTE. One advantage of marking only those parts of the data set that are included in the solution subset is that the graph and the name then correspond exactly.
Example 4. Given the graph

the corresponding name is

$$
\left(x_{0},+\infty\right)
$$

kind (of half-line)

8.3 The Four Basic Inequation Problems

There are four kinds of basic inequation problems and they correspond to four different kinds of half-line:

verb involves >	. . . involves <
. . . is strict, (does not involve $=$)		
... is lenient (involves $=$)		

NотE. Recall that it goes without saying that those parts of the data set that are not marked as being included in the solution subset are in fact non-included in the solution subset.
We now look at an example of each one of these four kinds of basic inequation problems.

1. Basic strict inequations of the kind $x>x_{0}$

EXAMPLE 5. Given the basic inequation problem in Dollars in which

- the data set consists of all possible signed decimal numbers of Dollars.
- the formula is

$$
x>+37.42
$$

we proceed as follows:
I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

$$
x=+37.42
$$

whose solution is its gauge numerator +37.42

ii. We check whether the boundary point +37.42 is included or non-included in the solution subset. Since the inequation is strict,

$$
x>+\left.37.42\right|_{x:=+37.42} \text { is FALSE }
$$

we get that the boundary point +37.42 is non-included in the solution subset and we graph it with a hollow dot:

II. We determine the interior of the solution subset:
i. The boundary point +37.42 separates the data set in two sections.

ii. We test Section A with, for instance, -100 , and since

$$
x>+\left.37.42\right|_{x:=-100} \text { is FALSE }
$$

we get that -100 is a non-solution of the inequation

$$
x>+37.42
$$

and the PASCH THEOREM then tells us that all the numerators in Section A are non-included in the solution subset and we graph Section A with a hollow ray:

iii. We test Section B with, for instance, +100 , and since

$$
x>+\left.37.42\right|_{x:=+100} \text { is TRUE }
$$

we get that +100 is a solution of the inequation

$$
x>+37.42
$$

and the PASCH THEOREM then tells us that all the numerators in Section B are included in the solution subset and we graph Section B with a solid ray:

III. Altogether, we represent the solution subset of the inequation problem in Dollars

$$
x>+37.42
$$

as follows:

- The graph of the solution subset is (we use DEFAULT RULE \#4)

- The name of the solution subset is

$$
(+37.42,+\infty) \text { Dollars }
$$

2. Basic strict inequations of the kind $x<x_{0}$

EXAMPLE 6. Given the basic inequation problem in Dollars in which

- the data set consists of all possible signed decimal numbers of Dollars.
- the formula is

$$
x<-153.86
$$

we proceed as follows:
I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

$$
x=-153.86
$$

whose solution is its gauge numerator -153.86

ii. We check whether the boundary point -153.86 is included or non-included in the solution subset. Since the inequation is strict,

$$
x<-\left.153.86\right|_{x:=-153.86} \text { is FALSE }
$$

we get that the boundary point -153.86 is non-included in the solution subset and we graph it with a hollow dot:

II. We determine the interior of the solution subset:
i. The boundary point -153.86 separates the data set in two sections.

ii. We test Section A with, for instance, -1000 , and since

$$
x<-\left.153.86\right|_{x:=-1000} \text { is TRUE }
$$

we get that -1000 is a solution of the inequation

$$
x<-153.86
$$

and the PASCH THEOREM then tells us that all numerators in Section A are included in the solution subset and we graph Section A with a solid ray:

Section A
Section B

iii. We test Section B with, for instance, +1000 , and since

$$
x<-\left.153.86\right|_{x:=+1000} \text { is FALSE }
$$

we get that +1000 is a non-solution of the inequation

$$
x<-153.86
$$

and the PASCH THEOREM then tells us that all numerators in Section B are nonincluded in the solution subset and we graph Section B with a hollow ray:

III. Altogether, we represent the solution subset of the inequation problem in Dollars

$$
x<-153.86
$$

as follows:

- The graph of the solution subset is (we use DEFAULT RULE \#4)

- The name of the solution subset is

$$
(-\infty,-153.86) \text { Dollars }
$$

3. Basic lenient inequations of the kind $x \geqq x_{0}$

EXAMPLE 7. Given the basic inequation problem in Dollars in which

- the data set consists of all possible signed decimal numbers of Dollars.
- the formula is

$$
x \geqq-93.78
$$

we proceed as follows:
I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

$$
x=-93.78
$$

whose solution is its gauge numerator -93.78

ii. We check whether the boundary point -93.78 is included or non-included in the solution subset. Since the inequation is lenient,

$$
x \geqq-\left.93.78\right|_{x:=-93.78} \text { is TRUE }
$$

so that the boundary point -93.78 is included in the solution subset and we graph it with a solid dot:

II. We determine the interior of the solution subset:
i. The boundary point -93.78 separates the data set in two sections.

ii. We test Section A with, for instance, -1000 , and since

$$
x \geqq-\left.93.78\right|_{x:=-1000} \text { is FALSE }
$$

we get that -1000 is a non-solution of the inequation

$$
x \geqq-93.78
$$

and the PASCH THEOREM then tells us that all the numerators in Section A are non-included in the solution subset and we graph Section A with a hollow ray:

iii. We test Section B with, for instance, +1000 , and since

$$
x \geqq-\left.93.78\right|_{x:=+1000} \text { is TRUE }
$$

we get that +1000 is a solution of the inequation

$$
x \geqq-93.78
$$

and the PASCH THEOREM then tells us that all numerators in Section B are included in the solution subset and we graph Section B with a solid ray:

III. Altogether, we represent the solution subset of the inequation problem in Dollars

$$
x \geqq-93.78
$$

as follows:

- The graph of the solution subset is (we use DEFAULT RULE \#4)

- The name of the solution subset is

$$
[-93.78,+\infty) \text { Dollars }
$$

4. Basic lenient inequations of the kind $x \leqq x_{0}$

EXAMPLE 8. Given the basic inequation problem in Dollars in which

- the data set consists of all possible signed decimal numbers of Dollars.
- the formula is

$$
x \leqq-358.13
$$

we proceed as follows:
I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

$$
x=-358.13
$$

whose solution is its gauge numerator -358.13

ii. We check whether the boundary point -358.13 is included or non-included in the solution subset. Since the inequation is strict,

$$
x \leqq-\left.358.13\right|_{x:=-358.13} \text { is FALSE }
$$

and the boundary point -358.13 is included in the solution subset and we graph it with a solid dot:

II. We determine the interior of the solution subset:
i. The boundary point -358.13 separates the data set in two sections.

ii. We test Section A with, for instance, -100 , and since

$$
x \leqq-\left.358.13\right|_{x:=-100} \text { is FALSE }
$$

we get that -100 is a non-solution of the inequation

$$
x \leqq-358.13
$$

and the PASCH THEOREM then tells us that all the numerators in Section A are non-included in the solution subset and we graph Section A with a hollow ray:

iii. We test Section B with, for instance, +100 , and since

$$
x \leqq-\left.358.13\right|_{x:=+100} \text { is TRUE }
$$

we get that +100 is a solution of the inequation

$$
x \leqq-358.13
$$

and the PASCH THEOREM then tells us that all the numerators in Section B are included in the solution subset and we graph Section B with a solid ray:

III. Altogether, we represent the solution subset of the inequation problem in Dollars

$$
x \leqq-358.13
$$

as follows:

- The graph of the solution subset is (we use DEFAULT RULE \#4)

- The name of the solution subset is

$$
(-\infty,-358.13] \text { Dollars }
$$

Chapter 9

Translation \& Dilation Problems

Translation Problems, 102 - Solving Translation Problems, 104 - Dilation Problems, 108 - Solving Dilation Problems, 112.

A large part of Algebra is concerned with the investigation of the solution subset of problems. In this chapter, we begin with problems barely more complicated than basic problems.

We will continue to use the Pasch Procedure so that we will be able to focus on solving the associated equation to locate the boundary point of the solution subset.

The approach that we will follow, which we will call the Reduction APPROACH, will be to reduce the original equation to an equation of a kind we have already investigated and which we can therefore solve and we will call that equation the reduced equation. Of course, the reduced equation will have to be equivalent to the original equation in the sense that the reduced equation will have to have the same solution subset as the original equation. This will be automatically ensured as long as we can invoke the

THEOREM 5 (Fairness). Given any equation, as long as, whatever we do onto one side of the verb $=$, we do exactly the same onto the other side of the verb $=$, we get an equivalent equation.

NOTE. While the Fairness Theorem seems obviously true, making the case that it is true is not that easy because what is not obvious is on what evidence to base the
case. We will thus leave this issue for when the reader takes a course in Mathematical Logic.

After we have located the boundary point, we will find the interior of the solution subset just by following the General Procedure we introduced in the case of basic problems.

The only-small-difficulty will be that, although similar in nature, different problems may involve numerators of different kinds:

- plain counting numerators to represent numbers of items,
- signed counting numerators to represent two-way numbers of items,
- plain decimal numerators to represent quantities of stuff,
- signed decimal numerators to represent two-way quantities of stuff.

9.1 Translation Problems

The simplest kind of real-world situations is where, given a collection, we attach another collection and we then want the result to compare in a given way with a given gauge collection.

1. More precisely, in order for the result to compare in a given way with the given gauge collection, we have two possibilities depending on what we are given:

- When we are given the initial collection, we will have to find what collection(s) can be attached.
EXAMPLE 1. Jill already has two and half tons of sand in her dump-truck and she wants to know how much more sand she can load given that her dump-truck is licensed for carrying seven and a quarter tons.
- When we are given what collection is to be attached, we will have to find out what initial collections are possible.
EXAMPLE 2. Jack knows his aunt will give him three apples as he visits her on the way to school but he wants to have more than seven apples for his friends at school. How many apples could he take with him as he sets out?

2. In order to represent these kinds of real-world situations, we just need one denominator to represent the kind of items in the collections.
EXAMPLE 3. We represent Jill's real-world situation in EXAMPLE 1 by the inequation 2.5 Tons of sand $+x$ Tons of sand $\leqq 7.25$ Tons of sand
where 2.5 Tons of sand represents what Jane has already loaded, 7.25 Tons of sand represents the gauge and x Tons of sand represent what she can load on the way.
EXAMPLE 4. We represent Jack's real-world situation in EXAMPLE 2 by the inequation x Apples +3 Apples >7 Apples
where x Apples represents Jack's initial collection of apples, 3 Apples represents the collection his aunt will give him and where 7 Apples represents the gauge.

Since we have a common denominator, we can factor out this common denominator. We then see that, from the investigation viewpoint, the kind of formula we get in both types of situations is essentially the same so that we won't have to deal with them separately. We will call this kind of problem a translation problem.
EXAMPLE 5. We can factor out the common denominator Tons of sand in the inequation in Example 3
2.5 Tons of sand $+x$ Tons of sand $\leqq 7.25$ Tons of sand
which gives us the translation problem in Tons of sand

$$
2.5+x \leqq 7.25
$$

EXAMPLE 6. We can factor out the common denominator Apples in the inequation in Example 4

$$
x \text { Apples }+3 \text { Apples }>7 \text { Apples }
$$

which gives us the translation problem in Apples

$$
x+3>7
$$

3. So far, for the sake of simplicity, we have been dealing only with simple collections but we will also have to deal with two-way collections and it will indeed matter whether the real-world situations involve simple collections or two-way collections because plain numerators cannot always be subtracted from while signed numerators can always be subtracted from.
So, we will have to deal separately with problems involving plain numerators and problems involving signed numerators.
EXAMPLE 7. Given that his starting balance is three dollars and twenty cents in the red, Mike wants to know how many dollars he can gain or lose given that his ending balance has to be higher than seven dollars and seventy five cents in the red.
We represent this real-world situation by the translation problem in Dollars

$$
-3.25 \oplus x>-7.75
$$

where x stands for a signed numerator.
4. Depending on how we want the resulting collection to compare with the given gauge, the formula, called translation formula, may involve any one of the following verbs: $\neq,>,<, \geqq$, \leqq and $=$, and we will also use the terms translation equation and translation inequation.
EXAMPLE 8. Given an initial collection with three apples and a gauge collection with seven apples, the problem can involve any of the following translation inequations:
$3+x \neq 7$
$3+x<7$
$3+x>7$
$3+x \leqq 7$
$3+x \geqq 7$
as well as with the translation equation
$3+x=7$
problem, translation formula, translation equation, translation inequation, translation
5. Translation problems are the simplest problems after basic problems and, in fact, basic problems are a special case of translation problems: If the number of items in the given collection in a translation problem is 0 , then the translation problem is really just a basic problem.
EXAMPLE 9. If, in EXAMPLE 1, Jill had no apple instead of three, then the translation problem in Apples would be

$$
0+x>7
$$

which boils down to the basic inequation in Apples

$$
x>7
$$

9.2 Solving Translation Problems

We now turn to the investigation of the solution subset of translation problems which we will do in accordance with the General Procedure.

1. We locate the boundary point of the solution subset. This involves the following steps:
i. We write the associated equation for the given problem.

EXAMPLE 10. Given the inequation in Apples

$$
3+x>7
$$

the associated equation in Apples is

$$
3+x=7
$$

ii. We try to solve the associated equation by way of the REDUCTION APPROACH, that is we try to reduce the given translation problem to a basic problem by subtracting from both sides the numerator that is being added to x. The Fairness Theorem will then ensure that the resulting basic equation is equivalent to the original given translation equation.
This, though, is where it matters if the equation involves plain numerators or signed numerators and we look at the two cases separately.

- If the numerators involved in the equation are plain numerators, we may or may not be able to subtract depending on whether the numerator of the gauge is larger or smaller than the numerator being added to x.
EXAMPLE 11. Given the plain equation in Apples

$$
3+x=7
$$

we subtract 3 from both sides

$$
3+x-3=7-3
$$

which boils down to the basic equation in Apples

$$
x=4
$$

which the Fairness Theorem ensures to be equivalent to the translation equation in Apples

$$
3+x=7
$$

which therefore has the solution of the basic equation, 4 , as its own solution.
Example 12. Given the plain equation in Apples

$$
7+x=4
$$

we cannot subtract 7 from the right side so we cannot subtract 7 from both sides as required by the Fairness Theorem.
So, the original translation equation

$$
7+x=4
$$

cannot be reduced to a basic equation and therefore has no solution.

- If the numerators involved in the equation are signed numerators, we can always subtract since "ominussing" means "oplussing the opposite".
EXAMPLE 13. Given the signed equation in Apples

$$
+7 \oplus x=+3
$$

we "ominus" +7 from both sides, that is we "oplus" both sides with the opposite of +7

$$
+7 \oplus x \oplus-7=+3 \oplus-7
$$

which boils down to the basic equation in Apples

$$
x=-4
$$

which the Fairness Theorem ensures to be equivalent to the original signed translation equation in Apples

$$
+7 \oplus x=+3
$$

which therefore has the solution of the basic equation, +4 , as its own solution.
2. We locate the interior of the solution subset according to the General Procedure. (For the sake of showing complete investigations, we will mention in each EXAMPLE the step where we locate the boundary point.)
EXAMPLE 14. Given the translation problem in Apples:

$$
3+x>7
$$

i. To locate the boundary of the solution subset:
i. We solve the associated equation using the Reduction Approach: 4

ii. Since the inequation is strict, the boundary point 4 Apples is non-included in the solution subset and so we graph it with a hollow dot.

ii. To locate the interior of the solution subset:
i. The boundary point 4 Apples divides the data set into two sections:

ii. We test Section A, for instance with 2 . and, since

$$
3+x>\left.7\right|_{x:=2} \text { is FALSE }
$$

we get that 2 is a non-solution of the inequation in Apples

$$
3+x>7
$$

and Pasch's Theorem then tells us that all number-phrases in Section A are nonincluded in the solution subset.

iii. We test Section B, for instance with 5 , and, since

$$
3+x>\left.7\right|_{x:=5} \text { is TRUE }
$$

we get that 5 is a solution of the inequation in Apples

$$
3+x>7
$$

and Pasch's Theorem then tells us that all number-phrases in Section B are included in the solution subset.

iii. Altogether, we represent the solution subset of the inequation in Apples

$$
3+x>7
$$

as follows:

- The graph of the solution subset is

- The name of the solution subset is
$\{5,6,7,8,9$, etc $\}$ Apples
EXAMPLE 15. Given the plain translation problem in Apples:

$$
8+x<2
$$

i. To locate the boundary of the solution subset:
i. The Reduction Approach does not work so that the associated equation has no solution.
ii. As a result, the solution subset has no boundary point.
ii. To locate the interior of the solution subset:
i. Since there is no boundary point, the interior of the solution subset is either the full data set (all number-phrases are included) or is empty (no number-phrase is included):
ii. We test with, for instance, 3 and, since

$$
8+x<\left.2\right|_{\text {where } x:=3} \text { is FALSE }
$$

we get that 3 is a non-solution of the inequation in Apples

$$
8+x<2
$$

and Pasch's Theorem then tells us that all number-phrases are non-included in the solution subset.
iii. Altogether, we represent the solution subset of the inequation in Apples

$$
8+x<2
$$

as follows:

- The graph of the solution subset is

(While, normally, we do not mark the non-solutions, here we mark them as otherwise we would be leaving the ruler unmarked which would be ambiguous.)
- The name of the solution subset is

\{ \} Apples

EXAMPLE 16. Given the plain translation problem in Apples:

$$
8+x>2
$$

i. To locate the boundary of the solution subset:
i. The Reduction Approach does not work so that the associated equation has no solution
ii. As a result, the solution subset has no boundary point.
ii. To locate the interior of the solution subset:
i. Since there is no boundary point, the interior of the solution subset is either the full data set (all number-phrases are included) or is empty (no number-phrase is included):
ii. We test with, for instance, 3 and, since

$$
8+x>\left.2\right|_{\text {where } x:=3} \text { is TRUE }
$$

we get that 3 is a solution of the inequation in Apples

$$
8+x>2
$$

and Pasch's Theorem then tells us that all number-phrases are included in the solution subset.
iii. Altogether, we represent the solution subset of the inequation in Apples

$$
8+x>2
$$

as follows:

- The graph of the solution subset is

- The name of the solution subset is

$$
\{0,1,2,3,4,5,6,7,8, \text { etc }\} \text { Apples }
$$

EXAMPLE 17. Given the translation problem in Dollars:

$$
-3.08 \oplus x \leqq-57.82
$$

i. To locate the boundary of the solution subset:
i. We solve the associated equation using the REDUCTION APPROACH: -54.74

ii. Since the inequation is lenient, the boundary point is included in the solution subset and so we graph it with a solid dot.

ii. To locate the interior of the solution subset:
i. The boundary point -54.74 Dollars divides the data set into two sections:

ii. We test Section A with, for instance, -1000 and, since

$$
-3.08 \oplus x \leqq-\left.57.82\right|_{\text {where } x:=-1000} \text { is TRUE }
$$

we get that -1000 is a solution of the inequation in Dollars

$$
-3.08 \oplus x \leqq-57.82
$$

and Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, 5 and, since

$$
3+x>\left.7\right|_{\text {where } x:=+1000} \text { is TRUE }
$$

we get that +1000 is a none-solution of the inequation in Dollars

$$
3+x>7
$$

and Pasch's Theorem then tells us that all number-phrases in Section B are nonincluded in the solution subset.

iii. Altogether, the solution subset of the inequation in Dollars

$$
3+x>7
$$

is a ray which we represent as follows:

- The graph of the solution subset is

- The name of the solution subset is

$$
(-\infty,-54.74] \text { Dollars }
$$

9.3 Dilation Problems

Another kind of real-world situation, almost as simple as those represented by translation problems but very different in nature, is where we want to find the situations in which the money worth of a collection compares in a given way with a given money gauge.

1. More precisely, in order for the worth to compare in a given way with the given money gauge, we have two possibilities depending on what we are given.

- When we are given the number of items in the collection, we will have to find what unit-worths will let the worth of the collection compare with
the gauge in the given way.
EXAMPLE 18. The BananaCompany is twelve dollars in the black and just lost three apples. So, whether or not the BananaCompany is still in the black will depend on the going unit profit/removal worth of the good/bad apples.
EXAMPLE 19. Dick wants to sell three and a half pounds of flour but he needs at least fourteen dollars and seventy cents. So, whether or not he will be able to sell the flour will depend on the going unit worth of the flour.
- When we are given the unit-worth of the items in the collection, we will have to find what numbers of items will let the worth of the collection compare with the gauge in the given way.
EXAMPLE 20. Jane wants to sell flour at four dollars and twenty cents a pound and she needs fourteen dollars and seventy cents. How much flour can she sell?
EXAMPLE 21. The CranberryCompany is seven dollars in the black and cannot be in the red. It needs to get bad cranberries removed. So, how many pounds of cranberries it can get rid of will depend on the going unit worth of the cranberry removal.

2. In order to represent these kinds of real-worls situations, we need three denominators:
i. A denominator to represent the kind of items,
ii. A denominator to represent the denomination (that is "kind of money") in which the money gauge is given,
iii. A co-denominator to represent the unit-worth of the items expressed in that denomination.
EXAMPLE 22. We represent the BananaCompany real-world situation in Example 18 by the inequation

$$
-3 \text { Apples } \times x \frac{\text { Dollars }}{\text { Apple }} \geqq-12 \text { Dollars }
$$

where -3 Apples represents the three apples that were lost, $x \frac{\text { Dollars }}{\text { Apple }}$ represents the unit profit/removal worth of the apples and -12 Dollars represents the money gauge.
EXAMPLE 23. We represent Dick's real-world situation in EXAMPLE 19 by the inequation

$$
\text { 3.5 Pounds of flour } \times x \frac{\text { Dollars }}{\text { Pound of flour }} \geqq 14.70 \text { Dollars }
$$

where the unit value $x \frac{\text { Dollars }}{\text { Apple }}$ represents the unit-worth of the apples and where -12.70 Dollars represents the money gauge.
EXAMPLE 24. We represent Jack's real-world situation in EXAMPLE 20 by the inequation

$$
x \text { Apples } \times 4 \frac{\text { Dollars }}{\text { Apple }} \leqq 12 \text { Dollars }
$$

where the unit value $x \frac{\text { Dollars }}{\text { Apple }}$ represents the unit-worth of the apples and where 12 Dollars represents the money gauge.
EXAMPLE 25. We represent Jane's real-world situation in EXAMPLE 21 by the inequation

$$
x \text { Pounds of flour } \times 4.20 \frac{\text { Dollars }}{\text { Pound of flour }} \leqq 14.70 \text { Dollars }
$$

problem, dilation
where the unit value $4.20 \frac{\text { Dollars }}{\text { Pound of flour }}$ represents the unit-worth of the flour and where 14.70 Dollars represents the money gauge.

However, when we carry out the co-multiplication, we get a common denominator which is the denominator that represents the denomination in which the collection of items-or the amount of stuff-is to be evaluated.
We can then factor out this common denominator and we can then see that the kind of formula we get in both types of situations is essentially the same and we will call the resulting kind of problem a dilation problem.
EXAMPLE 26. When we carry out the co-multiplication in EXAMPLE 22, we get

$$
-3 \text { Apples } \times x \frac{\text { Dollars }}{\text { Appté }} \geqq-12 \text { Dollars }
$$

that is

$$
[-3 \times x] \text { Dollars } \geqq-12 \text { Dollars }
$$

where we can factor out the common denomnator which gives us the dilation problem in Dollars

$$
-3 \times x \geqq-12
$$

EXAMPLE 27. When we carry out the co-multiplication in EXAMPLE 24, we get

$$
x \text { Apptes } \times 4 \frac{\text { Dollars }}{\text { Appte }} \leqq 12 \text { Dollars }
$$

that is

$$
[x \times 4] \text { Dollars } \leqq 12 \text { Dollars }
$$

where we can factor out the common denominator which gives us the dilation problem in Dollars

$$
x \times 4 \leqq 12
$$

EXAMPLE 28. When we carry out the co-multiplication in EXAMPLE 23, we get

$$
\text { 3.5 Pounds of flour } \times x \frac{\text { Dollars }}{\text { Paundof flour }} \leqq 14.70 \text { Dollars }
$$

that is

$$
[3.5 \times x] \text { Dollars } \leqq 14.70 \text { Dollars }
$$

where we can factor out the common denomnator which gives us the dilation problem in Dollars

$$
3.5 \times x \leqq 14.70
$$

EXAMPLE 29. When we carry out the co-multiplication in EXAMPLE 25, we get

$$
x \text { Pounds of flour } \times 4.20 \frac{\text { Dollars }}{\text { Poundof flour }} \leqq 14.70 \text { Dollars }
$$

formula, dilation equation, dilation inequation, dilation
that is

$$
[x \times 4.20] \text { Dollars } \leqq 14.70 \text { Dollars }
$$

where we can factor out the common denomnator which gives us the dilation problem in Dollars

$$
x \times 4.20 \leqq 14.70
$$

3. We will see that for the purpose of investigating dilation problems, it will not really matter whether the real-world situations that they represent involve simple situations or two-way situations. What will very much matter is whether the real-world situations involve items that can be divided or items that cannot be divided because counting numerators cannot always be divided while decimal numerators can always be divided.
So, we will deal separately with problems involving counting numerators and problems involving decimal numerators.
4. The formula in a dilation problem may involve any one of the following verbs: $\neq,>,<, \geqq, \leqq$ and $=$. It is called a dilation formula and we will also use the terms dilation equation and dilation inequation.
EXAMPLE 30. In EXAMPLE 18, depending on the situation, we could have to solve any of the following dilation formulas in Dollars:
$3 \times x \neq 4.95$
$3 \times x<4.95$
$3 \times x>4.95$
$3 \times x \leqq 4.95$
$3 \times x \geqq 4.95$
and/or the associated equation in Dollars
$3 \times x=4.95$
5. In some ways, dilation problems are very similar to translation problems. In particular, basic problems are also a special case of dilation problems: If the number of items in the collection in a dilation problem is 1 , then the dilation problem is really just a basic problem.
EXAMPLE 31. If Jill's collection in EXAMPLE 18 included only one apple instead of three apples, then the dilation problem would be

1 Apples $\times x \frac{\text { Dollars }}{\text { Apple }} \leqq 4.95$ Dollars
which boils down to the basic inequation in Dollars

$$
x \leqq 4.95
$$

9.4 Solving Dilation Problems

We can now turn to the investigation of dilation problems which we will do according to the General Procedure.

1. We locate the boundary point of the solution subset. This involves the following steps:
i. We write the associated equation for the given problem.

EXAMPLE 32. Given the dilation problem in Dollars in Example 32
$3 \times x \leqq 12$
the associated equation in Dollars is

$$
3 \times x=12
$$

EXAMPLE 33. Given the dilation problem in Dollars in Example 35

$$
x \times 4.20 \leqq 14.70
$$

the associated equation in Dollars is

$$
x \times 4.20=14.70
$$

ii. We try to solve the associated equation by way of the Reduction Approach, that is we try to reduce the given dilation problem to a $b a$ sic problem by dividing both sides by the numerator that is being multiplied by x. The Fairness Theorem will then ensure that the resulting basic equation is equivalent to the original given translation equation.
This, though, is where it matters if the equation involves counting numerators or decimal numerators and we look at the two cases separately.

- If the numerators involved in the equation are counting numerators, we may or may not be able to divide depending on whether the numerator of the gauge is or is not a multiple of the numerator being multiplied by x.
EXAMPLE 34. Given the associated equation in Live Rabbits

$$
3 \times x=12
$$

we can divide both sides by 3

$$
3 \times x \div 3=12 \div 3
$$

which boils down to the basic equation in Live Rabbits

$$
x=4
$$

which the Fairness Theorem ensures to be equivalent to the original dilation problem in Live Rabbits

$$
3 \times x=12
$$

which therefore has the solution of the basic equation, 4 , as its own solution.
EXAMPLE 35. Given the associated equation in Live Rabbits

$$
3 \times x=13
$$

we cannot divide 13 by 3 so we cannot divide both sides by 3 as required by the Fairness Theorem.
So, the original dilation equation,

$$
3 \times x=13
$$

cannot be reduced to a basic equation and therefore has no solution. This of course corresponds to the fact that we cannot have fractions of live rabbits.

- If the numerators involved in the equation are decimal numerators, we can always divide.
EXAMPLE 36. Given the equation in Grams of Gold

$$
x \times 3.2=13.76
$$

we can divide both sides by 3.2

$$
x \times 3.2 \div 3.2=13.76 \div 3.2
$$

which boils down to the basic equation in Grams of Gold

$$
x=4.3
$$

which the Fairness Theorem ensures to be equivalent to the original dilation problem in Grams of Gold

$$
x \times 3.2=13.76
$$

which therefore has the solution of the basic equation, 4 , as its own solution.
2. We locate the interior of the solution subset according to the GENERAL Procedure. (For the sake of showing complete investigations, we will mention in each EXAMPLE the step in which we locate the boundary point.)
EXAMPLE 37. Given the dilation problem in Dollars:

$$
3 \times x \leqq 4.95
$$

i. To get the boundary of the solution subset
i. We locate the boundary point as above: 1.65

ii. Since the inequation is lenient, the boundary point is included in the solution subset and so we graph it with a solid dot.

ii. To get the interior of the solution subset
i. The boundary point 1.65 Dollars divides the data set into two sections:

ii. We test Section A with, for instance, 1 and, since
$3 \times x \leqq\left. 4.95\right|_{\text {where } x:=1}$ is TRUE
we get that 1 is a solution of the inequation in Dollars

$$
3 \times x \leqq 4.95
$$

and Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, 5 and, since
$3 \times x>\left.4.95\right|_{\text {where } x:=5}$ is FALSE
we get that 5 is a non-solution of the inequation in Dollars
$3 \times x \leqq 4.95$
and Pasch's Theorem then tells us that all number-phrases in Section B are nonincluded in the solution subset.

iii. Altogether, we represent the solution subset of the inequation in Dollars

$$
3 \times x \leqq 4.95
$$

as follows:

- The graph of the solution subset is

- The name of the solution subset is
$(-\infty, 1.65)$ Dollars

Chapter 10

Affine Problems

Introduction, 115 - Solving Affine Problems, 116.

10.1 Introduction

The most frequent type of real-world situations is where we want to find the situations in which the money worth of a collection plus some fixed money amount compares in a given way with a given gauge.

1. The corresponding problem is called an affine problem and we shall also use the terms affine formula, affine equation and affine inequation. The number-phrase that represents the fixed money amount is called the constant term.

EXAMPLE 1. Jane wants to buy three apples but there is a fixed transaction charge of four dollars and fifty cents and the most she wants to spend is twenty-three dollars and thirty-four cents. So, whether or not she will be able to get the three apples will depend on the on the going unit-worth of the apples.
The real-world situation is represented by the inequation

$$
3 \text { Apples } \times x \frac{\text { Dollars }}{\text { Apple }}+4.5 \text { Dollars } \leqq 23.34 \text { Dollars }
$$

where 4.5 Dollars is the constant term.
When we carry out the co-multiplication we get the affine inequation

$$
\begin{aligned}
& 3 \text { Apples } \times x \frac{\text { Dollars }}{\text { Appte }}+4.5 \text { Dollars } \leqq 23.34 \text { Dollars } \\
& \quad[3 \times x] \text { Dollars }+4.5 \text { Dollars } \leqq 23.34 \text { Dollars }
\end{aligned}
$$

When we factor out the common denominator Dollars, we get the affine problem in Dollars

$$
3 \times x+4.5 \leqq 23.34
$$

2. Translation problems and dilation problems as well as basic problems turn out to be special cases of affine problems which are therefore a more general type of problems:

- If the number of items in an affine problem is 1 , then the affine problem is really just a translation problem.
EXAMPLE 2. If the number of items in EXAMPLE 1 were 1 instead of 3 , then the inequation would be

1 Apples $\times x \frac{\text { Dollars }}{\text { Apple }}+4.5$ Dollars $\leqq 23.34$ Dollars
which boils down to the inequation in Dollars

$$
x+4.5 \leqq 23.34
$$

which is a translation problem.

- If the fixed number-phrase in an affine problem is 0 , then that affine problem is really just a dilation problem.
EXAMPLE 3. If the fixed number-phrase in EXAMPLE 1 were 0 Dollars instead of 4.5 Dollars, then the inequation would be

3 Apples $\times x \frac{\text { Dollars }}{\text { Apple }}+0$ Dollars $\leqq 23.35$ Dollars
which boils down to the inequation in Dollars

$$
3 \times x \leqq 23.35
$$

which is a dilation problem.

- If, in an affine problem, both the additional number-phrase is 0 and the number of items is 1 , then that affine problem is really just a basic problem.
EXAMPLE 4. If, in EXAMPLE 24 the number of items were 1 instead of 3 and the additional number-phrase were 0 Dollars instead of 4.5 Dollars, then the inequation would be

1 Apples $\times x \frac{\text { Dollars }}{\text { Apple }}+0$ Dollars $\leqq 23.35$ Dollars
which boils down to the inequation in Dollars

$$
x \leqq 23.35
$$

which is a basic problem.

10.2 Solving Affine Problems

We now turn to the investigation of the solution subset of affine problems which we will do in accordance with the Pasch Procedure. The investigation of affine problems will proceed much in the same way as that of translation and dilation problems. As usual, the only difficulty will be that, although similar in nature, problems may involve numerators of different kinds:

- plain counting numerators to represent numbers of items,
- signed counting numerators to represent two-way numbers of items,
- plain decimal numerators to represent quantities of stuff,
- signed decimal numerators to represent two-way quantities of stuff.

1. We locate the boundary point of the solution subset. This involves the following steps:
i. We write the associated equation for the given problem:

Example 5. Given the affine problem in Dollars in Example 1

$$
3 \times x+4.5 \leqq 23.34
$$

the associated equation in Dollars is

$$
3 \times x+4.5=23.34
$$

ii. We try to solve the associated equation in two stages by way of the Reduction Approach:
i. We try to reduce the affine problem to a dilation problem by subtracting the fixed term from both sides so as to be able to invoke the Fairness Theorem,
ii. We then try to reduce the resulting dilation problem to a basic problem by dividing by the coefficient of x both sides so as to be able to invoke the Fairness Theorem.
EXAMPLE 6. Given the affine equation in Dollars in EXAMPLE 2
$3 \times x+4.5=23.34$
i. We subtract 4.5 from both sides:

$$
3 \times x+4.5-4.5=23.34-4.5
$$

which boils down to the dilation equation in Dollars

$$
3 \times x=18.84
$$

ii. We divide both sides by 3

$$
3 \times x \div 3=18.84 \div 3
$$

which boils down to the basic equation in Dollars

$$
x=6.28
$$

2. We locate the interior of the solution subset according to the General Procedure. (For the sake of completion, we include in the Example the step in which we get the boundary point.
EXAMPLE 7. Given the affine problem in Dollars in Example 1:
$3 \times x+4.5 \leqq 23.34$
i. To get the boundary of the solution subset
i. We locate the boundary point as in EXAMPLE 6: 6.28

ii. Since the inequation is lenient, the boundary point is included in the solution subset and so we graph it with a solid dot.

ii. We locate the interior of the solution subset
i. The boundary point 6.28 Dollars divides the data set into two sections:

ii. We test Section A with, for instance, 0.1 and, since

$$
3 \times x+4.5 \leqq\left. 23.34\right|_{x:=0.1} \text { is TRUE }
$$

we get that 0.1 is a solution of the inequation in Dollars

$$
3 \times x+4.5 \leqq 23.34
$$

and Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, +5.0 and, since

$$
3 \times x+4.5 \leqq\left. 23.34\right|_{x:=1000} \text { is FALSE }
$$

we get that 1000 is a non-solution of the inequation in Dollars

$$
3 \times x+4.5 \leqq 23.34
$$

and Pasch's Theorem then tells us that all number-phrases in Section B are nonincluded in the solution subset.

iii. Altogether, we represent the solution subset of the inequation in Dollars

$$
3 \times x+4.5 \leqq 23.34
$$

as follows:

- The graph of the solution subset is

- The name of the solution subset is

Chapter 11

Double Basic Problems

Double Basic Equation Problems, 119 - Problems of Type BETWEEN, 121

- Problems of Type BEYOND, 130 - Other Double Basic Problems, 139.

We now investigate double basic problems, that is problems that involve two basic formulas which can be

- two basic equations
or
- two basic inequations
or
- one basic equation and one basic inequation

These two formulas will be connected by one of the following connectors:

BOTH,
 EITHER ONE OR BOTH, EITHER ONE BUT NOT BOTH.

As we did with single problems, we will use the Pasch Procedure, that is we will
i. Locate the boundary of the solution subset of the double problem,
ii. Locate the interior of the solution subset of the double problem using test points and the Pasch Theorem,

11.1 Double Basic Equation Problems

We begin with problems that involve two basic equations with one of the above connectors and with the condition that the two gauge number-phrases

OR
problem, double basic equation
x_{1} and x_{2} be different.

1. Since the connector used in a double basic problem can any one of three possible connectors, up front, there will be three types of double basic equation problems.

- Double basic equation problems involving the connector BOTH:

$$
\text { вотн }\left\{\begin{array}{l}
x=x_{1} \\
x=x_{2}
\end{array} \quad \text { (with the condition that } x_{1} \neq x_{2}\right)
$$

But double problems of this type have no solution. (Why not?)

- Double basic equation problems involving the connector EITHER ONE AND BOTH:
EITHER ONE OR BOTH $\left\{\begin{array}{l}x=x_{1} \\ x=x_{2}\end{array}\right.$ (with the condition that $x_{1} \neq x_{2}$)
Double problems of this type have two solutions, namely the two gauge numerators, x_{1} and x_{2}.
- Double basic equation problems involving the connector EITHER ONE BUT NOT BOTH:
EITHER ONE BUT NOT BOTH $\left\{\begin{array}{l}x=x_{1} \\ x=x_{2}\end{array} \quad\right.$ (with the condition that $x_{1} \neq x_{2}$) Double problems of this type have the same two solutions as above, namely the two gauge numerators, x_{1} and x_{2}, since here the specification BUT NOT BOTH is superfluous. (Why?)

2. So, since in the case of double basic equation problems it makes no difference whether we use EITHER ONE AND BOTH or EITHER ONE BUT NOT BOTH, we will just write OR and what we will mean by double basic equation problem will be only problems of the type:

$$
\text { OR }\left\{\begin{array}{l}
x=x_{1} \\
x=x_{2}
\end{array} \quad \text { (with the condition that } x_{1} \neq x_{2}\right)
$$

EXAMPLE 1. We represent the solution subset of the double basic equation problem in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x=+32.67 \\
x=-17.92
\end{array}\right.
$$

as follows:

- The graph of the solution subset is

- The name of the solution subset is

$$
\{-17.92,+32.67\} \text { Dollars }
$$

11.2 Problems of Type BETWEEN

These are the first of the two types of double basic inequation problems that we shall investigate in full in this chapter.

1. Given a set of selectable collections and given two gauge collections, we can specify a subset of the set of selectable collections by the requirement that the size of the collections be between the sizes of the two gauge collections.
between gauge-numerators
problem, of type
BETWEEN
interval
boundary (of an interval)
boundary points (of an interval)

EXAMPLE 2. The legal occupancy of a movie theater is that it can seat at most five hundred viewers but the the owner of the movie theater may decide that showing the movie to fewer than sixty viewers is not worth it. Thus, the collection of viewers in any show is between sixty and five hundred viewers.
In other words, we require that the size of the collections in the subset be BOTH

- larger than the size of the smaller of the two gauge collections

AND

- smaller than the size of the larger of the two gauge collections

2. We now discuss the paper representation in some generality.
a. We start with two gauge-numerators, x_{1} and x_{1}, that is with the numerators of the number-phrases that represent the two gauge collections. One of the gauge numerators has of course to be smaller than the other and so, for the sake of convenience, we shall let

$$
x_{1}<x_{2}
$$

so that here

- x_{1} will be the smaller of the two gauge numerators
- x_{2} will be the larger of the two gauge numerators
b. Since each one of the two verbs can be either strict of lenient, there will be four kinds of problems of type BETWEEN:
вОтн $\left\{\begin{array}{l}x>x_{1} \\ x<x_{2}\end{array} \quad\right.$ вотн $\left\{\begin{array}{l}x \geqq x_{1} \\ x \leqq x_{2}\end{array} \quad\right.$ вотн $\left\{\begin{array}{l}x \geqq x_{1} \\ x<x_{2}\end{array} \quad\right.$ вотн $\left\{\begin{array}{l}x>x_{1} \\ x \leqq x_{2}\end{array}\right.$

3. The solution subset of any problem of type BETWEEN is called an interval:

- The boundary of an interval consists of the two gauge numerators because they are solutions of the associated double equation problem

$$
\text { OR }\left\{\begin{array}{l}
x=x_{1} \\
x=x_{2}
\end{array}\right.
$$

The two gauge numerators are then called boundary points of the interval.
interior (of an interval)
segment

However, the double basic equation problem

$$
\text { OR }\left\{\begin{array}{l}
x=x_{1} \\
x=x_{2}
\end{array}\right.
$$

being associated with a double basic inequation problem, each one of the two boundary points may be included or non-included in the solution subset of the double inequation problem depending on whether the corresponding inequation is strict or lenient. So, we will have to check that.
We shall graph the boundary points as usual, that is with a solid dot for a boundary point that is included in the solution subset and a hollow dot for a boundary point that is non-included in the solution subset.

- The interior of an interval consists of all the numerators that are between the two gauge numerators, that is, the interior consists of all numerators that are BOTH larger than the smaller gauge numerator AND smaller than the larger gauge numerator. So, we represent the interior of the interval by a segment.

4. We now investigate an EXAMPLE of each one of the four kinds of problem of type BETWEEN.

I. Problems of type BETWEEN of the kind BOTH $\left\{\begin{array}{l}x>x_{1} \\ x<x_{2}\end{array}\right.$

EXAMPLE 3. Given the problem in Dollars

$$
\text { вOTH }\left\{\begin{array}{l}
x>-37.41 \\
x<+68.92
\end{array}\right.
$$

this is a problem of type BETWEEN and we get its solution subset according to thePasch Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=-37.41} \text { is FALSE } \\
& x<+\left.68.92\right|_{x:=-37.41} \text { is TRUE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector BOTH, -37.41 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=-37.41} \\
x<+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is FALSE }
$$

so that -37.41 is non-included in the solution subset and we must graph -37.41 with a hollow dot.

- Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=+68.92} \text { is TRUE } \\
& x<+\left.68.92\right|_{x:=+68.92} \text { is FALSE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector BOTH, +68.92 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=+68.92} \\
x<+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is FALSE }
$$

so that +68.92 is non-included in the solution subset and we must graph +68.92 with a hollow dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=-1000} \text { is FALSE } \\
& x<+\left.68.92\right|_{x:=-1000} \text { is TRUE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector BOTH, -1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=-1000} \\
x<+\left.68.92\right|_{x:=-1000}
\end{array} \quad\right. \text { is FALSE }
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
iii. We test Section B with, for instance, 0 . Since we have

$$
\begin{array}{ll}
x>-\left.37.41\right|_{x:=0} & \text { is TRUE } \\
x<+\left.68.92\right|_{x:=0} & \text { is TRUE }
\end{array}
$$

and since, in order for 0 to be a solution with the connector BOTH, 0 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=0} \quad \text { is TRUE } \\
x<+\left.68.92\right|_{x:=0}
\end{array}\right.
$$

so that 0 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=+1000} \text { is TRUE } \\
& x<+\left.68.92\right|_{x:=+1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector BOTH, +1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=+1000} \quad \text { is FALSE } \\
x<+\left.68.92\right|_{x:=+1000}
\end{array}\right.
$$

so that +1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
3. We represent and describe the solution subset of the problem of type BETWEEN in Dollars

$$
\text { вотн }\left\{\begin{array}{l}
x>-37.41 \\
x<+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-open, upper-open segment

- The name of the solution subset is the lower-open, upper-open interval

$$
(-37.41,+68.92) \text { Dollars }
$$

II. Problems of type BETWEEN of the kind вотн $\left\{\begin{array}{l}x \geqq x_{1} \\ x \leqq x_{2}\end{array}\right.$

EXAMPLE 4. Given the problem in Dollars

$$
\text { ВОТН }\left\{\begin{array}{l}
x \geqq-37.41 \\
x \leqq+68.92
\end{array}\right.
$$

this is a problem of type BETWEEN and we get its solution subset according to thePASCH PROCEDURE:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=-37.41} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=-37.41} \text { is TRUE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector BOTH, -37.41 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=-37.41} \\
x \leqq+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is TRUE }
$$

so that -37.41 is included in the solution subset and we must graph -37.41 with a sokid dot.

- Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=+68.92} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=+68.92} \text { is TRUE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector BOTH, +68.92 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=+68.92} \\
x \leqq+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is TRUE }
$$

so that +68.92 is included in the solution subset and we must graph +68.92 with a solid dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=-1000} \text { is FALSE } \\
& x \leqq+\left.68.92\right|_{x:=-1000} \text { is TRUE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector BOTH, -1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=-1000} \quad \text { is FALSE } \\
x \leqq+\left.68.92\right|_{x:=-1000}
\end{array}\right.
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
iii. We test Section B with, for instance, 0 . Since we have

$$
\begin{array}{ll}
x \geqq-\left.37.41\right|_{x:=0} & \text { is TRUE } \\
x \leqq+\left.68.92\right|_{x:=0} & \text { is TRUE }
\end{array}
$$

and since, in order for 0 to be a solution with the connector BOTH, 0 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=0} \\
x \leqq+\left.68.92\right|_{x:=0}
\end{array} \quad\right. \text { is TRUE }
$$

so that 0 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=+1000} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=+1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector BOTH, +1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=+1000} \quad \text { is FALSE } \\
x \leqq+\left.68.92\right|_{x:=+1000}
\end{array}\right.
$$

so that +1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
3. We represent and describe the solution subset of the problem of type BETWEEN in Dollars

$$
\text { ВОТН }\left\{\begin{array}{l}
x \geqq-37.41 \\
x \leqq+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-closed, upper-closed segment

- The name of the solution subset is the lower-closed, upper-closed interval

$$
[-37.41,+68.92] \text { Dollars }
$$

III. Problems of type BETWEEN of the kind BOTH $\left\{\begin{array}{l}x \geqq x_{1} \\ x<x_{2}\end{array}\right.$

EXAMPLE 5. Given the problem in Dollars

$$
\text { вОТн }\left\{\begin{array}{l}
x \geqq-37.41 \\
x<+68.92
\end{array}\right.
$$

this is a problem of type BETWEEN and we get its solution subset according to thePASCH Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=-37.41} \text { is TRUE } \\
& x<+\left.68.92\right|_{x:=-37.41} \text { is TRUE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector BOTH, -37.41 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=-37.41} \\
x<+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is TRUE }
$$

so that -37.41 is included in the solution subset and we must graph -37.41 with a solid dot.

- Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=+68.92} \text { is TRUE } \\
& x<+\left.68.92\right|_{x:=+68.92} \text { is FALSE }
\end{aligned}
$$

and since, in order to be a solution with the connector BOTH, +68.92 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=+68.92} \quad \text { is FALSE } \\
x<+\left.68.92\right|_{x:=+68.92}
\end{array}\right.
$$

so that +68.92 is non-included in the solution subset and we must graph +68.92 with a hollow dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=-1000} \text { is FALSE } \\
& x<+\left.68.92\right|_{x:=-1000} \text { is TRUE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector BOTH, -1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=-1000} \quad \text { is FALSE } \\
x<+\left.68.92\right|_{x:=-1000}
\end{array} \quad\right. \text {. }
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
iii. We test Section B with, for instance, 0. Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=0} \text { is TRUE } \\
& x<+\left.68.92\right|_{x:=0} \text { is TRUE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector BOTH, 0 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=0} \quad \text { is TRUE } \\
x<+\left.68.92\right|_{x:=0}
\end{array}\right.
$$

so that 0 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x \geqq-\left.37.41\right|_{x:=+1000} \text { is TRUE } \\
& x<+\left.68.92\right|_{x:=+1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector BOTH, +1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=+1000} \quad \text { is FALSE } \\
x<+\left.68.92\right|_{x:=+1000}
\end{array}\right.
$$

so that +1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
3. We represent and describe the solution subset of the problem of type BETWEEN in Dollars

$$
\text { ВОТН }\left\{\begin{array}{l}
x \geqq-37.41 \\
x<+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-closed, upper-open segment

- The name of the solution subset is the lower-closed, upper-open interval

$$
[-37.41,+68.92) \text { Dollars }
$$

IV. Problems of type BETWEEN of the kind BOTH $\left\{\begin{array}{l}x>x_{1} \\ x \leqq x_{2}\end{array}\right.$

EXAMPLE 6. Given the problem in Dollars

$$
\text { ВОТН }\left\{\begin{array}{l}
x>-37.41 \\
x \leqq+68.92
\end{array}\right.
$$

this is a problem of type BETWEEN and we get its solution subset according to thePasch Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=-37.41} \text { is FALSE } \\
& x \leqq+\left.68.92\right|_{x:=-37.41} \text { is TRUE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector BOTH, -37.41 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=-37.41} \quad \text { is FALSE } \\
x \leqq+\left.68.92\right|_{x:=-37.41}
\end{array}\right.
$$

so that -37.41 is non-included in the solution subset and we must graph -37.41 with a hollow dot.

- Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=+68.92} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=+68.92} \text { is TRUE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector BOTH, +68.92 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=+68.92} \\
x \leqq+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is TRUE }
$$

so that +68.92 is included in the solution subset and we must graph +68.92 with a solid dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{gathered}
x>-\left.37.41\right|_{x:=-1000} \text { is FALSE } \\
x \leqq+\left.68.92\right|_{x:=-1000} \text { is TRUE }
\end{gathered}
$$

and since, in order for -1000 to be a solution with the connector BOTH, -1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=-1000} \quad \text { is FALSE } \\
x \leqq+\left.68.92\right|_{x:=-1000}
\end{array}\right.
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
iii. We test Section B with, for instance, 0. Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=0} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=0} \text { is TRUE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector BOTH, 0 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=0} \quad \text { is TRUE } \\
x \leqq+\left.68.92\right|_{x:=0}
\end{array}\right.
$$

so that 0 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x>-\left.37.41\right|_{x:=+1000} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=+1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector BOTH, +1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
x>-\left.37.41\right|_{x:=+1000} \quad \text { is FALSE } \\
x \leqq+\left.68.92\right|_{x:=+1000}
\end{array} \quad\right. \text { }
$$

so that +1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
3. We represent and describe the solution subset of the problem of type BETWEEN in Dollars
beyond OR

$$
\text { вОтн }\left\{\begin{array}{l}
x>-37.41 \\
x \leqq+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-open, upper-closed segment

- The name of the solution subset is the lower-open, upper-closed interval

$$
(-37.41,+68.92] \text { Dollars }
$$

11.3 Problems of Type BEYOND

These are the second of the two types of double basic inequation problems that we shall investigate in full in this chapter but the development of this investigation will be completely similar to that for the problems of type BETWEEN.

1. Given a set of selectable collections and given two gauge collections, we can specify a subset of collections by the requirement that the size of the collections be beyond the sizes of the two gauge collections.
EXAMPLE 7. It is often said that in order to qualify for a one million dollar loan, you must be worth either more than one hundred million dollars or already be in debt for one hundred millions dollars. Thus, your worth must be beyond minus one hundred million dollars and plus one hundred millions dollars
In other words, we require that the size of the collections in the subset be EITHER

- smaller than the size of the smaller of the two gauge collections

OR

- larger than the size of the larger of the two gauge collections

NOTE. Here we don't have to say whether AND BOTH or BUT NOT BOTH since a collection cannot be at the same time larger than the larger of the two gauge collections and smaller than the smaller of the two gauge collections. So, here again, we will just sat OR
2. We now discuss the paper representation in some generality.
a. We start with two gauge-numerators, x_{1} and x_{1}, that is with the numerators of the number-phrases that represent the two gauge collections. One of the gauge numerators has of course to be smaller than the other and so, for the sake of convenience, we shall call let

$$
x_{1}<x_{2}
$$

so that

- x_{1} will be the smaller of the two gauge numerators
- x_{2} will be the larger of the two gauge numerators
b. Since each one of the two verbs can be either strict of lenient, there will be four kinds of problems of type BEYOND:

$$
\text { OR }\left\{\begin{array} { l }
{ x < x _ { 1 } } \\
{ x > x _ { 2 } }
\end{array} \quad \text { OR } \left\{\begin{array} { l }
{ x \leqq x _ { 1 } } \\
{ x \leqq x _ { 2 } }
\end{array} \quad \text { OR } \left\{\begin{array} { l }
{ x \leqq x _ { 1 } } \\
{ x > x _ { 2 } }
\end{array} \quad \text { OR } \left\{\begin{array}{l}
x<x_{1} \\
x \geqq x_{2}
\end{array}\right.\right.\right.\right.
$$

problem (of type
BEYOND
exterval
boundary (of an exterval) boundary points (of an exterval)
interior (of an exterval) double ray
\cup
union
3. The solution subset of any problem of type BEYOND is called an exterval ${ }^{1}$:

- The boundary of an exterval consists of the two gauge numerators which are called boundary points of the exterval.

However, the double basic equation problem

$$
\text { OR }\left\{\begin{array}{l}
x=x_{1} \\
x=x_{2}
\end{array}\right.
$$

being associated with a double basic inequation problem, each one of the two boundary points may be included or non-included in the solution subset of the double inequation problem depending on whether the corresponding inequation is strict or lenient.
We shall graph the boundary points as usual, that is with a solid dot for a boundary point that is included in the solution subset and a hollow dot for a boundary point that is non-included in the solution subset.

- The interior of an exterval consists of all the numerators that are beyond the two gauge numerators, that is, the interior consists of all numerators that are EITHER larger than the larger gauge numerator OR smaller than the smaller gauge numerator. So, we represent the interior of the exterval by a double ray. Since an exterval is made of two rays, we will use the symbol \cup, read "union", to name the assembly.

[^16]
4. We now investigate an EXAMPLE of each one of the four kinds of problem of type BEYOND.

I. Problems of type BEYOND of the kind OR $\left\{\begin{array}{l}x<x_{1} \\ x>x_{2}\end{array}\right.$

EXAMPLE 8. Given the problem in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x<-37.41 \\
x>+68.92
\end{array}\right.
$$

this is a problem of type BEYOND. We get the solution subset as usual, that is according to thePasch Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-37.41} \text { is FALSE } \\
& x>+\left.68.92\right|_{x:=-37.41} \text { is FALSE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector $\mathrm{OR},-37.41$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-37.41} \\
x>+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is FALSE }
$$

so that -37.41 is non-included in the solution subset and we must graph -37.41 with a hollow dot.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+68.92} \text { is FALSE } \\
& x>+\left.68.92\right|_{x:=+68.92} \text { is FALSE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector $\mathrm{OR},+68.92$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+68.92} \\
x>+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is FALSE }
$$

so that +68.92 is non-included in the solution subset and we must graph +68.92 with a hollow dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-1000} \text { is TRUE } \\
& x>+\left.68.92\right|_{x:=-1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector $\mathrm{OR},-1000$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-1000} \\
x>+\left.68.92\right|_{x:=-1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that -1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
iii. We test Section B with, for instance, 0 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=0} \text { is FALSE } \\
& x>+\left.68.92\right|_{x:=0} \text { is FALSE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=0} \\
x>+\left.68.92\right|_{x:=0}
\end{array} \quad\right. \text { is FALSE }
$$

so that 0 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are non-included in the solution subset.
iv. We test Section C with, for instance, +1000 . In order for +1000 to be a solution of the double problem, +1000 has to satisfy ONE of the inequations. Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+1000} \text { is FALSE } \\
& x>+\left.68.92\right|_{x:=+1000} \text { is TRUE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector OR, +1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+1000} \\
x>+\left.68.92\right|_{x:=+1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that +1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BEYOND in Dollars

$$
\text { вотн }\left\{\begin{array}{l}
x<-37.41 \\
x>+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-open, upper-open double ray

- The name of the solution subset is the lower-open, upper-open exterval

$$
(-\infty,-37.41) \cup(+68.92,+\infty) \text { Dollars }
$$

II. Problems of type BEYOND of the kind OR $\left\{\begin{array}{l}x \leqq x_{1} \\ x \geqq x_{2}\end{array}\right.$

EXAMPLE 9. Given the problem in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-37.41 \\
x \geqq+68.92
\end{array}\right.
$$

this is a problem of type BEYOND. We get the solution subset as usual, that is according to thePasch Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\mathrm{OR}\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=-37.41} \text { is TRUE } \\
& x \geqq+\left.68.92\right|_{x:=-37.41} \text { is FALSE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector $\mathrm{OR},-37.41$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=-37.41} \\
x \geqq+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is TRUE }
$$

so that -37.41 is included in the solution subset and we must graph -37.41 with a solid dot.

- Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=+68.92} \text { is FALSE } \\
& x \geqq+\left.68.92\right|_{x:=+68.92} \text { is TRUE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector $\mathrm{OR},+68.92$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=+68.92} \\
x \geqq+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is TRUE }
$$

so that +68.92 is included in the solution subset and we must graph +68.92 with a solid dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=-1000} \text { is TRUE } \\
& x \geqq+\left.68.92\right|_{x:=-1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector OR, -1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=-1000} \\
x \geqq+\left.68.92\right|_{x:=-1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that -1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
iii. We test Section B with, for instance, 0 . Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=0} \text { is FALSE } \\
& x \geqq+\left.68.92\right|_{x:=0} \text { is FALSE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=0} \quad \text { is FALSE } \\
x \geqq+\left.68.92\right|_{x:=0}
\end{array}\right.
$$

so that 0 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are non-included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=+1000} \text { is FALSE } \\
& x \geqq+\left.68.92\right|_{x:=+1000} \text { is TRUE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector OR, +1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=+1000} \\
x \geqq+\left.68.92\right|_{x:=+1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that +1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BEYOND in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-37.41 \\
x \geqq+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-closed, upper-closed double ray

- The name of the solution subset is the lower-closed, upper-closed exterval

$$
(-\infty,-37.41] \cup[+68.92,+\infty) \text { Dollars }
$$

III. Problems of type BEYOND of the kind or $\left\{\begin{array}{l}x \leqq x_{1} \\ x>x_{2}\end{array}\right.$

EXAMPLE 10. Given the problem in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-37.41 \\
x>+68.92
\end{array}\right.
$$

this is a problem of type BEYOND. We get the solution subset as usual, that is according to thePasch Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=-37.41} \text { is TRUE } \\
& x>+\left.68.92\right|_{x:=-37.41} \text { is FALSE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector OR, -37.41 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=-37.41} \\
x>+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is TRUE }
$$

so that -37.41 is included in the solution subset and we must graph -37.41 with a solid dot.

- Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=+68.92} \text { is FALSE } \\
& x>+\left.68.92\right|_{x:=+68.92} \text { is FALSE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector $\mathrm{OR},+68.92$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=+68.92} \\
x>+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is FALSE }
$$

so that +68.92 is non-included in the solution subset and we must graph +68.92 with a hollow dot.

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=-1000} \text { is TRUE } \\
& x>+\left.68.92\right|_{x==-1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector OR, -1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=-1000} \\
x>+\left.68.92\right|_{x:=-1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that -1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
iii. We test Section B with, for instance, 0 . Since we have

$$
\begin{aligned}
& x \leqq-\left.37.41\right|_{x:=0} \text { is FALSE } \\
& x>+\left.68.92\right|_{x:=0} \text { is FALSE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=0} \quad \text { is FALSE } \\
x>+\left.68.92\right|_{x:=0}
\end{array}\right.
$$

so that 0 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are non-included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{gathered}
x \leqq-\left.37.41\right|_{x:=+1000} \text { is FALSE } \\
x>+\left.68.92\right|_{x:=+1000} \text { is TRUE }
\end{gathered}
$$

and since, in order for +1000 to be a solution with the connector OR, +1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-\left.37.41\right|_{x:=+1000} \\
x>+\left.68.92\right|_{x:=+1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that +1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BEYOND in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x \leqq-37.41 \\
x>+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-open, upper-open double ray

- The name of the solution subset is the lower-open, upper-open exterval

$$
(-\infty,-37.41] \cup(+68.92,+\infty) \text { Dollars }
$$

IV. Problems of type BEYOND of the kind or $\left\{\begin{array}{l}x<x_{1} \\ x \geqq x_{2}\end{array}\right.$

EXAMPLE 11. Given the problem in Dollars

$$
\text { OR }\left\{\begin{array}{l}
x<-37.41 \\
x \geqq+68.92
\end{array}\right.
$$

this is a problem of type BEYOND. We get the solution subset as usual, that is according to thePASCh Procedure:

1. We locate the boundary of the solution subset. This involves the following steps:
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-37.41} \text { is FALSE } \\
& x \geqq+\left.68.92\right|_{x:=-37.41} \text { is FALSE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector $\mathrm{OR},-37.41$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-37.41} \\
x \geqq+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is FALSE }
$$

so that -37.41 is non-included in the solution subset and we must graph -37.41 with a hollow dot.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+68.92} \text { is FALSE } \\
& x \geqq+\left.68.92\right|_{x:=+68.92} \text { is TRUE }
\end{aligned}
$$

and since, in order for +68.92 to be a solution with the connector $\mathrm{OR},+68.92$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+68.92} \\
x \geqq+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is TRUE }
$$

so that +68.92 is included in the solution subset and we must graph +68.92 with a solid dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps:
i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-1000} \text { is TRUE } \\
& x \geqq+\left.68.92\right|_{x:=-1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector $\mathrm{OR},-1000$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-1000} \\
x \geqq+\left.68.92\right|_{x:=-1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that -1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
iii. We test Section B with, for instance, 0. Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=0} \text { is FALSE } \\
& x \geqq+\left.68.92\right|_{x:=0} \text { is FALSE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy AT \backslash LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=0} \\
x \geqq+\left.68.92\right|_{x:=0}
\end{array} \quad\right. \text { is FALSE }
$$

so that 0 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are non-included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
x<-\left.37.41\right|_{x:=+1000} & \text { is FALSE } \\
x \geqq+\left.68.92\right|_{x:=+1000} & \text { is TRUE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector $\mathrm{OR},+1000$ has to satisfy AT LEAST ONE formula, we have that

$$
\text { OR }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+1000} \\
x \geqq+\left.68.92\right|_{x:=+1000}
\end{array} \quad\right. \text { is TRUE }
$$

so that +1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BEYOND in Dollars

$$
\text { вОТН }\left\{\begin{array}{l}
x<-37.41 \\
x \geqq+68.92
\end{array}\right.
$$

- The graph of the solution subset is the lower-open, upper-open double ray

- The name of the solution subset is the lower-open, upper-open exterval

$$
(-\infty,-37.41) \cup[+68.92,+\infty) \text { Dollars }
$$

11.4 Other Double Basic Problems

Even with just basic inequations and equations, there is large number of possible double problems and it is not possible to memorize them. On the other hand, thePasch Procedure that we used in the case of problems of type BETWEEN of type and problems of type BEYOND of type continues to work.

Here, though, we will usually not be able to just say OR and we usually will have to specify EITHER ONE OR BOTH or EITHER ONE BUT NOT BOTH.

While we will continue to use the symbol \cup, it will also be occasionally convenient to use the symbol \backslash, read except when naming the solution subset.
EXAMPLE 12. Given the double basic inequation problem in Dollars

$$
\text { EITHER ONE OR BOTH }\left\{\begin{array}{l}
x<-37.41 \\
x=+68.92
\end{array}\right.
$$

we get its solution subset according to thePASCH PROCEDURE.

1. We locate the boundary of the solution subset. This involves the following steps. i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary point -37.41 and the potential solution +68.92 .
ii. We check if the boundary point -37.41 and the potential solution +68.92 are in the solution subset.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-37.41} \text { is FALSE } \\
& x=+\left.68.92\right|_{x:=-37.41} \text { is FALSE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector EITHER ONE OR BOTH, -37.41 has to satisfy AT LEAST ONE formula, we have that

$$
\text { EITHER ONE OR BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-37.41} \\
x=+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is FALSE }
$$

so that -37.41 is non-included in the solution subset and we must graph -37.41 with a hollow dot.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+68.92} \text { is FALSE } \\
& x=+\left.68.92\right|_{x:=+68.92} \text { is TRUE }
\end{aligned}
$$

and since, in order to be a solution with the connector EITHER ONE OR BOTH, +68.92 has to satisfy AT LEAST ONE formula, we have that

$$
\text { EITHER ONE OR BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+68.92} \\
x=+\left.68.92\right|_{x:=+68.92}
\end{array}\right. \text { is TRUE }
$$

so that +68.92 is included in the solution subset and we must graph +68.92 with a sokid dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps. i. The boundary point divides the data set in two sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-1000} \text { is TRUE } \\
& x=+\left.68.92\right|_{x:=-1000} \text { is FALSE }
\end{aligned}
$$

and since in order for -1000 to be a solution with the connector EITHER ONE OR BOTH, -1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { EITHER ONE OR BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=-1000} \\
x<+\left.68.92\right|_{x:=-1000}
\end{array}\right. \text { is TRUE }
$$

so that -1000 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are included in the solution subset.
iii. We test Section B with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+1000} \text { is FALSE } \\
& x=+\left.68.92\right|_{x:=+1000} \text { is FALSE }
\end{aligned}
$$

and since in order for +1000 to be a solution with the connector EITHER ONE OR BOTH, +1000 has to satisfy AT LEAST ONE formula, we have that

$$
\text { EITHER ONE OR BOTH }\left\{\begin{array}{l}
x \geqq-\left.37.41\right|_{x:=+1000} \\
x<+\left.68.92\right|_{x:=+1000}
\end{array}\right. \text { is FALSE }
$$

so that +1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B (other than +68.82 which was dealt with separately above) are non-included in the solution subset.
3. We represent and describe the solution subset of the problem in Dollars

$$
\text { EITHER ONE OR BOTH }\left\{\begin{array}{l}
x<-37.41 \\
x=+68.92
\end{array}\right.
$$

- The graph of the solution subset is

- The name of the solution subset is

$$
(-\infty,-37.41) \cup\{+68.92\} \text { Dollars }
$$

EXAMPLE 13. Given the double basic inequation problem in Dollars

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-37.41 \\
x \leqq+68.92
\end{array}\right.
$$

we get the solution subset according to thePasch Procedure.

1. We locate the boundary of the solution subset. This involves the following steps.
i. We solve the double basic equation problem associated with the given problem:

$$
\text { OR }\left\{\begin{array}{l}
x=-37.41 \\
x=+68.92
\end{array}\right.
$$

which gives us the boundary points -37.41 and +68.92 .
ii. We check if the boundary points are in the solution subset.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-37.41} \text { is FALSE } \\
& x \leqq+\left.68.92\right|_{x:=-37.41} \text { is TRUE }
\end{aligned}
$$

and since, in order for -37.41 to be a solution with the connector EITHER ONE BUT NOT BOTH, -37.41 has to satisfy EXACTLY ONE formula, we have that

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-37.41} \\
x \leqq+\left.68.92\right|_{x:=-37.41}
\end{array} \quad\right. \text { is TRUE }
$$

so that -37.41 is included in the solution subset and we must graph -37.41 with a solid dot.

- Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+68.92} \text { is FALSE } \\
& x \leqq+\left.68.92\right|_{x:=+68.92} \text { is TRUE }
\end{aligned}
$$

and since, in order to be a solution with the connector EITHER ONE BUT NOT BOTH, +68.92 has to satisfy EXACTLY ONE formula, we have that

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+68.92} \\
x \leqq+\left.68.92\right|_{x:=+68.92}
\end{array} \quad\right. \text { is TRUE }
$$

so that +68.92 is included in the solution subset and we must graph +68.92 with a solid dot.
Altogether, we have

2. We locate the interior of the solution subset. This involves the following steps. i. The boundary points divide the data set into three sections

ii. We test Section A with, for instance, -1000 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=-1000} \text { is TRUE } \\
& x \leqq+\left.68.92\right|_{x:=-1000} \text { is TRUE }
\end{aligned}
$$

and since, in order for -1000 to be a solution with the connector EITHER ONE BUT NOT BOTH, -1000 has to satisfy EXACTLY ONE formula, we have that

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=-1000} \\
x \leqq+\left.68.92\right|_{x:=-1000}
\end{array}\right. \text { is FALSE }
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
iii. We test Section B with, for instance, 0. Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=0} \text { is FALSE } \\
& x \leqq+\left.68.92\right|_{x:=0} \text { is TRUE }
\end{aligned}
$$

and since, in order for 0 to be a solution with the connector EITHER ONE BUT NOT BOTH, 0 has to satisfy EXACTLY ONE formula, we have that

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=0} \\
x \leqq+\left.68.92\right|_{x:=0}
\end{array}\right. \text { is TRUE }
$$

so that 0 is included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section B are included in the solution subset.
iv. We test Section C with, for instance, +1000 . Since we have

$$
\begin{aligned}
& x<-\left.37.41\right|_{x:=+1000} \text { is FALSE } \\
& x \leqq+\left.68.92\right|_{x:=+1000} \text { is FALSE }
\end{aligned}
$$

and since, in order for +1000 to be a solution with the connector EITHER ONE BUT NOT BOTH, +1000 has to satisfy EXACTLY ONE formula, we have that

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-\left.37.41\right|_{x:=+1000} \\
x \leqq+\left.68.92\right|_{x:=+1000}
\end{array} \quad\right. \text { is FALSE }
$$

so that +1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section C are non-included in the solution subset.
3. We represent and describe the solution subset of the double inequation problem in Dollars

$$
\text { EITHER ONE BUT NOT BOTH }\left\{\begin{array}{l}
x<-37.41 \\
x \leqq+68.92
\end{array}\right.
$$

- The graph of the solution subset is

- The name of the solution subset is

$$
[-37.41,+68.92] \text { Dollars }
$$

Chapter 12

Double Affine Problems

We conclude Part Two with double problems which are just like those in the preceding chapter but with affine problems instead of basic problems.

Conceptually, since affine problems can be reduced to basic problems, there will be absolutely nothing new in this chapter which serves only to show how much our investment in thePasch Procedure and the Reduction APPROACH will pay.

As a result, the only difficulty will be the "staying power" that will be required by the length of some of the computations.

EXAMPLE 1. Solve the double problem in Dollars

$$
\text { вОтн }\left\{\begin{array}{l}
+3 x+4.51 \leqq+23.35 \\
+2.34<+2 x
\end{array}\right.
$$

1. The formula $+3 x+4.51 \leqq+23.35$ is an affine inequation and the formula $+2.34<+2 x$ is a basic inequation so we should be able to find the solution subset on the basis of our previous work. At this point, though, we are not in a position to tell what "named" type of problem this is, if any.
2. We locate the boundary of the double problem by looking for the boundary point of each inequation, that is by solving the equation associated with each inequation.
a. The equation associated with the inequation $3 x+4.51 \leqq+23.35$ is

$$
+3 x+4.51=+23.35
$$

i. In order to reduce this affine equation to a basic equation, we must get rid of +4.51 on the right side which we do by adding its opposite -4.51 on both sides so as to be able to invoke the Fairness Theorem:

$$
+3 x+4.51-4.51=+23.35-4.51
$$

$$
+3 x=+18.84
$$

Then, dividing by +3 on both sides

$$
+3 x \div(+3)=+18.84 \div(+3)
$$

gives the basic equation

$$
x=+6.28
$$

and therefore the boundary point +6.28 .
ii. We check if the boundary point +6.28 is included or non-included in the solution subset.
Since we have

$$
\begin{aligned}
& +3 x+4.51 \leqq+\left.23.35\right|_{x:=+6.28} \text { is TRUE } \\
& \quad+2.34<+\left.2 x\right|_{x:=+6.28} \text { is TRUE }
\end{aligned}
$$

and since, in order for +6.28 to be a solution with the connector BOTH, +6.28 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=+6.28} \quad \text { is TRUE } \\
+2.34<+\left.2 x\right|_{x:=+6.28}
\end{array}\right.
$$

so that +6.28 is included in the solution subset and we must graph +6.28 with a solid dot.
b. The equation associated with the inequation $+2.34<+2 x$ is:

$$
+2.34=+2 x
$$

i. We reduce to a basic equation by dividing both sides by +2

$$
x=+1.17
$$

and therefore the boundary point is +1.17
ii. We check if the boundary point +1.17 is included or non-included in the solution subset.
Since we have

$$
\begin{gathered}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=+1.17} \text { is TRUE } \\
+2.34<+\left.2 x\right|_{x:=+1.17} \text { is FALSE }
\end{gathered}
$$

and since, in order for +1.17 to be a solution with the connector BOTH, +1.17 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=+1.17} \\
+2.34<+\left.2 x\right|_{x:=+1.17}
\end{array} \quad\right. \text { is FALSE }
$$

so that +1.17 is non-included in the solution subset and we must graph +6.28 with a hollow dot.
c. The boundary is

3. We locate the interior of the double problem by testing each one of the three sections determined by the two boundary points:

- We test Section A with, for instance, -1000 . That is, we must evaluate the two formulas in the given problem with -1000 .

$$
\begin{aligned}
& +3 x+4.51 \leqq+\left.23.35\right|_{x:=-1000} \\
& \quad+2.34<+\left.2 x\right|_{x:=-1000}
\end{aligned}
$$

that is

$$
\begin{aligned}
& +3 \cdot(-1000)+4.51 \leqq+23.35 \\
& \quad+2.34<+2 \cdot(-1000)
\end{aligned}
$$

that is

$$
\begin{gathered}
-3000+4.51 \leqq+23.35 \\
+2.34<-2000
\end{gathered}
$$

that is

$$
\begin{gathered}
-2995.49 \leqq+23.35 \quad \text { which is TRUE } \\
+2.34<-2000 \quad \text { which is FALSE }
\end{gathered}
$$

Since, in order for -1000 to be a solution with the connector BOTH, -1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=-1000} \quad \text { is FALSE } \\
+2.34<+\left.2 x\right|_{x=-1000}
\end{array}\right.
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.

- We test Section B with, for instance, +2 . (We cannot test with 0 since 0 is not in Section B.) That is, we must evaluate the two formulas in the given problem with +2 .

$$
\begin{gathered}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=+2} \\
+2.34<+\left.2 x\right|_{x:=+2}
\end{gathered}
$$

that is

$$
\begin{gathered}
+3 \cdot(+2)+4.51 \leqq+23.35 \\
+2.34<+2 \cdot(+2)
\end{gathered}
$$

that is

$$
\begin{gathered}
+6+4.51 \leqq+23.35 \\
+2.34<+4
\end{gathered}
$$

that is

$$
\begin{aligned}
& +10.51 \leqq+23.35 \quad \text { which is TRUE } \\
& +2.34<+4 \quad \text { which is TRUE }
\end{aligned}
$$

Since, in order for +2 to be a solution with the connector BOTH, +2 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=+2} \\
+2.34<+\left.2 x\right|_{x=+2}
\end{array} \quad\right. \text { is TRUE }
$$

so that +2 is included in the solution subset. Pasch's Theorem then tells us that
all number-phrases in Section B are included in the solution subset.

- We test Section C with, for instance, +1000 . That is, we must evaluate the two formulas in the given problem with +1000 .

$$
\begin{aligned}
& +3 x+4.51 \leqq+\left.23.35\right|_{x:=+1000} \\
& \quad+2.34<+\left.2 x\right|_{x:=+1000}
\end{aligned}
$$

that is

$$
\begin{gathered}
+3 \cdot(+1000)+4.51 \leqq+23.35 \\
+2.34<+2 \cdot(+1000)
\end{gathered}
$$

that is

$$
\begin{gathered}
+3000+4.51 \leqq+23.35 \\
+2.34<+2000
\end{gathered}
$$

that is

$$
\begin{gathered}
+3004.51 \leqq+23.35 \quad \text { which is FALSE } \\
+2.34<+2000 \quad \text { which is TRUE }
\end{gathered}
$$

Since, in order for +1000 to be a solution with the connector BOTH, +1000 has to satisfy BOTH formulas, we have that

$$
\text { BOTH }\left\{\begin{array}{l}
+3 x+4.51 \leqq+\left.23.35\right|_{x:=+1000} \quad \text { is FALSE } \\
+2.34<+\left.2 x\right|_{x=+1000}
\end{array}\right.
$$

so that -1000 is non-included in the solution subset. Pasch's Theorem then tells us that all number-phrases in Section A are non-included in the solution subset.
4. We represent and describe the solution subset of the problem in Dollars

$$
\text { ВОтн }\left\{\begin{array}{l}
+3 x+4.51 \leqq+23.35 \\
+2.34<+2 x
\end{array}\right.
$$

- The graph of the solution subset is

- The name of the solution subset is

$$
(+1.17,+6.28] \text { Dollars }
$$

Part III

Laurent Polynomial Algebra

Chapter 13

Repeated Multiplications and Divisions

A Problem With English, 151 - Templates, 152 - The Order of Operations, 156 - The Way to Powers, 159 - Power Language, 162.

Given a number-phrase we investigate what is involved in repeated multiplications or repeated divisions by a given numerator, something which used to be called involution ${ }^{1}$.

13.1 A Problem With English

English can be confusing when we want to indicate "how many times" an operation is to be repeated.

1. One source of confusion is the word "times" because multiplication may not be involved at all.
EXAMPLE 1. When we tell someone
Divide 375 Dollars 3 times by 5
multiplication is not involved and we just mean:
Divide 375 Dollars
i. a first time by 5 -which gives 75 Dollars as a result,
ii. a second time by 5 -which gives 15 Dollars as a result,
iii. a third time by 5 -which gives 3 Dollars as a result.

[^17]coefficient base
plain exponent

NOTE. In fact, the use of "first time", "second time", etc is also a bit misleading since, when we "divide for the second time", we are not dividing the initial number-phrase a second time but the result of the first division for the first time. Etc.
2. Another source of confusion is when we do not pay attention to the exact place of the word "by".
EXAMPLE 2. While, as we saw in Example 1,
Divide 375 Dollars 3 times by 5
results in
3 Dollars
it is easily confused with
Divide 375 Dollars by 3 times 5
that is
Divide 375 Dollars by 15
whose results is

25 Dollars

3. A workaround would seem just to avoid using the word "by" but it is awkward and even misleading when we say it and downright dangerous when we write it.

Example 3. To say

multiply 7 Dollars by 2,3 times
can be correctly understood but requires to stop markedly after the 2 as, otherwise, it will be understood to mean
multiply 7 Dollars by 2 OR by 3 .
EXAMPLE 4. To write
multiply 7 Dollars by 2,3 times
can be correctly understood but requires paying attention to the comma between the 2 and the 3 as otherwise it will be understood to mean

Multiply 7 Dollars by 23
4. What we will now do will be to develop a specialized language to deal with repeated operations. Perhaps surprisingly, though, writing specifyingphrases for repeated operations is not quite a simple matter.

13.2 Templates

We begin by looking at the way we actually go about repeating operations.

1. Given a number-phrase, whose numerator we will refer to as the coefficient, and:

- given a numerator, called the base, by which the given number-phrase is to be repeatedly multiplied or repeatedly divided,
- given a numerator, called the plain exponent, to indicate how many multiplications or how many divisions we want done on the coefficient,
the simplest way to specify how many repeated multiplications or how many divisions we want done on the number-coefficient is to use a staggered
staggered template copy template in which each operation is done on a separate line with a separate copy of the base.
EXAMPLE 5. When we want the number-phrase +7 Dollars multiplied by 6 copies of -2, we say that
- the coefficient is +7 ,
- the base from which we make the copies is -2 ,
- the plain exponent is 6
and we write the following staggered template:

($1^{\text {st }}$ multiplication by -2)
($2^{\text {nd }}$ multiplication by -2)
($3^{r d}$ multiplication by -2)
($4^{\text {th }}$ multiplication by -2)
($5^{\text {th }}$ multiplication by -2)
($6^{\text {th }}$ multiplication by -2)
(Result of the repeated multiplications)
The staggered template specifies what is to be done at each stage and therefore what the result will be:

EXAMPLE 6. When we want the number-phrase +112 Dollars divided by 4 copies of -2, we say that

- the coefficient is +112 ,
- the base from which we make the copies is -2 ,
- the plain exponent is 4
and we write the following staggered template:
Divide +112 Dollars by 4 copies of -2
we use the staggered template:

$$
\begin{aligned}
& \left(1^{\text {st }} \text { division by }-2\right) \\
& \left(2^{n d} \text { division by }-2\right) \\
& \left(3^{r d} \text { division by }-2\right) \\
& \left(4^{t h} \text { division by }-2\right) \\
& \text { (Result of the repeated divisions) }
\end{aligned}
$$

The staggered template specifies what is to be done at each stage and therefore what the result will be:

2. As usual, instead of writing the denominator on each line, we can declare the denominator up front and then write the staggered template just for the numerators.
EXAMPLE 7. When we want the number-phrase +7 Dollars multiplied by 6 copies of -2 , we can
i. declare that the template is in Dollars
ii. write the staggered template just for the numerators

$\left(1^{\text {st }}\right.$ multiplication by -2$)$
$\left(2^{\text {nd }}\right.$ multiplication by -2$)$
($3^{r d}$ multiplication by -2)
($4^{t h}$ multiplication by -2)
($5^{t h}$ multiplication by -2)
($6^{\text {th }}$ multiplication by -2)
(Result of the repeated multiplications)
The staggered template specifies what the numerator of the result will be and the declaration specifies that the denominator is Dollars.

EXAMPLE 8. When we want the number-phrase +112 Dollars divided by 4 copies of -2 , we say that

- the coefficient is +112 ,
- the base from which we make the copies is -2 ,
- the plain exponent is 4
and we write the following staggered template in Dollars:

The staggered template specifies what is to be done at each stage and therefore what the numerator of the result in Dollars will be.
3. Quite often, though, we will not want to get the actual result but just be able to discuss the repeated operations and, in that case, the use of staggered templates is cumbersome. So, what we will do is to let the boxes "go without saying" which will allow us to write an in-line template, that is:
i. For the numerators, we write on a single line:
i. The coefficient,
ii. The operation symbol followed by the $1^{\text {st }}$ copy of the base
iii. The operation symbol followed by the $2^{\text {nd }}$ copy of the base
iv. The operation symbol followed by the $3^{\text {rd }}$ copy of the base
v. Etc until all copies specified by the plain exponent have been written.
ii. For the denominator, we have a choice:

- We can declare the denominator up front and then write the in-line template for the numerators,
- We can write the in-line template for the numerators within square brackets and then write the denominator.

EXAMPLE 9. Instead of writing the staggered template in Dollars

we can:

- Declare up front that the in-line template is in Dollars and then write:

$$
+17 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2
$$

or

- Write the in-line template for the numerators within square brackets and then write the denominator Dollars

$$
[+17 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2] \text { Dollars }
$$

EXAMPLE 10. Instead of writing the staggered template in Dollars

we can

- Declare up front that the in-line template is in Dollars and then write:

$$
-208 \odot-2 \odot-2 \odot-2 \odot-2
$$

- Write the in-line template for the numerators within square brackets and then write the denominator Dollars

$$
[-208 \odot-2 \odot-2 \odot-2 \odot-2] \text { Dollars }
$$

13.3 The Order of Operations

The use of in-line templates for repeated operations, though, poses a problem: how do we know for sure in what order the recipient of an in-line template is going to do the operations?

The reason this can be a problem is that this order can make all the difference between the recipient arriving at the intended result and the recipient arriving at something completely irrelevant.

1. When the operation being repeated is multiplication, it turns out that the order in which the operations are done does not matter
EXAMPLE 11. Given the in-line template in Dollars

$$
17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

the recipient might choose to compute it as

or the recipient might choose to compute it as

or as

etc but, it does not matter as the result will always be 1088.
However, proving in general that the order in which the multiplications are done does not matter takes some work because, as the number of copies gets large, the number of ways in which the multiplications could be done gets even larger and yet, to be able to make a general statement, we would have to make sure that all of these ways have been accounted for. So, for the sake
of time, in the case of repeated multiplications, we will take the following for granted:

THEOREM 6. The order in which multiplications are done does not matter.
2. In the case of repeated division, though, the order usually makes a huge difference.
EXAMPLE 12. Given the in-line template in Dollars

$$
448 \div 2 \div 2 \div 2 \div 2 \div 2 \div 2
$$

and while the recipient might indeed choose to compute is as

the recipient might also choose to compute it as

or as

etc
Thus, in the case of repeated divisions it is crucial to agree on the order in which to do them and so, in the absence of any instructions to that effect, we will use

DEFAULT RULE \# 5. The order in which divisions are to be done is from left to right.

13.4 The Way to Powers

Eventually, we will devise a very powerful language to deal both with repeated multiplications and repeated divisions but, before we can do that, we need to clear the way.

1. While, as we have seen, 1 does tend to "go without saying", what we can do when the coefficient in a repeated operation is 1 depends on whether the operation being repeated is multiplication or division.
a. When it is multiplication that is being repeated, we can let the coefficient 1 go without saying. However, the number of multiplications is then one less than the number of copies ${ }^{2}$.
EXAMPLE 13. Given the in-line template in Dollars

$$
1 \times 3 \times 3 \times 3 \times 3 \times 3
$$

we can write instead

$$
3 \times 3 \times 3 \times 3 \times 3
$$

because we get 243 either way.
However, while we still have five copies of 3 , we now have only four multiplications.
b. When it is division that is being repeated, we must write the coefficient 1 as, if we did not, we would be getting a different result.
EXAMPLE 14. Given the in-line template in Dollars

$$
1 \div 2 \div 2 \div 2 \div 2 \div 2
$$

the 1 cannot go without saying because, while the given in-line template computes to $\frac{1}{32}$, if we don't write the coefficient 1 , we get an in-line template with coefficient 2 to be divided by four copies of 2 :

$$
2 \div 2 \div 2 \div 2 \div 2
$$

which computes to $\frac{1}{8}$.
2. Repeated divisions are related to repeated multiplications. Indeed, - instead of dividing a coefficient by a number of copies of the base,

- we can^{3} :
i. multiply 1 repeatedly by the number of copies of the base,
ii. divide the coefficient by the result of the repeated multiplication.

EXAMPLE 15. Given the in-line template in Dollars

$$
448 \div 2 \div 2 \div 2 \div 2 \div 2 \div 2
$$

[^18]instead of computing it as follows:
\[

$$
\begin{aligned}
& \underbrace{\underbrace{112 \div 2}_{\underbrace{14 \div 2} \div 2}}_{\underbrace{\underbrace{224 \div 2} \div 2}_{\underbrace{28 \div 2}_{7}}}
\end{aligned}
$$
\]

we can proceed as follows:
i. We multiply 1 by the 6 copies of 2

ii. We divide the coefficient 448 by the result of this repeated multiplications:

$$
448 \div 64=7
$$

which indeed gives us the same result as the repeated division.
The advantage of this second way of computing in-line templates involving repeated divisions is that while we now have one more operation than we had divisions, the first multiplication, multiplying the coefficient 1 by the first copy of the base, is no work and, as we saw above, need in fact not even be written so that the number of operations requiring work is the same in both cases. But now all operations except one are multiplications which are a lot less work than divisions.

However, here again, proving in general that the results are always the same takes some work so that, for the sake of saving time, we will take for granted that:

THEOREM 7. A repeated division is the same as a single division of the coefficient by the result of 1 multiplied repeatedly by the same number of copies of the base.

$$
\text { Coefficient } \odot \text { copies }=\text { Coefficient } \odot[1 \otimes \text { copies }]
$$

3. In order to specify the second way of computing, we can write either:

- A bracket in-line template where we write:
i. The coefficient followed by a division symbol,
ii. A pair of square brackets within which we write
iii. 1 repeatedly multiplied by the same number of copies of the base.

EXAMPLE 16. Instead of writing the in-line template in Dollars as

$$
+448 \odot-2 \odot-2 \odot-2 \odot-2 \odot-2 \odot-2
$$

we can write the bracket in-line template in Dollars as

$$
+448 \div[+1 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2]
$$

or as

$$
+448 \div[-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2]
$$

or

- A fraction-like template where we write:
i. The coefficient and, underneath,
ii. A fraction bar and, underneath
iii. 1 repeatedly multiplied by the same number of copies of the base with the 1 able to "go without saying".
underneath and the repeated multiplication underneath the bar,
EXAMPLE 17. Instead of writing the in-line template in Dollars

$$
+448 \div-2 \div-2 \div-2 \div-2 \div-2 \div-2
$$

we can write the in-line template in Dollars as

$$
\frac{+448}{+1 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2}
$$

or as

$$
\frac{+448}{-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2}
$$

Note. Whether we use a bracket in-line template or a fraction-like template, we need not write the 1 as, either way, there is something to remind us that the multiplications have to be done first:

- The square brackets
or
- The fraction bar

In general, though, we will prefer to use fraction-like templates with the 1 "going without saying".
In other words, instead of:

$$
\text { Coefficient } \odot \text { copies }=\text { Coefficient } \odot[1 \otimes \text { copies }]
$$

we prefer to write
monomial
specifying-phrase separator signed exponent superscript signed power

$$
\text { Coefficient } \odot \text { copies }=\frac{\text { Coefficient }}{\text { copies }}
$$

but, even though both sides are read as
"Coefficient divided by copies"

- the division symbol \odot on the left side of $=$

Coefficient \odot copies $=$
says that the coefficient is to be divided repeatedly by the copies of the base

- the fraction bar on the right side of $=$

$$
=\frac{\text { Coefficient }}{\text { copies }}
$$

says that the coefficient is to be divided by the result of the multiplication of 1 by the copies of the base.

13.5 Power Language

We are now ready to introduce a way of writing specifying-phrases that will work both for repeated multiplications and for repeated divisions.

1. The idea is to write just the coefficient, the base, the number of copies and whether the coefficient should be multiplied or divided by the copies. More precisely, in order to write a new kind of specifying-phrase which we will call a monomial specifying-phrase,
i. We write its numerator, that is we write:
i. The coefficient,
ii. The multiplication symbol \times or \otimes (depending on whether the numerators are plain or signed) as separator followed by the base,
iii. A signed exponent, that is a signed numerator

- whose sign is
+ when the coefficient is to be multiplied by the copies
- when the coefficient is to be divided by the copies
- whose size is the number of copies

In order to be separated from the base, the signed exponent must be written as a superscript, that is small and raised a bit above the base line.
ii. We write its denominator if it has not been declared up front.

The base together with the signed-exponent is called a signed power.
We then read monomial specifying-phrases as
"Coefficient multiplied/divided by number of copies of the base"

EXAMPLE 18. Given the in-line template in Dollars

$$
17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

- In order to write the monomial specifying-phrase,
i. We write the coefficient 17 :

17
ii. We write the multiplication symbol \times as separator followed by the base 2 : 17×2
iii. We write the signed exponent as a superscript with + to indicate that the coefficient is to be multiplied by the 6 copies of the base 2 :

$$
17 \times 2^{+6}
$$

- We read the monomial specifying-phrase

$$
17 \times 2^{+6}
$$

as

$$
17 \text { multiplied by } 6 \text { copies of } 2
$$

EXAMPLE 19. Given the in-line template

$$
448 \div[2 \times 2 \times 2 \times 2 \times 2 \times 2]
$$

- In order to write the monomial specifying-phrase,
i. We write the coefficient 448:

448
ii. We write the multiplication symbol \times as separator followed by the base 2 :

$$
448 \times 2
$$

iii. We write the signed exponent with - to indicate that the coefficient is to be divided by 6 copies of the base 2 :

$$
448 \times 2^{-6}
$$

- We read the monomial specifying-phrase

$$
448 \times 2^{-6}
$$

as

$$
448 \text { divided by } 6 \text { copies of } 2
$$

NOTE. In other words, here, \times is really only a separator and has nothing to do with the kind of repeated operation we are specifying. While this way of writing things might seem rather strange, we will see in the next section how it turns out to make excellent sense.
2. As it happens, though, there is no procedure for identifying monomial specifying-phrases other than the procedures corresponding to staggered templates.
EXAMPLE 20. Given the following monomial specifying-phrase in Dollars

$$
17 \times 2^{+6}
$$

there is no way to identify it other than doing

$$
\underbrace{17 \times 2}_{\underbrace{34 \times 2}}
$$

Laurent monomial specifying-phrase plain monomial specifying-phrase

This is in sharp contrast with the case of repeated additions for which there is a much shorter procedure for getting the result of repeated additions that is based on multiplication and with the case of repeated subtractions for which there is a much shorter procedure for getting the result based on division.
3. It is customary to distinguish monomial specifying-phrases in which the exponent has to be positive or 0 from monomial specifying-phrases in which the exponent can have any sign.
We will use the following names:

- A Laurent monomial specifying-phrase is a monomial specifyingphrases in which the exponent is a numerator that can have any sign.
- A plain monomial specifying-phrase is a monomial specifying-phrases in which the exponent is a numerator that can be only positive or 0 or, in other words, that can only be a plain numerator.

Chapter 14

Laurent Monomials

Multiplying Monomial Specifying-Phrases, 165 - Dividing Monomial Specifying-Phrases, 168 - Terms, 172 - Monomials, 174.

Because of the lack of a short procedure for identifying monomial specifying-phrases, when working with monomial specifying-phrases, we tend to delay identifying them as much as possible and, instead, to compute with the monomial specifying-phrases themselves as long as possible, that is until there is nothing else to do but to identify the resulting monomial specifying-phrase. NOTE. The format that we will use to write these computations is called split equality: We will write on the left the (compound) specifying-phrase that we want to identify and we will write on the right the successive stages of the computation on separate lines.

14.1 Multiplying Monomial Specifying-Phrases

When we multiply two monomial specifying-phrases with a common base, that is when we multiply a first monomial specifying-phrase by a second monomial specifying-phrase with the same base, the result turns out to be a monomial specifying-phrase with the common base ${ }^{1}$.

1. We can get this result either one of two ways:

- We can go back to the in-line templates:
i. We replace each monomial specifying-phrase by the corresponding in-line template,
ii. We change the order of the multiplications,

[^19]iii. We write the resulting monomial specifying phrase.

EXAMPLE 1. In order to identify

$$
\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{+4}\right]
$$

we replace each monomial specifying-phrase by the corresponding in-line template, we change the order of the multiplications and we write the resulting monomial specifying-phrase:

$$
\begin{aligned}
{\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{+4}\right] } & =[17 \times 2 \times 2 \times 2 \times 2 \times 2] \times[11 \times 2 \times 2 \times 2 \times 2] \\
& =17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11 \times 2 \times 2 \times 2 \times 2 \\
& =17 \times 11 \times 2 \\
& =[17 \times 11] \times 2^{+(5+4)} \\
& =187 \times 2^{+12}
\end{aligned}
$$

- We can build the resulting monomial specifying-phrase right from the given monomial specifying-phrases using the following procedure:
i. We get the coefficient of the resulting monomial specifying-phrase by multiplying the coefficients of the given monomial specifying-phrases,
ii. We get the base of the resulting monomial specifying-phrase by taking the base common to the given monomial specifying-phrases,
iii. We get the signed exponent of the resulting monomial specifyingphrase by "oplussing" the signed exponents of the given monomial specifying-phrases.
EXAMPLE 2. In order to identify

$$
\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{+4}\right]
$$

we multiply the coefficients and we "oplus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{+4}\right] } & =[17 \times 11] \times 2^{+5 \oplus+4} \\
& =187 \times 2^{+12}
\end{aligned}
$$

2. In order to see why both ways give the same result, we now look at three more examples in which we will get the result both ways ${ }^{2}$.
EXAMPLE 3. We identify

$$
\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{-2}\right]
$$

both ways:

- We replace each monomial specifying-phrase by the corresponding in-line template, change the order of the multiplications and write the resulting monomial specifying-

[^20]phrase:
\[

$$
\begin{aligned}
{\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{-2}\right] } & =[17 \times 2 \times 2 \times 2 \times 2 \times 2] \times\left[\frac{11}{2 \times 2}\right] \\
& =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11}{2 \times 2} \\
& =\frac{17 \times 11 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2} \\
& =\frac{17 \times 11 \times \not 2 \times \not 2 \times 2 \times 2 \times 2}{\not 2 \times \not 2} \\
& =17 \times 11 \times 2 \times 2 \times 2 \\
& =17 \times 11] \times 2^{+(5-2)} \\
& =187 \times 2^{+3}
\end{aligned}
$$
\]

- We multiply the coefficients and we "oplus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{-2}\right] } & =[17 \times 11] \times 2^{+5 \oplus-2} \\
& =187 \times 2^{+3}
\end{aligned}
$$

EXAMPLE 4. We identify

$$
\left[17 \times 2^{-6}\right] \times\left[11 \times 2^{+2}\right]
$$

both ways:

- We replace each monomial specifying-phrase by the corresponding in-line template, change the order of the multiplications and write the resulting monomial specifyingphrase:

$$
\begin{aligned}
{\left[17 \times 2^{-6}\right] \times\left[11 \times 2^{+2}\right] } & =\left[\frac{17}{2 \times 2 \times 2 \times 2 \times 2 \times 2}\right] \times[11 \times 2 \times 2] \\
& =\frac{17 \times 11 \times 2 \times 2}{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17 \times 11 \times \not 2 \times \not 2}{\not 2 \times 22 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17 \times 11}{2 \times 2 \times 2 \times 2} \\
& =[17 \times 11] \times 2^{-(6-2)} \\
& =187 \times 2^{-4}
\end{aligned}
$$

- We multiply the coefficients and we "oplus" the signed exponents:

$$
\left[17 \times 2^{-6}\right] \times\left[11 \times 2^{+2}\right]=[17 \times 11] \times 2^{-6 \oplus+2}
$$

common base

$$
=187 \times 2^{-4}
$$

EXAMPLE 5. We identify

$$
\left[17 \times 2^{-4}\right] \times\left[11 \times 2^{-3}\right]
$$

both ways:

- We replace each monomial specifying-phrase by the corresponding in-line template, change the order of the multiplications and write the resulting monomial specifyingphrase:

$$
\begin{aligned}
{\left[17 \times 2^{-4}\right] \times\left[11 \times 2^{-3}\right] } & =\left[\frac{17}{2 \times 2 \times 2 \times 2}\right] \times\left[\frac{11}{2 \times 2 \times 2}\right] \\
& =\frac{17 \times 11}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =[17 \times 11] \times 2^{-(4+3)} \\
& =187 \times 2^{-7}
\end{aligned}
$$

- We multiply the coefficients and we "oplus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{-4}\right] \times\left[11 \times 2^{-3}\right] } & =[17 \times 11] \times 2^{-4 \oplus-3} \\
& =187 \times 2^{-7}
\end{aligned}
$$

3. Thus, from the above examples, we see that the "power language" is indeed powerful as it allows for a single procedure since the "oplus" automatically takes care of the different cases whereas, when we use in-line templates, we need different procedures depending on whether the coefficients are to be repeatedly multiplied or divided by the copies of the base and also on the relative number of copies when one coefficient is to be repeatedly multiplied while the other coefficient is to be repeatedly divided.

14.2 Dividing Monomial Specifying-Phrases

When we divide two monomial specifying-phrases with a common base, that is when we divide a first monomial specifying-phrase by a second monomial specifying-phrase with the same base, the result turns out to be a monomial specifying-phrase with the same base.

1. We can get the result either one of two ways:

- We can go back to the in-line templates:
i. We replace each monomial specifying-phrase by the corresponding in-line template, using fraction bars,
ii. We "invert and multiply", change the order of the multiplications, cancel, etc
iii. We write the resulting monomial specifying phrase.

EXAMPLE 6. In order to identify
$\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right]$
We replace each monomial specifying-phrase by the corresponding in-line template using fraction bars, "invert and multiply", change the order of the multiplications, cancel and write the resulting monomial specifying-phrase:

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \div \frac{11 \times 2 \times 2 \times 2}{1} \\
& =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \times \frac{1}{11 \times 2 \times 2 \times 2} \\
& =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{11 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{\not 2 \times \not 2 \times 2 \times 2 \times 2 \times 2 \times 2}{\not 又 \not 2 \times \not 2} \\
& =\frac{17}{11} \times \frac{2 \times 2 \times 2 \times 2}{1} \\
& =\frac{17}{11} \times 2 \times 2 \times 2 \times 2 \\
& =\frac{17}{11} \times 2^{+(7-3)} \\
& =\frac{17}{11} \times 2^{+4}
\end{aligned}
$$

- We can build the resulting monomial specifying-phrase right from the given monomial specifying-phrases:
i. We get the coefficient of the resulting monomial specifying-phrase by dividing the coefficients of the given monomial specifying-phrases,
ii. We get the base of the resulting monomial specifying-phrase by taking the base common to the given monomial specifying-phrases,
iii. We get the signed exponent of the resulting monomial specifyingphrase by "ominussing" the signed exponent of the second given monomial specifying-phrase from the signed exponent of the first given monomial specifying-phrase, that is by "oplussing" the opposite of the signed exponent of the second given monomial specifying-phrase to the signed exponent of the first given monomial specifying-phrase.
EXAMPLE 7. In order to identify

$$
\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right]
$$

We divide the coefficients and we "ominus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =[17 \div 11] \times 2^{+7 \ominus+3} \\
& =\frac{17}{11} \times 2^{+7 \oplus-3} \\
& =\frac{17}{11} \times 2^{+4}
\end{aligned}
$$

2. In order to see why both ways give the same result, we now look at three more examples the result of each of which we will get both ways.
EXAMPLE 8. We identify

$$
\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right]
$$

both ways:

- We replace each monomial specifying-phrase by the corresponding in-line template using fraction bars, "invert and multiply", change the order of the multiplications, cancel and write the resulting monomial specifying-phrase:

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \div \frac{11 \times 2 \times 2 \times 2}{1} \\
& =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \times \frac{1}{11 \times 2 \times 2 \times 2} \\
& =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{11 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{\not 2 \times \not 2 \times \not 2 \times 2 \times 2 \times 2 \times 2}{\not 2 \times \not 2 \times \not 2} \\
& =\frac{17}{11} \times \frac{2 \times 2 \times 2 \times 2}{1} \\
& =\frac{17}{11} \times 2 \times 2 \times 2 \times 2 \\
& =\frac{17}{11} \times 2^{+(7-3)} \\
& =\frac{17}{11} \times 2^{+4}
\end{aligned}
$$

- We divide the coefficients and we "ominus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =[17 \div 11] \times 2^{+7 \ominus+3} \\
& =\frac{17}{11} \times 2^{+7 \oplus-3} \\
& =\frac{17}{11} \times 2^{+4}
\end{aligned}
$$

EXAMPLE 9. We identify

$$
\left[17 \times 2^{+3}\right] \div\left[11 \times 2^{+7}\right]
$$

both ways:

- We replace each monomial specifying-phrase by the corresponding in-line template using a fraction bar, change the order of the multiplications, cancel and write the resulting monomial specifying-phrase:

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =\frac{17 \times 2 \times 2 \times 2}{1} \div \frac{11 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \\
& =\frac{17 \times 2 \times 2 \times 2}{1} \div \frac{1}{11 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17 \times 2 \times 2 \times 2}{11 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{2 \times 2 \times 2}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{\not 2 \times \not 2 \times \not 2}{\not 2 \times \not 2 \times \not 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{1}{2 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times 2^{-(7-3)} \\
& =\frac{17}{11} \times 2^{-4}
\end{aligned}
$$

- We divide the coefficients and we "ominus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+3}\right] \div\left[11 \times 2^{+7}\right] } & =[17 \div 11] \times 2^{+3 \ominus+7} \\
& =\frac{17}{11} \times 2^{+3 \oplus-7} \\
& =\frac{17}{11} \times 2^{-4}
\end{aligned}
$$

Example 10. We identify

$$
\left[17 \times 2^{-5}\right] \div\left[11 \times 2^{+3}\right]
$$

both ways:

- We replace each monomial specifying-phrase by the corresponding in-line template using a fraction bar, change the order of the multiplications, cancel and write the resulting monomial specifying-phrase:

$$
\left[17 \times 2^{-5}\right] \div\left[11 \times 2^{+3}\right]=\frac{17}{2 \times 2 \times 2 \times 2 \times 2} \div \frac{11 \times 2 \times 2 \times 2}{1}
$$

$$
\begin{aligned}
& =\frac{17}{2 \times 2 \times 2 \times 2 \times 2} \times \frac{1}{11 \times 2 \times 2 \times 2} \\
& =\frac{17 \times 1}{11 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{1}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times 2^{-(5+3)} \\
& =\frac{17}{11} \times 2^{-8}
\end{aligned}
$$

- We divide the coefficients and we "ominus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{-5}\right] \div\left[11 \times 2^{+3}\right] } & =[17 \div 11] \times 2^{-5 \ominus+3} \\
& =\frac{17}{11} \times 2^{-5 \oplus-3} \\
& =\frac{17}{11} \times 2^{-8}
\end{aligned}
$$

3. Thus, from the above examples, we see that the "power language" is even more spectacular in the case of division as the "ominus" still takes automatically care of the different cases while, whereas, we use in-line templates, we need different procedures depending on whether the coefficients are to be repeatedly multiplied or divided by the copies of the base and also on the relative number of copies when one coefficient is to be repeatedly multiplied while the other coefficient is to be repeatedly divided.
4. The reason we are using Laurent monomial specifying-phrases rather than just plain monomial specifying-phrases is that we cannot always divide a first plain monomial specifying-phrase by a second plain monomial specifyingphrase and get as a result a plain monomial specifying-phrase. On the other hand, we can always multiply or divide a first Laurent monomial specifyingphrase by a second Laurent monomial specifying-phrase and get as a result a Laurent monomial specifying-phrase.

14.3 Terms

We now take a major step in the development of the "power language" by allowing unspecified numerators when writing monomials.

1. We begin by going back to the distinction between a formula and a sentence. Recall that by itself a formula, for instance an inequation or an
equation, is neither TRUE nor FALSE and that only a sentence can represent term a relationship among collections in the real-world.
Example 11. The inequation in Apples

$$
x<5
$$

is neither TRUE nor FALSE because it does not represent a relationship among collections in the real world. (2 Apples represent a collection in the real world but x Apples does not represent a collection in the real world.)
Given a formula, it is only when we replace the unspecified numerator by a specific numerator that we get a sentence which is then either TRUE or false depending on whether it fits the real world or not.
EXAMPLE 12. Given the formula in Apples

$$
x<5
$$

when we replace the unspecified numerator x by the specific numerator 8 we get the sentence in Apples

$$
x<\left.5\right|_{x:=8}
$$

that is the sentence

$$
8 \text { Apples }<5 \text { Apples }
$$

which is FALSE but if, instead, we replace the unspecified numerator x by the specific numerator 3 we get the sentence in Apples

$$
x<\left.5\right|_{x:=3}
$$

that is the sentence

$$
3 \text { Apples }<5 \text { Apples }
$$

which is TRUE
2. Similarly, just as a formula can be viewed as an "incomplete" sentence, a term will be an "incomplete" specifying-phrase.
EXAMPLE 13. Given the term in Apples

$$
x+5
$$

when we replace the unspecified numerator x by the specific numerator 8 we get the specifying-phrase in Apples

$$
x+\left.5\right|_{x:=8}
$$

that is the specifying-phrase

$$
8 \text { Apples }+5 \text { Apples }
$$

which we may or may not chose to identify.
Of course, an unspecified numerator is the simplest possible kind of term.
Example 14. Given the term in Apples
x
when we replace the unspecified numerator x by the specific numerator 8

$$
x+\left.5\right|_{x:=8}
$$

we get

8 Apples

3. When replacing in a monomial specifying-phrase a specific numerator by an unspecified numerator to get a term, we will use
monomial term monomial

- The letters $a, b, c, d \ldots$ for unspecified signed coefficients,
- The letters $x, y, x \ldots$ for unspecified signed bases,
- The letters $m, n, p \ldots$ for unspecified plain exponents.

EXAMPLE 15.

$$
\begin{aligned}
& a \times x^{+n} \\
& c \times y^{-m}
\end{aligned}
$$

The reason we will use the letters $m, n, p \ldots$ to stand only for plain exponents (rather than for signed exponents) is that the sign of a exponent is most important since it distinguishes between multiplication and division and we will almost always have to specify it as in the above example.

In the rare cases when the sign of the exponent will not matter, we will write the symbol \pm, read "plus or minus" in front of the letter as in the following example.

EXAMPLE 16.

$$
c \times x^{ \pm n}
$$

is intended to cover both the case

$$
c \times x^{+n}
$$

and the case

$$
c \times x^{-n}
$$

It is also customary to let the separator \times go without saying. However, this tends to cause mistakes unless we make sure we read the monomial specifying-phrase according to whether the signed exponent is positive or negative, as

- "Coefficient multiplied by number of copies of the base" when the exponent is positive,
- "Coefficient divided by number of copies of the base" when the exponent is negative.

EXAMPLE 17.

- We read $c x^{+n}$ as " c multiplied by n copies of x " because the exponent is positive,
- We read $a y^{-p}$ as " a divided by p copies of y " because the exponent is negative.

14.4 Monomials

In the rest of this text, coefficients and exponents will always be specified and only the base will remain unspecified. Out of habit, we shall mostly use the letter x for the base.

1. Monomial specifying-phrases in which the base is unspecified are called monomial terms or monomials for short.
EXAMPLE 18. The following

$$
\begin{gathered}
-3 x^{+5} \\
+5.23 x^{-3} \\
-1600 x^{-4} \\
+4 x^{+2}
\end{gathered}
$$

Laurent monomial plain monomial coefficient power
are monomials but

$$
+4 x^{+2.5}
$$

is not a monomial because 2.5 copies doesn't make sense.
a. Just as, earlier on, we distinguished Laurent monomial specifyingphrases (those whose exponent can have any sign) from plain monomial specifying phrases (those whose exponent can be only positive or 0), we could distinguish in the same manner Laurent monomials from plain monomials. However, since we will be using mostly Laurent monomials, we will just use monomial to mean Laurent monomial.
b. In a monomial we will distinguish:

- the coefficient, which is the number to be multiplied or divided by the copies of the base
- the power, which is the base together with the exponent.

In other words, the separator \times, whether it is actually written or goes without saying, separates the coefficient from the power.
EXAMPLE 19. In the monomial $-3 x^{+4},-3$ is the coefficient and x^{+4} is the power.
c. Thus, monomials, as well as monomial specifying-phrases, look very much like ordinary number-phrases (as opposed to specifying numberphrases):

- The coefficient in a monomial-or monomial specifying-phrase - is like the numerator in an ordinary number-phrase,
- The power in a monomial - or monomial specifying-phrase - is like the denominator in an ordinary number-phrase.
EXAMPLE 20. Monomial specifying-phrases like

$$
17.52 \times 2^{+3} \quad \text { (with } \times \text { as separator) }
$$

and monomials like

$$
17.52 x^{+3} \quad \text { (without separator) }
$$

look, and to a large extent will behave, very much like:

- Ordinary number-phrases like
17.52 Meters
in which there is no need for a separator between the numerator and the denominator,
- Metric number-phrases like
17.52 Kııo Meters
in which there is no need for a separator between the numerator and the denominator,
- Base TEN number-phrases like

```
17.52 x Ten +3 Meters
```

where \times is a separator between the numerator and the denominator,

- Exponential number-phrases like

$17.52 \times 10^{+3}$ Meters

where \times is a separator between the numerator and the denominator.
We will investigate how far the similarity goes in the following chapters.
2. When we multiply or divide a first monomial by a second monomial, we proceed just as we did with monomial specifying-phrases, that is we can proceed either:

- The long way which is to go back to in-line templates and then proceed according to whether we are dealing with multiplication or division
- The short way which is to use the following

THEOREM 8 (EXPONENT THEOREM). In order to:
i. Multiply two monomials $a x^{ \pm m}$ and $b x^{ \pm n}$, we multiply the coefficients and oplus the exponents:

$$
a x^{ \pm m} \times b x^{ \pm n}=a b x^{ \pm m \oplus \pm n}
$$

ii. Divide two monomials $a x^{ \pm m}$ and $b x^{ \pm n}$, we divide the coefficients and ominus the exponents:

$$
a x^{ \pm m} \div b x^{ \pm n}=\frac{a}{b} x^{ \pm m \ominus \pm n}
$$

We now look at a few examples.
EXAMPLE 21. Given

$$
\left[-17.89 \times x^{+547}\right] \times\left[-11.06 \times x^{+312}\right]
$$

instead of replacing each monomial by the corresponding in-line template, change the order of the multiplications and write the resulting monomial:

$$
\begin{aligned}
{\left[-17.89 \times x^{+547}\right] \times\left[-11.06 \times x^{+312}\right] } & =[-17.89 \times \underbrace{x \times x \times \cdots \times x}_{547 \text { copies of } x}] \times[-11.06 \times \underbrace{x \times x \times \cdots \times x}_{312 \text { copies of } x}] \\
& =-17.89 \times-11.06 \times \underbrace{x \times x \times \cdots \times x}_{547+312 \text { copies of } x} \\
& =[-17.89 \times-11.06] \times x^{+(547+312)} \\
& =+[17.89 \times 11.06] \times x^{+859}
\end{aligned}
$$

we can use the EXPONENT THEOREM:

$$
\begin{aligned}
{\left[-17.89 \times x^{+547}\right] \times\left[-11.06 \times x^{+312}\right] } & =[-17.89 \times-11.06] \times x^{+547 \oplus+312} \\
& =+[17.89 \times 11.06] \times x^{+859}
\end{aligned}
$$

EXAMPLE 22. Given

$$
\left[+17.89 \times x^{+547}\right] \times\left[-11.06 \times x^{-312}\right]
$$

instead of replacing each monomial by the corresponding in-line template, change the order of the multiplications and write the resulting monomial:

$$
\begin{aligned}
& {\left[+17.89 \times x^{+547}\right] \times\left[-11.06 \times x^{-312}\right]=[+17.89 \times \underbrace{x \times x \times \cdots \times x}_{547 \text { copies of } x}] \times[\underbrace{\frac{-11.06}{x \times x \times \cdots \times x}}_{312 \text { copies of } x}]} \\
& =[+17.89 \times-11.06] \times\left[\begin{array}{l}
\underbrace{\frac{x \times x \times \cdots \times x}{547 \text { copies of } x}}_{312 \text { copies of } x}]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-[17.89 \times 11.06] \times x^{+(547-312)} \\
& =-[17.89 \times 11.06] \times x^{+235}
\end{aligned}
$$

we can use the EXPONENT THEOREM:

$$
\begin{aligned}
{\left[+17.89 \times x^{+547}\right] \times\left[-11.06 \times x^{-312}\right] } & =[+17.89 \times-11.06] \times x^{+547 \oplus-312} \\
& =-[17.89 \times 11.06] \times x^{+(547-312)} \\
& =-[17.89 \times 11.06] \times x^{+235}
\end{aligned}
$$

EXAMPLE 23. Given

$$
\left[-17.89 \times x^{-547}\right] \times\left[+11.06 \times x^{+312}\right]
$$

instead of replacing each monomial by the corresponding in-line template, change the order of the multiplications and write the resulting monomial:

$$
\begin{aligned}
{\left[-17.89 \times x^{-547}\right] \times\left[+11.06 \times x^{+312}\right] } & =[\underbrace{\frac{-17.89}{x \times x \times \cdots \times x}}_{547 \text { copies of } x}] \times[+11.06 \times \underbrace{x \times x \times \cdots \times x}_{312 \text { copies of } x}] \\
& =[-17.89 \times+11.06] \times[\underbrace{\frac{x \times x \times \cdots \times x}{x \times x \times \cdots \times x}}_{547 \text { copies of } x}]
\end{aligned}
$$

$$
\begin{aligned}
& =-[17.89 \times 11.06] \times[\underbrace{x / 20 \text { of } x}_{\underbrace{\frac{x \times x \times \cdots \times x}{x \times x \times \cdots \times x} \times \underbrace{x \times x \times \cdots \times x}_{547-312 \text { copies of } x}}_{\text {S12 copies of } x}]}] \\
& =-[17.89 \times 11.06] \times x^{-(547-312)} \\
& =-[17.89 \times 11.06] \times x^{-235}
\end{aligned}
$$

we can use the EXPONENT THEOREM:

$$
\begin{aligned}
{\left[-17.89 \times x^{-547}\right] \times\left[11.06 \times x^{+312}\right] } & =[-17.89 \times+11.06] \times x^{-547 \oplus+312} \\
& =-[17.89 \times 11.06] \times x^{-(547-312)} \\
& =-[17.89 \times 11.06] \times x^{-235}
\end{aligned}
$$

EXAMPLE 24. Given

$$
\left[+17.89 \times x^{+547}\right] \div\left[+11.06 \times x^{+312}\right]
$$

instead of replacing each monomial by the corresponding in-line template, change the order of the multiplications, rewrite as fraction, multiply by the reciprocal instead of divide, and write the resulting monomial:

$$
\begin{aligned}
& {\left[+17.89 \times x^{+547}\right] \div\left[+11.06 \times x^{+312}\right]=[+17.89 \times \underbrace{x \times x \times \cdots \times x}_{547 \text { copies of } x}] \div[\frac{+11.06 \times \underbrace{x \times x \times \cdots \times x}}{312 \text { copies of } x}]} \\
& =[+17.89 \times \underbrace{x \times x \times \cdots \times x}_{547 \text { copies of } x}] \times[\frac{1}{+11.06 \times \underbrace{x \times x \times \cdots \times x}_{312 \text { copies of } x}}] \\
& =\left[\frac{+17.89}{+11.06}\right] \times[\underbrace{\underbrace{x \times x \times \cdots}_{\frac{547 \text { copies of } x}{x \times x \times \cdots \times x}}}_{312 \text { copies of } x}]
\end{aligned}
$$

$$
\begin{aligned}
& =+\left[\frac{17.89}{11.06}\right] \times x^{+(547-312)}
\end{aligned}
$$

$$
=+\left[\frac{17.89}{11.06}\right] \times x^{+235}
$$

it is easier to use the EXPONENT THEOREM:

$$
\begin{aligned}
{\left[+17.89 \times x^{+547}\right] \div\left[+11.06 \times x^{+312}\right] } & =\left[\frac{+17.89}{+11.06}\right] \times x^{+547} \ominus+312 \\
& =+\left[\frac{17.89}{11.06}\right] \times x^{+547 \oplus-312} \\
& =+\left[\frac{17.89}{11.06}\right] \times x^{+(547-312)} \\
& =+\left[\frac{17.89}{11.06}\right] \times x^{+235}
\end{aligned}
$$

EXAMPLE 25. Given

$$
\left[17.89 \times x^{-547}\right] \div\left[11.06 \times x^{-312}\right]
$$

instead of replacing each monomial by the corresponding in-line template, change the order of the multiplications, rewrite as fraction, multiply by the reciprocal instead of divide, and write the resulting monomial:

$$
\begin{aligned}
& {\left[17.89 \times x^{-547}\right] \div\left[11.06 \times x^{-312}\right]=[\underbrace{\frac{17.89}{x \times x \times \cdots \times x}}_{547 \text { copies of } x}] \div[\underbrace{\frac{11.06}{x \times x \times \cdots \times x}}_{312 \text { copies of } x}]} \\
& =[\underbrace{\frac{17.89}{x \times x \times \cdots \times x}}_{547 \text { copies of } x}] \times[\frac{\underbrace{x \times x \times \cdots \times x}_{312 \text { copies of } x}}{11.06}] \\
& =\left[\frac{17.89}{11.06}\right] \times\left[\begin{array}{l}
\underbrace{\frac{312 \text { copies of } x}{x \times x \times \cdots}}_{547 \text { copies of } x}
\end{array}\right] \\
& =\left[\frac{17.89}{11.06}\right] \times[\underbrace{\frac{\underbrace{x \times x \times \cdots \times x}_{-312 \text { copies of } x} \times \underbrace{x \times x \times \cdots \times x}_{547-312 \text { copies of } x}}{x \times \cdots \times x}}_{\text {312 copies of } x}] \\
& =\left[\frac{17.89}{11.06}\right] \times x^{-(547-312)}
\end{aligned}
$$

$$
=\left[\frac{17.89}{11.06}\right] \times x^{-235}
$$

it is easier to use the EXPONENT THEOREM:

$$
\begin{aligned}
{\left[17.89 \times x^{-547}\right] \div\left[11.06 \times x^{-312}\right] } & =\left[\frac{17.89}{11.06}\right] \times x^{-547} \theta-312 \\
& =\left[\frac{17.89}{11.06}\right] \times x^{-547 \oplus+312} \\
& =\left[\frac{17.89}{11.06}\right] \times x^{-(547-312)} \\
& =\left[\frac{17.89}{11.06}\right] \times x^{-235}
\end{aligned}
$$

Chapter 15

Polynomials 1: Addition, Subtraction

Monomials and Addition, 181 - Laurent Polynomials, 183 - Plain Polynomials, 187 - Addition, 188 - Subtraction, 190.

While, as we saw in the preceding chapter, monomials behave very well with respect to multiplication and division in the sense that we can always multiply or divide a first monomial by a second monomial and get a monomial as a result, we will see that monomials behave very badly with respect to addition and subtraction. This, though, gives raise to a new type of term which will in fact play a fundamental role - to be described in the Epilogue at the end of this text-in the investigation of Functions.

In the rest of this text, we will introduce and discuss the way this new type of terms behaves with respect to the four operations. These are the basics of what is called Polynomial Algebra.

15.1 Monomials and Addition

We begin by looking at the way monomials behave with regard to addition. The short of it is that, most of the time, monomials cannot be added.

1. One way to look at why monomials usually cannot be added is to observe that powers are to monomials much the same as denominators are to number-phrases.

- Just like ordinary number-phrases need to involve the same denominator in order to be added, monomials need to involve the same power to be added.

EXAMPLE 1. Just like

$$
\text { 17.52 Meters }+4.84 \text { Meters }=22.36 \text { Meters }
$$

we have that

$$
17.52 x^{+6}+4.84 x^{+6}=22.36 x^{+6}
$$

- Just like ordinary number-phrases that involve different denominators cannot be added and just make up a combination, monomials that involve different powers cannot be added and just make up a combination.
EXAMPLE 2. Just like
17.52 Feet +4.84 Inches is a combination
we have that

$$
17.52 x^{+6}+4.84 x^{+4} \text { is a combination }
$$

2. A more technical way to look at why monomials cannot be added when the powers are different is to try various ways of "adding" monomials and then to see what the results would be when we replace the unspecified numerator x by specific numerators.
EXAMPLE 3. Suppose we think that the rule for adding the monomials should be "add the coefficients and add the exponents".
Then, given for instance the monomials

$$
+7 x^{-2} \text { and }-3 x^{+3}
$$

the rule "add the coefficients and add the exponents" would give us the following monomial as a result:

$$
(+7 \oplus-3) x^{-2 \oplus+3}
$$

that is

$$
+4 x^{+1}
$$

Now while, on the one hand, there is no obvious reason why this should not be an acceptable result, on the other hand, monomials are waiting for x to be replaced by some specific numerator.
So, say we replace x by +4 . The given monomials would then give:

$$
\begin{aligned}
+\left.7 x^{-2}\right|_{x:=+4} & =\frac{+7}{(+4) \bullet(+4)} \\
& =\frac{+7}{+16} \\
& =0.4375
\end{aligned}
$$

and

$$
\begin{aligned}
-\left.3 x^{+3}\right|_{x:=+4} & =-3 \bullet(+4) \bullet(+4) \bullet(+4) \\
& =-192
\end{aligned}
$$

which, when we add them up, gives us
-191.5625
But, when we replace x by +4 in the supposed result, we get

$$
\begin{aligned}
+\left.4 x^{+1}\right|_{x:=+4} & =+4 \bullet(+4) \\
& =+16
\end{aligned}
$$

So, in the end, the rule "add the coefficients and add the exponents" would not produce an acceptable result.

Even though, as it happens, no rule for adding monomials will survive replacement of x by a specific numerator, the reader is encouraged to try so as to convince her/him self that this is really the case.

15.2 Laurent Polynomials

A Laurent polynomial is a combination of powers involving:

- exponents that can be any signed counting numerator (including 0).
- coefficients that can be any signed decimal numerator

EXAMPLE 4. All of the following are Laurent polynomials:

$$
\begin{gathered}
+22.71 x^{+3}+0.3 x^{0}-47.03 x^{+2}+57.89 x^{-3} \\
+21.09 x^{-4}-33.99 x^{+2}+45.02 x^{-1}+52.74 x^{+1}-34.82 x^{+7} \\
-30.18 x^{+6}-41.02 x^{+5}+5.6 x^{+4} \\
+20.13 x^{+3}+0.03 x^{+5}+50.01 x^{0}-0.04 x^{+1} \\
-0.02 x^{-7}+18.03 x^{+6}
\end{gathered}
$$

1. While there is nothing difficult about what Laurent polynomials are, we need to agree on a few rules to make them easier to work with since, otherwise, it is not always easy even just to see if two Laurent polynomials are the same or not.
EXAMPLE 5. The following two Laurent polynomials are the same

$$
\begin{aligned}
& +0.3 x^{0}-47.03 x^{+2}+22.71 x^{+3}+57.89 x^{-3} \\
& +57.89 x^{-3}+22.71 x^{+3}+0.3 x^{0}-47.03 x^{+2}
\end{aligned}
$$

but the following two Laurent polynomials are not the same

$$
+0.3 x^{0}-47.03 x^{+2}-22.71 x^{+3}+57.89 x^{-3}
$$

$$
+57.89 x^{-3}+22.71 x^{+3}+0.3 x^{0}-47.03 x^{+2}
$$

EXAMPLE 6. The following two Laurent polynomials are in fact the same

$$
\begin{gathered}
+2 x^{+3}+6 x^{-4} \\
-6 x^{+3}+4 x^{-4}+8 x^{+3}+2 x^{-4}
\end{gathered}
$$

a. The first thing we have to agree on is that Laurent polynomials must always be reduced, that is that monomials in a given Laurent polynomial

Laurent polynomial reduced
ascending order of exponents
descending order of exponents
that can be added (because they involve the same power) must in fact be added.
EXAMPLE 7. Given the following Laurent polynomial

$$
-6 x^{+3}+4 x^{-4}+8 x^{+3}+2 x^{-4}
$$

it must be reduced to

$$
+2 x^{+3}+6 x^{-4}
$$

before we do anything else.
b. The second thing we have to do is to agree on some order in which to write the monomials in a Laurent polynomial.
i. We will agree that:

The monomials in a Laurent polynomial will and can only be written in either one of two orders:

- ascending order of exponents, that is, as we read or write a Laurent polynomial from left to right, the exponents must get larger and larger regardless of the coefficients.
- descending order of exponents, that is, as we read or write a Laurent polynomial from left to right, the exponents must get smaller and smaller regardless of the coefficients.
EXAMPLE 8. The following Laurent polynomial

$$
-47.03 x^{+2}+57.89 x^{-3}+22.71 x^{+4}+0.3 x^{0}
$$

can only be written either in ascending order of exponents

$$
+57.89^{-3}+0.3^{0}-47.03 x^{+2}+22.71 x^{+4}
$$

or in descending order of exponents

$$
+22.71 x^{+4}-47.03 x^{+2}+0.3 x^{0}+57.89 x^{-3}
$$

regardless of the coefficients.
ii. Which of the two orders is to be used depends on the size of the numerators with which x can be replaced:

- The ascending order must be used when x can be replaced only by small numerators,
- The descending order must be used when when x can be replaced only by for large numerators.
We will see the reason in a short while.
NOTE. When the size of what x stands for is unknown, it is customary, even if for no special reason, to use the descending order of exponents.
c. The third thing we have to do is to introduce customary practices even though these practices will not be followed here.
i. It is usual to write just plain exponents instead of positive exponents.

EXAMPLE 9. Instead of writing

$$
+57.89 x^{-3}+0.3 x^{0}-47.03 x^{+2}+22.71 x^{+4}
$$

it is usual to write

$$
+57.89 x^{-3}+0.3 x^{0}-47.03 x^{2}+22.71 x^{4}
$$

ii. It is usual not to write the exponent +1 at all.

EXAMPLE 10. Instead of writing

$$
+57.89 x^{+3}+0.3 x^{+2}-47.03 x^{+1}+29.77 x^{+4}
$$

it is usual to write

$$
+57.89 x^{+3}+0.3 x^{+2}-47.03 x+29.77 x^{+4}
$$

iii. It is usual not to write the power x^{0} at all.

EXAMPLE 11. Instead of

$$
+57.89 x^{-3}+0.3 x^{0}-47.03 x^{+2}+22.71 x^{+4}
$$

it is usual to write

$$
+57.89 x^{-3}+0.3-47.03 x^{+2}+22.71 x^{+4}
$$

iv. Most of the time, the exponents of the powers will be consecutive but occasionally there can be missing powers.
EXAMPLE 12. The following Laurent polynomials in which the powers are consecutive are fairly typical of those that we will usually encounter.

$$
\begin{aligned}
& -47.03 x^{+3}+57.89 x^{+2}+22.71 x^{+1}+0.3 x^{0} \\
& \quad-47.03 x^{+1}+57.89 x^{0}+22.71 x^{-1} \\
& -47.03 x^{-1}+57.89 x^{0}+22.71 x^{+1}+0.3 x^{+2}
\end{aligned}
$$

EXAMPLE 13. The following Laurent polynomials in which at least one power is missing are fairly typical of those that we will occasionally encounter.

$$
\begin{gathered}
-47.03 x^{+3}+0.3 x^{0} \\
-47.03 x^{+2}+57.89 x^{0}+22.71 x^{-1} \\
-47.03 x^{-1}+57.89 x^{0}+22.71 x^{+1}+0.3 x^{+3}
\end{gathered}
$$

When working with a Laurent polynomial in which powers are missing, it is much safer to insert in their place powers with coefficient 0 .
EXAMPLE 14. Instead of working with

$$
-47.03 x^{+3}+13.3 x^{0}
$$

it is much safer to work with

$$
-47.03 x^{+3}+0 x^{+2}+0 x^{+1}+13.3 x^{0}
$$

2. Laurent polynomials are specifying-phrases and we evaluate Laurent polynomials in the usual manner, that is we replace x by the required numerator and we then compute the result.
a. EXAMPLE 15. Given the Laurent polynomial

$$
-47.03 x^{+2} \oplus+13.3 x^{-3}
$$

when $x:=-5$

$$
\begin{aligned}
-47.03 x^{+2} \oplus+\left.13.3 x^{-3}\right|_{x:=-5} & =-47.03(-5)^{+2} \oplus+13.3(-5)^{-3} \\
& =[-47.03 \otimes(-5)(-5)] \oplus\left[\frac{+13.3}{(-5)(-5)(-5)}\right] \\
& =[-47.03 \otimes+25] \oplus\left[\frac{+13.3}{-125}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-1175.75 \oplus+0.1064 \\
& =-1175.6436
\end{aligned}
$$

b. When the coefficients are all single-digit counting numerators and we replace x by TEN, the result shows an interesting connection between Laurent polynomials and decimal numbers.
EXAMPLE 16. Given the Laurent polynomial

$$
4 x^{+3}+7 x^{+2}+9 x^{+1}+8 x^{0}+2 x^{-1}+5 x^{-2}+6 x^{-3}
$$

when $x:=10$ we get:

$$
\begin{aligned}
4 x^{+3}+ & 7 x^{+2}+9 x^{+1}+4 x^{0}+2 x^{-1}+7 x^{-2}+\left.7 x^{-3}\right|_{x=10}= \\
& =4 \times 10^{+3}+7 \times 10^{+2}+9 \times 10 x^{+1}+8 \times 10^{0}+2 \times 10^{-1}+5 \times 10^{-2}+6 \times 10^{-3} \\
& =4 \times 1000 .+7 \times 100 .+9 \times 10 .+8 \times 1 .+2 \times 0.1+5 \times 0.01+6 \times 0.001 \\
& =4000 .+700 .+90 .+8 .+0.2+0.05+0.006 \\
& =4798.256
\end{aligned}
$$

which is the decimal number whose digits are the coefficients of the Laurent polynomial.
3. We are now in a position at least to state the reason for allowing only the ascending order of exponents and the descending order of exponents:

When we replace x by a specific numerator and go about evaluating the Laurent polynomial, we evaluate, one by one, each one of the monomials in the Laurent polynomial. But what happens is that

- When x is replaced by a numerator that is large in size, the more copies there are in a monomial, the larger in size the result will be.
- When x is replaced by a numerator that is small in size, the more copies there are in a monomial, the smaller in size the result will be.
But what we want, no matter what, is that the size of the successive results go diminishing. So,
- When x is to be replaced by a numerator that is going to be large in size, we will want the Laurent polynomial to be written in descending order of exponents.
- When x is to be replaced by a numerator that is going to be small in size, we will want the Laurent polynomial to be written in ascending order of exponents.
For lack of time, we cannot go here into any more detail but the interested reader will find this discussed at some length in the Epilogue.

15.3 Plain Polynomials

plain polynomial
polynomial

A plain polynomial is a combination of powers involving:

- exponents that can be any positive counting numerator as well as 0 .
- coefficients that can be any signed decimal numerator

In other words, a plain polynomial is a combination of powers that do not involve any negative exponent-but can involve the exponent 0 .
EXAMPLE 17. The following are plain polynomials:

$$
\begin{gathered}
-47.03 x^{+3}+57.89 x^{+2}+22.71 x^{+1}+0.3 x^{0} \\
0.3 x^{0}-47.03 x^{+1}+57.89 x^{+2}+22.71 x^{+3}
\end{gathered}
$$

The following are not plain polynomials:

$$
\begin{aligned}
& -47.03 x^{+3}+57.89 x^{+2}+22.71 x^{+1}+0.3 x^{0}-22.43 x^{-1} \\
& -22.43 x^{-1}+0.3 x^{0}-47.03 x^{+1}+57.89 x^{+2}+22.71 x^{+3}
\end{aligned}
$$

1. When we replace x by TEN in a plain polynomial whose coefficients are all single-digit counting numerators, the result is a counting number.
EXAMPLE 18. Given the plain polynomial

$$
4 x^{+3}+7 x^{+2}+9 x^{+1}+8 x^{0}
$$

when $x:=10$ we get:

$$
\begin{aligned}
4 x^{+3}+7 x^{+2}+9 x^{+1}+\left.4 x^{0}\right|_{x:=10} & =4 \times 10^{+3}+7 \times 10^{+2}+9 \times 10 x^{+1}+8 \times 10^{0} \\
& =4 \times 1000+7 \times 100+9 \times 10+8 \times 1 \\
& =4000+700+90+8 \\
& =4798
\end{aligned}
$$

which is the counting number whose digits are the coefficients of the plain polynomial.
2. Just like decimal numerators are not really more difficult to use than just counting numerators-they just require understanding that the decimal point indicates which of the digits in the decimal numerator corresponds to the denominator ${ }^{1}$, Laurent polynomials are just as easy to use as just plain polynomials. This is particularly the case since, in the case of polynomials, we do not have to worry about the "place" of a monomial in a polynomial since the place is always given by the exponent
3. Just like decimal numbers are vastly more useful than just counting numbers, Laurent polynomials will be vastly more useful than plain polynomials for our purposes as the discussion in the EPILOGUE will show.
4. Since, from the point of view of handling them, there is not going to be any difference between Laurent polynomials and plain polynomials, we will just the word polynomial.

[^21]add
like monomials田
addition of polynomials

15.4 Addition

Just like combinations can always be added to give another combination, polynomials can always be added to give another polynomial.
EXAMPLE 19. Just like the combinations
17 Apples \& 4 Bananas and 7 Bananas \& 8 Carrots
can be added to give another combination:

$$
\begin{aligned}
& 17 \text { Apples \& } 4 \text { Bananas } \\
& 7 \text { Bananas \& } 8 \text { Carrots }
\end{aligned}
$$

17 Apples \& 11 Bananas \& 8 Carrots
the polynomials

$$
-17 x^{+6}+4 x^{-3} \quad \text { and } \quad+7 x^{-3}+8 x^{+2}
$$

can be added to give another polynomial:

$$
\begin{array}{lll}
-17 x^{+6} & +4 x^{-3} & \\
& +7 x^{-3} & +8 x^{+2} \\
\hline-17 x^{+6} & +11 x^{-3} & +8 x^{+2}
\end{array}
$$

1. To add two polynomials with signed coefficients, we oplus the coefficients of like monomials that is of monomials with the same exponent. We will use the symbol \boxplus to write the specifying-phrase that corresponds to the addition of polynomials.
EXAMPLE 20. Given the polynomials

$$
-17 x^{+6}+4 x^{-3} \quad \text { and } \quad+7 x^{-3}+8 x^{+2}
$$

the specifying-phrase for addition will be

$$
-17 x^{+6}+4 x^{-3} \boxplus+7 x^{-3}+8 x^{+2}
$$

and to identify it, we will write

$$
\begin{aligned}
-17 x^{+6}+4 x^{-3} \boxplus+7 x^{-3}+8 x^{+2} & =-17 x^{+6}+[+4 \oplus+7] x^{-3}+8 x^{+2} \\
& =-17 x^{+6}+11 x^{-3}+8 x^{+2}
\end{aligned}
$$

2. The only difficulties when adding polynomials occur when one is not careful to write them:

- in order-whether ascending or descending
- with missing monomials written-in with 0 coefficient

EXAMPLE 21. Given the polynomials

$$
-17 x^{+3}-14 x^{+2}-8 x^{0}+4 x^{-1} \text { and } \quad+7 x^{+4}+8 x^{+3}-11 x^{+1}-4 x^{-2}
$$

consider the difference between the following two ways to write the addition of two polynomials:

- When we do not write the polynomials in order and do not write-in missing monomials with a 0 coefficient, we get:

$$
\begin{array}{r}
-17 x^{+3}-14 x^{+2}-8 x^{0}+4 x^{-1} \\
+7 x^{+4}+8 x^{+3}-11 x^{+1}-4 x^{-2}
\end{array}
$$

and it is not easy to do the addition and get the result:

$$
+7 x^{+4}-9 x^{+3}-14 x^{+2}-11 x^{+1}-8 x^{0}+4 x^{-1}-4 x^{-2}
$$

- When we do write the polynomials in order and we do write-in the missing monomials with a 0 coefficient, we get:

$$
\begin{array}{r}
0 x^{+4}-17 x^{+3}-14 x^{+2}+0 x^{+1}-8 x^{0}+4 x^{-1}+0 x^{-2} \\
+7 x^{+4}+8 x^{+3}+0 x^{+2}-11 x^{+1}+0 x^{0} \\
+0 x^{-1}-4 x^{-2}
\end{array}
$$

where the result is much easier to get.
3. One way in which polynomials are easier than numerators to deal with is that when we add them there is no so-called "carry-over".
The reason we have "carry-over" in ARITHMETIC is that when dealing with combinations of powers of TEN, the coefficients can only be digits. So, when we add, say, the hundreds, if the result is still a single digit, we can can write it down but if the result is more than nine, we have no single digit to write the result down and we must change TEN of the hundreds for a thousand which is what the "carry-over" is.
But in ALGEBRA, with combinations of powers of x, there is no such restriction on the coefficients which can be any numerator and so, when we add, we can write down the result whatever it is.

EXAMPLE 22.

- When we add the numerators 756.92 and 485.57 we get:

$$
\begin{array}{r}
111 \\
756.92 \\
+\quad 485.57 \\
\hline 1242.49
\end{array}
$$

in which there are three "carry-overs" because there are three places where we couldn't write the result with a single digit.

- When we add the corresponding single-digit coefficient polynomials, we get:

$$
\boxplus \begin{aligned}
& +7 x^{+2}+5 x^{+1}+6 x^{0}+9 x^{-1}+2 x^{-2} \\
& +4 x^{+2}+8 x^{+1}+5 x^{0}+5 x^{-1}+7 x^{-2}
\end{aligned}
$$

$$
+11 x^{+2}+13 x^{+1}+11 x^{0}+14 x^{-1}+9 x^{-2}
$$

in which there is no＂carry－over＂since we can write two－digit coefficients．

15．5 Subtraction

Subtraction＂works＂essentially the same way as addition except of course that while，in the case of addition，we oplus the monomials of the second polynomial，in the case of subtraction，we ominus the monomials of the second polynomial，that is we oplus the opposite of the monomials of the second polynomial．
EXAMPLE 23．In order to subtract the second polynomial from the first：

we add the opposite of the second polynomial to the first polynomial，that is we oplus the opposite of each monomial in the second polynomial to the corresponding monomial in the first polynomial：

$$
\stackrel{⿴ 囗 十 ⺝ ⿱ ⿰ ㇒ 一 乂 七 心}{ } \begin{array}{lllll}
+2 x^{+2} & +4 x^{+1} & +6 x^{0} & -6 x^{-1} & -5 x^{-2} \\
+9 x^{+2} & +3 x^{+1} & -3 x^{0} & +5 x^{-1} & -7 x^{-2} \\
\hline+11 x^{+2} & +7 x^{+1} & +3 x^{0} & -1 x^{-1} & -12 x^{-2}
\end{array}
$$

Here again，things are easier with polynomials than with numerals since there is no＂borrowing＂．

Chapter 16

Polynomials 2: Multiplication

Multiplication in Arithmetic, 191 - Multiplication of Polynomials, 193.

Multiplication of polynomials is very close to multiplication of decimal number-phrases so, we begin by discussion of multiplication in ARITHMETIC.

16.1 Multiplication in Arithmetic

In ARITHMETIC, multiplication is an operation that is very different from addition in many ways.

1. While number-phrases (with a common denominator) can always be added, number-phrases, even with a common denominator, usually cannot be multiplied.
EXAMPLE 1.
While

$$
2 \text { Apples }+3 \text { Apples }=5 \text { Apples }
$$

the following
2 Apples $\times 3$ Apples
makes no sense whatsoever.
(2 Apples $\times 3$ Apples is not the same as 2 (3 Apples) which is equal to 6 Apples)
2. Even when number-phrases can be multiplied, the result involves a different denominator.

EXAMPLE 2.

- Say that, in the real world, we want to tile a table three feet long by two feet wide

with one foot by one foot tiles

We need three tiles to tile the first row:

and another three tiles to tile the second row:

Altogether then, we used six one foot by one foot tiles.

- On paper, the specifying-phrase that represents the area of the table is 2 Feet $\times 3$ Feet
and the number-phrase that represents the area of a tile is
1 FootByFoot
also known as
1 SquareFoot
We then represent the fact that we used two rows of three tiles by

$$
\begin{aligned}
2(3 \text { FootByFoot }) & =(2 \times 3) \text { FootByFoot } \\
& =6 \text { FootByFoot }
\end{aligned}
$$

Altogether, we represent the real world tiling process by the paper procedure

$$
2 \text { Feet } \times 3 \text { Feet }=(2 \times 3) \text { FootByFoot }
$$

3. While number-phrases involving different denominators can never be added, number-phrases involving different denominators can occasionally be multiplied.

EXAMPLE 3.

- Say that, in the real world, we want to tile a shelf three feet long by six inches wide

with one foot by one inch tiles

We need three tiles to tile each row and since there are six rows

we need eighteen one foot by one inch tiles.

- On paper, the specifying-phrase that represent the area of the table is 3 Feet $\times 6$ Inches
and the number-phrase that represents the area of a tile is
1 FootByInch
We then represent the fact that we used six rows of three tiles by

$$
\begin{aligned}
6(3 \text { FootByInch }) & =(6 \times 3) \text { FootByInch } \\
& =18 \text { FootByInch }
\end{aligned}
$$

Altogether, we represent the real world tiling process by the paper procedure

$$
6 \text { Feet } \times 3 \text { Inches }=(6 \times 3) \text { FootByInch }
$$

16.2 Multiplication of Polynomials

In POLYNOMIAL ALGEBRA, things are much simpler: Because we can always multiply monomials, it turns out that we can multiply polynomials. We will use the symbol \boxtimes to denote multiplication of polynomials.

1. In order to multiply a given polynomial by a given monomial, we multiply each and every monomial in the given polynomial by the given monomial and the result is another polynomial.
EXAMPLE 4. Given the polynomial

$$
+2 x^{+2}+4 x^{+1}+6 x^{0}-6 x^{-1}-5 x^{-2}
$$

and the monomial

$$
-4 x^{+3}
$$

In order to identify the specifying phrase

$$
\left[\begin{array}{llll}
+2 x^{+2} & +4 x^{+1} & +6 x^{0} & -6 x^{-1}
\end{array}-5 x^{-2}\right] \boxtimes\left[-4 x^{+3}\right]
$$

i. We set up as in ARIThmetic
\boxtimes

$$
+2 x^{+2}+4 x^{+1}+6 x^{0}-6 x^{-1} \quad-5 x^{-2}
$$

ii. We multiply each and every monomial in the given polynomial by the given monomial:

区

$$
+2 x^{+2}+4 x^{+1}+6 x^{0}-6 x^{-1}-5 x^{-2}
$$

$-9 x^{+2}$
$(+2)(-9) x^{+2 \oplus+2} \quad(+4)(-9) x^{+1 \oplus+2} \quad(+6)(-9) x^{0 \oplus+2} \quad(-6)(-9) x^{-1 \oplus+2} \quad(-5)(-9) x^{-2 \oplus+2}$
iii. We get
\boxtimes

$$
\begin{array}{ccc}
+2 x^{+2}+4 x^{+1}+ & 6 x^{0}-6 x^{-1}-5 x^{-2} \\
& -9 x^{+2}
\end{array}
$$

2. In order to multiply a first polynomial by a second polynomial, we multiply each and every monomial in the first polynomial by each and every monomial in the first polynomial and the result is another polynomial.
In order to keep some order in the procedure,
i. We set up the multiplication pretty much as in ARITHMETIC:
a. We write the first polynomial on the first line with missing monomials written-in with a 0 coefficient
b. We write the second polynomial on the second line without writing-in the missing monomials with a 0 coefficient. Also, the second polynomial need not be lined up exponent-wise with the first polynomial
ii. We write the results of the multiplication of the first polynomial by each monomial of the second polynomial on a separate line
iii. As we write the results of the multiplication of the first polynomial by the next monomial of the second polynomial, we make sure that the exponents are lined up vertically (to make the next step easier).
iv. We add the terms with same exponent (lined up vertically as a result of the previous step).
EXAMPLE 5. Given a first polynomial

$$
+5 x^{+3}-4 x^{+1}+6 x^{0}-7 x^{-2}
$$

and a second polynomial

$$
+2 x^{+2}-8 x^{+1} \quad+3 x^{-1}
$$

In order to identify the specifying phrase

$$
\left[+5 x^{+3}-4 x^{+1}+6 x^{0}-7 x^{-2}\right] \boxtimes\left[+2 x^{+2}-8 x^{+1}+3 x^{-1}\right]
$$

we proceed as follows:
i. We set up as usual, writing the monomials missing in the first polynomial with a 0 coefficient.

$$
\boxtimes \begin{gathered}
+5 x^{+3}+0 x^{+2}-4 x^{+1}+6 x^{0}+0 x^{-1}-7 x^{-2} \\
\quad+2 x^{+2}-8 x^{+1}+3 x^{-1}
\end{gathered}
$$

ii. We multiply each and every monomial in the first polynomial by the first monomial in the second polynomial, writing the missing monomials with a 0 coefficient.

\boxtimes| | |
| :--- | :--- |
| \boxtimes | $+5 x^{+3}+0 x^{+2}-4 x^{+1}+6 x^{0}+0 x^{-1}-7 x^{-2}$ |
| | $+2 x^{+2}-8 x^{+1}+3 x^{-1}$ |

$$
+10 x^{+5}+0 x^{+4}-8 x^{+3}+12 x^{+2}+0 x^{+1}-14 x^{0}
$$

iii. We multiply each and every monomial in the first polynomial by the second monomial in the second polynomial, writing the missing monomials with a 0 coefficient.

$$
\begin{aligned}
& +5 x^{+3}+0 x^{+2}-4 x^{+1}+6 x^{0}+0 x^{-1}-7 x^{-2} \\
& \boxtimes \\
& +2 x^{+2}-8 x^{+1}+3 x^{-1} \\
& +10 x^{+5}+0 x^{+4}-8 x^{+3}+12 x^{+2}+0 x^{+1}-14 x^{0} \\
& \\
& -40 x^{+4}+0 x^{+3}+32 x^{+2}-48 x^{+1}+0 x^{0}+56 x^{-1}
\end{aligned}
$$

iv. We multiply each and every monomial in the first polynomial by the third monomial in the second polynomial, writing the missing monomials with a 0 coefficient.

$$
\begin{aligned}
& +5 x^{+3}+0 x^{+2}-4 x^{+1}+6 x^{0}+0 x^{-1}-7 x^{-2} \\
& \boxtimes \quad+2 x^{+2} \quad-8 x^{+1} \quad+3 x^{-1} \\
& +10 x^{+5}+0 x^{+4}-8 x^{+3}+12 x^{+2}+0 x^{+1}-14 x^{0} \\
& -40 x^{+4}+0 x^{+3}+32 x^{+2}-48 x^{+1}+0 x^{0}+56 x^{-1} \\
& +15 x^{+2}+0 x^{+1}-12 x^{0}+18 x^{-1}+0 x^{-2}-21 x^{-3}
\end{aligned}
$$

v. We add the terms with same exponent

$$
\begin{aligned}
& +5 x^{+3}+0 x^{+2}-4 x^{+1}+6 x^{0}+0 x^{-1}-7 x^{-2} \\
& \boxtimes \quad+2 x^{+2} \quad-8 x^{+1} \quad+3 x^{-1} \\
& +10 x^{+5}+0 x^{+4}-8 x^{+3}+12 x^{+2}+0 x^{+1}-14 x^{0} \\
& -40 x^{+4}+0 x^{+3}+32 x^{+2}-48 x^{+1}+0 x^{0}+56 x^{-1} \\
& +15 x^{+2}+0 x^{+1}-12 x^{0}+18 x^{-1}+0 x^{-2}-21 x^{-3}
\end{aligned}
$$

$$
+10 x^{+5}-40 x^{+4}-8 x^{+3}+59 x^{+2}-48 x^{+1}-26 x^{0}+74 x^{-1}+0 x^{-2}-21 x^{-3}
$$

v. We thus have:

$$
\begin{aligned}
& {\left[+5 x^{+3}-4 x^{+1}+6 x^{0}-7 x^{-2}\right] \boxtimes\left[+2 x^{+2}-8 x^{+1}+3 x^{-1}\right]=} \\
& \quad=+10 x^{+5}-40 x^{+4}-8 x^{+3}+59 x^{+2}-48 x^{+1}-26 x^{0}+74 x^{-1}+0 x^{-2}-21 x^{-3}
\end{aligned}
$$

Chapter 17

Polynomials 3: Powers of $x_{0}+h$

The Second Power: $\left(x_{0}+h\right)^{2}, 198$ - The Third Power: $\left(x_{0}+h\right)^{3}, 202-$ Higher Powers: $\left(x_{0}+h\right)^{n}$ when $n>3,205-$ Approximations, 208.

While it is easy to compute with powers of a counting-numerator, it is a lot more difficult to compute with powers of a decimal-numerator.
EXAMPLE 1. While it is easy to find that:

$$
5 \bullet 3^{4}=405
$$

it is a lot more difficult to find that

$$
4 \bullet 3.14^{4}=388.84684864
$$

But the main issue is that the result of a repeated-multiplication with a base that is a decimal numerator will usually involve a lot more decimals than are in the base and than we really want so that a lot of the work is wasted.
EXAMPLE 2. In

$$
4 \bullet 3.14^{4}=388.84684864
$$

the base, 3.14 , has only two decimals but the result, 388.84684864 , most probably has a lot more decimals than we want.

In this chapter we will investigate a procedure that will allow us to get only the number of decimals we want. It is based on the fact that any decimal numerator is always near a counting numerator in the sense that any decimal numerator is equal to a counting-numerator plus a small numerator
EXAMPLE 3. 3.14 is near 3 because $3.14=3+0.14$ and 0.14 is small

We will thus investigate the powers of the binomial $x_{0}+h$. We will begin by investigating the case in which the repeated multiplication involves two copies of the binomial and then the case in which the repeated multiplication involves three copies of the binomial. Then we will develop a procedure for the cases in which the repeated multiplication involves at least three copies of the binomial.

17.1 The Second Power: $\left(x_{0}+h\right)^{2}$

1. In this case, the repeated-multiplication procedure is simple enough. In order to compute the second power of $x_{0}+h$, we write, keeping in mind that we want the monomials to appear in order of diminishing sizes and since x_{0} and h both stand for signed numerators:

		x_{0}	\oplus	h
	x_{0}	\oplus	h	
		$x_{0} h$	\oplus	h^{2}
x_{0}^{2}	\oplus	$x_{0} h$		
x_{0}^{2}	\oplus	$2 x_{0} h$	\oplus	h^{2}

a. We begin by looking at what happens in ARITHMETIC which is that the multiplication procedure essentially keeps track and respects the sizes-but, because of carryovers, only roughly so.
EXAMPLE 4. In order to compute 3.2^{2}, we actually compute $(3+0.2)^{2}$ and writesince we are dealing with plain numerators:

	3	+	0.2
	3	+	0.2
	$3 \bullet 0.2$	+	0.2^{2}
3^{2}	$+\quad 3 \bullet 0.2$		
$3^{2}+2 \bullet 3 \bullet 0.2$	+	0.2^{2}	

that is

	3	+	0.2
		3	+
		0.2	
9	+	+	0.04
9	+	1.2	+

The multiplication procedure kept roughly track of the sizes except for what the carryover caused:

- All the way to the left are the "ones"
- In the middle are the "tenths"
- All the way to the right are the "hundredths"
so that if we want:
- No decimal, we write

$$
3.2^{2}=10+(\ldots)
$$

- One decimal, we write

$$
3.2^{2}=10.2+(\ldots)
$$

- Two decimals, we write

$$
3.2^{2}=10.24
$$

where $+(\ldots)$ is there to remind us that we are ignoring something too "in the tenths" to matter here.
EXAMPLE 5. In order to compute 2.8^{2}, we observe that 2.8 is nearer 3 than 2 so that we actually compute $(3 \oplus-0.2)^{2}$ and write-since we are now dealing with signed numerators:

		+3	\oplus	-0.2
	+3	\oplus	-0.2	
		$+3 \bullet-0.2$	\oplus	$(-0.2)^{2}$
$(+3)^{2}$	\oplus	$+3 \bullet-0.2$		
$(+3)^{2}$	\oplus	$2 \bullet+3 \bullet-0.2$	\oplus	$(-0.2)^{2}$

that is

		+3	\oplus	-0.2
		+3	\oplus	-0.2
		-0.6	\oplus	+0.04
+9	\oplus	-0.6		
+9	\oplus	-1.2	\oplus	+0.04

The multiplication procedure kept roughly track of the sizes except for what the carryover caused:

- All the way to the left are the "ones"
- In the middle are the "tenths"
- All the way to the right are the "hundredths"
so that if we want:
- No decimal, we write

$$
2.8^{2}=8+(\ldots)
$$

- One decimal, we write
- Two decimals, we write

$$
2.8^{2}=7.8+(\ldots)
$$

$$
2.8^{2}=7.84
$$

where $+(\ldots)$ is there to remind us that we are ignoring something, positive or negative, too "in the tenths" to matter here.
b. In algebra, a very frequent case is when we want a template for the power of any decimal-numerator in the neighborhood of a given x_{0}. In other words, we do not want yet to commit ourselves to how far the decimal-numerator is from the given x_{0} and we use h to represent how far the decimal-numerator is from the given x_{0}.

Of course, when, ultimately, we replace h by some "in the tenths" number, there remains the possibility that a carryover will mess up the result a little bit. This though is something that we will not deal with here. (But see the Epilogue.)
EXAMPLE 6. In order to get a template for the second power of any decimal-numerator near 3, both above 3 and below 3 , we write:

		3	\oplus	h
		3	\oplus	h
		$3 h$	\oplus	h^{2}
3^{2}	\oplus	$3 h$		
3^{2}	\oplus	$2 \bullet 3 h$	\oplus	h^{2}

2. Another, much more fruitful to get the above template is to go back to the definition of multiplication in terms of the area of a rectangle so that $\left(x_{0}+h\right)^{2}$ is the area of a $x_{0}+h$ by $x_{0}+h$ square:

What we then do is to enlarge the sides of a x_{0} by x_{0} square by h but, for the sake of clarity, we will construct the enlarged square one step at a time:
i. We start with x_{0}^{2} as the area of a square with side x_{0} :

ii. We now enlarge the sides of the square by h in each dimension which adds two $x_{0}+h$ by h rectangles:

iii. We complete the enlarged square by adding one h by h square:

EXAMPLE 7. In order to get a template to get the second power of any decimalnumerator near 3, both above 3 and below 3, we visualize the above picture and see in our mind that we need the area of:
i. the original square: 3^{2}
ii. the two rectangular strips: $2 \bullet 3 \bullet h$
iii. the little square: h^{2}
so that we have the template:

$$
(3 \oplus h)^{2}=3^{2} \oplus 2 \bullet 3 \bullet h \oplus h^{2}
$$

This second approach has three major advantages over the first one:
i. The terms in the sum are clearly in order of diminishing size: Since x_{0} is "in the ones" and h is "in the tenths",

- both dimensions of the "initial square" are "in the ones" so that x_{0}^{2} is "in the ones",
- one dimension of the rectangles is "in the ones" but the other dimension is "in the tenths" so that $2 x_{0} h$ is "in the tenths",
- both dimensions of the "little square" are "in the tenths" so that h^{2} is "in the hundredths".
ii. When we will need formulas for $\left(x_{0}+h\right)^{3},\left(x_{0}+h\right)^{4}$, etc, not only will repeated multiplication get out of hand but, as we shall see, we will never
need more than the first few monomials in the result.
iii. If all we need is a particular monomial in the result, which is often the case, we can get it from the picture without having to do the whole repeated multiplication.
EXAMPLE 8. If, for whatever reason, we need the h monomial in $(3 \oplus h)^{2}$, we visualize the two rectangular strips and we write:

$$
2 \bullet 3 \bullet h
$$

THEOREM 9 (Addition Formula for Quadratics).

$$
\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2}
$$

17.2 The Third Power: $\left(x_{0}+h\right)^{3}$

For the sake of brevity we omit the investigation of what happens in arithmetic.

1. The repeated-multiplication procedure already begins to be painful: First we must multiply two copies of $x_{0}+h$:

	x_{0} + h x_{0} + h		
	$x_{0} h$	+	h^{2}
x_{0}^{2}	+	$x_{0} h$	
$x_{0}^{2}+$	$2 x_{0} h$	+	h^{2}

Then, we must multiply $x_{0}^{2}+2 x_{0} h+h^{2}$ by the third copy of $x_{0}+h$

$$
\begin{aligned}
& x_{0}^{2}+2 x_{0} h+h^{2} \\
& \begin{array}{c}
x_{0}+h \\
x_{0}^{2} h+2 x_{0} h^{2}+h^{3}
\end{array} \\
& \frac{x_{0}^{3}+2 x_{0}^{2} h+x_{0} h^{2}}{x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}}
\end{aligned}
$$

2. Another, much more fruitful approach to the addition formula is to go back to the definition of multiplication in terms of the area/volume of a rectangle so that $\left(x_{0}+h\right)^{3}$ is the volume of a $x_{0}+h$ by $x_{0}+h$ by $x_{0}+h$ cube:
What we then do is to enlarge the three sides of a x_{0} by x_{0} cube by h but, for the sake of clarity, we will construct the enlarged cube one step at a time: i. We draw the initial cube with volume x_{0}^{3} :

ii. We draw the three slabs with volume $3 x_{0}^{2} h$:

iii. We glue the three slabs with volume $3 x_{0}^{2} h$ onto what we already glued:

iv. We draw the three rods with volume $3 x_{0} h^{2}$:

v. We glue the three rods with volume $3 x_{0} h^{2}$ onto what we already glued:

vi. We draw the little finishing cube with volume h^{3} :

We glue the little finishing cube with volume h^{3} onto what we already glued:

This approach has three major advantages over the repeated-multiplication:
i. The terms in the sum are in order of diminishing size. Since x_{0} is "in the ones" and h is "in the tenths",

- all three dimensions of the "initial cube" are "in the ones" so that x_{0}^{3} is "in the ones",
- two dimensions of the "slabs" are "in the ones" but the third dimension is "in the tenths" so that, if h is "in the tenths", then $3 x_{0}^{2} h$ is "in the tenths",
- one dimensions of the "square rods" is "in the ones" so that, if h is "in the tenths", then $3 x_{0} h^{2}$ is "in the hundredths".
- all three dimensions of the "little cube" are "in the tenths" so that, if h is "in the tenths", then $x_{0} h^{3}$ is "in the thousandths".
ii. If all we need is a particular one of the terms, which will often be the case, pattern we can get it from the picture without having to do the whole multiplication. iii. Later on, when we shall need formulas for $\left(x_{0}+h\right)^{4}$, etc, not only will repeated multiplication get out of hand but, as we shall see, we will never need more than the first few monomials of the result.
THEOREM 10 (ADDITION FORMULA for CUBICS).

$$
\left(x_{0}+h\right)^{3}=x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}
$$

17.3 Higher Powers: $\left(x_{0}+h\right)^{n}$ when $n>3$

Here of course:

- Repeated-multiplication is of course going to be ever more painful
- We cannot make pictures because we would need to be able to draw in more than 3 dimensions.
So, we need to find a procedure.

1. We begin by looking for a pattern in what we have so far. In order to see better what we are doing, we will not let anything go without saying. a. When the exponent is 3 , we had:

$$
\begin{aligned}
\left(x_{0}+h\right)^{3} & =x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3} \\
& =x_{0}^{3} h^{0}+3 x_{0}^{2} h^{1}+3 x_{0}^{1} h^{2}+x_{0}^{0} h^{3} \\
& =x_{0} \bullet x_{0} \bullet x_{0} \& 3 \bullet x_{0} \bullet x_{0} \bullet h \& 3 \bullet x_{0} h \bullet h \& h \bullet h \bullet h \\
& =1 \bullet x_{0} \bullet x_{0} \bullet x_{0} \& 3 \bullet x_{0} \bullet x_{0} \bullet h \& 3 \bullet x_{0} h \bullet h \& 1 \bullet h \bullet h \bullet h
\end{aligned}
$$

Looking at the factors and the coefficients separately, we get the following:

- The factors are

$$
x_{0} \bullet x_{0} \bullet x_{0} \quad x_{0} \bullet x_{0} \bullet h \quad x_{0} \bullet h \bullet h \quad h \bullet h \bullet h
$$

In other words, starting with 3 copies of x_{0}
$x_{0} \bullet x_{0} \bullet x_{0}$
we get the others by replacing one by one the copies of x_{0} by copies of h.

- The coefficients are

$$
\begin{array}{llll}
1 & 3 & 3 & 1
\end{array}
$$

Here we cannot see the pattern,
b. When the exponent is 2 , we have

$$
\begin{aligned}
\left(x_{0}+h\right)^{2} & =x_{0}^{2}+2 x_{0} h+h^{2} \\
& =x_{0}^{2} h^{0}+2 x_{0}^{1} h^{1}+x_{0}^{0} h^{2} \\
& =x_{0} \bullet x_{0} \& 2 \bullet x_{0} \bullet h \& h \bullet h
\end{aligned}
$$

$$
=1 \bullet x_{0} \bullet x_{0} \& 2 \bullet x_{0} \bullet h \& 1 \bullet h \bullet h
$$

Looking at the factors and the coefficients separately, we get the following:

- The factors are

$$
x_{0} \bullet x_{0} \quad x_{0} \bullet h \quad h \bullet h
$$

In other words, starting with

$$
x_{0} \bullet x_{0}
$$

we get the others by replacing one by one the copies of x_{0} by copies of h.

- The coefficients are

$$
\begin{array}{lll}
1 & 2 & 1
\end{array}
$$

Here again we cannot see the pattern.
c. When the exponent is 1 , we have

$$
\begin{aligned}
\left(x_{0}+h\right)^{1} & =x_{0}+h \\
& =x_{0}^{1}+h^{1} \\
& =x_{0}^{1} h^{0}+x_{0}^{0} h^{1} \\
& =x_{0} \& h \\
& =1 \bullet x_{0} \& 1 \bullet h
\end{aligned}
$$

Looking at the factors and the coefficients separately, we get the following:

- The factors are

$$
x_{0} \quad h
$$

In other words, starting with

$$
x_{0}
$$

we get the others by replacing the one copy of x_{0} by a copy of h.

- The coefficients are

11
Here we cannot see the pattern,
2. Putting everything together, though,

- The procedure for finding the powers seems to be in all cases:
i. Make as many copies of x_{0} as what the exponent n in $\left(x_{0}+h\right)^{n}$ indicates
ii. Make as many copies plus 1 of what the exponent n in $\left(x_{0}+h\right)^{n}$ indicates
iii. Starting with the second copy, replace one by one the copies of x_{0} by copies of h
- In order to see a pattern for the coefficients, we write them starting with exponent 1 and ending with exponent 3 :

		1		1		
	1		2		1	
1		3		3		1

The way things are arranged, we see that we get each entry in what is called PASCAL TRIANGLE the PASCAL TRIANGLE by adding its two parent-entries that is the parent-entries two entries just above it.
Thus, the next line in the PASCAL TRIANGLE would be:

$$
\begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array}
$$

3. Proving that all this is indeed the case would involve more work than we are willing to do here and so we will take the following for granted:

THEOREM 11 (BINOMIAL THEOREM). The addition formula for a binomial of degree n is:

$$
\begin{aligned}
\left(x_{0}+h\right)^{n}=x_{0}^{n} h^{0}+\frac{n}{1} x_{0}^{n-1} h^{+1} & +\frac{n(n-1)}{1 \cdot 2} x_{0}^{n-2} h^{+2} \\
& +\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} x_{0}^{n-3} h^{+3} \\
& +\ldots \\
& +\frac{n(n-1)(n-2) \cdots(1)}{1 \cdot 2 \cdot 3 \cdots n} x_{0}^{0} h^{n}
\end{aligned}
$$

4. According to the BINOMIAL THEOREM,

$$
\begin{aligned}
\left(x_{0}+h\right)^{0} & =x_{0}^{0} h^{0} \\
& =1
\end{aligned}
$$

which is of course as it should be. Moreover, since the coefficient 1 goes without saying, this means that the very first line in the PASCAL TRIANGLE is 1 so that the "complete" PASCAL TRIANGLE is:

- The numerators in the second slanted row (bold-faced) are the coefficients of the h^{+1} powers which shows that the coefficient of the h^{+1} power in x_{0}^{n} is n.
- We check that the third slanted row are the coefficients of the h^{+2} powers which shows that the coefficient of the h^{+2} power in x_{0}^{n} is $\frac{n(n-1)}{2}$.
constant approximation affine approximation quadratic approximation
- Etc

17.4 Approximations

Fortunately, most of the time we only need the very first few terms of the addition formulas.

1. Very often, we will need only the constant approximation of $\left(x_{0}+\right.$ $h)^{n}$ which is just x_{0}^{n}. Indeed, very often h will be small enough that we will not need to consider any of the monomials that involve it and we will write:

$$
\left(x_{0}+h\right)^{n}=x_{0}^{n}+(\ldots)
$$

EXAMPLE 9. The constant approximation of 16.072^{7} is 16^{7} and we write

$$
16.072^{7}=16^{7}+(\ldots)
$$

More generally, the constant approximation of $(16+h)^{7}$ is 16^{7} and we write

$$
(16+h)^{7}=16^{7}+(\ldots)
$$

2. When the constant approximation is too crude, we will often use the affine approximation of $\left(x_{0}+h\right)^{n}$ which is $x_{0}^{n}+n x_{0} h$. Indeed, while h may not be small enough not to matter, the other powers, h^{2}, h^{3} etc being smaller than h can often still be ignored and we will then write

$$
\left(x_{0}+h\right)^{n}=x_{0}^{n}+n x_{0}^{n-1} h+(\ldots)
$$

EXAMPLE 10. The affine approximation of 16.072^{7} is $16^{7}+7 \cdot 16^{6} \cdot 0.072$ and we write

$$
16.072^{7}=16^{7}+7 \cdot 16^{6} \cdot 0.072+(\ldots)
$$

More generally, the affine approximation of $(16+h)^{7}$ is $16^{7}+7 \cdot 16^{6} \cdot h+(\ldots)$ and we write

$$
(16+h)^{7}=16^{7}+7 \cdot 16^{6} \cdot h+(\ldots)
$$

3. And finally we will also use the quadratic approximation of $\left(x_{0}+\right.$ $h)^{n}$ which is $x_{0}^{n}+n x_{0} h+\frac{n(n-1)}{2} x_{0} h^{2}$ when we will need more precision that the affine approximation will be able to give us and we will then write

$$
\left(x_{0}+h\right)^{n}=x_{0}^{n}+n x_{0} h+\frac{n(n-1)}{2} x_{0} h^{2}+(\ldots)
$$

EXAMPLE 11. The quadratic approximation of 16.072^{7} is $16^{7}+7 \cdot 16^{6} \cdot 0.072+21$. $16^{6} \cdot 0.072^{2}$ and we write

$$
16.072^{7}=16^{7}+7 \cdot 16^{6} \cdot 0.072+21 \cdot 16^{6} \cdot 0.072^{2}+(\ldots)
$$

More generally, the quadratic approximation of $(16+h)^{7}$ is $16^{7}+7 \cdot 16^{6} \cdot h+21 \cdot 16^{6} \cdot h^{2}$ and we write

$$
(16+h)^{7}=16^{7}+7 \cdot 16^{6} \cdot h+21 \cdot 16^{6} \cdot h^{2}+(\ldots)
$$

Chapter 18

Polynomials 4: Division (In Descending \& Ascending Powers)

Division In Arithmetic, 209 - Elementary School Procedure, 211 - Efficient Division Procedure, 212 - Division of Polynomials, 221 - Default Rules for Division, 225 - Division in Ascending Powers, 229 - 1. Applicability And Definitions, 231 - 2. Verbatim Copying, 233 - 3. Copying In Quantity, 233 - 4. Modificatons, 234 - 5. Combining Documents, 236 - 6. Collections Of Documents, 236 - 7. Aggregation With Independent Works, $236-8$. Translation, $237-9$. Termination, $237-10$. Future Revisions Of This License, 237 - ADDENDUM: How to use this License for your documents, 237.

We now turn to the last one of the four operation with polynomials: division. However, in order to understand the procedure, we must first take a look at the division procedure in ARITHMETIC.

18.1 Division In Arithmetic

We first look at the real-world process and then we look at the corresponding paper-world procedure.

1. In the real world, we often encounter situations in which we have to assign (equally) the items in a first collection to the items of another collection.
The process is to make rounds during each of which we assign one item of the first collection to each one of the items in the second collection. The process comes to an end when, after a round has been completed,

- there are items left unassigned but not enough to complete another round.
share
leftovers
division
dividend
divisor
quotient

The share is then the collection of items from the first collection that have been assigned to each item of the second collection and the leftovers are the collection of items from the first collection left unassigned after the process has come to an end.
EXAMPLE 1. In the real world, say we have a collection of seven dollar-bills which we want to assign to each and every person in a collection of three person. We want to know how many dollar-bills we will assign to each person and how many dollar-bills will be left-over.
i. We make a first round during which we hand-out one dollar-bill to each and every person in the collection. This uses three dollar-bills and leaves us with four dollar-bills after the first round.
ii. We make a second round, we hand-out one dollar-bill to each and every person in the collection. This uses another three dollar-bills and leaves us with one dollar-bill after the second round.
iii. If we try to make a third round, we find that we cannot complete the third round.
So, the share is two dollar-bills and the leftovers is one dollar-bill.
or,

- there is no item left unassigned. The share is again the collection of items from the first collection that have been assigned to each item of the second collection and there are no leftovers.
EXAMPLE 2. In the real world, say we have a collection of eight dollar-bills which we want to assign to each and every person in a collection of four person. We want to know how many dollar-bills we will assign to each person and how many dollar-bills will be left-over.
i. We make a first round during which we hand-out one dollar-bill to each and every person in the collection. This uses four dollar-bills and leaves us with four dollar-bills after the first round.
ii. We make a second round, we hand-out one dollar-bill to each and every person in the collection. This uses another four dollar-bills and leaves us with no dollar-bill after the second round.
iii. So, we cannot make a third round.

So, the share is two dollar-bills and there are no leftovers.
2. The paper procedure that corresponds to the real-world process is called division. Division will involve the following language:

- The number-phrase that represents the first collection, that is the collections of items to be assigned to the items of the second collection, is called the dividend,
- The number-phrase that represents the second collection, that is the collection of items to which the items of the first collection are to be assigned, is called the divisor,
- The number-phrase that represents the share is called the quotient,
- The number-phrase that represents the leftovers is called the remainder.

EXAMPLE 3. Given a real-world situation with a collection of eight dollar-bills to be assigned to each and every person in a collection of four persons,

- The dividend is 7 Dollars
- The divisior is 3 Persons
- The share is $2 \frac{\text { Dollars }}{\text { Person }}$
- The remainder is 1 Dollar

18.2 Elementary School Procedure

The division procedure taught in elementary schools is a trial and error procedure which follows the real-world process closely inasmuch as each round is represented by a try in which:
i. We use the multiplication procedure to find the partial product which represents how many items have been used by the end of the corresponding real-world round.
ii. We use the subtraction procedure to find the partial remainder which represents how many items, if any, are left over by the end of the corresponding real-world round.
EXAMPLE 4. In order to divide 987 by 321 , we go through the following tries:
First try:
i. We multiply the divisor 321 by 1 which gives the partial product 321 :

321
ii. We subtract the partial product 321 from the dividend 987 which leaves the partial remainder 666 :
$3 2 1 \longdiv { 1 }$
$\begin{array}{r}321 \\ \hline 666\end{array}$
Second try:
i. We multiply the divisor 321 by 2 which gives the partial product 642 :

321 | $\frac{2}{987}$ |
| :---: |
| |
| 642 |

ii. We subtract the partial product 642 from the dividend 987 which leaves the partial remainder 345 :
rank

321 | $\frac{2}{987}$ |
| :--- |
| $\frac{642}{345}$ |

Third try:
i. We multiply the divisor 321 by 3 which gives the partial product 963 :

421
987
963

963
ii. We subtract the partial product 963 from the dividend 987 which leaves the partial remainder 24 :
$3 2 1 \longdiv { 3 } \begin{array} { c } { 9 8 7 } \\ { \hline } \end{array}$

963
24

Fourth try:
i. We multiply the divisor 321 by 4 which gives the partial product 1284 :

321 | $\frac{4}{987}$ |
| :---: |
| 1284 |

ii. We cannot subtract the partial product 1284 from the dividend 987 :

$$
3 2 1 \longdiv { 4 } \begin{array} { c }
{ 4 8 7 } \\
{ 1 2 8 4 }
\end{array}
$$

Since we cannot complete the fourth try, we go back to the last complete try, that is the third try, and we get that the quotient is 3 and the remainder 24 .

This procedure, though, has two severe shortcomings:

- All these full multiplications require a lot of work.
- This procedure will not extend to polynomials

18.3 Efficient Division Procedure

We now present a much more efficient procedure that, instead of full multiplications to find the digits of the quotient, uses only a multiplication table ${ }^{1}$ and which, for us, has the further advantages that it extends easily to polynomials.

1. By the rank of a multiplication table, we will mean the numerator common to all the multiplications in that multiplication table. The table

[^22]multipliers correspond to the successive lines in the multiplication table and therefore always range from 1 to 9 . The table products are the results of the successive multiplications in the multiplication table.
EXAMPLE 5. In the following multiplication table
\[

$$
\begin{aligned}
& 7 \times 1=7 \\
& 7 \times 2=14 \\
& 7 \times 3=21 \\
& 7 \times 4=28 \\
& 7 \times 5=35 \\
& 7 \times 6=42 \\
& 7 \times 7=49 \\
& 7 \times 8=56 \\
& 7 \times 9=63
\end{aligned}
$$
\]

- the rank is 7 ,
- the table multipliers range from 1 to 9 (as in all multiplication tables),
- the table products range from 7 to 63 .

2. The procedure consists of successive cycles. During each of these cycles, we go through the following four steps:
Step I. We find a single digit of the quotient by trial and error using only the multiplication table whose rank is the first digit of the divisor.
Step II. We find the partial product by multiplying the full divisor by the single digit of the quotient we found in Step I.
Step III. We find the partial remainder by subtracting the partial product we found in Step II from the full dividend.
Step IV. We decide whether we want to:

- stop the division,
- continue the division.

EXAMPLE 6. We want to compute

$$
\frac{9974 .}{312 .}
$$

so we need to divide 312. into 9974., that is

$$
\text { 312. } \lcm{9974 .}
$$

Since the first digit in the divisor is 3 , we will use the multiplication table of rank 3 :

$$
\begin{aligned}
& 3 \times 1=3 \\
& 3 \times 2=6 \\
& 3 \times 3=9 \\
& 3 \times 4=12 \\
& 3 \times 5=15 \\
& 3 \times 6=18 \\
& 3 \times 7=21 \\
& 3 \times 8=24 \\
& 3 \times 9=27
\end{aligned}
$$

CYCLE 1. We look for the first digit of the quotient.
Step I. We divide by trial and error the first digit in the divisor, 312., into the first digit of the dividend, 9974.
Trial 1. We try the table multiplier 1
i. When we multiply the first digit of the divisor, 3 , by the table multiplier

1 we get the table product 3 :
$3 1 2 \longdiv { 9 9 7 4 }$
3
ii. We subtract the table product 3 from the first digit of the dividend, 9974., which leaves the remainder 6 :

> 312. | $\frac{9974 .}{6}$ |
| :---: |

Trial 2. We try the table multiplier 2
i. When we multiply the first digit of the divisor, 3 , by the table multiplier 2 we get the table product 6 :
$3 2 1 \longdiv { 9 9 7 4 }$
6
ii. We subtract the table product 6 from the first digit of the dividend, 9974., which leaves the remainder 3

312. | $\frac{9974}{3}$ |
| :---: |

Trial 3. We try the table multiplier 3
i. When we multiply the first digit of the divisor, 3 , by the table multiplier

3 we get the table product 9 :
312. 9974.

9
ii. We subtract the table product 9 from the first digit of the dividend, 9974., which leaves the remainder 0
312. $\longdiv { 9 9 7 4 . }$
$\frac{9}{0}$
Trial 4. We try the table multiplier 4
i. When we multiply the first digit of the divisor, 3 , by the table multiplier 4 we get the table product 12 :
312. $\longdiv { 9 9 7 4 . }$

12
ii. We cannot subtract the table product 12 from the first digit of the dividend, 9974. .
312. $\longdiv { 9 9 7 4 . }$

12
Since we cannot complete Trial 4, we must go back to the last complete trial, that is Trial 3, from which we get that:
The first digit of the quotient will be 3 unless the resulting partial product exceeds the dividend.
Step II. We multiply the full divisor, 312., by the first digit in the quotient, 3 :
3
312. $\longdiv { 9 9 7 4 . }$

936
The first partial product is 936 Tens.
Step III. We subtract the first partial product, 936 Tens, from the dividend 9974. :

$$
\text { 312. } \begin{array}{r}
\frac{3}{9974 .} \\
\frac{936}{614}
\end{array}
$$

The first remainder is 614. and the first digit in the quotient is 3 .
Step IV. We decide if we want to stop or to continue the division:

- If we decide to stop the division,
- the quotient of the division is 30 . since the first digit of the quotient, 3 , refers to the Tens and the only denominator that goes without saying is the Ones.
- the remainder of the division is 614 .

If we don't care about the remainder, we write:

$$
\frac{9974}{312}=30+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{9974}{312}$ is not exactly equal to 30 since there was a remainder.

- If we decide to continue the division,
i. we recall that the 3 in the quotient refers to the Tens

$$
312 \begin{gathered}
3 \\
\begin{array}{c}
9974 \\
936 \\
\hline 614
\end{array}
\end{gathered}
$$

ii. we recall that the remainder is 614 Ones,

$$
312 \begin{gathered}
3 . \\
\begin{array}{c}
9974 \\
936 \\
\hline 614
\end{array}
\end{gathered}
$$

iii. we start a new cycle.

CYCLE 2. We look for the second digit of the quotient.
Step I. We divide by trial and error the first digit in the divisor, 312., into the first digit of the first remainder, 614. :

Trial 1. We try the table multiplier 1
i. When we multiply the first digit of the divisor, 3 , by the table multiplier 1 we get the table product 3 :

$$
\text { 312. } \begin{gathered}
\\
\begin{array}{c}
9974 . \\
\\
\hline
\end{array} \frac{936}{614} \\
\\
\end{gathered}
$$

ii. We subtract the table product 3 from the first digit of the first remainder, 614., which leaves the remainder 3 :

$$
\text { 312. } \begin{gathered}
\frac{3}{9974 .} \\
\frac{936}{614} \\
\\
\\
\frac{3}{6}
\end{gathered}
$$

Trial 2. We try the table multiplier 2
i. When we multiply the first digit of the divisor, 3 , by the table multiplier 2 we get the table product 6 :
312. \(\begin{gathered}3

\)| $9974 .$ |
| :---: |
| 936 |
| |
| |
| 614 |\end{gathered}

ii. We subtract the table product 6 from the first digit of the first remainder, 614., which leaves the remainder 0 :

312. | 9 |
| :---: |
| 9974. |

$\frac{936}{614}$
$\frac{6}{0}$
Trial 3. We don't need to do Trial 3 since we obviously will not be able to subtract the table product from the first remainder.
The second digit of the quotient will be 2 unless the resulting partial product exceeds the first remainder.
Step II. We multiply the full divisor, 312 , by the second digit in the quotient, 2 :

$$
\begin{array}{cc}
& 32 \\
\hline 312 & \begin{array}{c}
9974 \\
936 \\
\hline
\end{array} \\
\hline & 614 \\
624
\end{array}
$$

The second partial product is 624 Ones
Step III. We cannot subtract the second partial product, 624 from the first remainder, 614 :
$3 1 2 \longdiv { 3 . 2 }$
$\frac{936}{614}$

624
What happened here is due to the carryover in the multiplication.
So, the second digit in the quotient is the table multiplier in Trial 1, 1, and we must redo Step II and Step III:
New Step II. We multiply the full divisor, 312., by the second digit in the quotient, 1 :

312. | 31 |
| :---: |
| 9974. |

936
614
312
The second partial product is 312 Ones

New Step III. We subtract the second partial product, 312 Ones, from the first remainder 614.:

$$
\text { 312. } \begin{gathered}
31 \\
\begin{array}{c}
9974 . \\
936 \\
\hline
\end{array} \begin{array}{l}
614 . \\
\hline 312 \\
\hline 302
\end{array}
\end{gathered}
$$

The second remainder is 302 . and the second digit in the quotient is 1 .
Step IV. We decide if we want to stop or continue the division.

- If we decide to stop the division,
- the quotient of the division is 31 . since the second digit of the quotient, 1 , refers to the Ones.
- the remainder of the division is 302 .

If we don't care about the remainder, we write:

$$
\frac{9974 .}{312 .}=31 .+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{9974 \text {. }}{312 \text {. }}$ is not exactly equal to 31 . since there was a remainder.

- If we decide to continue the division,
i. we point the 1 in the quotient to indicate that it refers to the Ones

$$
\text { 312. } \begin{gathered}
31 . \\
\hline 9974 . \\
\hline 936 \\
\hline 614
\end{gathered}
$$

ii. we change the remainder 302 Ones to 3020 Tenths

$$
\begin{array}{cc}
& 31 . \\
\hline \text { 312. } & 9974 . \\
& 936 \\
\hline & 614 \\
& \frac{312}{3020}
\end{array}
$$

iii. we start a new cycle.

CYCLE 3. We look for the third digit of the quotient.
Step I. We divide by trial and error the first digit in the divisor, 312., into the first two digits of the second remainder, 3020. :

Trial 1. We try the table multiplier 1
i. When we multiply the first digit of the divisor, 3 , by the table multiplier 1 we get the table product 3 :

$$
\text { 312. } \begin{aligned}
& 31 . \\
& \begin{array}{l}
9974 . \\
936 \\
\hline
\end{array} \mathbf{6 1 4} \\
& \\
& 312 \\
& \hline 3020 \\
& \\
& 3
\end{aligned}
$$

ii. We subtract the table product 3 from the first two digits of the second remainder, 3020 ., which leaves the remainder 27 :
31.
312. 9974.

936
614
$\frac{312}{3020}$
$\frac{3}{27}$
Trial 2. We try the table multiplier 9
i. When we multiply the first digit of the divisor, 3 , by the table multiplier 9 we get the table product 27 :

$$
\text { 312. } \begin{aligned}
& 31 . \\
& \cline { 1 - 3 } \begin{array}{l}
9974 . \\
936 \\
\hline 614 \\
\\
312 \\
\hline 3020 \\
27
\end{array}, ~
\end{aligned}
$$

ii. We subtract the table product 27 from the first two digits of the second remainder, 3020., which leaves the remainder 3:

The third digit of the quotient will be 9 unless the resulting partial product exceeds the third remainder.

Step II. We multiply the full divisor, 312., by the third digit in the quotient, 9 :

> | | 31.9 |
| :---: | :---: |
| 312. | 9974. |
| | 936 |
| | 614 |
| | $\frac{312}{3020}$ |
| | 2808 |

The third partial product is 2808 Tenths
Step III. We subtract the third partial product, 2808 from the second remainder, 3020 :

312. | 31.9 |
| :---: |
| 9974.
 936
 614
 312
 3020
 2808
 212 |

The third remainder is 31.2 and the third digit of the quotient is 9
Step IV. We decide if we want to stop or continue the division.

- If we decide to stop the division,
- the quotient of the division is 31.9 since the third digit of the quotient, 9 , refers to the Tenths.
- the remainder of the division is 21.2

If we don't care about the remainder, we write:

$$
\frac{9974 .}{312 .}=31.9+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{9974 .}{312 \text {. }}$ is not exactly equal to 31.9 since there was a remainder.

- If we decide to continue the division,
i. we recall that the 9 in the quotient refers to the Tenths
31.9

312.
313.

$\frac{936}{614}$
312
$\overline{3020}$
$\frac{2808}{212}$
ii. we change the remainder 212 Tenths to 2120 Hundredths

$$
\text { 312. } \begin{gathered}
31.9 \\
\begin{array}{c}
9974 . \\
936 \\
\hline 614 \\
312 \\
\hline 3020 \\
\\
\hline 2808 \\
\hline 2120
\end{array}
\end{gathered}
$$

iii. we start a new cycle.
3. While this procedure certainly appears to be a lot more complicated than the elementary school procedure, it isn't really and it just requires getting used to and taking the time to get used to it is a good investment because, in the long run, this procedure is much more economical since:

- We find the digits of the quotient using only one multiplication table,
- We then usually need only do one full multiplication and one subtraction (per cycle) as opposed to one for each try.
- We can decide exactly where we want to stop and see how precise the quotient then would be.

18.4 Division of Polynomials

Since decimal numerators are combinations of powers of TEN, it should not be surprising that the above procedure should work for polynomials which are combinations of powers of x.

The procedure consists of successive cycles, one for each monomial in the quotient. During each of these cycles, we go through four steps:

Step I. We find each monomial of the quotient by dividing the first monomial in the divisor into the first monomial of the previous partial remainder.

Step II. We find the partial product by multiplying the full divisor by the monomial of the quotient we found in Step I.

Step III. We find the partial remainder by subtracting the partial product we found in Step II from the previous partial remainder or, if there is not yet a partial remainder, from the full dividend.

Step IV. We decide if we

- stop the division
- continue the division

Just as, in Arithmetic, we can stop the division anywhere we want and we need not stop a division when the quotient reaches a monomial with exponent 0 because we can always divide a monomial into another since we
can have negative exponents. In fact, again just as in arithmetic, there are cases where we absolutely need to go beyond the exponent 0 and use negative exponents. (See Epilogue.)
EXAMPLE 7. In order to compute $\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5-2}$, we divide $-3 x^{2}+5-2$ into $-12 x^{3}+11 x^{2}-17 x+1$:

$$
- 3 x ^ { 2 } + 5 x - 2 \longdiv { - 1 2 x ^ { 3 } } + 1 1 x ^ { 2 } \quad - 1 7 x \quad + 1
$$

we proceed as follows:
CYCLE 1. Step I. We find the first monomial in the quotient by dividing the first monomial in the divisor, $-3 x^{2}$, into the first monomial of the dividend, $-12 x^{3}$ that is $\frac{-12 x^{3}}{-3 x^{2}}=+4 x$

$$
\begin{array}{cccc}
& +4 x \\
& -3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} \\
\hline
\end{array}
$$

Step II. We find the first partial product by multiplying the full divisor by the first monomial in the quotient:

$$
\begin{array}{l|cccc}
& +4 x \\
-3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} & -17 x & +1 \\
\cline { 2 - 2 } & -12 x^{3} & +20 x^{2} & -8 x &
\end{array}
$$

Step III. We find the first partial remainder by subtracting the first partial product from the full dividend:

$$
\begin{array}{rcccc}
& +4 x & & & \\
-3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} & -17 x & +1 \\
\Theta & -12 x^{3} & +20 x^{2} & -8 x &
\end{array}
$$

But to subtract the first partial product means to add the opposite of the first partial product to the full dividend:

Step IV. We decide if we want to stop or continue the division.

- If we decide to stop the division,
- the quotient of the division is $+4 x$.
- the remainder of the division is $-9 x^{2}-8 x+1$

If we don't care about the remainder, we write:

$$
\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5 x-2}=+4 x+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5 x-2}$ is not
exactly equal to $+4 x$ since there was a remainder.

- If we decide to continue the division, we start a new cycle

CYCLE 2. Step I. We find the second monomial in the quotient by dividing the first monomial in the divisor, $-3 x^{2}$, into the first monomial in the first partial remainder, $-9 x^{2}$, that is $\frac{-9 x^{2}}{-3 x^{2}}=+3$

$$
\begin{array}{cccccc}
& +4 x & +3 & & \\
\cline { 2 - 5 }+3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} & -17 x & +1 \\
& -12 x^{3} & +20 x^{2} & -8 x & \\
\cline { 2 - 5 } & & -9 x^{2} & -9 x & +1
\end{array}
$$

Step II. We find the second partial product by multiplying the full divisor by the second monomial in the quotient:

	$+4 x$	+3		
$-3 x^{2}+5 x-2$	$-12 x^{3}$	$+11 x^{2}$	$-17 x$	+1
	$-12 x^{3}$	$+20 x^{2}$	$-8 x$	
		$-9 x^{2}$	$-9 x$	+1
Second partial product:		$-9 x^{2}$	$+15 x$	-6

Step III. We find the second partial remainder by subtracting the second partial product from the first partial remainder:

\[

\]

But to subtract the second partial product means to add the opposite of the second partial product to the first partial remainder:

$$
\begin{aligned}
& \begin{array}{ccccc}
-3 x^{2}+5 x-2 & \begin{array}{ll}
& +4 x \\
& +3 \\
& -12 x^{3} \\
& +11 x^{2} \\
& -12 x^{3} \\
+20 x^{2} & -8 x
\end{array} & +1 \\
\cline { 2 - 5 } & & -9 x^{2} & -9 x & +1
\end{array} \\
& \text { Second remainder: } \\
& \oplus \\
& \begin{array}{lll}
+9 x^{2} & -15 x & +6 \\
\hline+0 x^{2} & -24 x & +7
\end{array}
\end{aligned}
$$

Step IV. We decide if we want to stop or continue the division.

- If we decide to stop the division,
- the quotient of the division is $+4 x+3$.
- the remainder of the division is $-24 x+7$

If we don't care about the remainder, we write:

$$
\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5 x-2}=+4 x+3+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5 x-2}$ is not
exactly equal to $+4 x+3$ since there was a remainder.

- If we decide to continue the division, we start a new cycle

CYCLE 3. Step I. We find the third monomial in the quotient by dividing the first monomial in the divisor, $-3 x^{2}$, into the first monomial in the second partial remainder, $-24 x$ that is $\frac{-24 x}{-3 x^{2}}=+8 x^{-1}$

$$
\begin{array}{ccccc}
& +4 x & +3 & +8 x^{-1} & \\
\cline { 2 - 5 }-3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} & -17 x & +1 \\
& -12 x^{3} & +20 x^{2} & -8 x & \\
\cline { 2 - 5 } & & -9 x^{2} & -9 x & +1 \\
& +9 x^{2} & -15 x & +6 \\
\hline & & -24 x & +7
\end{array}
$$

Step II. We find the third partial product by multiplying the full divisor by the third monomial in the quotient:

	$+4 x$	+3	$+8 x^{-1}$		
$\left.-3 x^{2}+5 x-2\right)$	$-12 x^{3}$	$+11 x^{2}$	$-17 x$	+1	
	$-12 x^{3}$	$+20 x^{2}$	$-8 x$		
		$-9 x^{2}$	$-9 x$	+1	
		$+9 x^{2}$	$-15 x$	+6	
			$-24 x$	+7	
Third partial product			$-24 x$	+40	$-16 x^{-1}$

Step III. We find the third partial remainder by subtracting the third partial product from the first partial remainder:

$$
\begin{aligned}
& -3 x^{2}+5 x-2 \begin{array}{ccccc}
& +4 x & +3 & +8 x^{-1} & \\
\cline { 2 - 5 } & -12 x^{3} & +11 x^{2} & -17 x & +1 \\
-12 x^{3} & +20 x^{2} & -8 x &
\end{array} \\
& \begin{array}{rrrr}
-12 x^{3} & +20 x^{2} & -8 x & \\
\hline-9 x^{2} & -9 x & +1
\end{array} \\
& \begin{array}{ccc}
+9 x^{2} & -15 x & +6 \\
\hline & -24 x & +7
\end{array} \\
& \ominus \\
& -24 x+40-16 x^{-1}
\end{aligned}
$$

But to subtract the second partial product means to add the opposite of the second partial product to the first partial remainder:

\[

\]

Step IV. We decide if we want to stop or continue the division.

- If we decide to stop the division,
- the quotient of the division is $+4 x+3+8 x^{-1}$.
- the remainder of the division is $-33+16 x^{-1}$

If we don't care about the remainder, we write:

$$
\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5 x-2}=+4 x+3+8 x^{-1}+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{-12 x^{3}+11 x^{2}-17 x+1}{-3 x^{2}+5 x-2}$ is not exactly equal to $+4 x+3+8 x^{-1}$ since there was a remainder.

- If we decide to continue the division, we start a new cycle

The procedure to divide polynomials is in fact a lot simpler than the procedure for dividing in ARITHMETIC:

- There is never any "carryover"
- The first term of each partial remainder has coefficient 0
- There are no Trials in Step I because, when we divide the first monomial in the divisor into the first monomial of a partial remainder, we always get a coefficient for the corresponding monomial in the quotient and the worst that can happen is that this coefficient is a fraction.
EXAMPLE 8. In order to divide $2 x^{3}+5 x^{2}-6$ by $3 x-1$ we write (in the ang/o-saxon tradition):

The quotient is
The remainder is

$$
3 x-1) \begin{array}{rr}
\frac{2}{3} x^{2}+\frac{17}{9} x+\frac{17}{27} \\
\begin{array}{r}
2 x^{3}+5 x^{2}
\end{array} \\
\frac{2 x^{3}+\frac{2}{3} x^{2}}{\frac{17}{3} x^{2}} \\
\frac{-\frac{17}{3} x^{2}+\frac{17}{9} x}{\frac{17}{9} x}-6 \\
-\frac{17}{9} x+\frac{17}{27} \\
-\frac{145}{27}
\end{array}
$$

$$
+\frac{2}{3} x^{2}+\frac{17}{9} x+\frac{17}{27}
$$

$$
-\frac{145}{27}
$$

18.5 Default Rules for Division

Since mathematicians are lazy,

- mathematicians do not write the + sign in front of the coefficients of leading monomials,
- mathematicians do not write monomials with 0 coefficient,
and, most dangerously,
- mathematicians want to write only one stage in Step III but there are two traditions concerning what then to write, as a result, in Step II:
- In the latin tradition, in Step II, we write the partial product, that is what we get it from the multiplication, and so in Step III, when it comes to subtracting, we visualize the opposite of the partial product we wrote in Step II and we oplus what we visualize. The advantage is that each line is exactly what we get from the previous operation.
Example 9.

\[

\]

- In the anglo-saxon tradition, we anticipate the subtraction to be done in Step III and in Step II we write the opposite of the partial product so in Step III we oplus what we wrote in Step II.
Example 10.

$$
\begin{array}{ccccc}
& +4 x & +3 & & \\
\cline { 2 - 5 }-3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} & -16 x & +1 \\
+12 x^{3} & -20 x^{2} & +8 x & \\
\cline { 2 - 5 } & & -9 x^{2} & -8 x & +1
\end{array}
$$

From now on we will of course follow the anglo-saxon tradition.
EXAMPLE 11. In order to compute $\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}$, we divide $2 x+1$ into $6 x^{3}+13 x^{2}+13 x+7$:
CYCLE 1. Step I. We find the first monomial in the quotient by short division:

$$
2 x+1) \frac{3 x^{2}}{6 x^{3}+13 x^{2}+13 x+7}
$$

Step II. We get the first opposite product by writing the opposite of the result of the full multiplication

$$
\text { 2x+1) } \frac{3 x^{2}}{6 x^{3}+13 x^{2}+13 x+7}
$$

Step III. We get the first remainder by oplussing the first opposite product

$$
\text { 2x+1) } \begin{gathered}
\frac{3 x^{2}}{6 x^{3}+13 x^{2}+13 x+7} \\
-6 x^{3}-3 x^{2} \\
10 x^{2} \\
\hline
\end{gathered}
$$

Step IV. We decide if we want to stop or continue the division

- If we decide to stop the division,
* the quotient of the division is $+3 x^{+2}$.
* the remainder of the division is $+10 x^{+2}+13 x$

If we don't care about the remainder, we write:

$$
\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}=+3 x^{+2}+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}$ is not exactly equal to $+3 x^{+2}$ since there was a remainder.

- If we decide to continue the division, we start a new cycle

CYCLE 2. Step I. We find the second monomial in the quotient by short division:

$$
2 x+1) \frac{3 x^{2}+5 x}{\frac{6 x^{3}+13 x^{2}+13 x+7}{-6 x^{3}-3 x^{2}}} \frac{10 x^{2}+13 x}{}
$$

Step II. We get the second opposite product by writing the opposite of the result of the full multiplication

$$
2 x+1) \frac{3 x^{2}+5 x}{\frac{6 x^{3}+13 x^{2}+13 x+7}{-6 x^{3}-3 x^{2}}} \begin{gathered}
10 x^{2}+13 x \\
-10 x^{2}-5 x
\end{gathered}
$$

Step III. We get the second remainder by oplussing the fir second st opposite product

$$
2 x+1) \begin{gathered}
\frac{3 x^{2}+5 x}{6 x^{3}+13 x^{2}+13 x+7} \\
\frac{-6 x^{3}-3 x^{2}}{10 x^{2}+13 x} \\
\frac{-10 x^{2}-5 x}{8 x}+7
\end{gathered}
$$

Step IV. We decide if we want to stop or continue the division

- If we decide to stop the division,
* the quotient of the division is $+3 x^{+2}+5 x$.
* the remainder of the division is $+8 x+7$

If we don't care about the remainder, we write:

$$
\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}=+3 x^{+2}+5 x+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}$ is not exactly equal to $+3 x^{+2}+5 x$ since there was a remainder.

- If we decide to continue the division, we start a new cycle

CYCLE 3. Step I. We find the third monomial in the quotient by short division:

$$
2 x+1) \begin{array}{r}
\frac{3 x^{2}+5 x+4}{6 x^{3}+13 x^{2}+13 x+7} \\
-6 x^{3}-3 x^{2} \\
\frac{10 x^{2}+13 x}{} \\
\frac{-10 x^{2}-5 x}{8 x}+7
\end{array}
$$

Step II. We get the third opposite product by writing the opposite of the result of the full multiplication

$$
2 x+1) \begin{array}{r}
\frac{3 x^{2}+5 x+4}{6 x^{3}+13 x^{2}+13 x+7} \\
\frac{-6 x^{3}-3 x^{2}}{10 x^{2}+13 x} \\
-10 x^{2}-5 x \\
8 x+7 \\
-8 x-4
\end{array}
$$

Step III. We get the third remainder by oplussing the third opposite product

$$
2 x+1) \begin{array}{r}
3 x^{2}+5 x+4 \\
\frac{6 x^{3}+13 x^{2}+13 x+7}{-6 x^{3}-3 x^{2}} \begin{array}{r}
10 x^{2}+13 x \\
-10 x^{2}-5 x \\
\frac{-8 x-4}{3}+7
\end{array}
\end{array}
$$

Step IV. We decide if we want to stop or continue the division

- If we decide to stop the division,
* the quotient of the division is $+3 x^{+2}+5 x+4$.
* the remainder of the division is +3

If we don't care about the remainder, we write:

$$
\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}=+3 x^{+2}+5 x+4+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{6 x^{3}+13 x^{2}+13 x+7}{2 x+1}$ is not exactly equal to $+3 x^{+2}+5 x+4$ since there was a remainder.

- If we decide to continue the division, we start a new cycle
- When writing the partial remainders, we do not write the monomials
beyond those that result from subtracting the partial product.
Example 12.

$$
\begin{array}{lllll}
& +4 x & +3 \\
& -3 x^{2}+5 x-2 & -12 x^{3} & +11 x^{2} & -16 x
\end{array}+1
$$

First opposite partial product:
First remainder:

$$
\begin{array}{ccc}
+12 x^{3} & -20 x^{2} & +8 x \\
\hline-9 x^{2} & -8 x
\end{array}
$$

$$
\begin{array}{rrrr}
\text { Second opposite partial product: } & +9 x^{2} & -15 x & +6 \\
\text { Second remainder: } & & -23 x & +7
\end{array}
$$

The danger here is that, when we do the next subtraction, we may subtract from 0 rather than from the monomial that was unwritten in the partial remainder.

18.6 Division in Ascending Powers

One major difference between arithmetic and polynomial algebra is that:

- In arithmetic, the base in the powers is always larger than one-in our case it is ten but, for instance, COMPUTER sCIENCES use TWO, EIGHT and sixteen as well.
- In polynomial algebra, the base in the powers can be smaller than ONE as well as larger than one and, while this has no effect on the procedures we use for addition, subtraction and multiplication, whether x stands for numbers larger than 1 or smaller than 1 makes all the difference in the case of division.
This is because division usually does not stop by itself and we have to decide when to stop it. But we want to make sure that, after we have replaced the unspecified numerator by a specific numerator, what we kept of the quotient will give us most of what we should get so that we want the size of the successive results to go diminishing.
Now, as we already mentioned in Chapter 15, Section 2,
- When x is to be replaced by a numerator that is going to be large in size, we will want the Laurent polynomial to be written in descending order of exponents.
- When x is to be replaced by a numerator that is going to be small in size, we will want the Laurent polynomial to be written in ascending order of exponents.
As a result, we need to be able to divide in ascending order of exponents as well as in descending order of exponents. Fortunately, the procedure is exactly the same.

EXAMPLE 13. In order to compute $\frac{-12+23 h-h^{2}-2 h^{3}}{-3+2 h}$, we divide $-3+2 h$ into $-12+23 h-h^{2}-2 h^{3}:$

$$
\begin{array}{lcccl}
& +4 & -5 h & -3 h^{2} & \\
\cline { 2 - 4 } & -12 & +23 h & -h^{2} & -2 h^{3}
\end{array}
$$

First opposite partial product:

$$
\begin{array}{llll}
+12 & -8 h & & \\
\hline & +15 h & -h^{2} & -2 h^{3}
\end{array}
$$

Second opposite partial product:
Second remainder:
Third opposite partial product:
Third remainder:

$$
\begin{array}{lll}
-15 h & +10 h^{2} & \\
\hline & +9 h^{2} & -2 h^{3} \\
& -9 h^{2} & +6 h^{3} \\
\hline & & +4 h^{3}
\end{array}
$$

- If we decide to stop the division,
- the quotient of the division is $+4-5 h-3 h^{2}$.
- the remainder of the division is $+4 h^{3}$. Observe that if we replace the unspecified numerator h by, say, 0.2 , then the remainder is equal to $4 \bullet 0.2^{3}=4 \bullet 0.008=$ 0.032 which is indeed small.

If we don't care about the remainder, we write:

$$
\frac{-12+23 h-h^{2}-2 h^{3}}{-3+2 h}=+4-5 h-3 h^{2}+(\ldots)
$$

where we write $+(\ldots)$ as a reminder that $\frac{-12+23 h-h^{2}-2 h^{3}}{-3+2 h}$ is not exactly equal to $+4-5 h-3 h^{2}$ since there was a remainder.

- If we were to decide to continue the division, we would start a new cycle

GNU Free Documentation License

Version 1.2, November 2002
Copyright ©2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as FrontCover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page
as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and BackCover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate,
the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no BackCover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Index

$+, 34,48$
$+\infty, 50$
$-, 40,48$
$-\infty, 50$
<, 26
$<$ (signed), 51
$=, 26,35,41$
$>, 26$
$>$ (signed), 51
田, 188
$\cup, 131$
ГE30F, 139
$\geqq, 26$
\geqq (signed), 51
$\leqq, 26$
\leqq (signed), 51
$\neq, 26$
$\ominus, 58$
$\oplus, 55$
\{ \}, 74
x, 78
$x_{0}, 82$
/, 6
\&, 14
..., 87
NOT [], 31
false, 74
TRUE, 74
Laurent monomial specifying-phrase, 164
accounting, 7
action, 46
add, 188
add the opposite, 58
adding, 55
addition, 36
addition of polynomials, 188
adjustment, 44
affine approximation, 208
algebra-compare, 52
algebra-less-than, 52
algebra-more-than, 52
algebraic viewpoint, 51
amount, 17
arrowhead, 12, 35, 41
ascending order of exponents, 184
assign, 209
associated equation, 81
associated strict inequation, 81
attach, 33
bar, 34,40
base, 152
basic collection, 8
basic counting, 8
basic counting number-phrase, 8
basic formulas, 82
basic problem, 83
basic succession, 8
benchmark, 46
between, 121
beyond, 130
binomial, 198
blank, 73
boldfaced, 5
BOTH, 119
boundary, 91
boundary (of an exterval), 131
boundary (of an interval), 121
boundary point, 91
boundary points (of an exterval), 131
boundary points (of an interval), 121
bracket in-line template, 161
cancel, 46
cancel out, 44
change, 60
co-denominator, 66
co-multiplication, 66
co-number-phrase, 67
code, 79
coefficient, 152, 175
collect, 5
collection, 5
combination-phrase, 14
common base, 165, 168
compare, 21
condition, 119
connected, 119
connector, 119
consecutive, 185
constant approximation, 208
context, 48
continue, 213
copy, 153
count, $7,8,19$
count from ... to ..., 19
count-down, 20
count-up, 20
counting number-phrase, 7
curly brackets, 74
cycles, 213
data set, 74
degree, 46
denominator, 5, 17
descending order of exponents, 184
detach, 39
digit, 7
diminishing, 186
direction, 19
direction (of an action), 47
dividend, 210
division, 210
divisor, 210
dot, hollow, 84
dot, solid, 84
double basic problem, 119
double ray, 131
dual, 32
duality (linguistic), 31
EITHER ONE BUT NOT BOTH, 119
EITHER ONE OR BOTH, 119
empty, 77, 85
end-digit, 8, 19
endless, 10
enter, 73
equality, 28
equation, 78
equation, affine, 115
equation, basic, 82
equation, dilation, 111
equation, original, 101
equation, reduced, 101
equation, translation, 103
equivalent, 101
evaluate, 67, 185
except, 139
extend, 68
extended collections, 10
extended counting, 10
extended succession, 10
extent (of an action), 47
exterval, 131
false, 30
final state, 60
follow up, 54
form, 73
formula, 78
formula, affine, 115
formula, associated, 81
formula, dilation, 111
formula, translation, 103
fraction bar, 161
fraction-like template, 161
full, 77,86
gain, 60
gauge collection, 75
gauge numerator, 82
gauge-numerators, 121
graph, 12, 84
graph (to), 12
half-line, 92
hold (to), 21
identification-sentence, 35,41
identify, 35,41
illustrate, 12
in-line template, 155
incorrect, 43
index, 5
inequality (lenient), 29
inequality (plain), 28
inequality (strict), 29
inequation, 79
inequation, affine, 115
inequation, basic lenient, 83
inequation, basic simple, 82
inequation, basic strict, 83
inequation, dilation, 111
inequation, translation, 103
infinite, 87
infinity, 93
initial state, 60
instruction, 73, 79
interior, 91
interior (of an exterval), 131
interior (of an interval), 122
interval, 121
invoke, 101
involution, 151
is less-than-or-equal-to, 26
is more-than-or-equal-to, 26
is-different-in-size-from, 22
is-equal-to, 26
is-farther-away-from-the-center, 53
is-larger-in-size-than, 23, 53
is-left-of, 52
is-less-than, 26
is-more-than, 26
is-no-larger-than, 24
is-no-smaller, 24
is-not-equal-to, 26
is-right-of, 52
is-smaller-in-size-than, 23, 53
is-the-same-in-size-as, 22
item, 5
kind (of half-line), 94
label, 12
Laurent monomial, 175
Laurent polynomial, 183
leftover, 21
leftovers, 210
length (of a count), 21
lenient verbs, 26
like monomials, 188
loss, 60
margin, 5
match one-to-one, 21
mathematical language, 4
meet, 73
merge, 54
minus, 40
minus infinity, 50
missing power, 185
monomial, 174
monomial specifying-phrase, 162
monomial term, 174
mutually exclusive, 23
name, 84
nature (of a collection), 6
nature (of a state), 47
nature (of an action), 47
near, 197
negation, 31
negative, 48
negative numerators, 48
non-solution, 75
nonsense, 73
noun, 73
number, 6
number-phrase, 6
number-phrase, decimal, 17
numerals, 10
numerator, 6
numerator, decimal, 17
operation, 33
operator, 34
opposite, 32
opposite direction, 48
opposite side, 48
OR, 120, 130
outcast, 43
parent-entries, 207
partial product, 211
partial remainder, 211
PASCAL TRIANGLE, 207
pattern, 205
percentage, 67
pick, 9
picture, 5
plain exponent, 152
plain monomial, 175
plain monomial specifying-phrase, 164
plain number-phrases, 45
plain polynomial, 187
plus infinity, 50
polynomial, 187
positive, 48
positive numerators, 48
power, 175
precession, 20
problem, 74
problem (of type BEYOND, 131
problem, affine, 115
problem, dilation, 110
problem, double basic equation, 120
problem, of type BETWEEN, 121
problem, translation, 103
procedure, 3
process, 3
quadratic approximation, 208
quality, 7
quantity, 7
quotient, 210
rank, 212
ray, hollow, 93
ray, solid, 92
record, 48
reduce, 101
reduced, 183
relationship, 21
remainder, 211
repeat, 151
replace, 79
represent, 5
require, 75
requirement, 73
result, 33
resulting collection, 33, 39
round, 209
round parenthesis, 93
ruler, 12
section, 92
segment, 122
select, 73, 75
select subset, 76
sentence, 74
sentence (comparison), 26
separator, 162
set, 14
set of selectable collections, 75
share, 210
shorthand, 7
side (of a state), 47
sign, 48
sign, of the numerator, 49
signed co-multiplication, 69
signed co-number-phrase, 68
signed exponent, 162
signed number-phrase, 47
signed power, 162
signed ruler, 50
signed-numerator, 48
simple, 22
size, 49
size (of a collection), 6
size (of a state), 47
size viewpoint, 53
slash, 6, 31
small, 197
solution, 75
solution subset, 75
sort, 14
specifying-formula, 78
specifying-phrase, 34
split equality, 165
square bracket, 93
staggered template, 153
standard direction, 48
standard side, 48
start-digit, 19
state, 46
step, 46, 213
stop, 213
strict, 23, 26
strike out, 43
string, 6
stuff, 17
subtract, 59
subtraction, 42
superscript, 162
symmetry (linguistic), 31
table multiplier, 213
table product, 213
term, 173
term, constant, 115
tick-marks, 12
trial and error, 211
true, 30
try, 211
two-way collections, 46
union, 131
unit-value, 65
unit-worth, 65
unspecified numerator, 82
unspecified-numerator, 78
value, 65
verb, 26
vertical bar, 79
worth, 65

[^0]: ${ }^{1}$ Educologists who deem the footnotes "inflammatory" need only uncomment "renewcommand-footnote" in the ADJUSTMENTS TO DOCUMENT to turn them off.

[^1]: ${ }^{2}$ Otherwise known, these days, as "developmental" students.
 ${ }^{3}$ For instance, students who wish eventually to learn Differential Calculus, the "mathematics of change", face five or six semesters with chances of overall success of no more than one percent.
 ${ }^{4}$ See John Holt's classic How Chidren Fail, Delacorte Press,1982.
 ${ }^{5}$ See Zoltan P. Dienes, for instance Building Up Mathematics.

[^2]: ${ }^{6}$ See Liping Ma's Knowing and Teaching Elementary School Mathematics.

[^3]: ${ }^{7}$ H. B. Fine, College Algebra, reprinted by American Mathematical Society Chelsea,

[^4]: ${ }^{10}$ See Stephen E. Toulmin, The Uses of Argument Cambridge University Press, 1958
 ${ }^{11}$ Philip E. Ross, The Expert Mind. Scientific American, August 2006.

[^5]: ${ }^{12}$ Colin McGinn, Homage to Education, London Review of Books, August 16, 1990

[^6]: ${ }^{0}$ Bulletin of the AMS, Vol 47 Number 1 Pages 139-144

[^7]: ${ }^{2}$ In spite of which this is precisely the point where, in the name of "abstraction", Educologists cut their students away from denominators without noticing, of course, that this is exactly the point where they start losing them.

[^8]: ${ }^{3}$ Z. P. Dienes always used to start his workshops with second graders, base-THREE arithmetic blocks and the digits $0,1,2$.

[^9]: ${ }^{4}$ Educologists will be glad to measure the progress accomplished since Chrystal's Textbook of Algebra infamous opening: "The student is already familiar with the distinction between abstract and concrete arithmetic. The former is concerned with those laws of, and operations with, numbers that are independent of the things numbered; the latter is taken up with applications of the former to the numeration of various classes of things."

[^10]: ${ }^{5}$ At worst, one can wonder if educologists are not just confusing the two worlds.

[^11]: ${ }^{1}$ Educologists will be glad to know that, already in 1905 , Fine was using the cardinal aspect for comparison processes in the real world and the ordinal aspect for comparison procedures on paper.

[^12]: ${ }^{2}$ This confusion is a most important linguistic stumbling block for students and one that Educologists utterly fail to take into consideration.

[^13]: ${ }^{1}$ One can only wonder as to how Educologists can let their students use, without warning, the same symbols in these rather different situations.

[^14]: ${ }^{1}$ Educologists will of course have recognized number-phrases and co-number-phrases for the vectors and co-vectors that they are-albeit one-dimensional ones.

[^15]: ${ }^{1}$ Although supposedly exceedingly concerned with the relevance of mathematics to the "ordinary life" of their students-as opposed to their "school life" one can only suppose, but judging by the textbooks they produce in vast numbers, Educologists are strangely indifferent to the fact that, in the real world, inequations are vastly more prevalent than equations.

[^16]: ${ }^{1}$ The author fervently hopes that Educologists will not object to this term. While decidedly unheard of - so far, it makes perfect sense, at least etymologically.

[^17]: ${ }^{1}$ Educologists will surely deplore this departure from the usual "modern" treatment. Yet, it is difficult to see how conflating unary operators and binary operations can be helpful.

[^18]: ${ }^{2}$ Educologists will correctly point out that while $1 \times$ can "go without saying", this is really where multiplication as a binary operation comes in.
 ${ }^{3}$ Educologist will point out that, essentially, this is just the fact that, instead of dividing by a numerator, we can multiply by its reciprocal.

[^19]: ${ }^{1}$ Educologists will have recognized multiplication as a binary operation.

[^20]: ${ }^{2}$ Educologists will of course approve of letting the students "experience" the amount of work being saved by having them do it both ways for a while.

[^21]: ${ }^{1}$ But then of course, since Educologists have a deep aversion to denominators, they are sure to disagree.

[^22]: ${ }^{1}$ Educologists will surely claim that this procedure is way beyond the feeble mind of their students. Yet, it seems to be the one taught in most of the world and the procedure that uses "full multiplication" seems to be taught mostly, if not only, in the U.S..

