The Estimate of Some Quantities with Prime Number

Choe Ryong Gil January 2012

Abstruct

In this paper we would estimate some quantities with prime number by the results obtained from the opimization problem of a certain exponential function. In particular, we would show an estimate for the difference between the consecutive primes. This estimate is a new result in the distribution of the prime numbers.

Keywords; Consecutive primes; Distribution of the prime numbers.

²⁰¹⁰ Mathematic Subject Classification; 11M26, 11N05. Address: Department of Mathematics, University of Sciences, Unjong District, Gwahak 1-dong, Pyongyang, D.P.R.Korea, Email: ryonggilchoe@163.com

1. Introduction

Assume that $\overline{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_m)$ are real numbers and $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_m \ge 1$. Let $p_1 = 2, p_2 = 3, \dots, p_m, \dots$ be consecutive primes. We will choose $p_m \ge 5$ arbitrarily and fix it. We define functions $F(\overline{\lambda})$ and $H(\overline{\lambda})$ respectively by

$$F\left(\overline{\lambda}\right) = F\left(\lambda_{1}, \lambda_{2}, \dots, \lambda_{m}\right) = \prod_{i=1}^{m} \frac{1 - p_{i}^{-\lambda_{i}-1}}{1 - p_{i}^{-1}},$$
$$H\left(\overline{\lambda}\right) = H\left(\lambda_{1}, \lambda_{2}, \dots, \lambda_{m}\right) = \frac{\exp\left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}\right)\right)\right)}{p_{1}^{\lambda_{1}} \cdot p_{2}^{\lambda_{2}} \cdots p_{m}^{\lambda_{m}}},$$

where $\gamma = 0.577 \cdots$ is Euler's constant ([3,4]).

By the theorem 1 of [3], the function $H(\overline{\lambda})$ has the optimum points $\overline{\lambda}_0 = (\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0) \in \mathbb{R}^m$ in *m*-dimensional real space \mathbb{R}^m . And by the theorem 2 and the theorem 3 in [3], the function value $H(\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0)$ is dependent only on p_m . So we can put

$$C_m = H\left(\lambda_1^0, \lambda_2^0, \cdots, \lambda_m^0\right) = \frac{\exp\left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda_0}\right)\right)\right)}{p_1^{\lambda_1^0} \cdot p_2^{\lambda_2^0} \cdots p_m^{\lambda_m^0}}.$$
 (1)

In this connection, we will put

$$\begin{cases} n_{0} = p_{1}^{\lambda_{1}^{0}} p_{2}^{\lambda_{2}^{0}} \cdots p_{k}^{\lambda_{k}^{0}} \cdot p_{k+1}^{1} \cdots p_{m}^{1}, & n_{0}' = n_{0} \cdot p_{m}^{-1}, \\ \overline{\lambda}_{0}' = \left(\lambda_{1}^{0}, \lambda_{2}^{0}, \cdots, \lambda_{m-1}^{0}\right) \in R^{m-1}, \\ C_{m-1}' = H\left(\overline{\lambda}_{0}'\right) = H\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \cdots, \lambda_{m-1}^{0}\right) \end{cases}$$
(2)

and

$$C_{m-1} = \max_{(\lambda_1, \lambda_2, \cdots, \lambda_{m-1}) \in \mathbb{R}^m} H\left(\lambda_1, \lambda_2, \cdots, \lambda_{m-1}\right).$$
(3)

Then it is clear that $C'_{m-1} \leq C_{m-1}$.

Let $\overline{\lambda}' = (\lambda_1', \lambda_2', \dots, \lambda_{m-1}')$ be the optimum points of the function $H(\lambda_1, \lambda_2, \dots, \lambda_{m-1})$ with (m-1)-variable in the space R^{m-1} . In general, then we have

$$\lambda_1' > \lambda_2' > \dots > \lambda_{k-1}' > \lambda_k' = \dots = \lambda_{m-1}' = 1.$$
(4)

Rarely, the last bigger number than 1 in $\{\lambda'_1, \lambda'_2, \dots, \lambda'_{m-1}\}$ could be k. But it is not essential. It is important that for any $i(1 \le i \le k-1)$

$$p_1^{\lambda_1'+1} = p_2^{\lambda_2'+1} = \dots = p_{k-1}^{\lambda_{k-1}'+1} = \left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right) \cdot \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right) + 1$$
(5)

holds. We note that it doesn't exceed one in $\{\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0\}$.

We also put

$$n' = p_{1}^{\lambda'_{1}} p_{2}^{\lambda'_{2}} \cdots p_{k-1}^{\lambda'_{k}} \cdot p_{k}^{1} \cdots p_{m-1}^{1},$$

$$n'_{+} = p_{1}^{\lambda'_{1}} p_{2}^{\lambda'_{2}} \cdots p_{k-1}^{\lambda'_{k}} \cdot p_{k}^{1} \cdots p_{m-1}^{1} \cdot p_{m}^{1} = n' \cdot p_{m}^{1},$$

$$\overline{\lambda'}_{+} = (\lambda'_{1}, \lambda'_{2}, \cdots, \lambda'_{m-1}, 1), C'_{m} = H(\overline{\lambda'}_{+}).$$
(6)

On the other hand, it is well known that

$$\sum_{p \le p_m} \frac{1}{p} = \log \log p_m + b_0 + E_0(p_m),$$
(7)

where

$$b_0 = \gamma + \sum_p \left(\log \left(1 - \frac{1}{p} \right) + \frac{1}{p} \right) = 0.241 \cdots$$
 (8)

([1,2]). And there exists a constant a > 0 such that

$$E_0(p_m) = O\left(\exp\left(-a\sqrt{\log p_m}\right)\right).$$
(9)

In this paper we would estimate some important quantities by the results of [3].

2. The estimate of $F(\overline{\lambda}_0)$

In this section we will estimate the value $F(\overline{\lambda}_0)$ for the optimum points $\overline{\lambda}_0 = (\lambda_1^0, \lambda_2^0, \cdots, \lambda_m^0) \in \mathbb{R}^m$ of the function $H(\lambda_1, \lambda_2, \cdots, \lambda_m)$.

We have

Theorem 1. For the optimum points $\overline{\lambda}_0 = (\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0) \in \mathbb{R}^m$ of the function $H(\lambda_1, \lambda_2, \dots, \lambda_m)$ we have

$$F\left(\overline{\lambda_0}\right) = e^{\gamma} \cdot \log p_m \cdot \left(1 + E_0\left(p_m\right) - \frac{4}{\sqrt{p_m} \cdot \log^{3/2} p_m} + \varepsilon\left(p_m\right)\right), \quad (10)$$

where $\varepsilon(p_m) = O(E_0^2(p_m))$. Hence we also have

$$\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) \cdot \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) =$$

$$= p_{m} \cdot \log p_{m} \cdot \left(1 + \left(\log p_{m} + 1\right) \cdot E_{0}\left(p_{m}\right) - \frac{4 \cdot \left(\log p_{m} + 1\right)}{\sqrt{p_{m}} \cdot \log^{3/2} p_{m}} + \tilde{\varepsilon}\left(p_{m}\right)\right),$$

$$(11)$$

where $\tilde{\varepsilon}(p_m) = O(\log^2 p_m \cdot E_0^2(p_m)))$.

Proof. From (5), it is clear that

$$\log F\left(\overline{\lambda_{0}}\right) = \log\left(\prod_{i=1}^{m} \frac{1 - p_{i}^{-\lambda_{i}^{0} - 1}}{1 - p_{i}^{-1}}\right) =$$

$$= \sum_{i=1}^{k} \log\left(1 - \frac{1}{p_{i}^{\lambda_{i}^{0} + 1}}\right) + \sum_{i=k+1}^{m} \log\left(1 - \frac{1}{p_{i}^{2}}\right) + \sum_{i=1}^{m} \log\left(1 - \frac{1}{p_{i}}\right)^{-1} =$$
(12)
$$= A_{1} + A_{2} + A_{3},$$

where

$$A_{1} = \sum_{i=1}^{k} \log\left(1 - \frac{1}{p_{i}^{\lambda_{i}^{0}+1}}\right), \ A_{2} = \sum_{i=k+1}^{m} \log\left(1 - \frac{1}{p_{i}^{2}}\right), \ A_{3} = \sum_{i=1}^{m} \log\left(1 - \frac{1}{p_{i}}\right)^{-1}.$$
(13)

First let's see A_1 . By Mertens' theorem ([1,2]), preliminarily, we have

$$F(\bar{\lambda}_0) = \prod_{i=1}^m \frac{1 - p_i^{-\lambda_i^0 - 1}}{1 - p_i^{-1}} = e^{\gamma} \cdot \log p_m \cdot \left(1 + O\left(\frac{1}{\log^2 p_m}\right)\right).$$
(14)

So we have

$$\left(e^{-\gamma} \cdot F\left(\overline{\lambda_0}\right)\right) \cdot \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda_0}\right)\right) + 1 = p_m \cdot \log p_m \cdot \left(1 + O\left(\frac{1}{\log p_m}\right)\right).$$
(15)

Hence From [3], for any $i(1 \le i \le k)$ we have

$$A_{1} = \sum_{i=1}^{k} \log\left(1 - \frac{1}{p_{i}^{\lambda_{i}^{0}+1}}\right) = k \cdot \log\left(1 - \frac{1}{p_{i}^{\lambda_{i}^{0}+1}}\right) =$$

$$= -\frac{k}{p_{i}^{\lambda_{i}^{0}+1}} + O\left(\frac{k}{p_{i}^{2\cdot(\lambda_{i}^{0}+1)}}\right) = -\frac{2}{\sqrt{p_{m}} \cdot (\log p_{m})^{3/2}} \cdot \left(1 + O\left(\frac{\log \log p_{m}}{\log p_{m}}\right)\right).$$
(16)

Next let's see A_2 . Now we put

$$T(x) = \sum_{p \le x} \frac{1}{p} = \log \log x + b_0 + E_0(x).$$
(17)

Then we have $dT(x) = \frac{dx}{x \cdot \log x} + dE_0(x)$. So we have

$$\sum_{i=k+1}^{m} \frac{1}{p_i^2} = \int_{p_k}^{p_m} \frac{dT(t)}{t} = \int_{p_k}^{p_m} \frac{1}{t} \cdot \left(\frac{dt}{t \cdot \log t} + dE_0(t)\right) =$$

$$= \frac{1}{p_k \cdot \log p_k} - \frac{1}{p_m \cdot \log p_m} + \int_{p_k}^{p_m} \frac{dE_0(t)}{t} =$$

$$= \frac{2}{\sqrt{p_m} \cdot \left(\log p_m\right)^{3/2}} \cdot \left(1 + O\left(\frac{\log \log p_m}{\log p_m}\right)\right)$$
(18)

and

$$A_{2} = \sum_{i=k+1}^{m} \log\left(1 - \frac{1}{p_{i}^{2}}\right) = -\sum_{i=k+1}^{m} \frac{1}{p_{i}^{2}} + O\left(\sum_{i=k+1}^{m} \frac{1}{p_{i}^{4}}\right) =$$

$$= \frac{-2}{\sqrt{p_{m}} \cdot \left(\log p_{m}\right)^{3/2}} \cdot \left(1 + O\left(\frac{\log \log p_{m}}{\log p_{m}}\right)\right).$$
(19)

Next let's see A_3 . By (8) we have

$$\sum_{p \le p_m} \left(\log\left(1 - \frac{1}{p}\right) + \frac{1}{p} \right) = b_0 - \gamma - \sum_{p > p_m} \left(\log\left(1 - \frac{1}{p}\right) + \frac{1}{p} \right).$$
(20)

And it is clear that

$$\left| \log\left(1 - \frac{1}{p}\right) + \frac{1}{p} \right| = \left| -\sum_{j=1}^{\infty} \frac{1}{j \cdot p^{j}} + \frac{1}{p} \right| =$$

$$= \left| \frac{1}{2p^{2}} + \frac{1}{3p^{3}} + \dots + \frac{1}{j \cdot p^{j}} + \dots \right| \leq$$

$$\leq \left| \frac{1}{p^{2}} + \frac{1}{p^{3}} + \dots + \frac{1}{p^{j}} + \dots \right| = \frac{1}{p \cdot (p-1)}.$$
(21)

So we have

$$-\sum_{p>p_m} \left(\log\left(1-\frac{1}{p}\right) + \frac{1}{p} \right) \leq \sum_{p>p_m} \frac{1}{p \cdot (p-1)} \leq \sum_{n>p_m} \frac{1}{n \cdot (n-1)} = \sum_{n>p_m} \left(\frac{1}{n-1} - \frac{1}{n}\right) = \frac{1}{n} = O\left(\frac{1}{p_m}\right).$$

$$(22)$$

By (7) we have

$$A_{3} = \sum_{i=1}^{m} \frac{1}{p_{i}} - \sum_{i=1}^{m} \left(\log \left(1 - \frac{1}{p_{i}} \right) + \frac{1}{p_{i}} \right) =$$

$$= \log \log p_{m} + b_{0} + E_{0} \left(p_{m} \right) - \left(b_{0} - \gamma - \sum_{p > p_{m}} \left(\log \left(1 - \frac{1}{p} \right) + \frac{1}{p} \right) \right) =$$
(23)
$$= \log \log p_{m} + \gamma + E_{0} \left(p_{m} \right) + O\left(\frac{1}{p_{m}} \right).$$

From (16), (19) and (23) we have

$$\log F\left(\overline{\lambda}_{0}\right) = \log \log p_{m} + \gamma + E_{0}\left(p_{m}\right) + \frac{-4}{\sqrt{p_{m}} \cdot \log^{3/2} p_{m}} \left(1 + O\left(\frac{\log \log p_{m}}{\log p_{m}}\right)\right).$$
(24)

and hence we have

$$\left(e^{-\gamma}\cdot F\left(\overline{\lambda}_{0}\right)\right) = \log p_{m}\cdot\left(1+E_{0}\left(p_{m}\right)-\frac{4}{\sqrt{p_{m}}\log^{3/2}p_{m}}+\varepsilon\left(p_{m}\right)\right),$$

where $\varepsilon(p_m) = O(E_0^2(p_m))$. Therefore we have

$$\begin{pmatrix} e^{-\gamma} \cdot F(\overline{\lambda_0}) \end{pmatrix} \cdot \exp\left(e^{-\gamma} \cdot F(\overline{\lambda_0})\right) =$$

= $p_m \cdot \log p_m \cdot \left(1 + (\log p_m + 1) \cdot E_0(p_m) - \frac{4 \cdot (\log p_m + 1)}{\sqrt{p_m} \log^{3/2} p_m} + \tilde{\varepsilon}(p_m)\right) \right),$

where $\tilde{\varepsilon}(p_m) = O(\log^2 p_m \cdot E_0^2(p_m)).$

This completes the proof of the theorem 1. \Box

3. The estimate of $(\log C_{m-1} - \log C'_{m-1})$

The aim of this section is to estimate the size of $(\log C_{m-1} - \log C'_{m-1})$. This result is used effectively in next section.

We get

Theorem 2. There exists a number m_0 such that for any $m \ge m_0$ we have

$$\log C_{m-1} - \log C'_{m-1} = \frac{p_m - p_{m-1}}{\sqrt{p_{m-1} \cdot \log p_{m-1}}} \cdot \left(\frac{p_m - p_{m-1}}{p_{m-1}}\right) \cdot \left(1 + \beta_0(p_m)\right), \quad (25)$$

where
$$\beta_0(p_m) = O\left(\frac{1}{\log p_m}\right).$$
 (26)

Proof. From (2) and (3), we have

$$\log C_{m-1} - \log C'_{m-1} =$$

$$= \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right) - \log n' \right) - \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'_{0}\right)\right) - \log n'_{0} \right) =$$

$$= \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'_{0}\right)\right) \right) - \left(\log n' - \log n'_{0} \right) =$$

$$= R_{1} - R_{2},$$
(27)

where

$$R_{1} = \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'_{0}\right)\right)\right), \quad R_{2} = \left(\log n' - \log n'_{0}\right). \quad (28)$$

Let's see R_1 . We can write as

$$(-R_{1}) = \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}^{\prime}\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)\right)\right) =$$

$$= \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)\right) \cdot \left(\frac{\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}^{\prime}\right)\right)}{\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)\right)} - 1\right)$$
(29)

and here we have

$$\log\left(\frac{\exp\left(e^{-\gamma}\cdot F\left(\bar{\lambda}_{0}^{\prime}\right)\right)}{\exp\left(e^{-\gamma}\cdot F\left(\bar{\lambda}^{\prime}\right)\right)}\right) = \left(e^{-\gamma}\cdot F\left(\bar{\lambda}_{0}^{\prime}\right)\right) - \left(e^{-\gamma}\cdot F\left(\bar{\lambda}^{\prime}\right)\right) = \left(e^{-\gamma}\cdot F\left(\bar{\lambda}^{\prime}\right)\right) \cdot \left(\frac{F\left(\bar{\lambda}_{0}^{\prime}\right)}{F\left(\bar{\lambda}^{\prime}\right)} - 1\right).$$
(30)

By the Taylor's formula of the function $\log(1+x)$ (0 < x < 1), for any $i(1 \le i \le k-1)$ we have

$$\log\left(\frac{F(\bar{\lambda}_{0}^{'})}{F(\bar{\lambda}^{'})}\right) = \log F(\bar{\lambda}_{0}^{'}) - \log F(\bar{\lambda}^{'}) =$$

$$= \log\left(\prod_{i=1}^{m-1} \frac{1-p_{i}^{-\lambda_{i}^{0}-1}}{1-p_{i}^{-1}}\right) - \log\left(\prod_{i=1}^{m-1} \frac{1-p_{i}^{-\lambda_{i}^{'}-1}}{1-p_{i}^{-1}}\right) =$$

$$= (k) \cdot \log\left(\frac{1-p_{i}^{-\lambda_{i}^{0}-1}}{1-p_{i}^{-\lambda_{i}^{-1}}}\right) - (k-1) \cdot \log\left(\frac{1-p_{i}^{-\lambda_{i}^{'}-1}}{1-p_{i}^{-1}}\right) - \log\left(1+\frac{1}{p_{k}}\right) =$$

$$= (k) \cdot \log\left(\frac{1-p_{i}^{-\lambda_{i}^{0}-1}}{1-p_{i}^{-\lambda_{i}^{'}-1}}\right) + \log\left(\frac{1-p_{i}^{-\lambda_{i}^{'}-1}}{1-p_{k}^{-2}}\right) =$$

$$= (k) \cdot \log\left(1+\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{'}+1}}{p_{i}^{\lambda_{i}^{0}+1}\cdot(p_{i}^{\lambda_{i}^{'}+1}-1)}\right) + \log\left(1+\frac{p_{i}^{\lambda_{i}^{'}+1}-p_{k}^{2}}{p_{i}^{\lambda_{i}^{'}+1}\cdot(p_{k}^{2}-1)}\right) =$$

$$= (k) \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{'}+1}}{p_{i}^{\lambda_{i}^{0}+1}-(p_{i}^{\lambda_{i}^{'}+1}-1)}\right) - \frac{(k)}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{'}+1}}{p_{i}^{\lambda_{i}^{'}+1}-1}\right)^{2} + (31)$$

$$+ \left(\frac{p_{i}^{\lambda_{i}'+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}'+1} \cdot \left(p_{k}^{2} - 1\right)}\right) - \frac{1}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}'+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}'+1} \cdot \left(p_{k}^{2} - 1\right)}\right)^{2} + \beta_{1}(p_{m}),$$

where $\beta_{1}(p_{m}) = O\left(k \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}^{0}+1} \cdot \left(p_{i}^{\lambda_{i}'+1} - 1\right)}\right)^{3}\right).$ (32)

Hence we have

$$\begin{pmatrix} F(\bar{\lambda}_{0}^{i}) \\ F(\bar{\lambda}^{i}) \\ \end{pmatrix} = 1 + (k) \cdot \left(\frac{p_{i}^{\lambda_{0}^{0+1}} - p_{i}^{\lambda_{i}^{i+1}}}{p_{i}^{\lambda_{0}^{0+1}} \cdot (p_{i}^{\lambda_{i}^{i+1}} - 1)} \right) + \frac{k^{2}}{2} \left(\frac{p_{i}^{\lambda_{0}^{0+1}} - p_{i}^{\lambda_{i}^{i+1}}}{p_{i}^{\lambda_{0}^{i+1}} \cdot (p_{i}^{\lambda_{i}^{i+1}} - 1)} \right)^{2} - \frac{(k)}{2} \cdot \left(\frac{p_{i}^{\lambda_{0}^{0+1}} - p_{i}^{\lambda_{i}^{i+1}}}{p_{i}^{\lambda_{i}^{i+1}} - 1} \right)^{2} + \left(\frac{p_{i}^{\lambda_{i}^{i+1}} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{i+1}} \cdot (p_{k}^{2} - 1)} \right) + \frac{1}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{i+1}} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{i+1}} \cdot (p_{k}^{2} - 1)} \right)^{2} - \frac{1}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{i+1}} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{i+1}} \cdot (p_{k}^{2} - 1)} \right)^{2} + \beta_{1}'(p_{m}) = 1 + (k) \cdot \left(\frac{p_{i}^{\lambda_{i}^{0+1}} - p_{i}^{\lambda_{i}^{i+1}}}{p_{i}^{\lambda_{i}^{0+1}} \cdot (p_{k}^{\lambda_{i}^{i+1}} - 1)} \right) + \frac{(k) \cdot (k - 1)}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0+1}} - p_{i}^{\lambda_{i}^{i+1}}}{p_{i}^{\lambda_{i}^{0+1}} \cdot (p_{i}^{\lambda_{i}^{i+1}} - 1)} \right)^{2} + \left(\frac{p_{i}^{\lambda_{i}^{i+1}} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{i+1}} \cdot (p_{k}^{2} - 1)} \right) + \beta_{1}'(p_{m}),$$

$$(34)$$

From (33), the expression (30) is

$$\log\left(\frac{\exp\left(e^{-\gamma}\cdot F\left(\overline{\lambda}_{0}^{\prime}\right)\right)}{\exp\left(e^{-\gamma}\cdot F\left(\overline{\lambda}^{\prime}\right)\right)}\right) = \left(e^{-\gamma}\cdot F\left(\overline{\lambda}^{\prime}\right)\right)\cdot \left(\frac{F\left(\overline{\lambda}_{0}^{\prime}\right)}{F\left(\overline{\lambda}^{\prime}\right)} - 1\right) = \\ = \left(e^{-\gamma}\cdot F\left(\overline{\lambda}^{\prime}\right)\right)\cdot \left(\left(k\right)\cdot \left(\frac{p_{i}^{\lambda_{0}^{0}+1} - p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{0}^{0}+1}\cdot\left(p_{i}^{\lambda_{i}^{\prime}+1} - 1\right)}\right) + \\ + \frac{\left(k\right)\cdot\left(k-1\right)}{2}\cdot \left(\frac{p_{i}^{\lambda_{0}^{0}+1} - p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{i}^{\prime}+1}-1}\right)^{2} + \left(\frac{p_{i}^{\lambda_{i}^{\prime}+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{\prime}+1}\cdot\left(p_{i}^{\lambda_{i}^{\prime}+1} - 1\right)}\right) + \beta_{1}^{\prime}\left(p_{m}\right)$$

$$(35)$$

and so we have

$$\begin{pmatrix} \exp\left(e^{-\gamma} \cdot F\left(\bar{\lambda}_{0}^{\prime}\right)\right) \\ \exp\left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right) \\ = 1 + \left(k\right) \cdot \left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right) \cdot \left(\frac{p_{i}^{\lambda_{0}^{0}+1} - p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{0}^{0}+1} \cdot \left(p_{i}^{\lambda_{i}^{\prime}+1} - 1\right)}\right)^{2} + \frac{k^{2}}{2} \cdot \left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right)^{2} \cdot \left(\frac{p_{i}^{\lambda_{0}^{\prime}+1} - p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{0}^{\prime}+1} \cdot \left(p_{i}^{\lambda_{i}^{\prime}+1} - 1\right)}\right)^{2} + \left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right) \cdot \left(\frac{p_{i}^{\lambda_{i}^{\prime}+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{\prime}+1} \cdot \left(p_{k}^{2} - 1\right)}\right) + \frac{\left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right)^{2}}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{\prime}+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}^{\prime}+1} \cdot \left(p_{k}^{2} - 1\right)}\right)^{2} + \frac{\left(k\right) \cdot \left(k - 1\right)}{2} \cdot \left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right) \cdot \left(\frac{p_{i}^{\lambda_{0}^{0}+1} - p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{0}^{0}+1} \cdot \left(p_{i}^{\lambda_{i}^{\prime}+1} - 1\right)}\right)^{2} + \beta_{1}^{\prime\prime}(p_{m}),$$
where $\beta_{1}^{\prime\prime}(p_{m}) = O\left(k^{3} \cdot \left(e^{-\gamma} \cdot F\left(\bar{\lambda}^{\prime}\right)\right)^{3} \cdot \left(\frac{p_{i}^{\lambda_{0}^{0}+1} - p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{0}^{0}+1} \cdot \left(p_{i}^{\lambda_{i}^{\prime}+1} - 1\right)}\right)^{3}\right).$
(37)

Hence we have

$$(-R_{i}) = \exp\left(e^{-\gamma} \cdot F(\bar{\lambda}')\right) \cdot \left(\frac{\exp\left(e^{-\gamma} \cdot F(\bar{\lambda}')\right)}{\exp\left(e^{-\gamma} \cdot F(\bar{\lambda}')\right)} - 1\right) =$$

$$= \exp\left(e^{-\gamma} \cdot F(\bar{\lambda}')\right) \cdot \left((k) \cdot \left(e^{-\gamma} \cdot F(\bar{\lambda}')\right) \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}^{0}+1} \cdot \left(p_{i}^{\lambda_{i}'+1} - 1\right)}\right) +$$

$$+ \frac{k^{2}}{2} \cdot \left(e^{-\gamma} \cdot F(\bar{\lambda}')\right)^{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}^{0}+1} \cdot \left(p_{i}^{\lambda_{i}'+1} - 1\right)}\right)^{2} + \left(e^{-\gamma} \cdot F(\bar{\lambda}')\right) \cdot \left(\frac{p_{i}^{\lambda_{i}'+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}'+1} \cdot \left(p_{k}^{2} - 1\right)}\right) +$$

$$+ \frac{1}{2} \cdot \left(e^{-\gamma} \cdot F(\bar{\lambda}')\right)^{2} \cdot \left(\frac{p_{i}^{\lambda_{i}'+1} - p_{k}^{2}}{p_{i}^{\lambda_{i}'+1} \cdot \left(p_{k}^{2} - 1\right)}\right)^{2} +$$

$$+ \frac{(k) \cdot (k - 1)}{2} \cdot \left(e^{-\gamma} \cdot F(\bar{\lambda}')\right) \cdot \left(\frac{p_{i}^{\lambda_{i}'+1} - p_{i}^{2}}{p_{i}^{\lambda_{i}'+1} \cdot \left(p_{k}^{2} - 1\right)}\right)^{2} + \beta_{1}''(p_{m}) \right).$$

$$(38)$$

From (5), since $\left(e^{-\gamma}F\left(\overline{\lambda}'\right)\right) \cdot \exp\left(e^{-\gamma}F\left(\overline{\lambda}'\right)\right) = p_i^{\lambda_i'+1} - 1 \quad (1 \le i \le k-1),$

we have

$$(-R_{1}) = (k) \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right) + \left(\frac{p_{i}^{\lambda_{i}^{i}+1} - 1}{p_{i}^{\lambda_{i}^{i}+1}}\right) \cdot \left(\frac{p_{i}^{\lambda_{i}^{i}+1} - p_{k}^{2}}{p_{k}^{2} - 1}\right) + \\ + \frac{k^{2}}{2} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right)}{\left(p_{i}^{\lambda_{i}^{i}+1} - 1\right)} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right)^{2} + \\ + \frac{1}{2} \cdot \frac{\left(p_{i}^{\lambda_{i}^{i}+1} - 1\right)}{p_{i}^{\lambda_{i}^{i}+1}} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right)}{p_{i}^{\lambda_{i}^{i}+1}} \cdot \left(\frac{p_{i}^{\lambda_{i}^{i}+1} - p_{k}^{2}}{p_{k}^{2} - 1}\right)^{2} + \\ + \frac{1}{2} \cdot \frac{\left(k\right) \cdot \left(k - 1\right)}{\left(p_{i}^{\lambda_{i}^{i}+1} - 1\right)} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right)^{2} + \beta_{1}'''(p_{m}),$$

$$(39)$$

where

$$\beta_{1}^{\prime\prime\prime}(p_{m}) = \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)\right) \cdot \beta_{1}^{\prime\prime}(p_{m}) = \\ = O\left(k^{3} \cdot \left(\frac{e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)}{p_{i}^{\lambda_{i}^{\prime}+1}-1}\right)^{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{\prime}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right)^{3}\right).$$

$$(40)$$

Next let's see R_2 . It is not difficult to see that for any $i(1 \le i \le k-1)$

$$(-R_{2}) = (\log n_{0}' - \log n') = \log \left(\frac{p_{1}^{\lambda_{1}^{0}} \cdot p_{2}^{\lambda_{2}^{0}} \cdots p_{k}^{\lambda_{k}^{0}} p_{k+1}^{1} \cdots p_{m-1}^{1}}{p_{1}^{\lambda_{1}'} p_{2}^{\lambda_{2}'} \cdots p_{k-1}^{\lambda_{k}'} \cdot p_{k}^{1} \cdots p_{m-1}^{1}} \right) =$$

$$= (k) \cdot \log \left(\frac{p_{i}^{\lambda_{1}^{0}+1}}{p_{i}^{\lambda_{1}'+1}} \right) - \log \left(\frac{p_{i}^{\lambda_{1}^{0}+1}}{p_{i}^{\lambda_{1}'+1}} \right) + \log \left(\frac{p_{k}^{\lambda_{k}^{0}+1}}{p_{k}^{2}} \right) =$$

$$= (k) \cdot \log \left(1 + \frac{p_{i}^{\lambda_{1}^{0}+1} - p_{i}^{\lambda_{1}'+1}}{p_{i}^{\lambda_{1}'+1}} \right) + \log \left(1 + \frac{p_{i}^{\lambda_{1}'+1} - p_{k}^{2}}{p_{k}^{2}} \right) =$$

$$= (k) \cdot \left(\frac{p_{i}^{\lambda_{1}^{0}+1} - p_{i}^{\lambda_{1}'+1}}{p_{i}^{\lambda_{1}'+1}} \right) - \left(\frac{k}{2} \right) \cdot \left(\frac{p_{i}^{\lambda_{1}^{0}+1} - p_{i}^{\lambda_{1}'+1}}{p_{i}^{\lambda_{1}'+1}} \right)^{2} +$$

$$+ \left(\frac{p_{i}^{\lambda_{1}'+1} - p_{k}^{2}}{p_{k}^{2}} \right) - \frac{1}{2} \cdot \left(\frac{p_{i}^{\lambda_{1}'+1} - p_{k}^{2}}{p_{k}^{2}} \right)^{2} + \beta_{2}(p_{m}),$$

where
$$\beta_2(p_m) = O\left(k \cdot \left(\frac{p_i^{\lambda_i^0 + 1} - p_i^{\lambda_i' + 1}}{p_i^{\lambda_i' + 1}}\right)^3\right).$$
 (42)

Therefore we have

$$(-) \cdot (\log C_{m-1} - \log C'_{m-1}) = -(R_1 - R_2) =$$

$$= (k) \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i^{i+1}}}{p_i^{\lambda_i^{0+1}}} \right) + \left(\frac{p_i^{\lambda_i^{i+1}} - 1}{p_i^{\lambda_i^{i+1}}} \right) \cdot \left(\frac{p_i^{\lambda_i^{i+1}} - p_k^2}{p_k^2 - 1} \right) +$$

$$+ \left(\frac{k^2}{2} \right) \cdot \frac{\left(e^{-\gamma} \cdot F(\overline{\lambda}') \right)}{\left(p_i^{\lambda_i^{i+1}} - 1 \right)} \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i^{i+1}}}{p_i^{\lambda_i^{0+1}}} \right)^2 +$$

$$+ \frac{1}{2} \cdot \frac{\left(p_i^{\lambda_i^{i+1}} - 1 \right)}{p_i^{\lambda_i^{i+1}}} \cdot \frac{\left(e^{-\gamma} \cdot F(\overline{\lambda}') \right)}{p_i^{\lambda_i^{i+1}}} \cdot \left(\frac{p_i^{\lambda_i^{i+1}} - p_k^2}{p_k^2 - 1} \right)^2 +$$

$$+ \frac{1}{2} \cdot \frac{\left(k \right) \cdot \left(k - 1 \right)}{\left(p_i^{\lambda_i^{i+1}} - 1 \right)} \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i^{i+1}}}{p_i^{\lambda_i^{0+1}}} \right)^2 + \beta_1^m (p_m) -$$

$$- (k) \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_{k-1}^{\lambda_i^{i+1}}}{p_i^{\lambda_i^{i+1}}} \right) + \left(\frac{k}{2} \right) \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i^{i+1}}}{p_i^{\lambda_i^{i+1}}} \right)^2 -$$

$$- \left(\frac{p_i^{\lambda_i^{i+1}} - p_k^2}{p_k^2} \right) + \frac{1}{2} \cdot \left(\frac{p_i^{\lambda_i^{i+1}} - p_k^2}{p_k^2} \right)^2 - \beta_2(p_m).$$

$$(43)$$

Here the term without k in its coefficients is

$$\begin{aligned} &\frac{1}{2} \cdot \frac{\left(p_{i}^{\lambda_{i}'+1}-1\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \left(\frac{p_{i}^{\lambda_{i}'+1}-p_{k}^{2}}{p_{k}^{2}-1}\right)^{2} + \\ &+ \frac{\left(p_{i}^{\lambda_{i}'+1}-1\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \frac{p_{i}^{\lambda_{i}'+1}-p_{k}^{2}}{\left(p_{k}^{2}-1\right)} - \left(\frac{p_{i}^{\lambda_{i}'+1}-p_{k}^{2}}{p_{k}^{2}}\right) + \frac{1}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}'+1}-p_{k}^{2}}{p_{k}^{2}}\right)^{2} = \\ &= \frac{1}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}'+1}-p_{k}^{2}}{p_{k}^{2}}\right)^{2} \cdot \left(\frac{\left(p_{i}^{\lambda_{i}'+1}-1\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \left(\frac{p_{k}^{2}}{p_{k}^{2}-1}\right)^{2} + 1\right) + \\ &+ \left(\frac{p_{i}^{\lambda_{i}'+1}-p_{k}^{2}}{p_{k}^{2}}\right) \cdot \left(\frac{\left(p_{i}^{\lambda_{i}'+1}-1\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \frac{p_{k}^{2}}{\left(p_{k}^{2}-1\right)} - 1\right) = \end{aligned}$$

$$\begin{split} &= \frac{1}{2} \cdot \left(\frac{p_i^{\lambda_i'+1} - p_k^2}{p_k^2} \right)^2 \cdot \left(1 + \frac{\left(p_i^{\lambda_i'+1} - 1 \right)}{p_i^{\lambda_i'+1}} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right) \right)}{p_i^{\lambda_i'+1}} \cdot \left(\frac{p_k^2}{p_k^2 - 1} \right)^2 \right) + \\ &+ \left(\frac{p_i^{\lambda_i'+1} - p_k^2}{p_k^2} \right) \cdot \left(\frac{\left(p_i^{\lambda_i'+1} - 1 \right) \cdot p_k^2 - p_i^{\lambda_i'+1} \cdot \left(p_k^2 - 1 \right)}{p_i^{\lambda_i'+1} \cdot \left(p_k^2 - 1 \right)} \right) = \\ &= \frac{1}{2} \cdot \left(\frac{p_i^{\lambda_i'+1} - p_k^2}{p_k^2} \right)^2 \cdot \left(1 + \frac{\left(p_i^{\lambda_i'+1} - 1 \right) \cdot \left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right) \right)}{p_i^{\lambda_i'+1}} \cdot \left(\frac{p_k^2}{p_i^2 - 1} \right)^2 \right) + \\ &+ \left(\frac{p_i^{\lambda_i'+1} - p_k^2}{p_k^2} \right)^2 \cdot \left(\frac{p_k^2}{p_i^{\lambda_i'+1} \cdot \left(p_k^2 - 1 \right)} \right) = \\ &= \frac{k}{2} \cdot \left(\frac{p_i^{\lambda_i^0+1} - p_i^{\lambda_i'+1}}{p_i^{\lambda_i'+1}} \right)^2 \cdot \alpha_1(p_m), \end{split}$$

where

$$\begin{aligned} \alpha_{1}(p_{m}) &= \frac{1}{k} \cdot \left(\frac{p_{i}^{\lambda_{i}'+1} - p_{k}^{2}}{p_{k}^{2}}\right)^{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}'+1}}\right)^{-2} \times \\ &\times \left(1 + \frac{\left(p_{i}^{\lambda_{i}'+1} - 1\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right)}{p_{i}^{\lambda_{i}'+1}} \cdot \left(\frac{p_{k}^{2}}{p_{k}^{2} - 1}\right)^{2} + \frac{2 \cdot p_{k}^{2}}{p_{i}^{\lambda_{i}'+1} \cdot \left(p_{k}^{2} - 1\right)}\right) = (45) \\ &= O\left(\sqrt{\frac{\log p_{m}}{p_{m}}}\right). \end{aligned}$$

and the term with k in its coefficients is

$$\begin{split} k \cdot &\left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right) - k \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{1}+1}}\right) + \frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{1}+1}}\right)^{2} = \\ &= k \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{0}+1}} - \frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{1}+1}}\right) + \frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{1}+1}}\right)^{2} = \\ &= -k \cdot \frac{\left(p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}\right)^{2}}{p_{i}^{\lambda_{i}^{0}+1} \cdot p_{i}^{\lambda_{i}^{1}+1}} + \frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{1}+1}}\right)^{2} = \\ &= -\frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{1}+1}}\right)^{2} \cdot \left(2 \cdot \frac{p_{i}^{\lambda_{i}^{1}+1}}{p_{i}^{\lambda_{i}^{0}+1}} - 1\right) = \end{split}$$

$$= -\frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}'+1}}\right)^{2} \cdot \left(1 - 2 \cdot \frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right) = -\frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}'+1}}{p_{i}^{\lambda_{i}'+1}}\right)^{2} \cdot \left(1 + \alpha_{2}\left(p_{m}\right)\right),$$

$$(46)$$

where $\alpha_2(p_m) = -2 \cdot \frac{p_i^{\lambda_i^0 + 1} - p_i^{\lambda_i' + 1}}{p_i^{\lambda_i^0 + 1}} = O\left(\frac{1}{p_m^{\theta}}\right) (0 < \theta < 1/2).$ (47)

And the term with k^2 in its coefficients is

$$\begin{aligned} \frac{k^{2}}{2} \cdot \frac{\left(e^{-\gamma} \cdot F\left(\bar{\lambda}'\right)\right)}{\left(p_{i}^{\lambda_{i}^{0}+1}-1\right)} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right)^{2} + \frac{1}{2} \cdot \frac{\left(k\right) \cdot \left(k-1\right)}{\left(p_{i}^{\lambda_{i}^{i}+1}-1\right)} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right)^{2} = \\ &= \frac{k^{2}}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{i}+1}}\right)^{2} \cdot \left(\frac{\left(e^{-\gamma} \cdot F\left(\bar{\lambda}'\right)\right)}{\left(p_{i}^{\lambda_{i}^{i}+1}-1\right)} + \frac{k-1}{k \cdot \left(p_{i}^{\lambda_{i}^{i}+1}-1\right)}\right) = \\ &= \frac{k^{2}}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{i}+1}}\right)^{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{0}+1}}\right) \cdot \left(\frac{\left(e^{-\gamma} \cdot F\left(\bar{\lambda}'\right)\right)}{\left(p_{i}^{\lambda_{i}^{i}+1}-1\right)} + \frac{k-1}{k \cdot \left(p_{i}^{\lambda_{i}^{i}+1}-1\right)}\right) = \\ &= \frac{k}{2} \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1}-p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{i}+1}}\right)^{2} \cdot \alpha_{3}\left(p_{m}\right), \end{aligned}$$

where

$$\alpha_{3}(p_{m}) = k \cdot \left(\frac{p_{i}^{\lambda_{i}^{t+1}}}{p_{i}^{\lambda_{i}^{0}+1}}\right) \cdot \left(\frac{\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{t}\right)\right)}{\left(p_{i}^{\lambda_{i}^{t+1}}-1\right)} + \frac{k-1}{k \cdot \left(p_{i}^{\lambda_{i}^{t+1}}-1\right)}\right) = O\left(\sqrt{\frac{\log p_{m}}{p_{m}}}\right).$$

$$(49)$$

And we have

$$\beta_{1}^{m}(p_{m}) - \beta_{2}(p_{m}) = \left(\frac{k}{2}\right) \cdot \left(\frac{p_{i}^{\lambda_{i}^{0}+1} - p_{i}^{\lambda_{i}^{i}+1}}{p_{i}^{\lambda_{i}^{i}+1}}\right)^{2} \cdot \beta_{0}(p_{m}),$$
(50)

where $\beta_0(p_m) = O\left(\frac{1}{p_m^{\theta}}\right) (0 < \theta < 1/2)$. Hence we have

$$\log\left(\frac{C'_{m-1}}{C_{m-1}}\right) = -\frac{k}{2} \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i' + 1}}{p_i^{\lambda_i' + 1}}\right)^2 \cdot \left(1 + \alpha_0\left(p_m\right)\right)$$
(51)

where

$$\alpha_{0}(p_{m}) = \alpha_{2}(p_{m}) - \alpha_{1}(p_{m}) - \alpha_{3}(p_{m}) + \beta_{1}^{m}(p_{m}) - \beta_{2}(p_{m}) = O\left(\frac{1}{p_{m}^{\theta}}\right).$$
(52)

On the other hand, by (4) and (5) we have

$$p_i^{\lambda_i^0+1} = p_m \cdot \log p_m \cdot \left(1 + \varepsilon_1(p_m)\right), \quad \varepsilon_1(p_m) = O\left(\frac{1}{\log p_m}\right)$$
(53)

and

$$p_{i}^{\lambda_{i}'+1} = p_{m-1} \cdot \log p_{m-1} \cdot \left(1 + \varepsilon_{2}\left(p_{m-1}\right)\right), \quad \varepsilon_{2}\left(p_{m-1}\right) = O\left(\frac{1}{\log p_{m}}\right).$$
(54)

and

$$k = 2 \cdot \sqrt{\frac{p_{m-1}}{\log p_{m-1}}} \left(1 + \varepsilon_3(p_m) \right), \quad \varepsilon_3(p_m) = O\left(\frac{\log \log p_m}{\log p_m}\right)$$

Hence

$$\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i^{+1}}}{p_i^{\lambda_i^{+1}}} = \frac{p_m - p_{m-1}}{p_{m-1}} \cdot \left(1 + \varepsilon_4\left(p_m\right)\right),\tag{55}$$

where $\varepsilon_4(p_m) = O\left(\frac{1}{\log p_m}\right)$. From this we have

$$\log C_{m-1} - \log C'_{m-1} = \frac{k}{2} \cdot \left(\frac{p_i^{\lambda_i^{0+1}} - p_i^{\lambda_i'+1}}{p_i^{\lambda_i'+1}} \right)^2 \cdot \left(1 + \alpha_0 \left(p_m\right)\right) = \frac{\left(p_m - p_{m-1}\right)}{\sqrt{p_{m-1}} \cdot \log p_{m-1}} \cdot \left(\frac{p_m - p_{m-1}}{p_{m-1}}\right) \cdot \left(1 + \beta_0 \left(p_m\right)\right).$$
(56)

where

$$1 + \beta_0(p_m) = (1 + \varepsilon_1(p_m)) \cdot (1 + \varepsilon_2(p_m))^2 \cdot (1 + \alpha_0(p_m)) =$$

= 1 + O $\left(\frac{1}{\log p_m}\right)$. (57)

This is the proof of the theorem 2. \Box

4. The estimate of $(p_m - p_{m-1})$

In this section we will estimate the size of $(p_{m+1} - p_m)$. Here obtained result on $(p_{m+1} - p_m)$ is a new result for the distribution of the prime number. We have

Theorem 3. There exist a number m_0 such that for any $m \ge m_0$ we have

$$(p_m - p_{m-1}) = O(\sqrt{p_{m-1}} \cdot \log^{5/2} p_{m-1}).$$
 (58)

Proof. It is easy to see that

$$\log C_{m} - \log C'_{m} = \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) - \log n_{0} \right) - \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{+}^{\prime}\right)\right) - \log n_{+}^{\prime} \right) =$$

$$= \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}^{\prime}\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)\right) \right) - \left(\log n_{0}^{\prime} - \log n^{\prime} \right) +$$

$$+ \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}^{\prime}\right)\right) \right) -$$

$$- \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{+}^{\prime}\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}^{\prime}\right)\right) \right) =$$

$$= \left(\log C'_{m-1} - \log C_{m-1} \right) + R_{0} ,$$
(59)

where

$$R_{0} = \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right)\right) - \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{+}'\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}'\right)\right)\right).$$
(60)

On other hand, by the theorem 2, we have

$$\left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) - \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right) \right) =$$

$$= \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right) \cdot \left(\exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right) \cdot \frac{1}{p_{m}} \right) - 1 \right) =$$

$$= \frac{1}{p_{m}} \cdot \left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right) \cdot \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right) \cdot \left(1 + O\left(\frac{\log p_{m}}{p_{m}}\right)\right) =$$

$$= \frac{1}{p_{m}} \cdot \left(\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}'\right)\right) \cdot \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right)\right) \times \left(1 - \frac{1}{p_{m} + 1}\right) \cdot \left(1 + O\left(\frac{\log p_{m}}{p_{m}}\right)\right) =$$

$$= \frac{1}{p_{m}} \cdot \left(\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right) \cdot \exp\left(e^{-\gamma} \cdot F\left(\overline{\lambda}_{0}\right)\right)\right) \cdot \left(1 + O\left(\frac{\log p_{m}}{p_{m}}\right)\right) =$$

$$= \log p_{m} \cdot \left(1 + \left(\log p_{m} + 1\right) \cdot E_{0}\left(p_{m}\right) - \frac{4 \cdot \left(\log p_{m} + 1\right)}{\sqrt{p_{m}} \log^{3/2} p_{m}} + \Theta_{1}\left(p_{m}\right)\right), \quad (61)$$

where $\Theta_1(p_m) = O(\log^2 p_m \cdot E_0^2(p_m)).$

And we have

$$\exp\left(e^{-\gamma} \cdot F(\bar{\lambda}')\right) \cdot \left(\exp\left(e^{-\gamma} \cdot F(\bar{\lambda}') \cdot \frac{1}{p_{m}}\right) - 1\right) = \\ = \frac{p_{m-1}}{p_{m}} \cdot \log p_{m-1} \cdot \times \left(1 + (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) - \frac{4 \cdot (\log p_{m-1} + 1)}{\sqrt{p_{m-1}} \log^{3/2} p_{m-1}} + \Theta_{2}(p_{m-1})\right),$$
(62)

where $\Theta_2(p_{m-1}) = O(\log^2 p_{m-1} \cdot E_0^2(p_{m-1})).$

From this we obtain

$$R_{0} = \log p_{m} \cdot \left(1 + (\log p_{m} + 1) \cdot E_{0}(p_{m}) - \frac{4 \cdot (\log p_{m} + 1)}{\sqrt{p_{m}} \log^{3/2} p_{m}} + \Theta_{1}(p_{m})\right) - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot (1 + (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) - \frac{4 \cdot (\log p_{m-1} + 1)}{\sqrt{p_{m-1}} \log^{3/2} p_{m-1}} + \Theta_{2}(p_{m-1})) = \\ = \left(\log p_{m} - \frac{p_{m-1}}{p_{m}} \cdot \log p_{m-1}\right) + \log p_{m} \cdot (\log p_{m} + 1) \cdot E_{0}(p_{m}) - (63) - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) + \frac{4 \cdot \log p_{m} \cdot (\log p_{m} + 1)}{\sqrt{p_{m}} \log^{3/2} p_{m}} - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot \frac{4 \cdot (\log p_{m-1} + 1)}{\sqrt{p_{m-1}} \log^{3/2} p_{m-1}} + \\ + \log p_{m} \cdot \Theta_{1}(p_{m}) - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot \Theta_{2}(p_{m-1}).$$

Here we have

$$\log p_{m} - \frac{p_{m-1}}{p_{m}} \cdot \log p_{m-1} = \log p_{m} - \left(1 - \frac{p_{m} - p_{m-1}}{p_{m}}\right) \cdot \log p_{m-1} =$$

$$= \left(\log p_{m} - \log p_{m-1}\right) + \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \cdot \log p_{m-1} =$$

$$= \log\left(1 + \frac{p_{m} - p_{m-1}}{p_{m-1}}\right) + \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \cdot \log p_{m-1} =$$

$$= \frac{p_{m} - p_{m-1}}{p_{m-1}} - \frac{1}{2}\left(\frac{p_{m} - p_{m-1}}{p_{m-1}}\right)^{2} + \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \cdot \log p_{m-1} =$$

$$= \frac{p_{m} - p_{m-1}}{p_{m-1}} \cdot \log p_{m-1} \cdot r_{1}(p_{m}),$$

$$\left(-1 - \frac{1}{p_{m-1}}\right)$$

where $r_1(p_m) = 1 + O\left(\frac{1}{\log p_m}\right) = O(1)$.

By (7) it is true that

$$E_{0}(p_{m}) = \sum_{i=1}^{m} \frac{1}{p_{i}} - \log \log p_{m} - b_{0} =$$

$$= \left(\sum_{i=1}^{m-1} \frac{1}{p_{i}} - \log \log p_{m-1} - b_{0}\right) - \log \log p_{m} + \log \log p_{m-1} + \frac{1}{p_{m}} = (65)$$

$$= E_{0}(p_{m-1}) - \log \left(\frac{\log p_{m}}{\log p_{m-1}}\right) + \frac{1}{p_{m}}.$$

Hence we have

$$\log p_{m} \cdot (\log p_{m} + 1) \cdot E_{0}(p_{m}) - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) = = \log p_{m} \cdot (\log p_{m} + 1) \cdot E_{0}(p_{m}) - \log p_{m-1} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) + + \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \log p_{m-1} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) = = \log p_{m} \cdot (\log p_{m} + 1) \cdot (E_{0}(p_{m}) - E_{0}(p_{m-1})) + + \left(\log p_{m} \cdot (\log p_{m} + 1) - \log p_{m-1} \cdot (\log p_{m-1} + 1)) \cdot E_{0}(p_{m-1}) + + \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \log p_{m-1} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) = = \log p_{m} \cdot (\log p_{m} + 1) - \log p_{m-1} \cdot (\log p_{m-1}) + \frac{1}{p_{m}} + + \left(\log p_{m} \cdot (\log p_{m} + 1) - \log p_{m-1} \cdot (\log p_{m-1} + 1)) \cdot E_{0}(p_{m-1}) + + \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \log p_{m-1} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) = = \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \log p_{m-1} \cdot (\log p_{m-1} + 1) \cdot E_{0}(p_{m-1}) = = \left(\frac{p_{m} - p_{m-1}}{p_{m}}\right) \log^{2} p_{m-1} \cdot r_{2}(p_{m}),$$
(66)

where
$$r_2(p_m) = O\left(\frac{1}{p_m - p_{m-1}} + \frac{1}{\log p_m}\right) = O(1).$$

Next, it is clear that

$$\frac{4 \cdot \log p_{m} \cdot (\log p_{m} + 1)}{\sqrt{p_{m}} \log^{3/2} p_{m}} - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot \frac{4 \cdot (\log p_{m-1} + 1)}{\sqrt{p_{m-1}} \log^{3/2} p_{m-1}} = \frac{p_{m} - p_{m-1}}{p_{m-1}} \cdot \log p_{m-1} \cdot r_{3}(p_{m}),$$
(67)

and

$$\log p_{m} \cdot \Theta_{1}(p_{m}) - \frac{p_{m-1} \cdot \log p_{m-1}}{p_{m}} \cdot \Theta_{2}(p_{m-1}) =$$

$$= \frac{p_{m} - p_{m-1}}{p_{m-1}} \cdot \log p_{m-1} \cdot r_{4}(p_{m})$$
(68)

where $r_3(p_m) = O\left(\frac{\log p_m}{\sqrt{p_m}}\right)$ and $r_4(p_m) = O\left(\frac{1}{\log p_m}\right)$.

Therefore we have

$$R_{0} = \frac{p_{m} - p_{m-1}}{p_{m-1}} \cdot \log^{2} p_{m-1} \cdot \delta_{0}(p_{m}),$$
(69)

where
$$\delta_0(p_m) = r_2(p_m) + \frac{1}{\log p_m} \cdot (r_1(p_m) + r_3(p_m)r_4(p_m)) = O(1).$$

On the other hand, since $C'_m \leq C_m$ we have

$$0 < \left(\log C_{m-1} - \log C'_{m-1}\right) < R_0.$$
⁽⁷⁰⁾

Thus from the theorem 2, we have

$$\frac{\left(p_{m}-p_{m-1}\right)}{\sqrt{p_{m-1}} \cdot \log p_{m-1}} \cdot \left(\frac{p_{m}-p_{m-1}}{p_{m-1}}\right) \cdot \left(1+\beta_{0}\left(p_{m}\right)\right) \leq \\
\leq \left(\frac{p_{m}-p_{m-1}}{p_{m-1}}\right) \cdot \log^{2} p_{m-1} \cdot \delta_{0}\left(p_{m}\right).$$
(71)

Therefore we have

$$(p_m - p_{m-1}) = O(\sqrt{p_{m-1}} \cdot \log^{5/2} p_{m-1}).$$
 (72)

This is the proof of the theorem 3. \Box

5. The estimate of $E_0(p_m)$

In this section we will estimate the size of the error iterm $E_0(p_m)$ given in the formular (7).

We get

Theorem 4. There exists a number m_0 such that for any $m \ge m_0$ we have

$$E_0(p_m) = O\left(\frac{\log^{3/2} p_m}{\sqrt{p_m}}\right).$$
(73)

Proof. Since

$$F\left(\overline{\lambda}_{0}\right) = F\left(\overline{\lambda}_{0}'\right) \cdot \left(1 + \frac{1}{p_{m}}\right), \tag{74}$$

we have

$$\log p_{m} \cdot \left(1 + E_{0}(p_{m}) - \frac{4}{\sqrt{p_{m}} \log^{3/2} p_{m}} + \varepsilon(p_{m})\right) =$$

$$= \log p_{m-1} \cdot \left(1 + E_{0}(p_{m-1}) - \frac{4}{\sqrt{p_{m}} \log^{3/2} p_{m}} + \varepsilon(p_{m-1})\right) \cdot \left(1 + \frac{1}{p_{m}}\right).$$
(75)

From this we have

$$\log p_{m} \cdot E_{0}(p_{m}) - \log p_{m-1} \cdot \left(1 + \frac{1}{p_{m}}\right) \cdot E_{0}(p_{m-1}) = \\ = -\left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}}\right) + \\ + \frac{4}{\sqrt{p_{m}} \log^{3/2} p_{m}} \cdot \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}}\right) + \\ + \log p_{m} \cdot \varepsilon(p_{m}) - \log p_{m-1} \cdot \left(1 + \frac{1}{p_{m}}\right) \cdot \varepsilon(p_{m-1}).$$
(76)

From (68) the left hand side of (76) is

$$\log p_{m} \cdot E_{0}(p_{m}) - \log p_{m-1} \cdot \left(1 + \frac{1}{p_{m}}\right) \cdot E_{0}(p_{m-1}) =$$

$$= \log p_{m} \cdot \left(E_{0}(p_{m-1}) - \log\left(\frac{\log p_{m}}{\log p_{m-1}}\right) + \frac{1}{p_{m}}\right) -$$
(77)
$$-\log p_{m-1} \cdot \left(1 + \frac{1}{p_{m}}\right) \cdot E_{0}(p_{m-1}) =$$

$$= \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}}\right) \cdot E_{0}(p_{m-1}) -$$

$$-\log p_{m} \cdot \left(\log\left(\frac{\log p_{m}}{\log p_{m-1}}\right) - \frac{1}{p_{m}}\right).$$

On the other hand, here we have

$$\begin{split} -\log p_{m} \cdot \left(\log \left(\frac{\log p_{m}}{\log p_{m-1}} \right) - \frac{1}{p_{m}} \right) &= - \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}} \right) + \\ &+ \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}} \right) \cdot \left(\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} \right) + \\ &+ \log p_{m} \cdot \left(\frac{1}{2} \cdot \left(\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} \right)^{2} + \Delta(p_{m}) \right), \end{split}$$
(78)
where $\Delta(p_{m}) = O\left(\left(\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} \right)^{3} \right).$ (79)

And we have

$$\log p_{m} \cdot \varepsilon(p_{m}) - \log p_{m-1} \cdot \left(1 + \frac{1}{p_{m}}\right) \cdot \varepsilon(p_{m-1}) =$$

$$= O\left(\left(\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}}\right)^{2}\right).$$
(80)

So from (76) we have

$$\left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}} \right) \cdot E_{0} \left(p_{m-1} \right) - \\ - \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}} \right) \cdot \left(1 + \frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} \right) \\ - \log p_{m} \cdot \left(\frac{1}{2} \cdot \left(\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} \right)^{2} + \Delta \left(p_{m} \right) \right) =$$

$$= - \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}} \right) + \frac{4}{\sqrt{p_{m}} \log^{3/2} p_{m}} \times \\ \times \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}} \right) + O\left(\left(\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} \right)^{2} \right).$$

$$(81)$$

Now if we would exactly write not only the term with $E_0(p_m)$, but also the term with $E_0^2(p_m)$ and more $E_0^n(p_m)$, and would repeat above process, then we would have $\left(\log p_m - \log p_{m-1} - \frac{\log p_{m-1}}{p_m}\right)$ in the every term.

So we will eliminate it from both hand sides of (81). Then since

$$\left(\log p_{m} - \log p_{m-1}\right) \cdot \left(\log p_{m} - \log p_{m-1} - \frac{\log p_{m-1}}{p_{m}}\right)^{-1} =$$

$$= \left(1 - \frac{\log p_{m-1}}{p_{m} \cdot (\log p_{m} - \log p_{m-1})}\right)^{-1} = O(1)$$
(82)

and

$$\frac{\log p_{m} - \log p_{m-1}}{\log p_{m-1}} = \frac{1}{\log p_{m-1}} \cdot \log \left(1 + \frac{p_{m} - p_{m-1}}{p_{m-1}} \right) =$$

$$= \frac{1}{\log p_{m-1}} \cdot \frac{p_{m} - p_{m-1}}{p_{m-1}} \cdot \left(1 + O\left(\frac{p_{m} - p_{m-1}}{p_{m-1}}\right) \right),$$
(83)

by the theorem 3, we have

$$E_0(p_m) = O\left(\frac{\log^{3/2} p_m}{\sqrt{p_m}}\right).$$
(84)

This is the proof of the theorem 4. \Box

Acknowledgment

I acknowledge for the supporting of the Dalian University of Technology of China. And I also would like to thank Prof. Dr. Jin Zhengguo for his assistance.

References

- [1] J. Sandor, D. S. Mitrinovic, B. Crstici, "Handbook of Number theory 1", Springer, 2006.
- [2] J. B. Rosser, L. Schoenfeld, "Approximate formulars for some functions of prime numbers", Illinois J. Math. 6(1962), 64-94.
- [3] R. G. Choe, An optimization problem of a certain exponential function, January 2012.

http://commons.wikimedia.org/wiki/File:An_Optimization_Problem_of_a_ Certain_Exponential_Function.pdf