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  In this paper we will consider an optimization problem on an exponential 

function with the sum of divisors function. This result is very important at 

the study of the distribution of the prime numbers. This paper is a 

continuation of [6].   

 

Assume that ( 1 2, , , m )λ λ λ λ=  are real numbers and .  1 2 1mλ λ λ≥ ≥ ≥ ≥

Let be consecutive primes. We will choose 1 22, 3, , ,mp p p= = mp  

arbitrarily and fix it. 

We define functions ( )F λ and ( )H λ  respectively by   
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where 0.577γ =  is Euler’s constant ([2,5]).  

We shall show an existence of the optimum points of the function ( )H λ  in 

the m -dimensional real space mR and we will estimate the optimum points.   

 

1. An existence of the optimum points 

In this section we will show that the function ( )H λ  has an optimum point 

in the space mR . The maximum value theorem of the continuous function is 

used here. We get 

Theorem 1. There exist ( )0 0 0
0 1 2, , , m

m Rλ λ λ λ= ∈ such that for any 

( )1 2, , , m
m Rλ λ λ ∈  we have ( ) ( )0H Hλ λ≤ , that is,   
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Proof. We put and[ )1 1,R+ = +∞ 1 1m 1R R R R+ + + += × × × . Then we have 

( ) 0H λ >  for any mRλ +∈ . And the function ( )H λ is continuously 

differentiable in mR+ . We set 0 1
1
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Then both  and  are constants. And we have0F 0H ( ) 0F Fλ ≤ and 

( ) 0H λ ≤ H  for any mRλ +∈ . This shows that the function ( )H λ  is bouned 

in mR+ . So there exists a constant  such that the function 1a > ( )H λ  is 

bounded and continuous in a bounded and closed set 

[ ] [ ] [ ]1, 1, 1, ma a a R+= × × × ⊂∏ . Therefore the function ( )H λ  has a 
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maximum value in the set ∏ , because the set ∏ is a compact in the 

space mR . Now let ( 0 0
0 1λ λ= )0

2, , , mλ λ ∈∏ be the optimum points of 

( )H λ . Then the points ( )0 0 0
0 1 2, , , mλ λ λ λ=  are the optimum points of 

( )H λ  in the whole space mR+ .  In fact, if it is not then we can take a bigger 

 again, since for any (1a > )1 2, , , m
m Rλ λ λ ∈  it holds that  
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These show that there exist optimum points of the function ( )H λ  in the 

space mR+  and the maximum value of ( )H λ  is not exceeded the constant . 0H

    

 

 

2. The estimate of the optimum points 

In this section we will estimate the optimum points ( )0 0 0
0 1 2, , , mλ λ λ λ=  of 

the function ( )H λ  obtained from the theorem 1. The optimization problem 

of the function ( )H λ  with the constraints of the certain inequalities is 

discussed here. We obtain 

Theorem 2. Assume that . Then for the optimum points 5mp ≥

( 0 0 0
0 1 2, , , m

m ) Rλ λ λ λ= ∈  of the function ( )H λ  in the space mR  we have; 

  ① There exist some 0
iλ  in { }0 0 0

1 2, , mλ λ λ such that 0 1iλ = . In particular,  
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        we have . 0 1mλ =

  ② There exist some 0
iλ  in { }0 0 0

1 2, , mλ λ λ such that . In particular,  0 1iλ >

        we have . 0
1 1λ >

 ③ There exists a number  such that   k

                                  .                       (6) 0 0 0 0 0
1 2 1 1k k mλ λ λ λ λ+> > > > = = =

       In particular, for any (1i i k )≤ ≤  we have  
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Proof. Practically, the optimum points ( )0 0 0
0 1 2, , mλ λ λ λ=  of ( )H λ  in the 

theorem 1 are given under the constraints with the inequalities 

( ) (1 0 1,2, ,i ig iλ λ= − ≤ = )m  in the space mR . In other words, the 

( 0 0 0
0 1 2, , , m )λ λ λ λ=  is a solution of the following optimization problem;   
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without the constraints, where ( )1 2, , m
m Rµ µ µ µ= ∈  are an undetermined 

multipliers. Since the solution ( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈ of the problem (8) 

exists, a solution ( ) 2
0 0, mRλ µ ∈  of the problem (9) exists.  And 

( ) 2
0 0, mRλ µ ∈  satisfies the equations  

                            
( )

( ) ( )

0 0 0

0 0 0

0, 1 0,
.

0, 1 0, 1,2, ,

i i
i

i i i

H

i m

λ
µ λ

λ

µ µ λ

⎧ ∂
⎪ + = − ≤⎪ ∂⎨
⎪ ≥ ⋅ − = =⎪⎩

               (10) 

 4  



From this we obtain some results.   

 First, if  then there exist some 5mp ≥ 0
iλ  in { }0 0 0

1 2, , mλ λ λ such that .  

In particular, we have . 

0 1iλ =

0 1mλ =

In fact, if we assume that  for any 0 1iλ > ( )1i i m≤ ≤  then we have  

for any  from

0 0iµ =

( )1i i m≤ ≤ ( )0 01i iµ λ 0⋅ − = of (10). So we have 
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We should calculate the term 
( )0 0

i
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∂
. First we have   
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Next, we have  
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Therfore for any  we have  (1i i m≤ ≤
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 (14) 

Hence we have  
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In particular, if  then we have    0 1mλ >
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On the other hand, by the Mertens’ theorem [5], it is known that for   2mp ≥
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Hence we have 
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In particular, if then for0
1 1λ = 5mp =  we have   
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This is complet proof of the theorem 2.     

  

The last bigger number k  than 1 in the optimum points { }0 0 0
1 2, , , mλ λ λ  of 

the function ( )H λ  is special important. We will here discuss ,k kpλ  and  

in detail. In the furture, we assume that . We have  
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Theorem 3. For the number k  such that  we have;   0 0 0
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 Proof. First, The last bigger point 0
kλ  than 1 in the optimum points 

{ }0 0 0
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Hence we have  
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On the other hand, from [3] it is known that   
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And form (35) we have  
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and .  ( )0 1k mpλ →∞∼

Next, we will estimate the -th prime number k kp . 

We can write as  

                           

00

0

0

11
21

1

kk

k

k

k
k k k k k

k

p
p p p p p

p

λλ
λ

λ

⎛ ⎞++ −⎜ ⎟⎜+ ⎝

+
= ⋅ = ⋅ ⋅

⎟
⎠                          (45) 

and from (39) we get  

                                       ( )0
11 1

2 2
kk .

pελ +
= +                                           (46) 

So we have   

                       
( ) ( )

(
0

1 11
1

2 2 2
11

k k kp p

k k k k k k )p p p p p
λ ε ε

ε
⎛ ⎞+ ⎛ ⎞ ⎛ ⎞

−⎜ ⎟ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ′⋅ = ⋅ = = + p ,        (47)  

where ( ) ( )( ) 1
1 1log k k

k k k
k

p pp p p
p

ε ε +⎛ ⎞−′ = ⋅Ο = Ο⎜ ⎟
⎝ ⎠

.      
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From this we get 

                       

( )

( )( ) ( )( )
( )( )

1
0 21

1

2

log 1 1

log 1 ,

k

k

p

k k k

m m m k

m m m

p p p

p p p p

p p p

ε
λ

ε ε

ε

⎛ ⎞
−⎜ ⎟⎜ ⎟+ ⎝ ⎠= ⋅ =

′= ⋅ ⋅ + ⋅ +

= ⋅ ⋅ +

=                  (48) 

where ( ) ( )( ) ( )( )2 1
11 1 1

logm m k
m

p p p
p

ε ε ε
⎛ ⎞

′= + ⋅ + − = Ο⎜
⎝ ⎠

⎟ .                 (49) 

In consequence, we have              

                                   ( )logk m m mp p p p⋅ → ∞∼ .                        (50) 

 From (48) and (49) we have  

   

( ) (( ))
( )( )

( )( )

2

2

2

1log log log log log 1
2

log 1log log1 log 1
2 log log

1 log 1 ,
2

k m m m

mm
m

m m

m m

p p p p

ppp
p p

p p

ε

ε

ε

= ⋅ + + + =

⎛ ⎞+
= ⋅ ⋅ + +⎜ ⎟⎜ ⎟

⎝ ⎠

′= ⋅ ⋅ +

=            (51)     

where  

                     
( ) ( )( )2

2

log 1log log
log log

log log .
log

mm
m

m m

m

m

ppp
p p

p
p

ε
ε

+
′ = +

⎛ ⎞
= Ο⎜ ⎟

⎝ ⎠

=
                       (52) 

And we have   

                                      (1log log
2k m mp p p )⋅ → ∞∼ .                          (53) 

Finally, we will estimate the number . k

Now we recall the function ( ) 1
p x

xπ
≤

=∑  ([1,2]). This function ( )xπ  is the 

number of primes not exceeding the given real number x . By the prime 

number theorem ([2]), it is well known that  
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                                            ( ) ( )(1
log

x )x x
x

π = +δ ,                               (54)    

where ( ) 1
log

x
x

δ
⎛ ⎞

= Ο⎜
⎝ ⎠

⎟ . Thus from (48) and (51) we have   

         

( ) ( )( )

( )( )
( ) ( )( ) ( )( )

( )( )
( )( )

( )( )

( ) ( )( ) ( )( )
( )( )

( )( )

2

2

2

2

1/ 2

2

2

1
log

2 log 1
1

log log log log 1

1
2 1

log log 1log log1
log log

2 1 1

1

log 1log log1
log log

k
k k

k

m m m
k

m m m

mm
k

m mm

m m

m m k

m

mm

m m

pk p p
p

p p p
p

p p p

pp p
p pp

p p

p p p

p

pp
p p

π δ

ε
δ

ε

ε
δ

ε

π δ δ

ε

ε

−

= = ⋅ + =

⋅ ⋅ ⋅ +
= ⋅

+ + +

+
= ⋅ ⋅ ⋅ + =

⎛ ⎞+
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

= ⋅ ⋅ + ⋅ + ×

+
× =
⎛ ⎞+
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

+ =

( )( )32 1 ,mm pε= ⋅ ⋅ +

     (55) 

where 

                       

( )( ) ( )( ) ( )( )
( )( )

( )( )

1/ 2
3

2

2

1 1 1

1

log 1log log1
log log

log log1
log

m m k

m

mm

m m

m

m

p p p

p

pp
p p

p
p

ε δ δ

ε

ε

−
+ = + ⋅ + ×

+
× =
⎛ ⎞+
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= +Ο⎜ ⎟
⎝ ⎠

               (56) 

From this we have  

                                       log log2 1
log

m

m

pk m
p

⎛ ⎞⎛ ⎞
= ⋅ +Ο⎜ ⎜⎜ ⎝ ⎠⎝ ⎠

⎟⎟⎟                             (57)     

and 

                                            ( )2 mk m p →∞∼ .                                      (58) 
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This is the proof of theorem 3.    

 

Note. In the proof of the theorem 1, we have taken a certain suitable 

constant  determining the region 1a > mR+⊂∏  such that there exist the 

optimum points ( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈  of the function ( )H λ .  

Let’s estimate the size of the constant .  1a >

In general, since , it is sufficient to take a constant 

such that . On the other hand, since     

0 0 0
1 2 1mλ λ λ≥ ≥ ≥ ≥

1a > 0
11 aλ< ≤

                           
( )( ) ( )( )

( )( )

0
1 1

1 0 0exp 1

log 1 ,m m m

p e F e F

p p p

λ γ γλ λ

ε

+ − −= ⋅

= ⋅ ⋅ +

+ =
                      (59) 

we get  

( )( )0
1

1

log log
1

log
m m mp p p

p
ε

λ
⋅ ⋅

= − . 

 Hence we can take the constant  as   1a >

                                      
1

log log log 1
log

mp pa
p

m+
= + .                                (60) 
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