Introduction to Physical Chemistry - Lecture 7 Supplement: Computing $C_{P}-C_{V}$ For Any Material

Earlier in the course, we showed that, for an ideal gas, $C_{P}-C_{V}=n R$, or equivalently, that $\bar{C}_{P}-\bar{C}_{V}=R$. We can use the Maxwell relations to compute the general expression for $C_{P}-C_{V}$.
Beginning with a process at constant volume, so $d V=$ 0 , the First Law reads, $d U=\delta Q=C_{V} d T=T d S$, so that,

$$
\begin{equation*}
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V} \tag{1}
\end{equation*}
$$

Now, we have,

$$
\begin{equation*}
d H=T d S+V d P \tag{2}
\end{equation*}
$$

If we regard S as a function of T and V, then,

$$
\begin{equation*}
d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V \tag{3}
\end{equation*}
$$

If we regard P as a function of T and V, then,

$$
\begin{equation*}
d P=\left(\frac{\partial P}{\partial T}\right)_{V} d T+\left(\frac{\partial P}{\partial V}\right)_{T} d V \tag{4}
\end{equation*}
$$

From Lecture 7, we have,

$$
\begin{equation*}
\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}=\frac{\alpha}{\kappa} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial P}{\partial V}\right)_{T}=1 /\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{1}{V \kappa} \tag{6}
\end{equation*}
$$

Putting everything together gives,

If we regard V as a function of T and P, then,

$$
\begin{align*}
d V & =\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P \\
& =V \alpha d T-V \kappa d P \tag{8}
\end{align*}
$$

Therefore,

$$
\begin{align*}
d H & =\left(C_{V}+V \frac{\alpha}{\kappa}+V \alpha\left(T \frac{\alpha}{\kappa}-\frac{1}{\kappa}\right)\right) d T-V \kappa\left(T \frac{\alpha}{\kappa}-\frac{1}{\kappa}\right) d P \\
& =\left(C_{V}+V \frac{\alpha}{\kappa}+T V \frac{\alpha^{2}}{\kappa}-V \frac{\alpha}{\kappa}\right) d T-V(T \alpha-1) d P \\
& =\left(C_{V}+T V \frac{\alpha^{2}}{\kappa}\right) d T-V(T \alpha-1) d P \tag{9}
\end{align*}
$$

and so,

$$
\begin{equation*}
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}=C_{V}+T V \frac{\alpha^{2}}{\kappa} \tag{10}
\end{equation*}
$$

which gives, finally,

$$
\begin{equation*}
C_{P}-C_{V}=T V \frac{\alpha^{2}}{\kappa} \tag{11}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\bar{C}_{P}-\bar{C}_{V}=C_{P, m}-C_{V, m}=T \bar{V} \frac{\alpha^{2}}{\kappa}=T V_{m} \frac{\alpha^{2}}{\kappa} \tag{12}
\end{equation*}
$$

$$
d H=\left(T\left(\frac{\partial S}{\partial T}\right)_{V}+V\left(\frac{\partial P}{\partial T}\right)_{V}\right) d T+\left(T\left(\frac{\partial S}{\partial V}\right)_{T}+V\left(\frac{\partial P}{\partial V}\right)_{T}\right) d V
$$

$$
=\left(C_{V}+V \frac{\alpha}{\kappa}\right) d T+\left(T \frac{\alpha}{\kappa}-\frac{1}{\kappa}\right) d V
$$

For an ideal gas, $\alpha=1 / T, \kappa=1 / P$, so $\bar{C}_{P}-\bar{C}_{V}=$ (7) $P \bar{V} / T=R$.

