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In this paper we will consider an optimization problem on an exponential
function with the sum of divisors function. This result is very important at
the study of the distribution of the prime numbers. This paper is a

continuation of [6].

Assume that 1 =(4,,4,, -+, 4, ) are real numbers and 4, > 4, >---> 1, >1.

>
Let p,=2,p,=3,--,p,, - be consecutive primes. We will choose p,
arbitrarily and fix it.

We define functions F (I ) and H (I ) respectively by
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where y =0.577--- is Euler’s constant ([2,5]).

We shall show an existence of the optimum points of the function H (I ) in

the m -dimensional real space R™and we will estimate the optimum points.

1. An existence of the optimum points

In this section we will show that the function H (/T ) has an optimum point

in the space R™. The maximum value theorem of the continuous function is

used here. We get

Theorem 1. There exist /TO=(/110,ﬂf,---,ftﬁ)eR"1 such that for any

(4, A+, A ) € R™ we have H (/T)S H (/T()),thatis,
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Proof. We put R; =[l, +) and R =R} xR x---xR; . Then we have

H (Z )>0 for any A eR" . And the function H (/T ) is continuously

m exp(exp(e™” -F
differentiable inR". We set F, :H% and H, = ( ( 0)) :
i:ll_pi Pr Py Py

Then both F, and H, are constants. And we have F(Z )S F, and

H (/T ) <H, for any A € R". This shows that the function H (Z ) is bouned

in R:". So there exists a constant a >1 such that the function H (/T ) is

bounded and continuous in a bounded and closed @ set

H:[l, a]x[l, a]x---x[1, a]= R . Therefore the function H (/T) has a



maximum value in the set H , because the set H is a compact in the
space R™. Now let A, =(21°, 220,---,/1,?1)61_[ be the optimum points of
H (/T ) Then the points A, :(210, A ,---,/L?,) are the optimum points of
H (Z ) in the whole space R]". In fact, if it is not then we can take a bigger

a>1 again, since for any (21, Ay A ) e R™ it holds that
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These show that there exist optimum points of the function H (/T ) in the

(4)

and

space R and the maximum value of H (/T ) 1s not exceeded the constantH .

[

2. The estimate of the optimum points

In this section we will estimate the optimum points A, = (/LO, /120,---,/1;1) of
the function H (/T ) obtained from the theorem 1. The optimization problem

of the function H (Z ) with the constraints of the certain inequalities is

discussed here. We obtain

Theorem 2. Assume that p,>5 . Then for the optimum points
/TO = (/110, lf,-'-,ﬂg)e R™ of the function H (Z) in the space R™ we have;

@ There exist some A° in {/LO, ﬂ;,---ﬂrﬁ} such that A" =1. In particular,



we have 1) =1.
@ There exist some A’ in {/LO, A ,---lrﬂ} such that 4’ > 1. In particular,

we have A >1.

(3 There exists a number k such that

B >H > > B> Ay == =1 (6)

In particular, for any i (1 <i< k) we have

/’LIO — IOg pm + lOg log pm -11+0 1 . (7)
log p; log p, log p; -log py,

Proof. Practically, the optimum points A, = (/110, A ,~--/1n2) of H(Z) in the
theorem 1 are given under the constraints with the inequalities

gi(Z)=1—ﬂ,, <0 (i:1,2,---,m) in the space R™. In other words, the

Ay = (210, A, -,xlr?,) is a solution of the following optimization problem;

-H (4, 4, 4,) > min
_ _ (8)
g;(4)=1-24<0 (i=12,-,m).
And this problem (8) is equivalent to the problem
L(Z, &)= (~H (2))+ X 4-9, (7) > min )
i=1

without the constraints, where u = ( J7ARTAREE ,um) € R™ are an undetermined
multipliers. Since the solution 4, = (210, A A0 ) e R" of the problem (8)
exists, a solution (/TO, /_10) eR’™ of the problem (9) exists. And

(ZO, ,EO) € R™™ satisfies the equations

OoH (A,
M.,.MO =0, 1-4’ <0,
oA . (10)

w20, pu-(1-47)=0, (i=1,2,-,m)



From this we obtain some results.

First, if p,, >5 then there exist some A’ in {/110, ﬂ,f,/lr?]} such that 1’ =1.
In particular, we have 1° =1.

In fact, if we assume that A’ >1 for any i (1<i<m) then we have 1 =0
i y i

OH (4
for any i (1<i<m) from ,uio-(l—ﬂ,lo)=00f(10). So we have #=O
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So we have

for any | (lSiSm) from + 4 =0o0f (10).

We should calculate the term =0. First we have
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Next, we have

=(p{* - Pl ot por ) (P log py) = (13)
=(p* - pi - pi ) log p,

Therfore for any (1 <i< m) we have

oH (4,)
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Hence we have

pit = == =
(e F(R)) ew(e F(A) o1 -
In particular, if 4] >1 then we have
prr = (e F (%)) -exp(e 7 F (&)1 (16)

On the other hand, by the Mertens’ theorem [5], it is known that for p, >2
(e7-F(%))=log pn+& () (17)

1
log p,

where &, (p,,) = O( ] Therefore we have
(e_7 -F (/To))-GXp(e‘y -F (ZO))+1 =
- (tog by +2,(p.)) exp(1og By + () +1-

£, ( Py
=log p,, [Hﬁ] P -exp(&y (Pn))+1=

(18)
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& (Pn) 1
= p,-log p, -([Hgg—m]-exp(é‘o(pm))*m]:

= P, -log - (1+2(pn))-
where

(19)

pm'log pm'(1+g(pm))

2

Pm
decreasing as p, — oo and f(2)<4.78, f(3)<1.79, f(5)<0.87.

Put f(p,)= then the function f (p,,)is monotone



P, -log p,-(1+2(py))

2

P

Hence we have <1 for any p, 25. From this we

have

P! < p,-log P, - (1+2(py)) < o (20)
but it is contradictive to A> > 1. Therefoer we must obtain 4° =1.
Similarly, if p,, -log p,-(1+&(p,))< Ps, then we have 4, =1.
In general, if there is a number j (1 <j< m) such that

Py -log P, -(1+£(Pn)) < P} (21)

then we have A =1. This is the proof of .
Second, if p,>5 then there exist some 4’ in {/LO, A, --,i,g} such

that A” >1, in particular 4’ >1. In fact, if we assume A’=1 for any

i (1<i<m) then we have Mz—yPSO from 4 >0 and
o (/10)+,ui°:0 of (10). Hence we have
o2
GH(_O):H(Z). (e7-F(&))-exp(e”-F(&))- L l]<o
0% ° ° V-
(22)
Hence for any i (ISiS m) we have
o =(e7 - F(%))-exp(e” - F(%))+1. (23)
On the other hand, if 2,,0 =1 forany i (I =12, -,m) then we have
M ]—p AT m_p?
F(io)znll_plpi—l - 1_3—1 =
|: i i=1 i (24)
= [1+Lj—>oo (m— o)
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In particular, if A’ =1then for p, =5 we have
2° > e‘7(1+lj-(1+lj-(l+lj X
2 3 5
- 1 1 1
X exp| e 7(1+—j-(1+—]-(1+—j +1>5.22.
2 3 5

But it is constradictive. This is the proof of @

(25)

Finally, if p, >5 then there exist some A’ in {110, /120,/1r?,} such that

A’ >1and there exist some A’ in {/110, Ay, /”tg} such that 4" =1. So we put
ﬂ’l?+1=2'1?+2=”'=ﬂ’r?1=1' (26)
Then the remaining {/110 A A } satisfy an equations
1);1+1 — ;124—1 . — p;jkﬂ _

= (e”F (/T()))-exp(e”F (/TO))+1

since 4’ >1 for any i (1<i<k). From (27) for any i, j (1<i<j<k)we

(27)

have p/ ! = pjﬂ?+1 , hence we get
(4’ +1)-log p; = (4] +1)-log p; > (4] +1)-log p (28)
and A" > /1]_0 . Therefore we have

ﬂ10>120>...>j/£>j1?+1=...=ﬁ:1=]_ (29)
And from (27) we have

o = F () (e F (7)) 1

= pm'log pm'(1+g(pm))

= p, log pm(1+0( ! D
log p,,

(30)

Therefore we have



log p,, +loglog p 1
A= o ™1 [+——-log(1 =
| ( log p, )+log P og(1+¢(pn)

_[logpy,  loglogp, | 4 1 .
log p; log p; log p; -log p,

This is complet proof of the theorem 2. []

€2))

The last bigger number K than 1 in the optimum points {210, A ,'--,/?,n(i} of

the function H (Z ) is special important. We will here discuss 4,, p, and k
in detail. In the furture, we assume that p, >5. We have

Theorem 3. For the number k such that 4’ >4’ > 4., =1 we have;

®/1£=1+o[ ! J (32)
log py,

@ pk:‘\/ pm'log pm£1+o(log1p j]> (33)

® k=zﬁ.(l+o[%n (34)

log p,,
Proof. First, The last bigger point 4’ than 1 in the optimum points

{110, A ,---,lr?,} of the function H (/T ) is estimated as follows.

Since 4. >1 we have

p; < pf‘?“ :(e_yF(Z()))-exp(e_yF(ﬂ_,o))+1:

(35)
= Py -log P, -(1+£(Py)) < Pras-
Hence we take the logarithm of the both sides from (35), then we get
lo -lo \1+¢
(0+1)- g(pn-logp,-(1+£(py))) 56

log p,

and



log( Py -log Py - (1+2(Pn)))
log py
So from (36) and (37), we have

<2. (37)

i log( P, -log P, -(1+2(pn)))

2 -1=(20+1)-2 -2
( ) log p,
§ log( P, -log p, ~(1+$( pm))) ~ log( Pn -10g Py, '(1+5( pm))) - (38)
B log p, log .
. lOg( P log Pr -(l—l—g( pm))) (log Pys1 _ 1]<
IOg pk+1 IOg pk -
< 2'(log P —log py J _ 2 .(loghj =
log p, log p, P
- -log(1+—p"“ P ]:
log py P«
2
_ 2 . (pk+1_pkj+o[pk+l_pkj )
log py Py Py
Hence we have
A =116(p). (39)
Py — Py
where g (p, )=0| ——|.
1( k) (pk-logka
On the other hand, from [3] it is known that
P — P =O( (), (40)

11 1 6
here 0=—-6, 0 <— ([4 0=—+c¢, 0([3)).
where 0 34 ([4]) or T g, €>0([3))

Thus it is easy to see that p, ~ p,,, (pk —)oo). Hence there is a constant

O<a=1-60<1/2 such that

/1k°=1+0( (41)

P, -log pk].
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And form (35) we have

P <P log Py -(1+£(py)) < P

Therefore we have

A :1+gl(pk):1+0(;]:

P, -log p,

:1+O(%j=1+0( i ]:
pk pk+1

=1+0 1 a2 | =
(pn-log p,-(1+2(py))) J

=1+0 ! — :1+O[ ! j
(pm'log pm) IOg P

This shows that

and 4 ~1(p, > ).
Next, we will estimate the Kk -th prime number p, .

We can write as

P = Py~ o plffﬂ'pk'pk

“

pi
and from (39) we get
/11?+1:1+51(pk)
2 2
So we have
_ A+ | 1+M _[fl(pk)j
2 ’
Db =pop T =pt T =1+(p),

where gl'(pk):log Py O(gl(pk))zo( Piat — pkj

11

(42)

(43)

(44)

(45)

(46)

(47)



From this we get

gl(Pk)]

= P logp,(1+2(p,)) - (1+4/(p,)) = (48)
=Py -logp, -(1+5,(P,))
, 1
where 82(pm)= (1+€(pm)).(1+gl(pk))—l:0[log pmj. (49)

In consequence, we have

pk~‘\/ pm'log Pm (pm—)OO) (50)

From (48) and (49) we have
1
log p, 25-(10g p, +loglog pm)+log(l+g2 (Pn )) =

log (1
:%-log pm.£1+logl°g Po og( +€2(pm))}= (51)

log p, log p,

—+log py-(1+£1(p)).

where
g! (p ): loglog pm + 10g(1+82(pm)) —
T logp,, log p,, 52)
log p,,
And we have
1
lOg pk~5'10g P (pm—)OO) (53)

Einally, we will estimate the number K .
Now we recall the function 7 (x)= 1 ([1,2]). This function 7(X) is the

p<x
number of primes not exceeding the given real number x. By the prime

number theorem ([2]), it is well known that

12



7(x)=——(1+5(x)), (54)

_logx

1
log X

where &(X) = O( j . Thus from (48) and (51) we have

k=7(p)= 1ogkpk (1+a(p))=

2. pm'logpm'(l—i—gz(pm))

- ))'(1+5(pk)):

(log p,, +loglog pm)+log(1+$2 (Pn

_ / Pn (ng(pm)) (14 _
=2 log p,, (H_loglogpm+10g(1+€2(pm))] (1 5(pk))

log p, log p,

(55)

=2-\Jz(p,)-(1+5(py)) -(1+5(p.))x
(1+gz(pm))

(1—1— loglog p,, N 10g(1+52 (Pn ))J

X

log p, log p,

:2.\/5.(1+83(pm)),

where

(1+2,(pn))=(1+8(pn)) " -(1+8(p))

. (1+<~92 ( pm)) _ (56)
(1+ loglog p,, N log(l—i-gz ( pm))J

log p,, log p,,

:1+O(loglog pmJ
log p,,

From this we have

k=2vm ~[1+o{k’glipmn (57)

log p,,

and

k~2vm (p, > ). (58)
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This is the proof of theorem 3. []

Note. In the proof of the theorem 1, we have taken a certain suitable

constant a >1 determining the region H c R such that there exist the
optimum points A, = (ﬂ,lo, A A ) € R"™ of the function H (/T)

Let’s estimate the size of the constant a >1.

In general, since A’ >A) >---> A’ >1, it is sufficient to take a constant

a>1such that 1< A’ <a. On the other hand, since

pll'oﬂ =(e_7F (Z()))-exp(e_yF (ZO))+1 =

(59)
= Pn log P '(1+g(pm))5
we get
0 _ lOg( P IOg P 'g( pm)) 1
log p,
Hence we can take the constant a >1 as
azlog p,, +loglog pm+1‘ (60)

log p,
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