
Introduction to Physical Chemistry – Lecture 10

I. LECTURE OVERVIEW

In this lecture, we will consider the problem of thermo-
dynamic equilibrium in chemically reacting systems. We
will focus on ideal gases, because they are the simplest to
analyze. However, we will use the techniques developed
to study other kinds of related equilibrium phenomena,
such as osmotic pressure, freezing point depression, and
a gas dissolved in a liquid.

In terms of the material you will need to know for the
final, this is the last lecture of the course. There will
be one remaining lecture after this one, however, it will
be more for the purposes of general knowledge, and will
therefore not be tested on the final exam.

II. CHEMICAL REACTIONS

A chemical reaction refers to a process whereby one
set of compounds interact with one another to form an-
other set of compounds. The initial set of compounds are
termed the reactants, and the final set of compounds are
termed the products. This is illustrated in Figure 1.

The general representation of a chemical reaction is as
follows:

r1R1 + r2R2 + · · ·+ rMRM → p1P1 + p2P2 + · · ·+ pNPN

(1)
where the reactants are R1, . . . , RM , and the products
are P1, . . . , PN . The quantities r1, . . . , rM , p1, . . . , pN are
referred to as the stoichiometric coefficients of the reac-
tion.

The stoichiometric coefficients must be such that the
reaction is balanced. This means that for every atom
type that appears in the reaction, the total number of

FIG. 1: Illustration of a chemical reaction: Two hydrogen
molecules and one oxygen molecule react to form two water
molecules.

atoms on the reactant side must equal the total number
of atoms (of the same type) on the product side. With
this criterion, it is possible to show that there is a smallest
set of stoichiometric coefficients, and any other valid set
of stoichiometric coefficients must be an integer multiple
of this smallest set.

Here are two examples of chemical reactions:

2H2(g) + O2(g) → 2H2O(g)
2Na(s) + 2H2O(l) → 2NaOH(aq) + H2(g) (2)

In the first reaction, two hydrogen molecules in the
gas state react with one oxygen molecule in the gas state
to form two water molecules in the gas state. In the
second reaction, two atoms of sodium in the solid state
react with two water molecules in the liquid state to form
aqueous sodium hydroxide (aqueous meaning dissolved in
water) and one molecule of hydrogen in the gas state.

We now turn our attention to a very important quan-
tity, the extent of reaction. The extent of reaction deter-
mines how far along a reaction has proceeded. Instead of
directly defining the extent of reaction, we will define it
operationally (i.e. given the extent of reaction, how do
we use it to calculate things).

Note that in the reaction where hydrogen and oxy-
gen react to form water, two hydrogen molecules are
consumed for every oxygen molecule consumed, and two
water molecules are produced for every oxygen molecule
consumed. So, in a general reaction, where the reactant
stoichiometric coefficients are r1, . . . , rM , and the prod-
uct stoichiometric coefficients are p1, . . . , pN , note that r1

molecules of R1 are consumed for every p1 molecules of
P1 produced. More generally, ri molecules of Ri are con-
sumed for every pj molecules of Pj produced, ri molecules
of Ri are consumed for every rj molecules of Rj con-
sumed, and pi molecules of Pi are produced for every Pj

molecules of Pj produced.
So, if ζ denotes the extent of reaction, then this means

that r1ζ moles of R1 have reacted, r2ζ moles of R2 have
reacted, . . . , rMζ moles of RM have reacted, and p1ζ
moles of P1 have been produced, p2ζ moles of P2 have
been produced, . . . , pNζ moles of PN have been pro-
duced.

III. THE GIBBS POTENTIAL IN AN IDEAL
GAS

In preparation for what we will need shortly, we need to
compute how the Gibbs potential (the Gibbs free energy)
varies as a function of temperature and pressure in an
ideal gas.

So, suppose we have one mole of an ideal gas at some
temperature T , and pressure P1. If we change the pres-
sure from P1 to P2, while keeping the temperature fixed,
how does the Gibbs free energy Ḡ change?
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We have,

dḠ = −S̄dT +V̄ dP = V̄ dP (constant temperature) (3)

Therefore,

(
∂Ḡ

∂P
)T = V̄ =

RT

P
(4)

since we are dealing with an ideal gas. Integrating, we
get,

Ḡ(T, P2) = Ḡ(T, P1) + RT ln
P2

P1
(5)

To minimize the number of variables we need to keep
track of, we typically pick a reference value of P1, called
the standard pressure. The most common values for the
standard pressure are either 1 atm or 1bar = 100, 000 Pa.
If we denote the standard pressure by Pref (the “ref”
denotes “reference”), then we get,

Ḡ(T, P ) = Ḡ(T, Pref ) + RT ln
P

Pref
(6)

We may also define a reference temperature, called the
standard pressure, with respect to which the Gibbs po-
tential may be computed. Since, at constant pressure,
we have dḠ = −S̄dT , we obtain,

Ḡ(T, Pref ) = Ḡ(Tref , Pref )−
∫ T

Tref

S̄(T ′, Pref )dT ′ (7)

There a number of standard temperatures in use:
0◦ C = 273 K, 25◦ C = 298 K, and 300 K.

Together, the standard temperature and pressure are
abbreviated as “STP”.

IV. CHEMICAL EQUILIBRIUM

A. Criterion for chemical equilibrium: The
equilibrium constant

Consider a reaction that is occurring at constant tem-
perature and pressure in some container. Constant tem-
perature can be achieved by immersing the container in
a thermal bath, and constant pressure can be maintained
by allowing the container to have at least one movable
wall, that can adjust in response to changing internal
conditions.

Eventually, the mixture reaches a state where it is in
equilibrium. At this point, the rate of the forward reac-
tion and the rate of the reverse reaction are equal. This
also means that the conversion from reactants to prod-
ucts or vice versa are both reversible processes at equi-
librium.

Now, for a reversible process occurring at constant
temperature and pressure, we have dG = 0. We can use
this to develop our criterion for chemical equilibrium.

Suppose that, at equilibrium at the temperatue T and
pressure P , there are nRi moles of reactant Ri, for i =
1, . . . ,M , and nPi moles of product Pi, for i = 1, . . . , N .
If the extent of reaction changes from ζequil to ζequil +dζ,
then the number of moles of reactant Ri becomes nRi −
ridζ, while the number of moles of reactant Pi becomes
nPi + pidζ.

When the extent of reaction is ζequil, the total number
of moles in the system is n = nR1 +· · ·+nRM

+nP1 +· · ·+
nPN

. This means that the mole fraction of Ri, denoted
xRi , and the mole fraction of Pi, denoted xPi , is given
by,

xRi
=

nRi

nR1 + · · ·+ nRM
+ nP1 + · · ·+ nPN

xPi
=

nPi

nR1 + · · ·+ nRM
+ nP1 + · · ·+ nPN

(8)

The partial pressures (see the very beginning of Lec-
ture 3) of Ri and Pi are then given by,

pRi
= xRi

P =
nRi

nR1 + · · ·+ nRM
+ nP1 + · · ·+ nPN

P

pPi
= xPi

P =
nPi

nR1 + · · ·+ nRM
+ nP1 + · · ·+ nPN

P

(9)

Therefore, the molar Gibbs free energies are given by,

ḠRi
= ḠRi

(T, Pref ) + RT ln
pRi

Pref

= ḠRi
(T, Pref ) + RT ln

P

Pref
+ RT lnxRi

= ḠRi
(T, Pref ) + RT ln

P

Pref
+ RT lnnRi

−RT ln(nR1 + · · ·+ nRM
+ nP1 + · · ·+ nPN

)

ḠPi
= ḠPi

(T, Pref ) + RT ln
P

Pref
+ RT lnnPi

−RT ln(nR1 + · · ·+ nRM
+ nP1 + · · ·+ nPN

)
(10)

Therefore, the total value of the Gibbs free energy at
equilibrium is given by,

G = nR1ḠR1 + · · ·+ nRM
ḠRM

+ nP1ḠP1 + · · ·+ nPN
ḠPN

= nR1ḠR1(T, Pref ) + · · ·+ nRM
ḠRM

(T, Pref )
+nP1ḠP1(T, Pref ) + · · ·+ nPN

ḠPN
(T, Pref )

+nRT ln
P

Pref

+RT (nR1 lnnR1 + · · ·+ nRM
lnnRM

+nP1 lnnP1 + · · ·+ nPN
lnnPN

)−RTn lnn (11)
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Therefore,

dG = dnR1ḠR1(T, Pref ) + · · ·+ dnRM
ḠRM

(T, Pref )
+dnP1ḠP1(T, Pref ) + · · ·+ dnPN

ḠPN
(T, Pref )

+(dn)RT ln
P

Pref

+RT (dnR1 lnnR1 + · · ·+ dnRM
lnnRM

+dnP1 lnnP1 + · · ·+ dnPN
lnnPN

+dnR1 + · · ·+ dnRM

+dnP1 + · · ·+ dnPN
)

−RTdn lnn−RTdn (12)

Using the fact that dn = dnR1 + · · · + dnRM
+ dnP1 +

· · ·+ dnPN
gives,

dG = dnR1ḠR1(T, Pref ) + · · ·+ dnRM
ḠRM

(T, Pref )
+dnP1ḠP1(T, Pref ) + · · ·+ dnPN

ḠPN
(T, Pref )

+RT (dnR1 + · · ·+ dnRM

+dnP1 + · · ·+ dnPN
) ln

P

Pref

+RT (dnR1 lnxR1 + . . . dnRM
lnxRM

+dnP1 lnxP1 + · · ·+ dnPN
lnxPN

)
= dnR1ḠR1(T, Pref ) + · · ·+ dnRM

ḠRM
(T, Pref )

+dnP1ḠP1(T, Pref ) + · · ·+ dnPN
ḠPN

(T, Pref )

+RT (dnR1 ln
pR1

Pref
+ · · ·+ dnRM

ln
pRM

Pref

+dnP1 ln
pP1

Pref
+ · · ·+ dnPN

ln
pPN

Pref
) (13)

We are almost there :-). We now apply the equal-
ity dnR1 = −r1dζ, . . . , dnRM

= −rMdζ, dnP1 =
p1dζ, . . . , dnPN

= pNdζ to get,

dG = dζ ×
[(p1ḠP1(T, Pref ) + · · ·+ pN ḠPN

(T, Pref )
−r1ḠR1(T, Pref )− · · · − rM ḠRM

(T, Pref ))

+RT ln
(pP1/Pref )p1 × · · · × (pPN

/Pref )pN

(pR1/Pref )r1 × · · · × (pRM
/Pref )rM

]

(14)

This looks cumbersome, but we can clean up this ex-
pression. First of all, note that if r1 moles of R1, . . . , rM

moles of RM , react at T and Pref to form p1 moles of
P1, . . . , pN moles of PN , then the change in free energy
is given by,

∆Ḡrxn(T, Pref ) = p1ḠP1(T, Pref ) + · · ·+ pN ḠPN
(T, Pref )

−r1ḠR1(T, Pref )− · · · − rM ḠRM
(T, Pref )

(15)

where ∆barGrxn(T, Pref ) is the molar free energy change
of the reaction.

Using the fact that dG = 0 at equilibrium, allows us to
re-arrange the expression before the previous one to get,

( pP1
Pref

)p1 × · · · × ( pPN

Pref
)pN

( pR1
Pref

)r1 × · · · × (pRM

Pref
)rM

= e−
∆Ḡrxn(T,Pref )

RT (16)

This expression is very powerful. The criterion for
equilibrium, dG = 0, in the context of chemical equi-
librium, leads us to a relationship between the par-
tial pressures of the various chemicals and the free en-
ergy change associated with the reaction. The quantity,
exp[−∆Ḡrxn(T, Pref )/RT ], is referred to as the equilib-
rium constant, and is denoted by Keq(T, Pref ).

If we re-express the equilibrium equation in terms of
mole fractions, then using the relationships previously
derived, and manipulating the equations some, gives,

xp1
P1
× · · · × xpN

PN

xr1
R1
× · · · × xrM

RM

= (
P

Pref
)−(p1+···+pN−r1−···−rM )Keq(T, Pref )

(17)
In the next subsection, we will see how this criterion

can be used to completely characterize the equilibrium
state of a system.

B. Working with the equilibrium constant

The equilibrium condition can be combined with the
concept of extent of reaction to uniquely compute the
equilibrium mole fractions.

Suppose that the container where the reaction occurs
is initially populated with nR1,0 moles of R1, . . . , nRM ,0

moles of RM , nP1,0 moles of P1, . . . , nPN ,0 moles of PN .
If the extent of reaction at equilibrium is ζequil, then at
equilibrium there are nR1,0 − r1ζequil moles of R1, . . . ,
nRM ,0 − rMζequil moles of RM , nP1,0 + p1ζequil moles of
P1, . . . , nPN ,0 + pNζequil moles of PN . The equilibrium
population fractions are then,

xR1 =
nR1,0 − r1ζequil

n0 + (p1 + · · ·+ pN − r1 − · · · − rM )ζequil

...

xRM
=

nRM ,0 − rMζequil

n0 + (p1 + · · ·+ pN − r1 − · · · − rM )ζequil

xP1 =
nP1,0 + p1ζequil

n0 + (p1 + · · ·+ pN − r1 − · · · − rM )ζequil

...

xPN
=

nPN ,0 + pNζequil

n0 + (p1 + · · ·+ pN − r1 − · · · − rM )ζequil

(18)

where n0 = nR1,0 + · · ·+ nRM ,0 + nP1,0 + · · ·+ nPN ,0.
Substituting these values into the equilibrium equation

allows us to solve for ζequil, and thereby obtain the equi-
librium composition of the system. In practice, actually
doing this can be very difficult, and the equilibrium equa-
tion must be solved by numerical methods (i.e. on the
computer). However, for simple reactions, ζequil may be
determined by hand.
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C. Determining the direction of a chemical reaction

To determine the direction of a chemical reaction when
it is not in equilibrium, we have to look at the derivative
(∂G/∂ζ)T,P . If this quantity is positive, then the reac-
tion will proceed in the forward direction (that is, ζ will
increase). If this quantity is negative, then the reaction
will proceed in the reverse direction (that is, ζ will de-
crease). In short, a chemical reaction will proceed in such
a way as to decrease G.

This is one example of a more general principle: A
system that comes to equilibrium at a given temperature
and pressure minimizes the value of the Gibbs free energy
for that temperature and pressure.

This principle is identical to the principle that entropy
always increases for an isolated system. We have already
proven this statement in the context of phase transitions
at the end of the last lecture.

Because of this principle of minimal free energy, a re-
action for which ∆Ḡrxn(T, Pref ) < 0 is said to be spon-
taneous, while a reaction for which ∆Ḡrxn(T, Pref ) > 0
is said to be not spontaneous.

One has to be careful with these terms, however. Sim-
ply because a reaction has a negative ∆Ḡ does not mean
that it will occur in the direction implied by saying it
is spontaneous. If we are beyond the equilibrium point
(for example, we add an excess of products), then the
reaction will go backwards.

Saying that ∆Ḡ < 0 implies that a reaction is spon-
taneous means that, if we start off with a component
population that contains only reactants, then the reac-
tion will proceed significantly forward, to a much greater
extent than if ∆Ḡ > 0. If ∆Ḡ > 0, then ∆Ḡ < 0 for the
reverse reaction, and so we say that the reverse reaction
is spontaneous.

It is understandable if this is confusing. The confusion
is due to the somewhat misleading terminology.

D. Entropy of mixing and dependence of the free
energy on mole fractions

Suppose we have M components in separate compart-
ments, and suppose that the are ni moles of component
i. Suppose also that each of these components are at
pressure P and temperature T . The total free energy is
given by,

Gunmixed(T, P ;n1, . . . , nM ) = n1(Ḡ1(T, Pref ) + RT ln
P

Pref
)

+ . . .

+nM (ḠM (T, Pref )

+RT ln
P

Pref
) (19)

After mixing the components together, the free energy
becomes,

Gmixed(T, P ;n1, . . . , nM ) = n1(Ḡ1(T, Pref ) + RT ln
P

Pref
))

+ . . .

+nM (ḠM (T, Pref ) + RT ln
P

Pref
)

+RT (n1 lnx1 + · · ·+ nM lnxM )

= n1(Ḡ1(T, Pref ) + RT ln
P

Pref
)

+ . . .

+nM (ḠM (T, Pref ) + RT ln
P

Pref
)

RT (n1 + · · ·+ nM )×
(x1 lnx1 + · · ·+ xM lnxM ) (20)

and so, the free energy energy of mixing, ∆Gmix =
Gmixed −Gunmixed, is given by,

∆Gmix = (n1 + · · ·+ nM )RT (x1 lnx1 + · · ·+ xM lnxM )
(21)

We would like to compute the entropy of mixing, how-
ever. That is, we would like to determine ∆Smix =
Smixed − Sunmixed. To do this, note that,

Gunmixed = Hunmixed − TSunmixed

Gmixed = Hmixed − TSmixed (22)

and so,

∆Gmix = (Hmixed −Hunmixed)− T∆Smix (23)

Now, note that, because enthalpy only depends on tem-
perature for an ideal gas, the enthalpies of the individ-
ual components are unaffected by mixing process, hence
Hmixed = Hunmixed. So, we obtain,

∆Smix = −(n1 + · · ·+ nM )R(x1 lnx1 + · · ·+ xM lnxM )
(24)

If we assume a total of one mole, that is, we assume
n1 + · · · + nM = 1, then we get the molar entropy of
mixing, given by,

∆S̄mix = −R(x1 lnx1 + · · ·+ xM lnxM ) (25)

Note that ∆S̄mix is always positive. This makes sense,
because, when we mix compounds together, the system
becomes more disordered. In a more precise sense, the
number of ways of having the components all mixed to-
gether is far larger than the number of ways of keeping
the components unmixed. In fact, if we choose to com-
pute the entropy of mixing using the Boltzmann formula
(see Lecture 6), we show that,

∆S̄mix = k ln
Ωmixed

Ωunmixed
= −R(x1 lnx1 + · · ·+ xM lnxM )

(26)
The derivation does not require more complex combi-

natorics than what was used for the example of the ideal
gas spreading throughout a box. However, it is more
involved than earlier derivations, so we will omit it here.
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FIG. 2: A solute dissolved in a container with semipermeable
walls will induce liquid flow into the compartment, thereby
increasing the pressure.

V. OTHER KINDS OF EQUILIBRIA

In this section we will briefly discuss other kinds of
equilibrium phenomena. These are sufficiently ubiqui-
tous to mention here.

A. Osmotic pressure

A phenomenon of major biological importance is os-
motic pressure: Imagine a body of water separated into
two regions by a semipermeable membrane (see Figure
2). We add a small quantity of solute to the water on
one side of the membrane, so that the mole fraction of
the water has been reduced from 1 to xwater = 1−xsolute.
The membrane is such that the solute particle are too big
to pass through, but the water molecules may pass freely
from one side to another.

In this situation, something fascinating happens: Wa-
ter will actually flow into the solute region and increase
the pressure on the solute side, until thermodynamic
equilibrium is reached. The resulting pressure at equi-
librium is known as osmotic pressure.

Osmotic pressure is important because cell membranes
are semipermeable. Therefore, cells need to have mech-
anisms to carefully regulate the internal concentrations
of various components, so that they don’t swell up and
burst. In fact, the reason why cells swell up and burst
when the external salt/sugar concentration is very low is
exactly because water then flows into the cells until the
osmotic pressure increase beyond what the membrane
can handle. Conversely, when the external salt/sugar
concentration is very high, then water flows out of the
cells and they shrivel up.

To compute the osmotic pressure, we regard the wa-
ter molecules as constituting an independent system that
comes to equilibrium at some temperature T and pres-
sure P . Now, although the pressure starts to rise on one

side of the system, so that there is not a uniform pressure
at equilibrium, we can still use the equality of chemical
potential (the molar Gibbs free energy) to determine the
equilibrium point.

The short answer as to why this is true is that, since
the pressure can change in response to material flows, the
relevant condition to study the equilibrium process is one
of constant volume. For constant volume processes, we
work with the Hemlholtz free energy, A. As can be seen
from the end of the last lecture, the molar free energies
µ are unaffected.

So, at equilibrium we want,

µwater(T, P, 1) = µwater(T, P + ∆P, 1− xsolute) (27)

where µwater(T, P ;x) denotes the molar free energy of
the water at temperature T , P , and molar fraction x.

Now, if the solute does not interact with the solvent,
then we can compute the molar free energy in much the
same way as we did for an ideal gas. From the statistical-
mechanical approach, we get,

µwater(T, P + ∆P, 1− xsolute) = µwater(T, P + ∆P, 1)
+RT ln(1− xsolute)

(28)

From the relationship dG = V dP at constant temper-
ature, and using the fact that for a liquid, V̄ is largely
independent of pressure, gives,

µwater(T, P, 1) = µwater(T, P, 1)+V̄ ∆P+RT ln(1−xsolute)
(29)

If xsolute is small, then ln(1 − xsolute) = xsolute, and so,
we get,

∆P =
RTxsolute

V̄
(30)

The quantity ∆P is the osmotic pressure. Note that for
a liquid, V̄ is generally very small, so that the osmotic
pressure rises very quickly with xsolute.

B. Freezing point depression

The condition for solid-liquid equilibrium is,

µsolid(T, P ) = µliquid(T, P ) (31)

If the mole fraction of the liquid is now reduced from
1 to 1 − xsolute due to the addition of a solute, then
at the pressure P , the temperature at which solid-liquid
equilibrium is achieved will in general shift. When xsolute

is small, we have, at equilibrium,

µsolid(T +dT, P ) = µliquid(T +dT, P )+RT ln(1−xsolute)
(32)

so that,

µsolid(T, P )− S̄solid(T, P )dT = µliquid(T, P )
−S̄liquid(T, P )dT

−RTxsolute (33)
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Since at the earlier equilibrium we have µsolid(T, P ) =
µliquid(T, P ), we get,

dT = − RT

S̄liquid − S̄solid
xsolute (34)

As we showed in the last lecture, S̄liquid − S̄solid =
∆S̄fus = ∆H̄fus/T , so that,

dT = − RT 2

∆H̄fus
xsolute (35)

Therefore, the freezing point decreases as the result of
impurities. This phenomenon, termed the freezing point
depression, explains why salt added to ice causes the ice
to melt.

C. Gas dissolved in a liquid

Suppose a gas is over a liquid at some pressure P .
The gas is different from the liquid (hydrogen gas over
water, for example), so are not talking about a vapor-
liquid equilibrium here. The issue here is that some of
the gas will dissolve into the liquid, and the question we
wish to answer is, how much?

Clearly, the higher the gas pressure, the more the gas
will be “pushed” into the liquid. Conversely, the greater
the mole fraction of the gas in the liquid, the greater the
tendency for the gas to escape. At equilibrium, we have,

µ(l)
gas(T, P, xgas) = µ(v)

gas(T, P ) (36)

where µ
(l)
gas denotes the molar free energy of the gas when

dissolved in the liquid state, at a mole fraction xgas, while
µ

(l)
gas denotes the molar free energy of the gas in the vapor

phase.
Now, for the vapor, we have µ

(v)
gas(T, P ) =

µ
(v)
gas(T, Pref ) + RT ln P

Pref
. We would like to use a simi-

lar formula for the gas dissolved in the liquid. However,
because the gas is in the liquid, it will have different
properties than if it were dispersed through a vacuum
medium. The gas particles can interact with the liquid,
in such a way as to affect the tendency of the gas to re-
main dissolved. If the gas and liquid molecules are polar,

the interactions can be attractive. If the gas is nonpo-
lar, such as air, and if the liquid molar are polar, such as
water, then the liquid molecules will be more strongly at-
tracted to each other than to the gas molecules, creating
a tendency to force the gas molecules out of the liquid.

We therefore introduce a term, called the fugacity, de-
noted f , which is like an effective partial pressure of the
gas when dissolved in the liquid. We have,

µ(l)
gas(T, P, xgas) = µ(v)

gas(T, Pref ) + RT ln
f

Pref
(37)

If we are dealing with an ideal gas mixture, then f = xP ,
that is, the fugacity is identical to the partial pressure.
In the gas of an air-water mixture, the fugacity will be
much larger, because the dissolved air will have a strong
tendency to escape from the water, resulting in a larger
effect partial pressure.

The equilibrium condition gives,

f = P (38)

Now, when xgas = 0, it makes sense that f = 0, for
since there is no gas dissolved in the liquid, the effective
pressure is zero. When xgas is small, then f increases
linearly with xgas (this is simply from the concept of
the derivative. The slope is (df/dxgas)xgas=0). Defining
CH = (df/dxgas)xgas=0 we get,

xgas =
P

CH
(39)

This relationship is known as Henry’s Law, and the quan-
tity CH is known as Henry’s Law Constant. In general,
it depends on the gas and liquid involved.

Note that the equilibrium fraction of gas dissolved in
a liquid increases linearly with pressure. This explained
why soda pop fizzes. The CO2 is forced into the liquid
at high pressure. When you open the cap, the pressure
drops, and so the equilibrium fraction of CO2 dropped
significantly. The result is that, on the approach to equi-
librium at the lower pressure, CO2 escapes from the liq-
uid, resulting in the “fizz”.


