

Galvanic and electrolytic cells Placing a DC power source between the zinc and copper electrodes will reverse the current flow as compared to the previous cell, provided the power supply has a high enough potential Now the zinc electrode gains mass, while the copper electrode loses mass Zn Cu • Positive ions flow to the zinc electrode (\mathbf{f}) 6 and negative ions flow to the copper electrode SO, This cell uses electric power to drive a SO2 chemical reaction that requires energy -Zn² Cu it is called an **electrolytic cell** The previous cell uses a chemical reaction to generate electric energy – it Electrolytic cell uses external is called a galvanic cell or a battery ©

power to drive the chemistry

	Reference electrodes	
-	Thus, standard cell potential (Eo) for any redox reaction can be calculated from the standard half cell potentials for the balanced reaction using available values, but	
	 The hydrogen/acid electrode, which is the standard reference, is rather inconvenient or safe to use – H₂ gas cylinders would be required for every electrochemical measurement ⊗ 	
	 There are two half cell reactions that are commonly used as reference cells: 	
	The calomel electrode: The silver chloride:	
	$Hg_2CI_2(s) + 2e^- = 2Hg(Iiq) + 2CI^-$ AgCI(s) + e^- = Ag(s) + CI ⁻ both in saturated KCI solution	

Formal charge			
In a balanced equation co was a whole charge	In a balanced equation count the charge on every atom as it was a whole charge $CH_4 + 2O_2 = CO_2 + 2H_2O$		
On the left : C carbon is more electronegative than H; hence it will be -4, while 4xH will be +4	C: -4 C:+4 t 4H:+4 4H:+4		
O ₂ is sharing electrons with itsel hence oxygen is 0	lf; 40:0 40:-8 On the right :		
Outcome : Carbon went from +4 to -4 and Oxygen from O to -8, Hydrogen	In CO_2 carbon has 2 double bonds with more electronegative O; hence C is now +4 (it lost four electrons to oxygen)		
Hence, 8 electrons went from Carbon to Oxygen	Oxygen is more electronegative than both C and H; hence O in CO_2 will be -4 and in H_2O it will also be -4 too (-2x2 in two waters); H is +4 again losing out to oxygen Any questions?		

