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Parametric Likelihood Inference

Xuan Yao

Maximum likelihood principle is one of the milestones in statistical literature in the past century. Here
we give a brief review of the parametric likelihood inference. Throughout, we consider the following random
sample from a known p.d.f. with unknown parameter θ0:

X1, . . . , Xn
i.i.d.∼ f(x; θ0) (1)

with the actual observations (realizations)

x1, . . . , xn. (2)

1 Likelihood Function

Likelihood is the probability of observing the data we observed. Thus, for random sample (1) - (2) the
likelihood is given by

P{X1 = x1, . . . , Xn = xn} =

n∏
i=1

P{Xi = xi}. (3)

As follows, we discuss (3) for discrete and continuous p.d.f., respectively.

Case 1: If f(x; θ0) in (1) is discrete, we have P{X = x} = f(x; θ0); in turn, equation (3) becomes

P{X1 = x1, . . . , Xn = xn} =

n∏
i=1

f(xi; θ0). (4)

Case 2: If f(x; θ0) in (1) is continuous, for a small constant δ > 0, we have P{X = x} ≈ P{x− δ < x < x+ δ};
in turn, equation (3) becomes

P{X1 = x1, . . . , Xn = xn}

≈
n∏
i=1

P{xi − δ < Xi < xi + δ} =

n∏
i=1

[FX(xi + δ; θ0)− FX(xi − δ; θ0)]

=

n∏
i=1

[2δf(ξi; θ0)] = (2δ)n
n∏
i=1

f(ξi; θ0)

≈ (2δ)n
n∏
i=1

f(xi; θ0), (5)

where FX(x; θ0) is the d.f. corresponding to f(x; θ0), ξi is between (xi− δ) and (xi + δ) and we assume
f(x; θ) is continuous in x. Thus, equation (5) shows that likelihood (3) is approximately proportional
to
∏n
i=1 f(xi; θ0).

Based on (4) and (5), the likelihood function for θ0 with random sample (1)-(2) is defined as

L(θ; x) =

n∏
i=1

f(xi; θ), for θ ∈ Θ, (6)

where x = (x1, . . . xn) and Θ is the parameter space for θ0 in (1). Note that for discrete or continuous p.d.f.
f(x; θ0), maximizing likelihood (3) and maximizing likelihood function (6) with respective to θ are equivalent.
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2 Maxium Likelihood Estimator

For random sample (1)-(2), maximum likelihood estimator (MLE) for θ0 is given by

θ̂ = arg max
θ∈Θ

L(θ; x), (7)

where “arg max” is the value of argument at which the given function attains its maximum value.
Mathematically, θ̂ is the value at which the likelihood function L(θ; x) attains its maximum value. Re-

calling the relation between (3) and (6), statistically θ̂ is the value of θ in Θ that makes the observed data
has the greatest probability to be observed.

For many applications involving likelihood functions, it is more convenient to work in terms of natural log-
arithm of the likelihood function, called log-likelihood, than in terms of the likelihood function itself. Because
the logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value
at the same points as the function itself, and hence the log-likelihood can be used in place of the likelihood
in maximum likelihood estimator and related techniques and we can write the MLE as

θ̂ = arg max
θ∈Θ

l(θ; x) = arg max
θ∈Θ

n∑
i=1

ln f(xi; θ), (8)

where l(θ; x) = lnL(θ; x).

If Θ is open, l(θ; x) is differentiable in Θ and θ̂ exists, then θ̂ must satisfy the estimating equation

Oθl(θ; x) = 0. (9)

This is known as the likelihood estimating equation. So for the random sample (1)-(2), the likelihood esti-
mating equation is given by

n∑
i=1

Oθ ln f(xi; θ) = 0. (10)

Evidently, some solutions of (10) may not be the maxima or only the local maxima, thus we need to refer
to other properties of the likelihood function. In the next two examples, we demonstrate how to find the MLE.

Example: Suppose the p.d.f. in (1) is given by f(x;µ0) = exp{−(x− µ0)2/2}/
√

2π, where x ∈ R and
θ0 = µ0. We find the MLE of µ0 as follows. Using (6), we have

l(µ; x) =

n∑
i=1

ln f(xi;µ) = −n
2

ln(2π)− 1

2

n∑
i=1

(xi − µ)2. (11)

To maximize the log-likelihood, we differentiate (11) w.r.t. µ and set the derivative to be zero,

∂l(µ; x)

∂µ
=

n∑
i=1

(xi − µ) = 0. (12)

The solution for (12) is µ̂ =
∑n
i=1 xi/n = x̄. Now, let us take the second derivative of (11),

∂2l(µ; x)

∂µ2
= −n < 0. (13)

Thus we know that the first derivative of log-likelihood function is a decreasing. Since it attains 0 if and
only if µ̂ = X̄, the first derivative will be positive on (−∞, µ̂) and negative on (µ̂,∞). This means that the
log-likelihood function is increasing on (−∞, µ̂) whereas decreasing on (µ̂,∞), thus the likelihood function
attains its maximum value at µ = µ̂. Hence the MLE for µ is given by µ̂ = X̄.
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In some cases, the differentiating method is not applicable. This often happens when the domain of
random sample depends on parameter.

Example: Suppose the p.d.f. in (1) given by uniform distribution on (0, θ0). We find the MLE
for θ as follows. Since in this case, the p.d.f. is given by

f(x; θ0) =
1

θ0
I{0 < x < θ0}, (14)

where I{x ∈ A} is the indicator function, i.e., for a given set A, I{x ∈ A} = 1 if x ∈ A; I{x ∈ A} = 0
otherwise. Thus from (6), the likelihood function is given by

L(θ; x) =

n∏
i=1

f(xi; θ) =

n∏
i=1

1

θ
I{0 < xi < θ}

=
1

θn

n∏
i=1

I{0 < xi < θ} =
1

θn
I{0 < x1 < θ, 0 < x2 < θ, . . . , 0 < xn < θ}

=
1

θn
I{0 < x(1) < x(n) < θ}, (15)

where X(i) is the order statistic and x(i) is the corresponding realization. Note that the support of L(θ; x) is
[x(n),∞) and that on its support, L(θ; x) = 1/θn is decreasing in θ. Therefore L(θ; x) attains its maximum

value at θ = X(n). Thus the MLE for θ0 is given by θ̂ = X(n).

3 Properties of MLE

Let us start this section with a convenient computational property for MLE, namely, plug-in property.
Then we will present the asymptotic distribution, consistency and efficiency of MLE. At the end this section,
we will discuss several disadvantages of MLE.

3.1 Invariance Property

MLE holds a nice invariance property, which means that MLE is unaffected by re-parametrization, i.e.,
MLE is equivariant under one-to-one transformations.

Theorem 3.1. Let θ̂ denote the MLE of θ0 in random sample (1)-(2). Suppose that h(·) is a one-to-one

function from Θ onto h(Θ). Define η ≡ h(θ). Then the MLE of η0 = h(θ0) is h(θ̂).

Proof: Since h(·) is onto and one-to-one, h−1(·) exists. Since η = h(θ), we have θ = h−1(η). Hence

f(x; θ0) = f(x;h−1(η0)) ≡ f?(x; η0),

where f?(x; η0) is the p.d.f. of the random sample (1)-(2) with parameter η0. Then by (6), the likelihood
function for η0 is

L?(η; x) =

n∏
i=1

f?(xi; η) =

n∏
i=1

f(xi;h
−1(η)) = L(h−1(η); x) = L(θ; x). (16)

Let η̂ be the MLE for η0, then we have

L∗(η̂; x) = max
η∈h(Θ)

L∗(η; x)
(16)
= max

η=h(θ)∈h(Θ)
L(θ; x) = max

θ∈Θ
L(θ; x) = L(θ̂; x), (17)

Thus we have η̂ = h(θ̂).
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3.2 Consistency of MLE

A sequence of estimmators Wn = Wn(X1, . . . , Xn) is a consistent sequence of estimators (Casella and
Berger, P468) of the parameter θ if for every ε > 0 and every θ ∈ Θ,

lim
n→∞

Pθ{|Wn − θ| ≥ ε} = 0. (18)

The following theorem will show that MLE is consistent.

Theorem 3.2. For random sample (1)-(2), let θ̂ denote the MLE of θ0. Suppose that f(θ; ,x) satisfies the
following assumptions,

A1 f(x; θ) is identifiable, i.e., if θ 6= θ′,then f(x; θ) 6= f(x; θ′).

A2 The densities f(x; θ) have common support, and f(x; θ) is differentiable in θ.

A3 The parameter space Ω contains an open set ω of which the true parameter value θ0 is an interior point.

Then the MLE is consistent.

Proof:
By A3 we know that there exist δ > 0 such that for any 0 < ε < δ, (θ0− ε, θ0 + ε) ⊂ Θ. Then by S.L.L.N.,

we have

1

n
(l(θ0 − ε; x)− l(θ0; x))

=
1

n

n∑
i=1

(ln f(xi; θ0 − ε)− ln f(xi; θ0))
a.s.→ E0{ln f(xi; θ0 − ε)} − E0{ln f(xi; θ0)}

= E0

{
ln
f(xi; θ0 − ε)
f(xi; θ0)

}
(19)

and
1

n
(l(θ0 + ε; x)− l(θ0; x))

=
1

n

n∑
i=1

(ln f(xi; θ0 + ε)− ln f(xi; θ0))
a.s.→ E0{ln f(xi; θ0 + ε)} − E0{ln f(xi; θ0)}

= E0

{
ln
f(xi; θ0 + ε)

f(xi; θ0)

}
. (20)

Apply Jensen’s Inequality, we get

Eθ

{
ln
f(x; θ′)

f(x; θ)

}
< lnEθ

{
f(x; θ′)

f(x; θ)

}
= ln

∫
f(x; θ′)

f(x; θ)
· f(x; θ)dx = ln

∫
f(x; θ′)dx = 0 (21)

The inequality is (21) is strict due to A1, that is f(x; θ) being identifiable, i.e. for any θ′ 6= θ, we have
f(x; θ′) 6= f(x; θ). From (19)-(21),we know that

P

{
lim
n→∞

1

n
(l(θ0 − ε; x)− l(θ0; x)) < 0

}
= P

{
lim
n→∞

1

n
(l(θ0 + ε; x)− l(θ0; x)) < 0

}
= 1 (22)

So ∃N such that

P

{
1

n
(l(θ0 − ε; x)− l(θ0; x)) < 0

}
= P

{
1

n
(l(θ0 + ε; x)− l(θ0; x)) < 0

}
= 1, for all n > N. (23)
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Hence
P {(l(θ0 − ε; x)− l(θ0; x)) < 0} = P {(l(θ0 + ε; x)− l(θ0; x)) < 0} = 1, for all n > N, (24)

Note that by A2, f(x; θ) is differentiable on [θ0 − ε, θ0 + ε]. Recall that l(θ0; x) =
∑n
i=1 ln f(xi, θ0). l(θ0; x)

is also differentiable and continuous on [θ0 − ε, θ0 + ε]. Hence there exist θ̂ such that l(θ̂; x) ≥ l(θ; x) for all

θ ∈ [θ0 − ε, θ0 + ε]. However by (24), θ̂ is not equal to θ0 − ε or θ0 + ε, therefore we have

∂l(θ; x)

∂θ

∣∣∣∣
θ̂

= 0 and θ̂ ∈ (θ0 − ε, θ0 + ε) for all n > N. (25)

Consequently, θ̂ is the MLE and for any ε, limn→∞ P (|θ̂ − θ0| < ε) = 1. Hence MLE is consistent.

3.3 Asymptotic Distribution

A nice asymptotic distribution will simplify computation for large sample. The following theorem will
show that MLE is asymptotically normal when sample size is sufficiently large.

Theorem 3.3. Suppose θ̂n is the MLE of true value θ0 in random sample (1)-(2). Let I(θ0) denote the
Fisher Information in X1. Suppose that f(x; θ), θ ∈ Θ satisfies the following three assumptions,

A4 for any x, f(x; θ) is three times differentiable with respect to θ in a small neighbourhood of the true
value θ0.

A5 For θ in a small neighbourhood of θ0, |∂3 ln f(x; θ)/∂θ3| ≤ H(x) and E{H(X)} <∞.

A6 E0{∂ ln f(X, θ0)/∂θ|θ0} = 0; E0{∂2 ln f(X, θ0)/∂θ2|θ0} = −I(θ0); I(θ0) > 0.

As n goes to infinity,
√
n(θ̂n − θ0) goes to N(0, I−1(θ0)) in distribution.

Proof: Let us make Taylor expansion of ∂l(θ; x)/∂θ|θ̂n at θ = θ0,

0 =
∂l(θ; x)

∂θ

∣∣∣∣
θ̂n

=
∂l(θ; x)

∂θ

∣∣∣∣
θ0

+ (θ̂n − θ0)
∂2l(θ; x)

∂θ2

∣∣∣∣
θ0

+
1

2
(θ̂n − θ0)2 ∂

3l(θ; x)

∂θ3

∣∣∣∣
θ1

, (26)

where θ1 is between θ̂n and θ0. So

√
n(θ̂n − θ0) =

{
−
√
n · 1

n

∂l(θ; x)

∂θ

∣∣∣∣
θ0

}/{
1

n

[
∂2l(θ; x)

∂θ2

∣∣∣∣
θ0

+
1

2
(θ̂ − θ0)2 ∂

3l(θ; x)

∂θ3

∣∣∣∣
θ1

]}
. (27)

From A6, we can see that

E0

{
∂ ln f(X1; θ)

∂θ

∣∣∣∣
θ0

}
= 0 and V ar0

{
∂ ln f(X1; θ)

∂θ

∣∣∣∣
θ0

}
= I(θ0) > 0. (28)

Recall that l(θ; x) =
∑n
i=1 ln f(xi; θ) and ln f(X1; θ), ln f(X2; θ), . . . , ln f(Xn; θ) are i.i.d. random variables.

Hence by C.L.T.,

−
√
n · 1

n

∂l(θ; x)

∂θ

∣∣∣∣
θ0

D→ N(0, I(θ0)). (29)

Apply S.L.L.N, we obtain

1

n

∂2l(θ; x)

∂θ2

∣∣∣∣
θ0

a.s.→ E0

{
∂2 ln f(X1; θ)

∂θ2

∣∣∣∣
θ0

}
A6
= −I(θ0) (30)
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Then note that θ̂n
P→ θ0 as n goes to infinity.Therefore

θ1
P→ θ0 and θ1 − θ0

P→ 0 as n goes to infinity (31)

Hence as n→∞, θ1 is in arbitrary small neighbourhood of θ0. Therefore by A2, we have

1

n

∂3l(θ; x)

∂θ3

∣∣∣∣
θ1

= Op(1) and
1

2n
(θ̂n − θ0)

∂3l(θ; x)

∂θ3

∣∣∣∣
θ1

P→ 0. (32)

From (30) and (32) we know that the denominator of (27) goes to −I(θ0) in probability while (29) shows
that the numerator of (27) goes to N(0, I(θ0)). Consequently, by Slutsky’s Theorem, we obtain

√
n(θ̂ − θ0)

D→ N(0, I(θ0))/I(θ0)
D
= N(0, I−1(θ0)). (33)

3.4 Asymptotic Efficiency

A sequence of estimators Wn is asymptotically efficient for a parameter τ(θ0) if
√
n[Wn − τ(θ0)] →

N(0, v(θ0)) in distribution and

v(θ0) =
τ ′2(θ0)

E0 [(∂ ln f(X; θ0)/∂θ)2]
; (34)

that is , the asymptotic variance of Wn achieves the Cramer-Rao Lower Bound.

Theorem 3.4. Maximum likelihood estimator is asymptotically efficient.

Proof: Note that in our case, Wn = θ̂n and τ(θ0) = θ0. Followed by Therorem 3.2 and (34), we get the
conclusion.

3.5 Disadvantages of MLE

Although MLE does hold some convenient mathematical properties (plug-in) and good asymptotic be-
haviour (asymptotic normal, consistency and efficiency), it also has some disadvantages.

1. All the good statistical behaviour are based on sufficiently large sample size. Actually, for small sample,
MLE may be significantly biased. We may also lose efficiency when sample size is small.

2. We need to assume the distribution of random sample according to prior experience or knowledge. All
the calculation, no matter for large sample or small sample, is based on the assumed p.d.f. f(x; θ).
However, in practice, it is quite possible that the f(x; θ) we propose is not close to the real distribution,
which will cause a vital damage to the whole process.

3. To derive a convenient way to calculate MLE, we assumed independence among X1, . . . , Xn. This
assumption may also be violated in practise.

4. In some cases, maximum likelihood estimator does not necessary exist. Even it does exist and can be
calculated by differentiating the likelihood function, the calculation might be very complex and will not
lead to a explicit answer.

5. Sometimes we apply Newton-Raphson, EM and etc. to give a numerical solution to MLE. This calls
for more regulation on parameter space and p.d.f.. These methods may also be sensitive to the initial
point for iteration
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4 Likelihood Ratio Test

A likelihood ratio test (LRT) is used to compare the fitness of two models, one of which (the null model)
is a special case of the other (the alternative model). Suppose the parameter θ0 in (1) belongs to a set Θ,
then LRT can be defined as follows.

Definition 4.1. The likelihood ratio test statistic for testing H0 : θ0 ∈ Θ0,Θ0 ⊂ Θ vs H1 : θ0 ∈ Θc
0 is

λ(x) =
supθ∈Θ0

L(θ;x)

supθ∈Θ L(θ;x)
. (35)

A likelihood ratio test (LRT) is any test that has a rejection region of the form {x : λ(x) ≤ cα}, where c is
any number satisfying 0 ≤ cα ≤ 1.

Remark 4.1. .

1. Since the numerator of (35) is maximized over a smaller region compared to the denominator, we can
conclude that likelihood ratio is always smaller than one.

2. An optimized case is when null hypothesis is true. Recall that if we have a large sample the MLE
is approximately equal to the true value. Hence the likelihood ratio will be close to one. Otherwise,
likelihood ratio will be close to zero

The constant cα in Definition 4.1 is decided by the level of the test. For a test of level α,

α = P (reject H0|H0) = Pθ0∈Θ0
(λ(x) < cα), (36)

and the rejection region is (0, cα), which means that if the likelihood ratio is smaller than cα, we should reject
the null hypothesis with probability 1− α.

A special case for (35) is testing H0 : θ0 = θ∗0 vs H1 : θ0 6= θ∗0 . Further, let us suppose the MLE exists.
Since we have only one candidate under null hypothesis, λ(x) becomes

λ(x) =
L(θ∗0 ; x)

supθ∈Θ L(θ; x)
=
L(θ∗0 ; x)

L(θ̂; x)
. (37)

The calculation of cα calls for an explicit distribution of λ(x). LRT has a nice χ2
ν distribution when we

have a large sample size. Here and throughout this note, we use χ2
ν to denote the chi square distribution with

ν degrees of freedome. Let us present this property starting with the simple H0 : θ0 = θ∗0 vs H1 : θ0 6= θ∗0 .
The following to theorems are cited from Theorem 10.3.1 and Theorem 10.3.3 in [1].

Theorem 4.1. Suppose θ0 ∈ Θ ⊂ R. For testing H0 : θ0 = θ∗0 vs H1 : θ0 6= θ∗0, with random samples (1)-(2).
Then under H0, as n→∞, −2 lnλ(x)→ χ2

1 in distribution.

Proof: First expand lnL(θ; x) = l(θ; x) in a Taylor series around the MLE θ̂, giving,

l(θ; x) = l(θ̂; x) + l′(θ̂; x)(θ − θ̂) +
1

2
l′′(θ̂; x)(θ − θ̂)2 + . . . . (38)

Now substitute the expansion for l(θ∗0 ; x) in −2 lnλ(x) = −2l(θ∗0 ; x) + 2 ln(θ̂; x), and get

−2 lnλ(x) ≈ −l′′(θ̂; x)(θ∗0 − θ̂), (39)

where we use the fact that l′(θ̂; x) = 0. Since l′′(θ̂; x) is the observed fisher information În(θ̂) and În(θ̂)/n→
I(θ∗0) = I(θ0) under H0. It follows from Theorem 3.3 and Slutsky’s Theorem that −2 lnλ(x) → χ2

1 in
distribution.
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Theorem 4.1 can be extended to the cases where the null hypothesis concerns a vector of parameters. The
following generalization, which we state without proof, allows us to ensure Theorem 4.1 is true for large
samples.

Theorem 4.2. (Wilk’s Theorem) For testing H0 : θ0 ∈ Θ0 vs H1 : θ0 ∈ Θc
0, suppose random samples

are (1)-(2) and θ0 ∈ Θ. Then under H0, as n → ∞, −2 lnλ(x) → χ2
ν in distribution, where ν equals to

the difference between the number of free parameters specified by θ ∈ Θ0 and the mumber of free parameters
specified by θ ∈ Θ.

The computation of ν is usually straight forward. Most often, Θ can be represented as a subset of q-
dimensional Euclidean space that contains and open subset in Rq, and Θ0 can be represented as a subset
of p-dimensional Euclidean space that contains an open subset in Rp, where p < q. Then ν = q − p is the
degrees of freedom for the test statistic.

Rejection of H0 for small values of λ(x) is equivalent to rejection for large values of −2 lnλ(x). Thus,

H0 is rejected if and only if − 2 lnλ(x) ≥ χ2
ν,α, (40)

and the asymptotic rejection region is (χ2
ν,α,∞). Here and through out this note χ2

ν,α is the constant such
that P{χ2

ν > χ2
ν,α} = α.

Next let us present and example using Wilk’s Theorem.

Example 4.1. Let θ = (p1, p2, p3, p4, p5), where pj’s are non-negative and sum to 1. For (1)-(2), f(j; θ) =
pj , j = 1, . . . , 5. Find the LRT test statistic for testing H0 : p1 = p2 = p3 and p4 = p5 vs H1 : H0 is not true,
and the asymptotic rejection region.

Sol 4.1. The likelihood function under Θ is

L(θ;x) =

n∏
i=1

f(xi; θ) =

n∏
i=1

pyii ,where yj = number of x1, . . . , xn equal to j. (41)

The full parameter space, Θ, with four free parameters, is really a four-dimensional set since p5 = 1 − p1 −
p2 − p3 − p4. The parameter set is defined by

4∑
j=1

pj ≤ 1 and pj ≥ 0, j = 1, . . . , 4, (42)

a subset of R4 containing an open subset of R4. Thus q = 4. There is only one free parameter in the set
specified by H0 because once p1 is fixed, p2 = p3 must equal to p1 and p4 = p5 must equal (1− 3p1)/2. Thus
p = 1 and the degrees of freedom is ν = 4− 1 = 3.
To calculate λ(x), the MLE of θ under both Θ0 and Θ must be determined. By setting

∂

∂pj
l(θ;x) = 0, for each of j = 1, . . . , 4 (43)

and using the facts that p5 = 1 − p1 − p2 − p3 − p4 and y5 = n − y1 − y2 − y3 − y4, we can verify that the
MLE of pj under Θ is p̂j = yj/n. Under H0, the likelihood function reduces to

L(θ;x) =

n∏
i=1

f(xi; θ) = py1+y2+y3
1

(
1− 3p1

2

)y4+y5

. (44)

Using the same method as (43), the MLE’s under H0 are p10 = p20 = p30 = (y1 + y2 + y3)/(3n) and
p40 = p50 = (1− 3p̂10)/2. Substituting these values and the p̂j values into L(θ;x) and combining terms with
the same exponent yield

λ(x) =

(
y1 + y2 + y3

3y1

)y1 (y1 + y2 + y3

3y2

)y2 (y1 + y2 + y3

3y3

)y3 (y4 + y5

2y4

)y4 (y4 + y5

2y5

)y5
. (45)

8



Thus the test statistic is

−2 lnλ(x) = 2

5∑
i=1

yi ln

(
yi
mi

)
, (46)

where m1 = m2 = m3 = (y1 + y2 + y3)/3 and m4 = m5 = (y4 + y5)/2. The asymptotic size α test rejects H0

if −2 lnλ(x) ≥ χ2
3,α.

Although likelihood ratio test is not necessarily unbiased, we can approach the unbiasness by increasing
sample size. In other words, likelihood ratio test is consistent.

Theorem 4.3. The likelihood ratio test is consistent.

Proof: We need to show that if true value θ0 6= θ∗0 , we reject H0 with probability one as n goes to infinity.
We reject the null hypothesis if λ(x) < c, or equivalently, if

− lnλ(x) =

n∑
i=1

ln f(xi; θ̂n)−
n∑
i=1

ln f(xi; θ
∗
0) > c. (47)

Expand the first term in (47) at true value θ0, we can re-write it as

− lnλ(x) =

n∑
i=1

ln f(xi; θ0) +

n∑
i=1

s∑
r=1

∂ ln f(xi; θ0)

∂θ0,r
(θ̂n,r − θ0,r) + nop(‖θ̂n − θ0‖)−

n∑
i=1

ln f(xi; θ
∗
0)

=

n∑
i=1

ln
f(xi; θ0)

f(xi; θ∗0)
+

n∑
i=1

J(θ0;xi)
T (θ̂n − θ0) + nop(‖θ̂n − θ0‖), (48)

where J is Fisher Score. To use L.L.N. and C.L.T., we manipulate (48) into a more convenient form and split
it into three parts, namely, nA,

√
n ·B · C, and

√
nop(‖C‖),

− lnλ(x) = n · 1

n

n∑
i=1

ln
f(xi; θ0)

f(xi; θ∗0)
+
√
n

[
1

n

n∑
i=1

J(xi; θ0)T − 0

]
·
√
n(θ̂n − θ0) +

√
nop(
√
n‖θ̂n − θ0‖)

= nA+
√
n ·B · C +

√
op(‖C‖). (49)

By L.L.N, as n tends to infinity, A tends to

Eθ0 ln
f(xi; θ0)

f(xi; θ∗0)
= Eθ0

(
− ln

f(xi; θ
∗
0)

f(xi; θ0)

)
with probablility one. Observe that − ln(•) is a convex function, we can apply Jensen’s Inequality to the
limit of A,

A→ Eθ0

(
− ln

f(xi; θ
∗
0)

f(xi; θ0)

)
> − lnEθ0

f(xi; θ
∗
0)

f(xi; θ0)
= − ln

∫
f(xi; θ

∗
0)

f(xi; θ0)
f(xi; θ0)dx = − ln 1 = 0. (50)

Hence we have proved that A → constant > 0 with probability one. Consequently, A → n · constant = ∞
with probability one.

By LLN, the second term in (49) is bounded. This suffice to show that − lnλ(x) will be greater than
any given constant as n goes to infinity with probability one. In other words, we reject null hypothesis with
probability one.

In the end of this section, we present an example of small sample size. In this case, we can deduce the
exact distribution of λ(x) without requiring n→∞ or applying Wilk’s Theorem.

Example 4.2. Suppose the p.d.f. in (1) is given by N(µ0, σ
2
0). Find the test statistic for H0: µ0 = µ∗0. vs

H1: µ0 6= µ∗0.
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Sol 4.2. By Definition 4.1, we can write

λ(x) =
supσ2(2πσ2)−n/2 exp{−

∑n
i=1(xi − µ∗0)2/(2σ2)}

supµ,σ2(2πσ2)−n/2 exp{−
∑n
i=1(xi − µ)2/(2σ2)}

. (51)

Note that the MLE for the numerator is

σ̂2 =
1

n

n∑
i=1

(xi − µ∗0)2; (52)

and the MLE for the denominator are

µ̂ = x̄, ˆ̂σ2 =
1

n

n∑
i=1

(xi − x̄)2. (53)

Therefore we can calculate λ(x) by plugging (52) and (53) back to (51)

ln
1

λ(x)
∝ σ̂2

ˆ̂σ2
=

∑n
i=1(xi − µ∗0)2/n∑n

i=1(xi − x̄)2/(n− 1)
(54)

To simplify our test rule further we use the following equation, which can be established by expanding σ̂2.

σ̂2 = ˆ̂σ2 + (x̄− µ∗0)2 (55)

Therefore,

ln
1

λ(x)
∝ 1 + (x̄− µ∗0)2/ˆ̂σ2 (56)

Because s2 = (n− 1)−1
∑n
i=1(xi − x̄)2 = nˆ̂σ2, σ̂2/ˆ̂σ2 is a monotone increasing function of |Tn| where

Tn =

√
n(x− µ∗0)

s
. (57)

Therefore the likelihood ratio tests reject for small values of λ(x), or equivalently, large values of |Tn|. Because
Tn has a T distribution under H0, the size α critical value is tn−1,1−α/2. We should reject null hypothesis if
|Tn| ≥ tn−1,1−α/2.

5 Likelihood Ratio Confidence Interval

In the previous section, we derived the fact that −2 lnλ(x) has an asymptotic chi squared distribution.
For fixed θ∗0 in H0 : θ0 = θ∗0 , the acceptance region is given by{

λ(x) : −2 lnλ(x) ≤ χ2
1,α

}
, (58)

Then by inverting the LRT, we can conclude that for (1)-(2), the set{
θ : −2 ln

(
L(θ; x)

L(θ̂; x)

)
≤ χ2

1,α

}
(59)

is an approximate 1− α confidence interval.

Example 5.1. The p.d.f. in (1) is given by Bernoulli(p) and Y =
∑n
i=1Xi. We have the approximate 1−α

confidence set {
p : −2 ln

(
py(1− p)n−y

p̂y(1− p̂y)n−y

)
≤ χ2

1,α

}
. (60)
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For some special distributions, we can find the exact distribution of λ(x). In this case, we can get a more
accurate confidence interval by inverting the LRT of H0 : θ0 = θ∗0 vs H1 : θ0 6= θ∗0 . The confidence interval is
of form

accept H0 if
L(θ∗0 ; x)

L(θ̂; x)
≤ k(θ0), (61)

with the resulting confidence region
{θ : L(θ; x) ≥ k′(x, θ)}, (62)

for some function k′ that gives 1− α confidnece.

Example 5.2. Suppose that the p.d.f. of (1) is exponential(λ). Find the confidence interval for λ by inverting
a level α test of H0 : λ = λ∗0 vs H1 : λ 6= λ∗0.

Sol 5.1. For random sample (1)-(2), the LRT statistic is given by

exp(−
∑
xi/λ

∗
0)/λ∗n0

supλ>0 exp(−
∑
xi/λ)/λn

=
exp(−

∑
xi/λ

∗
0)/λ∗n0

e−n/(
∑
xi/n)

=

(∑
xi

nλ∗0

)n
ene−

∑
xi/λ

∗
0 . (63)

For fixed λ∗0, the acceptance region is given by

A(λ∗0) =

{
x :

(∑
xi

λ∗0

)n
e−

∑
xi/λ

∗
0 ≥ k∗

}
, (64)

where k∗ is a constant chosen to satisfy Pλ∗
0
(X ∈ A(λ∗0)) = 1 − α and the constant en/n has been absorbed

into k∗. Inverting this acceptance region gives the 1− α confidence set

C(x) =

{
λ :

(∑
xi
λ

)n
e−

∑
xi/λ ≥ k∗

}
, (65)

which is an interval in the parameter space Θ.
The expression defining C(x) depends on x only through

∑
xi. So the confidence interval can be expressed

in the form

C
(∑

xi

)
=
{
λ : L

(∑
xi

)
≤ λ ≤ U

(∑
xi

)}
(66)

where L and U are functions determined by the constraints that the set (64) has probability 1− α and( ∑
xi

L (
∑
xi)

)n
e−

∑
xi/L(

∑
xi) =

( ∑
xi

U (
∑
xi)

)n
e−

∑
xi/U(

∑
xi). (67)

If we set ∑
xi

L (
∑
xi)

= a and

∑
xi

U (
∑
xi)

= b, where a > b are constants. (68)

Then (67) becomes ane−1 = bne−b, which yields easily to numerical solution. To work out some details, let
n = 2 and note that

∑
Xi ∼ Γ(2, λ) and

∑
Xi/λ ∼ Γ(2, 1). Hence from (68), the confidence interval becomes{

λ :
1

a

∑
xi ≤ λ ≤

1

b

∑
xi

}
,

where a and b satisfy

Pλ

(
1

a

∑
Xi ≤ λ ≤

1

b

∑
Xi

)
= P

(
b ≤

∑
Xi

λ
≤ a

)
= 1− α

Then

P

(
b ≤

∑
Xi

λ
≤ a

)
=

∫ a

b

te−tdt = e−b(b+ 1)− e−a(a+ 1). (69)
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To get, for example, a 90% confidence interval, we must simultaneously satisfy the probability condition and
the constraint. To Three decimal places, we got a = 5.480, b = 0.441, with a confidence doefficient of 0.90006.
Thus,

Pλ

(
1

5.480

∑
Xi ≤ λ ≤

1

0.441

∑
Xi

)
= 0.90006.
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