
Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

1 of 89 02/24/2007 05:30 PM

Python Programming/Print version

From Wikibooks, the open-content textbooks collection

Python is a general purpose programming language.

Note: current version of this book can be found at http://en.wikibooks.org/wiki/Python_Programming

Table of contents

Introduction

Overview

Getting Python

Interactive mode

Learning to program in Python

Creating Python programs

Using variables and math

Strings and arrays

Python concepts

Basic syntax

Data types

Numbers

Strings

Lists

Tuples

Dictionaries

Sets

Operators

Flow control

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

2 of 89 02/24/2007 05:30 PM

Functions

Scoping

Exceptions

Input and output

Modules

Classes

MetaClasses

Rocking the Python (Modules)

Regular Expression

Graphical User Interfaces in Python

Python Programming/Game Programming in Python

Socket programming

Files (I/O)

Databases

Extracting info from web pages

Threading

Extending with C

Extending with C++

WSGI web programming

References

Authors

Authors

License

Overview

Python is a high-level, structured, open-source programming language that can be used for a wide variety of

programming tasks. It is good for simple quick-and-dirty scripts, as well as complex and intricate applications.

It is an interpreted programming language that is automatically compiled into bytecode before execution (the

bytecode is then normally saved to disk, just as automatically, so that compilation need not happen again until

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

3 of 89 02/24/2007 05:30 PM

and unless the source gets changed). It is also a dynamically typed language that includes (but does not require

one to use) object oriented features and constructs.

The most unusual aspect of Python is that whitespace is significant; instead of block delimiters (braces → "{}"

in the C family of languages), indentation is used to indicate where blocks begin and end.

For example, the following Python code can be interactively typed at an interpreter prompt, to display the

beginning values in the Fibonacci series:

Another interesting aspect in Python is reflection. The dir() function returns the list of the names of objects in

the current scope. However, dir(object) will return the names of the attributes of the specified object. The

locals() routine returns a dictionary in which the names in the local namespace are the keys and their values

are the objects to which the names refer. Combined with the interactive interpreter, this provides a useful

environment for exploration and prototyping.

Python provides a powerful assortment of built-in types (e.g., lists, dictionaries and strings), a number of

built-in functions, and a few constructs, mostly statements. For example, loop constructs that can iterate over

items in a collection instead of being limited to a simple range of integer values. Python also comes with a

powerful standard library, which includes hundreds of modules to provide routines for a wide variety of

services including regular expressions and TCP/IP sessions.

Python is used and supported by a large Python Community (http://www.python.org/community/index.html)

that exists on the Internet. The mailing lists and news groups (http://www.python.org/community/lists.html)

like the tutor list (http://mail.python.org/mailman/listinfo/tutor) actively support and help new python

programmers. While they discourage doing homework for you, they are quite helpful and are populated by the

authors of many of the Python textbooks currently available on the market.

Index Next: Getting Python

Getting Python

In order to program in Python you need the Python software.

Installing Python in Windows

Go to http://www.python.org/download/ or the ActiveState website[1] (http://activestate.com) and get the

proper version for your platform. Download it, read the instructions and get it installed.

>>> a,b = 0,1

>>> print b

1

>>> while b < 100:

... a,b = b,(a+b)

... print b,

...

1 2 3 5 8 13 21 34 55 89 144

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

4 of 89 02/24/2007 05:30 PM

In order to run Python from the command line, you will need to have the python directory in your PATH.

Alternatively, you could use an Integrated Development Environment (IDE) for Python like DrPython[2]

(http://drpython.sourceforge.net/) , eric[3] (http://www.die-offenbachs.de/detlev/eric3.html) , or PyScripter[4]

(http://mmm-experts.com/Products.aspx?ProductID=4) .

Installing Python in Unix

Python is standard equipment in many Unix-like operating systems; just type which python to check for it. If

present, it may not be the latest, but it should be enough to get you started.

If it's not installed, check your operating system's web page for the proper package. Failing that, you will need

to download the appropriate file from http://www.python.org/download or the ActiveState website[5]

(http://activestate.com) .

If you decide to compile Python from source, make sure you compile in the tk extension if you want to use

IDLE.

On Debian based Linux systems, you can download it by starting the command line, changing to the superuser

mode using su - and then by typing apt-get install python.

Previous: Overview Index Next: Setting it up

Interactive mode

Python has two basic modes: The normal "mode" is the mode where the scripted and finished .py files are run

in the python interpreter. Interactive mode is a command line shell which gives immediate feedback for each

statement, while running previously fed statements in active memory. As new lines are fed into the interpreter,

the fed program is evaluated both in part and in whole.

To get into interactive mode, simply type "python" without any arguments. This is a good way to play around

and try variations on syntax. Python should print something like this:

(If Python wouldn't run, make sure your path is set correctly. See Getting Python.)

The >>> is Python's way of telling you that you are in interactive mode. In interactive mode what you type is

immediately run. Try typing 1+1 in. Python will respond with 2. Interactive mode allows you to test out and see

what Python will do. If you ever feel the need to play with new Python statements, go into interactive mode and

try them out.

$ python

Python 2.3.4 (#2, Aug 29 2004, 02:04:10)

[GCC 3.3.4 (Debian 1:3.3.4-9)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

5 of 89 02/24/2007 05:30 PM

A sample interactive session:

However, you need to be careful in the interactive environment. If you aren't careful, confusion may ensue. For

example, the following is a valid Python script:

If you try to enter this, as written in the interactive environment, you might be surprised by the result:

What the interpreter is saying is that the indentation of the second print was unexpected. What you should have

entered was a blank line, to end the first (i.e., "if") statement, before you started writing the next print statement.

For example, you should have entered the statements as though they were written:

Which would have resulted in the following:

Previous: Setting it up Index Next: Creating Python programs

Creating Python programs

Python programs are nothing more than text files, and they may be edited with standard text editors.
*

>>> 5

5

>>> print 5*7

35

>>> "hello" * 4

'hellohellohellohello'

>>> "hello".__class__

<type 'str'>

if 1:

 print "True"

print "Done"

>>> if 1:

... print "True"

... print "Done"

 File "<stdin>", line 3

 print "Done"

 ^

SyntaxError: invalid syntax

if 1:

 print "True"

print "Done"

>>> if 1:

... print "True"

...

True

>>> print "Done"

Done

>>>

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

6 of 89 02/24/2007 05:30 PM

In Windows, notepad will be sufficient for a little while, but you will soon find that a more powerful editor,

such as vim (http://www.vim.org) , emacs (http://www.emacs.org) , or python's built-in IDE, IDLE makes

editing much easier.

In Unix, nano or pico are respectable beginners' editors, while vim and emacs are used when more power is

needed.

Additional editors (http://www.python.org/moin/PythonEditors) exist that are Python friendly (e.g., use Python

syntax highlighting).

Let's create the first program. It is listed as follows; create a file containing it with the name hello.py in your

preferred text editor:

In Windows

Open your text editor.

Type in the program.

Create a temporary directory, such as C:\pythonpractice, and save the program in it, with the name

hello.py.

Open the MS-DOS prompt. (Or Start > Run > command > enter)

In the MS-DOS prompt, go into the directory you just created, then run the program.

If it didn't work, make sure your PATH contains the python directory. See Getting Python.

In Unix

Make a directory for Python practice, and cd into it:

Open the editor and type in the program, then save it as hello.py.

Make it executable, and run it:

#!/usr/bin/python

print "Hello, world!"

C:\> cd \pythonpractice

C:\pythonpractice> python hello.py

$ mkdir ~/pythonpractice

$ cd ~/pythonpractice

$ chmod +x hello.py

$./hello.py

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

7 of 89 02/24/2007 05:30 PM

Result

The program should print Hello, world!. Congratulations! You're well on your way to becoming a Python

programmer.

Interactive mode

Instead of python exiting when the program is finished, you can use the -i flag to start an interactive session.

This can be very useful for debugging and prototyping.

Exercises

Modify the hello.py program to say hello to a historical political leader (or to Ada Lovelace).

Change the program so that after the greeting, it asks, "How did you get here?".

Solutions

*
 Sometimes, Python programs are distributed in compiled form. We won't have to worry about that for quite a

while.

Previous: Interactive mode Index Next: Using variables and math

Using variables and math

Using a variable

A variable is something with a value that may change. In Python, variables are strongly typed, meaning that if a

variable has a number, it can't be treated as a string, or vice versa. Here is a program that uses a variable:

(Oops! I used single quotes for Ada's name, then double quotes around Goodbye. That's OK, however, because

these two quotes do exactly the same thing in Python. The only thing you can't do is mix them and try to make a

python -i hello.py

#!/usr/bin/python

name = 'Ada Lovelace'

print "Goodbye, " + name + '!'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

8 of 89 02/24/2007 05:30 PM

string like this: "will not work'.)

This program isn't much use, of course. But what about variables that the program truly can't guess about?

raw_input()

(What's raw_input() doing? Evidently, it's getting input from you. See Input and output.)

Of course, with the power of Python at hand, the urge to determine one's mass in stone is nearly irresistible. A

concise program can make short work of this task. Since a stone is 14 pounds, and there are about 2.2 pounds in

a kilogram, the following formula should do the trick:

Simple math

Run this program and get your weight in stone!

This program is starting to get a little bit cluttered. That's because, in addition to all the math, I snuck in some

new features.

When the previous program asked for your name, you were typing below the question. This time, you're

typing at the end of the line that asks, "What is your mass in kilograms?". What's happening here is

that, normally, the print statement will add a newline to the end of what you're printing. That's why the

cursor went to the next line in the previous program. But in this program, I added a little comma to the

end. That makes print omit the newline.

int() - this handy function takes a string, and returns an integer. Remember when you read that Python is

strongly typed? Python won't allow us to do math on a string. Whatever you type is a string, even if it

consists of digits. But int() will recognize a string made of digits and return an integer.

The str(mass_stone) in the print statement. It turns out that you can't add together strings and numbers;

"You weigh " + mass_stone just wouldn't work. So, we have to take the number and turn it into a string.

Incidentally, ` would do the same thing as the str() function, but that is deprecated.

#!/usr/bin/python

print 'Please enter your name.'

name = raw_input()

print 'How are you, ' + name + '?'

#!/usr/bin/python

print "What is your mass in kilograms?",

mass_kg = int(raw_input())

mass_stone = mass_kg * 2.2 / 14

print "You weigh " + str(mass_stone) + " stone."

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

9 of 89 02/24/2007 05:30 PM

Formatting output

In the previous program, we used this line of code to print the result:

There are a couple of problems with this. First, it mixes up operators and quotes, and can be a little tough to

read. Second, the number won't be printed very nicely, as the following example illustrates:

Not only is that much accuracy unjustified, it doesn't look nice. Python's % operator comes to the rescue. It

allows printf-like formatting, in the form:

STRING % (arg1, arg2, ...)

The string contains one format code for each argument. There are several types of format codes; see the strings

section for a complete list.

To improve our program, we just need the %f format code:

The %.1f format code causes a floating point number to be printed, with exactly one digit after the decimal. This

produces much nicer output:

Previous: Creating Python programs Index Next: Strings and arrays

Strings and arrays

Strings

Strings are groups of character data enclosed in quotes. You can express strings in double quotes (“string”) or

you can express strings in single quotes (‘string’). Let's do an example:

print "You weigh " + str(mass_stone) + " stone."

$./kg2stone

What is your mass in kilograms? 65

You weigh 10.214285714285714 stone.

print "You weigh %.1f stone." % (mass_stone)

$./kg2stone

What is your mass in kilograms? 65

You weigh 10.2 stone.

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

10 of 89 02/24/2007 05:30 PM

Not only can you create strings, but you can also operate on them (such as concatenation). For example:

This will print out SpamEggs on one line and Ni!Ni!Ni!Ni!Ni!Ni!Ni!Ni!Ni!Ni! on the next.

[Incomplete] (see Strings, Lists, and Tuples for now)

Previous: Using variables and math Index Next: Decision Control

Basic syntax

Previous: Strings and arrays Index Next: Data types

There are four fundamental concepts in Python.

Case Sensitivity

All variables are case-sensitive. Python treats 'number' and 'Number' as seperate, unrelated entities.

Spaces and tabs don't mix

Because whitespace is significant, remember that spaces and tabs don't mix, so use only one or the other when

indenting your programs. A common error is to mix them. While they may look the same in editor the

interpreter will read them differently and it will result in either an error or unexpected behavior. However, tabs

advance to the next multiple of 8 columns, so changing your tab width to 8 (in other words, a tab "stop" on

every 8th column) in your editor helps if you find yourself frequently making this mistake.

Objects

In Python, like all object oriented languages, there are aggregations of code and data called Objects, which

typically represent the pieces in a conceptual model of a system.

Objects in Python are created (i.e., instantiated) from templates called Classes (which are covered later, as

much of the language can be used without understanding classes). They have "attributes", which represent the

#!/usr/bin/python

#filename: string.py

print 'I am enclosed in single quotes'

print "I am enclosed in double quotes"

#!/usr/bin/python

print 'Spam' + 'Eggs'

print 'Ni!' * 10

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

11 of 89 02/24/2007 05:30 PM

various pieces of code and data which comprise the object. To access attributes, one writes the name of the

object followed by a period (henceforth called a dot), followed by the name of the attribute.

An example is the 'upper' attribute of strings, which refers to the code that returns a copy of the string in which

all the letters are uppercase. To get to this, it is necessary to have a way to refer to the object (in the following

example, the way is the literal string that constructs the object).

Code attributes are called "methods". So in this example, upper is a method of 'bob' (as it is of all strings). To

execute the code in a method, use a matched pair of parentheses surrounding a comma separated list of

whatever arguments the method accepts (upper doesn't accept any arguments). So to find an uppercase version

of the string 'bob', one could use the following:

Scope

In a large system, it is important that one piece of code does not affect another in difficult to predict ways. One

of the simplest ways to further this goal is to prevent one programmer's choice of names from preventing

another from choosing that name. Because of this, the concept of scope was invented. A scope is a "region" of

code in which a name can be used and outside of which the name cannot be easily accessed. There are two ways

of delimiting regions in Python: with functions or with modules. They each have different ways of accessing the

useful data that was produced within the scope from outside the scope. With functions, that way is to return the

data. The way to access names from other modules lead us to another concept.

Namespaces

It would be possible to teach Python without the concept of namespaces because they are so similar to

attributes, which we have already mentioned, but the concept of namespaces is one that transcends any

particular programming language, and so it is important to teach. To begin with, there is a built-in function

dir() that can be used to help one understand the concept of namespaces. When you first start the Python

interpreter (i.e., in interactive mode), you can list the objects in the current (or default) namespace using this

function.

This function can also be used to show the names available within a module namespace. To demonstrate this,

first we can use the type() function to show what __builtins__ is:

'bob'.upper

'bob'.upper()

Python 2.3.4 (#53, Oct 18 2004, 20:35:07) [MSC v.1200 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> dir()

['__builtins__', '__doc__', '__name__']

>>> type(__builtins__)

<type 'module'>

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

12 of 89 02/24/2007 05:30 PM

Since it is a module, we can list the names within the __builtins__ namespace, again using the dir() function

(note the complete list of names has been abbreviated):

Namespaces are a simple concept. A namespace is a place in which a name resides. Each name within a

namespace is distinct from names outside of the namespace. This layering of namespaces is called scope. A

name is placed within a namespace when that name is given a value. For example:

Note that I was able to add the "name" variable to the namespace using a simple assignment statement. The

import statement was used to add the "math" name to the current namespace. To see what math is, we can

simply:

Since it is a module, it also has a namespace. To display the names within this namespace, we:

If you look closely, you will notice that both the default namespace, and the math module namespace have a

'__name__' object. The fact that each layer can contain an object with the same name is what scope is all about.

To access objects inside a namespace, simply use the name of the module, followed by a dot, followed by the

name of the object. This allow us to differentiate between the __name__ object within the current namespace, and

that of the object with the same name within the math module. For example:

Previous: Strings and arrays Index Next: Data types

>>> dir(__builtins__)

['ArithmeticError', ... 'copyright', 'credits', ... 'help', ... 'license', ... 'zip']

>>>

>>> dir()

['__builtins__', '__doc__', '__name__']

>>> name = "Bob"

>>> import math

>>> dir()

['__builtins__', '__doc__', '__name__', 'math', 'name']

>>> math

<module 'math' (built-in)>

>>> dir(math)

['__doc__', '__name__', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e',

'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

>>>

>>> print __name__

__main__

>>> print math.__name__

math

>>> print math.__doc__

This module is always available. It provides access to the

mathematical functions defined by the C standard.

>>> math.pi

3.1415926535897931

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

13 of 89 02/24/2007 05:30 PM

Data types

Previous: Basic syntax Index Next: Numbers

Data types determine whether an object can do something, or whether it just would not make sense. Other

programming languages often determine whether an operation makes sense for an object by making sure the

object can never be stored somewhere where the operation will be performed on the object (this type system is

called static typing). Python does not do that. Instead it stores the type of an object with the object, and checks

when the operation is performed whether that operation makes sense for that object (this is called dynamic

typing).

Python's basic datatypes are:

Integers, equivalent to C longs

Floating-Point numbers, equivalant to C doubles

Long integers of non-limited length

Complex Numbers.

Strings

Some others, such as type and function

Python's composite datatypes are:

lists

tuples

dictionaries, also called dicts, hashmaps, or associative arrays

Literal integers can be entered as in C:

decimal numbers can be entered directly

octal numbers can be entered by prepending a 0 (0732 is octal 732, for example)

hexadecimal numbers can be entered by prepending a 0x (0xff is hex FF, or 255 in decimal)

Floating point numbers can be entered directly.

Long integers are entered either directly (1234567891011121314151617181920 is a long integer) or by

appending an L (0L is a long integer). Computations involving short integers that overflow are automatically

turned into long integers.

Complex numbers are entered by adding a real number and an imaginary one, which is entered by appending a j

(i.e. 10+5j is a complex number. So is 10j). Note that j by itself does not constitute a number. If this is desired,

use 1j.

Strings can be either single or triple quoted strings. The difference is in the starting and ending delimiters, and

in that single quoted strings cannot span more than one line. Single quoted strings are entered by entering either

a single quote (') or a double quote (") followed by its match. So therefore

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

14 of 89 02/24/2007 05:30 PM

Triple quoted strings are like single quoted strings, but can span more than one line. Their starting and ending

delimiters must also match. They are entered with three consecutive single or double quotes, so

Tuples are entered in parenthesis, with commas between the entries:

Also, the parenthesis can be left out when it's not ambigouous to do so:

Note that one-element tuples can be entered by surrounding the entry with parentheses and adding a comma like

so:

Lists are similar, but with brackets:

Dicts are created by surrounding with curly braces a list of key,value pairs separated from each other by a colon

and from the other entries with commas:

Any of these composite types can contain any other, to any depth:

Numbers

Previous: Data types Index Next: Strings

'foo' works, and

"moo" works as well,

 but

'bar" does not work, and

"baz' does not work either.

"quux'' is right out.

'''foo''' works, and

"""moo""" works as well,

 but

'"'bar'"' does not work, and

"""baz''' does not work either.

'"'quux"'" is right out.

(10, 'Mary had a little lamb')

 10, 'whose fleece was as white as snow'

('this is a stupid tuple',)

['abc', 1,2,3]

{ 'hello': 'world', 'weight': 'African or European?' }

((((((((('bob',),['Mary', 'had', 'a', 'little', 'lamb']), { 'hello' : 'world' }),),),),),),)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

15 of 89 02/24/2007 05:30 PM

Python supports 4 types of Numbers, the int, the long, the float and the complex. You don’t have to specify

what type of variable you want; Python does that automatically.

Int: This is the basic integer type in python, it is equivilant to the hardware 'c long' for the platform you

are using.

Long: This is a integer number that's length is non-limited. In python 2.2 and later, Ints are automatically

turned into long ints when they overflow.

Float: This is a binary floating point number. Longs and Ints are automatically converted to floats when a

float is used in an expression, and with the true-division / operator.

Complex: This is a complex number consisting of two floats. It is in engineering style notation.

In general, the number types are automatically 'up cast' in this order:

Int --> Long --> Float --> Complex. the farther to the right you go, the higher the precedence.

However, some expressions may be confusing since in the current version of python, using the / operator on

two integers will return another integer, using floor division. For example, 5/2 will give you 2. You have to

specify one of the operands as a float to get true division, e.g. 5/2. or 5./2 (the dot specifies you want to work

with float) to have 2.5. This behavior is deprecated and will disappear in a future python release as shown from

the from __future__ import.

Strings

Previous: Numbers Index Next: Lists

String manipulation

 >>> x = 5

 >>> type(x)

 <type 'int'>

 >>> x = 187687654564658970978909869576453

 >>> type(x)

 <type 'long'>

 >>> x = 1.34763

 >>> type(x)

 <type 'float'>

 >>> x = 5 + 2j

 >>> type(x)

 <type 'complex'>

 >>> 5/2

 2

 >>>5/2.

 2.5

 >>>5./2

 2.5

 >>> from __future__ import division

 >>> 5/2

 2.5

 >>> 5//2

 2

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

16 of 89 02/24/2007 05:30 PM

String operations

Equality

Two strings are equal if and only if they have exactly the same contents, meaning that they are both the same

length and each character has a one-to-one positional correspondence. Many other languages test strings only

for identity; that is, they only test whether two strings occupy the same space in memory. This latter operation

is possible in Python using the operator is.

Example:

Numerical

There are two quasi-numerical operations which can be done on strings -- addition and multiplication. String

addition is just another name for concatenation. String multiplication is repetitive addition, or concatenation.

So:

Containment

There is a simple operator 'in' that returns True if the first operand is contained in the second. This also works

on substrings

Note that 'print x in y' would have also returned the same value.

>>> a = 'hello'; b = 'hello' # Assign 'hello' to a and b.

>>> print a == b # True

True

>>> print a == 'hello' #

True

>>> print a == "hello" # (choice of delimiter is unimportant)

True

>>> print a == 'hello ' # (extra space)

False

>>> print a == 'Hello' # (wrong case)

False

>>> c = 'a'

>>> c + 'b'

'ab'

>>> c * 5

'aaaaa'

>>> x = 'hello'

>>> y = 'll'

>>> x in y

False

>>> y in x

True

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

17 of 89 02/24/2007 05:30 PM

Indexing and Slicing

Much like arrays in other languages, the individual characters in a string can be accessed by an integer

representing its position in the string. The first character in string s would be s[0] and the nth character would

be at s[n-1].

Unlike arrays in other languages, Python also indexes the arrays backwards, using negative numbers. The last

character has index -1, the second to last character has index -2, and so on.

We can also use “slices” to access a substring of s. s[a:b] will give us a string starting with s[a] and ending with

s[b-1].

Neither of these is assignable.

Outputs (assuming the errors were suppressed):

Another feature of slices is that if the beginning or end is left empty, it will default to the first or last index,

depending on context:

You can also use negative numbers in slices:

>>> s = “Xanadu”

>>> s[1]

‘a’

>>> s[-4]

‘n’

>>> s[1:4]

‘ana’

>>> print s

>>> s[0] = 'J'

Traceback (most recent call last):

 File “<stdin>”, line 1, in ?

TypeError: object does not support item assignment

>>> s[1:3] = “up”

Traceback (most recent call last):

 File “<stdin>”, line 1, in ?

TypeError: object does not support slice assignment

>>> print s

Xanadu

Xanadu

>>> s[2:]

‘nadu’

>>> s[:3]

‘Xan’

>>> s[:]

‘Xanadu’

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

18 of 89 02/24/2007 05:30 PM

To understand slices, it’s easiest not to count the elements themselves. It is a bit like counting not on your

fingers, but in the spaces between them. The list is indexed like this:

So, when we ask for the [1:3] slice, that means we start at index 1, and end at index 3, and take everything in

between them. If you are used to indexes in C or Java, this can be a bit disconcerting until you get used to it.

String constants

String constants can be found in the standard string module. Either single or double quotes may be used to

delimit string constants.

String methods

There are a number of methods of built-in string functions:

capitalize

center

count

decode

encode

endswith

expandtabs

find

index

isalnum

isalpha

isdigit

islower

isspace

istitle

isupper

join

ljust

lower

lstrip

>>> print s[-2:]

‘du’

Element: 1 2 3 4

Index: 0 1 2 3 4

 -4 -3 -2 -1

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

19 of 89 02/24/2007 05:30 PM

replace

rfind

rindex

rjust

rstrip

split

splitlines

startswith

strip

swapcase

title

translate

upper

zfill

Only emphasized items will be covered.

is*

isalnum(), isalpha(), isdigit(), islower(), isupper(), isspace(), and istitle() fit into this category.

The length of the string object being compared must be at least 1, or the is* methods will return False. In other

words, a string object of len(string) == 0, is considered "empty", or False.

isalnum returns True if the string is entirely composed of alphabetic or numeric characters (i.e. no

punctuation).

isalpha and isdigit work similarly for alphabetic characters or numeric characters only.

isspace returns True if the string is composed entirely of whitespace.

islower, isupper, and istitle return True if the string is in lowercase, uppercase, or titlecase respectively.

Uncased characters are "allowed", such as digits, but there must be at least one cased character in the

string object in order to return True. Titlecase means the first cased character of each word is uppercase,

and any immediately following cased characters are lowercase. Curiously, 'Y2K'.istitle() returns True.

That is because uppercase characters can only follow uncased characters. Likewise, lowercase characters

can only follow uppercase characters. Hint: whitespace is uncased.

Example:

>>> '2YK'.istitle()

False

>>> '2Yk'.istitle()

True

>>> '2Y K'.istitle()

True

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

20 of 89 02/24/2007 05:30 PM

title, upper, lower, swapcase, capitalize

Returns the string converted to title case, upper case, lower case, inverts case, or capitalizes, respectively.

The title method capitalizes the first letter of each word in the string (and makes the rest lower case). Words are

identified as substrings of alphabetic characters that are separated by non-alphabetic characters, such as digits,

or whitespace. This can lead to some unexpected behavior. For example, the string "x1x" will be converted to

"X1X" instead of "X1x".

The swapcase method makes all uppercase letters lowercase and vice versa.

The capitalize method is like title except that it considers the entire string to be a word. (i.e. it makes the first

character upper case and the rest lower case)

Example:

count

Returns the number of the specified substrings in the string. i.e.

strip, rstrip, lstrip

Returns a copy of the string with the leading (lstrip) and trailing (rstrip) whitespace removed. strip removes

both.

>>> s = 'Hello, wOrLD'

>>> s

'Hello, wOrLD'

>>> s.title()

'Hello, World'

>>> s.upper()

'HELLO, WORLD'

>>> s.lower()

'hello, world'

>>> s.swapcase()

'hELLO, WoRld'

>>> s.capitalize()

'Hello, world'

>>> s = 'Hello, world'

>>> s.count('l') # print the number of 'l's in 'Hello, World' (3)

3

>>> s = '\t Hello, world\n\t '

>>> print s

 Hello, world

>>> print s.strip()

Hello, world

>>> print s.lstrip()

Hello, world

 # ends here

>>> print s.rstrip()

 Hello, world

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

21 of 89 02/24/2007 05:30 PM

Note the leading and trailing tabs and newlines.

Strip methods can also be used to remove other types of characters.

Outputs:

Note that string.lowercase and string.printable require an import string statement

ljust, rjust, center

left, right or center justifies a string into a given field size (the rest is padded with spaces).

join

Joins together the given sequence with the string as separator:

map may be helpful here: (it converts numbers in seq into strings)

now arbitrary objects may be in seq instead of just strings.

import string

s = 'www.wikibooks.org'

print s

print s.strip('w') # Removes all w's from outside

print s.strip(string.lowercase) # Removes all lowercase letters from outside

print s.strip(string.printable) # Removes all printable characters

www.wikibooks.org

.wikibooks.org

.wikibooks.

>>> s = 'foo'

>>> s

'foo'

>>> s.ljust(7)

'foo '

>>> s.rjust(7)

' foo'

>>> s.center(7)

' foo '

>>> seq = ['1', '2', '3', '4', '5']

>>> ' '.join(seq)

'1 2 3 4 5'

>>> '+'.join(seq)

'1+2+3+4+5'

>>> seq = [1,2,3,4,5]

>>> ' '.join(map(str, seq))

'1 2 3 4 5'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

22 of 89 02/24/2007 05:30 PM

find, index, rfind, rindex

The find and index functions returns the index of the first found occurrence of the given subsequence. If it is not

found, find returns -1 but index raises a ValueError. rfind and rindex are the same as find and index except that

they search through the string from right to left (i.e. they find the last occurance)

Because Python strings accept negative subscripts, index is probably better used in situations like the one shown

because using find instead would yield an incorrect value.

replace

Replace works just like it sounds. It returns a copy of the string with all occurrences of the first parameter

replaced with the second parameter.

Or, using variable assignment:

Outputs:

Notice, the original variable (string) remains unchanged after the call to replace.

expandtabs

Replaces tabs with the apropriate number of spaces. (default number of spaces per tab = 8; this can be changed

by passing the tab size as an argument)

>>> s = 'Hello, world'

>>> s.find('l')

2

>>> s[s.index('l'):]

'llo, world'

>>> s.rfind('l')

10

>>> s[:s.rindex('l')]

'Hello, wor'

>>> s[s.index('l'):s.rindex('l')]

'llo, wor'

>>> 'Hello, world'.replace('o', 'X')

'HellX, wXrld'

string = 'Hello, world'

newString = string.replace('o', 'X')

print string

print newString

'Hello, world'

'HellX, wXrld'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

23 of 89 02/24/2007 05:30 PM

Notice how (although these both look the same) the second string (t) has a different length because each tab is

represented by spaces not tab characters.

To use a a tab size of 4 instead of 8:

Outputs:

split, splitlines

The split method returns a list of the words in the string. It can take a separator argument to use instead of

whitespace.

Note that in neither case is the separator included in the split strings, but empty strings are allowed.

The splitlines method breaks a multiline string into many single line strings. It is analogous to split('\n') (but

accepts '\r' and '\r\n' as delimiters as well) except that if the string ends in a newline character, splitlines ignores

that final character (see example).

s = 'abcdefg\tabc\ta'

print s

print len(s)

t = s.expandtabs()

print t

print len(t)

abcdefg abc a

13

abcdefg abc a

17

v = s.expandtabs(4)

print v

print len(s)

abcdefg abc a

13

 >>> s = 'Hello, world'

 >>> s.split()

 ['Hello, ', 'world']

 >>> s.split('l')

 ['He', '', 'o, wor', 'd']

>>> s = """

... One line

... Two lines

... Red lines

... Blue lines

... Green lines

... """

>>> s.split('\n')

['', 'One line', 'Two lines', 'Red lines', 'Blue lines', 'Green lines', '']

>>> s.splitlines()

['', 'One line', 'Two lines', 'Red lines', 'Blue lines', 'Green lines']

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

24 of 89 02/24/2007 05:30 PM

Lists

Previous: Strings Index Next: Tuples

About lists in Python

A list in Python is an ordered group of items (or elements). It is a very general structure, and list elements don't

have to be of the same type. For instance, you could put numbers, letters, strings and donkeys all on the same

list.

If you are using a modern version of Python (and you should be), there is a class called 'list'. If you wish, you

can make your own subclass of it, and determine list behaviour which is different than the default standard. But

first, you should be familiar with the current behaviour of lists.

List notation

There are two different ways to make a list in python. The first is through assignment ("statically"), the second

is using list comprehensions("actively").

To make a static list of items, write them between square brackets. For example:

A couple of things to look at.

There are different data types here. Lists in python may contain more than one data type.1.

Objects can be created 'on the fly' and added to lists. The last item is a new kind of Donkey.2.

Writing lists this way is very quick (and obvious). However, it does not take into account the current state of

anything else. The other way to make a list is to form it using list comprehension. That means you actually

describe the process. To do that, the list is broken into two pieces. The first is a picture of what each element

will look like, and the second is what you do to get it.

For instance, lets say we have a list of words:

We will take the first letter of each word and make a list out of it.

[1,2,3,"This is a list",'c',Donkey("kong")]

listOfWords = ["this","is","a","list","of","words"]

>>> listOfWords = ["this","is","a","list","of","words"]

>>> items = [word[0] for word in listOfWords]

>>> print items

['t', 'i', 'a', 'l', 'o', 'w']

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

25 of 89 02/24/2007 05:30 PM

List comprehension allows you to use more than one for statement. It will evaluate the items in all of the objects

sequentially and will loop over the shorter objects if one object is longer than the rest.

Python's list comprehension does not define a scope. Any variables that are bound in an evaluation remain

bound to whatever they were last bound to when the evaluation was completed:

This is exactly the same as if the comprehension had been expanded into an explicitly-nested group of one or

more 'for' statements and 0 or more 'if' statements.

List creation shortcuts

Python provides a shortcut to initialize a list to a particular size and with an initial value for each element:

This works for any data type:

with a caveat. When building a new list by multiplying, Python copies each item by reference. This poses a

problem for mutable items, for instance in a multidimensional array where each element is itself a list. You'd

guess that the easy way to generate a two dimensional array would be:

and this works, but probably doesn't do what you expect:

What's happening here is that Python is using the same reference to the inner list as the elements of the outer

list. Another way of looking at this issue is to examine how Python sees the above definition:

>>> item = [x+y for x in 'flower' for y in 'pot']

>>> print item

['fp', 'fo', 'ft', 'lp', 'lo', 'lt', 'op', 'oo', 'ot', 'wp', 'wo', 'wt', 'ep', 'eo', 'et', 'rp', 'ro', 'rt']

>>> print x, y

r t

>>> zeros=[0]*5

>>> print zeros

[0, 0, 0, 0, 0]

>>> foos=['foo']*8

>>> print foos

['foo', 'foo', 'foo', 'foo', 'foo', 'foo', 'foo', 'foo']

listoflists=[[0]*4] *5

>>> listoflists=[[0]*4] *5

>>> print listoflists

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

>>> listoflists[0][2]=1

>>> print listoflists

[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]]

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

26 of 89 02/24/2007 05:30 PM

Assuming the above effect is not what you intend, one way around this issue is to use list comprehensions:

Operations on lists

List Attributes

Length:

Combining lists

Lists can be combined in several ways. The easiest is just to 'add' them. For instance:

Another way to combine lists is with extend. If you need to combine lists inside of a lamda, extend is the way

to go.

The other way to append a value to a list is to use append. For example:

>>> innerlist=[0]*4

>>> listoflists=[innerlist]*5

>>> print listoflists

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

>>> innerlist[2]=1

>>> print listoflists

[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]]

>>> listoflists=[[0]*4 for i in range(5)]

>>> print listoflists

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

>>> listoflists[0][2]=1

>>> print listoflists

[[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

 To find the length of a list use the built in len() method.

 >>> len([1,2,3])

 3

 >>> a = [1,2,3,4]

 >>> len(a)

 4

>>> [1,2] + [3,4]

[1, 2, 3, 4]

>>> a = [1,2,3]

>>> b = [4,5,6]

>>> a.extend(b)

>>> print a

[1, 2, 3, 4, 5, 6]

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

27 of 89 02/24/2007 05:30 PM

Getting pieces of lists (slices)

Like strings, lists can be indexed and sliced.

Much like the slice of a string is a substring, the slice of a list is a list. However, lists differ from strings in that

we can assign new values to the items in a list.

We can even assign new values to slices of the lists, which don’t even have to be the same length

It’s even possible to append things onto the end of lists by assigning to an empty slice:

Comparing lists

Lists can be compared for equality.

Sorting lists

Sorting lists is easy with a sort method.

>>> p=[1,2]

>>> p.append([3,4])

>>> p

[1, 2, [3, 4]]

>>> # or

>>> print p

[1, 2, [3, 4]]

>>> list = [2, 4, “usurp”, 9.0,”n”]

>>> list[2]

‘usurp’

>>> list[3:]

[9.0, ‘n’]

>>> list[1] = 17

>>> list

[2, 17, ‘usurp’, 9.0,’n’]

>>> list[1:4] = [“opportunistic”, “elk”]

>>> list

[2, ‘opportunistic’, ‘elk’, ‘n’]

>>> list[:0] = [3.14,2.71]

>>> list

[3.14, 2.71, 2, ‘opportunistic’, ‘elk’, ‘n’]

>>> [1,2] == [1,2]

True

>>> [1,2] == [3,4]

False

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

28 of 89 02/24/2007 05:30 PM

Note that the list is sorted in place, and the sort() method returns None to emphasize this side effect.

If you use Python 2.4 or higher there are some more sort parameters:

sort(cmp,key,reverse)

cmp : method to be used for sorting

key : function to be executed with key element. List is sorted by return-value of the function

reverse : sort ascending y/n

List methods

append(x)

Add item x onto the end of the list.

See pop(i)

pop(i)

Remove the item in the list at the index i and return it. If i is not given, remove the the last item in the list and

return it.

>>> list = [2, 3, 1, 'a', 'b']

>>> list.sort()

>>> list

[1, 2, 3, 'a', 'b']

>>> list = [1, 2, 3]

>>> list.append(4)

>>> list

[1, 2, 3, 4]

>>> list = [1, 2, 3, 4]

>>> a = list.pop(0)

>>> list

[2, 3, 4]

>>> a

1

>>> b = list.pop()

>>>list

[2, 3]

>>> b

4}}

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

29 of 89 02/24/2007 05:30 PM

Dictionaries

Previous: Tuples Index Next: Sets

About dictionaries in Python

A dictionary in python is a collection of unordered values which are accessed by key.

Dictionary notation

Dictionaries may be created directly or converted from sequences. Dictionaries are enclosed in curly braces, {}

Also, dictionaries can be easily created by zipping two sequences.

Operations on Dictionaries

The operations on dictionaries are somewhat unique. Slicing is not supported, since the items have no intrinsic

order.

>>> d = {'city':'Paris', 'age':38, (102,1650,1601):'A matrix coordinate'}

>>> seq = [('city','Paris'), ('age', 38), ((102,1650,1601),'A matrix coordinate')]

>>> d

{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}

>>> dict(seq)

{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}

>>> d == dict(seq)

True

>>> seq1 = ('a','b','c','d')

>>> seq2 = [1,2,3,4]

>>> d = dict(zip(seq1,seq2))

>>> d

{'a': 1, 'c': 3, 'b': 2, 'd': 4}

>>> d = {'a':1,'b':2, 'cat':'Fluffers'}

>>> d.keys()

['a', 'b', 'cat']

>>> d.values()

[1, 2, 'Fluffers']

>>> d['a']

1

>>> d['cat'] = 'Mr. Whiskers'

>>> d['cat']

'Mr. Whiskers'

>>> d.has_key('cat')

True

>>> d.has_key('dog')

False

>>> 'cat' in d

True

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

30 of 89 02/24/2007 05:30 PM

Combining two Dictionaries

You can combine two dictionaries by using the update method of the primary dictionary. Note that the update

method will merge existing elements if they conflict.

Deleting from dictionary

Sets

Previous: Dictionaries Index Next: Operators

Python also has an implementation of the mathematical set. Unlike sequence objects such as lists and tuples, in

which each element is indexed, a set is an unordered collection of objects. Sets also cannot have duplicate

members - a given object appears in a set 0 or 1 times. For more information on sets, see the Set Theory

wikibook.

Constructing Sets

One way to construct sets is by passing any sequential object to the "set" constructor.

We can also add elements to sets one by one, using the "add" function.

Note that since a set does not contain duplicate elements, if we add one of the members of s to s again, the add

function will have no effect. This same behavior occurs in the "update" function, which adds a group of

elements to a set.

>>> d = {'apples': 1, 'oranges': 3, 'pears': 2}

>>> ud = {'pears': 4, 'grapes': 5, 'lemons': 6}

>>> d.update(ud)

>>> d

{'grapes': 5, 'pears': 4, 'lemons': 6, 'apples': 1, 'oranges': 3}

>>>

del dictionaryName[membername]

>>> set([0, 1, 2, 3])

set([0, 1, 2, 3])

>>> set("obtuse")

set(['b', 'e', 'o', 's', 'u', 't'])

>>> s = set([12, 26, 54])

>>> s.add(32)

>>> s

set([32, 26, 12, 54])

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

31 of 89 02/24/2007 05:30 PM

Note that you can give any type of sequential structure, or even another set, to the update function, regardless of

what structure was used to initialize the set.

The set function also provides a copy constructor. However, remember that the copy constructor will copy the

set, but not the individual elements.

Membership Testing

We can check if an object is in the set using the same "in" operator as with sequential data types.

We can also test the membership of entire sets. Given two sets S
1
 and S

2
, we check if S

1
 is a subset or a

superset of S
2
.

Note that "issubset" and "issuperset" can also accept sequential data types as arguments

Note that the <= and >= operators also express the issubset and issuperset functions respectively.

Like lists, tuples, and string, we can use the "len" function to find the number of items in a set.

Removing Items

>>> s.update([26, 12, 9, 14])

>>> s

set([32, 9, 12, 14, 54, 26])

>>> s2 = s.copy()

>>> s2

set([32, 9, 12, 14, 54, 26])

>>> 32 in s

True

>>> 6 in s

False

>>> 6 not in s

True

>>> s.issubset(set([32, 8, 9, 12, 14, -4, 54, 26, 19]))

True

>>> s.issuperset(set([9, 12]))

True

>>> s.issuperset([32, 9])

True

>>> set([4, 5, 7]) <= set([4, 5, 7, 9])

True

>>> set([9, 12, 15]) >= set([9, 12])

True

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

32 of 89 02/24/2007 05:30 PM

There are three functions which remove individual items from a set, called pop, remove, and discard. The first,

pop, simply removes an item from the set. Note that there is no defined behavior as to which element it chooses

to remove.

We also have the "remove" function to remove a specified element.

However, removing a item which isn't in the set causes an error.

If you wish to avoid this error, use "discard." It has the same functionality as remove, but will simply do

nothing if the element isn't in the set

We also have another operation for removing elements from a set, clear, which simply removes all elements

from the set.

Iteration Over Sets

We can also have a loop move over each of the items in a set. However, since sets are unordered, it is undefined

which order the iteration will follow.

Set Operations

Python allows us to perform all the standard mathematical set operations, using members of set. Note that each

of these set operations has several forms. One of these forms, s1.function(s2) will return another set which is

created by "function" applied to S
1
 and S

2
. The other form, s1.function_update(s2), will change S

1
 to be the set

>>> s = set([1,2,3,4,5,6])

>>> s.pop()

1

>>> s

set([2,3,4,5,6])

>>> s.remove(3)

>>> s

set([2,4,5,6])

>>> s.remove(9)

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

KeyError: 9

>>> s.clear()

>>> s

set([])

>>> s = set("blerg")

>>> for n in s:

... print n,

...

r b e l g

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

33 of 89 02/24/2007 05:30 PM

created by "function" of S
1
 and S

2
. Finally, some functions have equivalent special operators. For example, s1

& s2 is equivalent to s1.intersection(s2)

Union

The union is the merger of two sets. Any element in S
1
 or S

2
 will appear in their union.

Note that union's update function is simply "update" above.

Intersection

Any element which is in both S
1
 and S

2
 will appear in their intersection.

Symmetric Difference

The symmetric difference of two sets is the set of elements which are in one of either set, but not in both.

Set Difference

Python can also find the set difference of S
1
 and S

2
, which is the elements that are in S

1
 but not in S

2
.

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.union(s2)

set([1, 4, 6, 8, 9])

>>> s1 | s2

set([1, 4, 6, 8, 9])

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.intersection(s2)

set([6])

>>> s1 & s2

set([6])

>>> s1.intersection_update(s2)

>>> s1

set([6])

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.symmetric_difference(s2)

set([8, 1, 4, 9])

>>> s1 ^ s2

set([8, 1, 4, 9])

>>> s1.symmetric_difference_update(s2)

>>> s1

set([8, 1, 4, 9])

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

34 of 89 02/24/2007 05:30 PM

Reference

Python Library Reference on Set Types (http://python.org/doc/2.4.1/lib/types-set.html)

Operators

Previous: Sets Index Next: Flow control

Basics

Python math works like you would expect.

Note that Python adheres to the PEMDAS order of operations.

Powers

There is a builtin exponentiation operator '**', which can take either integers, floating point or complex

numbers. This occupies its proper place in the order of operations.

Division and Type Conversion

Dividing two integers uses integer division, also known as floor division. Using division this way is deprecated

because it is intended to change in the future. Instead, if you want floor division, use '//'.

>>> s1 = set([4, 6, 9])

>>> s2 = set([1, 6, 8])

>>> s1.difference(s2)

set([9, 4])

>>> s1 - s2

set([9, 4])

>>> s1.difference_update(s2)

>>> s1

set([9, 4])

>>> x = 2

>>> y = 3

>>> z = 5

>>> x * y

6

>>> x + y

5

>>> x * y + z

11

>>> (x + y) * z

25

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

35 of 89 02/24/2007 05:30 PM

Dividing by or into a floating point number (there are no fractional types in Python) will cause Python to use

true division. To coerce an integer to become a float, 'float()' with the integer as a parameter

This can be generalized for other numeric types: int(), complex(), long().

Modulo

The modulus (remainder of the division of the two operands, rather than the quotient) can be found using the %

operator, or by the divmod builtin function. The divmod function returns a tuple containing the quotient and

remainder.

Negation

Unlike some other languages, variables can be negated directly:

Augmented Assignment

There is shorthand for assigning the output of an operation to one of the inputs:

>>> x = 5

>>> float(x)

5.0

>>> x = 5

>>> -x

-5

>>> x = 2

>>> x # 2

2

>>> x *= 3

>>> x # 2 * 3

6

>>> x += 4

>>> x # 2 * 3 + 4

10

>>> x /= 5

>>> x # (2 * 3 + 4) / 5

2

>>> x **= 2

>>> x # ((2 * 3 + 4) / 5) ** 2

4

>>> x %= 3

>>> x # ((2 * 3 + 4) / 5) ** 2 % 3

1

>>> x = 'repeat this '

>>> x # repeat this

repeat this

>>> x *= 3 # fill with x repeated three times

>>> x

repeat this repeat this repeat this

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

36 of 89 02/24/2007 05:30 PM

Boolean

or:

and:

Flow control

Previous: Operators Index Next: Functions

As with most imperative languages, there are three main categories of program flow control:

loops

branches

function calls

Function calls are covered in a later section.

Generators might arguably be considered an advanced form of program flow control, but they are not covered

here.

Loops

In Python, there are two kinds of loops, 'for' loops and 'while' loops.

For loops

A for loop iterates over elements of a sequence (tuple or list). A variable is created to represent the object in the

sequence. For example,

if a or b:

 do_this

else:

 do_this

if a and b:

 do_this

else:

 do_this

l = [100,200,300]

for i in l:

 print i

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

37 of 89 02/24/2007 05:30 PM

This will output

The for loop loops over each of the elements of a list or iterator, assigning the current element to the variable

name given. In the first example above, each of the elements in l is assigned to i.

A builtin function called range exists to make creating sequential lists such as the one above easier. The loop

above is equivalent to either:

or

This will output

or

This will output

or

100

200

300

l = range(1, 6)

for i in l:

 print i

for i in range(10, 0, -1):

 print i

10

9

8

7

6

5

4

3

2

1

for i in range(10, 0, -2):

 print i

10

8

6

4

2

for i in range(10, 0, -1):

 print i,

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

38 of 89 02/24/2007 05:30 PM

This will output

or

for loops can have names for each element of a tuple, if it loops over a sequence of tuples. For instance

will output

While loops

A while loop repeats a sequence of statements until some condition becomes false. For example:

will output

Python's while loops can also have an 'else' clause, which is a block of statements that is executed (once) when

the statement starts out false. For example:

this will output

10 9 8 7 6 5 4 3 2 1

for i in range(1, 6):

 print i

l = [(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

for x, xsquared in l:

 print x, ':', xsquared

1 : 1

2 : 4

3 : 9

4 : 16

5 : 25

x = 5

while x > 0:

 print x

 x = x - 1

5

4

3

2

1

x = 5

y = x

while y > 0:

 print y

 y = y - 1

else:

 print x

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

39 of 89 02/24/2007 05:30 PM

Unlike some languages, there is no postcondition loop.

Breaking, continuing and the else clause of loops

Python includes statements to exit a loop (either a for loop or a while loop) prematurely. To exit a loop, use the

break statement

this will output

The statement to begin the next iteration of the loop without waiting for the end of the current loop is 'continue'.

This will not produce any output.

The else clause of loops will be executed if no break statements are met in the loop.

Branches

There is basically only one kind of branch in Python, the 'if' statement. The simplest form of the if statement

simple executes a block of code only if a given predicate is true, and skips over it if the predicate is false

For instance,

5

4

3

2

1

5

x = 5

while x > 0:

 print x

 break

 x -= 1

 print x

5

l = [5,6,7]

for x in l:

 continue

 print x

l = range(1,100)

for x in l:

 if x == 100:

 print x

 break

else:

 print "100 not found in range"

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

40 of 89 02/24/2007 05:30 PM

You can also add "elif" (short for "else if") branches onto the if statement. If the predicate on the first “if” is

false, it will test the predicate on the first elif, and run that branch if it’s true. If the first elif is false, it tries the

second one, and so on. Note, however, that it will stop checking branches as soon as it finds a true predicate,

and skip the rest of the if statement. You can also end your if statements with an "else" branch. If none of the

other branches are executed, then python will run this branch.

Conclusion

Any of these loops, branches, and function calls can be nested in any way desired. A loop can loop over a loop,

a branch can branch again, and a function can call other functions, or even call itself.

Functions

Previous: Flow control Index Next: Scoping

Function calls

A callable object is an object that can accept some arguments (also called parameters) and possibly return an

object (often a tuple containing multiple objects).

A function is the simplest callable object in Python, but there are others, such as classes or certain class

instances.

Defining functions

A function is defined in Python by the following format:

>>> x = 10

>>> if x > 0:

... print "Positive"

...

Positive

>>> if x < 0:

... print "Negative"

...

>>> x = -6

>>> if x > 0:

... print "Positive"

... elif x == 0:

... print "Zero"

... else:

... print "Negative"

...

'Negative'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

41 of 89 02/24/2007 05:30 PM

If a function takes no arguments, it must still include the parentheses, but without anything in them.

The arguments in the function definition bind the arguments passed at function invocation (i.e. when the

function is called), which are called actual parameters, to the names given when the function is defined, which

are called formal parameters. The interior of the function has no knowledge of the names given to the actual

parameters; the names of the actual parameters may not even be accessible (they could be inside another

function).

A function can 'return' a value, like so

A function can define variables within the function body, which are considered 'local' to the function. The locals

together with the arguments comprise all the variables within the scope of the function. Any names within the

function are unbound when the function returns or reaches the end of the function body.

Declaring Arguments

Default Argument Values

If any of the formal parameters in the function definition are declared with the format "arg = value," then you

will have the option of not specifying a value for those arguments when calling the function. If you do not

specify a value, then that parameter will have the default value given when the function executes.

Variable-Length Argument Lists

Python allows you to declare two special arguments which allow you to create arbitrary-length argument lists.

def functionname(arg1, arg2, ...):

 statement1

 statement2

 ...

>>> def functionname(arg1,arg2):

... return arg1+arg2

...

>>> t = functionname(24,24) # Result: 48

def square(x):

 return x*x

>>> def display_message(message, truncate_after = 4):

... print message[:truncate_after]

...

>>> display_message("message")

mess

>>> display_message("messsage", 6)

messag

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

42 of 89 02/24/2007 05:30 PM

This means that each time you call the function, you can specify any number of arguments above a certain

number.

When calling the above function, you must provide value for each of the first two arguments. However, since

the third parameter is marked with an asterisk, any actual parameters after the first two will be packed into a

tuple and bound to "remaining."

If we declare a formal parameter prefixed with two asterisks, then it will be bound to a dictionary containing

any keyword arguments in the actual parameters which do not correspond to any formal parameters. For

example, consider the function:

If we call this function with any keyword arguments other than max_length, they will be placed in the

dictionary "entries." If we include the keyword argument of max_length, it will be bound to the formal

parameter max_length, as usual.

Calling functions

A function can be called by appending the arguments in parentheses to the function name, or an empty matched

set of parentheses if the function takes no arguments.

A function's return value can be used by assigning it to a variable, like so:

Lambda Forms

def function(first,second,*remaining):

 statement1

 statement2

 ...

>>> def print_tail(first,*tail):

... print tail

...

>>> print_tail(1, 5, 2, "omega")

(5, 2, 'omega')

def make_dictionary(max_length = 10, **entries):

 return dict([(key, entries[key]) for i, key in enumerate(entries.keys()) if i < max_length])

>>> make_dictionary(max_length = 2, key1 = 5, key2 = 7, key3 = 9)

{'key3': 9, 'key2': 7}

foo()

square(3)

bar(5, x)

x = foo()

y = bar(5,x)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

43 of 89 02/24/2007 05:30 PM

Besides assigning the return value of a function to a variable, we can also create variables that contain

functions. Python provides the “lambda” keyword for defining unnamed functions which can be assigned to

variables. You place the arguments before the colon, and the return value of the lambda after. If this is assigned

to a variable, you can then use that variable as if it were a function with the same parameters and return value as

the lambda.

You can also use variables other than the parameters in the lambda. However, note that the lambda function will

also use the values of variables from the scope in which it was created, rather than the scope in which it is run

Note that all functions in python can be stored to variables, and are in fact simply variables themselves.

Scoping

Previous: Functions Index Next: Exceptions

Variables

Variables in Python are automatically declared by assignment. Variables are always references to objects, and

are never typed. Variables exist only in the current scope or global scope. When they go out of scope, the

variables are destroyed, but the objects to which they refer are not (unless the number of references to the object

drops to zero).

Scope is delineated by function and class blocks. Both functions and their scopes can be nested. So therefore

Now when this code is tested,

>>> square = lambda x: x*x

>>> square(3)

9

>>> prefix = "Note: "

>>> def return_lambda(prefix):

... return lambda note: prefix + note

...

>>> prefix = "re: "

>>> f = return_lambda("Attn: ")

>>> f("Carnivorous octopi")

'Attn: Carnivorous octopi'

>>> make_note = return_lambda

>>> make_note("See: ")("lambda calculus")

'See: lambda calculus'

def foo():

 def bar():

 x = 5 # x is now in scope

 return x + y # y is defined in the enclosing scope later

 y = 10

 return bar() # now that y is defined, bar's scope includes y

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

44 of 89 02/24/2007 05:30 PM

The name 'bar' is not found because a higher scope does not have access to the names lower in the hierarchy.

It is a common pitfall to fail to lookup an attribute (such as a method) of an object (such as a container)

referenced by a variable before the variable is assigned the object. In its most common form:

Here, to correct this problem, one must add y = [] before the for loop.

Exceptions

Previous: Scoping Index Next: Input and output

Python handles all errors with exceptions.

An exception is a signal that an error or other unusual condition has occurred. There are a number of built-in

exceptions, which indicate conditions like reading past the end of a file, or dividing by zero. You can also

define your own exceptions.

Raising exceptions

Whenever your program attempts to do something erroneous or meaningless, Python raises exception to such

conduct:

This traceback indicates that the ZeroDivisionError exception is being raised. This is a built-in exception -- see

below for a list of all the other ones.

>>> foo()

15

>>> bar()

Traceback (most recent call last):

 File "<pyshell#26>", line 1, in -toplevel-

 bar()

NameError: name 'bar' is not defined

>>> for x in range(10):

 y.append(x) # append is an attribute of lists

Traceback (most recent call last):

 File "<pyshell#46>", line 2, in -toplevel-

 y.append(x)

NameError: name 'y' is not defined

>>> 1 / 0

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or modulo by zero

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

45 of 89 02/24/2007 05:30 PM

Catching exceptions

In order to handle errors, you can set up exception handling blocks in your code. The keywords try and except

are used to catch exceptions. When an error occurs within the try block, Python looks for a matching except

block to handle it. If there is one, execution jumps there.

If you execute this code:

Then Python will print this:

If you don't specify an exception type on the except line, it will cheerfully catch all exceptions. This is generally

a bad idea in production code, since it means your program will blissfully ignore unexpected errors as well as

ones which the except block is actually prepared to handle.

Exceptions can propagate up the call stack:

In this code, the print statement calls the function f. That function calls the function g, which will raise an

exception of type ValueError. Neither f nor g has a try/except block to handle ValueError. So the exception

raised propagates out to the main code, where there is an exception-handling block waiting for it. This code

prints:

Sometimes it is useful to find out exactly what went wrong, or to print the python error text yourself. For

example:

try:

 print 1/0

except ZeroDivisionError:

 print "You can't divide by zero, you silly."

You can't divide by zero, you silly.

def f(x):

 return g(x) + 1

def g(x):

 if x < 0: raise ValueError, "I can't cope with a negative number here."

 else: return 5

try:

 print f(-6)

except ValueError:

 print "That value was invalid."

That value was invalid.

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

46 of 89 02/24/2007 05:30 PM

Which of course will print:

Custom Exceptions

Code similar to that seen above can be used to create custom exceptions and pass information along with them.

This can be extremely useful when trying to debug complicated projects. Here is how that code would look;

first creating the custom exception class:

And then using that exception:

Trying over and over again

Recovering and continuing with finally

Exceptions could lead to a situation where after raising exception, that the code block where exception occurred

might not be revisited. In some cases this might lead to unknown state for external resources used by the

program. finally clause allow programer to close such resource in case of an exception. Between 2.4 and 2.5

version of python there is change of syntax for finally clause.

Python 2.4

try:

 theFile = open("the_parrot")

except IOError, (ErrorNumber, ErrorMessage):

 if ErrorNumber == 2: # file not found

 print "Sorry, 'the_parrot' has apparently joined the choir invisible."

 else:

 print "Congratulation! you have managed to trip a #%d error" % ErrorNumber # String concatenation is slow, use % formatting whenever possible

 print ErrorMessage

Sorry, 'the_parrot' has apparently joined the choir invisible.

 class CustomException(Exception):

 def __init__(self,value):

 self.parameter=value

 def __str__(self):

 return repr(self.parameter)

 try:

 raise CustomException("My Useful Error Message")

 except CustomException, (instance):

 print "Caught: "+instance.parameter

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

47 of 89 02/24/2007 05:30 PM

Python 2.5

Builtin exception classes

All built-in Python exceptions (http://www.python.org/doc/current/lib/module-exceptions.html)

Exotic uses of exceptions

Exceptions are good for more than just error handling. If you have a complicated piece of code to choose which

of several courses of action to take, it can be useful to use exceptions to jump out of the code as soon as the

decision can be made. The Python-based mailing list software Mailman does this in deciding how a message

should be handled. Using exceptions like this may seem like it's a sort of GOTO -- and indeed it is, but a limited

one called an escape continuation. Continuations are a powerful functional-programming tool and it can be

useful to learn them.

Just as a simple example of how exceptions make programming easier, say you want to add items to a list but

you don't want to write clanky if statements to initialize the list; you can do:

This is also much more efficient then an if statement because it assumes the code will succeed. In fact it will

work 99% of the time :) An if statement would continue to get executed even after the array has been initialized.

Input and output

Previous: Exceptions Index Next: Modules

try:

 result = None

 try:

 result = x/y

 except ZeroDivisionError:

 print "division by zero!"

 print "result is ", result

finally:

 print "executing finally clause"

try:

 result = x / y

except ZeroDivisionError:

 print "division by zero!"

else:

 print "result is", result

finally:

 print "executing finally clause"

 for newItem in newItems:

 try:

 self.items.append(newItem)

 except AttributeError:

 self.items = [newItem]

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

48 of 89 02/24/2007 05:30 PM

Input

Python has two functions designed for accepting data directly from the user:

input()

raw_input()

There are also very simple ways of reading a file, and for stricter control over input, reading from stdin is

necessary.

raw_input()

raw_input() asks the user for a string of data (ended with a newline), and simply returns the string. It can also

take an argument, which is displayed as a prompt before the user enters the data. E.g.

prints out

input()

input() uses raw_input to read a string of data, and then attempts to evaluate it as if it were a Python program,

and then returns the value that results. So entering

would return a list containing those numbers, just as if it were assigned directly in the Python script.

More complicated expressions are possible. For example, if a script says:

it is possible for a user to input:

which yields the correct answer in list form. Note that no inputted statement can span more than one line.

input() should not be used for anything but the most trivial program, turning the strings returned from

raw_input() into python types using an idiom such as:

print raw_input('What is your name?')

What is your name? <user inputted data here>

[1,2,3]

x = input('What are the first 10 perfect squares? ')

map(lambda x: x*x, range(10))

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

49 of 89 02/24/2007 05:30 PM

is preferable, as input() uses eval() to turn a literal into a python type. This will allow a malicious person to run

arbitrary code from inside your program trivially.

File Input

File Objects

Python includes a built-in file type. Files can be opened by using the file type's constructor:

This means f is open for reading. The first argument is the filename and the second parameter is the mode,

which can be 'r', 'w', or 'rw', among some others.

The most common way to read from a file is simply to iterate over the lines of the file:

This will print the first character of each line. Note that a newline is attached to the end of each line read this

way.

Because files are automatically closed when the file object goes out of scope, there is no real need to close them

explicitly. So, the loop in the previous code can also be written as:

It is also possible to read limited numbers of characters at a time, like so:

This will read the characters from f one at a time, and then print them if they're not whitespace.

A file object implicitly contains a marker to represent the current position. If the file marker should be moved

back to the beginning, one can either close the file object and reopen it or just move the marker back to the

beginning with:

x = None

while not x:

 try:

 x = int(raw_input())

 except ValueError:

 print 'Invalid Number'

f = file('test.txt', 'r')

f = open('test.txt', 'r')

for line in f:

 print line[0]

f.close()

for line in open('test.txt', 'r'):

 print line[0]

c = f.read(1)

while len(c) > 0:

 if len(c.strip()) > 0: print c,

 c = f.read(1)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

50 of 89 02/24/2007 05:30 PM

Standard File Objects

Like many other languages, there are built-in file objects representing standard input, output, and error. These

are in the sys module and are called stdin, stdout, and stderr. There are also immutable copies of these in

__stdin__, __stdout__, and __stderr__. This is for IDLE and other tools in which the standard files have been

changed.

You must import the sys module to use the special stdin, stdout, stderr I/O handles.

For finer control over input, use sys.stdin.read(). In order to implement the UNIX 'cat' program in Python, you

could do something like this:

Also Important is the sys.argv array. sys.argv is an array that contains the command-line arguments passed to

the program.

This array can be indexed,and the arguments evaluated. In the above example, sys.argv[2] would contain the

string "there", because the name of the program ("program.py") is stored in argv[0]. For more complicated

command-line argument processing, see also(getopt module)

Output

The basic way to do output is the print statement.

This code ought to be obvious.

In order to print multiple things on the same line, use commas between them, like so:

This will print out the following:

f.seek(0)

import sys

import sys

for line in sys.stdin:

 print line,

python program.py hello there programmer!

print 'Hello, world'

print 'Hello,', 'World'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

51 of 89 02/24/2007 05:30 PM

Note that although neither string contained a space, a space was added by the print statement because of the

comma between the two objects. Arbitrary data types can be printed this way:

This will print out:

Objects can be printed on the same line without needing to be on the same line if one puts a comma at the end

of a print statement:

will output:

In order to end this line, it may be necessary to add a print statement without any objects.

will output:

If the bare print statement were not present, the above output would look like:

If it is not desirable to add spaces between objects, it is necessary to output only one string, by concatenating the

string representations of each object:

will output:

Hello, World

print 1,2,0xff,0777,(10+5j),-0.999,map,sys

1 2 255 511 (10+5j) -0.999 <built-in function map> <module 'sys' (built-in)>

for i in range(10):

 print i,

0 1 2 3 4 5 6 7 8 9

for i in range(10):

 print i,

print

for i in range(10,20):

 print i,

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

print str(1)+str(2)+str(0xff)+str(0777)+str(10+5j)+str(-0.999)+str(map)+str(sys)

12255511(10+5j)-0.999<built-in function map><module 'sys' (built-in)>

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

52 of 89 02/24/2007 05:30 PM

If you want to avoid printing the trailing newline or space (space when you use comma at the end), you can

make a shorthand for sys.stdout.write and use that for output.

will output:

It is also possible to use similar syntax when writing to a file, instead of to standard output, like so:

This will print to any object that implements write(), which includes file objects.

Modules

Previous: Input and output Index Next: Classes

Modules are a simple way to structure a program. Mostly, there are modules in the standard library and there

are other Python files, or directories containing python files, in the current directory (each of which constitute a

module). You can also instruct python to search other directories for modules by placing their paths in the

PYTHONPATH environment variable.

Modules in Python are used by importing them. For example,

This imports the math standard module. All of the functions in that module are namespaced by the module

name, i.e.

This is often a nuisance, so other syntaxes are available to simplify this,

The first statement means whitespace is added to the current scope (but nothing else is). The second statement

import sys

write = sys.stdout.write

write('20')

write('05\n')

2005

print >> f, 'Hello, world'

import math

import math

print math.sqrt(10)

from string import whitespace

from math import *

from math import sin as SIN

from math import cos as COS

from ftplib import FTP as ftp_connection

print sqrt(10)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

53 of 89 02/24/2007 05:30 PM

means that all the elements in the math namespace is added to the current scope.

Modules can be three different kinds of things:

Python files

Shared Objects (under Unix and Linux) with the .so suffix

DLL's (under Windows) with the .pyd suffix

directories

Modules are loaded in the order they're found, which is controlled by sys.path. The current directory is always

on the path.

Directories should include a file in them called __init__.py, which should probably include the other files in the

directory.

Creating a DLL that interfaces with Python is covered in another section.

Classes

Previous: Modules Index Next: MetaClasses

Classes are a way of aggregating similar data and functions. A class is basically a scope inside which various

code (especially function definitions) is executed, and the locals to this scope become attributes of the class, and

of any objects constructed by this class. An object constructed by a class is called an instance of that class.

Defining a Class

To define a class, use the following format:

The capitalization in this class definition is the convention, but is not required by the language.

Instance Construction

The class is a callable object that constructs an instance of the class when called. To construct an instance of a

class, "call" the class object:

This constructs an instance of class Foo and creates a reference to it in f.

class ClassName:

 ...

 ...

f = Foo()

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

54 of 89 02/24/2007 05:30 PM

Class Members

In order to access the member of an instance of a class, use the syntax <class instance>.<member>. It is also

possible to access the members of the class definition with <class name>.<member>.

Methods

A method is a function within a class. The first argument (methods must always take at least one argument) is

always the instance of the class on which the function is invoked. For example

If this code were executed, nothing would happen, at least until an instance of Foo were constructed, and then

bar were called on that method.

Invoking Methods

Calling a method is much like calling a function, but instead of passing the instance as the first parameter like

the list of formal parameters suggests, use the function as an attribute of the instance.

This will output

It is possible to call the method on an arbitrary object, by using it as an attribute of the defining class instead of

an instance of that class, like so:

This will have the same output.

Dynamic Class Structure

As shown by the method setx above, the members of a Python class can change during runtime, not just their

values, unlike classes in languages like C or Java. We can even delete f.x after running the code above.

>>> class Foo:

... def setx(self, x):

... self.x = x

... def bar(self):

... print self.x

>>> f.setx(5)

>>> f.bar()

5

>>> Foo.setx(f,5)

>>> Foo.bar(f)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

55 of 89 02/24/2007 05:30 PM

Another effect of this is that we can change the definition of the Foo class during program execution. In the

code below, we create a member of the Foo class definition named y. If we then create a new instance of Foo, it

will now have this new member.

Viewing Class Dictionaries

At the heart of all this is a dictionary that can be accessed by "vars(ClassName)"

At first, this output makes no sense. We just saw that g had the member y, so why why isn't it in the member

dictionary? If you remember, though, we put y in the class definition, Foo, not g.

And there we have all the members of the Foo class definition. When Python checks for g.member, it first

checks g's vars dictionary for "member," then Foo. If we create a new member of g, it will be added to g's

dictionary, but not Foo's.

Note that if we now assign a value to g.y, we are not assigning that value to Foo.y. Foo.y will still be 10, but g.y

will now override Foo.y

Sure enough, if we check the values:

>>> del f.x

>>> f.bar()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 File "<stdin>", line 5, in bar

AttributeError: Foo instance has no attribute 'x'

>>> Foo.y = 10

>>> g = Foo()

>>> g.y

10

>>> vars(g)

{}

>>> vars(Foo)

{'y': 10, 'bar': <function bar at 0x4d6a3c>, '__module__': '__main__',

 'setx': <function setx at 0x4d6a04>, '__doc__': None}

>>> g.setx(5)

>>> vars(g)

{'x': 5}

>>> g.y = 9

>>> vars(g)

{'y': 9, 'x': 5}

>>> vars(Foo)

{'y': 10, 'bar': <function bar at 0x4d6a3c>, '__module__': '__main__',

 'setx': <function setx at 0x4d6a04>, '__doc__': None}

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

56 of 89 02/24/2007 05:30 PM

Note that f.y will also be 10, as Python won't find 'y' in vars(f), so it will get the value of 'y' from vars(Foo).

Some may have also noticed that the methods in Foo appear in the class dictionary along with the x and y. If

you remember from the section on lambda forms, we can treat functions just like variables. This means that we

can assign methods to a class during runtime in the same way we assigned variables. If you do this, though,

remember that if we call a method of a class instance, the first parameter passed to the method will always be

the class instance itself.

Changing Class Dictionaries

We can also access a the members dictionary of a class using the __dict__ member of the class.

If we add, remove, or change key-value pairs from g.__dict__, this has the same effect as if we had made those

changes to the members of g.

New Style Classes

New style classes were introduced in python 2.2. A new-style class is a class that has a built-in as it's base, most

commonly object. At a low level, a major difference between old and new classes is their type. Old class

instances were all of type instance. New style class instances will return the same thing as x.__class__ for their

instance. This puts user defined classes on a level playing field with built-ins. Old/Classic classes are slated to

disappear in Python 3000. With this in mind all development should use new style classes. New Style classes

also add constructs like properties and static methods familiar to Java programmers.

Old/Classic Class

New Style Class

>>> g.y

9

>>> Foo.y

10

>>> g.__dict__

{'y': 9, 'x': 5}

>>> g.__dict__['z'] = -4

>>> g.z

-4

>>> class ClassicFoo:

... def __init__(self):

... pass

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

57 of 89 02/24/2007 05:30 PM

Properties

Properties are attributes with getter and setter methods.

Static Methods

Static methods in Python are just like their counterparts in C++ or Java. Static methods have no "self" argument

and don't require you to instantiate the class before using them. They are defined using staticmethod()

Inheritance

Like all object oriented languages, Python provides for inheritance. Inheritance is a simple concept by which a

class can extend the facilities of another class, or in Python's case, multiple other classes. Use the following

format for this:

The subclass will then have all the members of its superclasses. If a method is defined in the subclass and in the

superclass, the member in the subclass will override the one in the superclass. In order to use the method

defined in the superclass, it is necessary to call the method as an attribute on the defining class, as in

Foo.setx(f,5) above:

>>> class NewStyleFoo(object):

... def __init__(self):

... pass

>>> class SpamWithProperties(object):

... def __init__(self):

... self.__egg = "MyEgg"

... def getEgg(self):

... return self.__egg

... def setEgg(self,egg):

... self.__egg = egg

... egg = property(getEgg,setEgg)

>>> sp = SpamWithProperties()

>>> sp.egg

'MyEgg'

>>> sp.egg = "Eggs With Spam"

>>> sp.egg

'Eggs With Spam'

>>>

>>> class StaticSpam(object):

... def StaticNoSpam():

... print "You can't have have the spam, spam, eggs and spam without any spam... that's disgusting"

... NoSpam = staticmethod(StaticNoSpam)

>>> StaticSpam.NoSpam()

'You can't have have the spam, spam, eggs and spam without any spam... that's disgusting'

class ClassName(superclass1,superclass2,superclass3,...):

 ...

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

58 of 89 02/24/2007 05:30 PM

Once again, we can see what's going on under the hood by looking at the class dictionaries.

When we call g.x, it first looks in the vars(g) dictionary, as usual. Also as above, it checks vars(Bar) next, since

g is an instance of Bar. However, thanks to inheritance, Python will check vars(Foo) if it doesn't find x in

vars(Bar).

Special Methods

There are a number of methods which have reserved names which are used for special purposes like mimicking

numerical or container operations, among other things. All of these names begin and end with two underscores.

It is convention that methods beginning with a single underscore are 'private' to the scope they are introduced

within.

Initialization

__init__

One of these purposes is constructing an instance, and the special name for this is '__init__'. __init__() is called

before an instance is returned (it is not necessary to return the instance manually). As an example,

>>> class Foo:

... def bar(self):

... print "I'm doing Foo.bar()."

... x = 10

...

>>> class Bar(Foo):

... def bar(self):

... print "I'm doing Bar.bar()."

... Foo.bar(self)

... y = 9

...

>>> g = Bar()

>>> Bar.bar(g)

I'm doing Bar.bar()

I'm doing Foo.bar()

>>> g.y

9

>>> g.x

10

>>> vars(g)

{}

>>> vars(Bar)

{'y': 9, '__module__': '__main__', 'bar': <function bar at 0x4d6a04>,

 '__doc__': None}

>>> vars(Foo)

{'x': 10, '__module__': '__main__', 'bar': <function bar at 0x4d6994>,

 '__doc__': None}

class A:

 def __init__(self):

 print 'A.__init__()'

a = A()

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

59 of 89 02/24/2007 05:30 PM

outputs

__init__() can take arguments, in which case it is necessary to pass arguments to the class in order to create an

instance. For example,

outputs

Here is an example showing the difference between using __init__() and not using __init__():

outputs

Representation

__str__

Converting an object to a string, as with the print statement or with the str() conversion function, can be

overridden by overriding __str__. Usually, __str__ returns a formatted version of the objects content. This will

NOT usually be something that can be executed.

For example:

A.__init__()

class Foo:

 def __init__ (self, printme):

 print printme

foo = Foo('Hi!')

Hi!

class Foo:

 def __init__ (self, x):

 print x

foo = Foo('Hi!')

class Foo2:

 def setx(self, x):

 print x

f = Foo2()

Foo2.setx(f,'Hi!')

Hi!

Hi!

class Bar:

 def __init__ (self, iamthis):

 self.iamthis = iamthis

 def __str__ (self):

 return self.iamthis

bar = Bar('apple')

print bar

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

60 of 89 02/24/2007 05:30 PM

outputs

__repr__

This function is much like __str__(). If __str__ is not present but this one is, this function's output is used

instead for printing. __repr__ is used to return a representation of the object in string form. In general, it can be

executed to get back the original object.

For example:

outputs (note the difference: now is not necessary to put it inside a print)

Attributes

__setattr__

This is the function which is in charge of setting attributes of a class. It is provided with the name and value of

the variables being assigned. Each class, of course, comes with a default __setattr__ which simply sets the value

of the variable, but we can override it.

__getattr___

Similar to __setattr__, except this function is called when we try to access a class member, and the default

simply returns the value.

apple

class Bar:

 def __init__ (self, iamthis):

 self.iamthis = iamthis

 def __repr__(self):

 return "Bar('%s')" % self.iamthis

bar = Bar('apple')

bar

Bar('apple')

>>> class Unchangable:

... def __setattr__(self, name, value):

... print "Nice try"

...

>>> u = Unchangable()

>>> u.x = 9

Nice try

>>> u.x

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

AttributeError: Unchangable instance has no attribute 'x'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

61 of 89 02/24/2007 05:30 PM

__delattr__

This function is called to delete an attribute.

Operator Overloading

Operator overloading allows us to use the built-in Python syntax and operators to call functions which we

define.

Binary Operators

>>> class HiddenMembers:

... def __getattr__(self, name):

... return "You don't get to see " + name

...

>>> h = HiddenMembers()

>>> h.anything

"You don't get to see anything"

>>> class Permanent:

... def __delattr__(self, name):

... print name, "cannot be deleted"

...

>>> p = Permanent()

>>> p.x = 9

>>> del p.x

x cannot be deleted

>>> p.x

9

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

62 of 89 02/24/2007 05:30 PM

If a class has the __add__ function, we can use the '+' operator to add instances of

the class. This will call __add__ with the two instances of the class passed as

parameters, and the return value will be the result of the addition.

>>> class FakeNumber: ... n = 5 ... def __add__(A,B): ... return A.n + B.n ... >>> c

= FakeNumber() >>> d = FakeNumber() >>> d.n = 7 >>> c + d 12

To override the augmented assignment operators, merely add 'i' in front of the

normal binary operator, i.e. for '+=' use '__iadd__' instead of '__add__'. The

function will be given one argument, which will be the object on the right side of

the augmented assignment operator. The returned value of the function will then

be assigned to the object on the left of the operator.

>>> c.__imul__ = lambda B: B.n - 6 >>> c *= d >>> c 1

It is important to note that the augmented assignment operators will also use the

normal operator functions if the augmented operator function hasn't been set

directly. This will work as expected, with "__add__" being called for "+=" and so

on.

>>> c = FakeNumber() >>> c += d >>> c 12

Binary Operator Override

Functions

Function Operator

__add__ A + B

__sub__ A - B

__mul__ A * B

__div__ A / B

__floordiv__ A // B

__mod__ A % B

__pow__ A ** B

__and__ A & B

__or__ B

__xor__ A ^ B

__eq__ A == B

__ne__ A != B

__gt__ A > B

__lt__ A < B

__ge__ A >= B

__le__ A <= B

__lshift__ A << B

__rshift__ A >> B

__contains__

A in B

A not in

B

Unary Operators

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

63 of 89 02/24/2007 05:30 PM

Unary operators will be passed simply the instance of the class that they are called

on.

>>> FakeNumber.__neg__ = lambda A : A.n + 6 >>> -d 13

Unary Operator Override

Functions

Function Operator

__pos__ +A

__neg__ -A

__inv__ ~A

__abs__ abs(A)

__len__ len(A)

Item Operators

It is also possible in Python to override the indexing and slicing operators. This

allows us to use the class[i] and class[a:b] syntax on our own objects.

The simplest form of item operator is __getitem__. This takes as a parameter the

instance of the class, then the value of the index.

>>> class FakeList: ... def __getitem__(self,index): ... return index * 2 ... >>> f =

FakeList() >>> f['a'] 'aa'

We can also define a function for the syntax associated with assigning a value to

an item. The parameters for this function include the value being assigned, in

addition to the parameters from __getitem__

>>> class FakeList: ... def __setitem__(self,index,value): ... self.string = index + "

is now " + value ... >>> f = FakeList() >>> f['a'] = 'gone' >>> f.string 'a is now

gone'

We can do the same thing with slices. Once again, each syntax has a different

parameter list associated with it.

>>> class FakeList: ... def __getslice___(self,start,end): ... return str(start) + " to "

+ str(end) ... >>> f = FakeList() >>> f[1:4] '1 to 4'

Keep in mind that one or both of the start and end parameters can be blank in slice

syntax. Here, Python has default value for both the start and the end, as show

below.

>> f[:] '0 to 2147483647'

Note that the default value for the end of the slice shown here is simply the largest

possible signed integer on a 32-bit system, and may vary depending on your

system and C compiler.

Item Operator Override

Functions

Function Operator

__getitem__ C[i]

__setitem__ C[i] = v

__delitem__ del C[i]

__getslice__ C[s:e]

__setslice__ C[s:e] = v

__delslice__ del C[s:e]

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

64 of 89 02/24/2007 05:30 PM

__setslice__ has the parameters (self,start,end,value)

We also have operators for deleting items and slices.

__delitem__ has the parameters (self,index)

__delslice__ has the parameters (self,start,end)

Note that these are the same as __getitem__ and __getslice__.

Programming Practices

The flexibility of python classes means that classes can adopt a very varied set of behaviors. For the sake of

understandability, however, it's best to use many of Python's tools sparingly. Try to declare all methods in the

class definition, and use always use the <class>.<member> syntax instead of __dict__ whenever possible. Look

at classes in C++ and Java to see what most programmers will expect from a class.

Encapsulation

Since all python members of a python class are accessible by functions and methods outside the class, there is

no way to enforce encapsulation short of overriding __getattr__, __setattr__ and __delattr__. General practice,

however, is for the creator of a class or module to simply trust that users will use only the intended interface and

avoid limiting access to the workings of the module for the sake of users who do need to access it. When using

parts of a class or module other than the intended interface, keep in mind that the those parts may change in

later versions of the module, and you may even cause errors or undefined behaviors in the module.

Doc Strings

When defining a class, it is convention to document the class using a string literal at the start of the class

definition. This string will then be placed in the __doc__ attribute of the class definition.

Docstrings are a very useful way to document your code. Even if you never write a single piece of separate

documentation (and let's admit it, doing so is the lowest priority for many coders), including informative

docstrings in your classes will go a long way toward making them usable.

>>> class Documented:

... """This is a docstring"""

... def explode(self):

... """

... This method is documented, too! The coder is really serious about

... making this class usable by others who don't know the code as well

... as he does.

...

... """

... print "boom"

>>> d = Documented()

>>> d.__doc__

'This is a docstring'

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

65 of 89 02/24/2007 05:30 PM

Several tools exist for turning the docstrings in Python code into readable API documentation, e.g., EpyDoc

(http://epydoc.sourceforge.net/using.html) .

Don't just stop at documenting the class definition, either. Each method in the class should have its own

docstring as well. Note that the docstring for the method explode in the example class Documented above has a

fairly lengthy docstring that spans several lines. Its formatting is in accordance with the style suggestions of

Python's creator, Guido Van Rossom.

MetaClasses

Previous: Classes Index

In python, classes are themselves objects. Just as other objects are instances of a particular class, classes

themselves are instances of a metaclass.

Class Factories

The simplest use of python metaclasses is a class factory. This concept makes use of the fact that class

definitions in python are first-class objects. Such a function can create or modify a class definition, using the

same syntax one would normally use in declaring a class definition. Once again, it is useful to use the model of

classes as dictionaries. First, let's look a basic class factory:

Of course, just like any other data in python, class definitions can also be modified. Any modifications to

attributes in a class definition will be seen in any instances of that definition, so long as that instance hasn't

overriden the attribute that you're modifying.

>>> def StringContainer():

... # define a class

... class String:

... content_string = ""

... def len(self):

... return len(self.content_string)

... # return the class definition

... return String

...

>>> # create the class definition

... container_class = StringContainer()

>>>

>>> # create an instance of the class

... wrapped_string = container_class()

>>>

>>> # take it for a test drive

... wrapped_string.content_string = 'emu emissary'

>>> wrapped_string.len()

12

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

66 of 89 02/24/2007 05:30 PM

You can also delete class definitions, but that will not affect instances of the class.

The type Metaclass

The metaclass for all standard python types is the "type" object.

Just like list, int and object, "type" is itself a normal python object, and is itself an instance of a class. In this

case, it is in fact an instance of itself.

It can be instantiated to create new class objects similarly to the class factory example above by passing the

name of the new class, the base classes to inherit from, and a dictionary defining the namespace to use.

For instance, the code:

Could also be written as:

Metaclasses

>>> def DeAbbreviate(sequence_container):

... setattr(sequence_container, 'length', sequence_container.len)

... delattr(sequence_container, 'len')

...

>>> DeAbbreviate(container_class)

>>> wrapped_string.length()

12

>>> wrapped_string.len()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

AttributeError: String instance has no attribute 'len'

>>> del container_class

>>> wrapped_string2 = container_class()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

NameError: name 'container_class' is not defined

>>> wrapped_string.length()

12

>>> type(object)

<type 'type'>

>>> type(int)

<type 'type'>

>>> type(list)

<type 'type'>

>>> type(type)

<type 'type'>

>>> class MyClass(BaseClass):

... attribute = 42

>>> MyClass = type("MyClass", (BaseClass,), {'attribute' : 42})

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

67 of 89 02/24/2007 05:30 PM

It is possible to create a class with a different metaclass than type by setting its __metaclass__ attribute when

defining. When this is done, the class, and its subclass will be created using your custom metaclass. For

example

This will print

By creating a custom metaclass in this way, it is possible to change how the class is constructed. This allows

you to add or remove attributes and methods, register creation of classes and subclasses creation and various

other manipluations when the class is created.

Aspect Oriented Programming

Wikipedia article on Aspect Oriented Programming [6]

(http://en.wikipedia.org/wiki/Aspect-oriented_programming)

More resources

Unifying types and classes in Python 2.2 [7] (http://www.python.org/2.2/descrintro.html) O'Reilly Article on

Python Metaclasses [8] (http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html)

[Incomplete] (see Putting Metaclasses to Work, Ira R. Forman, Scott H. Danforth?)

Regular Expression

Metacharacters

class CustomMetaclass(type):

 def __init__(cls, name, bases, dct):

 print "Creating class %s using CustomMetaclass" % name

 super(CustomMetaclass, cls).__init__(name, bases, dct)

class BaseClass(object):

 __metaclass__ = CustomMetaclass

class Subclass1(BaseClass):

 pass

Creating class BaseClass using CustomMetaclass

Creating class Subclass1 using CustomMetaclass

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

68 of 89 02/24/2007 05:30 PM

sets of characters

Strictly speaking, these are not true. If you are dealing with Unicode or locales, the necessary characters will be

added to the proper categories. For example, if you are working with Chinese, an ideograph would be matched

by \w.

How to Use

There are two main functions to work with regexes. First, import the re module:

This module contains two main functions, sub and match. The syntax for sub is as follows:

If count is left at 0, all occurrences are replaced. Otherwise, only that number is changed.

string contains the string for the transformation to be applied to. Unlike Perl, for example, this string is not

modified...you need to assign the result to the string again.

pattern contains the pattern to apply. You should use a literal string to prefix it, otherwise you will have to

backslash all of your backslashes. Compare these two lines:

replacement contains the string to replace occurrences of pattern with. \1, \2, etc., match the first, second (up to

ninth) backreferences.

. : matches any character except a newline.

^ : matches the beginning of a line.

$: matches the end of a line.

* : matches any number of repetitions of the previous group (including zero repetitions).

+ : matches one or more repetitions of the previous group.

? : match zero or one repetitions of the previous expression.

{ } : matches some specified number of repetitions. Examples: a{3} would match 'aaa', while a{3,5} would match 'aaa' 'aaaa' or 'aaaaa'.

[] : define a set of characters to match against.

\ : the escape character, which says to treat the following character or group of characters specially.

() : grouping.

| : separator for two regular expressions, where either can be matched. Example: (cat|dog|chinchilla) will match 'cat' or 'dog', but not 'horse'.

\d : Matches any decimal digit; this is equivalent to the class [0-9].

\D : Matches any non-digit character; this is equivalent to the class [^0-9].

\s : Matches any whitespace character; this is equivalent to the class [\t\n\r\f\v].

\S : Matches any non-whitespace character; this is equivalent to the class [^ \t\n\r\f\v].

\w : Matches any alphanumeric character; this is equivalent to the class [a-zA-Z0-9_].

\W : Matches any non-alphanumeric character; this is equivalent to the class [^a-zA-Z0-9_].

import re

def sub(pattern, replacement, string, count=0):

pattern = '\\(\\w\\s+\\)'

pattern = r\(\w\s+\)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

69 of 89 02/24/2007 05:30 PM

The other function is match. This one finds a match of pattern in string. Additional calls return further

occurrences--in other words, calling it again will return the next instance, and so on. Its syntax is as follows:

It returns a match object, which is primarily used to find groups. For example,

would return the entire string matched, and

would return the first group.

GUI Programming

There are various GUI toolkits to start with.

Tkinter

Tkinter, a Python wrapper for Tcl/Tk, comes bundled with Python (at least on Win32 platform though it can be

installed on Unix/Linux and Mac machines) and provides a cross-platform GUI. It is a relatively simple to learn

yet powerful toolkit that provides what appears to be a modest set of widgets. However, because the Tkinter

widgets are extensible, many compound widgets can be created rather easily (i.e. combo-box, scrolled panes).

Because of its maturity and extensive documentation Tkinter has been designated as the de facto GUI for

Python.

To create a very simple Tkinter window frame one only needs the following lines of code:

gfd From an object-oriented perspective one can do the following:

def match(pattern, string):

matchobject.group(0)

matchobject.group(1)

import Tkinter

root = Tkinter.Tk()

root.mainloop()

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

70 of 89 02/24/2007 05:30 PM

To learn more about Tkinter visit the following links:

http://www.astro.washington.edu/owen/TkinterSummary.html <- A summary

http://infohost.nmt.edu/tcc/help/lang/python/tkinter.html <- A tutorial

http://www.pythonware.com/library/tkinter/introduction/ <- A reference

PyGTK

PyGTK (http://www.pygtk.org/) provides a convenient wrapper for the GTK+ (http://www.gtk.org) library for

use in Python programs, taking care of many of the boring details such as managing memory and type casting.

The bare GTK+ toolkit runs on Linux, Windows, and Mac OS X (port in progress), but the more extensive

features — when combined with PyORBit and gnome-python — require a GNOME (http://www.gnome.org)

install, and can be used to write full featured GNOME applications.

Home Page (http://www.pygtk.org/)

PyQt

Bindings for the popular Unix/Linux and Windows toolkit. PyKDE can be used to write KDE-based

applications.

PyQt (http://www.riverbankcomputing.co.uk/pyqt/)

wxPython

Bindings for the cross platform toolkit wxWidgets (http://www.wxwidgets.org/) . WxWidgets is available on

Windows, Macintosh, and Unix/Linux.

import Tkinter

class App:

 def __init__(self, master):

 button = Tkinter.Button(master, text="I'm a Button.")

 button.pack()

if __name__ == '__main__':

 root = Tkinter.Tk()

 app = App(root)

 root.mainloop()

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

71 of 89 02/24/2007 05:30 PM

wxPython (http://wxpython.org/)

pyFltk

pyFltk is a Python wrapper for the FLTK, a lightweight cross-platform GUI toolkit. It is very simple to learn

and allows for compact user interfaces.

The "Hello World" example in pyFltk looks like:

pyFltk (http://pyfltk.sourceforge.net/)

Other Toolkits

PyKDE - Part of the kdebindings package, it provides a python wrapper for the KDE libraries.

PyXPCOM (http://developer.mozilla.org/en/docs/PyXPCOM) provides a wrapper around the Mozilla

XPCOM (http://developer.mozilla.org/en/docs/XPCOM) component architecture, thereby enabling the

use of standalone XUL (http://developer.mozilla.org/en/docs/XUL) applications in Python. The XUL

toolkit has traditionally been wrapped up in various other parts of XPCOM, but with the advent of libxul

and XULRunner (http://developer.mozilla.org/en/docs/XULRunner) this should become more feasible.

Game Programming in Python

import wx

class test(wx.App):

 def __init__(self):

 wx.App.__init__(self, redirect=False)

 def OnInit(self):

 frame = wx.Frame(None, -1,

 "Test",

 pos=(50,50), size=(100,40),

 style=wx.DEFAULT_FRAME_STYLE)

 button = wx.Button(frame, -1, "Hello World!", (20, 20))

 self.frame = frame

 self.frame.Show()

 return True

if __name__ == '__main__':

 app = test()

 app.MainLoop()

from fltk import *

window = Fl_Window(100, 100, 200, 90)

button = Fl_Button(9,20,180,50)

button.label("Hello World")

window.end()

window.show()

Fl.run()

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

72 of 89 02/24/2007 05:30 PM

3D Game Programming

Base techniques

Sockets

Because 3D programms written fully in python are slower than programs written fully in C++, an often used

technique is to use a combination of C++ and Python code together. One layer of 3D graphics is implemented in

C++ (for example it can be one standard open source engine), which communicate with Python code client

through TCP sockets. In this case, all that a developer needs to do in C++, is to create a server, that can

communicate with a client and control the 3D scene drawing. A client on the other hand, has control only over

other elements.

3D Game Engine with a Python binding

Irrlicht Engine[9] (http://irrlicht.sourceforge.net/) (Binding is no longer maintained and seriously out of

date)

Ogre Engine [10] (http://www.ogre3d.org/)

Both are very good free open source C++ 3D game Engine with a Python binding. However the Python binding

is an afterthought so most often late versus the C++ engine when usable at all. Python bindings are very

inefficient and limited.

3D Game Engines written for Python

Engines designed for Python from scratch.

Blender (http://www.blender.org/) is a 3d game engine that uses python to make 3d games

Soya (http://www.soya3d.org/) is a 3d game engine with an easy to understand design. It's written in

w:Pyrex programming language and uses Cal3d for animation and ODE for physics. Soya is available

under the GNU GPL license.

Panda3D (http://www.panda3d.org/) is a 3D game engine. It's a library written in C++ with Python

bindings. Panda3D is designed in order to support a short learning curve and rapid develpement. This

software is available for free donwload with source code under Panda3D Public License v2.0. The

development was started by [Disney]. Now it exists a lot of project made with Panda3D like ToonTown

(http://www.toontown.com/) , Building Virtual World (http://www.etc.cmu.edu/bvw) , Schell Games

(http://www.schellgames.com) and many others. Panda3D supports a lot of features: Procedural

Geometry, Animated Texture, Render to texture, Track motion, fog, particle system, and many others.

2D Game Programming

Pygame is a cross platform Python library which wraps SDL. It provides many features like Sprite

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

73 of 89 02/24/2007 05:30 PM

groups and sound/image loading and easy changing of an objects position. It also provides the

programmer access to key and mouse events.

Sockets

HTTP Client

Make a very simple HTTP client

NTP/Sockets

Connecting to and reading an NTP time server, returning the time as follows

import socket

s = socket.socket()

s.connect(('localhost', 80))

s.send('GET / HTTP/1.1\nHost:localhost\n\n')

s.recv(40000) # receive 40000 bytes

ntpps picoseconds portion of time

ntps seconds portion of time

ntpms miliseconds portion of time

ntpt 64-bit ntp time, seconds in upper 32-bits, picoseconds in lower 32-bits

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

74 of 89 02/24/2007 05:30 PM

import socket

BLOCKING = 1 # 0 = non blocking, 1 = blocking

NONBLOCKING = 0 # 0 = non blocking, 1 = blocking

TIME1970 = 2208988800L # Thanks to F.Lundh

NTPPORT = 123

MAXLEN = 1024

NTPSERVER = ('time.apple.com')

SKTRDRETRYCOUNT = 2

SKTRDRETRYDLY = 0.01

#***

opensocket(servername, port, blocking) \n

opens a socket at ip address "servername"

\arg servername = ip address to open a socket to

\arg port = port number to use

ntp uses dgram sockets instead of stream

def opensocket(ipaddr, port, mode):

 # create the socket

 skt = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 # open the socket

 try:

 skt.connect((ipaddr, port))

 except socket.error, e:

 print "Failed to connect to server %s %d %d" % (ipaddr, port, mode)

 print "Error %s" % (e.args[0])

 print "Goodbye..."

 sys.exit()

 # set the blocking mode (0=nonblocking, 1=blocking)

 try:

 skt.setblocking(mode)

 except socket.error, e:

 print "Failed to set socket blocking mode for %s %d %d" %(ipaddr, port, mode)

 print "Error %s" % (e.args[0])

 print "Goodbye..."

 sys.exit()

 return(skt)

#***

we should get 12 long words back in network order \n

the 10th word is the transmit time (seconds since UT 1900-Jan-01 \n

I = unsigned long integer \n

! = network (big endian) ordering

\arg \c \b ntpsocket, the socket handle to connect to

\arg \c \b msg, the message to send to the ntp server

def getntptime(ntpsocket, msg, servername):

 ntpsocket.send(msg)

 rtrycnt = 0

 data = 0

 while (data == 0) & (rtrycnt < SKTRDRETRYCOUNT):

 try:

 data = ntpsocket.recv(MAXLEN)

 except socket.error, e:

 rtrycnt += 1

 print "Error reading non-blocking socket, retrys = %s, server = %s" %(rtrycnt, servername)

 time.sleep(SKTRDRETRYDLY) # don't retry too often

 # check and see if we got valid data back

 if data:

 ntps = unpack('!12I', data)[10]

 ntpps = unpack('!12I', data)[11]

 if ntps == 0:

 print "Error: NTP, invalid response, goodbye..."

 sys.exit()

 else:

 print "Error: NTP, do data returned, goodbye..."

 sys.exit()

 ntpms = ntpps/5000000L # 1ms/200ps, we want ms

 ntpt = (ntps << 32) + ntpps

 return (ntpsocket, ntps, ntpps, ntpms, ntpt)

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

75 of 89 02/24/2007 05:30 PM

Files

File I/O

Read entire file:

Read one line at a time:

Write to a file:

Append to a file:

Note that this does not add a line break between the existing file content and the string to be added.

Testing Files

Determine whether path exists:

When working on systems such as Microsoft Windows(tm), the directory separators will conflict with the path

string. To get around this, do the following:

inputFileText = open("testit.txt", "r").read()

print inputFileText

for line in open("testit.txt", "r").readlines():

 print line

outputFileText = "Here's some text to save in a file"

open("testit.txt", "w").write(outputFileText)

outputFileText = "Here's some text to add to the existing file."

open("testit.txt", "a").write(outputFileText)

import os

os.path.exists('<path string>')

import os

os.path.exists(r'C:\windows\example\path')

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

76 of 89 02/24/2007 05:30 PM

Common File Operations

To copy or move a file, use the shutil library.

Previous: Modules and how to use

them
Index Next: Text

Database Programming

Postgres connection in Python

External links

SQLAlchemy (http://www.sqlalchemy.org/)

SQLObject (http://www.sqlobject.org/)

PEP 249 (http://www.python.org/dev/peps/pep-0249/) - Python Database API Specification v2.0

Database Topic Guide (http://www.python.org/doc/topics/database/) on python.org

Web Page Harvesting

Python Programming/Web Page Harvesting

import shutil

shutil.move("originallocation.txt","newlocation.txt")

shutil.copy("original.txt","copy.txt")

import psycopg2

conn = psycopg2.connect("dbname=test")

cursor = conn.cursor()

cursor.execute("select * from test");

for i in cursor.next():

 print i

conn.close()

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

77 of 89 02/24/2007 05:30 PM

Threading

a minimal example

This should output:

a minimal example with function call

Make a thread that prints numbers from 1-10, waits for 1 sec between:

Extending with C

This gives a minimal Example on how to Extend Python with C. Linux is used for building (feel free to extend

it for other Platforms). If you have any problems, please report them (e.g. on the dicussion page), I will check

#!/usr/bin/env python

import threading

import time

class MyThread(threading.Thread):

 def run(self):

 print "%s started!" % self.getName()

 time.sleep(1)

 print "%s finished!" % self.getName()

if __name__ == '__main__':

 for x in range(4):

 mythread = MyThread(name = "Thread-%d" % x)

 MyThread().start()

 time.sleep(.2)

Thread-1 started!

Thread-2 started!

Thread-3 started!

Thread-4 started!

Thread-1 finished!

Thread-2 finished!

Thread-3 finished!

Thread-4 finished!

import thread, time

def loop1_10():

 for i in range(1,10):

 time.sleep(1); print i

thread.start_new_thread(loop1_10, ())

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

78 of 89 02/24/2007 05:30 PM

back in a while and try to sort them out.

Using the Python/C API

http://docs.python.org/ext/ext.html

http://docs.python.org/api/api.html

A minimal example

The minimal example we will create now is very similar in behaviour to the following python snippet.

The C source code (hellomodule.c)

Building the extension module on Linux

To build our extension module we create the file setup.py like:

def say_hello(name):

 "Greet somebody."

 print "Hello %s!" % name

#include <Python.h>

static PyObject* say_hello(PyObject* self, PyObject* args)

{

 const char* name;

 if (!PyArg_ParseTuple(args, "s", &name))

 return NULL;

 printf("Hello %s!\n", name);

 Py_RETURN_NONE;

}

static PyMethodDef HelloMethods[] =

{

 {"say_hello", say_hello, METH_VARARGS, "Greet somebody."},

 {NULL, NULL, 0, NULL}

};

PyMODINIT_FUNC

inithello(void)

{

 (void) Py_InitModule("hello", HelloMethods);

}

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

79 of 89 02/24/2007 05:30 PM

Now we can build our module with

The module `hello.so` will end up in e.g `build/lib.linux-i686-2.4`.

Building the extension module on Windows

With VC8 distutils is broken. We will use cl.exe from a command prompt instead:

Using the extension module

Change to the subdirectory where the file `hello.so` resists. In an interactive python session you can use the

module as follows.

A module for calculating fibonacci numbers

The C source code (fibmodule.c)

from distutils.core import setup, Extension

module1 = Extension('hello', sources = ['hellomodule.c'])

setup (name = 'PackageName',

 version = '1.0',

 description = 'This is a demo package',

 ext_modules = [module1])

python setup.py build

cl /LD hellomodule.c /Ic:\Python24\include c:\Python24\libs\python24.lib /link/out:hello.dll

>>> import hello

>>> hello.say_hello("World")

Hello World!

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

80 of 89 02/24/2007 05:30 PM

The build script (setup.py)

How to use it?

Using SWIG

Creating the previous example using SWIG is much more straight forward. To follow this path you need to get

SWIG (http://www.swig.org/) up and running first. After that create two files.

#include <Python.h>

int _fib(int n)

{

 if (n < 2)

 return n;

 else

 return _fib(n-1) + _fib(n-2);

}

static PyObject* fib(PyObject* self, PyObject* args)

{

 const char *command;

 int n;

 if (!PyArg_ParseTuple(args, "i", &n))

 return NULL;

 return Py_BuildValue("i", _fib(n));

}

static PyMethodDef FibMethods[] = {

 {"fib", fib, METH_VARARGS, "Calculate the Fibonacci numbers."},

 {NULL, NULL, 0, NULL}

};

PyMODINIT_FUNC

initfib(void)

{

 (void) Py_InitModule("fib", FibMethods);

}

from distutils.core import setup, Extension

module1 = Extension('fib', sources = ['fibmodule.c'])

setup (name = 'PackageName',

 version = '1.0',

 description = 'This is a demo package',

 ext_modules = [module1])

>>> import fib

>>> fib.fib(10)

55

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

81 of 89 02/24/2007 05:30 PM

Now comes the more difficult part, gluing it all together.

First we need to let SWIG do its work.

This gives us the files `hello.py` and `hello_wrap.c`.

The next step is compiling (subtitute /usr/include/python2.4/ with the correct path for your setup!).

Now linking and we are done:)

The module is used in the following way.

Extending with C++

Boost.Python (http://www.boost.org/libs/python/doc/) is the de facto standard for writing C++ extension

modules. Boost.Python comes bundled with the Boost C++ Libraries (http://www.boost.org/) .

The C++ source code (hellomodule.cpp)

/*hellomodule.c*/

#include <stdio.h>

void say_hello(const char* name) {

 printf("Hello %s!\n", name);

}

/*hello.i*/

%module hello

extern void say_hello(const char* name);

swig -python hello.i

gcc -fpic -c hellomodule.c hello_wrap.c -I/usr/include/python2.4/

gcc -shared hellomodule.o hello_wrap.o -o _hello.so

>>> import hello

>>> hello.say_hello("World")

Hello World!

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

82 of 89 02/24/2007 05:30 PM

setup.py

Now we can build our module with

The module `hello.so` will end up in e.g `build/lib.linux-i686-2.4`.

Using the extension module

Change to the subdirectory where the file `hello.so` resists. In an interactive python session you can use the

module as follows.

WSGI web programming

Python Programming/WSGI web programming

#include <iostream>

using namespace std;

void say_hello(const char* name) {

 cout << "Hello " << name << "!\n";

}

#include <boost/python/module.hpp>

#include <boost/python/def.hpp>

using namespace boost::python;

BOOST_PYTHON_MODULE(hello)

{

 def("say_hello", say_hello);

}

#!/usr/bin/env python

from distutils.core import setup

from distutils.extension import Extension

setup(name="blah",

 ext_modules=[

 Extension("hello", ["hellomodule.cpp"],

 libraries = ["boost_python"])

])

python setup.py build

>>> import hello

>>> hello.say_hello("World")

Hello World!

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

83 of 89 02/24/2007 05:30 PM

References

Language reference

The latest documentation for the standard python libraries and modules can always be found at The Python.org

documents section (http://www.python.org/doc/)

External links

Python books available for free download (http://www.techbooksforfree.com/perlpython.shtml)

Non-programmers python tutorial (http://www.honors.montana.edu/~jjc/easytut/easytut/) donated to this

project. Wiki version

Dive into Python (http://www.diveintopython.org/)

How to think Like a Computer Scientist: Learning with Python (http://www.ibiblio.org/obp/thinkCSpy/)

A Byte of Python (http://www.byteofpython.info/)

ActiveState Python Cookbook (http://aspn.activestate.com/ASPN/Python/Cookbook/)

Text Processing in Python (http://gnosis.cx/TPiP/)

Dev Shed's Python Tutorials (http://www.devshed.com/c/b/Python/)

MakeBot (http://stratolab.com/misc/makebot) - Simple Python IDE designed for teaching game

programming to kids.

SPE - Stani's Python Editor (http://pythonide.stani.be)

Authors

Authors of Python textbook

License

GNU Free Documentation License

Version 1.2, November 2002

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

84 of 89 02/24/2007 05:30 PM

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in

the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without

modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and

publisher a way to get credit for their work, while not being considered responsible for modifications made by

others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be

free in the same sense. It complements the GNU General Public License, which is a copyleft license designed

for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free

documentation: a free program should come with manuals providing the same freedoms that the software does.

But this License is not limited to software manuals; it can be used for any textual work, regardless of subject

matter or whether it is published as a printed book. We recommend this License principally for works whose

purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright

holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide,

royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document",

below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you".

You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright

law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either

copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively

with the relationship of the publishers or authors of the Document to the Document's overall subject (or to

related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document

is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship

could be a matter of historical connection with the subject or with related matters, or of legal, commercial,

philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant

Sections, in the notice that says that the Document is released under this License. If a section does not fit the

above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain

zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

85 of 89 02/24/2007 05:30 PM

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,

in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5

words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose

specification is available to the general public, that is suitable for revising the document straightforwardly with

generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely

available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety

of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose

markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is

not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is

not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input

format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple

HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include

PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by

proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally

available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output

purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,

legibly, the material this License requires to appear in the title page. For works in formats which do not have

any title page as such, "Title Page" means the text near the most prominent appearance of the work's title,

preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or

contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a

specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or

"History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a

section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the

Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as

regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided

that this License, the copyright notices, and the license notice saying this License applies to the Document are

reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not

use technical measures to obstruct or control the reading or further copying of the copies you make or

distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

86 of 89 02/24/2007 05:30 PM

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,

numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies

in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and

Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of

these copies. The front cover must present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with changes limited to the covers, as long as

they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other

respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as

many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include

a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

computer-network location from which the general network-using public has access to download using

public-standard network protocols a complete Transparent copy of the Document, free of added material. If you

use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in

quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one

year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that

edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any

large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3

above, provided that you release the Modified Version under precisely this License, with the Modified Version

filling the role of the Document, thus licensing distribution and modification of the Modified Version to

whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from

those of previous versions (which should, if there were any, be listed in the History section of the

Document). You may use the same title as a previous version if the original publisher of that version

gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the

modifications in the Modified Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five), unless they release you from this

requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

87 of 89 02/24/2007 05:30 PM

the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title,

year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section

Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified Version as stated in the

previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of

the Document, and likewise the network locations given in the Document for previous versions it was

based on. These may be placed in the "History" section. You may omit a network location for a work that

was published at least four years before the Document itself, or if the original publisher of the version it

refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or

dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified

Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any

Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections

and contain no material copied from the Document, you may at your option designate some or all of these

sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license

notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your

Modified Version by various parties--for example, statements of peer review or that the text has been approved

by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a

Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one

entity. If the Document already includes a cover text for the same cover, previously added by you or by

arrangement made by the same entity you are acting on behalf of, you may not add another; but you may

replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for

publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

88 of 89 02/24/2007 05:30 PM

You may combine the Document with other documents released under this License, under the terms defined in

section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in

its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may

be replaced with a single copy. If there are multiple Invariant Sections with the same name but different

contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the

original author or publisher of that section if known, or else a unique number. Make the same adjustment to the

section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,

forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any

sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and

replace the individual copies of this License in the various documents with a single copy that is included in the

collection, provided that you follow the rules of this License for verbatim copying of each of the documents in

all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,

provided you insert a copy of this License into the extracted document, and follow this License in all other

respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in

or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the

compilation is not used to limit the legal rights of the compilation's users beyond what the individual works

permit. When the Document is included in an aggregate, this License does not apply to the other works in the

aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document

is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket

the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the

terms of section 4. Replacing Invariant Sections with translations requires special permission from their

copyright holders, but you may include translations of some or all Invariant Sections in addition to the original

versions of these Invariant Sections. You may include a translation of this License, and all the license notices in

Python Programming/Print version - Wikibooks, collection of open-conte... http://en.wikibooks.org/wiki/Python_Programming/Print_version

89 of 89 02/24/2007 05:30 PM

the Document, and any Warranty Disclaimers, provided that you also include the original English version of

this License and the original versions of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement

(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this

License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will

automatically terminate your rights under this License. However, parties who have received copies, or rights,

from you under this License will not have their licenses terminated so long as such parties remain in full

compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License

from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to

address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular

numbered version of this License "or any later version" applies to it, you have the option of following the terms

and conditions either of that specified version or of any later version that has been published (not as a draft) by

the Free Software Foundation. If the Document does not specify a version number of this License, you may

choose any version ever published (not as a draft) by the Free Software Foundation.

Retrieved from "http://en.wikibooks.org/wiki/Python_Programming/Print_version"

This page was last modified 08:29, 7 August 2006.

All text is available under the terms of the GNU Free Documentation License (see Copyrights for

details).

Wikibooks® is a registered trademark of the Wikimedia Foundation, Inc.

