Hitting Times for Finite and Infinite Graphs

Ari Binder, Williams College Josh O'Rourke, Reed College

July 31, 2008

Work completed at the Canisius College REU, Summer 2008 wiki.canisiusmath.net

What is a Random Walk?

- Start at an arbitrary vertex.
- Randomly choose an adjacent destination vertex.
- Move there, and repeat the process.
- I studied mean hitting times on undirected Cayley graphs such as the undirected 6-cycle.

What is a Cayley Graph?

- A visual representation of a group.
- Vertices represent elements of the group.
- Choose generators; for each generator h, start at e, connect e to $e+h$ with a directed edge. Then connect $e+h$ to $e+h+h$, and so on.
- The 6 -cycle is the Cayley graph of \mathbb{Z}_{6} on generators 1 and -1 (or 5) That is, 6 -cycle $=\operatorname{Cay}\left(\mathbb{Z}_{6},\{ \pm 1\}\right)$.

What is a Mean Hitting Time?

- Definition: The expected number of steps to reach a given vertex j of a graph G starting from a vertex i of G.
- We denote this hitting time as $E_{i}\left(T_{j}\right)$
- Thus, $E_{i}\left(T_{j}\right)=\sum_{n=0}^{\infty} n \cdot \mathbb{P}$ (walk first reaches j in n steps)
- But how can we determine these hitting times?

First, Some Background Stuff

- Definition: A transition matrix of an n-vertex graph is the $n \times n$ matrix whose $i j$-th entry describes the probability of a random walk moving from state i to state j.
- The 6 -cycle has the following transition matrix, which we call P :

$$
P=\left[\begin{array}{cccccc}
0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

Some More Background Stuff

- Definition: We call a graph G strongly connected if, for each vertex v_{i} of G there exist paths from v_{i} to any other vertex in G.
- All Cayley graphs of \mathbb{Z}_{n} that include 1 or -1 as a generator are strongly connected.
- Strong connectivity \Longrightarrow there exists a stable probability distribution on the vertices of G, which we call π, such that $\pi P=\pi$.
- Definition: Strong connectivity also $\Longrightarrow P$ is irreducible.

The Fundamental Matrix

- The fundamental matrix Z of an n-vertex graph G with irreducible transition matrix P is defined as follows:

$$
Z_{i j}=\sum_{t=0}^{\infty}\left(P_{i j}^{(t)}-\pi_{j}\right)
$$

- Result: $Z=\left(I-\left(P-P_{\infty}\right)\right)^{-1}-P_{\infty}$
- Easily gives us hitting times:
- $E_{i}\left(T_{j}\right)=\frac{1}{\pi_{j}}\left(Z_{j j}-Z_{i j}\right)$
- Result: n-vertex Cayley graph $\Longrightarrow \pi$ is uniform, so $\frac{1}{\pi_{i}}=n \forall i$.

Calculating Hitting Times on the 6-Cycle

- Using above formula, we calculate the Z-matrix for 6-cycle:

$$
Z=\left[\begin{array}{cccccc}
35 / 36 & 5 / 36 & -13 / 36 & -19 / 36 & -13 / 36 & 5 / 36 \\
5 / 36 & 35 / 36 & 5 / 36 & -13 / 36 & -19 / 36 & -13 / 36 \\
-13 / 36 & 5 / 36 & 35 / 36 & 5 / 36 & -13 / 36 & -19 / 36 \\
-19 / 36 & -13 / 36 & 5 / 36 & 35 / 36 & 5 / 36 & -13 / 36 \\
-13 / 36 & -19 / 36 & -13 / 36 & 5 / 36 & 35 / 36 & 5 / 36 \\
5 / 36 & -13 / 36 & -19 / 36 & -13 / 36 & 5 / 36 & 35 / 36
\end{array}\right]
$$

- $E_{0}\left(T_{1}\right)=\frac{1}{\pi_{1}}\left(Z_{11}-Z_{01}\right)=6\left(\frac{35}{36}-\frac{5}{36}\right)=5$.
- $E_{0}\left(T_{2}\right)=\frac{1}{\pi_{2}}\left(Z_{22}-Z_{02}\right)=6\left(\frac{35}{36}+\frac{13}{36}\right)=8$.
- $E_{0}\left(T_{3}\right)=\frac{1}{\pi_{1}}\left(Z_{33}-Z_{03}\right)=6\left(\frac{35}{36}+\frac{19}{36}\right)=9$.

Quantifying $E_{i}\left(T_{j}\right)$ Values Using Only P

- P is symmetric, and so can be diagonalized by an orthonormal transformation: $P=U \wedge U^{T}$
- This gives $P_{i j}=\sum_{m=1}^{n} \lambda_{m}(P) u_{i m} u_{j m}$
- Defining P exactly in terms of its eigenvectors and eigenvalues leads to the following:
- Result:

$$
E_{i}\left(T_{j}\right)=n \sum_{m=2}^{n}\left(1-\lambda_{m}(P)\right)^{-1} u_{j m}\left(u_{j m}-u_{i m}\right)
$$

6-Cycle Example

$$
\begin{aligned}
E_{0}\left(T_{1}\right)= & 6 \sum_{m=2}^{n}\left(1-\lambda_{m}(P)\right)^{-1} u_{1 m}\left(u_{1 m}-u_{0 m}\right) \\
= & 6[2 \cdot 0(0-1 / 2)+2 \cdot-1 / \sqrt{3}(-1 / \sqrt{3}+1 / 2 \sqrt{3}) \\
& +2 / 3 \cdot 0(0+1 / 2)+2 / 3 \cdot 1 / \sqrt{3}(1 / \sqrt{3}+1 / 2 \sqrt{3}) \\
& +1 / 2 \cdot 1 / \sqrt{6}(1 / \sqrt{6}+1 / \sqrt{6})] \\
= & 6[2 \cdot 0+2 \cdot-1 / \sqrt{3} \cdot-1 / 2 \sqrt{3}+2 / 3 \cdot 0 \\
& +2 / 3 \cdot 1 / \sqrt{3} \cdot 1 / \sqrt{3}+1 / 2 \cdot 1 / \sqrt{6} \cdot 1 / \sqrt{6}] \\
= & 6[0+1 / 3+0+1 / 3+1 / 6] \\
= & 5 \\
= & 6\left(Z_{11}-Z_{01}\right)
\end{aligned}
$$

We can verify that the other hitting times work as well.

Positive Recurrent Infinite Graphs

Recurrence vs. Transience

Recurrent: The probability of returning to the starting vertex goes to one as time goes to infinity.

Transient: There is a non-zero probability of never returning to the starting vertex.

In a strongly connected graph, independent of starting vertex.

Expected First Return Time

First Return Time (T_{u}^{+}): Given starting vertex u, the time a given random walk takes to return to u.

Expected First Return Time ($E_{u}\left(T_{u}^{+}\right)$): Over a large number of random walks starting at u, the average first return time.

Positive Recurrence vs. Null Recurrence

For any vertex u in a transient graph, $E_{u}\left(T_{u}^{+}\right)=\infty$.

In a recurrent graph, $E_{u}\left(T_{u}^{+}\right)$can be finite or infinite.
Positive Recurrent: $E_{u}\left(T_{u}^{+}\right)<\infty$.
Null Recurrent: $E_{u}\left(T_{u}^{+}\right)=\infty$.
Independent of starting vertex.

Stationary Measures and Positive Recurrence

Measure (π): A non-negative, real-valued function on the vertices of a graph.

Transition operator (P) : The generalization of the transition matrix to the infinite case.
P acts on measures in the following way:

$$
P \pi(u)=\sum_{v \rightarrow u} \frac{\pi(v)}{\operatorname{outdeg}(v)}
$$

If a graph is recurrent, then there exists a measure π such that $P \pi=\pi$, unique up to scalar multiples.

The graph is positive recurrent if:

$$
\sum_{u \in G} \pi(u)<\infty
$$

The graph is null recurrent if:

$$
\sum_{u \in G} \pi(u)=\infty
$$

Graphs with indeg $=$ outdeg

Theorem
Let G be a strongly connected, infinite graph with
indeg $(u)=\operatorname{outdeg}(u)$ for all $u \in G$.
G is not positive recurrent.
$\pi(u)=\operatorname{outdeg}(u)$ is a stationary measure and is not summable.
No infinite undirected or Cayley graphs are positive recurrent.

Stationary Distributions and Expected Return Times

Distribution: A measure π such that:

$$
\sum_{u \in G} \pi(u)=1
$$

A graph is positive recurrent if and only there exists a distribution π such that $P \pi=\pi$. In that case, $E_{u}\left(T_{u}^{+}\right)=\frac{1}{\pi(u)}$.

Some Examples of Positive Recurrent Graphs

A locally finite, positive recurrent graph:

A bounded degree, single-edged, positive recurrent graph:

References

Aldous, David and Jim Fill. Reversible Markov Chains and Random Walks on Graphs. 30 June 2008.
http://stat-www.berkeley.edu/users/aldous/RWG/book.html
Norris, J.R. Markov Chains. New York: Cambridge University Press, 1998.

Woess, Wolfgang. Random Walks on Infinite Graphs and Groups. Cambridge: Cambridge University Press, 2000.
wiki.canisiusmath.net

