
Introduction to Physical Chemistry – Lecture 3

I. LECTURE OVERVIEW

In this lecture, we will discuss more general equations
of state than just the Ideal Gas Law.

II. A QUICK NOTE ON PARTIAL PRESSURES

The concept of partial pressure is applied to mixtures
of gases. Consider two gases, A and B, in some box, at
a total pressure P . If there are nA moles of the first
gas, and nB moles of the second, then the total number
of moles is n = nA + nB , and the mole fraction of A is
xA = nA/n, and the mole fraction of B is xB = nB/n.

We then define the partial pressure of A to be pA =
xAP , and the partial pressure of B to be pB = xBP .
More generally, if a gas is composed of a mixture of n1

moles of substance 1, n2 moles of substance 2, etc., then
the partial pressure of substance i is given by pi = xiP ,
where xi = ni/(n1 + n2 + · · ·+ nN ) is the mole fraction
of substance i.

For an ideal gas, the partial pressure is a physical quan-
tity, in that it gives the pressure of that gas in the system.
To see this, note from the ideal gas law that,

pi =
niRT

V
(1)

while if n is the total number of moles in the system,
then,

P =
nRT

V
(2)

so that pi/P = ni/n = xi.
For real gases, however, intermolecular interactions

means that the total pressure is not the sum of the par-
tial pressures. This is a complicated issue, though, and
we will deal with it a bit later.

III. TWO ADDITIONAL MEASURES OF
PRESSURE

We should introduce two measures of pressure that we
did not cover in the previous two lectures: The Torr and
mmHg.

The Torr is defined as 1/760 atm. The mmHg is the
amount of pressure exerted by a column of mercury 1 mm
high. It turns out that 1 Torr is almost exactly equal to
1 mmHg.

As an exercise, we can compute the density of mercury
based on the information given. We know that, to a good
approximation, a column of mercury 760 mm high exerts
a pressure of 1 atm = 101, 325 Pa at its base. For a fluid

of constant density, we have P = ρgh, where ρ is the
density of the substance. Therefore,

ρ =
P

gh
⇒

ρmercury =
101, 325N/m2

9.8m/s2 × 0.76m
=

13, 604
kgm

s2

s2

m4
= 13, 604kg/m3 =

13, 604
kg

m3

1000g

kg

1m3

106cm3
= 13.604g/cm3 (3)

and so the density of mercury is 13.604 grams per
milliliter.

IV. EQUATIONS OF STATE AND REAL GASES

A. What is an equation of state?

The Ideal Gas Law is what is known as an Equation
of State. That is, it provides a relation between various
thermodynamic variables associated with the gas. In our
case, the Ideal Gas Law relates the pressure P , volume
V , temperature T , and number of moles n to one another
in a closed form expression.

For real gases, the ideal gas law will generally not hold.
This is due to the fact that molecules are not point-
particles, but in fact occupy space. Secondly, and more
importantly, the particles constituting a gas will gener-
ally interact with each other. The stronger these inter-
molecular interactions, the more the behavior of the gas
will deviate from the ideal gas law.

B. Compression factor

One way to measure the deviation of a gas from ideal
gas behavior is via a compression factor, denoted Z. If
we let V̄ = V/n denote the specific volume of a gas (the
volume per mole of gas), then the ideal gas law reads,

pV̄ = RT (4)

If we define,

Z =
pV̄

RT
(5)

then Z = 1 for an ideal gas. Therefore, deviations from
Z may be used to measure deviation from ideal gas be-
havior.
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C. Virial equations of state

Now, at a given temperature, and for a given number of
moles, we expect that the pressure uniquely specifies the
specific volume (as the pressure increases, the density in-
creases and hence the specific volume decreases). There-
fore, V̄ = V̄ (p, T ), so that Z = pV̄ (p, T )/(RT ) = Z(p, T )
(that is, at a given temperature T , specifying p uniquely
determines Z).

We can now expand Z in a Taylor series in p, to obtain,

Z(p, T ) = 1 + B1(T )p + B2(T )p2 + . . . (6)

where the first term is 1 because as p → 0, we expect to
recover ideal gas behavior, so that Z → 1.

But this gives,

pV̄ = RT (1 + B1(T )p + B2(T )p2 + . . . ) (7)

which is known as a virial equation of state. The terms
B1, B2, etc. are known as virial coefficients of the gas.

An alternative form of the virial expansion is to con-
sider pressure as a function of specific volume. Instead
of writing an expression p = p(V̄ , T ), however, we write
p = p(1/V̄ , T ). The reason for this is that we want the
first term in our virial expansion to be 1. As 1/V̄ → 0, we
have that V̄ →∞, which means that the specific volume
is becoming infinitely large. Physically, this corresponds
to a highly dilute gas with large intermolecular distances.
Such a gas is expected to behave ideally.

Therefore, following the same reasoning as before, we
have Z = Z(1/V̄ , T ), giving,

PV̄ = RT (1 + C1(T )/V̄ + C2(T )/V̄ 2 + . . . ) (8)

D. Van der waals equation of state

One of the earliest attempts to modify the ideal gas
equation of state to account for the properties of real
gases was done by van der Waals. Van der Waals sought
to incorporate two effects into an equation of state: (1)
The fact that gas molecules are not point particles, but
take up space themselves. (2) The additional fact that
gas molecules generally exert weak attractive forces on
one another at long distances.

If we start with the ideal gas equation of state in the
following form,

P =
nRT

V
(9)

then the van der Waals equation may be derived as fol-
lows: We let b denote the molar volume of the gas, that
is, the total amount of space that a mole of gas particles
occupy themselves. Then the volume that the gas actu-
ally has available is not V , rather it is V − nb. So the
first modification to the ideal gas law is to replace V in
the previous equation with V − nb. This gives,

P =
nRT

V − nb
=

RT

V̄ − b
(10)

To account for intermolecular interactions, we note
that the pressure acting on the walls of the container
depends on both the frequency of collisions of gas parti-
cles with the walls, and on the strength of the individual
collisions. Each effect is roughly proportional to the mo-
lar concentration n/V , so the overall pressure is reduced
by an amount proportional to the square of the molar
concentration. The final equation of state is then,

P =
nRT

V − nb
− a(

n

V
)2 =

RT

V̄ − b
− a

V̄ 2
(11)

The van der Waals equation of state may be re-arranged
into the following form:

(P + a
n2

V 2
)(V − nb) = nRT (12)

The quantity a n2

V 2 is known as the internal pressure of
the gas.

Note that when the temperature is high, the term
−a/V̄ 2 in the van der Waals equation may be neglected.
Furthermore, when the concentration of gas molecules is
low, so that V̄ is large, then the molar volume b can be
neglected, giving the ideal gas equation of state. There-
fore, the van der Waals equation reduces to the ideal gas
equation of state under the appropriate conditions.

We will come back to this equation a little bit later.

E. Critical constants

When a gas is cooled at constant pressure, its density
increases, and its specific volume decreases. The average
energy of the gas particles also decreases, so that the
gas particles move more slowly. Eventually, the specific
volume of the gas reaches a point where the distances
between the gas particles are sufficiently small, and the
energy of the gas particles is sufficiently low, that the gas
particles become bound in multimolecular associations
with one another. At this point the gas is no longer a
gas, but rather has either condensed into a liquid or solid.
Such a transformation is known as a phase transition.

At the temperature where condensation occurs, say
into a liquid, the gas and liquid phases are in equilibrium.
Due to intermolecular interactions (collisions, long-range
forces), some of the molecules in the liquid state will in-
variably enter the gas phase. Thus, the liquid has a cer-
tain vapor pressure at the given temperature, which is
simply the pressure of the gas with which the liquid is in
thermodynamic equilibrium.

The boiling point of a liquid at a given external pressure
is simply the temperature at which the vapor pressure of
the liquid is equal to the external pressure. The external
gas pressure is no longer sufficiently strong to keep the
molecules in the liquid state, and the molecules simply
push outward against the external pressure source and
enter the gas phase.

Let us now try a different approach to achieving gas-
liquid transitions. Instead of cooling a gas at constant
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pressure, let us compress it at constant temperature.
Eventually, the pressure will equal the vapor pressure
of the gas at the given temperature, and the gas will
liquefy. Basically, the gas molecules become compressed
sufficiently close together that the intermolecular attrac-
tions become sufficiently strong to produce a phase tran-
sition into a bound, liquid state.

Let us consider this liquification process as a function
of temperature. For every temperature T , there is a crit-
ical pressure Pvl(T ) at which the vapor to liquid transi-
tion takes place. At this boundary, the liquid and gas
states are characterized by different densities, or equiv-
alently, specific volumes. The gas has a specific volume
V̄g = V̄g(T, Pvl(T )), while the liquid has a specific volume
V̄l = V̄l(T, Pvl(T )). Clearly, V̄l < V̄g.

Now, as we increase the temperature, the gas parti-
cles will have more energy, hence a greater pressure will
be required to force them together into the liquid state.
This means that Pvl is an increasing function of T . Fur-
thermore, we expect that, since the gas particles have
more energy with increasing temperature, they will on
average have to be forced closer together to induce a gas
to liquid transition. Therefore, we expect V̄g(T, Pvl(T ))
to decrease with increasing temperature.

We also expect V̄l(T, Pvl(T )) to increase with increas-
ing temperature, since increasing pressure should have
only a weak effect on liquid density, but increasing tem-
perature increases the average thermal motions of the
liquid molecules, and hence leads to a reduction in den-
sity.

Eventually, we will reach a temperature, denoted Tc,
at which V̄g(Tc, Pvl(Tc)) = V̄l(Tc, Pvl(Tc)). At this tem-
perature, the densities of the liquid and gas phases are
identical. Therefore, compressing the gas at this temper-
ature leads to no discernible phase transition. At temper-
atures T > Tc, the gas is so hot that to liquefy it would
require compressing the gas to an extent that would make
the “gaseous” state more dense than the “liquid” state.
Clearly, this makes no sense, so that at temperatures
greater than Tc, there is no distinction between gas and
liquid, and no gas-liquid phase transition is observed. A
gas in this temperature regime is known as supercritical.

Given Tc, we can define Pc = Pvl(Tc), and V̄c =
V̄g(Tc, Pvl(Tc)) = V̄l(Tc, Pvl(Tc)).

We should point out that gases such as oxygen, ni-
trogen, and hydrogen are supercritical at room temper-
ature. That is why these gases cannot be liquefied by
compressing them at room temperature. They must first
be cooled, then compressed.

F. Critical constants in the van der Waals equation

The van der Waals equation is interesting because it
predicts vapor-liquid equilibria, in contrast to the ideal
gas law. We illustrate what we mean: Writing the van

FIG. 1: Illustration of the van der Waals isotherms.

der Waals equation in the form,

P =
RT

V̄ − b
− a

V̄ 2
(13)

we can plot P as a function of V̄ for various temperatures
(see Figure 1). At high temperatures, the term −a/V̄ 2 is
negligible, and we essentially have the ideal gas law, mod-
ified slightly by the presence of the molar volume term b.
At high V̄ , however, this term may also be neglected.

At lower temperatures, the term −a/V̄ 2 is no longer
negligible. Because this function increases from −∞ at
V̄ = 0 to 0 as V̄ →∞, and because RT/(V̄ −b) decreases
from ∞ at V̄ = b to 0 as V̄ →∞, then at lower temper-
atures P first decreases to a local minimum as a function
of V̄ , increases to a local maximum, and then decreases
steadily to 0.

If we let V̄min denote where the locally minimum pres-
sure, Pmin is attained, and V̄max denote where the locally
maximum pressure, Pmax is attained, then the region be-
tween V̄min and V̄max is physically unrealizable. This is
because it is a region where the specific volume and pres-
sure are both increasing, while physically we must have
that the specific volume decreases as pressure increases.

The region between Pmin and Pmax, with P > 0, is in-
teresting because there are three distinct specific volumes
V̄ giving rise to the given pressure P . One of these, as
we have seen, lies in the physically unrealizable region.
However, for a P > 0, Pmin, P < Pmax, there exists a
V̄1 < V̄min for which P = P (V̄1), where P (V̄1) is evalu-
ated using the van der Waals equation. This is because
P (V̄ ) is decreasing from ∞ to Pmin as V̄ increases from
b to V̄min. Also, there exists a V̄2 > V̄max for which
P = P (V̄2). This is because P (V̄ ) is decreasing from
Pmax to 0 as V̄ increases from V̄max to ∞.

The two physically realizable solutions V̄1 < V̄2 in the
region known as the van der Waals loops, corresponds
to a vapor-liquid equilibrium. We see then how, at suf-
ficiently low temperatures, the van der Waals equation
gives rise to phase transitions.
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We know, however, that at sufficiently high tempera-
tures, the van der Waals equation behaves similarly to
the ideal gas equation, for which no phase transitions are
possible.

The transition from the low temperature behavior of
the van der Waals equation to the high temperature be-
havior must therefore occur by the steady disappearance
of the van der Waals loops as the temperature increases.
This means that V̄min and V̄max should converge as T
approaches Tc. Finally, at Tc, V̄min = V̄max, so that this
point is neither a local minimum or maximum, but rather
a point where both dP/dV̄ and d2P/dV̄ 2 vanish.

Differentiating the van der Waals equation of state
twice, we obtain,

dP

dV̄
= − RT

(V̄ − b)2
+

2a

V̄ 3

d2P

dV̄ 2
=

2RT

(V̄ − b)3
− 6a

V̄ 4
(14)

Setting both derivatives equal to 0 and solving, we ob-
tain, V̄ = 3b, T = 8a/(27bR), and P = a/(27b2), and
so,

V̄c = 3b

Tc =
8a

27bR

Pc =
a

27b2
(15)

Of course, different equations of state will yield differ-
ent values for the critical constants.

In concluding this subsection, we should point out that
the van der Waals equation gives a value of 3/8 = 0.375
for the critical compression factor, defined by Zc =
pcVc/(RTc). This value turns out to be somewhat larger
than what is measured for a variety of real gases. Never-
theless, it turns out that Zc is fairly constant at around
0.3 for many gases. This certainly suggests that the van
der Waals equation captures key physical properties as-
sociated with real gases.

G. The law of corresponding states

The law of corresponding states is a misnomer, in that
it is not a derivable law, but rather an educated guess,
backed by experiment, that approximates the behavior
of real gases.

The idea is as follows: Different gases will generally
have different values of Tc, Pc, and V̄c. This follows from
the different characteristic particle sizes and strength of
the interparticle interactions. However, for a given gas,
we can define reduced variables as follows: At a temper-
ature T , define Tr = T/Tc. The reduced variables Pr and
V̄r are defined similarly.

The law of corresponding states then argues that there
is a universal equation of state for real gases when the
equation of state is expressed in terms of the reduced

variables. In other words, two gases at the same reduced
temperature and volume will have the same reduced pres-
sure.

Intuitively, the motivation for this hypothesis is that
two gases with the same set of reduced variables have
an equal level of deviation from ideal gas behavior. The
idea is that the values of the critical constants set up
natural “length” scales characterizing the behavior of the
gas. Rescaling the parameters associated with the gas in
terms of these natural length scales gives a set of dimen-
sionless parameters that effectively hides these “length”
scales. Therefore, it is not unreasonable to assume that
real gases may exhibit universal behavior when expressed
in terms of the reduced variables.

In reality, the law of corresponding states only works
for gases composed of spherical, non-polar molecules.
For non-spherical or polar molecules, the principle fails,
sometimes badly.

V. AN ALTERNATE DERIVATION OF THE
VAN DER WAALS EQUATION

We conclude this lecture by providing a plausible, al-
ternative derivation to the van der Waals equation of
state. The idea is as follows: Because of intermolecular
interactions, the individual gas particles, denoted A, may
form transient pairwise associations with one another, so
that the gas may be regarded as a chemically reacting
system with the pair of chemical reactions,

A + A→ A2

A2 → A + A (16)

where the first reaction has a second-order rate constant
of kf , and the second reaction has a first-order rate con-
stant of kr. We then have,

d[A]
dt

= −kf [A]2 + 2kr[A2]

d[A2]
dt

=
1
2
kf [A]2 − kr[A2] (17)

At steady-state, we have kf [A]2 = 2kr[A2], so that
2[A2]/[A]2 = K ≡ kf/kr.

Now, the total concentration of gas particles A is given
by [A] + 2[A2]. By conservation of mass, this quantity is
a constant, given by [A]0. We therefore have that,

[A]0 − [A]
[A]2

= K (18)

Now, define x = [A]0− [A], so that [A] = [A]0−x. Then,
x is the solution to the quadratic,

0 = x2 − (2[A]0 + 1/K)x + [A]20 (19)

so that,

x = [A]0 +
1

2K
(1−

√
1 + 4K[A]0) (20)
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where the alternative solution is not realistic since it gives
x > [A]0.

Now, we are ultimately considering a gas with weak
intermolecular interactions. Therefore, the steady-state
concentration of particle-pairs A2 should be small, which
means that K is small. This allows us to Taylor-expand
the square root term out to second-order in K, giving,√

1 + 4K[A]0 ≈ 1 + 2K[A]0 − 2K2[A]20 (21)

so that,

x ≈ K[A]20 (22)

The total concentration of particles is then,

[A] + [A2] = [A]0 − ([A]0 − [A]) +
1
2
2[A2]

= [A]0 − ([A]0 − [A]) +
1
2
([A]0 − [A])

= [A]0 −
1
2
([A]0 − [A])

= [A]0 −
K

2
[A]20 (23)

Therefore, intermolecular interactions have reduced
the effective molar concentration [A]0 = n/V of gas par-
ticles by an amount (K/2)(n/V )2.

Applying the ideal gas law using this reduced molar
concentration, we obtain,

P =
nRT

V
− RTK

2
(
n

V
)2 (24)

The introduction of the factor b has been discussed pre-
viously. Clearly, in this case, we have a = RTK/2.


