
Introduction to Physical Chemistry – Lecture 5

I. LECTURE OVERVIEW

In this lecture, we will consider energy and heat flows
under various conditions. We will also define the concept
of reversibility, which will be important later, when we
consider entropy.

II. THE CONCEPT OF REVERSIBILITY

A central concept in thermodynamics is the notion of
reversibility. A reversible process is one that is thermo-
dynamically allowed in both directions. For example (see
Figure 1), consider the flow of heat from a region of high
temperature to a region of low temperature. This is an
irreversible process, because heat never flows from a re-
gion of low temperature to a region of high temperature
(such an occurrence would violate what is known as the
Second Law of Thermodynamics, which we will discuss
later).

However, heat flow between regions of identical tem-
perature can happen in both directions, because there is
no preferred flow direction from one region to another.
Therefore, a transfer of an amount Q of heat energy from
one region to another, when both regions have the same
temperature, can also occur in the reverse direction.

Another example is PV -work. If the pressure of the gas
inside the container is greater than the external pressure
on the piston, then the gas will push the piston outward
until the gas pressure becomes equal to the external coun-
terpressure. Again, this process is irreversible, because
the reverse process is not possible when the gas pressure
is greater than the external pressure. However, if the
external pressure exerted on the face of the piston is con-
tinuously adjusted to be equal to the gas pressure, then
the process whereby the gas pushes the piston outward is
a reversible one, because there is no preferred direction
for the piston to move.

Finally, our last example involves phase transitions.
Consider, for example, the melting of ice at 1 atm pres-
sure. Below 0◦ C, the freezing of liquid water to ice is
an irreversible process, since we will never see ice below
0◦ C melt into water. Conversely, the melting of ice to
liquid water above 0◦ C is an irreversible process, since
we will never see water freeze above 0◦ C. At exactly 0◦
C, the melting of ice and the freezing of water are both
reversible, because here we have an equilibrium between
the two phases.

FIG. 1: Examples of reversible and irreversible processes.

III. CALCULATING THERMODYNAMIC
CHANGES OF STATE

In this section, we will compute changes in various
thermodynamic variables given processes that occur un-
der various conditions. In all examples for this section,
we will consider an ideal gas container in a box with a
movable wall.

A. Isothermal expansion/compression

The first example we consider is that of an isothermal
expansion or compression. In this case, an ideal gas at
constant temperature pushes against the movable wall
(i.e. piston). Constant temperature is maintained by
placing the system in a thermal bath at the given tem-
perature, to prevent any changes in the temperature of
the system.

So, suppose a gas with initial pressure P , temperature
T , volume V1, and mole number n undergoes an isother-
mal expansion from volume V1 to volume V2. We wish
to compute Q, W , and ∆U for this process.

First of all, we know that for an ideal gas, U only de-
pends on T , hence dU = 0. Since the First Law reads
dU = δQ−δW , we have δQ = δW = PdV for an isother-
mal process. For an ideal gas, P = nRT/V , hence,

δQ = δW =
nRT

V
dV ⇒

Q = W =
∫ V2

V1

nRT

V
dV = nRT ln

V2

V1
(1)

Since this expression is correct whether or not V2 > V1

or vice versa, this formula is also valid for an isothermal
compression.
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B. Adiabatic expansion/compression

An adiabatic process is one where no heat is added or
removed from the system. In this case δQ = 0 through-
out the process, so we have dU = −δW = −PdV . For
an ideal gas, we have δU = CV dT . Therefore, if T1 and
T2 denote the start and end temperatures of the gas dur-
ing the expansion/compression process, and if V1 and V2

denote the start and end volumes, then

CV dT = −nRT

V
dV ⇒

CV
dT

T
= −nR

dV

V
⇒

CV

∫ T2

T1

dT

T
= −nR

∫ V2

V1

dV

V
⇒

CV ln
T2

T1
= −nR ln

V2

V1
⇒

ln
T2

T1
=

nR

CV
ln

V1

V2
⇒

T2

T1
= (

V1

V2
)nR/CV ⇒

T2

T1
= (

V̄1

V̄2
)R/C̄V (2)

where V̄ denotes the molar volume of the gas (equivalent
to Vm).

Note that if V̄1 < V̄2, then T2 < T1, so that a gas cools
as it adiabatically expands. If V̄1 > V̄2, then T2 > T1, so
that a gas heats up as it adiabatically expands.

We can relate temperature to pressure, and pressure
to volume as well, for a gas that undergoes adiabatic
expansion or compression. Using PV̄ = RT , we have,

T2

T1
= (

RT1

RT2

P2

P1
)R/C̄V ⇒

(
T2

T1
)1+R/C̄V = (

P2

P1
)R/C̄V ⇒

(
T2

T1
)C̄P /C̄V = (

P2

P1
)R/C̄V ⇒

T2

T1
= (

P2

P1
)R/C̄P (3)

and so as a gas is adiabatically compressed to higher
pressures it heats up.

Finally, we can obtain the relationship between P and
V̄ , using the ideal gas relation. We have,

P2V̄2

P1V̄1
= (

P2

P1
)R/C̄P ⇒

V̄2

V̄1
= (

P2

P1
)(R−C̄P )/C̄P ⇒

V̄2

V̄1
= (

P2

P1
)−C̄V /C̄P ⇒

P2

P1
= (

V̄1

V̄2
)C̄P /C̄V (4)

The quantity C̄P /C̄V is usually denoted by γ.
We summarize the results for the adiabatic expan-

sion/compression of an ideal gas:

1. T2
T1

= ( V̄1
V̄2

)R/C̄V , so that a gas heats up as it is
compressed adiabatically, and cools as it expands
adiabatically. This makes sense, since, as a gas
is compressed, work is being done on it, and so
the internal energy increases. As a gas expands, it
does work on the surroundings, hence the internal
energy decreases.

2. T2
T1

= (P2
P1

)R/C̄P , which simply states that the tem-
perature of the gas increases/decreases as the pres-
sure of the gas increases/decreases to due adiabatic
compression/expansion.

3. P2
P1

= ( V̄1
V̄2

)γ , so that the gas pressure in-
creases/decreases as it is adiabatically com-
pressed/expanded.

C. Isovolumetric changes of state

We now consider processes for which dV = 0, i.e., iso-
volumetric processes. In this case, dW = 0, so that the
first law reads dU = δQ. Therefore, for an ideal gas,
CV dT = δQ ⇒ CV ∆T = Q. So, the total heat added to
the system is simply given by the constant volume heat
capacity times the change in temperature.

D. Isobaric changes of state

An isobaric process is one that occurs at constant pres-
sure. The first law reads dU = δQ − PdV ⇒ δQ =
dU + PdV = d(U + PV ) = dH. Therefore, for an ideal
gas, CP dT = δQ ⇒ CP ∆T = (CV + nR)∆T = Q. So,
the total heat added to the system is given by the con-
stant pressure heat capacity times the change in temper-
ature.

IV. CHEMICALLY REACTING SYSTEMS: THE
BOMB CALORIMETER

As an application of the First Law to chemically react-
ing systems, we consider a device called a bomb calorime-
ter (see Figure 2). A bomb calorimeter measures the en-
ergy released in a chemical reaction by allowing it to pro-
ceed to completion under isovolumetric, adiabatic condi-
tions. By measuring the temperature change from the
beginning and end of the reaction, it is possible to mea-
sure ∆U for the reaction. We illustrate how:

Consider some chemical reaction r1R1 + r2R2 + · · · +
rNRN → p1P1 + p2P2 + · · · + pMPM , where Ri denotes
reactant i, and Pi denotes product i.
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FIG. 2: Illustration of a bomb calorimeter.

Suppose, in a container of volume V , and initial pres-
sure P1 and temperature T1, we place nri moles of re-
actant Ri for each i, and allow the reaction to proceed
to completion. Then, at the end of the reaction, we will
have np1 moles of P1, np2 moles of P2, . . . , npM moles
of PM inside the container. The final temperature and
pressure will also be T2 and P2 respectively.

The question is, what is ∆U for the reaction? To com-
pute this, note from the First Law that since the volume
of the container does not change, δW = 0, and since the
process is adiabatic, δQ = 0. Therefore, dU = 0, hence
for the whole reaction we have ∆U = 0. Since U is a
state function, it is independent of path, and hence we
can compute it along any convenient path desired.

If we let ∆Ūrxn denote the ∆U associated with the
reaction when n = 1 (that is, when ri moles of reactant
i are present), then ∆Urxn = n∆Ūrxn.

So, the path we pick is the following: Let the reac-
tion go to completion at the temperature T1, which re-
leases an amount of energy n∆Ūrxn(T1) (where we in-
dicate that the energy of the reaction is temperature-
dependent. Strictly speaking, there will in general be a
pressure-dependence as well, but this issue unnecessarily
complicates the situation for now. For ideal gases, we can
safely assume that the energy of a reaction only depends
on temperature).

The released energy −n∆Ūrxn(T1) then goes into
changing the temperature of the system from T1 to T2

(there is a negative sign because, if the internal en-
ergy change associated with the reaction is negative, this
means that the products have a lower internal energy
than the reactants. The energy difference is given off
as heat, hence there is a postive amount of heat energy
released into the container). If we are working with an
ideal gas, and if we assume that the heat capacities are
temperature-independent, then the total energy required
to raise the temperature of the final mixture from T1 to
T2 is given by, n(p1C̄V,P1 + · · ·+ pM C̄V,PM

)(T2 − T1).

So, summing the internal energy changes from the re-
action itself and the subsequent heating of the final prod-

FIG. 3: Illustration of the path taken in computing ∆Ūrxn.

uct mixture, we have,

0 = ∆U = n∆Ūrxn(T1)
+n(p1C̄V,P1 + · · ·+ pM C̄V,PM

)(T2 − T1)
⇒ ∆Ūrxn(T1) = −(p1C̄V,P1 + · · ·+ pM C̄V,PM

)(T2 − T1)(5)

There may be a point of confusion that should be
cleared up. When the reactants react, the change in
internal energy of the reaction mixture is the negative
of the energy released as a result of the reaction, for
this energy is released as heat to the surroundings, and
hence the system itself has lost internal energy. If the
reaction occurs under isothermal conditions, then this
released heat energy will manifest itself as heat output
to the environment. The way we have written the First
Law, this gives a negative Q for the reaction process,
so that ∆U = Q. In the case of the bomb calorime-
ter, the released heat is trapped inside the container, so
it has nothing else to do except heat the final product
mixture. Since no heat escapes out into the environ-
ment, we have ∆U = 0 for the whole process. How-
ever, we see that ∆U = ∆Urxn + Qheating. As we
have seen above, ∆Urxn = n∆Ūrxn(T1), and Qheating =
(p1C̄V,P1 + · · ·+ pM C̄V,PM

)(T2 − T1).
So, by measuring the temperature change in a bomb

calorimeter, we can determine ∆U for a reaction.
It should be noted that the bomb calorimeter can be

designed so that the reactions occur at constant pressure,
rather than constant volume. In this case, if we rework
our derivation, we see that ∆H = 0 inside the constant
pressure bomb calorimeter. We then get that,

∆H̄rxn(T1, P ) = −(p1C̄P,P1 + · · ·+ pM C̄V,PM
)(T2 − T1)

(6)


