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What is a Random Walk?

I Start at an arbitrary vertex.

I Randomly choose an adjacent destination vertex.

I Move there, and repeat the process.

I I studied mean hitting times on undirected Cayley graphs such
as the undirected 6-cycle.



What is a Cayley Graph?

I A visual representation of a group.

I Vertices represent elements of the group.

I Choose generators; for each generator h, start at e, connect e
to e + h with a directed edge. Then connect e + h to
e + h + h, and so on.

I The 6-cycle is the Cayley graph of Z6 on generators 1 and −1
(or 5) That is, 6-cycle= Cay(Z6, {±1}).



What is a Mean Hitting Time?

I Definition: The expected number of steps to reach a given
vertex j of a graph G starting from a vertex i of G .

I We denote this hitting time as Ei (Tj)

I Thus, Ei (Tj) =
∑∞

n=0 n · P(walk first reaches j in n steps)

I But how can we determine these hitting times?



First, Some Background Stuff

I Definition: A transition matrix of an n-vertex graph is the
n × n matrix whose ij-th entry describes the probability of a
random walk moving from state i to state j .

I The 6-cycle has the following transition matrix, which we call
P:

P =



0 1/2 0 0 0 1/2
1/2 0 1/2 0 0 0

0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2

1/2 0 0 0 1/2 0





Some More Background Stuff

I Definition: We call a graph G strongly connected if, for each
vertex vi of G there exist paths from vi to any other vertex in
G .

I All Cayley graphs of Zn that include 1 or −1 as a generator
are strongly connected.

I Strong connectivity =⇒ there exists a stable probability
distribution on the vertices of G , which we call π, such that
πP = π.

I Definition: Strong connectivity also =⇒ P is irreducible.



The Fundamental Matrix

I The fundamental matrix Z of an n-vertex graph G with
irreducible transition matrix P is defined as follows:

Zij =
∞∑

t=0

(P
(t)
ij − πj)

I Result: Z = (I − (P − P∞))−1 − P∞
I Easily gives us hitting times:

I Ei (Tj) = 1
πj

(Zjj − Zij)

I Result: n-vertex Cayley graph =⇒ π is uniform, so 1
πi

= n ∀i .



Calculating Hitting Times on the 6-Cycle
I Using above formula, we calculate the Z -matrix for 6-cycle:

Z =



35/36 5/36 −13/36 −19/36 −13/36 5/36
5/36 35/36 5/36 −13/36 −19/36 −13/36
−13/36 5/36 35/36 5/36 −13/36 −19/36
−19/36 −13/36 5/36 35/36 5/36 −13/36
−13/36 −19/36 −13/36 5/36 35/36 5/36

5/36 −13/36 −19/36 −13/36 5/36 35/36



I E0(T1) = 1
π1

(Z11 − Z01) = 6(35
36 −

5
36) = 5.

I E0(T2) = 1
π2

(Z22 − Z02) = 6(35
36 + 13

36) = 8.

I E0(T3) = 1
π1

(Z33 − Z03) = 6(35
36 + 19

36) = 9.



Quantifying Ei (Tj) Values Using Only P

I P is symmetric, and so can be diagonalized by an orthonormal
transformation: P = UΛUT

I This gives Pij =
∑n

m=1 λm(P)uimujm

I Defining P exactly in terms of its eigenvectors and eigenvalues
leads to the following:

I Result:

Ei (Tj) = n
n∑

m=2

(1− λm(P))−1ujm(ujm − uim)



6-Cycle Example

E0(T1) = 6
n∑

m=2

(1− λm(P))−1u1m(u1m − u0m)

= 6[2 · 0(0− 1/2) + 2 · −1/
√

3(−1/
√

3 + 1/2
√

3)

+ 2/3 · 0(0 + 1/2) + 2/3 · 1/
√

3(1/
√

3 + 1/2
√

3)

+ 1/2 · 1/
√

6(1/
√

6 + 1/
√

6)]

= 6[2 · 0 + 2 · −1/
√

3 · −1/2
√

3 + 2/3 · 0
+ 2/3 · 1/

√
3 · 1/

√
3 + 1/2 · 1/

√
6 · 1/

√
6]

= 6[0 + 1/3 + 0 + 1/3 + 1/6]

= 5

= 6(Z11 − Z01)

We can verify that the other hitting times work as well.



Positive Recurrent Infinite Graphs



Recurrence vs. Transience

Recurrent: The probability of returning to the starting vertex goes
to one as time goes to infinity.

Transient: There is a non-zero probability of never returning to
the starting vertex.

In a strongly connected graph, independent of starting vertex.



Expected First Return Time

First Return Time (T +
u ): Given starting vertex u, the time a

given random walk takes to return to u.

Expected First Return Time (Eu(T +
u )): Over a large number of

random walks starting at u, the average first return time.



Positive Recurrence vs. Null Recurrence

For any vertex u in a transient graph, Eu(T +
u ) =∞.

In a recurrent graph, Eu(T +
u ) can be finite or infinite.

Positive Recurrent: Eu(T +
u ) <∞.

Null Recurrent: Eu(T +
u ) =∞.

Independent of starting vertex.



Stationary Measures and Positive Recurrence

Measure (π): A non-negative, real-valued function on the vertices
of a graph.

Transition operator (P): The generalization of the transition
matrix to the infinite case.

P acts on measures in the following way:

Pπ(u) =
∑
v→u

π(v)

outdeg(v)



If a graph is recurrent, then there exists a measure π such that
Pπ = π, unique up to scalar multiples.

The graph is positive recurrent if:∑
u∈G

π(u) <∞

The graph is null recurrent if:∑
u∈G

π(u) =∞



Graphs with indeg = outdeg

Theorem
Let G be a strongly connected, infinite graph with
indeg(u) = outdeg(u) for all u ∈ G .

G is not positive recurrent.

π(u) = outdeg(u) is a stationary measure and is not summable.

No infinite undirected or Cayley graphs are positive recurrent.



Stationary Distributions and Expected Return Times

Distribution: A measure π such that:∑
u∈G

π(u) = 1

A graph is positive recurrent if and only there exists a distribution
π such that Pπ = π. In that case, Eu(T +

u ) = 1
π(u) .



Some Examples of Positive Recurrent Graphs



A locally finite, positive recurrent graph:



A bounded degree, single-edged, positive recurrent graph:
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