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In this paper we would estimate some quantities with prime number by the 

results obtained from the opimization problem of a certain exponential 

function. In particular, we would show an estimate for the difference 

between the consecutive primes. This estimate is a new result in the 

distribution of the prime numbers.   
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1. Introduction 
 

Assume that ( 1 2, , , m )λ λ λ λ=  are real numbers and .  1 2 1mλ λ λ≥ ≥ ≥ ≥

Let be consecutive primes. We will choose  

arbitrarily and fix it. We define functions 

1 22, 3, , ,mp p p= = 5mp ≥

( )F λ and ( )H λ  respectively by   
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λ λ λ λ
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                    ( ) ( )
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− ⋅
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⋅
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where 0.577γ =  is Euler’s constant ([3,4]).  

By the theorem 1 of [3], the function ( )H λ  has the optimum points 

( 0 0 0
0 1 2, , , m

m ) Rλ λ λ λ= ∈ m in -dimensional real space mR . And by the 

theorem 2 and the theorem 3 in [3], the function value ( )0 0 0
1 2, , , mH λ λ λ  is 

dependent only on mp . So we can put   

                     ( )
( )( )( )

00 0
1 2
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, , ,
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m

e F
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γ
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⋅
.                 (1) 

In this connection, we will put   

                     ( )
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, , , ,
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⎧ ′= ⋅ =⎪⎪ ′ = ∈⎨
⎪

′ ′= =⎪⎩

1⋅

                 (2) 

and  

                               
( )

( )
1 2 1

1 1 2
, , ,

, , ,
m

m
m m

R
C max H

λ λ λ
λ λ λ

−
− −

∈
= 1 .                      (3) 

Then it is clear that .  1 1m mC C− −′ ≤

 2  



Let ( 1 2 1, , , mλ λ λ λ −′ ′ ′ ′= ) be the optimum points of the function 

( )1 2 1, , , mH λ λ λ −  with ( )1m− -variable in the space 1mR − . In general, then 

we have   

                             .                      (4)   1 2 1 1 1k k mλ λ λ λ λ−′ ′ ′ ′ ′> > > > = = =−

Rarely, the last bigger number than 1 in { }1 2 1, , , mλ λ λ −′ ′ ′  could be . But 

it is not essential. It is important that for any 

k

( )1 1i i k≤ ≤ −   

          ( )( ) ( )( )11 2 11 1
1 2 1 exp 1k

kp p p e F e Fλλ λ γ γλ λ−′′ ′ ++ ++ − −
− ′ ′= = = = ⋅ ⋅ ⋅ +         (5) 

holds. We note that it doesn’t exceed one in{ }0 0 0
1 2, , , mλ λ λ .   

We also put  

                       

( ) ( )
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1 1
1 2 1 1

1 1 1
1 2 1 1
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, , , , 1 , .

k

k

k k m

k k m m
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n p p p p p

n p p p p p p n p

C H

λλ λ
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λ λ λ λ λ

′′ ′
− −

′′ ′
+ − −

+ −

⎧ ′ = ⋅
⎪⎪ ′ ′= ⋅ ⋅ =⎨
⎪ ′ ′ ′ ′ ′ ′= =⎪⎩

1
m

+

⋅                   (6) 

On the other hand, it is well known that   

                                       (0 0
1 log log

m

m
p p

)mp b E p
p≤

= + +∑ ,                       (7) 

where 

                               0
1 1log 1 0.241

p
b

p p
γ

⎛ ⎞⎛ ⎞
= + − + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑                       (8) 

([1,2]). And there exists a constant  such that   0a >

                                   ( ) ( )( )0 exp logmE p a p= Ο − m .                              (9) 

In this paper we would estimate some important quantities by the results of 

[3].   
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2. The estimate of ( )0F λ  

 

In this section we will estimate the value ( )0F λ  for the optimum points 

( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈ of the function ( )1 2, , , mH λ λ λ .  

We have  

Theorem 1. For the optimum points ( )0 0 0
0 1 2, , m

m Rλ λ λ λ= ∈ of the 

function ( )1 2, , , mH λ λ λ  we have   

             ( ) ( ) ( )0 0 3/ 2

4log 1
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m m

F e p E p p
p p

γλ ε
⎛ ⎞

= ⋅ ⋅ + − +⎜ ⎟⎜ ⎟⋅⎝ ⎠
m

)m

,      (10) 

where  . Hence we also have  ( ) ( )( 2
0mp E pε = Ο

    

( )( ) ( )( )

( ) ( ) ( ) ( )

0 0

0 3/ 2
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4 log 1
log 1 log 1 ,
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m

m m m m m
m m

e F e F

p
p p p E p p

p p
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ε

− −⋅ ⋅ ⋅ =

⎛ ⎞⋅ +
= ⋅ ⋅ + + ⋅ − +⎜ ⎟⎜ ⎟⋅⎝ ⎠

     (11) 

where .  ( ) ( )( ))2 2
0logm mp p Eε = Ο ⋅ mp

 Proof. From (5), it is clear that   
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−
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∏

∑ ∑ ∑ 1
=              (12) 

where  

    01 1
1

1log 1
i

k

i i

A
pλ +

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , 2 2

1

1log 1
m

i k i

A
p= +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , 

1

3
1

1log 1
m

i i

A
p

−

=

⎛ ⎞
= −⎜

⎝ ⎠
∑ ⎟ . (13)   

First let’s see 1A . By Mertens’ theorem ([1,2]), preliminarily, we have  
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             ( )
0 1

0 1 2
1

1 1log 1
1 l

im
i

m
i i m

pF e p
p p

λ
γλ

− −

−
=

⎛ ⎞⎛ ⎞−
= = ⋅ ⋅ + Ο⎜ ⎜⎜− ⎝ ⎠⎝ ⎠
∏ og ⎟⎟⎟ .                 (14) 

So we have   

       ( )( ) ( )( )0 0
1exp 1 log 1

logm m
m

e F e F p p
p

γ γλ λ− − ⎛ ⎞⎛ ⎞
⋅ ⋅ ⋅ + = ⋅ ⋅ + Ο⎜ ⎟⎜⎜ ⎟⎝ ⎠⎝ ⎠

⎟

)

.     (15) 

 Hence From [3], for any i (1 i k≤ ≤  we have 

     

( ) ( )

0 0

0 0

1 1 1
1

3/ 21 2 1

1 1log 1 log 1

log log2 1 .
loglog

i i

i i

k

i i i

m

mi m mi

A k
p p

pk k
pp p pp

λ λ

λ λ

+ +
=

+ ⋅ +

⎛ ⎞ ⎛ ⎞
= − = ⋅ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟= − +Ο = − ⋅ +Ο⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⋅ ⎝ ⎠⎝ ⎠⎝ ⎠

∑
  (16) 

  Next let’s see 2A . Now we put 

                                  ( ) 0 0
1 log log ( )

p x
T x x b E x

p≤

= = + +∑ .                        (17) 

Then we have ( ) 0 ( )
log
dxdT x dE x

x x
= +

⋅
. So we have  

                     

( ) ( )

( )

( )

02
1

0

3/ 2

1 1
log

1 1
log log

log log2 1
loglog

m m

k k

m

k

p pm

i k i p p

p

k k m m p

m

mm m

dT t dt dE t
p t t t t

dE t
p p p p t

p
pp p

= +

⎛ ⎞
= = ⋅ +⎜ ⎟⋅⎝ ⎠

= − +
⋅ ⋅

⎛ ⎞⎛ ⎞
= ⋅ +Ο⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⎝ ⎠⎝ ⎠

∑ ∫ ∫

∫

=

=                       (18)        

  

and  

                       

( )

2 2 2
1 1

3/ 2

1 1 1log 1

log log2 1 .
loglog

m m

i k i k i ki i

m

mm m

A
p p p

p
pp p

= + = + = +

⎛ ⎞ ⎛
= − = − +Ο⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎛ ⎞⎛ ⎞−

= ⋅ +Ο⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ 4
1

m

i

⎞
=⎟

⎠
                (19) 
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Next let’s see . By (8) we have 3A

                     0
1 1 1 1log 1 log 1 .

m mp p p p
b

p p p
γ

≤ >

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
− + = − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ p

       (20) 

And it is clear that  

                            

( )

1

2 3

2 3

1 1 1 1log 1

1 1 1
2 3

1 1 1 1 .
1

j
j

j

j

p p j p p

p p j p

p p p p p

∞

=

⎛ ⎞
− + = − + =⎜ ⎟ ⋅⎝ ⎠

= + + + + ≤
⋅

≤ + + + + =
⋅ −

∑

                          (21)   

So we have  

                        
( )

( )

1 1 1log 1
1

1 1 1 1 .
1 1

m m

m m

p p p p

n p n p m

p p p p

n n n n n p

> >

> >

⎛ ⎞⎛ ⎞
− − + ≤ ≤⎜ ⎟⎜ ⎟ ⋅ −⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞≤ = − = = Ο⎜ ⎟⎜ ⎟⋅ − −⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑ 1
           (22)     

By (7) we have   

          ( )

( )

3
1 1

0 0 0

0

1 1 1log 1

1 1log log log 1

1log log .

m

m m

i ii i i

m m
p p

m m
m

A
p p p

p b E p b
p p

p E p
p

γ

γ

= =

>

⎛ ⎞⎛ ⎞
= − − + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= + + − − − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞
= + + +Ο⎜ ⎟

⎝ ⎠

∑ ∑

∑ =       (23)     

 From (16), (19) and (23) we have  

                               
( ) ( )0 0

3/ 2

log log log

log log4 1 .
loglog

m m

m

mm m

F p E

p
pp p

λ γ p= + + +

⎛ ⎛−
+Ο⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⎝ ⎠⎝ ⎠

⎞⎞                         (24) 

and hence we have   

 6  



( )( ) ( ) ( )0 0 3/ 2

4log 1 ,
logm m

m m

e F p E p p
p p

γ λ ε−
⎛ ⎞

⋅ = ⋅ + − +⎜ ⎟⎜ ⎟
⎝ ⎠

m

)m

 

where . Therefore we have  ( ) ( )( 2
0mp E pε = Ο

( )( ) ( )( )

( ) ( ) ( ) ( ))

0 0

0 3/ 2

exp

4 log 1
log 1 log 1 ,

log
m

m m m m m
m m

e F e F

p
p p p E p p

p p

γ γλ λ

ε

− −⋅ ⋅ ⋅ =

⎛ ⎞⋅ +
= ⋅ ⋅ + + ⋅ − +⎜ ⎟⎜ ⎟

⎝ ⎠

 

where ( ) ( )( )2 2
0logm mp p Eε = Ο ⋅ mp .     

This completes the proof of the theorem 1. □ 

 

 

 

3. The estimate of ( )1 1log logm mC C− −
′−  

 

The aim of this section is to estimate the size of ( )1 1log logmC C− −′− m . This 

result is used effectively in next section.  

We get  

Theorem 2. There exists a number  such that for any  we have  0m 0m m≥

      ( )(1 1
1 1 0

11 1

log log 1
log

m m m m
m m

mm m

p p p pC C p
pp p

β− −
− −

−− −

⎛ ⎞− −′− = ⋅ ⋅ +⎜ ⎟
⋅ ⎝ ⎠

)m ,       (25)        

where ( )0
1

logm
m

p
p

β
⎛ ⎞

= Ο⎜
⎝ ⎠

⎟ .                                                                     (26)                      

Proof. From (2) and (3), we have  

        
( )( )( ) ( )( )( )
( )( ) ( )( )( ) ( )

1 1

0

0 0

1 2

log log

exp log exp log

exp exp log log

,

m mC C

e F n e F n

e F e F n n

R R

γ γ

γ γ

λ λ

λ λ

− −

− −

− −

′

0

− =

′ ′ ′ ′= ⋅ − − ⋅ −

′ ′ ′= ⋅ − ⋅ − −

= −

=

′ =
           (27) 
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where  

       ( )( ) ( )( )( ) ( )1 0 2exp exp , log log .0R e F e F R n nγ γλ λ− −′ ′ ′= ⋅ − ⋅ = − ′     (28)      

 Let’s see . We can write as 1R

                 

( ) ( )( ) ( )( )( )

( )( ) ( )( )
( )( )

1 0

0

exp exp

exp
exp 1

exp

R e F e F

e F
e F

e F

γ γ

γ
γ

γ

λ λ

λ
λ

λ

− −

−

−

−

′ ′− = ⋅ − ⋅

⎛ ′⋅
⎜ ⎟′= ⋅ ⋅ −
⎜ ⎟′⋅⎝ ⎠

=

⎞                        (29) 

and here we have  

              

( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )
( )

0
0

0

exp
log

exp

1 .

e F
e F e F

e F

F
e F

F

γ
γ γ

γ

γ

λ
λ λ

λ

λ
λ

λ

−

− −

−

−

⎛ ⎞′⋅
⎜ ⎟ ′ ′= ⋅ − ⋅
⎜ ⎟′⋅⎝ ⎠

⎛ ⎞′
′ ⎜ ⎟= ⋅ ⋅ −

⎜ ⎟′⎝ ⎠

=

              (30)     

By the Taylor’s formula of the function ( ) ( )log 1 0 1x x+ < < , for any 

( )1i i k≤ ≤ −1  we have   

        

( )
( ) ( ) ( )

( ) ( )

( )

0

0

0

0
0

1 11 1

1 1
1 1

1 1

1 1

1

log log log

1 1log log
1 1

1 1log 1 log log 1
1 1

1log
1

i i

i i

i

m m
i i

i ii i

i i

i i

i

i

F
F F

F

p p
p p

p pk k
p p

pk
p

λ λ

λ λ

λ

λ
λ λ

λ

′− − − −− −

− −
= =

′− − − −

− −

− −

−

⎛ ⎞′
′ ′⎜ ⎟ = − =

⎜ ⎟′⎝ ⎠
⎛ ⎞ ⎛ ⎞− −

= − =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛− −

= ⋅ − − ⋅ − +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟− − ⎝ ⎠⎝ ⎠⎝ ⎠

−
= ⋅

−

∏ ∏

1

kp
⎞
=⎟

( ) ( ) ( )

( ) ( )
( )

0

0

0 0

0 0

1

1 2

1 1 1 2

1 21 1

1 1 1 1

1 1 1

1log
1

log 1 log 1
11

21

i

i

i i i

ii i

i i i i

i i i

i

k

i i i k

i ki i

i i i i

i i i i

p
p

p p p pk
p pp p

kp p p pk
p p p p

λ

λ

λ λ λ

λλ λ

λ λ λ λ

λ λ λ

′− −

′− −

′ ′+ + +

′+′+ +

′ ′+ + + +

′ ′+ + +

⎛ ⎞ ⎛ ⎞−
+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= ⋅ + + + =
⎜ ⎟⎜ ⎟ ⋅ −⋅ − ⎝ ⎠⎝ ⎠

⎛ ⎞− −⎜ ⎟= ⋅ − ⋅
⎜ ⎟⋅ − ⋅⎝ ⎠ ( )

2

1 1iλ +

⎛ ⎞
⎜ ⎟ +
⎜ ⎟−⎝ ⎠      (31) 

 8  



( ) ( ) ( )
2

1 12 2

11 12 2

1 ,
21 1

i i

i i

i k i k
m

i k i k

p p p p p
p p p p

λ λ

λ λ
β

′ ′+ +

′ ′+ +

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟+ − ⋅ +
⎜ ⎟ ⎜ ⎟⋅ − ⋅ −⎝ ⎠ ⎝ ⎠

 

where ( ) ( )
0

0

3
1 1

1 1 1
.

1

i i

i i

i i
m

i i

p pp k
p p

λ λ

λ λ
β

′+ +

′+ +

⎛ ⎞⎛ ⎞−⎜ ⎜= Ο ⋅⎜ ⎜ ⎟⋅ −⎜ ⎟⎝ ⎠⎝ ⎠

⎟⎟
⎟                                              (32) 

Hence we have   

    

( )
( ) ( ) ( ) ( )

( )
( ) ( )

0 0

0 0

0

0

2
1 1 1 12

0

1 1 1 1

2
1 1 1 12 2

1 21 1

1
21 1

1
2 211

i i i i

i i i i

i i i i

ii i

i i i i

i i i i

i i i k i k

i ki i

F p p p pkk
F p p p p

k p p p p p p
p p pp p

λ λ λ λ

λ λ λ λ

λ λ λ λ

λλ λ

λ

λ

′ ′+ + + +

′ ′+ + + +

′ ′ ′+ + + +

′+′+ +

⎛ ⎞ ⎛ ⎞⎛ ⎞′ − −⎜ ⎟ ⎜ ⎟⎜ ⎟ = + ⋅ + −
⎜ ⎟′ ⎜ ⎟ ⎜ ⎟⋅ − ⋅ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟− ⋅ + + ⋅
⎜ ⎟⎜ ⎟ ⋅ −⋅ − ⎝ ⎠⎝ ⎠ ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

0

0

0

0

2

1 2

2
1 12

11 2 1 1

2
1 1 1 2

11 21 1

1

1 1
2 1 1

1
,

2 11

i

i i i

i i i

i i i

ii i

i k

i k i i
m

i k i i

i i i k
m

i ki i

p

p p p pp k
p p p p

k k p p p p p
p pp p

λ

λ λ

λ λ λ

λ λ λ

λλ λ

β

β

′+

′ ′+ +

′+ ′+ +

′ ′+ + +

′+′+ +

⎛ ⎞
⎜ ⎟ −
⎜ ⎟⋅ −⎝ ⎠

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟ ′− ⋅ + = + ⋅ +
⎜ ⎟ ⎜ ⎟⋅ − ⋅ −⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⋅ − − −⎜ ⎟ ⎜ ⎟ ′+ ⋅ + +
⎜ ⎟⎜ ⎟ ⋅ −⋅ − ⎝ ⎠⎝ ⎠

1λ +

 (33)   

where ( ) ( )
0

0

3
1 1

3
1 1 1

.
1

i i

i i

i i
m

i i

p pp k
p p

λ λ

λ λ
β

′+ +

′+ +

⎛ ⎞⎛ ⎞−⎜ ⎜′ = Ο ⋅⎜ ⎜ ⎟⋅ −⎜ ⎟⎝ ⎠⎝ ⎠

⎟⎟
⎟                                            (34) 

From (33), the expression (30) is  

( )( )
( )( ) ( )( ) ( )

( )

( )( ) ( ) ( )

( ) ( )
( ) ( )

0

0

0

0

0 0

1 1

1 1

2
1 1 1 2

1 21 1

exp
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exp

1

1
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i i

i i i

ii i

i i

i i

i i i k

i ki i

e F F
e F

Fe F

p pe F k
p p

k k p p p p
p pp p

γ
γ

γ

λ λ
γ

λ λ

λ λ λ

λλ λ

λ λ
λ

λλ

λ

β

−

−

−

′+ +
−

′+ +

′ ′+ + +

′+′+ +

⎛ ⎞′ ⎛ ⎞⋅ ′
⎜ ⎟ ′ ⎜ ⎟= ⋅ ⋅ − =

⎜ ⎟⎜ ⎟ ′′⋅ ⎝ ⎠⎝ ⎠
⎛ ⎛ ⎞−⎜ ⎜ ⎟′= ⋅ ⋅ ⋅ +
⎜ ⎜ ⎟⋅ −⎝ ⎠⎝

⎛ ⎞ ⎛ ⎞⋅ − − −⎜ ⎟ ⎜ ⎟ ′+ ⋅ + +
⎜ ⎟⎜ ⎟ ⋅ −⋅ − ⎝ ⎠⎝ ⎠

( )1 mp
⎞
⎟
⎟
⎠

    

(35) 
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and so we have  

  

( )( )
( )( ) ( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )
( )( )

0

0

0

0

1 1
0

1 1

2
1 12 2

1 1

2
1 12

1 2

exp
1

1exp

2 1

21

i i

i i

i i

i i

i i

i

i i

i i

i i

i i

i k i

i k

e F p pk e F
p pe F

p pk e F
p p

e Fp p p pe F
p p

γ λ λ
γ

λ λγ

λ λ
γ

λ λ

γλ λ
γ

λ

λ
λ

λ

λ

λ
λ

− ′+ +
−

′+ +−

′+ +
−

′+ +

−′ ′+ +
−

′+

⎛ ⎞ ⎛ ⎞′⋅ −⎜ ⎟ ⎜ ⎟′= + ⋅ ⋅ ⋅ +
⎜ ⎟ ⎜ ⎟′ ⋅ −⋅ ⎝ ⎠⎝ ⎠

⎛ ⎞−⎜ ⎟′+ ⋅ ⋅ ⋅ +
⎜ ⎟⋅ −⎝ ⎠

⎛ ⎞ ′⋅− −⎜ ⎟′+ ⋅ ⋅ + ⋅
⎜ ⎟⋅ −⎝ ⎠ ( )

( ) ( ) ( )( ) ( ) ( )
0

0

2
2

1 2

2
1 1

11 1

1

1
,

2 1

i

i i

i i

k

i k

i i
m

i i

p p

k k p pe F p
p p

λ

λ λ
γ

λ λ
λ β

′+

′+ +
−

′+ +

⎛ ⎞
⎜ ⎟ +
⎜ ⎟⋅ −⎝ ⎠

⎛ ⎞⋅ − −⎜ ⎟′ ′′+ ⋅ ⋅ ⋅ +
⎜ ⎟⋅ −⎝ ⎠

  (36)   

where ( ) ( )( ) ( )
0

0

3
1 133

1 1 1
.

1

i i

i i

i i
m

i i

p pp k e F
p p

λ λ
γ

λ λ
β λ

′+ +
−

′+ +

⎛ ⎞⎛ ⎞−⎜ ⎟⎜′′ ′= Ο ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟⋅ −⎜ ⎟⎝ ⎠⎝ ⎠

⎟                     (37) 

Hence we have  

( ) ( )( ) ( )( )
( )( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( )

0

0

0

0

0
1

1 1

1 1

2
1 1 1 22 2

1 21 1

exp
exp 1

exp

exp
1

2 1

i i

i i

i i i

ii i

i i

i i

i i i k

i ki i

e F
R e F

e F

p pe F k e F
p p

p p p pk e F e F
p pp p

γ
γ

γ

λ λ
γ γ

λ λ

λ λ λ
γ γ

λλ λ

λ
λ

λ

λ λ

λ λ

−

−

−

′+ +
− −

′+ +

′ ′+ + +
− −

′+′+ +

⎛ ⎞′⋅
⎜ ⎟′− = ⋅ ⋅ − =
⎜ ⎟′⋅⎝ ⎠

⎛ ⎛ ⎞−⎜ ⎜ ⎟′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ +
⎜ ⎜ ⎟⋅ −⎝ ⎠⎝

⎛ ⎞− −⎜ ⎟′ ′+ ⋅ ⋅ ⋅ + ⋅ ⋅
⎜ ⎟ ⋅⋅ −⎝ ⎠ ( )

( )( ) ( )

( ) ( ) ( )( ) ( ) ( )
0

0

2
1 22

1 2

2
1 1

11 1

1

1
2 1

1
.

2 1

i

i

i i

i i

i k

i k

i i
m

i i

p pe F
p p

k k p pe F p
p p

λ
γ

λ

λ λ
γ

λ λ

λ

λ β

′+
−

′+

′+ +
−

′+ +

⎛ ⎞
⎜ ⎟ +
⎜ ⎟−⎝ ⎠

⎛ ⎞−⎜ ⎟′+ ⋅ ⋅ ⋅ +
⎜ ⎟⋅ −⎝ ⎠

⎞⎛ ⎞⋅ − − ⎟⎜ ⎟′ ′′+ ⋅ ⋅ ⋅ + ⎟⎜ ⎟⋅ − ⎟⎝ ⎠ ⎠

       

(38) 
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From (5), since ( )( ) ( )( ) ( )1exp 1 1 1i
ie F e F p i kλγ γλ λ ′+− −′ ′⋅ = − ≤ ≤ − , 

we have  

              

( ) ( )

( )( )
( )

( ) ( )( )

0

0

0

0

1 1 1 1 2

1 1 21

2
1 12

1 1

21 1 2

1 1 2

1
1

2 1

11
2 1

1
2

i i i i

ii

i i

i i

i i

i i

i i i i k

kii

i i

i i

i i k

ki i

p p p p pR k
ppp

e F p pk
p p

e Fp p p
pp p

λ λ λ λ

λλ

γ λ λ

λ λ

γλ λ

λ λ

λ

λ

′ ′ ′+ + + +

′++

− ′+ +

′+ +

′ −+ ′+

′ ′+ +

⎛ ⎞ ⎛ ⎞ ⎛− − −
− = ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ −⎝ ⎠ ⎝⎝ ⎠

′⋅ ⎛ ⎞−
+ ⋅ ⋅ +⎜ ⎟⎜ ⎟− ⎝ ⎠

′⋅− ⎛ ⎞−
+ ⋅ ⋅ ⋅ +⎜ ⎟−⎝ ⎠

+
( ) ( )
( )

⎞
+⎟
⎠

( )
0

0

2
1 1

11 1

1
,

1

i i

i i

i i
m

i i

k k p p p
p p

λ λ

λ λ
β

′+ +

′+ +

⎛ ⎞⋅ − − ′′′⋅ ⋅ +⎜ ⎟⎜ ⎟− ⎝ ⎠

         (39) 

where  

                   

( ) ( )( ) ( )

( ) 0

0

1 1

2 3
1 1

3
1 1

exp

.
1

i i

i i

m m

i i

i i

p e F p

e F p pk
p p

γ

γ λ λ

λ λ

β λ β

λ

−

− ′+ +

′+ +

′′′ ′ ′′= ⋅ ⋅ =

⎛ ⎞⎛ ⎞′⋅ ⎛ −⎜ ⎟⎜ ⎟= Ο ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎞                      (40) 

Next let’s see . It is not difficult to see that for any 2R ( )1 1i i k≤ ≤ −  

           

( ) ( )

( )

( )

00 0
1 2

1 2

0 0 0

0

1 1
1 2 1 1

2 0 1 1
1 2 1 1

1 1 1

21 1

1 1

1

log log log

log log log

log 1

k

k

i i k

i i

i i

i

k k m

k k m

i i k

ki i

i i

i

p p p p pR n n
p p p p p

p p pk
pp p

p pk
p

λλ λ

λλ λ

λ λ λ

λ λ

λ λ

λ

+ −
′′ ′
− −

+ + +

′ ′+ +

′+ +

′ +

⎛ ⎞⋅′ ′− = − = ⎜ ⎟⎜ ⎟⋅⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞−

= ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

=

( )

( )

0 0

1 2

2

2
1 1 1 1

1 1

2
1 12 2

22 2

log 1

2

1 ,
2

i

i i i i

i i

i i

i k

k

i i i i

i i

i k i k
m

k k

p p
p

p p p pkk
p p

p p p p p
p p

λ

λ λ λ λ

λ λ

λ λ

β

′ +

′ ′+ + + +

′ ′+ +

′ ′+ +

⎛ ⎞−
+ + =⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎛ ⎞= ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −
+ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (41) 
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where ( )
0 3

1 1

2 1

i i

i

i i
m

i

p pp k
p

λ λ

λ
β

′+ +

′ +

⎛ ⎞⎛ ⎞−⎜= Ο ⋅⎜⎜⎜ ⎝ ⎠⎝ ⎠

⎟⎟⎟ ⎟
.                                                (42) 

Therefore we have  

            

( ) ( ) ( )

( )

( )( )
( )

( ) ( )( )

0

0

0

0

1 1 1 2

1 1 1 1 2

1 21

2
1 12

1 1

1

1

log log

1
1

2 1

11
2

i i i i

ii

i i

i i

i

i i

m m

i i i i k

kii

i i

i i

i

i i

C C R R

p p p p pk
ppp

e F p pk
p p

e Fp

p p

λ λ λ λ

λλ

γ λ λ

λ λ

γλ

λ λ

λ

λ

− −

′ ′ ′+ + + +

′++

− ′+ +

′+ +

′ −+

′ ′+ +

′− ⋅ − = − − =

⎛ ⎞ ⎛ ⎞ ⎛− − −
= ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ −⎝ ⎠ ⎝⎝ ⎠

′⋅ ⎛ ⎞⎛ ⎞ −
+ ⋅ ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

′⋅−
+ ⋅ ⋅

⎞
+⎟

⎠

( ) ( )
( ) ( )

( )

0

0

0 0

21 2

1 2

2
1 1

11 1

2
1 1 1 1

1
1 1

1 12 2

2

1

11
2 1

2

1
2

i

i i

i i

i i i i

i i

i i

i k

k

i i
m

i i

i k i i

i i

i k i k

k

p p
p

k k p p p
p p

p p p pkk
p p

p p p p
p

λ

λ λ

λ λ

λ λ λ λ

λ λ

λ λ

β

′+

′+ +

′+ +

′ ′+ + + +
−

′ ′+ +

′ ′+ +

⎛ ⎞−
⋅ +⎜ ⎟−⎝ ⎠

⎛ ⎞⋅ − − ′′′+ ⋅ ⋅ + −⎜ ⎟⎜ ⎟− ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎛ ⎞− ⋅ + ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞− −
− + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

( )
2

22 .m
k

p
p

β
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

                  (43) 

Here the term without k  in its coefficients is 

( ) ( )( )

( )
( )

( ) ( )( )

21 1 2

1 1 2

21 1 1 12 2 2

1 2 22

2 11 2

12

11
2 1

1 1
21

11
2

i i

i i

i i i i

i

ii

i

i i k

ki i

i i k i k i k

k ki k

ii k

k i i

e Fp p p
pp p

p p p p p p p
p pp p

e Fpp p
p p p

γλ λ

λ λ

λ λ λ λ

λ

γλλ

λ λ

λ

λ

′ −+ ′+

′ ′+ +

′+ ′ ′ ′+ + +

′+

′ −+′ +

′ ′+

′⋅− ⎛ ⎞−
⋅ ⋅ ⋅ +⎜ ⎟−⎝ ⎠

− ⎛ ⎞ ⎛ ⎞− − −
+ ⋅ − + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

′⋅−⎛ ⎞−
= ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

=

( )
( )

22

1 2

11 2 2

12 2

1
1

1
1

1

i

ii

i

k

k

ii k k

k i k

p
p

pp p p
p p p

λλ

λ

+

′+′ +

′+

⎛ ⎞⎛ ⎞⎜ ⎟⋅ + +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
⎛ ⎞−⎛ ⎞− ⎜ ⎟+ ⋅ ⋅ − =⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

      (44) 
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( ) ( )( )

( ) ( )
( )

( )

2 211 2 2

1 12 2

1 12 21 2

2 1 2

2 11 2

2

11 1
2 1

1 1

1

11 1
2

ii

i i

i ii

i

ii

ii k k

k ki i

i k i ki k

k i k

ii k

k i

e Fpp p p
p pp p

p p p pp p
p p p

pp p
p p

γλλ

λ λ

λ λλ

λ

λλ

λ′ −+′ +

′ ′+ +

′ ′+ +′ +

′+

′+′ +

⎛ ⎞′⋅−⎛ ⎞ ⎛ ⎞− ⎜ ⎟= ⋅ ⋅ + ⋅ ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞− ⋅ − ⋅ −⎛ ⎞− ⎜ ⎟+ ⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ −⎝ ⎠ ⎝ ⎠

−⎛ ⎞−
= ⋅ ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

( )( )

( )

( )
0

22

1 1 2

2
1 2 2

2 1 2

2
1 1

11

1

1

,
2

i i

i

i

i i

i

k

ki

i k k

k i k

i i
m

i

e F p
pp

p p p
p p p

p pk p
p

γ

λ λ

λ

λ

λ λ

λ

λ

α

−

′ ′+ +

′ +

′+

′+ +

′+

⎛ ⎞′⋅ ⎛ ⎞⎜ ⎟⋅ ⋅ +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞− ⎜ ⎟+ ⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ −⎝ ⎠ ⎝ ⎠

⎛ ⎞−
= ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

 

where 

         

( )

( ) ( )( )
( )

02 2
1 1 12

1 12

21 2 2

1 1 2 1 2

1

1 21
1 1

log .

i i i

i

i

i i i

i k i i
m

k i

i k k

ki i i k

m

m

p p p pp
k p p

e Fp p p
pp p p p

p
p

λ λ λ

λ

γλ

λ λ λ

α

λ

−
′ ′+ + +

′+

′ −+

′ ′+ + ′+

⎛ ⎞ ⎛ ⎞− −
= ⋅ ⋅ ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞′⋅− ⎛ ⎞ ⋅⎜ ⎟× + ⋅ ⋅ + =⎜ ⎟⎜ ⎟− ⋅ −⎝ ⎠⎝ ⎠
⎛ ⎞

= Ο⎜ ⎟⎜ ⎟
⎝ ⎠

         (45) 

and the term with  in its coefficients is   k
0 0 0

0

0 0 0

0

2
1 1 1 1 1 1

1 1

2
1 1 1 1 1 1

1 1 1

2

2

i i i i i i

i i i

i i i i i i

i i i

i i i i i i

i i i

i i i i i i

i i i

i

p p p p p pkk k
p p p

p p p p p pkk
p p p

p
k

λ λ λ λ λ λ

λ λ λ

λ λ λ λ λ λ

λ λ λ

λ

′ ′+ + + + + +

′ ′+ + +

′ ′ ′+ + + + + +

′ ′+ + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
⋅ − ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛− − −
= ⋅ − + ⋅ =⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

= − ⋅
( )

1

′

=

⎞
⎟⎟
⎠

0
0

0

0

0

2 21 1 1 1

1 1 1

2
1 1 1

1 1

2

2 1
2

i i
i i

i i i

i i i

i i

i i i

i i i

i i i

i i

p p pk
p p p

p p pk
p p

λ λ λ

λ λ λ

λ λ λ

λ λ

′+ + ′+ +

′ ′+ + +

′ ′+ + +

′ + +

− ⎛ ⎞−
+ ⋅ =⎜ ⎟⎜ ⎟⋅ ⎝ ⎠

⎛ ⎞ ⎛ ⎞−
= − ⋅ ⋅ ⋅ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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( )( )

0 0

0

0

2
1 1 1 1

1 1

2
1 1

21

1 2
2

1 ,
2

i i i i

i i

i i

i

i i i i

i

i i
m

i

p p p pk
p p

p pk p
p

λ λ λ λ

λ λ

λ λ

λ
α

′ ′+ + + +

′ + +

′+ +

′ +

⎛ ⎞ ⎛− −
= − ⋅ ⋅ − ⋅ =⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎛ ⎞−
= − ⋅ ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

i

⎞
⎟⎟
⎠                 (46) 

where ( ) (
0

0

1 1

2 1

12
i i

i

i i
m

mi

p pp
pp

λ λ

θλ
α

′+ +

+

⎛ ⎞−
= − ⋅ = Ο < <⎜ ⎟

⎝ ⎠
)0 1/ 2θ .                   (47)                                      

And the term with  in its coefficients is  2k

( )( )
( )

( ) ( )
( )

( )( )
( ) ( )

0 0

0 0

0

0

0

2 2
1 1 1 12

1 11 1

2
1 12

1 11

1 12

11
2 21 1

1
2 1 1

2

i i i i

i ii i

i i

i ii

i i

i i i i

i ii i

i i

i ii

i i

e F k kp p p pk
p pp p

e Fp pk k
p k pp

p pk

γ λ λ λ λ

λ λλ λ

γλ λ

λ λλ

λ λ

λ

λ

− ′ ′+ + + +

′ ′+ ++ +

−′+ +

′ ′+ ++

′+ +

′⋅ ⎛ ⎞ ⎛ ⎞⋅ −− −
⋅ ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞′⋅⎛ ⎞− −⎜ ⎟= ⋅ ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟− ⋅ −⎝ ⎠ ⎝ ⎠

−
= ⋅

=

( )( )
( ) ( )

( )

0

0

2
1

1 1 11

2
1 1

31

1
1 1

,
2

i

i i ii

i i

i

i

i i ii

i i
m

i

e Fp k
p p k pp

p pk p
p

γλ

λ λ λλ

λ λ

λ

λ

α

−′+

′+ ′ ′+ ++

′+ +

′+

⎛ ⎞′⋅⎛ ⎞ ⎛ ⎞ −⎜ ⎟⋅ ⋅ + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⋅ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞−
= ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

   (48) 

where 

              
( )

( )( )
( ) ( )0

1

3 1 11

1
1 1

log .

i

i ii

i
m

i ii

m

m

e Fp kp k
p k pp

p
p

γλ

λ λλ

λ
α

−′+

′ ′+ ++

⎛ ⎞′⋅⎛ ⎞ −⎜ ⎟= ⋅ ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟− ⋅ −⎝ ⎠ ⎝ ⎠
⎛ ⎞

= Ο⎜ ⎟⎜ ⎟
⎝ ⎠

              (49) 

And we have 

             ( ) ( ) (
0 2

1 1

1 2 012

i i

i

i i
m m

i

p pk )mp p p
p

λ λ

λβ β β
′+ +

′+

⎛ ⎞−⎛ ⎞′′′ − = ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
,                    (50) 

where ( ) (0
1 0 1/ 2m

m

p
pθβ

⎛ ⎞
= Ο < <⎜ ⎟

⎝ ⎠
)θ . Hence we have   
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                ( )(
0 2

1 1
1

01
1

log 1
2

i i

i

m i i
m

m i

C p pk )p
C p

λ λ

λ α
′+ +

−
′+

−

⎛ ⎞⎛ ⎞′ −
= − ⋅ ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                    (51) 

where  

                      
( ) ( ) ( ) ( )

( ) ( )

0 2 1 3

1 2
1 .

m m m

m m
m

p p p p

p p
pθ

α α α α

β β

= − −

⎛ ⎞
′′′+ − = Ο⎜ ⎟

⎝ ⎠

m +

                           (52) 

On the other hand, by (4) and (5) we have   

             ( )( ) ( )0 1
1 1

1log 1 ,
log

i
i m m m m

m

p p p p p
p

λ ε ε+ ⎛ ⎞
= ⋅ ⋅ + = Ο⎜

⎝ ⎠
⎟           (53)                             

and  

     ( )( ) ( )1
1 1 2 1 2 1

1log 1 ,
log

i
i m m m m

m

p p p p p
p

λ ε ε′+
− − − −

⎛ ⎞
= ⋅ ⋅ + = Ο⎜

⎝ ⎠
⎟ .          (54)      

and  

( )( ) ( )1
3 3

1

log log2 1 ,
log log

m m
m m

m m

p pk p p
p p

ε ε−

−

⎛ ⎞
= ⋅ + = Ο⎜ ⎟

⎝ ⎠
. 

Hence  

                           ( )(
0 1 1

1
41

1

1
i i

i

i i m m
m

mi

p p p p )p
pp

λ λ

λ ε
′+ +

−
′+

−

− −
= ⋅ + ,                         (55)                 

where ( )4
1

logm
m

p
p

ε
⎛ ⎞

= Ο⎜
⎝ ⎠

⎟ . From this we have  

           
( )( )

( ) ( )( )

0 2
1 1

1 1 01

1 1
0

11 1

log log 1
2

1 .
log

i i

i

i i
m m m

i

m m m m
m

mm m

p pkC C p
p

p p p p p
pp p

λ λ

λ α

β

′+ +

− − ′+

− −

−− −

⎛ ⎞−′− = ⋅ ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

− ⎛ ⎞−
= ⋅ ⋅ +⎜ ⎟

⋅ ⎝ ⎠

=

               (56) 

where  
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( ) ( )( ) ( )( ) ( )( )2

0 1 2 01 1 1 1

11 .
log

m m m

m

p p p p

p

β ε ε α+ = + ⋅ + ⋅ +

⎛ ⎞
= +Ο⎜ ⎟

⎝ ⎠

m =

              (57) 

This is the proof of the theorem 2.  

 

 

 

4. The estimate of ( )1m mp p −−  

 

In this section we will estimate the size of ( )1m mp p+ − . Here obtained result 

on ( )m1mp p+ −  is a new result for the distribution of the prime number.   

We have 

Theorem 3. There exist a number  such that for any  we have  0m 0m m≥

                              ( ) ( )5/ 2
1 1 logm m m mp p p p− −− = Ο ⋅ 1− .                          (58)               

Proof. It is easy to see that  

( )( )( ) ( )( )( )
( )( ) ( )( )( ) ( )

( )( ) ( )( )( )
( )( ) ( )( )( )

( )

0 0

0 0

0 0

1 1 0

log log exp log exp log

exp exp log log

exp exp

exp exp

log log ,

m m

m m

C C e F n e F n

e F e F n n

e F e F

e F e F

C C R

γ γ

γ γ

γ γ

γ γ

λ λ

λ λ

λ λ

λ λ

− −
+ +

− −

− −

− −
+

− −

′ ′ ′− = ⋅ − − ⋅ −

′ ′ ′ ′= ⋅ − ⋅ − − +

′+ ⋅ − ⋅ −

′ ′− ⋅ − ⋅ =

′= − +

=

 (59) 

where  

                        
( )( ) ( )( )( )
( )( ) ( )( )( )

0 0exp exp

exp exp .

R e F e F

e F e F

γ γ

γ γ

λ λ

λ λ

− −

− −
+

′= ⋅ − ⋅

′ ′− ⋅ − ⋅

0 −
                   (60) 

On other hand, by the theorem 2, we have   
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( )( ) ( )( )( )
( )( ) ( )

( )( ) ( )( )

( )( ) ( )( )( )

( )

0 0

0 0

0 0

0 0

0

exp exp

1exp exp 1

log1 exp 1

1 exp

log1 1exp 1 1
1

m

m

m m

m

m

m m m

e F e F

e F e F
p

pe F e F
p p

e F e F
p

pe F
p p p

γ γ

γ γ

γ γ

γ γ

γ

λ λ

λ λ

λ λ

λ λ

λ

− −

− −

− −

− −

−

′⋅ − ⋅ =

⎛ ⎞⎛ ⎞
′ ′= ⋅ ⋅ ⋅ ⋅ − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ + Ο =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= ⋅ ⋅ ⋅ ⋅ ×

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛
′× − ⋅ ⋅ ⋅ − ⋅ +Ο⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎝ ⎠

( )( ) ( )( )( )

( ) ( ) ( ) ( )

0 0

0 13/ 2

log1 exp 1

4 log 1
log 1 log 1 ,

log

m

m m

m
m m m

m m

pe F e F
p p

p
p p E p p

p p

γ γλ λ− −

⎛ ⎞⎞
=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅ + Ο =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⋅ +
= ⋅ + + ⋅ − +Θ⎜ ⎟⎜ ⎟

⎝ ⎠
m        (61) 

where ( ) ( )( )2 2
1 0logm mp p EΘ = Ο ⋅ mp . 

And we have   

                   

( )( ) ( )

( ) ((

( )

)

( ))

1
1 1 0

1
2 13/ 2

1 1

1exp exp 1

log 1 log 1

4 log 1
,

log

m

m
m m

m

m
m

m m

e F e F
p

p p p E
p

p
p

p p

γ γλ λ− −

−
− −

−
−

− −

⎛ ⎞⎛ ⎞
′ ′⋅ ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= ⋅ ⋅× + + ⋅

⋅ +
− +Θ

1mp −

=

−                    (62) 

where ( ) ( )( )2 2
2 1 1 0 1logm mp p E− −Θ = Ο ⋅ mp − .  

From this we obtain   

 17  



( ) ( ) ( ) ( ))

( ) ( )(

( ) ( ))

( ) ( )

( )

0 0 3/ 2

1 1
1 0 1

1
2 13/ 2

1 1

1
1 0

1 1
1 0

4 log 1
log 1 log 1

log

log 1 log 1

4 log 1
log

log log log log 1

log log 1

m
m m m

m m

m m
m m

m

m
m

m m

m
m m m m m

m

m m
m m

m

p
R p p E p p

p p

p p p E p
p

p
p

p p

pp p p p E p
p

p p p E p
p

− −
− −

−
−

− −

−
−

− −
− −

⎛ ⋅ +
= ⋅ + + ⋅ − +Θ⎜⎜

⎝
⋅

− ⋅ + + ⋅ −

⋅ +
− +Θ =

⎛ ⎞
= − ⋅ + ⋅ + ⋅ −⎜ ⎟
⎝ ⎠

⋅
− ⋅ + ⋅ ( )

( )

1 m −

( )

( ) ( )

1

11 1
3/ 2 3/ 2

1 1

1 1
1 2 1

4 log log 1 4 log 1log
log log

loglog .

m m mm m

mm m m m

m m
m m m

m

p p pp p
pp p p p

p pp p p
p

−− −

− −

− −
−

+

⋅ ⋅ + ⋅ +⋅
+ − ⋅

⋅
+ ⋅Θ − ⋅Θ

+

(63) 

Here we have  

            ( )

1 1
1 1

1
1 1

1 1
1

1

log log log 1 log

log log log

log 1 log

m m m
m m m

m m

m m
m m m

m

m m m m
m

m m

p p pp p p
p p

p pp p p
p

p p p p p
p p

− −
− −

−
− −

− −
−

−

⎛ ⎞−
− ⋅ = − − ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞−

= − + ⋅ =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− −
= + + ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

mp =

      (64) 

( )

2

1 1 1
1

1 1

1
1 1

1

1 log
2

log ,

m m m m m m
m

m m m

m m
m m

m

p p p p p p p
p p p

p p p r p
p

− − −
−

− −

−
−

−

⎛ ⎞ ⎛ ⎞− − −
= − + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
−

= ⋅ ⋅

=
 

where ( ) ( )1
11 1

logm
m

r p
p

⎛ ⎞
= +Ο = Ο⎜ ⎟

⎝ ⎠
.   

By (7) it is true that   
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( )

( )

0 0
1

1

1 0 1
1

0 1
1

1 log log

1 1log log log log log log

log 1log .
log

m

m m
i i

m

m m m
i i m

m
m

m m

E p p b
p

p b p p
p p

pE p
p p

=

−

− −
=

−
−

= − − =

⎛ ⎞
= − − − + +⎜ ⎟
⎝ ⎠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

∑

∑ =       (65) 

Hence we have  

( ) ( ) ( ) (

( ) ( ) ( ) ( )

)

( ) ( )

( ) ( ) ( )( )
( ) ( )( )

1 1
0 1

0 1 1 0 1

1
1 1 0 1

0 0 1

1 1 0

loglog log 1 log 1

log log 1 log log 1

log log 1

log log 1

log log 1 log log 1

m m
m m m m m

m

m m m m m m

m m
m m m

m

m m m m

m m m m

p pp p E p p E p
p

p p E p p p E p

p p p p E p
p

p p E p E p

p p p p E p

− −
− −

− − −

−
− − −

−

− −

0 1
⋅

⋅ + ⋅ − ⋅ + ⋅

= ⋅ + ⋅ − ⋅ + ⋅ +

⎛ ⎞−
+ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

= ⋅ + ⋅ − +

+ ⋅ + − ⋅ + ⋅ ( )

=

( ) ( )

( )

( ) ( )( ) ( )

( ) ( )

1

1
1 1 0 1

1

1 1 0 1

1
1 1 0 1

21

1

log log 1

log 1log log 1 log
log

log log 1 log log 1

log log 1

log

m

m m
m m m

m

m
m m

m m

m m m m m

m m
m m m

m

m m
m

m

p p p p E p
p

pp p
p p

p p p p E p

p p p p E p
p

p p p
p

−

−
− − −

−

− − −

−
− − −

−

−

+

⎛ ⎞−
+ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
= ⋅ + ⋅ − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
+ ⋅ + − ⋅ + ⋅ +

⎛ ⎞−
+ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

( )1 2 ,mr p− ⋅
 (66) 

where ( ) ( )2
1

1 1 1
logm

m m m

r p
p p p−

⎛ ⎞
= Ο + = Ο⎜ ⎟−⎝ ⎠

.   

Next, it is clear that  

              

( ) ( )

( )

11 1
3/ 2 3/ 2

1

1
1 3

1

4 log log 1 4 log 1log
log log

log ,

m m mm m

mm m m m

m m
m m

m

p p pp p
pp p p p

p p p r p
p

−− −

−

−
−

−

⋅ ⋅ + ⋅ +⋅

1−

− ⋅ =

−
= ⋅ ⋅

       (67) 
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and  

                          
( ) ( )

( )

1 1
1 2

1
1 4

1

loglog

log

m m
m m m

m

m m
m m

m

p pp p p
p

p p p r p
p

− −
−

−
−

−

1
⋅

⋅Θ − ⋅Θ =

−
= ⋅ ⋅

                 (68) 

where ( )3
log m

m
m

pr p
p

⎛ ⎞
= Ο⎜ ⎟⎜ ⎟

⎝ ⎠
 and ( )4

1
logm

m

r p
p

⎛ ⎞
= Ο⎜ ⎟

⎝ ⎠
.  

Therefore we have  

                                ( )21
0 1

1

log ,m m
m

m

p p
0 mR p p

p
δ−

−
−

−
= ⋅ ⋅                            (69) 

where ( ) ( ) ( ) ( ) ( )( ) ( )0 2 1 3 4
1 1

logm m m m m
m

p r p r p r p r p
p

δ = + ⋅ + = Ο .  

 On the other hand, since mC Cm′ ≤  we have  

                                      ( )1 10 log logm mC C− −′< − 0R< .                              (70) 

Thus from the theorem 2, we have  

                         

( ) ( )( )

( )

1 1
0

11 1

21
1 0

1

1
log

log .

m m m m
m

mm m

m m
m m

m

p p p p p
pp p

p p p p
p

β

δ

− −

−− −

−
−

−

− ⎛ ⎞−
⋅ ⋅ + ≤⎜ ⎟

⋅ ⎝ ⎠

⎛ ⎞−
≤ ⋅ ⋅⎜ ⎟
⎝ ⎠

                 (71)        

Therefore we have   

                             ( ) ( )5/ 2
1 1 logm m m mp p p p− −− = Ο ⋅ 1− .                           (72)                               

This is the proof of the theorem 3.  
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5. The estimate of ( )0 mE p  

 

In this section we will estimate the size of the error iterm ( )0 mE p  given in 

the formular (7).  

We get  

Theorem 4. There exists a number  such that for any  we have  0m 0m m≥

                                ( )
3/ 2

0
log m

m
m

pE p
p

⎛ ⎞
= Ο⎜⎜

⎝ ⎠
⎟⎟ .                               (73)                     

Proof.  Since  

                                       ( ) ( )0 0
11

m

F F
p

λ λ
⎛ ⎞

′= ⋅ +⎜
⎝ ⎠

⎟ ,                                 (74)                        

we have  

         

( ) ( )

( ) ( )

0 3/ 2

1 0 1 13/ 2

4log 1
log

4 1log 1 1 .
log

m m m
m m

m m m
mm m

p E p p
p p

p E p p
pp p

ε

ε− − −

⎛ ⎞
⋅ + − + =⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⋅ + − + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

   (75) 

From this we have   

                 

( ) ( )0 1 0

1
1

1
13/ 2

1log log 1

loglog log

log4 log log
log

m m m m
m

m
m m

m

m
m m

mm m

p E p p E p
p

pp p
p

pp p
pp p

− −

−
−

−
−

⎛ ⎞
⋅ − ⋅ + ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞

= − − − +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ ⋅ − −⎜ ⎟

⎝ ⎠

1 =

+

                   (76) 

( ) ( )1 1
1log log 1 .m m m m

m

p p p p
p

ε ε− −

⎛ ⎞
+ ⋅ − ⋅ + ⋅⎜ ⎟

⎝ ⎠
 

From (68) the left hand side of (76) is  
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( ) ( )

( )

( )

0 1 0

0 1
1

1 0 1

1log log 1

log 1log log
log

1log 1

m m m m
m

m
m m

m m

m m
m

p E p p E p
p

pp E p
p p

p E p
p

− −

−
−

− −

⎛ ⎞
⋅ − ⋅ + ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞

1 =

= ⋅ − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

− ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

−                  (77)   

( )1
1 0

1

loglog log

log 1log log .
log

m
m m m

m

m
m

m m

pp p E p
p

pp
p p

−
− −

−

⎛ ⎞
= − − ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
− ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 −

    

On the other hand, here we have  

        

( )

1
1

1

1 1
1

1

2

1

1

log log1log log log log
log

log log loglog log
log

log log1log ,
2 log

m m
m m

m m m

m m m
m m

m m

m m
m m

m

p pp p p
p p p

p p pp p
p p

p pp p
p

−
−

−

− −
−

−

−

−

⎛ ⎞⎛ ⎞ ⎛
− ⋅ − = − − −⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠
⎛ ⎞ ⎛ ⎞−

+ − − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞−⎜ ⎟+ ⋅ ⋅ +∆⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

m
⎞
+⎟
⎠

 (78) 

where ( )
3

1

1

log log
log

m m
m

m

p pp
p

−

−

⎛ ⎞⎛ ⎞−⎜∆ = Ο ⎜⎜⎝ ⎠⎝ ⎠
⎟⎟ ⎟

.                                                (79) 

 And we have  

                       

( ) ( )1 1

2

1

1

1log log 1

log log .
log

m m m m
m

m m

m

p p p p
p

p p
p

ε ε− −

−

−

⎛ ⎞
⋅ − ⋅ + ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞−⎜ ⎟= Ο ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

                  (80) 

So from (76) we have   
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( )

( )

1
1 0 1

1 1
1

1

2

1

1

1
1 3/ 2

loglog log

log log loglog log 1
log

log log1log
2 log

log 4log log
log

log log

m
m m m

m

m m m
m m

m m

m m
m m

m

m
m m

m m m

m

pp p E p
p

p p pp p
p p

p pp p
p

pp p
p p p

p

−
− −

− −
−

−

−

−

−
−

⎛ ⎞
− − ⋅ −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ −

− − − ⋅ +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎛ ⎞⎛ ⎞−⎜ ⎟− ⋅ ⋅ + ∆ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

= − − − + ×⎜ ⎟
⎝ ⎠

× −

⎞
⎟
⎠

2

1 1
1

1

log log log .
log

m m m
m

m m

p p pp
p p

− −
−

−

⎛ ⎞⎛ ⎞ ⎛ −⎜ ⎟− +Ο⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

⎞
⎟
⎠

          (81) 

  

Now if we would exactly write not only the term with ( )0 mE p , but also the 

term with ( )2
0 mE p and more ( )0

n
mE p , and would repeat above process, then 

 we would have 1
1

loglog log m
m m

m

pp p
p

−
−

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
 in the every term.   

So we will eliminate it from both hand sides of (81). Then since 

          

( )

( ) ( )

1

1
1 1

1

1

1

loglog log log log

log1 1
log log

m
m m m m

m

m

m m m

pp p p p
p

p
p p p

−

−
− −

−

−

−

⎛ ⎞
− ⋅ − −⎜ ⎟

⎝ ⎠

⎛ ⎞
= − = Ο⎜ ⎟⎜ ⎟⋅ −⎝ ⎠

=

           (82) 

and  

                     

1 1

1 1 1

1 1

1 1 1

log log 1 log 1
log log

1 1 ,
log

m m m m

m m m

m m m m

m m m

p p p p
p p p

p p p p
p p p

− −

− − −

− −

− − −

⎛ ⎞− −
= ⋅ +⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞− −

= ⋅ ⋅ +Ο⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

             (83)            

 

by the theorem 3, we have    
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                                             ( )
3/ 2

0
log m

m
m

pE p
p

⎛ ⎞
= Ο⎜⎜

⎝ ⎠
⎟⎟ .                     (84)                       

This is the proof of the theorem 4. □ 
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