
Wikibook’s Ada Programming

Martin Krischik
Manuel Gmez
Santiago Uruea
C.K.W. Grein
Bill Findlay
B. Seidel

Simon Wright
Allen Lew

John Oleszkiewicz
Nicolas Kaiser
Larry Luther

Georg Bauhaus
Samuel Tardieu
Ludovic Brenta

Ed Falis
Pascal Obry

And many anonymous Wikibook Contributors

December 25, 2006

ii

Contents

Programming in the large . vii
Programming in the small . viii
The Language Reference Manual ix

I Getting started 1

1 Basic Ada 3
“Hello, world!” programs . 3
Things to look out for . 7

iii

iv CONTENTS

Preface

Welcome to the Ada Programming tutorial at Wikibooks. This is the first
Ada tutorial covering the imminent Ada 2005 standard. If you are a beginner
you will learn the future standard - if you are a seasoned Ada user you can
see what’s new.

Current Development Stage for Ada Programming is “(Jul 27, 2005)”.
At this date, there are more than 200 pages in this book, which makes Ada
Programming the largest of the programming wikibooks.

But still there is always room for improvement do help us to expand Ada
Programming. Even beginners will find areas to participate.

v

vi CONTENTS

About Ada

Ada is a programming language named after Augusta Ada King, Countess
of Lovelace, which is suitable for all development needs.

Ada has built-in features that directly support structured, object-oriented,
generic, distributed and concurrent programming.

Ada is a good choice for Rapid Application Development, Extreme Pro-
gramming (XP), and Free Software development.

Programming in the large

Ada puts unique emphasis on, and provides strong support for, good software
engineering practices that scale well to very large software systems (millions
of lines of code, and very large development teams). The following language
features are particularly relevant in this respect:

• An extremely strong, static and safe type system, which allows the
programmer to construct powerful abstractions that reflect the real
world, and allows the compiler to detect many logic errors before they
become bugs.

• Modularity, whereby the compiler directly manages the construction of
very large software systems from sources.

• Information hiding ; the language separates interfaces from implemen-
tation, and provides fine-grained control over visibility.

• Readability, which helps programmers review and verify code. Ada
favours the reader of the program over the writer, because a program
is written once but read many times. For example, the syntax bans
all ambiguous constructs, so there are no surprises, in accordance with

vii

viii CONTENTS

the Tao of Programming’s Law of Least Astonishment 1. (Some Ada
programmers are reluctant to talk about source code which is often
cryptic; they prefer program text which is close to English prose.)

• Portability : the language definition allows compilers to differ only in a
few controlled ways, and otherwise defines the semantics of programs
very precisely; as a result, Ada source text is very portable across com-
pilers and across target hardware platforms. Most often, the program
can be recompiled without any changes (see [1]).

• Standardisation: standards have been a goal and a prominent feature
ever since the design of the language in the late 1970’s. The first
standard was published in 1980, just 3 years after design commenced;
and a new revision of the standard is being finalised in 2006. Ada
compilers all support the exact same language; there are no dialects.

Consequences of these qualities are superior reliability, reusability and
maintainability. For example, compared to programs written in C, programs
written in Ada 83 contain ten times fewer bugs, and cost half as much to
develop in the first place (see [2]). Ada shines even more in software mainte-
nance, which often accounts for 80% of the total cost of development. With
support for object-oriented programming, Ada95 brings even more cost ben-
efits, although no serious study comparable to Zeigler’s has been published.

Programming in the small

In addition to its support for good software engineering practices, which are
applicable to general-purpose programming, Ada has powerful specialised
features supporting low-level programming for real-time, safety-critical and
embedded systems. Such features include, among others, machine code in-
sertions, address arithmetic, low-level access to memory, control over bitwise
representation of data, bit manipulations, and a well-defined, statically prov-
able concurrent computing model called the Ravenscar Profile.

Other features include restrictions (it is possible to restrict which language
features are accepted in a program) and features that help review and certify
the object code generated by the compiler.

1http://www.brandwand.com/tao/tao 4.html

CONTENTS ix

Several vendors provide Ada compilers accompanied by minimal run-time
kernels suitable for use in certified, life-critical applications. It is also possible
to write Ada programs which require no run-time kernel at all.

It should come as no surprise that Ada is heavily used in the aerospace,
defence, medical, railroad, and nuclear industries.

The Language Reference Manual

The Ada Reference Manual (RM) — full name Ada Reference Manual,
ISO/IEC 8652:1995(E) – is the official language definition. If you have a
question no one can answer for you, you will find something in the RM (albeit
often a bit cryptic for non-language-lawyers). For this reason, all complete
(not draft) pages in Ada Programming contain links into the appropriate
pages in the RM.

• You can browse the complete RM for Ada 95 in one of the following
sites:

– http://www.adaic.org/standards/95lrm/html/RM-TTL.html

– http://www.adapower.com/rm95.php

– http://www.adaic.org/standards/95lrm/html/RM-TTL.html

– http://www.adapower.com/rm95.php

• There are two documents related with the RM:

– The Annotated Reference Manual2, an extended version of the
RM aimed at compiler writers or other persons who want to know
the fine details of the language.

– The Reference Manual Rationale3, an explanation of the features
of the language.

• The draft 4 for the upcoming Ada 2005 can be found here. Beware:
it’s not finished yet.

2http://www.adaic.org/standards/95aarm/html/AA-TTL.html
3http://www.adaic.org/standards/95rat/RAThtml/rat95-contents.html
4http://www.adaic.org/standards/ada05.html

x CONTENTS

Ada Conformity Assessment Test Suite

Unlike other programming languages, Ada compilers are officially tested, and
only those which pass this test are accepted, for military and commercial
work. This means that all Ada compilers behave (almost) the same, so you
do not have to learn any dialects. But because the Ada standard allows
the compiler writers to include some additions, you could learn a cool new
feature only to find out that your favorite compiler does not support it. . .

Part I

Getting started

1

Chapter 1

Basic Ada

“Hello, world!” programs

“Hello, world!”

A common example of a language’s syntax is the Hello world program. Here
a straight-forward Ada Implementation:

1 with Ada . Text IO ;
2
3 procedure Hel lo World 1 i s
4 begin
5 Ada . Text IO . Put Line (” He l lo World ! ”) ;
6 end Hel lo World 1 ;

The with statement adds the package Ada.Text IO to the program. This
package comes with every Ada compiler and contains all functionality needed
for textual Input/Output. The with statement makes the declarations (i.e.
all types and the operations on them) within Ada.Text IO visible by selection.
In Ada, packages can be used as toolboxes, providing a collection of tools
and types in one easy-to-access module. Here is a partial glimpse at package
Ada.Text IO:

1 package Ada . Text IO i s
2
3 type Fi le Type i s limited private ;
4

3

4 CHAPTER 1. BASIC ADA

5 −− more s t u f f
6
7 procedure Open(F i l e : in out Fi le Type ;
8 Mode : File Mode ;
9 Name : S t r ing ;

10 Form : St r ing := ””) ;
11
12 −− more s t u f f
13
14 procedure Put Line (Item : St r ing) ;
15
16 −− more s t u f f
17
18 end Ada . Text IO ;

“Hello, world!” with renames

By renaming a package it is possible to give a shorter alias to any pack-
age name. This reduces the typing involved while still keeping some of the
readability.

1 with Ada . Text IO ;
2
3 procedure Hel lo World 2 i s
4 package IO renames Ada . Text IO ;
5 begin
6 IO . Put Line (” He l lo World ! ”) ;
7 IO . New Line ;
8 IO . Put Line (” I am an Ada programm with package rename . ”) ;
9 end Hel lo World 2 ;

Renames can also be used for procedures, functions, variables, array el-
ements. It can not be used for types - a type rename can be accomplished
with subtype.

“HELLO, WORLD!” PROGRAMS 5

“Hello, world!” with use

The use clause makes all the content of a package directly visible. It allows
even less typing but removes some of the readability. One suggested ”rule of
thumb”: use for the most used package and renames for all other packages.
You might have another rule (for example, always use Ada.Text IO, never
use anything else).

1 with Ada . Text IO ;
2
3 procedure Hel lo World 3 i s
4 use Ada . Text IO ;
5 begin
6 Put Line (” He l lo World ! ”) ;
7 New Line ;
8 Put Line (” I am an Ada programm with package use . ”) ;
9 end Hel lo World 3 ;

use can be used for packages and in the form of use type for types. use
type makes only the operators of the given type directly visible but not any
other operations on the type.

FAQ: Why is “Hello, world!” sooo big?

Ada beginners frequently ask how it can be that such a simple program as
“Hello, world!” results in such a large executable. The reason has nothing
to do with Ada but can usually be found in the compiler and linker options
used or better not used.

Standard behavior for Ada compilers or good compilers in general is not
to create the best code possible but to be optimized for ease of use. This is
done to not frighten away potential new users by providing a system which
does not work “out of the box”.

The GNAT project files, which you can download alongside the example
programs, use better tuned compiler, binder and linker options. If you use
those your ”Hello, world!” will be a lot smaller:

32K ./Linux-i686-Debug/hello_world_1

8,0K ./Linux-i686-Release/hello_world_1

36K ./Linux-x86_64-Debug/hello_world_1

6 CHAPTER 1. BASIC ADA

12K ./Linux-x86_64-Release/hello_world_1

1,1M ./Windows_NT-i686-Debug/hello_world_1.exe

16K ./Windows_NT-i686-Release/hello_world_1.exe

32K ./VMS-AXP-Debug/hello_world_1.exe

12K ./VMS-AXP-Release/hello_world_1.exe

For comparison the sizes for a plain gnat make compile:

497K hello_world_1 (Linux i686)

500K hello_world_1 (Linux x86_64)

1,5M hello_world_1.exe (Windows_NT i686)

589K hello_world_1.exe (VMS AXP)

Worth mentioning is that hello world (Ada,C,C++) compiled with GNAT/MSVC
7.1/GCC(C) all produces executables with approximately the same size given
comparable optimisation and linker methods.

Things to look out for

It will help to be prepared to spot a number of significant features of Ada
that are important for learning its syntax and semantics.

Bibliography

[1] Dirk Craeynest Gaetan Allaert and Philippe Waroquiers. European Air
Traffic Flow Management:Porting a Large Application to GNU/Linux.
2003.

[2] Stephen F. Zeigler. Comparing Development Costs of C and Ada. 1995.

7

