Simulink
 report

Part 1-Simulink1

We build a system which is made up of 15 solar cells.

Most parameters are given by script.

We also build a function to give a air resistance to the car.

Air resistance (no wind):
$\mathrm{E}_{\mathrm{w}}=1 / 2 \cdot \mathrm{C}_{\mathrm{w}} \cdot \mathrm{A} \cdot \rho \cdot \mathrm{v}^{2}$
$C w=0.47$,
$A=\pi^{*} r^{\wedge} 2, \rho=1.29 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$,

Function Block Parameters: Fcn
Fcn
General expression block. Use "u" as the input variable name.
Example: $\sin (u(1) * \exp (2.3 *(-u(2))))$
Parameters

The result
Displacement:

From this diagram, we can see that when the dispalcement is 14 meters. The time is nearly 5.8 secons.

Velocity:

Through this, we can see that the time is the smallest when the gear ratio is 11. So after that we will select this gear ratio, when we made the gear box.

Part 2-simulink 2

simulink2--structure i
This is the structure of our simulink 2 which is to measure the distance when we make the SSV go from 1 meter up the ramp used in the race, which is the distance not the height, without any propulsion, motor and
solar panel.

Now we will explain our design.

1. Air resistance

F_{cn} is the resistance which comes from air.

Air resistance (no wind):

$\underline{F}_{w}=1 / 2 \cdot C_{w} \cdot A \cdot \rho \cdot v^{2}$

This is the function to calculate the air resistance.

In our function of $F_{c n}$,
$C_{w}=0.47 ; \quad A=3.14^{*} 0.04^{\wedge} 2 ; \quad \rho=1.29$

2. Ramp

This switch is used to control the ramp's distance. When the s(the displacement) is shorter than 1 meter(on the slope or ramp)the F the SSV get (expect the air resistance) is:

$$
\mathrm{F}=\mathrm{m}^{*} \mathrm{~g}^{*} \sin \theta-\mathrm{C}_{\mathrm{rr}}{ }^{*} \mathrm{~m}^{*} \mathrm{~g}^{*} \cos \theta ;
$$

In our condition $m=1 \mathrm{~kg} ; g=9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2 ; \theta=3$, so we get the $F=0.4155 \mathrm{~N}$

\uparrow

3. Velocity

We use this switch to control the velocity. Because when our SSV gets on the flat, the SSV only gets the resistance when the $V>0 \mathrm{~m} / \mathrm{s}$. So we use the switch to change the force to 0 N when the $\mathrm{V}<0 \mathrm{~m} / \mathrm{s}$.

4. The result of our simulink

1) The s(displacement)

In this diagram, we can get the displacement increases from 0 when $t=0 \mathrm{~s}$, and stops at 5.2 m when $\mathrm{t}=11.5 \mathrm{~s}$.
2) The v(velocity)

We find that the velocity is increasing from $0 \mathrm{~m} / \mathrm{s}$ to $0.9 \mathrm{~m} / \mathrm{s}$, during the t from 0 s to 2.2 s , because of the gravity. And then is decreasing from $0.9 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$, during the t form 2.2 s to 11.4 s because of the resistance.
3) The F(force)

The force is 0.4155 N during $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=2.2 \mathrm{~s}$, and then it changes to
0.0981 N (the Fcn is so small) from $\mathrm{t}=2.2 \mathrm{~s}$ till $\mathrm{t}=11.4 \mathrm{~s}$.

