General Solution to find the Area of the Curves of type $\mathbf{x}^{n}+y^{n}=a^{n}$

Gunjan A. Lakhlani
Wilson College
Chowpatty Seaface Road
Mumbai 400007
Maharashtra
India

August 19, 2008

Abstract

In High School we are taught to find the area of a curve using an Definite Integral. For example area of a circle is πr^{2} where r is the radius of the circle and the equation of a circle is $x^{2}+y^{2}=r^{2}$. Similarly there is geometrical figure known as an asteroid, its equation is $x^{2 / 3}+y^{2 / 3}=r^{2 / 3}$ and by working out we find its area to be $\frac{3 \pi r^{2}}{8}$. So I tried to find a general solution of this type of curves ${ }^{1}$. Although it has a lot of mathematics but a student who is clear with basic calculus will be able to understand it without much difficulty.

1 The Calculations

Well lets start with the basic equation $x^{n}+y^{n}=a^{n}$ our aim is to find the area in terms of a definate integral.

$$
\begin{equation*}
x^{n}+y^{n}=r^{n} \tag{1}
\end{equation*}
$$

r is the radius of the curve

$$
\begin{equation*}
y=\left(r^{n}-x^{n}\right)^{1 / n} \tag{2}
\end{equation*}
$$

As the area of a curve is given by

$$
\begin{gather*}
\int_{0}^{r} y d x \tag{3}\\
\int_{0}^{r}\left(r^{n}-x^{n}\right)^{1 / n} d x \tag{4}
\end{gather*}
$$

Let $x^{n}=r^{n} \sin ^{2} \theta$

[^0]\[

$$
\begin{aligned}
& x=r \sin ^{2 / n} \theta \\
& d x=\frac{2}{n} r \cos \theta \sin ^{\frac{2-n}{n}} \theta
\end{aligned}
$$
\]

The integral then becomes

$$
\begin{equation*}
\frac{2 r^{2}}{n} \int_{0}^{\frac{\pi}{2}}\left(\sin ^{\frac{2-n}{n}} \theta \cos ^{\frac{2+n}{n}} \theta\right) d \theta \tag{5}
\end{equation*}
$$

Now let $\sin \theta=\mathrm{u}$
$d u=\cos \theta d \theta$
Then the integral becomes

$$
\begin{equation*}
\frac{2 r^{2}}{n} \int_{0}^{1}\left(u^{\frac{2-n}{n}} \sqrt[n]{1-u^{2}}\right) d u \tag{6}
\end{equation*}
$$

Well thats the equation in which if we put the value of n we get the area.
Lets put $n=2$ this the main equation will be $x^{2}+y^{2}=r^{2}$ then the integral will become

$$
\begin{equation*}
r^{2} \int_{0}^{1} \sqrt{1-u^{2}} d u \tag{7}
\end{equation*}
$$

and after some calculations we get the answer as πr^{2}.
So the main equation is

$$
\begin{equation*}
\frac{2 r^{2}}{n} \int_{0}^{1} u^{\frac{2-n}{n}} \sqrt[n]{1-u^{2}} d u \tag{8}
\end{equation*}
$$

2 The Main Idea

Well the main idea behind this calculation is to find an equation in which if we plug the value of n we get the answer in a few steps. In this way we can find the area of a curve easily although if the student is not familiar with β functions and the Γ functions solutions to some n's is a difficult task.

[^0]: ${ }^{1}$ When I say general solution it means that I am trying to solve the general equation of this type of curves in this case the general equation is $x^{n}+y^{n}=r^{n}$

